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Abstract

As a generalization of the factor-augmented VAR (FAVAR) and of the Error

Correction Model (ECM), Banerjee and Marcellino (2009) introduced the Factor-

augmented Error Correction Model (FECM). The FECM combines error-correction,

cointegration and dynamic factor models, and has several conceptual advantages over

standard ECM and FAVAR models. In particular, it uses a larger dataset compared to

the ECM and incorporates the long-run information lacking from the FAVAR because

of the latter�s speci�cation in di¤erences. In this paper we examine the forecasting

performance of the FECM by means of an analytical example, Monte Carlo simula-

tions and several empirical applications. We show that relative to the FAVAR, FECM

generally o¤ers a higher forecasting precision and in general marks a very useful step

forward for forecasting with large datasets.
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1 Introduction

In Banerjee and Marcellino (2009), we introduced the Factor-augmented Error Correc-

tion Model (FECM). The main contribution of that paper was to bring together two

important recent strands of the econometric literature on modelling co-movements that

had a common origin but in their implementation had thus far remained largely apart,

namely, cointegration and dynamic factor models. We focused on a theoretical framework

that allowed for the introduction of cointegrating or long-run information explicitly into

a dynamic factor model and evaluated the role of incorporating long-run information in

modelling data, in particular in situations where the dataset available to researchers was

potentially very large (as in the empirical illustrations described in Section 5 below.) We

argued that the FECM, where the factors extracted from the large dataset are jointly

modelled with a limited set of economic variables of interest, represented a manageable

way of dealing with the problem posed by large datasets characterized by cointegration,

where such cointegration needed in principle to be taken into account. A number of

papers have emphasized, see for example Clements and Hendry (1995), the complexity of

modelling large systems of equations in which the complete cointegrating space may be

di¢ cult to identify. Therefore, proxying for the missing cointegrating information by using

factors could turn out to be extremely useful, and we proposed the use of the FECM as a

potentially worthwhile approach with a wide range of applicability.

The discussion in Banerjee and Marcellino (2009) concentrated on �rst establishing a

theoretical structure to describe the FECM and then illustrating its e¢ cacy by the use

of analytical examples, a simulation study and two empirical applications. Our model-

comparisons were based mainly on in-sample measures of model �t, and we studied the

improvements provided by FECMs with respect to a standard Error Correction Model

(ECM) and Factor-Augmented VARs (FAVAR) such as those considered by Bernanke,

Boivin and Eliasz (2005), Favero, Marcellino and Neglia (2005) and Stock and Watson

(2005). We viewed the FECM as an improvement both over the ECM, by relaxing the

dependence of cointegration analysis on a small set of variables, and over the FAVAR, by

allowing for the inclusion of error correction terms into the equations for the key variables

under analysis, preventing the errors from being non-invertible MA processes.

The focus of this paper is instead upon the evaluation of the forecasting performance

of the FECM in comparison with the ECM and the FAVAR. In our view, establishing

forecasting e¢ cacy is an important further key to determining the considerable usefulness

of the FECM as an econometric tool. As we show below, the relative rankings of the ECM,

the FECM and the FAVAR depend upon the features of the processes generating the data,

such as the amount and strength of cointegration, the degree of lagged dependence in the

models and the forecasting horizon. However, in general, both the ECM and the FAVAR

are outperformed by the FECM, given that it is a nesting speci�cation.

We start in Section 2 by reviewing the theoretical background of our study, by describ-
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ing the FECM and comparing it with the ECM and the FAVAR.

Section 3 o¤ers a simple yet comprehensive analytical example to understand the

features which are likely to determine the rankings - in terms of forecasting accuracy - of

these three models.

Section 4 presents two Monte Carlo designs to illustrate the e¤ectiveness of the di¤erent

models in providing forecasts. The �rst design is based on the simple analytical model of

Section 3. The second design is more elaborate and mimics one of the estimated models

in the empirical examples given in Section 5. We can anticipate that the results of the

Monte Carlo show that the strength of error correction alongwith the lengths of the cross-

section (N) and time dimension (T ) matter greatly in determining the forecast ranking

of alternative models. However, in the majority of cases the FECM performs well, and

systematically better than the FAVAR.

Section 5 carries the analysis to the practical realm. Forecasting with ECMs and with

factor models has attracted considerable attention, see e.g., respectively, Clements and

Hendry (1995) and Eickmeier and Ziegler (2008). To provide a thorough comparison of

the ECM, FAVAR and FECM, we consider four main applications, and we describe them

brie�y in turn below.

Stock and Watson (2002b) focused on forecasting a set of four real variables (total in-

dustrial production, personal income less transfers, employment on non-agricultural pay-

rolls and real manufacturing trade and sales) and a set of four nominal variables (in�ation

of producer prices of �nished goods, CPI in�ation with all items included, CPI in�ation

less food and the growth of the personal consumption expenditure de�ator) for the United

States. They compared the performance of factor models, ARs and VARs, typically �nd-

ing gains from the use of factor models. Since the four variables in each set represent

strongly related economic phenomena, it is logical to expect that they are cointegrated.

Hence, in this context the FECM represents a natural econometric speci�cation.

As a second application, we focus on a small monetary system consisting of one real,

one nominal and one �nancial variable, in common with standard practice in this literature,

see e.g. Rudebusch and Svensson (1998). Favero et al. (2005), among others, considered

augmenting this model with factors extracted from a large dataset to assess the e¤ects

on estimation and shock transmission. Here we are more interested in forecasting, and

in the role of cointegration among the basic variables, and them and the factors. The

VAR, FECM and FAVAR models are estimated �rst for the United States, and then for

Germany, the largest country in the euro area, for which much shorter time series are

available due to uni�cation.

The third application concerns the term structure of interest rates. A standard model

for these variables assumes that they are driven by three factors, the intercept, slope

and curvature, see e.g. Dieblod and Li (2006). Hence, there should be a large amount

of cointegration among them, in line with the �ndings by Hall, Anderson and Granger

(1992). Therefore, the FECM should be particularly suited in this context.
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The fourth and �nal application deals with exchange rate forecasting. The empirical

analysis by Meese and Rogo¤ (1983) and the theoretical results by Engel and West (2005),

among others in this vast literature, point to the di¢ culties in beating a random walk or

simple AR forecast. However, Carriero, Kapetanios and Marcellino (2009b), show that

cross-sectional information can be useful, but factor models on their own do not appear to

work very well in forecasting. Since this poor performance could be due to the omission

of information relating to cointegration, FECMs are the obvious candidates to also try in

this framework.

It is helpful to highlight here the key results of this extensive empirical analysis. First,

for real variables for the US, the FECM is systematically better than the FAVAR and the

ECM. Second, for the nominal US variables, an adaptation, denoted FECMc, to be

discussed below, or the ECM are in general the preferred models (depending upon the

time coverage and span of the datasets). Third, in the small monetary system for the

US, the FECM or FECMc is the dominant model, and the use of long-run information is

crucial. Fourth, for the monetary model for Germany, while the FECM provides the best

forecast in 6 out of 18 cases, the VAR is marginally the best performer (providing the best

forecast in 8 out of 18 cases). This shows that accounting for cointegration and factors

may not always be su¢ cient, although this �nding is conditioned heavily on the relatively

short estimation and evaluation periods for this example. Fifth, for the term structure of

interest rates, the FECM and FECMc provide the best forecasts in a very large number

of cases and the gains provided here by these models in relation to their competitors is

frequently quite substantial. Finally, for exchange rates, the FECM is again by far the

dominant method, with the use of cointegration and factors providing signi�cant gains.

Overall, these results emphasize the utility and robustness of FECM methods and shed

light on the combined use of factors and cointegrating information.

To conclude, Section 6 provides a detailed summary of the main �ndings of the paper

and suggests directions for additional research in this area.

2 The Factor-augmented Error Correction Model

It is helpful to begin with a brief description of the main theoretical structure underlying

the analysis. The discussion in this section is derived from Banerjee and Marcellino (2009)

and is useful in setting out the representation of the FECM and its relation to the ECM

and the FAVAR.

Consider a set of N I(1) variables xt which evolve according to the V AR(p) model

xt = �1xt�1 + :::+�pxt�p + �t; (1)

where �t is i:i:d:(0;
) and the starting values are �xed and set equal to zero for simplicity

and without any essential loss of generality. Following Johansen (1995, p.49), the V AR(p)
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can be reparameterized into the Error Correction Model (ECM)

�xt = ��
0
xt�1 + �t; (2)

or into the so-called common trend speci�cation

xt = 	ft + ut: (3)

In particular, under these speci�cations,

� =

pX
s=1

�s � In = �
N�N�r

�
0

N�r�N
;

vt = �1�xt�1 + :::+ �p�1�xt�p+1 + �t; �i = �
pX

s=i+1

�s; � = I �
p�1X
i=1

�i;

	
N�r

= �?(�
0
?��?)

�1; ft
r�1

= �
0
?

tX
s=1

�s; ut = C(L)�t:

�0 is the N � r �N matrix of cointegrating vectors with rank N � r; where N � r is the
number of cointegrating vectors. From this it follows that r is the number of I(1) common

stochastic trends (or factors), 0 < r � N , gathered in the r � 1 vector ft and the matrix
�
0
?��? is invertible since each variable is I(1). � is the so-called loading matrix, which

also has reduced rank N � r and determines how the cointegrating vectors enter into each
individual element xi;t of the N�1 vector xt:1 ut is an N�dimensional vector of stationary
(and in general, moving average) errors.

We also assume here that there are no common cycles in the sense of Engle and

Kozicki (1993), i.e., no linear combinations of the �rst di¤erences of the variables that

are correlated of lower order than each of the variables (in �rst di¤erences). However,

adding such cycles poses no signi�cant theoretical complications and is assumed here only

for convenience.2 Indeed, in the empirical applications in Section 5, we also consider

a modi�cation of the FECM, denoted FECMc, consisting of the FECM augmented with

common factors extracted from the stationary component of xt in (3) after the I(1) factors

ft and their corresponding loadings have been estimated. This is because, unlike in a

theoretical framework, where these features may be imposed by assumption, it is not

possible in empirical examples to rule these out a priori . It is therefore of interest

to allow for common cycles in the residuals to judge if this makes a di¤erence as far as

forecasting performance is concerned.

1Note that as N !1, and the number of factors r remains �xed, the number of cointegrating relations
N � r !1:

2Common cycles are associated with reduced rank of (some of) the coe¢ cient matrices in C(L), where
we remember that the errors in the stochastic trend representation (3) are ut = C(L)�t. Therefore, the
presence of common cycles is associated with stationary common factors driving xt, in addition to the I(1)
factors.
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From equation (3), it is possible to write the model for the �rst di¤erences of xt, �xt,

as

�xt = 	�ft +�ut; (4)

where �ut and �t can be correlated over time and across variables.

Papers on dynamic factor models (DFM) such as Stock and Watson (2002a,b) and

Forni, Hallin,Lippi and Reichlin (2000) have relied on a speci�cation similar to (4) and

have focused on the properties of the estimators of the common factors �ft, or of the

common components 	�ft, under certain assumptions on the idiosyncratic errors, when

the number of variables N becomes large. A few papers have also analyzed the model in

(3) for the divergent N case, most notably Bai and Ng (2004) and Bai (2004).3

By contrast, the literature on cointegration has focused on (2), the so-called error

correction model (ECM), and studied the properties of tests for the cointegrating rank

(N � r) and estimators of the cointegrating vectors (�0), see e.g. Engle and Granger
(1987) or Johansen (1995).

We shall make use of both speci�cations (3) and (4) when discussing factor models in

what follows, in order to explain the correspondence that exists between the two speci�-

cations and how this leads to the development of the FECM.

Imposing, without any loss of generality, the identifying condition4

�
0

N�r�N
=

�
��

0

N�r�r
: I
N�r�N�r

�
;

and, from (3), partitioning ut into

ut =

0B@ u1t
r�1

u2t
N�r�1

1CA ;
the model for the error correction terms can be written as

�
0
xt = �

0
ut = �

�0u1t + u2t: (5)

Note that in this model each of the N � r error correction terms is driven by a common
component that is a function of only r shocks, u1t, and an idiosyncratic component,

u2t. It is possible to change the exact shocks that in�uence each error correction term by

choosing di¤erent normalizations, but the decomposition of these terms into a common

3Bai and Ng (2004) also allow for the possibility that some elements of the idiosyncratic error ut are
I(1). We will not consider this case and assume instead that the variables under analysis are cointegrated,
perhaps after pre-selection. We feel that this is a sensible assumption from an economic point of view,
otherwise the variables could drift apart without any bound.

4This is standard practice in this literature, as also implemented by e.g. Clements and Hendry (1995,
page 129, lines 1 - 5) and ensures that the transformation from the levels xt which are I(1) to I(0)-space
(involving taking the cointegrated combinations and the di¤erences of the I(1) variables) is scale preserving.
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component driven by r shocks and an idiosyncratic component remains unchanged. This

also corresponds to the stochastic trend representation in (3), where the levels of the

variables are driven by r common trends.

