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1. INTRODUCTION 

The past decade witnessed a fundamental change in the role of energy markets, which were 

increasingly utilized by market agents for portfolio risk diversification purposes. In the wake 

of the Global Financial Crisis and the subsequent geopolitical tension, predicting crude oil 

prices rendered invaluable for policymakers and investors, as the business cycle of oil markets 

illustrates an interesting heterogeneity among other commodity classes.  

Consequently, predicting oil markets is of paramount importance. The previous literature on 

forecasting methods for commodities prices suffers from various problems vis-à-vis the 

driving factors of financial markets. For instance, one recent study by Zhang et al. (2017) 

based on Hyndmann et al. (2011), criticizes existing approaches and suggests a way to 

decompose univariate time series into “a set of constitutive series” hence performing efficient 

forecasting. The novel approach could be utilized not only for stock indexes as in Zhang et al. 

(2017), but importantly for crude oil. However, it is important to properly assess and estimate 

the level of decomposition into various modes or components of the time series in question.  

In our work, we introduce for the first time a new class of optimal multi-scale multiresolution 

forecasting approach designed to detect the inherent nonlinear dynamics of crude oil returns 

comprising a set of constitutive series with an explicitly defined hierarchical structure. We 

adopt a wavelet-based technique to produce forecast horizons via monthly information. We 

calculate the optimal level of the wavelet decomposition via entropic estimation and wavelet 

coherence. The rationale behind selecting a wavelet forecasting method lays in our intention 

to account for the chaotic behavior of oil series and capture drifts, spikes and other non-

stationary effects that common frequency-domain decomposition methods are unable to 

reveal or miss out completely. The multi-scale multiresolution forecasting is related to several 

approaches that combine data at different frequencies, including the Mixed Data Sampling 

Regression Models (Ghysels et al., 2004), the Heterogeneous Autoregressive model of 

Realized Volatility (Corsi, 2009), the Mixed-frequency forecasting framework (Schorfheide 

& Song, 2015), and the Bayesian multi-scale dynamics (Bianchi & Tamoni, 2016). The 

application of multi-scale decomposition enhances predictability in any step-ahead horizon 

for crude oil markets.  

The rest of the paper is organized as follows. Section 2 presents the novel methodology. The 

data and empirical results are described in section 3, while section 4 concludes. 
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2. METHODOLOGY 

Following Zhang et al. (2017) and Hyndmann et al. (2011), we combine multiresolution 

analysis (MRA) with ordinary least squares (OLS) regression modeling. The multiresolution 

analysis is used to decompose the original time-series into “details” and “smooths”. By 

applying a univariate forecasting procedure, we obtain ‘‘first-round step-ahead forecasts” of 

the original and of the decomposed series. Zang et al.  (2017) suggested that each variable at 

different scale can be considered as a linear combination of its lowest-scale counterparts. 

However, the hierarchical structure of the original time-series is not preserved in first-round 

forecasts in case of auto-regressive moving average (ARMA) models. To overcome this 

problem and obtain the optimal forecasts at all hierarchical levels, Zang et al.  (2017) 

regressed the first-round forecasts of the series on a “summing” matrix, which depicts the 

underlying linear relationship in hierarchical structure. However, they only examined their 

approach up to 2-level wavelet decomposition. In this paper, we extend the method to higher-

level wavelet-based multiresolution analysis.   

 

2.1. MRA-Wavelet Decomposition 

By using MRA for the training sample           , we obtain the wavelet details,    , and 

smooths,     . We use a maximal overlap discrete wavelet transform (MODWT) to obtain  th 

level MODWT wavelet      and scaling    coefficients (Durai & Bhaduri, 2009) as: 
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where,             
    ,             

    denote the wavelet and scaling filters, respectively, 

        and   is the level of decomposition. 

 

2.2. Auto-ARMA 

Having obtain the MRA-Wavelet based decomposed series,     , and     , we use the 

estimation of auto-ARMA by Khandakar and Hyndman (2008), whereby the optimal AR and 

MA orders are selected based on the Akaike's information criterion (AIC). We apply the auto-

ARMA model both to the original,   , and the decomposed series: 
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where,        . By applying the auto-ARMA forecasting modeling in Eqs. 4-6, we obtain 

‘‘first-round forecasts”, namely                                                   .  

