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Abstract

This thesis is motivated by the observation that the time series properties of financial security prices can vary
fundamentally with their sampling frequency. Econometric models developed for low frequency data may thus be
unsuitable for high frequency data and vice versa. For instance, while daily or weekly returns are generally well
described by a martingale difference sequence, the dynamics of intra-daily, say, minute by minute, returns can be
substantially more complex. Despite this apparent conflict between the behavior of high and low frequency data,
itis clear that the two are intimately related and that high frequency data carries a wealth of information regarding
the properties of the process, also at low frequency. The objective of this thesis is to deepen our understanding of
the way in which high frequency data can be used in financial econometrics. In particular, we focus on (i) how to
model high frequency security prices, and (ii) how to use high frequency data to estimate latent variables such as
return volatility. One finding throughout the thesis is that the choice of sampling frequency is of fundamental im-
portance as it determines both the dynamics and the information content of the data. A more detailed description
of the chapters follows below.

Chapter one examines the impact of serial correlation in high frequency returns on the realized variance mea-
sure. In particular, it is shown that the realized variance measure yibldsedestimate of the conditional return
variance when returns are serially correlated. Using 10 years of FTSE-100 minute by minute data we demonstrate
that a careful choice of sampling frequency is crucial in avoiding substantial biases. Moreover, we find that the
autocovariance structure (magnitude and rate of decay) of FTSE-100 returns at different sampling frequencies is
consistent with that of an ARMA process under temporal aggregation. A simple autocovariance function based
method is proposed for choosing the “optimal” sampling frequency, that is, the highest available frequency at
which the serial correlation of returns has a negligible impact on the realized variance measure. We find that the
logarithmic realized variance series of the FTSE-100 index, constructed using an optimal sampling frequency of
25 minutes, can be modelled as an ARFIMA process. Exogenous variables such as lagged returns and contem-
poraneous trading volume appear to be highly significant regressors and are able to explain a large portion of the
variation in daily realized variance.

Chapter two (based on joint work with George Jiang) proposes an unbiased estimator of the latent variables
within the Affine Jump Diffusion model. The estimator is model consistent, can be implemented based on high
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frequeng observations of the state variable, and we derive conditions under which it has minimum variance. In
a simulation experiment we illustrate the performance of our estimator and show that its properties compare fa-
vorably to commonly used alternatives. Because our approach can, in principle, be applied to any latent variable
model in the general Affine Jump Diffusion framework, it covers a wide range of models frequently studied in the
finance literature including the stochastic volatility model. Based on the proposed estimator of latent variables,
we outline a flexible GMM estimation procedure that relies on the matching of conditional moments or cumulants
of both the observed and the unobserved state variables.

Chapter three studies two extensions of the compound Poisson process with iid Gaussian innovations which
are able to characterize important features of high frequency security prices. The first model explicitly accounts
for the presence of the bid/ask spread encountered in price-driven markets. This model can be viewed as a mixture
of the compound Poisson process model by Press and the bid/ask bounce model by Roll. The second model gen-
eralizes the compound Poisson process to allow for an arbitrary dependence structure in its innovations so as to
account for more complicated types of market microstructure. Based on the characteristic function, we provide a
detailed analysis of the static and dynamic properties of the price process. Comparison with actual high frequency
data suggests that the proposed models are sufficiently flexible to capture a number of salient features of financial
return data including a skewed and fat tailed marginal distribution, serial correlation at high frequency, time vari-
ation in market activity both at high and low frequency. The current framework also allows for a comprehensive
investigation of the “market-microstructure-induced bias” in the realized variance measure and we find that, for
realistic parameter values, this bias can be substantial. We analyze the impact of the sampling frequency on the
bias and find that for non-constant trade intensity, “business” time sampling maximizes the bias but achieves the
lowest overall MSE.
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JOINT RESEARCHSTATEMENT CHAPTER 2

June,2003

The following is a joint statement by George Jiang and Roel Oomen which aims at detailing each author’s
relative contribution to Chapter two of this thesis; “Latent Variable Estimation for the Affine Jump Diffusion.” At
the outset it should be stressed that the chapter, as it stands, is entirely written by Roel but draws heavily on a
working version of the paper underlying this chapter. The work is in progress and the chapter in this thesis sum-
marizes the results that were derived by December 2002, with minor modifications made afterwards (including
some redrafting and updating of simulation results).

Both authors have contributed significantly to the theorethral simulation results. However, George has
primarily focussed on the development of the theoretical results while Roel has concentrated on the simulation
design and interpretation of the results. More specifically, George has developed the unbiased estimator of the
latent variables within the Affine Jump Diffusion framework and derived Lemma 2.2.1 and Corollary 2.2.2. Roel’'s
contribution to the theory is Lemma 2.2.3. Regarding the simulation part, model specification and parameter
choice is joint work. George has derived the solutions to the Ricatti equations for both the stochastic mean
model and the stochastic volatility model while Roel has written the code for the simulations and proposed the
comparison of the UMV filter to the Kalman filter (and particle filter, work in progress). The simulation results
have been interpreted jointly leading to several intermediate revisions of model specification, parameter choice,
and reporting style. The remaining part of the chapter is joint work.

George Jiang Roel C.A. Oomen

Finance Department Department of Economics
Eller College of Business & Public Administration European University Institute
University of Arizona, Tucson AZ, USA San Domenico di Fiesole, Italy
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Chapter 1

Modelling Realized Variance when Returns
are Serially Correlated

1.1 Introduction

A crucial element in the theory and practice of derivative pricing, asset allocation and financial risk management is
the modelling of asset return variance. The Stochastic Volatility and the Autoregressive Conditional Heteroskedas-
ticity class of models have become widely established and successful approaches to the modelling of the return
variance process in both the theoretical and the empirical literature (see for example Bollerslev, Engle, and Nelson
(1994) and Ghysels, Harvey, and Renault (1996)). Despite the enormous amount of research on return variance
modelling carried out over the past two decades, complemented with overwhelming empirical evidence on the
presence of heteroskedastic effects in virtually all financial time series, the variety of competing variance models
highlights the disagreement on what the correct model specification should be. An alternative route to identifying
the dynamics of the return variance process is to utilize the information contained in option prices. Yet, also
here, several studies have documented a severe degree of model misspecification even for the more general optiol
pricing formulas that incorporate stochastic volatility, interest rates and jumps (see for example Bakshi, Cao, and
Chen (1997)). Itis therefore not surprising that a growing number of researchers have turned their attention to the
use of high frequency data which, under certain conditions, allow for an essentially non-parametric or model-free
approach to the measurement of return variance. The objective of this paper is twofold. First, explore the extent
to which the now widely available intra-day data on financial asset prices can be used to improve and facilitate the
estimation and modelling of return variance. Special attention is given to the impact that market microstructure-
induced serial correlations, present in returns sampled at high frequency, have on the resulting variance estimates.
Second, analyze and model the time series of estimated (daily) return variance. Here the focus is on identifying
a suitable model plus a set of exogenous variables that is able to characterize and explain variation in the return
variance.