Next, suppose, as is commonly the case in empirical studies and forecasting exercises

concerning the overall economy, we are interested in only a subset of the variables for which

we have information. We therefore proceed by partitioning the N variables in xt into the

NA of major interest, xAt, and the NB = N �NA remaining ones, xBt. A corresponding
partition of the common trends model in (3) may be constructed accordingly as 

xAt

xBt

!
=

 
	A

	B

!
ft +

 
uAt

uBt

!
; (6)

where 	A is of dimension NA� r and 	B is NB� r. It is important to note that when the
number of variables N increases, the dimension of 	A remains �xed, while the number

of rows of 	B increases with the increase in N . Therefore, for (6) to preserve a factor

structure asymptotically, driven by r common factors, it is necessary that the rank of 	B

remains equal to r. Instead, the rank of 	A can be smaller than r, i.e., xAt can be driven

by a smaller number of trends, say rA � r.
From the speci�cation in (6), it is may be seen that xAt and ft are cointegrated,

while the ft are uncorrelated random walks. Therefore, from the Granger representation

theorem, there exists an error correction speci�cation of the form 
�xAt

�ft

!
=

 

A


B

!
�
0

 
xAt�1

ft�1

!
+

 
eAt

et

!
: (7)

Since, in practice, the correlation in the errors of (7) is handled by adding additional lags

of the di¤erenced dependent variables, the expanded model becomes

 
�xAt

�ft

!
=

 

A


B

!
�
0

 
xAt�1

ft�1

!
+A1

 
�xAt�1

�ft�1

!
+:::+Aq

 
�xAt�q

�ft�q

!
+

 
�At

�t

!
;

(8)

where the errors (�0At; �
0
t)
0 are i:i:d:

The model given by (8) is labelled by Banerjee and Marcellino (2009) as the Factor-

augmented Error Correction Model (FECM).

The important feature to note is that there are NA + r dependent variables in the

FECM (8). Since xAt is driven by ft or a subset of them, and the ft are uncorrelated ran-

dom walks, there must be NA cointegrating relationships in (8). Moreover, since 	A is of

dimension NA�r but can have reduced rank rA, there are NA�rA cointegrating relation-
ships that involve the xA variables only, say �

0
AxAt�1, and the remaining rA cointegrating

relationships involve xA and the factors ft.

The cointegrating relationships �
0
AxAt�1 would also emerge in a standard ECM for
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�xAt only, say

�xAt = �A�
0
AxAt�1 + vAt: (9)

However, in addition to these NA � rA relationships, in the FECM there are rA cointe-

grating relationships that involve xAt and ft, and that proxy for the potentially omitted

N � NA cointegrating relationships in (9) with respect to the equations for �xAt in the
full ECM in (2).5 Moreover, in the FECM there appear lags of �ft as regressors in the

equations for �xAt, that proxy for the potentially omitted lags of �xBt in the standard

ECM for �xAt in (9).

The key to understanding the FECM is to see how use is made of the information

contained in the unmodelled N �NA cointegrating relationships which are proxied by the
cointegrating relationships between the variables of interest and the factors. Since, with

increasing N , this cointegrating information is in principle quite large, its importance in

relation to the variables of interest will determine the forecasting performance of the FECM

when compared to a standard ECM or a FAVAR (which would not take any cointegrating

information into account.)

To continue with this argument further, we see that the FAVAR speci�cation follows

easily from (8) by imposing the restrictions 
A = 
B = 0 thereby losing all long-run

information. The VAR and the standard ECM also emerge as nested cases (by imposing

suitable restrictions.) As we show below, this nesting property of the FECM is extremely

useful for analyzing its performance. It is true, to be sure, that the theoretical advantages

are not necessarily re�ected in better forecasts in actual situations, but serve nevertheless

as a guide.

To conclude the discussion in this section, we may make two further observations.

First, we should note that when the Data Generating Process is the common trends

speci�cation in (3), the error process �ut in (4) may have a non-invertible moving average

component that prevents the approximation of each equation of the model in (4) with an

AR model augmented with lags of the factors. Second, and perhaps even more problematic,

in (4) �ft and �ut are in general not orthogonal to each other, and in fact they can be

highly correlated. This feature disrupts the factor structure and, from an empirical point

of view, can require a large number of factors to summarize the information contained in

�xt. Even when orthogonality holds, the presence of the �rst problem still makes the use

of FAVAR models problematic.

3 An analytical example

We illustrate analytically the forecasting properties of the FECM relative to the FAVAR

and the ECM with a simple but comprehensive example. The example may easily be seen

5 In the full ECM model (2), there would be up to N�rA cointegrating relationships in the equations for
�xAt, while in (9) there are only NA�rA cointegrating relationships, so that there are N�NA potentially
omitted long run relationships in the ECM for �xAt only.
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to be a special case of the data generation processes given above, obtained by restricting

the dimension of the factor space and of the variables of interest studied.

We suppose that the large information set available for forecasting may be summarized

by one (I(1)) common factor, f , that the econometrician is particularly interested in

forecasting one of the many variables, x1, and that she can choose any of the three following

models. First, a standard ECM for x1 and x2, where x2 is a proxy for f . Second, a FAVAR

model where the change in x1 (�x1) is explained by its own lags and by lags of the change

in f . And, third, a FECM, where the explanatory variables of the FAVAR are augmented

with a term representing the (lagged) deviation from the long run equilibrium of x1 and

f . We want to compare the mean squared forecast error (MSE) for �x1 resulting from

the three models, under di¤erent assumptions on the data generating process (DGP), and

show that the FECM can be expected to perform at least as well as the FAVAR in all

cases.

To start with, let us consider a system consisting of the two variables x1 and x2 and

of one factor f . The factor follows a random walk process,

ft = ft�1 + "t: (10)

The factor loads directly on x2,

x2t = ft + ut; (11)

while the process for x1 is given in ECM form as

�x1t = � (x1t�1 � �ft�1) + 
�ft�1 + vt; � < 0: (12)

Here the processes �t and vt are assumed i:i:d:(0; IN ), while ut is allowed to have a moving

average structure, i.e. ut = u�t = (1� �L) ; j�j < 1 and u�t is i:i:d: Hence, the DGP is a

FECM.

Let us focus on �x1t and derive the (one-step ahead) MSE when the forecast is based

on an ECM for x1 and x2 rather than on the FECM. Substituting (11) into (12) gives

�x1t = � (x1t�1 � �x2t�1) + 
�x2t�1 + vt + ��ut�1 � 
�ut�1;

so that

MSEECM = V ar (vt + ��ut�1 � 
�ut�1) :

It then follows that

MSEECM �MSEFECM = V ar (��ut�1 � 
�ut�1)

=
(�� � 
)2 + 
2

1� �2 �2u� > 0:

To assess the role of cointegration, we can evaluate how this MSE di¤erence changes
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with the strength of the error-correction mechanism. We have that

@ (MSEECM �MSEFECM )
@�

_ ��2;

where _ indicates "proportional to". Given that for the system to be error correcting

we need � < 0; the loss of forecasting precision of the ECM relative to the FECM

unambiguously increases with the strength of error correction (i.e. when � decreases).

Similarly,
@ (MSEECM �MSEFECM )

@

_ 4
;

so that the larger 
 the larger the loss from approximating f with x2.

The FECM representation of x1 can also be written as a FAVAR. In fact, since the

error-correction term x1t � �ft evolves as

x1t � �ft = (�+ 1) (x1t�1 � �ft�1) + 
�ft�1 + vt � �"t

=

�ft�1

1� (�+ 1)L +
vt � �"t

1� (�+ 1)L;

we can re-write equation (12) as

�x1t = 
�ft�1 +
�
�ft�2

1� (�+ 1)L + vt +
� (vt�1 � �"t�1)
1� (�+ 1)L (13)

This implies that

MSEFAV AR �MSEFECM = �2var

�
(vt�1 � �"t�1)
1� (�+ 1)L

�
;

so that MSEFAV AR > MSEFECM whenever we have cointegration (� 6= 0).
If instead � = 0, so that the DGP becomes a FAVAR rather than a FECM, the FECM

and FAVAR become equivalent, and the gains in forecasting precision with respect to the

ECM remain positive but shrink to 2
2=
�
1� �2

�
�2v� .

Finally, we consider the case where the DGP is an ECM instead of a FECM. This

returns to the issue highlighted previously of the importance of the cointegrating relation-

ships between the variables of interest and the factors. To illustrate this situation, we

consider the same example as above but invert the role of x2 and f in (10)-(12). Hence,

the DGP becomes

x2t = x2t�1 + "t: (14)

ft = x2t + ut; (15)

�x1t = � (x1t�1 � �x2t�1) + 
�x2t�1 + vt: (16)
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The FECM for �x1t can be written as

�x1t = � (x1t�1 � �ft�1) + 
�ft�1 + vt + ��ut�1 � 
�ut�1: (17)

For the FAVAR, since

x1t � �ft =

�ft�1 + (vt � �"t)
1� (�+ 1)L +

(�+ 1)�ut�1 � 
ut�1 � �ut
1� (�+ 1)L ;

then

�x1t = 
�ft�1 +
�
�ft�2

1� (�+ 1)L + vt

+ ��ut�1 � 
�ut�1| {z }
additional error of

FECM versus ECM

+ �
vt�1 � �"t�1 + (�+ 1)�ut�2 � 
ut�2 � �ut�1

1� (�+ 1)L| {z }
additional error of

FAVAR versus FECM

(18)

Therefore, when the long-run and short-run evolution of x1 are better explained by

an observable variable such as x2 rather than a common factor f , the ECM generates

more accurate forecasts than the FECM. However, even in this case, the MSE of a FECM

would be in general lower than that of a FAVAR, with equality only for the case � = 0

(no cointegration).

In summary, this simple but comprehensive analytical example shows that from a the-

oretical point of view, the FECM can be expected to produce more e¢ cient forecasts than

the FAVAR in virtually all situations. The rationale, as explained in the previous section,

is that the FAVAR is nested in the FECM, in the same way that a VAR in di¤erences is

nested in an ECM. However, as also discussed above, the theoretical advantages are not

necessarily re�ected in better forecasts in actual situations, since the speci�cation of the

FECM is more complex than that of the FAVAR, requiring us, for example, to determine

the number and the coe¢ cients of the cointegrating vectors. To assess the presence and

size of forecasting gains from the FECM in practical situations, we now turn to a Monte

Carlo evaluation and then to a set of empirical applications.

4 Monte Carlo experiments

In this section we consider two Monte Carlo experiments. The �rst experiment takes as

the DGP the model (10) - (12) in the analytical example of the previous section. The

second experiment considers a FECM DGP with a more complex structure that closely

re�ects the properties of one of our empirical applications in Section 5, and re�ects very

clearly the structure of (8).
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4.1 A simple design

In accordance with the analytical example, we consider two types of DGP, a FECM and

an ECM, since we are interested in the ranking of FAVAR and FECM in the two cases.

For simplicity, we assume that the error process ut does not contain a moving-average

component. Hence, the FECM DGP is2664
�x1t

�x2t

�ft

3775 =
2664
�

0

0

3775h 1 0 ��
i2664

x1t�1

x2t�1

ft�1

3775+
2664
0 
 0

0 0 1

0 0 0

3775
2664
�x1t�1

�x2t�1

�ft�1

3775+
2664

vt

"t � ut
"t

3775 ;
(A1)

while in the case of the ECM DGP it is2664
�x1t

�x2t

�ft

3775 =
2664
�

0

0

3775h 1 �� 0
i2664

x1t�1

x2t�1

ft�1

3775+
2664
0 
 0

0 0 0

0 0 1

3775
2664
�x1t�1

�x2t�1

�ft�1

3775+
2664

vt

"t

"t � ut

3775 ;
(A2)

The parameters of the benchmark DGP are � = �0:5; � = 1:0 and 
 = 0:6: These

are then changed to assess respectively the e¤ects of the increased importance of the

lagged di¤erences of factors (
 = 0:9) and of the increased or decreased importance of the

error-correction terms (� = �0:75 or � = �0:25).
The previous theoretical derivations suggest that we should observe gains in forecasting

precision from using the FECM rather than the FAVAR for all DGPs, with larger gains

when 
 and � (in absolute terms) are larger in the case of a FECM DGP, and when

� is larger with an ECM DGP. The ranking of the FECM to the ECM should instead

depend on the type of DGP. In addition to the ECM, FAVAR and FECM, which are the

main subjects of comparison, we also include three common empirical speci�cations in the

comparison exercise, namely a simple autoregression (AR), a factor-augmented AR model

(FAR) and a VAR consisting of the bivariate system given by [�x1t;�x2t]
0. In all the

models that allow for cointegration, a rank equal to one is imposed. In all the models the

dynamics are determined by the Bayesian Information criterion (BIC), starting with six

lags for each explanatory variable. The factors are assumed to be known in the estimated

models and are included in levels in the FECM and in di¤erences in the FAVAR and the

FAR.6

We use (A1) and (A2) to generate 5000 random samples, each of 200 time series obser-

vations (T = 200), with the �nal 50 observations retained for out-of-sample forecasting.

For the simple DGP we focus on the forecasting accuracy for x1, which is the error-

correcting variable in system (10) - (12). The h�step ahead forecasts are given by looking
6Typically factor estimation matters very little for forecasting, even when the sample size is relatively

small, see e.g. the simulation experiments in Banerjee et al. (2008). In the next experiment we will also
consider the case of estimated rather than known cointegration rank.
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at x̂h1;�+h � x1;� ; � = T � h� 50; :::; T � h and are constructed as

x̂h1;�+h = x1;� +
hX
i=1

�x̂1;�+i; � = T � h� 50; :::; T � h: (19)

The MSE is given by

MSEh =
1

50

50X
j=1

�
xh1;T�50+j � x̂h1;T�50+j

�2
(20)

and the MSEs from the competing models are benchmarked with respect to the MSE of

the AR model.

We consider six di¤erent forecast horizons, h = 1; 3; 6; 12; 18; 24. In contrast to our

use of iterated h-step ahead forecasts (dynamic forecasts), Stock and Watson (1998 and

2002a,b) adopt direct h-step ahead forecasts, but Marcellino, Stock and Watson (2006)

�nd that iterated forecasts are often better, except in the presence of substantial misspec-

i�cation.7

The results are reported in Table 1 . Starting with h = 1, the values are in line

with the theoretical predictions. In particular, the FECM is virtually always better than

the FAVAR. The MSE gains increase with � and 
 and are also present for an ECM

DGP. The ECM is worse than the FECM (and the FAVAR) with a FECM DGP, but

becomes the best with an ECM DGP. However, interestingly, in this case the relative

loss from the use of a FECM is rather small, although this result may be due to the

relatively small dimension of the DGP considered here. Concerning the other models, the

AR is systematically dominated since there is substantial interaction across the variables

in both DGPs; the VAR is systematically worse than the ECM (cointegration matters);

and the FAR is systematically better than the AR (the factor matters).