2.3. OLS 

Based on the algorithm presented by Zang et al. (2017), we construct the “summing” matrix 

 , with 0 and 1 entries, which captures the linear relationship under a hierarchical structural 

scheme. Considering the base-level variables,                              , the linear 

relationship can be expressed as: 
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By using OLS, we regress the first-round forecasts, 

                                                   upon the summing matrix  . This 

provides us with optimal base-level forecasts,                                             . 

Next by utilizing the best base-level forecasts from the OLS, we estimate the optimal 

forecasts at all hierarchical levels as follows: 
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3. EMPIRICAL RESULTS  

Our dataset comprises monthly WTI prices of Crude Oil (ODA/POILWTI_USD) obtained 

from QUANDL data base
1
. The monthly series span February 29, 1980 to June 30, 2017. We 

use log returns to compute our investigated series. We apply the Shannon entropy criterion as 

in Bekiros and Marcellino (2013) and the wavelet continuous coherence under uncertainty 

(Bekiros et al., 2015) to estimate the optimal level of decomposition for the specific data 

frequency of the oil price returns. We render the optimal decomposition level as eight 
2
. From 

the optimal forecasts obtained in Eq. 8, we generate the top-level forecasts as       

                         , that can be compared directly to the original time-series over the 

out-of-sample period. As we are interested in testing the out-of-sample performance of the 

suggested forecasting approach at different wavelet-decomposition levels (         ) we 

apply a rolling window estimation and perform an  -step ahead (          ) forecasting 

                                                      
1
 We have also tested the daily crude oil prices (DOE/RWTC) obtained from QUANDL database. Based on daily 

oil prices, in almost all cases the simple auto-ARMA modeling outperforms the auto ARMA-MRA model with 

respect to reducing forecast errors. 
2
 The detailed results are available upon request. 
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scheme at each out-of-sample iteration. As in similar works mentioned above, the training 

sample size is dyadic in this application, i.e.,               . For the out-of-sample 

performance of the top-level forecasts, we consider the mean absolute error (MAE), root 

mean squared error (rMSE) and compare them against those obtained from the plain vanilla 

auto-ARMA model.
3
  

Tables 1-2 provide forecast enhancement results. It is evident from our analysis that the 

parameter estimates as depicted in the tables are either higher (improvement) or lower (i.e., no 

improvement) 1. As it is shown using 2, 3 and 4 levels of decomposition, in all cases the auto 

ARMA-MRA model provides with better forecasts compared to the simple ARMA model. 

Tables 3-4 report the statistical significance of the improvement obtained from the hybrid auto 

ARMA-MRA with different decomposition levels relatively to the benchmark.  

In figures 1-2, forecast errors (rMSE and MAE) are given for 3 and 4 levels of decomposition 

of the monthly crude oil prices. Clearly, we see the enhancement obtained by applying the 

auto ARMA-MRA hybrid. Figure 3 displays the auto ARMA-MRA model with 2 levels of 

decomposition and several window lengths.  

 

4. CONCLUSIONS 

We introduce a hybrid wavelet-based MRA to forecast monthly crude oil prices. Our results 

suggest that the auto ARMA-MRA model is more accurate than the simple one, in terms of 

forecastability. The predictive accuracy would decrease leading to higher forecast errors by 

increasing the level of decomposition, which could be due to the requirement of increasing the 

estimation window length. As the market participants entail diverse trading objectives 

(Aguiar-Conraria and Soares, 2013; Bekiros et al., 2016), our findings provide interesting 

insights especially for long-term investors who focus on low-frequency (high-scale) long-run 

oscillations. These results may have important implications for the market predictability of 

crude oil markets. 