The idea of inferring the unobserved return variance from high frequency data is not new. In fact, it can be
traced back to Merton (1980) who notes that the variance of a time-invariant Gaussian diffusion process (over a
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fixed time-interval) can be estimated arbitrarily accurately as the sum of squared realizations, provided that the
data are available at a sufficiently high sampling frequency. Empirical studies making use of this insight include
French, Schwert, and Stambaugh (1987), who estimate monthly return variance as the sum of squared daily returns
and Andersen and Bollerslev (1998), Hsieh (1991), and Taylor and Xu (1997) who estimate daily return variance
as the sum of squared intra-day returns. More recent studies that apply and develop this idea further include
Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev, Diebold, and Labys (2001, 2003), Areal
and Taylor (2002), Barndorff-Nielsen and Shephard (2002, 2003), Blair, Poon, and Taylor (2001), Maheu and
McCurdy (2002b), and Martens (2002).

One of the main attractions that has been put forward of estimating return variance by the sum of squared intra-
period returns, a measure commonly referred to as “realized variance” (or “realized volatility” being the square
root of realized variance), is that this approach does not require the specification of a potentially misspecified para-
metric model. In addition, when constructing the realized variance measure there is no need to take the widely
documented and pronounced intra-day variance pattern of the return process into account. This feature contrasts
sharply with parametric variance models which generally require the explicit modelling of intra-day regularities
in return variance (see for example Engle (2000)). Finally, calculating realized variance is straightforward and
can be expected to yield accurate variance estimates as it relies on large amounts of intra-day data. The theoretica
justification for using the realized variance measure has been provided in a series of recent papers by Andersen,
Bollerslev, Diebold, and Labys (2001, 2003, ABDL hereafter). In particular, ABDL have shown that when the
return process follows a special semi-martingale, the Quadratic Variation (QV) process is the dominant determi-
nant of the conditional return variance. By definition, QV can be approximated by the sum of squared returns at
high sampling frequency, or in other words realized variance. Moreover, under certain restrictions on the condi-
tional mean of the process, QV is the single determinant of the conditional return variance, thereby underlining
the importance of the realized variance measure. In related work, Barndorff-Nielsen and Shephard (2003) derive
the limiting distribution of realized power variation, that is the sum of absolute powers of increments (i.e. returns)
of a process, for a wide class of SV models. It is important to note that, in contrast to conventional asymptotic
theory, here, the limit distribution results rely on the concept of “in-fill” or “continuous-record” asymptotics, i.e.
letting the number of observations tends to infinity while keeping the time interval fixed. In the context of (real-
ized) variance estimation, this translates into cutting up, say, the daily return into a sequence of intra-day returns
sampled at an increasingly high frequency (see for example Foster and Nelson (1996)).

The recently derived consistency and asymptotic normality of the realized variance measure greatly contribute
to a better understanding of its properties and, in addition, provide a formal justification for its use in high fre-
guency data based variance measurement. However, a major concern that has largely been ignored in the literature
so far, is that in practice the applicability of these asymptotic results is severely limited for two reasons. First, the
amount of data available over a fixed time interval is bounded by the nhumber of transactions recorded. Second,
the presence of market microstructure effects in high frequency data potentially invalidate the asymptotic results.

This paper studies the properties of the realized variance in the presence of market microstructure-induced
serial correlation. In particular, we show that the realized variance measure is a biased estimator of the condi-
tional return variance when returns are serially correlated. The return dependence at high sampling frequencies is
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analyzedusing a decade of minute by minute FTSE-100 index returns. We find that the autocovariance structure
(magnitude and rate of decay) of returns at different sampling frequencies is consistent with that of an ARMA
process under temporal aggregation. Based on this finding, an autocovariance based method is proposed to de
termine the “optimal” sampling frequency of returns, that is, the highest available frequency at which the market
microstructure-induced serial correlations have a negligible impact on the realized variance fneasure

Following the methodology outlined above, we find that the optimal sampling frequency for the FTSE-100
data set lies around 25 minutes. We construct a time series of daily realized variance, confirm several styled facts
reported in earlier studies, and find that the logarithmic realized variance series can be modelled well using an
ARFIMA specification. Exogenous variables such as lagged returns and contemporaneous trading volume appear
to be highly significant regressors, explaining a large portion of the variation in daily realized variance. While the
regression coefficients of lagged returns indicate the presence of Black’s leverage effect, there is no indication of
reduced persistence in the return variance process upon inclusion of contemporaneous trading volume. This latter
finding is in sharp contrast with the study by Lamoureux and Lastrapes (1990).

The remainder of this paper is organized as follows. Section 1.2 investigates the impact of serial correlation
in returns on the realized variance measure. Here, results on temporal aggregation of an ARMA process are used
to characterize the bias of the realized variance measure at different sampling frequencies. Section 1.3 reports the
empirical findings based on the FTSE-100 data set while Section 1.4 concludes.

1.2 Realized Variance

The notion of realized variance, as introduced by ABDL, is typically discussed in a continuous time framework
where logarithmic prices are characterized by a semi-martingale. More restrictive specifications have been con-
sidered by Barndorff-Nielsen and Shephard (2002, 2003). In this setting, the quadratic variation (QV) of the
return process can be consistently estimated as the sum of squared intra-period returns. It is this measure that is
commonly referred to as realized variance. Importantly, ABDL show that QV is the crucial determinant of the
conditional return (co-) variance thereby establishing the relevance of the realized variance measure. In particu-
lar, when the conditional mean of the return process is deterministic or a function of variables contained in the
information set, the QV is in fact equal to the conditional return variance which can thus be estimated consistently
as the sum of squared returns. Notice that this case precludes ramoamperiod evolution of the instantaneous
mean. However, it is argued by ABDL that such effects are likely to be trivial in magnitude and that the QV
therefore remains the dominant determinant of the conditional return variance.

Below we analyze the impact of serial correlation in returns on the realized variance measure. As opposed to
ABDL and Barndorff-Nielsen and Shephard (2002, 2003), a simple discrete time model for returns is used for the
sole reason that it is sufficient to illustrate the main ideas. In what follows, the period of interest is set to one day.

LetS;; (j = 1,...,N) denote thej’" intra day-¢ logarithmic price of securityS. At sampling frequency

Independentvork by Andersen, Bollerslev, Diebold, and Labys (2000b), Corsi, ZumbadhieM and Dacorogna (2001) have pro-
posed a similar approach to determine the optimal sampling frequency. Other related studies iiteibaleafa and Mykland (2003),
Andreou and Ghysels (2001), Bai, Russell, and Tiao (2001).
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f, assuming equi-time spac’edbservations]\ff = % intra-dayreturns can be constructed Bg;; = Si iy —
Sy i—1)f> fori =1,..., Ny andS;o = S;—1 ny. By the additive property of returns, it follows that the eay
return is given by:

We assume that the (excess) return followsatingale difference sequenaad that its conditional distribution,

i.e. Ry 1i|F; 1 i—1) WhereF, s ; denotes the information set available up to fHeperiod of dayt, is symmetric.