When the forecast horizon increases, the pattern described above remains qualitatively

valid and the FECM consistently dominates all other models, but the MSE di¤erences

shrink substantially. In particular, already for h = 3 the FAVAR and ECM generate

similar MSEs with a FECM DGP, and when h = 24 the MSEs from all models, including

the AR, are very similar. This notable �nding also emerges in earlier studies on the role

of cointegration for forecasting, see e.g. Clements and Hendry (1995), and is due to the

stationarity of the variables under analysis, which implies that the optimal h-step ahead

forecast converges to the unconditional mean of the variable when the forecast horizon

increases.

In summary, the Monte Carlo results con�rm the theoretical �ndings for sample sizes

common in empirical applications. The FECM appears to dominate the FAVAR in all

cases, even when the FECM is not the DGP but cointegration matters. However, the

7Our use of iterated h�step ahead forecasts implies that the FAR is essentially a FAVAR containing
only one variable of interest and factors.
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Table 1: Monte Carlo results: Out-of-sample forecasts of x1 from A1 and A2
DGPs

MSE relative to MSE of AR model
h DGP � � 
 FAR VAR FAVAR ECM FECM

FECM -0.50 1.00 0.60 0.54 0.81 0.54 0.65 0.48
FECM -0.50 1.00 0.90 0.43 0.76 0.44 0.62 0.36

1 FECM -0.75 1.00 0.60 0.40 0.79 0.40 0.63 0.32
FECM -0.25 1.00 0.60 0.63 0.89 0.63 0.77 0.68
ECM -0.50 1.00 0.60 0.84 0.54 0.55 0.43 0.63
FECM -0.50 1.00 0.60 0.81 0.92 0.81 0.77 0.67
FECM -0.50 1.00 0.90 0.84 0.94 0.84 0.85 0.74

3 FECM -0.75 1.00 0.60 0.83 0.94 0.83 0.80 0.69
FECM -0.25 1.00 0.60 0.84 0.94 0.84 0.76 0.69
ECM -0.50 1.00 0.60 0.93 0.83 0.83 0.67 0.77
FECM -0.50 1.00 0.60 0.88 0.94 0.88 0.82 0.76
FECM -0.50 1.00 0.90 0.90 0.95 0.90 0.90 0.81

6 FECM -0.75 1.00 0.60 0.91 0.96 0.91 0.86 0.79
FECM -0.25 1.00 0.60 0.90 0.96 0.90 0.80 0.75
ECM -0.50 1.00 0.60 0.95 0.89 0.89 0.75 0.83
FECM -0.50 1.00 0.60 0.94 0.97 0.94 0.88 0.82
FECM -0.50 1.00 0.90 0.94 0.97 0.94 0.94 0.88

12 FECM -0.75 1.00 0.60 0.95 0.98 0.95 0.90 0.84
FECM -0.25 1.00 0.60 0.95 0.98 0.95 0.87 0.83
ECM -0.50 1.00 0.60 0.97 0.93 0.93 0.87 0.92
FECM -0.50 1.00 0.60 0.94 0.97 0.94 0.92 0.88
FECM -0.50 1.00 0.90 0.95 0.98 0.95 0.93 0.90

18 FECM -0.75 1.00 0.60 0.97 0.98 0.97 0.93 0.89
FECM -0.25 1.00 0.60 0.95 0.98 0.95 0.90 0.84
ECM -0.50 1.00 0.60 0.98 0.96 0.95 0.89 0.92
FECM -0.50 1.00 0.60 0.96 0.98 0.96 0.94 0.91
FECM -0.50 1.00 0.90 0.96 0.98 0.96 0.95 0.91

24 FECM -0.75 1.00 0.60 0.98 0.98 0.98 0.92 0.89
FECM -0.25 1.00 0.60 0.97 0.98 0.97 0.91 0.87
ECM -0.50 1.00 0.60 0.98 0.96 0.96 0.90 0.93

Notes: 5000 Monte Carlo replications. T=200, last 50 observations retained for
forecasting. Cointegration rank in ECM and FECM set to 1. Lag selection using
BIC criterion.

simulations also indicate that the gains can shrink rapidly with the forecast horizon.

4.2 A more elaborate design

The second Monte Carlo experiment considers a more complex data generating process,

which mimics the features observed in one of the empirical examples reported in Section

5, based on a large set of variables for the US. In particular, we estimate over the period

1985-2003, a FECM for four real variables (total industrial production, personal income

less transfers, employment on non-agricultural payrolls and real manufacturing trade and

sales) and four I(1) factors extracted from the 104 I(1) variables (out of 132 series) used

in Stock and Watson (2005). The rank of the system is set to 4, in accordance with the

estimates and in line with theoretical expectations. For simplicity, we set the number of

lagged di¤erences to 1, even though empirically this may not be su¢ cient.

As in the previous section, in the case of this DGP also, we want to assess how the

relative forecasting precision of the FECM is a¤ected by the importance of the error-

correction mechanism. To this end, in addition to the basic design, we also consider

experiments where we multiply the loading coe¢ cient matrix � in the FECM by a constant

c that takes on values 1, 0.75, 0.50 and 0.25, where by lowering c - relative to c = 1; which
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is the estimated model - we reduce the share of variability in the data induced by the

variability of the error-correction term.

Overall, the DGP is"
�xAt

�ft

#
= �0 + c

"

A


B

#
�
0

"
xAt�1

ft�1

#
+A1

"
�xAt�1

�ft�1

#
+

"
�At

�t

#
; (21)

with c = f0:25; 0:50; 0:75; 1:00g. The parameter values �0, 
A, 
B, �, and A1 are taken
to be equal to the estimated values from the system of real variables described above.

The error process of the system is drawn from a multivariate normal distribution with

variance-covariance matrix estimated from the data. The sample size and the length of

the out-of-sample forecast period are constructed so as to match the empirical example,

i.e. data sample 1985:1 - 2003:12 and forecast period 1996:1 - 2003:12. As in the case of

the simple DGP the factors are assumed to be known.

We consider 10000 replications. For each replication, the lag length and the cointe-

gration rank for the ECM and the FECM are determined recursively for each updating of

the estimation sample as we move through the forecasting period. Determination of lag

length is based on BIC for the results presented in Tables 2 and 3, but we have also checked

robustness by using the Hannan-Quinn (HQ) criterion. The results appear robust to the

use of di¤erent information criteria (details available upon request). As for the cointegra-

tion test, we have considered two approaches: the Johansen trace test (Johansen, 1995)

and the Cheng and Phillips (2008) semi-parametric test based on standard information

criteria. Both methods gave very similar results (details available upon request), but due

to the lower computational burden and also ease of implementation in practice, we gave

preference to the Cheng and Phillips method. As for determination of the lag length, the

BIC information criterion was used.8

For the sake of brevity, we report in the main text only the results for c = 1 (Table

2) and c = 0:25 (Table 3). The details of the intermediate cases of c = 0:75 and 0:5

are deferred to the Appendix. The MSE calculations for each of the four variables are

analogous to (19) and (20). Starting with Table 2 and h = 1, the FECM is indeed better

than the FAVAR for all four variables. The FECM is also better than the ECM for all

four variables, with comparable gains. The relative ranking of the other models is not

clear-cut: VAR is the best for the fourth variable and the second best in terms of MSE

for the �rst variable, while the ECM is the second best for the second and third variables.

This is an interesting �nding since it highlights the fact that the role of cointegration and

of the factors can be rather unclear when misspeci�ed models are compared.

When the forecast horizon h increases, four main �ndings emerge. First, the dominance

8Simulation results in Cheng and Phillips (2008) show that use of BIC tends to underestimate rank
when true rank is not very low, while it performs best when true cointegration rank is very low (0 or 1).
Given that BIC model selection is generally prefered for model selection for forecasting, we chose to use
it also for testing for cointegration rank. However, our results (available upon request) are robust also to
the use of HQ.
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Table 2: Monte Carlo results - DGP corresponding to FECMwith real variables,
c = 1.00

RMSE MSE relative to MSE of AR model
h Var of AR FAR VAR FAVAR ECM FECM

1 0.005 1.13 0.93 0.99 0.98 0.87
1 2 0.007 1.02 0.92 0.95 0.94 0.82

3 0.001 1.10 1.09 1.34 1.05 0.86
4 0.009 1.03 0.98 1.02 1.10 1.01
1 0.011 1.25 0.88 0.96 1.00 0.72

3 2 0.012 1.02 0.82 0.85 0.76 0.54
3 0.003 1.34 1.22 1.45 1.08 0.59
4 0.014 1.01 0.91 0.94 1.04 0.81
1 0.020 1.24 0.90 0.96 0.95 0.64

6 2 0.019 1.02 0.76 0.81 0.66 0.47
3 0.007 1.39 1.27 1.41 0.98 0.57
4 0.020 1.01 0.90 0.91 1.03 0.76
1 0.037 1.17 0.92 0.94 1.00 0.69

12 2 0.031 1.02 0.79 0.82 0.64 0.45
3 0.014 1.40 1.33 1.38 1.10 0.67
4 0.030 1.00 0.90 0.90 1.07 0.76
1 0.054 1.15 0.96 0.97 0.99 0.74

18 2 0.042 1.01 0.82 0.85 0.60 0.46
3 0.023 1.39 1.33 1.36 1.10 0.77
4 0.040 1.00 0.91 0.91 1.16 0.81
1 0.070 1.07 0.96 0.97 1.20 0.91

24 2 0.052 1.01 0.85 0.87 0.79 0.58
3 0.032 1.23 1.20 1.20 1.10 0.83
4 0.048 1.01 0.93 0.93 1.36 0.90

AR 2.03 1.20 2.64 1.07
Lags FAR 0.70 0.76 0.99 0.81

VAR FAVAR ECM FECM
0.99 0.71 0.17 0.08

ECM FECM
Cointegration mean min max mean min max
rank 1.51 0.98 2.38 3.09 2.46 3.51

Notes: 10000 replications. The DGP corresponds to the FECM estimated on 4 real
US variables and 4 factors with cointegration rank 4 and 1 lagged di¤erence.
Sample sizes and out-of-sample forecast period are constructed so as to �t the
empirical example, i.e. data sample 1985:1 - 2003:12 and forecast period
1996:1 - 2003:12. Cheng and Phillips (2008) cointegration rank test and lag
selection based on BIC information criterion.

of the FECM over other models becomes more pronounced. Second, in contrast with the

simple DGP of the �rst experiment, the MSE gains of the FECM with respect to the

AR in general increase as long as h < 24, and start decreasing only for h = 24. Third,

the FAVAR remains systematically worse than the FECM for all variables and horizons,

but it also becomes worse than the ECM in most cases. This suggests that for this DGP

cointegration does matter, possibly more than the inclusion of the factors. Finally, the

ECM performs quite well with respect to the other models; it is the second-best choice for

most variables and forecast horizons.

The results on the role of the strength of the error correction mechanism, which is much

weaker in Table 3 where we use c = 0:25, are perhaps even more interesting. When h = 1,

the FECM becomes worse than AR for all four variables, even if it is the speci�cation that

corresponds to the DGP. Moreover, the gains with respect to the FAVAR and to the ECM

basically disappear, and the performance of the three models is very similar, and similar

to that of the AR, FAR and VAR. One reason for this result may be the fact that the

Cheng and Phillips (2008) test for rank based on BIC heavily underestimates the rank.
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Table 3: Monte Carlo results - DGP corresponding to FECMwith real variables,
c = 0.25

RMSE MSE relative to MSE of AR model
h Var of AR FAR VAR FAVAR ECM FECM

1 0.005 1.00 0.99 1.00 1.00 1.01
1 2 0.006 1.03 1.04 1.05 1.06 1.06

3 0.001 0.94 1.07 1.11 1.05 1.12
4 0.009 1.03 1.09 1.12 1.13 1.14
1 0.009 1.01 0.99 1.01 0.98 1.00

3 2 0.010 1.00 1.00 1.00 1.00 1.01
3 0.003 1.14 1.19 1.26 1.09 1.21
4 0.012 1.01 1.02 1.03 1.05 1.04
1 0.015 1.01 0.99 1.00 0.98 0.99

6 2 0.015 1.00 0.99 1.00 0.99 1.00
3 0.005 1.14 1.16 1.20 1.04 1.14
4 0.017 1.01 1.02 1.02 1.10 1.03
1 0.022 1.01 0.99 1.00 0.99 1.00

12 2 0.020 1.01 1.00 1.00 1.02 1.01
3 0.008 1.13 1.14 1.17 1.05 1.12
4 0.023 1.01 1.01 1.02 1.09 1.03
1 0.032 1.01 0.99 1.00 1.04 1.00

18 2 0.028 1.00 0.99 1.00 0.97 1.00
3 0.012 1.10 1.11 1.12 1.10 1.10
4 0.030 1.01 1.00 1.01 1.08 1.02
1 0.043 1.01 1.00 1.01 1.11 0.99

24 2 0.032 1.00 0.99 1.00 1.09 1.01
3 0.016 1.11 1.11 1.12 1.08 1.06
4 0.038 1.01 1.00 1.00 1.23 1.02

AR 0.21 0.88 1.36 1.02
Lags FAR 0.50 0.52 0.77 0.74

VAR FAVAR ECM FECM
0.30 0.10 0.09 0.00

ECM FECM
Cointegration mean min max mean min max
rank 0.56 0.09 1.42 0.29 0.02 0.78

Notes: see Table 3.