 

                                                      
3
 To evaluate the economic performance of the suggested models, one can estimate the out-of-sample Sharpe 

ratios (see Gu et al., 2018; Bianchi et al., 2018). This Sharpe-based    in some cases generated extremely close 

to zero scores (i.e., slightly positive or slightly negative values), hence proper estimation of comparative Sharpe-

based    was not achieved in all instances. The economic performance of other forecasting models vis-à-vis the 

hybrid wavelet-based MRA, is considered in future research.  
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TABLE 1. FORECAST IMPROVEMENT (RMSE) FOR CRUDE OIL MARKETS 

 

Notes: This table reports the improvements in rMSE based on the auto ARMA-MRA model vs. simple ARMA. The numbers presented are the ratio of rMSE based on the 

simple ARMA model over the rMSE of ARMA-MRA model. We use the MODWT with haar wavelet. In the parentheses, we show the levels of the decomposition. Window 

length and forecast horizon are in monthly basis. The last column reports the average improvement in rMSE.   

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

auto ARMA-MRA (8) 0.939 1.004 0.976 0.961 0.969 0.960 0.976 0.990 0.999 0.996 0.994 0.991 0.988 0.990 0.981

auto ARMA-MRA (2) 0.968 1.011 0.999 0.987 0.986 0.986 0.993 1.003 1.005 1.004 1.001 0.999 0.992 0.994 0.995

auto ARMA-MRA (7) 0.922 1.001 1.006 1.005 1.008 1.005 0.998 1.002 1.001 1.002 1.005 1.010 1.003 1.004 0.998

auto ARMA-MRA (2) 0.973 1.009 1.004 1.004 1.005 1.001 0.997 1.004 1.005 1.004 1.006 1.007 1.001 1.002 1.002

auto ARMA-MRA (6) 0.942 1.036 1.043 1.009 1.003 0.997 0.990 1.016 1.014 1.021 1.018 1.002 1.007 1.014 1.007

auto ARMA-MRA (2) 0.981 1.030 1.034 1.007 1.006 1.000 0.989 1.006 1.007 1.008 1.008 0.996 0.998 0.999 1.005

auto ARMA-MRA (5) 0.973 1.019 1.060 1.039 1.033 1.007 1.007 1.011 1.019 1.014 1.011 0.992 1.005 1.027 1.015

auto ARMA-MRA (2) 0.997 1.018 1.051 1.034 1.023 1.002 1.003 1.007 1.010 1.005 1.007 0.995 1.008 1.019 1.013

auto ARMA-MRA (4) 1.001 1.042 1.079 1.073 1.126 1.165 1.195 1.223 1.229 1.281 1.291 1.277 1.289 1.310 1.192

auto ARMA-MRA (2) 1.012 1.036 1.067 1.060 1.105 1.127 1.156 1.176 1.182 1.215 1.227 1.228 1.237 1.258 1.156

auto ARMA-MRA (3) 1.028 1.064 1.108 1.133 1.160 1.231 1.266 1.303 1.340 1.382 1.406 1.441 1.466 1.502 1.289

auto ARMA-MRA (2) 1.025 1.057 1.094 1.116 1.139 1.195 1.226 1.256 1.284 1.318 1.334 1.363 1.381 1.408 1.243

Average
Forecast Horizon

256

128

64

32

16

8

Forecasting Model
Window 

Length
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TABLE 2. FORECAST IMPROVEMENT (MAE) FOR CRUDE OIL MARKETS 

 

 

Notes: We report the improvements in MAE based on the auto ARMA-MRA model vs. simple ARMA. The numbers presented are the ratio of MAE based on the simple 

ARMA model over the MAE of ARMA-MRA model. We use the MODWT with haar wavelet. In the parentheses, we show the levels of the decomposition. Window length 

and forecast horizon are in monthly basis. The last column reports the average improvement in MAE.   

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

auto ARMA-MRA (8) 0.934 0.973 0.963 0.961 0.972 0.962 0.984 0.992 1.009 0.999 1.002 0.993 0.989 0.989 0.980

auto ARMA-MRA (2) 0.962 0.992 0.992 0.987 0.989 0.983 0.993 1.001 1.011 1.008 1.007 1.000 0.995 0.992 0.994

auto ARMA-MRA (7) 0.921 0.989 0.997 1.001 1.002 1.007 0.996 1.008 1.005 0.999 1.004 1.007 1.000 1.004 0.995

auto ARMA-MRA (2) 0.964 1.000 1.006 1.008 1.007 1.005 0.998 1.008 1.006 1.002 1.006 1.005 0.999 1.004 1.001