The need for this symmetry assumption will become clear later on. While this specification allows for determin-
istic and stochastic fluctuations in the return variance, it also implies that returns are necessarily uncorrelated. Let
Vi = R?, i.e. the squared dayt return, andl, = ZNf Rffz , i.e. the sum of squareidtra-day—t returns
sampled at frequency. In the current contexi/s is referred to as the realized variance measure. Since returns
are serially uncorrelated at any given frequerfcit follows that:

f
VI[Ri|F]=E[R}|F) =E Y Ri;ilF|, (1.2)

where F; denotes the information set available prior to the start ofiddyealized variance, like squared daily
return, is therefore amnbiased estimator of the conditional return varianetwever, it turns out that the variance
of 4 is strictly smaller than the variance &f and is therefore the preferred estimator. To see this, it is sufficient
to show thatt [V2| ;] < E [V F]:

E[VP|F] = Zzzthsztf,gRtf,thf, [ Fe| = ZRtfz+szZRtf, R} ;| F |
i jFi
because the cross product of returns is zero except when=f)j = k = m, (i) i = 7 # k = m, (iii)
i=k#j=m,(iv)i=m # j = k. Notice thattl |:Rt7f7iR?’f’j’JTt:| = 0 for ¢ > j by the martingale difference
assumption and [Rtvaf,fﬂft} = 0 for ¢ < j by symmetry of the conditional distribution of returns. On the
other hand
E[V§|F] = Z Ripi+ Y > RipRipilFel
i i
from which it directly follows that
V [Va| R <V [Vi|F].

The conditional return variance over a fixed period can thus be estimated arbitrarily accurate by summing up
squared intra-period returns sampled at increasingly high frequency. While this result does not depend on the
choice of period (i.e. one day), it does crucially rely on the property that returns are serially uncorrelated at any
sampling frequency. The additional symmetry assumption rules out any feedback effects from returns into the
conditional third moment of returns but allows for skewness in the unconditional return distribution. Other than

that, weak conditions are imposed on the return process. As mentioned above, the specification of the return

2This can straightforwardly be generalized to irregularly time spaced returns.

4
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dynamicsis sufficiently general so as to allow for deterministic and stochastic fluctuations in the return variance
and, as a result, encompasses a wide class of variance models.

1.2.1 Realized Variance in Practice

The results above suggest that straightforward use of high frequency returns can reduce the measurement error ir
the return variance estimates provided that the return series is a martingale difference sequence (with a symmetric
conditional return distribution). This section focuses on the implementation and potential pitfalls that may be
encountered in practice. In particular, minute by minute FTSE-100 index level dataused to investigate
whether the method of calculating the daily realized variance measure will yield satisfactory results. The additive
property of returns allows us to decompose the squared daily return as:

2

Ny Ny—1 Ny
ZRfth ZRf,tz +2 Z Z thz fit,ge (12)
=1 =1 j=i+1

It is clear that when the returns are serially uncorrelated at sampling frequfeticg second term on the right

hand side of expressiofi.2) is zero in expectation and the realized variance measure constitutes an unbiased
estimator of the conditional return variance. However, when returns are serially correlated the cross product of
returns may not vanish in expectation which, in turn, introduces a bias into the realized variance measure. In
particular, when returns are positively (negatively) correfjtéte sum of squared intra-day returns witider-
estimate(over-estimategdaily conditional return variance as the cross multiplication of returns will be positive
(negative) in expectation.

At first sight, the practical relevance of this finding seems to be challenged by the efficient markets hypothesis
which claims that the presence of significant serial correlation in returns, if any, is unlikely to persist for extended
periods of time. It is important to note, however, that the efficient markets hypothesis coacenmnicand
not statistical significance of serial correlation. Therefore, due to the presence of market microSteffeate
and transaction costs, a certain degree of serial correlation in returns does not necessarily conflict with market
efficiency.

In the market microstructure literature, a prominent hypothesis that is able to rationalize serial correlation in
stock index returns is non-synchronous trading. The basic idea is that when individual securities in an index do
not trade simultaneously, the contemporaneous correlation among returns induces serial correlation in the index
returns. Intuitively, when the index components non-synchronously incorporate shocks to a common factor that is
driving their price, this will result in a sequence of correlated price changes at the aggregate or index price level.

3| thankLogical Information Machines, Inawho kindly provided the data needed for the analysis. The data set contains minute by
minute data on the FTSE-100 index level, starting May 1, 1990 and ending January 11, 2000. For each day, the data is available from 8:35
until 16:10 (except for the period from July 17, 1998 until September 17, 1999 during which the data is available from 9:00 until 16:10).

The total number of observations exceeds one million.
“When returns exhibit both positive and negative serial correlation, the effect is not clear. The realized variance measure may be biased

or unbiased depending on the relative magnitudes of the return autocovariance at different orders.
5For an in depth discussion of the relation between market microstructure and price dynamics see for instance Campbell, Lo, and

MacKinlay (1997), Lequeux (1999), Madhavan (2000), O’Hara (1995), Wood (2000) and references therein.
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As discussed by Lo and MacKinlay (1990), non-synchronous trading induces positive serial correlation in the
index returns. On the other hand, the Roll (1984) bid/ask bounce hypothesis often applies to single asset returns
which are typically found to exhibit negative serial correlation. Here the argument is as follows: when at a given
point in time no new information arrives in a (dealer) market, the stock price is expected to bounce between the bid
and the ask price whenever a trade occurs. Although this phenomenon may not be apparent at a daily or weekly
frequency, it is likely to have a discernible impact on returns sampled at high (intra-day) frequency. Finally,
transaction costs and feedback trading, in addition to non-synchronous trading and the bid-ask bounce, may also
induce serial correlation in returns. For an empirical investigation of these issues see for exafwphblad

(2000). Although this paper does not aim to analyze the various market microstructure effects in specific, we do
want to highlight the presence of such effects and study their impact on the realized variance measure.

Several studies have encountered the impact of serial correlation in returns on the estimates of return variance.
For example, French and Roll (1986) find that stock return variance is much lower when estimated using hourly
instead of daily data, indicating the presence of positive serial correlation in their data set. Recognizing the
presence of serial correlation, French, Schwert, and Stambaugh (1987) estimate monthly return variance as the
sum of squared daily returnglustwice the sum of the products of adjacent returns. Froot and Perold (1995) also
find significant positive serial correlation in 15 minute returns on S&P500 cash index from 1983-1989 and show
that the annualized return variance estimates based on weekly data are significantly higher (about 20%) than the
variance estimates based on 15-minute data. More recently, Andersen, Bollerslev, Diebold, and Labys (2000b)
document the dependence of the realized variance measure on return serial correlation.

These findings offer an early recognition of the central idea of this paper: the results derived in the previ-
ous section, and the consistency and asymptotic results derived in ABDL and Barndorff-Nielsen and Shephard
(2003), are not applicable to return data that exhibit a substantial degree of serial dependence. In particular, the
conditional mean specification used in these studies does typically not allow for the random intra-day evolution
of the conditional meah It is commonly argued that this flexibility is not required at low, say daily or weekly,
frequencies. However, when moving to higher intra-day sampling frequencies, the characteristics of the data may
change dramatically due to the presence of market microstructure which in turn, leads to substantial dependence
in the conditional mean of the return process.

Because market microstructure effects are present in virtually all financial return series, the issue outlined
above is central to the discussion of high frequency data based variance measurement. This is emphasized in the
empirical analysis which is based on minute by minute returns on the FTSE-100 stock market index. Specifically,
the 10 year average (1990-2000) of the two terms on the right hand side of expi@s3jas computed for sam-
pling frequencies between 1 and 45 minutes and the results are displayed in Figure 1.1. The implicit assumption
we make here is that the return process is weakly statidrsaryhat the averaging (over time) is justified and the
estimates can be interpreted as (co)variance estimates.