However, a robustness check with respect to the use of the HQ criterion leaves this �nding

virtually unchanged despte the fact that with HQ the cointegration rank is on average

correctly set to four. The issue is that in this context of mild error correction, parsimony

pays: dropping, by mistake, the error-correction terms and the lagged factors can even

be bene�cial! When h increases the FECM returns to beating the FAVAR systematically,

but not the ECM, and the AR model remains a tough competitor.

We have also checked whether these results may be in�uenced by the size of the esti-

mation sample. Indeed, by increasing the length of the time series of generated data from

228 to 600 in the Monte Carlo, the FECM returns to being the best model at all horizons.

But consistent with the fact that the share of data variability induced by the error correc-

tion term is considerably smaller than in the case of original DGP, the observed gains are

also considerably smaller.

In summary, the more complex Monte Carlo design indicates that in empirically rele-

vant situations the strength of the error correction mechanism matters in determining the

ranking of the alternative forecasting models. While the FECM remains better than the

FAVAR in most cases, simpler models such as the ECM or even AR can become tough

competitors when the explanatory power of the error correction terms and/or of the factors
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is reduced, and the sample size is not very large. Thus, while having a suitably large N

dimension is bene�cial for the computation of the factors, a relatively short T dimension

will imply that the cointegrating information may be poorly incorporated in the FECM.

Thus if cointegration is important, but the factors less so, a large N environment (which

facilitates the use of factors) will not necessarily represent an advantage for the FECM.

In such circumstances, as we show below, the ECM may be the dominant method.

5 Empirical applications

In order to provide convincing evidence of the usefulness of the FECM as a forecasting tool,

we consider a number of empirical examples that di¤er in terms of the type of economic

application, countries and time periods. In these examples we extract factors from four

di¤erent datasets.

As discussed in the introduction, the �rst dataset is a large panel of monthly US

macroeconomic variables from Stock and Watson (2005) that includes 132 monthly time

series, over the period 1959:1 to 2003:12. For the estimation of the I(1) factors to be

used in the FECMs, we have considered two options. First, we have retained only the 104

series that are considered as I(1) by Stock and Watson. Second, we have cumulated the

remaining 28 I(0) series and added them to the I(1) dataset before extracting the I(1)

factors. Since our main �ndings are robust to the use of either option, we report results

based only on the former. The data series as well as the transformations implemented are

listed in Table 17 in the Appendix.

Based on this dataset we consider forecasting three di¤erent systems of variables. The

�rst two follow the choice of variables in Stock and Watson (2002b), i.e. we forecast four

real variables and four in�ation rates. The third system is in spirit closer to the standard

practice of a small-scale macroeconomic modelling as it includes indicators of real output,

in�ation rate and the nominal interest rate.

The second dataset is taken from Marcellino and Schumacher (2008). It contains 90

monthly series for the German economy over the sample period 1991:1-2007:12. As in

the case of the US dataset, the time series cover broadly the following groups of data:

prices, labour market data, �nancial data (interest rates, stock market indices), industry

statistics and construction statistics. The source of the time series is the Bundesbank

database. The details of this dataset are given in Table 16 in the Appendix. With the

factors extracted from this dataset we estimate a system analogous to the US three-variable

system of mixed variables, which includes measures of real output, in�ation rate and the

short-term nominal interest rate.

The use of the third dataset is motivated by the analysis of the yield curve where

it is commonly assumed that the dynamics of this curve are driven by a small number

of factors, typically referred to as the level, slope and the curvature factors. In other

words, theoretically we expect to �nd a lot of cointegration among the yields at di¤erent
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maturities. We therefore extract the factors from a panel consisting of nominal yields only

and consider forecasting interest rates at di¤erent maturities. The dataset used is taken

from Carriero et al. (2009b) who use the US Treasury zero coupon yield curve estimates

by Gürkaynak, Levin & Swanson (2009). The data on 18 di¤erent maturities - from 1

month to 10 years - are monthly, ranging from 1980:1 to 2007:12.

In our �nal example we consider forecasting three major bilateral exchange rates (the

euro, the British pound and the Japanese yen against the US dollar) with or without

using information on a large set of other exchange rates. This example is of interest since

Carriero et al. (2009b) �nd that cross-sectional information may be relevant for forecasting

exchange rates. Economic theory provides less guidance here on the number of common

trends and the amount of cointegration we should expect in the data and the exercise

is therefore a challenging application for a model like FECM. The data are taken from ,

Carriero et al (2009b) and comprise the monthly averages of the exchange rates vis-a-vis

the dollar for 43 currencies for the period 1995:1 - 2008:4. Details of this data are given

in Table 18 in the Appendix.

Prior to computation of the factors and estimation of the competing forecasting models,

the raw data were transformed in the following way. First, natural logarithms were taken

for all time series except interest rates. In addition, the logarithms of price series were

di¤erenced, which implies that in�ation rates were treated as I(1). To achieve stationarity

for the extraction of the I(0) factors used in the FAVAR analysis, all series (including

in�ation rates) were di¤erenced once. If not adjusted already at the source, the time series

were tested for presence of seasonal components and adjusted accordingly with the X�11
�lter prior to the forecast simulations. Extreme outlier correction was achieved using

a modi�cation of the procedure proposed by Watson (2003). Large outliers are de�ned

as observations that di¤er from the sample median by more than six times the sample

interquartile range (Watson, 2003, p. 93). As in Stock and Watson (2005), the identi�ed

outlying observations were set to the median value of the preceding �ve observations.

For the computation of I(1) factors included in the FECM all variables are treated as

I(1) with non-zero mean. The I(1) factors are estimated with the method of Bai (2004)

(see details below on the number of factors extracted from each dataset). For the I(0)

factors included in the FAVAR and FAR, we �rst transform the data to stationarity and

then use the principal component based estimator of Stock and Watson (2002a).

Three further issues related to the factors deserve comment. First, the estimated

factors are consistent only for the space spanned by the true factors but not necessarily for

the true factors themselves. However, this is not a problem in a forecasting context, since if

the true factors have forecasting power a rotation of these factors preserves this property.

In addition, if the original factors are I(1), not cointegrated amongst themselves, but

cointegrated with the variables of interest, these features are also preserved by a rotation.

Second, the use of estimated factors rather than true factors does not create a generated

regressor problem as long as the longitudinal dimension grows faster than the temporal
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dimension, the precise condition is T 1=2=N is o(1), see Bai and Ng (2006). Intuitively,

the principal component based estimator estimates the factors as weighted averages of N

contemporaneous variables. Thus, when N is large enough with respect to the temporal

dimension T , the convergence of the estimator is su¢ ciently fast to avoid the generated

regressor problems.

Third, we �nd a mismatch in the number of I(1) and I(0) factors which suggests that

the variables in levels could be driven by (one or more) I(0) factors in addition to the I(1)

factors, but the former are "hidden" by the I(1) factors. While the I(1) factors are related

to the common trends, the I(0) factor generates common cycles. To assess the possible

presence of I(0) factors, we have computed the (stationary) residuals of a regression of the

I(1) variables on the I(1) estimated factors, and then computed principal components of

the residuals. In some cases it turns out that the �rst component explains a signi�cant

proportion of the total variability of the residuals (for example about 22% in the case of the

US data), providing support for the existence of an additional I(0) factor for the variables

in levels. The equation for this additional I(0) factor is then added as an additional

equation in the FECM, and we label the resulting model as FECMc, where "c" stands for

common cycles.

The number of I(1) and I(0) factors is kept �xed over the forecasting period, but

their estimates are recursively updated. Each forecasting recursion also includes model

selection. As in the second Monte Carlo experiment, both the cointegration rank and

the lag length are based on using the BIC. As a robustness check we have experimented

with the use of the Johansen trace test to determine the cointegration rank and with HQ

for cointegration rank and/or lag length determination, but the results (available upon

request), are qualitatively similar.

Forecasting is performed using the same set of models we have considered in the previ-

ous section. Hence, we construct AR, VAR and ECMs that are all based on the observable

variables, and FAR, FAVAR and FECM speci�cations that augment, respectively, the AR,

VAR and ECMs with factors extracted from the larger set of available variables, in order

to assess the forecasting role of the additional information.

The levels of the real variables (measures of output) are treated as I(1) with determin-

istic trend, which means that the dynamic forecasts of the di¤erences of (the logarithm

of) the variables h�steps ahead produced by each of the competing models are cumulated
to obtain the forecast of the level h�steps ahead. This is also the case for the nominal
exchange rates. For the in�ation rates and interest rates, the dynamic forecasts of the

di¤erences of the variables h�steps ahead are cumulated to obtain the forecast of the level
of the speci�c in�ation rate or interest rate h�steps ahead.

The results of the forecast comparisons are presented in two ways. First, for each

empirical example, we �rst list the MSEs of the competing models relative to the MSE of

the AR at di¤erent horizons for each variable under analysis. These tables also report in-

formation on cointegration rank selection and the number of lags in each model. However,
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in order to present the information in a more condensed fashion we provide a summary

table at the end of this section. Speci�cally, the upper panel of Table 13 reports the occur-

rence of the best performance of the competing models across horizons and variables. In

addition, the lower panel of Table 13 reports summary statistics that we use in assessing

the overall importance of cointegration and factors for forecasting. The role of potential

extra information embedded in the factors can be evaluated by comparing the relative

performance of the FAVAR relative to the VAR, and the FECM relative to the ECM.

Conversely, information on the importance of cointegration can be obtained by comparing

the ECM and the VAR, and the FECM and the FAVAR. Observing that the FECM sig-

ni�cantly improves over both the ECM and the FAVAR can be seen as an indication that

it may not be su¢ cient to consider separately either cointegration or factors, but rather

the information that I(1) factors have about the long run or equilibrium dynamics of the

data. The sub-sections which follow contain details of each of the empirical applications.

5.1 Forecasting US nominal and real variables

As discussed previously, in the �rst empirical application we consider forecasting two sets

of US macroeconomic monthly series in line with the choice of Stock and Watson (2002a,b).

In particular, the set of real variables is given by: total industrial production (IP), per-

sonal income less transfers (PI), employment on non-agricultural payrolls (Empl), and real

manufacturing trade and sales (ManTr). The set of nominal variables, on the other hand,

is given by: in�ation of producer prices of �nished goods (PPI), CPI in�ation, all items

(CPIall), in�ation of CPI less food (CPI no food), and growth of personal consumption

expenditure de�ator (PCEde�).

Concerning the choice of sample period, we proceed in the following manner. Precise

estimation of the cointegration relationships and their loadings, and the need for a long

evaluation sample, would suggest use of the longest available sample. Instead, the possible

presence of structural breaks that could have a¤ected both the long run and the short run

dynamics, such as the Great Moderation, suggests that focusing on a shorter but more

homogeneous sample could be better. Since it is a priori unclear which option is best, we

consider two periods. First, we focus on the post-1985 data. The forecast period in this

case is 1996:1 - 2003:12. Second, we start estimation in 1959:1 and, for comparability with

Stock and Watson (2002b), in this case the forecast period spans from 1970:1 to 1998:12.

The number of factors included in the FECM is set to four, since four factors explain

96% of data variability in the 1985 - 2003 sample. We have also tried the IPC2 criterion

from Bai (2004) to determine the number of factors, and it signalled no common trends in

the entire dataset but four factors on the subset of real data. Since the information criteria

are sometimes sensitive to the sample size and the properties of the idiosyncratic errors,

and given that in our context overestimating the number of factors is less problematic

than underestimating it, we proceeded with the analysis using four factors.
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As explained above, we assess the possible presence of an additional I(0) factor in the

FECM. To this end, we have computed the (stationary) residuals of a regression of the

I(1) variables on the four I(1) estimated factors, and then computed the principal compo-

nents of the residuals. The �rst component explains a signi�cant proportion of the total

variability of residuals (for example about 22% in the case of US data), providing support

for the existence of an additional I(0) factor for the variables in levels. In comparison

with the FECM, our FECMc model contains one additional I(0) factor.

For the I(0) factors included in the FAVAR and FAR, we use the principal component

based estimator of Stock and Watson (2002a) and set their number to �ve, in line with

the choice for the FECMc above, since �ve factors are able to explain 90% of the overall

variability in the stationary data. Moreover, the Bai and Ng (2002) PC2 criterion also

suggests �ve factors.

5.1.1 Forecasting real variables

Tables 4 to 7 report the MSEs, computed analogously to (19) and (20), of the FAR, VAR,

FAVAR, ECM, FECM and FECMc relative to that of the AR model for forecasting the

four real and four nominal variables over the two sub-periods.

Table 4 reports the results for forecasting the four real variables over the sample 1996

- 2003, with estimation starting in 1985. When h = 1, only few models are better than

the AR. The FECM is the best model for industrial production and employment but

performs worse than the FAVAR and the ECM for personal income less transfers and

real manufacturing trade and sales. This pattern suggests that cointegration matters, but

parsimony is also important, so much so that the AR is di¤cult to beat.

When h increases, the picture changes. Now the FECM is better than the AR in 12 out

of 20 cases, and it produces the lowest MSE in 4 cases. However, combined also with the

results of the FECMc, the overall score of best performance increases to 14. The FAVAR

and the ECM perform best only in 1 case each. The gains of the FECM relative to the

benchmark AR increase with the forecast horizon, levelling o¤ after h = 12 and slightly

diminishing at the longest, two-year horizon. For some of the variables, such as industrial

production and employment, the gains relative to the AR exceed 30%. Other models do

not o¤er comparable gains.