auto ARMA-MRA (6) 0.944 1.007 1.017 0.997 0.995 0.995 0.980 1.016 1.013 1.029 1.026 1.003 1.005 1.012 1.002

auto ARMA-MRA (2) 0.979 1.002 1.016 1.006 1.004 1.002 0.983 1.005 1.007 1.010 1.017 0.997 1.000 0.998 1.002

auto ARMA-MRA (5) 0.963 0.998 1.034 1.036 1.014 0.995 1.002 1.006 1.016 1.013 1.022 0.986 0.997 1.016 1.007

auto ARMA-MRA (2) 0.988 1.005 1.036 1.031 1.011 0.998 0.999 1.005 1.007 1.004 1.010 0.991 1.004 1.003 1.007

auto ARMA-MRA (4) 0.975 0.975 0.976 0.990 1.002 1.000 1.011 1.025 1.021 1.023 1.013 0.985 0.965 0.965 0.994

auto ARMA-MRA (2) 0.992 0.986 0.989 1.000 1.016 1.008 1.015 1.031 1.023 1.027 1.018 1.003 0.997 1.001 1.008

auto ARMA-MRA (3) 1.006 1.020 1.018 1.044 1.041 1.055 1.059 1.056 1.048 1.051 1.052 1.045 1.047 1.066 1.044

auto ARMA-MRA (2) 1.005 1.019 1.017 1.038 1.035 1.049 1.054 1.050 1.042 1.046 1.044 1.039 1.040 1.057 1.039

Forecasting Model
Window 

Length

Forecast Horizon
Average

8

256

128

64

32

16
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TABLE 3. PAIRED T-STATISTICS (RMSE) FOR CRUDE OIL MARKETS 

 

Notes: We report the Paired t-statistics of the difference in mean between the squared forecast errors of the auto ARMA-MRA model vs. simple ARMA. We use the MODWT 

with haar wavelet. In the parentheses, we show the levels of the decomposition. Window length and forecast horizon are in monthly basis. The last column reports the average 

improvement in rMSE. *, **, *** denotes statistical significance at 10%, 5% and 1%, respectively.  

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

auto ARMA-MRA (8) -2.276** 0.157 -1.805* -2.905*** -3.032*** -3.925*** -2.818*** -1.297 -0.126 -0.546 -0.821 -1.293 -2.062** -1.681*

auto ARMA-MRA (2) -1.527 0.823 -0.012 -1.655* -1.831* -2.575** -1.411 0.705 1.162 0.911 0.314 -0.143 -1.669* -1.125

auto ARMA-MRA (7) -2.486** 0.084 0.392 0.463 0.719 0.539 -0.255 0.341 0.141 0.409 1.033 1.731* 0.623 0.885

auto ARMA-MRA (2) -1.257 1.037 0.500 0.608 0.712 0.203 -0.659 0.870 1.242 1.277 1.97** 2.163** 0.402 1.025

auto ARMA-MRA (6) -1.805* 1.596 1.723* 0.550 0.255 -0.204 -0.920 1.682* 1.464 2.382** 1.787* 0.174 0.686 0.894

auto ARMA-MRA (2) -0.755 1.78* 1.889* 0.727 0.612 0.033 -1.346 1.037 1.102 1.302 1.382 -0.618 -0.386 -0.054

auto ARMA-MRA (5) -1.107 0.922 1.722* 2.284** 1.882* 0.518 0.713 0.703 1.551 1.471 1.209 -0.796 0.400 0.919

auto ARMA-MRA (2) -0.161 1.176 1.969** 2.741*** 1.758* 0.165 0.479 0.604 1.014 0.758 1.064 -0.874 0.974 0.838

auto ARMA-MRA (4) 0.042 0.891 1.008 0.949 1.280 1.065 1.116 1.089 0.992 1.058 0.984 0.914 0.875 0.876

auto ARMA-MRA (2) 0.649 1.007 1.146 1.024 1.380 1.113 1.183 1.141 1.042 1.090 1.034 0.986 0.947 0.961

auto ARMA-MRA (3) 1.217 1.143 1.132 1.276 1.176 1.106 1.108 1.079 1.043 1.029 1.025 1.026 1.017 1.022

auto ARMA-MRA (2) 1.254 1.173 1.151 1.283 1.178 1.110 1.114 1.084 1.045 1.032 1.025 1.027 1.018 1.023