It is clear that for FTSE-100 data the first term, the realized variance measure, increases with a decrease in

6An exception is the general model covered by Theorem 1 in Andersen, Bollerslev, Diebold, and Labys (2003) from which it is also

clear that the realized variance measure yields a biased estimate of the conditional return variance.
"For the bootstrap analysis of Section 1.2.2 we need to impose strict stationarity and weak dependence on the return process.
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FIGURE1.1: REALIZED VARIANCE VERSUSSAMPLING FREQUENCY
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sampling frequency while the second term, the summation of cross multiplied returns, decreases. The positivity
of the second term indicates that the FTSE-100 returns are positively correlated, introddicymgveard biasnto
the realized variance measure, while its decreasing pattern demonstrates that this dependence, and consequent
the bias, diminishes when sampling is done less frequently. This term, which measures the bias that is introduced
by the serial dependence of returns, is referred to asab®tovariance bias factbiin the remainder of this
paper. Figure 1.1 illustrates that an ad hoc choice of sampling frequency can lead to a substantial (downward)
bias in the realized variance measure. In fact, at the highest available sampling frequency of 1 minute, the bias
in the variance estimate is more than 35%! To stress the economic significance of this finding, we notice that in
a Black Scholes world, a mere 10% under-estimation of the return variance leads to a 14.5% underpricing of a 3
month,15% out of the money option. Also the option’s delta is 8.2% lower than its true value. Indeed, Figlewski
(1998) finds that an accurate return variance estimate is of single most importance when hedging derivatives.
When the return variance is stochastic, Jiang and Oomen (2002) also find that for the hedging of derivatives
accurate estimation of tHevel of return variance is far more important than accurate estimation of the dynamic
parameters of the variance process. Pricing and hedging options aside, it is easy to think of a number of other
situations where accurate return variance estimates are of crucial importance. Risk managers often derive Value at
Risk figures from the estimated return variance of a position. Also, in a multivariate setting, the covariance matrix
of returns is the primary input for portfolio choice and asset allocation.

The above discussion naturally leads to the important question at which frequency the data should be sampled.
Figure 1.1 plays a central role in answering this question by providing a graphical depiction of the trade-off one
faces when constructing the realized variance measure: an increase in the sampling frequency yields a greater
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amountof data, thereby attaining higher levels of efficiency (in theory), while at the same time a decrease in the
sampling frequency mitigates the biases due to market microstructure effects surfacing at the highest sampling
frequencies. A balance must be struck between these opposing effects and it is argued here that an autocovari-
ance based method, such as the autocovariance bias factor of Figure 1.1, can be used to detctopinmal”

sampling frequency as the highest available sampling frequency for which the autocovariance bias term is negli-
gible®. Clearly, deciding whether the bias term is “negligible”, and whether the sampling frequency is therefore
“optimal”, may prove a difficult issue for at least two reasons. First, even though it may be possible to bootstrap
confidence bounds around the autocovariance bias factor in order to determine the frequency at which the bias is
statistically indistinguishable from zero (see Table 1.1 for some related results), for many applications economic
significance, as opposed to statistical significance, may be the relevant metric with which to measure “negligi-
bility”. The optimal sampling frequency may therefore very well depend on the particular application at hand.
Second, when aggregating returns, a reduction in bias should generally be weighed against the loss in efficiency.
In practice, however, both the loss or gain in bias and efficiency will often be difficult to quantify which, in turn,
complicates the choice of optimal sampling frequency. It should be noted that for a general SV model, Barndorff-
Nielsen and Shephard (2003) have shown that the realized variance measure converges to integrated variance &
ratey/N whereN is the number of intra-period observations. Also, Oomen (2003) has derived an explicit char-
acterization of the bias term as a function of the sampling frequency when the price process follows a compound
Poisson process with correlated innovations. While the results in these studies may yield some valuable insights
into the bias-efficiency trade-off, it is important to keep in mind that they are derived under potentially restrictive
parametric specifications for the price process. As such, they should be interpreted cautiously when applied to
high frequency data which, as we show below, are often contaminated by market microstructure effects. Without
further going into this, it seems reasonable to expect that for the FTSE-100 data the optimal sampling frequency
lies somewhere between 25 and 35 minutes, i.e. the range indicated in Figure 1.1.

1.2.2 Serial Correlation, Time Aggregation & Sampling Frequency

We now take a closer look at the autocovariance bias term and show how its shape is intimately related to the
dynamic properties of intra-day returns at different sampling frequencies.

Table 1.1 reports some standard descriptive statistics for the FTSE-100 return data. Because it is well known
that financial returns, and in particular high frequency returns, are not independently and identically distributed
we bootstrap the confidence bounds around the statistics instead of deriving them from the well known asymptotic
distributions that are valid under the iid null hypothesis. For the return volatility and the skewness and kurtosis
coefficients we use the stationary bootstrap of Politis and Romano (1994) who show that this procedure is valid

for strictly stationary, weakly dependent data. ket= (xi,...,xy) denote the original data set (i.e. time
series of returns at a given sampling frequency) andXlgt = (z;,...,zi1,—1) Wherei = 1,... N, k =
1,2,...,andz; = x; moa v fOr j > N. A bootstrap sample is constructedsds= (X;, x,, ..., Xj, r,) Where

8Independenivork by Andersen, Bollerslev, Diebold, and Labys (2000b), Corsi, ZumbaéHiehand Dacorogna (2001) have pro-
posed a similar approach to determine the optimal sampling frequency.
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TABLE 1.1: DESCRIPTIVESTATISTICS OFFTSE-100 BRTURNS.

Frequeng No. Obs. Volatility Skewness  Kurtosis BL[15]
1 Min 1,046,862 11.5 1.61* 3305* 26874
(10.9;12.2) (—-14.9;17.0)  (1209;5333) (312.4)
5 Min 209,372 13.2 —0.43* 508.3* 4844.2*
(12.6;14.0) (—6.82;5.18)  (177.5;886.2) (223.6)
10 Min 104,686 14.2 —1.89* 344.8* 1206.9*
(13.4;15.1) (—8.50;3.04)  (78.5;697.2) (138.0)
30 Min 34,895 15.1 —1.11* 115.2* 221.1*
(14.2;16.4) (—4.61;1.51)  (27.1;234.8) (181.6)
60 Min 17,447 15.6 —0.32* 84.3* 117.2*
(14.3;17.3) (—2.71;1.86)  (14.3;161.5) (146.2)
1 Day 2,407 15.2 0.05 5.43* 44.34*
(14.0;16.6) (—0.21;0.32)  (4.37;6.56) (37.3)
P1 P2 P3 P4 P5 P10 P15
1 Min 10.4* 7.39* 6.09* 5.13* 2.75* 0.59* 0.95*
(9.06;11.7) (6.22;8.55) (5.08;7.12) (3.89;6.68) (1.77;3.68) (—0.43;1.34)  (0.32;1.69)
5 Min 14.6* 3.35* 1.85* 0.78* 0.96* —0.10 —0.60*
(12.4;16.7) (1.92;4.75) (0.70;3.05) (—0.29;2.00)  (0.15;1.81) (-1.23;1.32)  (—1.57;0.35)
10 Min 10.2* 2.35* 1.06* 0.04 —0.55 0.17 —0.68*
(8.40;12.1) (0.94;3.83) (0.11;2.07) (—1.45;1.65)  (—0.20;0.12)  (—0.71;1.13)  (—2.72;0.82)
30 Min 6.39* —0.60 1.28* —0.88 —0.10 2.02* —1.83*
(4.25;8.68) (—2.48;1.24)  (-0.58;3.19)  (-2.21;0.50)  (—3.57;2.58)  (—0.10;4.46)  (—6.35;2.00)
60 Min 3.28* —0.79 3.66" —0.00 2.84* —1.55% —0.26
(0.12;6.41) (—4.59;2.58)  (1.16;6.04) (—2.40;2.41)  (—0.14;6.26)  (—3.03;0.07)  (—3.27;2.64)
1 Day 7.56* —3.62 —-3.70 —0.46 —2.44 3.33 1.84
(3.64;11.2) (—8.45:1.64)  (—8.76;1.63)  (—5.69;4.73)  (—8.20;3.20)  (—2.26;8.73)  (—3.23;6.75)