These results show that for the real variables the inclusion of both additional infor-

mation and adjustment to disequilibrium signi�cantly contribute to forecasting precision,

except at the shortest horizon. It is not easy to disentangle the relative contribution of

the two elements. Table 13 provides some aid in this respect. The fact that the ECM

outperforms the VAR, and the FECM the FAVAR in more than half of the cases suggests

that cointegration matters, in line with theory and the simulation results of the previous

section. But the fact that the FAVAR outperforms the VAR only twice, while the corre-

sponding score of the FECM relative to the ECM is 18 out of 24, suggests that it is the
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Table 4: Forecasting US real variables, evaluation period 1996 - 2003

RMSE MSE relative to MSE of AR model
h Log of of AR FAR VAR FAVAR ECM FECM FECMc

PI 0.004 1.15 0.82 0.84 1.21 1.35 2.12
1 ManTr 0.008 1.16 1.02 1.10 1.22 1.31 1.69

IP 0.005 1.09 0.98 1.05 1.03 0.92 1.04
Empl 0.001 1.18 1.52 1.59 1.22 0.87 1.11
PI 0.009 1.04 0.79 0.79 1.37 1.26 1.17

3 ManTr 0.011 1.02 0.97 0.99 1.25 1.15 1.58
IP 0.011 0.96 0.93 0.94 0.95 0.77 0.76
Empl 0.002 1.15 2.12 2.16 1.34 0.61 0.83
PI 0.015 1.03 0.83 0.84 1.07 1.03 0.90

6 ManTr 0.016 1.02 0.98 1.00 1.35 1.07 1.66
IP 0.020 0.95 0.92 0.93 0.83 0.73 0.68
Empl 0.005 1.20 2.36 2.37 1.29 0.65 1.00
PI 0.027 1.01 0.88 0.89 0.81 0.90 0.73

12 ManTr 0.024 1.00 0.97 0.97 1.17 1.05 1.48
IP 0.036 0.98 0.95 0.95 0.84 0.79 0.73
Empl 0.012 1.16 1.90 1.90 1.19 0.86 0.86
PI 0.037 1.01 0.91 0.93 0.74 0.88 0.71

18 ManTr 0.031 1.00 0.97 0.97 1.09 1.06 1.31
IP 0.050 1.00 0.97 0.98 0.87 0.81 0.83
Empl 0.019 1.15 1.66 1.67 1.16 0.99 0.77
PI 0.047 1.01 0.93 0.96 0.72 0.92 0.81

24 ManTr 0.038 1.00 0.98 0.99 1.06 1.08 1.03
IP 0.064 1.01 0.98 0.99 0.91 0.83 0.91
Empl 0.027 1.12 1.44 1.46 1.14 1.00 0.71

AR 1.00 2.55 0.68 3.00
Lags FAR 1.83 1.84 1.83 2.00

VAR FAVAR ECM FECM FECMc
1.00 0.59 0.00 0.00 0.00

ECM FECM
Cointegration rank mean min max mean min max

1.93 1.00 3.00 3.18 2.00 4.00

Notes: The FECM contains 4 I(1) factors, while an additional I(0) factor is added to the
FECMc. The FAVAR includes 5 I(0) factors. Cheng and Phillips (2008) cointegration test
and lag selection based on BIC. Data: 1985:1 - 2003:12, forecasting: 1996:1 - 2003:12.
Variables: IP - Industrial production, PI - Personal income less transfers, Empl -
Employees on non-aggr. payrolls, ManTr - Real manufacturing trade and sales

combination of cointegration and a large information set that really matters both at short

and long forecast horizons.

In Table 5 we investigate the longer forecasting sample 1970 - 1998, with estimation

starting in 1959, as considered by Stock and Watson (2002b).9 In essence, these results

con�rm the evidence of the FECM or the FECMc as the best forecasting model. The only

notable di¤erence with respect to the shorter evaluation period is in the relation between

the FAVAR and the VAR. The FAVAR now outperforms the VAR 16 times instead of only

twice, in line with Stock and Watson (2002b) although their results were based on direct

rather than iterated forecasts. This di¤erence across samples indicates the diminishing

importance of factors for forecasting in the recent period, a �nding also documented by

D�Agostino, Giannone and Surico (2007). The FECM or FECMc remain the best models

in 15 out of 24 cases. The FAVAR is best in only 4 out of 24 cases and the ECM never

9On a common estimation and evaluation sample we can con�rm that the method of direct h-step-
ahead forecasts and our iterative h-step-ahead forecasts produce similar benchmark results. Namely, the
root mean sqared errors of the AR models reported by Stock and Watson (2002b) for personal income,
industrial production, manufacturing trade and sales and non-agricultural employment at 12-month horizon
are 0.027, 0.049, 0.045 and 0.017 respectively. Our corresponding RMSEs are 0.026, 0.049, 0.045 and 0.020.
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Table 5: Forecasting US real variables, evaluation period 1970 - 1998

RMSE MSE relative to MSE of AR model
h Log of of AR FAR VAR FAVAR ECM FECM FECMc

PI 0.007 1.02 0.94 0.92 0.93 0.90 0.93
1 ManTr 0.011 1.04 0.98 0.95 1.10 1.03 1.00

IP 0.007 0.99 1.08 0.95 1.11 1.24 1.15
Empl 0.002 1.09 1.33 1.20 1.40 1.34 1.40
PI 0.011 1.01 0.91 0.87 0.94 0.85 0.91

3 ManTr 0.018 1.01 1.01 0.96 1.21 0.97 0.93
IP 0.017 0.96 1.04 0.94 1.10 1.17 1.09
Empl 0.005 1.12 1.51 1.40 1.64 1.52 1.57
PI 0.016 1.00 0.94 0.92 1.02 0.86 0.95

6 ManTr 0.029 1.01 1.01 0.98 1.17 0.89 0.87
IP 0.029 0.97 1.00 0.96 1.08 1.08 1.02
Empl 0.010 1.10 1.34 1.32 1.49 1.36 1.37
PI 0.026 1.00 0.96 0.96 1.04 0.87 0.93

12 ManTr 0.045 1.01 0.99 0.98 1.07 0.74 0.75
IP 0.049 0.99 1.00 0.99 1.03 0.96 0.94
Empl 0.020 1.02 1.11 1.12 1.25 1.10 1.11
PI 0.036 1.01 0.98 0.98 1.09 0.89 0.96

18 ManTr 0.058 1.00 1.00 0.99 1.06 0.71 0.73
IP 0.065 1.00 1.00 1.00 1.08 0.93 0.96
Empl 0.029 0.96 0.99 1.00 1.15 0.97 0.99
PI 0.042 1.01 0.99 0.99 1.07 0.90 0.96

24 ManTr 0.069 1.01 1.00 1.01 0.99 0.64 0.66
IP 0.076 1.01 0.99 1.00 1.07 0.90 0.95
Empl 0.037 0.91 0.91 0.92 1.04 0.88 0.91

AR 0.99 0.66 1.81 3.15
Lags FAR 1.85 1.84 1.85 1.85

VAR FAVAR ECM FECM FECMc
1.33 0.93 0.81 0.00 0.00

ECM FECM
Cointegration rank mean min max mean min max

3.66 2.00 4.00 3.87 1.00 4.00

Notes: The FECM contains 4 I(1) factors, while an additional I(0) factor is added to the
FECMc. The FAVAR includes 5 I(0) factors. Cheng and Phillips (2008) cointegration test
and lag selection based on BIC. Data: 1960:1 - 1998:12, forecasting: 1970:1 - 1998:12.
Variables: IP - Industrial production, PI - Personal income less transfers, Empl -
Employees on non-aggr. payrolls, ManTr - Real manufacturing trade and sales

produces the lowest MSE (see Table 13).

5.1.2 Forecasting nominal variables

The results for forecasting nominal variables are reported in Tables 6 and 7 for, respec-

tively, the more recent and longer evaluation sample. Focusing �rst on the sample 1985

- 2003, we clearly observe a much weaker performance of the FECM (and the FECMc)

relative to its performance in forecasting the real variables. The FECM is never the best

model. Also relative to the FAVAR the performance of the FECM is relatively weak,

outperforming it only 7 times.

Turning our attention to forecasting nominal variables over the period 1970 - 1998

(Table 7), we �nd that the FECM performs considerably better. In particular, the FECM

is the best model on average 15 out of 24 times, while combined with the FECMc the score

increases to 18 (see also Table 13). The performance of the FECM relative to the FAVAR

and the ECM also changes dramatically. It almost always outperforms the FAVAR and is

better than the ECM in two-thirds of the cases.

The di¤erences in the �ndings across the two samples suggest that the decrease of
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Table 6: Forecasting US nominal variables, evaluation period 1996 - 2003

RMSE MSE relative to MSE of AR model
h In�ation of of AR FAR VAR FAVAR ECM FECM FECMc

PPI 0.005 1.22 1.31 1.50 0.99 1.36 1.38
1 CPI all 0.002 1.10 1.09 1.36 1.04 1.30 1.33

CPI no food 0.002 0.99 1.02 1.25 0.94 1.18 1.21
PCEde� 0.002 1.01 0.93 1.38 0.92 0.93 0.96
PPI 0.005 1.23 1.18 1.40 0.94 1.19 1.22

3 CPI all 0.002 1.09 1.10 1.30 1.03 1.31 1.36
CPI no food 0.002 1.08 1.08 1.20 0.98 1.19 1.23
PCEde� 0.002 1.19 1.10 1.65 1.16 1.37 1.41
PPI 0.005 1.19 1.17 1.39 0.89 1.51 1.55

6 CPI all 0.002 1.17 1.17 1.44 1.03 1.77 1.85
CPI no food 0.002 1.01 1.03 1.28 0.90 1.52 1.58
PCEde� 0.002 0.99 0.95 1.03 1.08 1.21 1.25
PPI 0.006 0.98 1.06 1.20 0.76 1.66 1.73

12 CPI all 0.002 1.14 1.12 1.31 0.89 1.94 2.05
CPI no food 0.003 1.07 1.09 1.26 0.85 1.74 1.83
PCEde� 0.002 1.13 1.06 1.23 1.02 1.68 1.76
PPI 0.006 1.10 1.09 1.09 0.76 1.77 1.84

18 CPI all 0.002 1.13 1.09 1.29 0.94 2.29 2.41
CPI no food 0.003 1.04 1.04 1.18 0.88 2.05 2.16
PCEde� 0.002 1.07 1.03 1.27 0.95 1.82 1.90
PPI 0.006 1.07 1.02 1.11 0.75 1.94 2.02

24 CPI all 0.002 1.19 1.17 1.41 0.93 2.48 2.55
CPI no food 0.003 1.08 1.06 1.29 0.88 2.14 2.18
PCEde� 0.002 1.17 1.12 1.39 1.04 2.11 2.18

AR 5.47 5.99 4.75 5.78
Lags FAR 1.86 1.85 1.84 1.93

VAR FAVAR ECM FECM FECMc
2.07 1.03 0.00 0.00 0.00

ECM FECM
Cointegration rank mean min max mean min max

4.00 4.00 4.00 4.01 4.00 8.00

Notes: The FECM contains 4 I(1) factors, while an additional I(0) factor is added to the
FECMc. The FAVAR includes 5 I(0) factors. Cheng and Phillips (2008) cointegration test
and lag selection based on BIC. Data: 1985:1 - 2003:12, forecasting: 1996:1 - 2003:12.
Variables: In�ations of producer price index (PPI), consumer price index of all items (CPI all),
consumer price index less food (CPI no food) and personal consumption de�ator (PCE de�)

importance of factors for forecasting for the more recent period, which we have already

observed to some extent for real variables, seems to be stronger for the case of nominal

variables.

5.2 A monetary FECM for the US

There is by now a large literature on the use of small VAR models to assess and forecast

the e¤ects of monetary policy, see e.g. Rudebusch and Svensson (1998). Favero et al.

(2005), inter alia, have proposed augmenting these models with factors extracted from large

datasets. In concordance with this approach, we now assess the performance of a FECM

which includes as economic variables total industrial production (IP), CPI excluding food

(CPI no food) and a three-month interest rate (3m T-bill).

The results are reported in Tables 8 and 9 for, respectively, the more recent and longer

evaluation sample, where the factors are extracted from the same dataset as in the previous

sub-section.

Focusing �rst on the sample 1985 - 2003, we see in Table 8 the superior performance

of the FECM (and FECMc) for forecasting the real variable (IP) and the nominal variable
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Table 7: Forecasting US nominal variables, evaluation period 1970 - 1998

RMSE MSE relative to MSE of AR model
h In�ation of of AR FAR VAR FAVAR ECM FECM FECMc

PPI 0.005 1.05 1.05 1.04 0.90 0.90 0.90
1 CPI all 0.002 1.04 1.01 1.05 0.95 0.86 0.86

CPI no food 0.002 0.98 0.94 0.99 0.91 0.93 0.91
PCEde� 0.002 1.04 0.97 1.04 1.04 0.92 0.92
PPI 0.005 1.13 1.12 1.16 0.89 0.93 0.96

3 CPI all 0.003 1.10 1.08 1.14 1.06 0.82 0.83
CPI no food 0.003 1.03 1.01 1.06 0.98 0.90 0.91
PCEde� 0.002 1.14 1.12 1.19 1.39 1.18 1.20
PPI 0.005 1.15 1.13 1.22 1.03 0.97 1.00

6 CPI all 0.003 1.19 1.17 1.24 1.35 1.01 1.02
CPI no food 0.003 1.04 1.02 1.09 1.13 0.97 0.98
PCEde� 0.002 1.12 1.10 1.15 1.67 1.25 1.29
PPI 0.005 1.12 1.11 1.18 0.93 0.91 0.95

12 CPI all 0.003 1.07 1.06 1.09 1.16 0.84 0.86
CPI no food 0.003 1.03 1.01 1.05 1.00 0.86 0.88
PCEde� 0.002 1.06 1.05 1.07 1.41 0.95 0.98
PPI 0.006 1.08 1.06 1.14 0.95 0.96 1.02

18 CPI all 0.003 1.05 1.04 1.08 1.07 0.88 0.91
CPI no food 0.004 1.03 1.02 1.06 0.99 0.95 0.97
PCEde� 0.003 1.05 1.04 1.08 1.22 0.97 1.02
PPI 0.006 1.12 1.12 1.18 0.76 0.84 0.91

24 CPI all 0.004 1.11 1.10 1.14 0.85 0.82 0.85
CPI no food 0.004 1.05 1.03 1.07 0.79 0.84 0.87
PCEde� 0.003 1.09 1.07 1.11 1.03 0.85 0.90

AR 5.10 4.70 4.38 5.12
Lags FAR 1.99 1.87 1.89 1.85

VAR FAVAR ECM FECM FECMc
2.53 1.35 0.00 0.00 0.00

ECM FECM
Cointegration rank mean min max mean min max

4.00 4.00 4.00 4.00 4.00 7.00

Notes: The FECM contains 4 I(1) factors, while an additional I(0) factor is added to the
FECMc. The FAVAR includes 5 I(0) factors. Cheng and Phillips (2008) cointegration test
and lag selection based on BIC. Data: 1960:1 - 1998:12, forecasting: 1970:1 - 1998:12.
Variables: In�ations of producer price index (PPI), consumer price index of all items (CPI all),
consumer price index less food (CPI no food) and personal consumption de�ator (PCE de�)

(CPI no food) for all horizons up to h = 24. For these two variables, the FECM or

FECMc is the best-performing model in 11 cases out of 12 (it is equal-best in one case

with the VAR, i.e. for IP when h = 1). The ECM, while being dominated by the FECM, is

nevertheless clearly better than the FAR, VAR and FAVAR for both the real and nominal

variable. Taken together, these results emphasize the importance of both factors and

cointegrating information in forecasting in this system.