Forecasting Model
Window 

Length

Forecast Horizon

256

128

64

32

16

8
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TABLE 4. PAIRED T-STATISTICS (MAE) FOR CRUDE OIL MARKETS 

 

 

Notes: We report the Paired t-statistics of the difference in mean between the absolute errors of the auto ARMA-MRA model vs. simple ARMA. We use the MODWT with 

haar wavelet. In the parentheses, we show the levels of the decomposition. Window length and forecast horizon are in monthly basis. The last column reports the average 

improvement in MAE. *, **, *** denotes statistical significance at 10%, 5% and 1%, respectively. 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

auto ARMA-MRA (8) -2.079** -1.163 -2.093** -2.589** -2.336** -3.692*** -1.609 -0.814 1.023 -0.101 0.268 -0.697 -1.247 -1.452

auto ARMA-MRA (2) -1.599 -0.507 -0.688 -1.386 -1.232 -2.361 -0.943 0.202 1.819* 1.263 1.111 -0.064 -0.691 -1.209

auto ARMA-MRA (7) -2.483** -0.684 -0.223 0.114 0.137 0.633 -0.440 0.876 0.563 -0.078 0.583 0.898 -0.066 0.578

auto ARMA-MRA (2) -1.593 0.043 0.693 0.999 0.840 0.742 -0.237 1.464 1.184 0.498 1.486 1.426 -0.195 1.208

auto ARMA-MRA (6) -1.857* 0.388 0.906 -0.178 -0.357 -0.337 -1.596 1.453 1.276 2.636*** 2.634*** 0.264 0.440 1.111

auto ARMA-MRA (2) -0.909 0.160 1.265 0.591 0.374 0.226 -1.865* 0.705 0.975 1.499 2.63*** -0.559 -0.014 -0.402

auto ARMA-MRA (5) -1.451 -0.095 1.684* 2.159** 0.924 -0.444 0.139 0.441 1.135 1.075 1.727* -0.998 -0.213 0.940

auto ARMA-MRA (2) -0.590 0.379 2.442** 2.562** 0.964 -0.215 -0.142 0.534 0.703 0.410 1.263 -1.097 0.397 0.322

auto ARMA-MRA (4) -1.241 -1.234 -1.050 -0.418 0.083 0.013 0.348 0.720 0.535 0.546 0.290 -0.338 -0.742 -0.699

auto ARMA-MRA (2) -0.496 -0.849 -0.590 0.014 0.770 0.358 0.616 1.188 0.804 0.845 0.550 0.093 -0.089 0.022

auto ARMA-MRA (3) 0.451 1.283 0.959 1.998** 1.627 1.951* 1.848* 1.584 1.225 1.171 1.164 0.935 0.923 1.208

auto ARMA-MRA (2) 0.462 1.439 1.108 2.087** 1.641 2.035** 1.973** 1.655* 1.282 1.252 1.175 0.957 0.937 1.246

Forecasting Model
Window 

Length

16

8

Forecast Horizon

256

128

64

32
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FIGURE 1. RMSE (A) AND MAE (B) FOR THREE LEVELS OF DECOMPOSITION  

 

Notes: This figure compares the forecast errors rMSE (panel a) and MAE (panel b) of auto ARMA-MRA model with 3 levels of decomposition vs. the ones from simple auto 

ARMA model as the benchmark. The results are obtained by applying rolling window estimation.  

 

 

 

 

 

 



13 

 

FIGURE 2. RMSE (A) AND MAE (B) FOR FOUR LEVELS OF DECOMPOSITION  

 

Notes: This figure compares the forecast errors rMSE (panel a) and MAE (panel b) of auto ARMA-MRA model with 4 levels of decomposition vs. the ones from simple auto 

ARMA model as the benchmark. The results are obtained by applying rolling window estimation.  
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FIGURE 3. COMPARATIVE RMSE SCORES 

 

Notes: We present forecast errors (rMSE) from auto ARMA-MRA model with 2 levels of decomposition. Several training sample sizes are used and the results are obtained 

via rolling window estimation. Window length and forecast horizon are on a monthly basis. 

 

 

 