Notes: Theupper panel reports ttennualized-eturn volatility in percentage points (“Volatility”), the skewness coefficient (“Skewness”),
kurtosis coefficient (“Kurtosis”), and the Box-Ljung test statistic on the first 15 autocorrelations (“BL[15]") for FTSE-100 returns sampled

at frequencies between 1 minute and 1 day over the period 1990-2000. The lower panel reports the serial correlation coefficients in
percentage pointsf, denotes theé:'" order correlation coefficient). Bootstrapped 95% confidence bounds (and critical values for the
Box-Ljung test) are reported in parentheses below. An asterisk indicates significance at 95% confidence level under the null hypothesis
that returns are iid distributed/7'Skewness™ N (0, 6), v TKurtosis-> N (0, 24), vTpi, % N(0,1), and BUK] % XZ.

2?21 kj = N, i has a discrete uniform distribution dn,..., N}, andk has a geometric distribution, i.e.
Pk=m)=p(1

test statistics. By simulating a large numlgof bootstrap samples we can approximate the true distribution of

— p)m’1 form =1,2,.... Based on this re-sampled time series, we then compute the relevant

the test statistics by the empirical distribution of B@alues of the associated statistics. The idea behind sampling
blocks instead of single entries is that, when the block length is sufficiently large, the dependence structure of the
original series will be preserved in the re-sampled series to a certain extent. Evidently, the correspondence between
the distribution of the original and the re-sampled series will be closer the weaker the dependence and the longer
the block length. To choose or equivalently the expected block lengthk] = 1/p, we have experimented

with a number of different values but find, in line with several other studies (Horowitz, Lobato, Nankervis, and
Savin 2002, Romano and Thombs 1996), that the results are rather insensitive to the choidehefresults

reported in Table 1.1 are basedwr- 1/15 (i.e. E'[k] = 15 ) andB = 5, 000.
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The confidence intervals for the correlation coefficients and the critical value the Box-Ljung test statistic are
obtained by the “blocks-of-blocks” bootstrap. Instead of samplirigxak block, as is done in the stationary
bootstrap, we now sample @&nx k block X; ;. ;, = (xh

R

Lal ) wherez! = (z;,...,ip—1) andh — 1

matches the maximum order of correlation coefficient to be computed. Analogous to the procedure described
above, anh x N bootstrap sample is constructeds&s = (X, k4, - -, Xi, k,,n) from which thekt" order
correlation coefficients can be computed as

N * <k * <k
>im <X1,z’ - X1,.) (Xk+1,i - Xk+1,.)
1/2
2 2
N * <k N * 3
[21:1 (Xu - X1,.> >t (XkJrl,i - Xk:+1,.> ]

i =

wherex; = Nt ijzl x; ;. Because the null-hypothesis for the Box-Ljung statistic is uncorrelatedness, we
first pre-whitened the data using an AR®8nd implement the bootstrap procedure on the residuals. As above,
the geometric parameter and the number of bootstrap replications arejset ds'15 and B = 5,000. For

more details on how to approximate the sampling distribution of the correlation coefficients and the Box-Ljung
statistics using the (blocks-of-blocks) bootstrap see for example Davison and Hinkley (1997), Horowitz, Lobato,
Nankervis, and Savin (2002) and Romano and Thombs (1996).

Based on the above bootstrap procedures we construct 95% confidence bounds for the descriptive statistics
under the null that returns are weakly dependent and report them in parentheses in Table 1.1. The statistics that
are significant are printed in bold. For comparison purposes, an asterisk indig#tasgynificance under the al-
ternative null hypothesis that returns are independently and identically distributed. For this case, it is well known
that the square root of the sample size timegdfierder serial correlation, skewness, and kurtosis coefficients of
returns are asymptotically distributed as normal with variance 1, 6, and 24 respectively. The Box-Ljung statistic
on the firstK autocorrelations, BLK], is asymptotically distributed as chi-square withdegrees of freedom.

Turning to the results in Table 1.1, we find that there is substantial excess kurtosis and serial correlation in high
frequency returns. At the minute frequency, most of the serial correlation coefficients up to order 15 are signif-
icant and the kurtosis coefficient indicates the presence of an extremely fat tailed marginal return distribution.
However, aggregation of returns brings the distribution of returns closer to normal and reduces both the order and
magnitude of the serial correlation (see also Figure 1.2). At the daily frequency, the excess kurtosis has come
down from around 3000 to about 2.5, and the serial correlation coefficients of order higher than one are all in-
significantly different from zero. Consistent with the autocovariance bias term above (Figure 1.1), we also see
that the (annualized) return volatility increases with a decrease of the sampling frequency. Interestingly, the 95%
confidence bounds for frequencies lower than 30 minutes (i.e. 1, 5, and 10 minutes) do not include the point
estimate of the annualized return variance based on daily data. This suggests that the autocovariance bias term a
these frequencies is statistically different from zero which, in turn, corroborates our choice of “optimal” sampling
frequency range on statistical grounds.

®We note that the choice of AR-order is relatively ad hoc, and could arguably be lowered with a decrease in sampling frequency.
However, with the amount of data we work with here, it can be expected that the efficiency loss associated with the potentially redundant
AR-terms is minimal. Hence, for simplicity, we keep the AR-order fixed across the different sampling frequencies.
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FIGURE1.2: CORRELOGRAM OF1 MINUTE AND 5 MINUTE FTSE-100 RTURNS
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Notes: Correlogranof 1 minute (left panel) and 5 minute (right panel) FTSE-100 index returns for the period 1990-2000

It is also clear from Table 1.1 that the bootstrapped confidence bounds deviate substantially from their iid-
asymptotic counterparts. As a result, a number of statistics that are significant under the (invalid) iid null hypoth-
esis, turn out to be insignificant based on the bootstrapped confidence bounds which allows for weak dependence
in the return data. For example, while the skewness of intra-daily returns is significant under the iid hypothesis,
none of the skewness coefficients are significant under the alternative null-hypothesis. Also, the maximum or-
der of the significant correlation coefficients is generally lower for the bootstrapped critical values than for the
iid-asymptotic values. For example, at frequencies between 5 and 30 mipgtésfound significant under the
iid-hypothesis but insignificant under the alternative hypothesis. These findings emphasize the inadequacy of the
“iid-" asymptotic distributions for this data and illustrate the value of the bootstrap method.