For the �nancial variable (3m T-bill), FECM, ECM and FECMc never provide the

best-performing model, while FAVAR is equal to or narrowly better than the VAR, and

delivers the best forecasting model, in 5 out of 6 cases . For h = 1, the VAR is the

best model. In this example, the use of long-run information in forecasting the �nancial

variable is thereby seen to be limited, although factors remain important.

For the period 1970 - 1998 (Table 9), the FECM or FECMc are the best models in

9 out of 18 cases. VAR does best in 6 out of 18 cases, although all these 6 cases are

for the 3m T-Bill rate. Therefore in 9 out of 12 cases where a real or nominal variable is

involved, both factors and long-run information are relevant. Within this category (real

or nominal) the ECM does best in 2 out of 12 cases (for IP at horizons 12 and 18) while
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Table 8: US monetary FECM, evaluation sample 1996 - 2003

RMSE MSE relative to MSE of AR model
h Var of AR FAR VAR FAVAR ECM FECM FECMc

IP 0.005 1.09 0.97 1.03 1.07 0.97 0.94
1 CPI no food 0.002 0.99 1.26 1.34 0.93 0.89 0.90

3m T-Bill 0.180 1.03 0.89 0.96 1.17 0.96 1.09
IP 0.011 0.96 0.96 0.96 1.08 0.86 0.80

3 CPI no food 0.002 1.08 1.17 1.43 0.93 0.91 0.91
3m T-Bill 0.394 1.05 0.88 0.88 1.30 0.96 1.15
IP 0.020 0.95 0.98 0.97 1.02 0.80 0.71

6 CPI no food 0.002 1.01 1.26 1.38 0.88 0.85 0.86
3m T-Bill 0.675 1.06 0.96 0.95 1.35 1.07 1.34
IP 0.036 0.98 1.00 0.99 1.05 0.83 0.73

12 CPI no food 0.003 1.07 1.34 1.33 0.92 0.89 0.94
3m T-Bill 1.232 0.99 0.94 0.93 1.32 1.41 1.65
IP 0.050 1.00 1.02 1.01 1.15 0.83 0.71

18 CPI no food 0.003 1.04 1.27 1.25 0.96 0.95 1.01
3m T-Bill 1.610 0.97 0.94 0.94 1.24 1.52 1.81
IP 0.064 1.01 1.02 1.01 1.23 0.83 0.76

24 CPI no food 0.003 1.08 1.37 1.45 0.99 0.95 1.00
3m T-Bill 1.929 0.99 0.96 0.95 1.09 1.49 1.75

AR 0.68 4.75 2.92
Lags FAR 1.83 1.84 1.83

VAR FAVAR ECM FECM FECMc
1.19 0.86 0.45 0.00 0.00

ECM FECM
Cointegration rank mean min max mean min max

1.69 1.00 3.00 2.98 2.00 3.00

Notes: The FECM contains 4 I(1) factors, while an additional I(0) factor is added to the
FECMc. The FAVAR includes 5 I(0) factors. Cheng and Phillips (2008) cointegration test
and lag selection based on BIC. Data: 1985:1 - 2003:12, forecasting: 1996:1 - 2003:12.
Variables: IP - log of industrial production index, CPI no food - in�ation of consumer prices
without food, 3m T-Bill - 3-month T-Bill yield.

in the remaining case (IP at horizon 24) the FAR provides the best model. In common

with the shorter sample, the usefulness of long-run information in forecasting the �nancial

variables is limited. In addition, for this longer sample, we �nd that factors are not useful

for the 3m T-bill rate, with the VAR dominating the FAVAR (albeit narrowly).

5.3 A monetary FECM for Germany

We now consider a monetary FECM as in the previous example but using data for Ger-

many, the largest economy in the euro area, for which a smaller sample is available due to

the reuni�cation. The economic variables under analysis are: total industrial production

(IP), In�ation of consumer price index excluding food (CPI no food), and the 3 month

money market rate (3m IntRate).

The FECM system in this case includes 2 I(1) factors, which account for 76% and

11% of overall data variability respectively. Into the FECMc we have included only one

additional factor. The number of factors included in the FAVAR is set to four. In this

case the �rst principal component is not so dominant in explaining the variability of the

data as it captures 30% of the variation. The second component follows closely with 28%,

while the third and fourth account for 12% and 6% respectively. The monthly data spans

over the 1991 - 2007 period, and we set the forecast evaluation sample to 2002:1 - 2007:12.

Table 10 reports the MSEs, computed analogously to (19) and (20), of the FAR, VAR,
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Table 9: US monetary FECM, evaluation sample 1970-1998

RMSE MSE relative to MSE of AR model
h Var of AR FAR VAR FAVAR ECM FECM FECMc

IP 0.007 0.99 1.00 1.01 1.04 1.01 0.93
1 CPI no food 0.002 0.98 0.94 0.96 0.99 0.91 0.90

3m T-Bill 0.583 0.96 0.89 0.93 1.00 0.95 0.92
IP 0.017 0.96 1.00 1.00 0.97 0.90 0.88

3 CPI no food 0.003 1.03 1.00 1.02 1.05 0.91 0.90
3m T-Bill 1.230 0.93 0.90 0.93 1.09 0.90 0.91
IP 0.029 0.97 1.00 0.99 0.93 0.88 0.88

6 CPI no food 0.003 1.04 1.07 1.09 1.17 0.96 0.99
3m T-Bill 1.674 0.90 0.89 0.95 1.15 0.93 0.96
IP 0.049 0.99 1.01 1.00 0.88 1.03 1.01

12 CPI no food 0.003 1.03 1.02 1.03 1.00 0.87 0.88
3m T-Bill 2.127 0.96 0.94 0.99 1.15 1.01 1.13
IP 0.065 1.00 1.02 1.02 0.94 1.19 1.19

18 CPI no food 0.004 1.03 1.02 1.04 1.04 0.91 0.92
3m T-Bill 2.688 0.98 0.96 0.97 0.99 1.03 1.16
IP 0.076 1.01 1.03 1.03 1.06 1.34 1.35

24 CPI no food 0.004 1.05 1.08 1.08 0.96 0.86 0.85
3m T-Bill 3.085 1.00 0.98 1.00 0.94 1.13 1.22

AR 1.81 4.38 3.94
Lags FAR 1.85 1.89 1.84

VAR FAVAR ECM FECM FECMc
1.61 1.59 1.30 0.31 0.31

ECM FECM
Cointegration rank mean min max mean min max

2.37 1.00 3.00 3.00 3.00 6.00

Notes: The FECM contains 4 I(1) factors, while an additional I(0) factor is added to the
FECMc. The FAVAR includes 5 I(0) factors. Cheng and Phillips (2008) cointegration test
and lag selection based on BIC. Data: 1960:1 - 1998:12, forecasting: 1970:1 - 1998:12.
Variables: IP - log of industrial production index, CPI no food - in�ation of consumer prices
without food, 3m T-Bill - 3-month T-Bill yield.

FAVAR, ECM, FECM and FECMc relative to that of the AR model. The FECM does

best in 6 out of the 18 cases. This relatively poor performance is mostly determined by the

fact that it is never the best method for industrial production. This result is in line with

the rather poor performance of factor models for forecasting GDP growth in Germany, see

Marcellino and Schumacher (2008).

For in�ation and the interest rate, the FECM performs best in half the cases, with

gains in forecasting precision relative to the benchmark AR model in some cases exceeding

50%. The ECM is the best performing model in only one case.

The model with the highest occurrence of best performance is the VAR, which is always

the best for industrial production. It is also interesting to note that the FAVAR never

produces the best forecast on average. The fact that the FECM outperforms the ECM in

10 out of 18 cases indicates the importance of factors in the analysis, and demonstrates

that factors in the cointegration space proxy successfully for the cointegration relations

that are otherwise missing in the small ECM. But comparison with the other models also

shows that it is crucial how this information is included in the model. Although very

indicative, we are aware that these �ndings may be heavily conditioned by the relative

shortness of the sample (in the T dimension), leading to relatively short estimation and

evaluation periods. For example, this could explain why the the FECM was not able to

outperform the VAR for the real variable.
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Table 10: German monetary FECM, evaluation period 2002 - 2007

RMSE MSE relative to MSE of AR model
h Var of AR FAR VAR FAVAR ECM FECM FECMc

IP 0.011 1.05 0.94 1.05 1.15 1.51 1.05
1 CPI no food 0.001 1.28 1.27 1.84 1.12 1.09 1.26

3m IntRate 0.075 1.25 1.19 1.25 1.25 0.79 1.70
IP 0.014 0.99 0.83 0.96 1.13 2.76 1.14

3 CPI no food 0.001 0.96 0.98 1.14 1.15 1.12 1.11
3m IntRate 0.215 1.18 1.02 1.16 0.97 0.41 1.36
IP 0.023 1.01 0.86 0.99 1.21 3.12 1.70

6 CPI no food 0.001 0.96 0.94 1.07 0.94 0.95 1.06
3m IntRatel 0.463 1.16 1.04 1.14 1.07 0.50 1.29
IP 0.039 1.00 0.92 1.00 1.22 2.59 2.30

12 CPI no food 0.001 1.05 1.12 1.25 0.69 0.73 0.79
3m IntRate 0.918 1.06 1.00 1.04 1.54 0.73 1.84
IP 0.053 1.00 0.95 1.00 1.19 2.02 2.18

18 CPI no food 0.002 1.00 1.08 1.19 0.67 0.63 0.65
3m IntRate 1.330 1.00 0.98 0.99 2.19 1.03 2.12
IP 0.066 1.00 0.97 1.00 1.22 1.62 2.01

24 CPI no food 0.002 1.00 1.08 1.25 0.77 0.68 0.76
3m IntRate 1.639 1.00 1.00 0.99 2.42 1.10 2.44

AR 1.00 5.22 1.26
Lags FAR 1.18 1.95 1.01

VAR FAVAR ECM FECM FECMc
1.50 0.98 0.00 0.00 0.00

ECM FECM
Cointegration rank mean min max mean min max

3.00 3.00 3.00 4.34 3.00 5.00

Notes: The FECM contains 2 I(1) factors, while an additional I(0) factor is added to the
FECMc. The FAVAR includes 4 I(0) factors. Cheng and Phillips (2008) cointegration test
and lag selection based on BIC. Data: 1991:1 - 2007:12, forecasting: 2002:1 - 2007:12.
Variables: IP - log of industrial production index, CPI no food - in�ation of consumer pricesx
without food, 3m T-Bill - 3-month T-Bill yield.

5.4 Forecasting the term structure of government bond yields

Forecasting the term structure of interest rates has received considerable attention in the

literature, and several methods have been proposed, see e.g. Carriero et al. (2009a) for a

recent overview. In this subsection we construct a FECM based on a monthly dataset of

maturities ranging from 1 to 120 months, taken from Gurkaynak et al. (2009). For the

sake of brevity we focus on forecasting the 3-month, 2-year and 10-year interest rates for

the US.

This example is also motivated by the theoretical consideration that since yields are

linked by the term structure, we would expect to �nd only a handful of common trends

driving them. The literature studying the yield curve often refers to the three factors

driving the yield curve as the level factor, slope factor and the curvature factor. In our

application, when considering extraction of I(1) factors from the interest rates in levels, we

�nd that 99% of overall data variability is captured by a single factor. However, to maintain

comparability with the three-factor model, we introduce two additional stationary factors

in the FECMc.

For the I(0) factors included in the FAVAR and FAR, we also set their number to

three. While here too the �rst principal component explains 98% of the variability in the

data, we retain three factors for comparability with the FECMc.