Turning to the specification of the return process, we notice that the overwhelming significance of the serial
correlation coefficients reported in Table 1.1 and Figure 1.2 suggests that the characteristiesdafy returns
are not consistent with those of a martingale difference sequence. Instead, modelling intra-day returns as an
ARMA10 process is a natural and, as it turns out, successful approach for it is well suited to account for the serial
dependence of returns at various sampling frequencies. From a market microstructure point of view, the AR part
will arguably be able to capture any autocorrelation induced by non-synchronous trading while the MA part will
account for potential negative first order autocorrelation induced by the bid-ask bounce. Further, the decreasing
order and magnitude of serial correlation with the sampling frequency is, as it turns out, a consequence of temporal
aggregation of the return process.

Suppose that returns at the highest sampling frequéticgthe ¢ subscript is momentarily dropped for nota-
tional convenience), can be described as an ARMA(p,q) process:

a(L)Ri; =B (L)€,

OMore generally, one could specify an ARFIMA model for returns, thereby allowing for a hyperbolic decay of serial correlation.

However, market microstructure and efficiency considerations aside, casual inspection of Table 1.1 and Figure 1.2 suggests that an ARMA
process is sufficiently flexible to capture the dynamics of the returns process at high frequency.
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wherea (L) and (L) arelag polynomials of lengthg andq respectively. As before, we also assume that the
return process is weakly stationary which justifies expression 1.4 and the analysis below. Consider the case where
all the reciprocals of the roots of (L) = 0, denoted by, ..., 6,, lie inside the unit circle. The model through

which the returns at an arbitrary sampling (or aggregation) frequency can be represented is derived using the
results of Wei (1981) on temporal aggregatibrin particular, if R, follows an ARMA(p,q) process, the returns
sampled at frequency, denoted by ¢, can be represented by an ARMA(p,r) process:

P P1—¢lLf 1t
1—9fo) ;= J
H( ;L) By, H1—¢9jL i—5"

J=1

(L) &g,

wherer equals the integer part pf+ % andeys; = Zf;& €1,fi—;- Due to the invertibility of the AR polynomial,
the above model can be rewritten in Ni&) form with parameterg; };’0:0 andiyy = 1. Let go£ denote the'"
autocovariance of the temporally aggregated returns at freqyency

0o J Jj+fh
gpi =F [Rfﬂ'Rf,i_h] X Z Z p; Z (o : (1'3)
=0 i=max(0,j— f+1) i=j+1+f(h—1)

It can be shown that the; coefficients decay exponentially fast in termgi@nd, as a result, the autocovariances
disappear under temporal aggregation. To see thig)}et< wd’ for || < 1 andw some positive constant and

notice that:
00 J ' Jj+fh ‘ w2
gofl x Z Zwél Z wd'| < 735“}“1),
7=0 | =0 i=j+f(h—1) (1 - 5)

from which it can be seen that the autocovariances of order higher than two disappear when either the sampling
frequency, f, or the displacement,, increases. While it does not follow from the above that the first order
autocovariance term also disappears, Wei (1981) has shown that the limit model of an ARMA(p,q) process under
temporal aggregation is indeed an ARMA(0,0) or equivalently white noise.

It is important to emphasize that these theoretical properties of the ARMA process appear very much in
accordance with the empirical properties of the return process as reported in Table 1.1. In particular, at high
sampling frequencies the ARMA model can account for the observed serial dependence while at lower sampling
frequencies these dependencies die off as a consequence of temporal aggregation of the return process. In additior
as the ARMA(p,q) model converges to an ARMA(0,0) under temporal aggregation, the model specification for
returns at high frequency does not necessarily conflict with a model for returns at low frequency.

Relating the above aggregation results to the discussion of the previous section, we note that the expression
for the autocovariance function of the ARMA process can be used to check the consistency of the model with
the properties of the data by comparing the temporal aggregation implied decay of the autocovariance bias term
with the empirically observed one. To this end, we estimate various ARMA models using the minute by minute

UTemporal aggregation for ARMA models is discussed in Brewer (1973), Tiao (1972), Wei (1981), Weiss (1984) and the VARFIMA
in Marcellino (1999).
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FIGURE1.3: THE “AUTOCOVARIANCE BIAS FACTOR”
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Notes: Theempirical autocovariance bias factor (solid line, see also Figure 1.1) and the superimposed aggregation implied autocovariance
bias factor (dotted line, see also expressions (1.3) and (1.4)) for sampling frequencies between 1 and 45 minutes.

returns on the FTSE-100 index and find that an ARMA(6,0) model yields satisfactory tésultthough the
residuals are highly heteroskedastic, the OLS parameter estimates remain consistent (Amemiya 1985). Moreover,
the efficiency loss due to the non-normality of the errors is unimportant given the large amount of data. Based on
thesingleset of ARMA(6,0) parameters associated with the 1-minute data, the autocovariances for the estimated
return process at various sampling frequencies catedecedising expressiofil.3). It is noted that:

Ny—1 Ny Ny—1
E|> N RpiRpas| = > (Ny—h)ef. (1.4)
i=1 j=i+1 h=1

Hence, the “aggregation implied” autocovariance estimates can be used to calculate the “aggregation implied”
autocovariance bias term as in expresgibd). In particular, a single set of ARMA(6,0) parameters for the 1-
minute data are used to imply the autocovariance bias factor at sampling frequencies between 1 and 45 minutes.
Figure 1.3 demonstrates that the empirical and theoretically implied curves are remarkably close.

The above results illustrate that the ARMA model is a good description of the return data at different sampling
frequencies. In fact, the decay of the (market microstructure-induced) serial dependencies in high frequency
returns is consistent with the decay of an ARMA process under temporal aggregation. Also, it can be shown,
based on expression 1.4, that the autocovariance bias term decays at an hyperbolic rate under temporal aggregatio
(i.e. Z,]:Zl_l (Ny—h) <,0£ < ]}’—22). Finally, we notice that it is possible to trace out the entire autocovariance bias
factor curve, and hence determine the optimal frequency, using saélglaset of ARMA parameters.

1250meof the higher order AR terms could arguably be replaced by low order MA terms. However, the AR specification has the
advantage that inference is straightforward from a numerical point of view, as opposed to an MA specification. Since the AR and MA
specification are largely equivalent preference is given here to the AR specification.
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In summary, we have shown that the conditional return variance can be estimated consistently by the realized
variance measure, provided that the intra-day returns are serially uncorrelated. When the intra-day returns are
serially correlated, realized variance will either overestimate (with negative correlation) or underestimate (with
positive correlation) the conditional return variance. Correcting for the bias term by adding up the cross products
of intra-day returns, they are known after all, is not desirable as this is equivalent to using the squared daily
return to estimate daily realized variance. Here we suggest that when the available high frequency return data
are serially correlated, one approtris to aggregate the returns down to a frequency at which the correlation
has disappeared, thereby avoiding (potentially) large biases in the realized variance measure. Plotting the sum of
squared intra-day returns or the autocovariance bias factor versus the sampling frequency, as is done in Figure 1.1
proves a very helpful and easily implementable strategy to determine the frequency at which the correlation has
died off. Further analysis suggests that the decay of the autocovariance bias factor is consistent with an ARMA
process under temporal aggregation. This finding provides an alternative, yet closely related, parametric approach
to determining the optimal sampling frequency.

1.3 Modelling Realized Variance

A number of studie¥ have analyzed high frequency data for a variety of financial securities. Regarding the prop-
erties of the realized variance measure, several studies find that (i) the marginal distribution of realized variance
is distinctly non-normal and extremely right skewed, whereas the marginal distribution of logarithmic realized
variance is close to Gaussian, (ii) logarithmic realized variance displays a high degree of (positive) serial corre-
lation which dies out very slowly (iii) logarithmic realized variance does not seem to have a unit root, but there
is clear evidence of fractional integratiSnroughly of order 0.40 and (iv) daily returns standardized by realized
voIatiIitylG, i.e. the square root of realized variance, are close to Gaussian.

Based on the analysis in Sections 1.2.1 and 1.2.2, which indicates that the daily conditional return variance of
the FTSE-100 can be estimated unbiasedly as the sum of squared intra-day returns sampled at a fre2fuency of
minutes, a time series of (logarithmic) realized variance is constructed and is displayed in the left panel of Figure
1.4. Table 1.2 reports some descriptive statistics of the time series of realized variance and returns.

We find that our results are very much in line with the findings described above. In particular, the uncon-
ditional distribution of the realized variance appears significantly skewed and exhibits severe kurtosis, while the
unconditional distribution of logarithmic realized variance is much less skewed and displays significantly reduced

18An alternative approach would be to utilize all of the observations by explicitly modelling the high-frequency market microstructure.
However, as noted by Andersen, Bollerslev, Diebold, and Ebens (2001), that approach is much more complicated and subject to numerous
pitfalls of its own.

Ysee for example Andersen, Bollerslev, Diebold, and Labys (2000b, 2000b), Blair, Poon, and Taylor (2001), Dacorogna, Gencay,
Mdiiller, Olsen, and Pictet (2001), Froot and Perold (1995), Goodhart and O’Hara (1997), Hsieh (1991), Lequeux (1999), Stoll and Whaley
(1990), Zhou (1996).

15See for example Baillie (1996), Baillie, Bollerslev, and Mikkelsen (1996), Breidt, Crato, and de Lima (1998), Comte and Renault
(1998), Henry and Payne (1998), Liu (2000), Lo (1991).

181n a multivariate setting it is found that the distribution of correlations between realized variance is close to normal with positive mean,
and that the autocorrelations of realized correlation decays extremely slow.

14

Oomen, Roel C.A. (2003), Three Essays on the Econometric Analysis of High Frequency Financial Data
European University Institute DOI: 10.2870/23324



TABLE 1.2: DESCRIPTIVESTATISTICS OF REALIZED VARIANCE AND RETURNS,

Mean \olatility Skewness Kurtosis ADF[5]

Realizedvariance 8.5e-H 2.6e-4 21.21 596 —16.2
Log Realized Variance —9.98 0.962 0.558 4.11 —8.83
Daily Returns 4.6e4 0.009 0.063 5.29 —21.8
Standardized Daily Return  0.091 1.091 0.036 2.23 —22.3

Notes: Descriptie statistics based on the FTSE-100 data set for the period 1990-2000. The augmented Dickey Fuller test (“ADF[5]")
includes a constant and 5 lags and has a 5% (1%) critical value of -2.865 (-3.439).

kurtosis (Table 1.2). Furthermore, the correlogram for the realized variance measure decays only very slowly but
the Augmented Dickey Fuller test strongly rejects the null hypothesis of a unit root (Table 1.2 and right panel
of Figure 1.4). This finding indicates that the (logarithmic) realized variance series may exhibit long memory,
a feature that will be discussed below. Finally, daily returns standardized by realized variance are close to nor-
mal (Table 1.2). This indicates that the empirical findings obtained by Andersen, Bollerslev, Diebold, and Labys
(2000a) on exchange rate data can be extended to the FTSE-100 stock market index data.

1.3.1 Fractional Integration & Realized Variance

A time series X, is said to be fractionally integrated of ordeif after applying the difference operator — L)?

it follows a stationary ARMA(p,q) process whepeandq are finite nonnegative integers. This concept has been
developed by Granger (1980), Granger (1981), and Granger and Joyeux (1980). For velbesvoden O and

0.5, the fractionally integrated procéésxhibits “long memory” which has the property that the effect of a shock
to the process is highly persistent but decays over time. This is in contra@t)tprocesses, where a shock has
infinite persistence, or at the other extreft@) processes, where the effect of a shock decays exponentially fast.
The ARFIMA(p,d,q) model can be written as

a(L)(1 — L)X, = B(L)e:, (1.5)

wherea(L) and3(L) are lag polynomials of ordgr andq respectively. Forl < % andd # 0, it can be shown
that the decay of the correlogramhigperbolic i.e.

T(1—d) T(h+d) 21

F(d> P(h +1- d) h%rge (1.6)

op = corr( Xy, Xy—p) =

Regarding the estimation of Geweke and Porter-Hudak (1983, GPH hereafter) propose the use of a log pe-
riodogram regression. In particular, for give{n(t}le, the fractional parametef can be estimated as the

, 2 . .
slope coefficient in a linear regression bf);) = ZT%T Zthl X,eit| | the log periodogram at harmonic

"The process is stationary with long memory for< d < 0.5 but stationary with intermediate memory fe10.5 < d < 0. For
d > 0.5, the process is non-stationary.

15

Oomen, Roel C.A. (2003), Three Essays on the Econometric Analysis of High Frequency Financial Data
European University Institute DOI: 10.2870/23324



FIGURE1.4: LOGARITHMIC REALIZED VOLATILITY
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Notes: Time series (left panel) and correlogram (right panel) of FTSE-100 daily logarithmic realized variance constructed at a sampling
frequency of 25 minutes over the period 1990-2000. The superimposed dotted lines in the right panel represent the correlogram of a
fractional process for values dfequal to 0.30, 0.40, and 0.45.

frequency); = 2% on a constant anth [4sin2 ()\j/2)] forj =1,...,m <« T. The “bandwidth” parame-
term is required to increase at a slower rate than the samplé'sarel in many applications: is set to equal to
the square root of the sample siZe Robinson (1995a, 1995b) derives an alternative estimatat favhich is
shown to be asymptotically more efficient than the GPH estimator, and is given by the vdltlegabiminimizes
the following objective function:

wherec > 0and—1 < d < 1.