In common with our approach in the previous examples, we also construct AR, VAR
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Table 11: Forecasting interest rates at di¤erent maturities, evaluation period
2000 - 2007

RMSE MSE relative to MSE of AR model
h Yield of AR FAR VAR FAVAR ECM FECM FECMc

3-month 0.214 0.95 1.16 1.18 0.84 0.82 0.78
1 2-year 0.284 1.04 1.01 1.01 1.05 0.99 1.03

10-year 0.261 1.00 1.00 1.00 1.03 1.01 1.05
3-month 0.495 1.00 1.16 1.19 0.81 0.73 0.68

3 2-year 0.535 1.02 1.02 1.03 1.11 1.02 1.09
10-year 0.408 1.00 1.00 1.00 1.05 1.04 1.16
3-month 0.896 1.02 1.12 1.12 0.84 0.74 0.71

6 2-year 0.827 1.03 1.01 1.01 1.12 0.98 1.05
10-year 0.507 1.00 1.00 1.00 1.11 1.07 1.32
3-month 1.651 1.01 1.06 1.06 0.96 0.85 0.76

12 2-year 1.396 1.02 1.01 1.02 1.10 0.97 1.00
10-year 0.729 1.00 1.00 1.00 1.02 0.95 1.33
3-month 2.251 1.01 1.03 1.03 1.08 1.01 0.84

18 2-year 1.922 1.01 0.99 0.99 1.08 1.00 0.94
10-year 0.879 1.00 1.00 1.00 0.97 0.89 1.28
3-month 2.702 1.00 1.02 1.02 1.19 1.15 0.87

24 2-year 2.306 1.01 0.99 0.99 1.13 1.10 0.91
10-year 0.946 1.00 1.00 1.00 1.02 0.96 1.38

AR 1.49 1.00 0.00
Lags FAR 0.94 0.76 0.00

VAR FAVAR ECM FECM FECMc
0.12 0.00 0.00 0.00 0.00

ECM FECM
Cointegration rank mean min max mean min max

2.00 2.00 2.00 3.00 3.00 3.00

Notes: The FECM contains one I(1) factor, while two I(0) factors are added to FECMc.
The FAVAR contains three factors. Cheng and Phillips (2008) cointegration test and lag
selection based on BIC. Data: 1985:1 - 2007:12, forecasting: 2000:1 - 2007:12
Variables: levels of yields at 3-month, 2-year and 10-year horizons.

and ECMs that are all based on the observable variables only. Estimation of the models

begins in 1985 to avoid potential problems with model instability in the �rst half of the

1980s. The sample for forecast evaluation is set to 2000:1 - 2007:12.

Table 11 shows the substantial e¢ cacy of the FECM and FECMc approach, since these

models provide the best forecasts in 14 out of 18 cases. For the remaining 4, AR is best

(or joint-best) and three of these rates are the 10-year yields at h = 1; 3 and 6: Some of

the gains provided by FECM or FECMc are indeed quite substantial in relation to the

competing models. In addition, the fact that the FECM always outperforms the ECM

clearly indicates the importance of inclusion of information embedded in the factors for

forecasting the yield curve. Similarly, the fact that the FECM outperforms the FAVAR 12

out of 18 times indicates that taking explicit account of the information contained in the

factors for the long run signi�cantly increases the forecasting precision of the yield curve.

5.5 Forecasting exchange rates

Our �nal empirical example focuses on forecasting nominal exchange rates. It is well

known that beating a random walk, or more generally an AR model, in forecasting ex-

change rates is a tough challenge, see for example Engel and West (2005) for a theoretical

explanation. However, Carriero et al. (2009b) have shown that a cross-section of exchange

rates can contain useful information. We now reconsider this issue within the framework
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Table 12: Forecasting nominal exchange rates against USD, evaluation period
2002 - 2008

RMSE MSE relative to MSE of AR model
h Currency of AR FAR VAR FAVAR ECM FECM FECMc

EURO 0.025 1.05 1.00 1.03 1.03 0.98 1.10
1 JAPY 0.025 1.13 1.00 1.08 1.02 1.00 1.11

GBP 0.023 1.06 1.00 1.04 1.04 0.99 1.11
EURO 0.049 1.04 1.00 1.04 1.03 0.95 1.16

3 JAPY 0.045 1.04 1.00 1.03 1.05 0.99 1.15
GBP 0.037 1.05 1.00 1.03 1.09 0.95 1.31
EURO 0.077 1.00 1.00 1.00 0.97 0.93 1.05

6 JAPY 0.064 1.00 1.00 1.00 1.06 0.99 1.03
GBP 0.055 1.00 1.00 0.99 1.02 0.91 1.29
EURO 0.127 1.00 1.00 1.00 0.93 0.90 1.11

12 JAPY 0.083 1.00 1.00 1.00 1.12 1.00 0.88
GBP 0.082 1.00 1.00 1.00 0.97 0.87 1.42
EURO 0.175 1.00 1.00 1.00 0.82 0.88 1.01

18 JAPY 0.110 1.01 1.00 1.01 1.01 1.04 1.14
GBP 0.107 1.00 1.00 1.00 0.83 0.90 1.34
EURO 0.226 1.00 1.00 1.00 0.81 0.88 0.95

24 JAPY 0.138 1.01 1.00 1.00 0.92 1.05 1.13
GBP 0.131 1.00 1.00 1.00 0.75 0.88 1.29

AR 0.00 0.00 0.00
Lags FAR 0.58 0.67 0.58

VAR FAVAR ECM FECM FECMc
0.00 0.58 0.00 0.00 0.00

ECM FECM
Cointegration rank mean min max mean min max

1.00 1.00 1.00 1.00 1.00 1.00

Notes: Both FECM and FAVAR contain one factor. Cheng and Phillips (2008) cointegration
test and lag selection based on BIC information criterion. Data: 1995:1 - 2008:4,
forecasting: 2002:1 - 2008:4

of our FECM approach.

We focus on three key bilateral exchange rates: euro exchange rate to dollar (EUR),

Japanese yen exchange rate to the dollar (YEN), and pound sterling exchange rate to

the dollar (GBP). The data sample in this application is the shortest of all the examples,

consisting of monthly observations from 1995:1 - 2008:4. The period over which we evaluate

the relative forecasting performance of the models is 2002:1 - 2008:4.

As was the case for the government bond yield example, only one factor is needed to

explain a very large share of overall data variability. In the I(1) case this share is 98%,

while it is 88% in the I(0) case. For this reason we set the number of factors both in the

FECM and FAVAR to one.

Table 12 reports the MSEs relevant for the comparison of the models. FECM (or

FECMc) is again by far the dominant method, providing the lowest MSEs (relative to

AR) in 12 out of 18 cases, (in one case tied with the AR and the VAR) with gains of up

to 13% over the AR which would be considered fairly large within the context of exchange

rate forecasts. The ECM is the best model on 5 occasions with AR (tied with VAR)

accounting for the remaining case. The ECM does best at the longer forecast horizons of

18 and 24, while the FAVAR never performs the best on average. The reasoning about

the importance of cointegration and factors is very similar to the other examples where

the FECM provided signi�cant gains in forecasting precision.
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6 Conclusions

The FECM, introduced by Banerjee and Marcellino (2009), o¤ers two important advan-

tages for modelling in a VAR context. First, inclusion of factors proxies for missing

cointegration information in a standard ECM, and hence relaxes the dependence of ECMs

on a small number of variables of interest. This dependence is in principle also relaxed by

FAVAR models estimated on stationary data. The FECM, however, allows for the error-

correction term in the equations for key variables under analysis, which prevents errors

from being non-invertible moving average processes (and therefore di¢ cult to approxi-

mate by long-order VARs), and avoids omitted variables bias. This paper con�rms that

both these features of the FECM also a¤ect forecasting performance. From a theoretical

point of view, since the FECM nests the FAVAR (and the ECM), it can be expected to

provide better forecasts unless either the error correction terms or the factors are barely

signi�cant, or their associated coe¢ cients are imprecisely estimated due to small sample

size.

By means of extensive Monte Carlo simulations we demonstrate that the FECM con-

sistently improves on other common models when error correction is present in the data

and where inclusion of factors signi�cantly increase the information content of the models.

For the simpler DGP discussed in Section 4.1, the Monte Carlo results con�rm the theo-

retical �ndings for sample sizes common in empirical applications. The FECM appears to

dominate the FAVAR in all cases, even when the FECM is not the DGP but cointegration

matters. However, the simulations also indicate that the gains shrink rapidly with the

forecast horizon. For the more elaborate DGP, in Section 4.2, the results show that in

empirically relevant situations the strength of the error correction mechanism again mat-

ters in determining the ranking of the alternative forecasting models. While the FECM

remains better than the FAVAR in most of the cases, simpler models such as an ECM

or even an AR can become tough competitors when the explanatory power of the error

correction terms and/or of the factors is reduced or the sample size is not large.

It is clear in considering these simulation results that several issues are important here,

including the role of considerable amounts of additional information incorporated via the

factors, of cointegration and the strength of adjustment to disequilibrium, and the length

of the forecasting horizons. Assessing the relative roles of cointegration and of the factors,

and disentangling their e¤ects, is not straightforward when models misspeci�ed to some

degree are compared. This is also the reason why the relative rankings of the models are

not always clear-cut, and why the forecasting performance of the FECM should be also

evaluated in a large set of empirical applications.

We have considered four main economic applications: forecasting a set of key real

and nominal macroeconomic variables, evaluating extened versions of small scale mone-

tary models, forecasting the term structure of interest rates, and assessing the merits of

alternative exchange rate forecasts. In all cases we have considered univariate and small
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Table 13: Summary of empirical results

Ocurrence of best perfomance
Model Out of FECM FECMc FAVAR ECM VAR FAR
US real 85-03 24 6 8 1 1 7 0
US real 60-98 24 12 3 4 0 0 1
US nominal 85 - 03 24 0 0 0 18 1 0
US nominal 60 - 98 24 15 3 0 6 0 0
US 3-var 85-03 18 5 7 4 0 2 0
US 3-var 60-98 18 5 5 0 3 4 0
Germany 3-var 18 6 0 1 1 8 1
Interest rates 18 6 8 2 0 1 2
Exchange rates 18 11 1 0 5 1 0

Importance of:
Cointegration Factors

FECM< ECM< FECM< FAVAR<
Out of FAVAR VAR ECM VAR

US real 85-03 24 14 13 18 2
US real 60-98 24 16 2 21 16
US nominal 85 - 03 24 7 22 0 0
US nominal 60 - 98 24 23 15 18 1
US 3-var 85-03 18 13 6 15 10
US 3-var 60-98 18 11 7 13 4
Germany 3-var 18 10 5 10 1
Interest rates 18 12 5 18 4
Exchange rates 18 15 8 12 7

multivariate models, with and without cointegration, and with or without factors. The

factors summarize the information in large sets of variables, for di¤erent countries and

periods of time. Based on Section 5 and Table 13, the following summary of the empirical

results may be o¤ered.

For forecasting the real variables for the Unites States, the FECM (or FECMc) is

systematically better than the FAVAR and the ECM over both the samples considered.

This is not necessarily true for the nominal variables, where the results are more sample-

dependent. While the 1960 - 1998 sample reinforces the message of dominance of FECM

methods, the more recent 1985 - 2003 dataset shows the ECM to be the dominant model,

with FECM still beating FAVAR. As noted above, this �nding is related to the decrease

of importance of factors in forecasting for recent periods, also noted by D�Agostino et al.

(2007). The overall picture however, taking both real and nominal variables into account

over the two periods, remains very favourable for the use of FECM methods.

The results of the forecasting exercise based on the monetary model of the US o¤ers

unmitigated support for the use of FECMs in forecasting IP and CPI in�ation. Moreover,

for these variables, the ECM itself, while not providing the best model, dominates the

models that do not make use of long-run information. Therefore, the usefulness of factors

and cointegration, the underpinnings of the FECM approach, is again con�rmed. The

results for the interest rate variable however do not show much promise for the use of

FECMs. This �nding depends on the choice of the information set, and it is in fact

reversed in the term structure example.

The monetary system using German data o¤ers some interesting insight into working

with FECMs in rather short samples. As noted in Section 5.3, in this example the model

with the highest occurrence of best performance is the VAR. Here, while both factors and
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cointegration are important (as re�ected in the dominance of the FECM over ECM and

the FECM over FAVAR respectively), it appears that accounting for these features in the

data may not always be su¢ cient. In other words, cointegration or factors per se may

not increase the forecasting precision of models. It is only when information in the factors

bears upon the long-run properties of the data that forecasting is bene�ted by including

such information. As discussed in the theoretical analysis, and particularly with reference

to the Monte Carlo exercise in Section 4.2, simpler models than the ECM or the FECM

can become tough competitors when the explanatory power of the error correction terms

and/or of the factors is reduced or the sample size is not large. The issue of sample size

is one that has substantial relevance in the context of the German dataset.

The empirical example on the term structure of government bond yields allows us to

return to the issue of forecasting interest rate variables. For this dataset, the results on

the use of FECM methods are extremely promising and the gains in forecasting precision

are signi�cant. Unlike the monetary system for Germany, the importance of the inclusion

of equilibrium information contained in the factors is clear. Taking the results of the

monetary system for the US into account, a coherent picture also emerges of the crucial

role of the information set and the sample used to construct the forecasts. The trade-o¤s

evident from the theory and the simulations are present with vibrant force in the empirical

implementations.

The �nal example on forecasting exchange rates again shows the FECM as the best

model by far. The reasons are similar to the other cases where the FECM performed well

and reinforce the �ndings gained from the previous examples.

The results of the paper also show several interesting nuances and tradeo¤s to be

investigated further, for example related to the role of structural breaks or to the temporal

versus cross-sectional coverage of the dataset. In addition, since forecasts are the basic

ingredient in the computation of impulse response functions, the performance of structural

factor augmented error correction models also deserves investigation.

To conclude, the theory, simulation and empirical results taken together give us ex-

cellent grounds for optimism concerning the usefulness of long-run information captured

through the factors and the e¢ cacy of factor-augmented error correction models.
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Appendix A: Additional results of Monte Carlo experiments

Table 14: Monte Carlo results - DGP corresponding to FECM with real vari-
ables, c = 0.75

RMSE MSE relative to MSE of AR model
h Var of AR FAR VAR FAVAR ECM FECM

1 0.005 1.09 0.94 1.01 0.97 0.90
1 2 0.007 1.02 0.95 1.00 0.97 0.93

3 0.001 1.14 1.15 1.45 1.04 0.92
4 0.009 1.04 1.00 1.06 1.12 1.08
1 0.011 1.19 0.91 1.05 0.97 0.77

3 2 0.011 1.01 0.88 0.93 0.83 0.71
3 0.003 1.47 1.29 1.73 1.05 0.71
4 0.013 1.01 0.95 0.99 1.08 0.90
1 0.019 1.20 0.93 1.02 0.97 0.69

6 2 0.018 1.02 0.86 0.91 0.77 0.61
3 0.006 1.54 1.40 1.68 1.06 0.64
4 0.019 1.01 0.92 0.95 1.13 0.83
1 0.034 1.12 0.95 1.01 0.99 0.76

12 2 0.029 1.00 0.86 0.90 0.66 0.54
3 0.012 1.50 1.41 1.53 1.04 0.74
4 0.028 1.00 0.93 0.95 1.10 0.84
1 0.046 1.09 0.98 1.02 0.97 0.77

18 2 0.037 1.00 0.90 0.94 0.71 0.59
3 0.019 1.38 1.33 1.41 0.97 0.77
4 0.036 1.00 0.97 0.97 1.13 0.95
1 0.064 1.10 0.98 1.01 1.12 0.84

24 2 0.049 1.01 0.90 0.92 0.82 0.59
3 0.028 1.35 1.32 1.36 1.09 0.83
4 0.045 1.01 0.95 0.96 1.22 0.93

AR 1.62 1.03 2.76 1.02
Lags FAR 0.55 0.62 0.93 0.72

VAR FAVAR ECM FECM
0.94 0.47 0.11 0.08

ECM FECM
Cointegration mean min max mean min max
rank 1.43 0.81 2.26 2.55 1.40 3.27

Notes: See Table 2.
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Table 15: Monte Carlo results - DGP corresponding to FECM with real vari-
ables, c = 0.50

RMSE MSE relative to MSE of AR model
h Var of AR FAR VAR FAVAR ECM FECM

1 0.005 1.04 0.97 1.03 0.98 0.96
1 2 0.007 1.02 0.98 1.03 1.01 1.03

3 0.001 1.12 1.15 1.42 1.03 1.15
4 0.009 1.03 1.03 1.10 1.14 1.12
1 0.010 1.09 0.92 1.02 0.94 0.89

3 2 0.011 1.01 0.94 0.98 0.93 0.90
3 0.003 1.46 1.37 1.74 1.16 1.16
4 0.013 1.01 0.98 1.01 1.10 1.01
1 0.016 1.07 0.95 1.01 0.97 0.89

6 2 0.015 1.01 0.94 0.97 0.91 0.87
3 0.005 1.50 1.37 1.55 1.10 1.10
4 0.017 1.01 0.98 1.00 1.14 1.00
1 0.029 1.06 0.99 1.03 0.99 0.89

12 2 0.025 1.00 0.95 0.98 0.84 0.81
3 0.010 1.35 1.31 1.40 1.00 1.00
4 0.026 1.01 0.99 1.00 1.14 0.96
1 0.041 1.05 0.99 1.02 1.05 0.90

18 2 0.033 1.00 0.95 0.98 0.85 0.78
3 0.016 1.38 1.35 1.43 1.13 1.03
4 0.033 1.00 0.98 0.99 1.13 1.00
1 0.052 1.03 0.99 1.01 1.08 0.92

24 2 0.041 1.00 0.96 0.98 0.91 0.81
3 0.021 1.22 1.21 1.25 1.09 0.97
4 0.038 1.01 0.99 1.00 1.26 0.98

AR 0.94 0.91 2.51 1.03
Lags FAR 0.45 0.53 0.83 0.71

VAR FAVAR ECM FECM
0.71 0.23 0.12 0.05

ECM FECM
Cointegration mean min max mean min max
rank 1.18 0.54 1.98 1.19 0.35 2.21

Notes: See Table 2.
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Appendix B: Lists of data

Table 16: German dataset

Short descr. Tcode Short desc. Tcode
Prices exp. turn. electr. eng. 5
PPI 5 dom. turn. electr. eng. 5
PPI w/o energy 5 exp. turn. veh. eng. 5
CPI 5 dom. turn. veh. eng. 5
CPI w/o energy 5 dom. orders interm. goods 5
exp. prices 5 exp. orders interm. goods 5
imp. prices 5 dom. orders cap. goods 5
oil price Brent 5 exp. orders cap. goods 5
Labour market dom. orders cons. goods 5
unemployed 5 exp. orders cons. goods 5
unemp. rate 1 dom. orders mech. eng. 5
empl. and self-empl. 5 exp. orders mech. eng. 5
empl., short-term 5 dom. orders electr. eng. 5
prod. per emp. 5 exp. orders electr. eng. 5
prod. per hour 5 dom. orders veh. eng. 5
wages per empl. 5 exp. orders veh. eng. 5
wages per hour 5 ind. prod. 5
vacancies 5 Construction
Financials constr. ord. building 5
mon. mar. rate, overnight 1 constr. ord. civ. eng. 5
mon. mar. rate, 1 month 1 constr. ord. resid. building 5
mon. mar. rate, 3 month 1 constr. ord. non-res. building 5
bond yields, 1-2 years 1 hours build. constr. 5
bond yields, 5-6 years 1 hours civ. eng. 5
bond yields, 9-10 years 1 hours resid. build. 5
CDAX share price index 5 hours ind. build. 5
DAX share index 5 hours pub. build. 5
REX bond index 5 turnover build. constr. 5
exch. rate USD/DM 5 turnover civ. eng. 5
Comp. Ind. 5 turnover resid. build. 5
M1 5 turnover ind. build. 5
M2 5 turnover pub. build. 5
M3 5 prod. in construction 5
Manufacturing activity Miscellaneous
prod. interm. goods 5 CA: exports 5
prod. cap. goods 5 CA: imports 5
prod. cons. goods 5 CA: serv. imp. 5
prod. mech. eng. 5 CA: serv. exp. 5
prod. electr. eng. 5 CA: transf. in 5
prod. veh. eng. 5 CA: transf. out 5
exp. turn. interm. goods 5 HWWA raw mat. prices 5
dom. turn. interm. goods 5 HWWA raw mat. prices w/o energy 5
exp. turn. cap. goods 5 HWWA raw mat.prices indu. mat. 5
dom. turn. cap. goods 5 HWWA raw mat.prices: energy 5
exp. turn. cons. goods 5 new car registrations 5
dom. turn. cons. goods 5 new private car registrations 5
exp. turn. mech. eng. 5 retail sales turnover 5
dom. turn. mech. eng. 5

Source: Bundesbank. Sample: 1991:1-2007:12
Transformation codes: 1 no transformation; 2 �rst di¤erence; 3 second di¤erence;
4 logarithm; 5 �rst di¤erence of logarithm; 6 second di¤erence of logarithm.
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Table 17: US dataset

Code Short desc. Tcode Code Short desc. Tcode
a0m052 PI 4 HSBR BP: total 4
A0M051 PI less transfers 4 HSBNE BP: NE 4
A0M224R Consumption 4 HSBMW BP: MW 4
A0M057 M and T sales 4 HSBSOU BP: South 4
A0M059 Retail sales 4 HSBWST BP: West 4
IPS10 IP: total 4 PMI PMI 1
IPS11 IP: products 4 PMNO NAPM new ordrs 1
IPS299 IP: �nal prod 4 PMDEL NAPM vendor del 1
IPS12 IP: cons gds 4 PMNV NAPM Invent 1
IPS13 IP: cons dble 4 A0M008 Orders: cons gds 4
IPS18 iIP:cons nondble 4 A0M007 Orders: dble gds 4
IPS25 IP:bus eqpt 4 A0M027 Orders: cap gds 4
IPS32 IP: matls 4 A1M092 Unf orders: dble 4
IPS34 IP: dble mats 4 A0M070 M and T invent 4
IPS38 IP:nondble mats 4 A0M077 M and T invent/sales 1
IPS43 IP: mfg 4 FM1 M1 5
IPS307 IP: res util 4 FM2 M2 5
IPS306 IP: fuels 4 FM3 M3 5
PMP NAPM prodn 1 FM2DQ M2 (real) 4
A0m082 Cap util 1 FMFBA MB 5
LHEL Help wanted indx 1 FMRRA Reserves tot 5
LHELX Help wanted/emp 1 FMRNBA Reserves nonbor 5
LHEM Emp CPS total 4 FCLNQ C and I loans 5
LHNAG Emp CPS nonag 4 FCLBMC C and I loans 1
LHUR U: all 1 CCINRV Cons credit 5
LHU680 U: mean duration 1 A0M095 Inst cred/PI 1
LHU5 U < 5 wks 4 FYFF FedFunds 1
LHU14 U 5-14 wks 4 FYGM3 3 mo T-bill 1
LHU15 U 15+ wks 4 FYGT1 1 yr T-bond 1
LHU26 U 15-26 wks 4 FYGT10 10 yr T-bond 1
LHU27 U 27+ wks 4 PWFSA PPI: �n gds 5
A0M005 UI claims 4 PWFCSA PPI: cons gds 5
CES002 Emp: total 4 PWIMSA PPI: int materials 5
CES003 Emp: gds prod 4 PWCMSA PPI: crude materials 5
CES006 Emp: mining 4 PSCCOM Commod: spot price 5
CES011 Emp: const 4 PSM99Q Sens materials price 5
CES015 Emp: mfg 4 PMCP NAPM com price 1
CES017 Emp: dble gds 4 PUNEW CPI-U: all 5
CES033 Emp: nondbles 4 PU83 CPI-U: apparel 5
CES046 Emp: services 4 PU84 CPI-U: transp 5
CES048 Emp: TTU 4 PU85 CPI-U: medical 5
CES049 Emp: wholesale 4 PUC CPI-U: comm. 5
CES053 Emp: retail 4 PUCD CPI-U: dbles 5
CES088 Emp: FIRE 4 PUS CPI-U: services 5
CES140 Emp: Govt 4 PUXF CPI-U: ex food 5
A0M048 Emp-hrs nonag 4 PUXHS CPI-U: ex shelter 5
CES151 Avg hrs 1 PUXM CPI-U: ex med 5
CES155 Overtime: mfg 1 GMDC PCE de� 5
aom001 Avg hrs: mfg 1 GMDCD PCE de�: dlbes 5
PMEMP NAPM empl 1 GMDCN PCE de�: nondble 5
HSFR HStarts: Total 4 GMDCS PCE de�: services 5
HSNE HStarts: NE 4 CES275 AHE: goods 5
HSMW HStarts: MW 4 CES277 AHE: const 5
HSSOU HStarts: South 4 CES278 AHE: mfg 5
HSWST HStarts: West 4 HHSNTN Consumer expect 1

Notes: Dataset extracted from Stock and Watson (2005). Sample: 1959:1-2003:12
Transformation codes: 1 no transformation; 2 �rst di¤erence; 3 second di¤erence;
4 logarithm; 5 �rst di¤erence of logarithm; 6 second di¤erence of logarithm.
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Table 18: Exchange-rate dataset

Name Code Name Code
1 AUSTRALIAN Dollar TO US Dollar AUST 23 POLISH ZLOTY TO US Dollar POLI
2 BRAZILIAN REAL TO US Dollar BRAZ 24 SINGAPORE Dollar TO US Dollar SING
3 CANADIAN Dollar TO US Dollar CANA 25 SLOVAK KORUNA TO US Dollar SLOV
4 CHILEAN PESO TO US Dollar CHIL 26 SOUTH KOREAN WON TO US Dollar SOUT
5 COLOMBIAN PESO TO US Dollar COLO 27 SRI LANKAN RUPEE TO US Dollar SRI
6 CZECH KORUNA TO US Dollar CZEC 28 SWEDISH KRONA TO US Dollar SWED
7 DANISH KRONE TO US Dollar DANI 29 SWISS FRANC TO US Dollar SWIS
8 EURO TO US Dollar EURO 30 TAIWAN new Dollar TO US Dollar TAIW
9 FINNISH MARKKA TO US Dollar FINN 31 THAI BAHT TO US Dollar THAI
10 UK µc to USDollar GBP 32 TURKISH LIRA TO US Dollar TURK
11 HUNGARIAN FORINT TO US Dollar HUNG 33 URUGUAYAN PESO FIN. TO US Dollar URUG
12 INDIAN RUPEE TO US Dollar INDI 34 TAIWAN NEW Dollar TO US Dollar TAIW
13 IRISH PUNT TO US Dollar IRIS 35 BRUNEI Dollar TO US Dollar BRUN
14 ISRAELI SHEKEL TO US Dollar ISRA 36 HONG KONG Dollar TO US Dollar HONG
15 JAPANESE YEN TO US Dollar JAPA 37 INDONESIAN RUPIAH TO US Dollar INDO
16 MALTESE LIRA TO US Dollar MALT 38 SOUTH KOREAN WON TO US Dollar SOUT
17 MEXICAN PESO TO US Dollar MEXI 39 KUWAITI DINAR TO US Dollar KUWA
18 NEW ZEALAND Dollar TO US Dollar NEWZ 40 LEBANESE µc TO US Dollar LEBA
19 NORWEGIAN KRONE TO US Dollar NORW 41 NEW GUINEA KINA TO US Dollar NEWG
20 PAKISTAN RUPEE TO US Dollar PAKI 42NIGERIAN NAIRA TO US Dollar NIGE
21 PERUVIAN NUEVO SOL TO US Dollar PERU 43 SAUDI RIYAL TO US Dollar SAUD
22 PHILIPPINE PESO TO US Dollar PHIL

Sources: WMR/Reuters, Global Trade Information Services
and the New York FED. Sample: 1995:1-2008:4.
Transformation codes: All series were logged and treated as I(1).
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