Turning to the FTSE-100 realized variance series, it is clear that long memory features are very much present.
The right panel of Figure 1.4 displays the correlogram of the log realized variance series while the right panel
of Figure 1.5 displays the correlogram of thactionally differencedog realized variance series based on an ad
hoc parameter value af = 0.40. The serial correlations of the log realized variance series decay at a hyperbolic
rate and the resemblance between the sample correlogram and the superimposed correlograms of a fractionally
integrated process for various valuesdas remarkable. In sharp contrast, the fractionally differenced series is
virtually uncorrelated. A supplementary diagnostic check for the presence of long memory is based on expression
(1.6) above. In particular, when the realized variance series exhibits long memory, its log autocorrelation function
should yield a linear relationship in terms of log displacementliey, « (2d — 1) In h. Figure 1.6 (left panel)
indicates the required linear relationship betwéeq; andln A for values ofh up to 100. An OLS regression
can be used to determine the slope. Based on the entire saimple2(0) the results suggest a value fdof
around0.37. Ignoring the lasti50 autocorrelationsi{ = 100) raisesd to about0.43. Finally, the GPH and
Robinson estimators, described above, are implemented. The bandwidth paranfetertrolling the range of
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FIGURE1.5: FRACTIONALLY DIFFERENCEDLOGARITHMIC REALIZED VOLATILITY
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Notes: Time series (left panel) and correlogram (right panel) of FTSE{t&¢ttionally differencedaily logarithmic realized variance
constructed at a sampling frequency of 25 minutes over the period 1990-2000. The dotted lines in the right panel are the 95% confidence
bounds calculated as2N ~/2 whereN denotes the number of observations.

periodic frequencies used), is set equal to a range of values béfseand275. The results of this estimation

are summarized in Figure 1.6 (right panel) where the GPH and Robinson estimates are plotted as a function of
For smallm, the two alternative estimates both fall into the non-stationary region while for tar@ovel50)

they are both below.5. Although it is clear from this that the value fdrwill be close t00.5, it is difficult to

judge on the stationarity of the process as the choice f relatively arbitrary. In summary, all of the test results
reported above suggest that the FTSE-100 log realized variance series is fractionally integrated and appear roughly
consistent with Andersen, Bollerslev, Diebold, and Ebens (2001) who find that for their ddtis sebund).40.

1.3.2 Empirical Results

Motivated by the preliminary tests discussed above, the focus of our modelling approach will center around the
ARFIMA specification. We consider the following model:

a(L)(1 - L) In53;, — 7' X] = B(L)ey, (1.7)

where&%at denotes the dayt realized variance measure constructed based on 25 minute intra-day returns,

is a lag polynomial of ordep, 3(L) a lag polynomial of ordeg, ande, is a residual error term. Thiex 1 vector

X allows for the inclusion of exogenous variables and deterministic terms such as a constant and time trend.
Here, we consider the following specification:

k m n
Xy =w+Y (GRj+ | Ryl) + > NI VOL_j+> 6 (IR — IR, ;1) (1.8)
j=1 j=0 =0

18The sample size is 2445 and hence the rangewdt betweerl*-*°and7°7°. This is in line with e.g. Bollerslev, Cai, and Song
(2000) which setn = T°-5° or Dittmann and Granger (2002) which set= 708,
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FIGURE1.6: TWO TESTS FORFRACTIONAL INTEGRATION
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Notes: Two tests for fractional integration. Linearity ofi o5, versusin h (left panel) and the Geweke Porter-Hudak and Robinson
estimate for as a function of the bandwidtt (right panel).

wherel R, andV OL, denote the dayt short term interest rate (1 month UK Interbank rate) and daily trading
volume respectively. The inclusion of lagged returns and lagged absolute returns mirrors the EGARCH specifica-
tion of Nelson (1991) and is, in part, motivated by the well documented Black’s leverage effect or the asymmetric
impact that lagged returns have on the return variance. In particular, Black (1976) argues that one should expect
negative returns to have a larger impact on future variance than positive returns. In the above specification we can
test whether such a leverage effect is present at hofizmntesting whetheg,, is significantly less than zetd

Next, trading volume is includes because it is often argued that it is intimately related to the return variance.
A model which can rationalize such a relationship has been proposed by Clark (1973) where prices follow a sub-
ordinated process with information flow (proxied by trading volume or number of trades) being the subordinator.
A number a papers have addressed the relationship from an empirical point of view (e.g. Karpoff (1987), Gallant,
Rossi, and Tauchen (1992) and more recentl And Geman (2000)) and invariably report positive correlation
between return variance and trading volume. In addition, an influential paper by Lamoureux and Lastrapes (1990)
finds that thepersistencef return variance decreases (or even disappears) when trading volume is accounted for.
Finally, the inclusion of (changes in) the short term interest rate is motivated by Glosten, Jaganathan, and Runkle
(1993) who find that it has a significant positive effect on stock market volatility.

Before moving on to the estimation results, we point out that the above specification does not allow us to study
the causalrelation between return volatility and trading volume. In particular, it could well be that, in addition to
trading volume causing return volatility, return volatility also has a feedback effect onto subsequent trade activity.
Whether such dynamics can be identified at a daily frequency is questionable but are clearly of interest. The

Suppressingubscripts momentarily, definB® = R whenR > 0 and R™ = 0 whenR < 0. Similarly, defineR~ = —R
whenR < 0 andR~ = 0 whenR > 0. Hence,R = R" — R~ and|R| = R* + R™. Itis now straightforward to show that
CR+C|R|=C¢TRT 4+ ¢ R where¢t = ¢+ and(~ = ¢ — ¢. For the leverage effect to be present, it is required¢hat> (7 <
(C—-(T>0&e(C<0.
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theoreticamarket microstructure has studied such relationships extensively. However, the primary focus has been
on the impact of trade duration on the price process and results are mixed (see for example, Admati and Pfeiderer
(1988), Diamond and Verrecchia (1987), Easley and O’Hara (1992), and Glosten and Milgrom (1985)). Engle
(2000) has also focussed on the impact of trade durations on the price process. Using IBM high frequency data,
he finds that low trading activity leads to a reduction in future return volatility (supporting the implications of the
Easley and O’Hara (1992) model). A related study by Renault and Werker (2002) investigatetsahtaneous
causality relation between transaction durations and prices and finds that about two-thirds of return volatility can
be attributed to instantaneous durations - in other words - transaction times cause transaction prices. Under the
assumption that trade durations are inversely proportional to trade volume, the model we have specified in (1.7)
and (1.8) is directly in line with the above mentioned work, although it should be kept in mind that we work with
data at a daily frequency as opposed to transaction level data. The feedback effect of return volatility on trade
durations - or trade volume - is, although of interest, not studied here.

Under the assumptions that (i) the roots$\df.) are simple and lie outside the unit circle, (ii) the residuals are
i.i.d. Gaussian, and (iiij} < % the ARFIMA model, specified by (1.7) and (1.8) above, can be estirffatesihg
the maximum likelihood procedure of Sowell (1992). Alternatively, the model could have been estimated using a
two-step procedure in which the fractional parameter is estimated in the first step (e.g. with the GPH or Robinson
estimator), while the remaining ARMA coefficients are estimated in the second step based on the fractionally
differenced data using ordinary least squares. However, as documented by Smith, Taylor, and Yadav (1997), such
an approach may well lead to inaccurate or biased ARMA coefficient estimates. The Sowell procedure, allowing
for the simultaneous estimation of the model parameters, is therefore preferred.

We first estimate the model without any exogenous variables and then subsequently add returns, volume, and
the short rate. To address the concern that long memory may be induced by infrequent structur&l, veaks
re-estimate the model on various subsamples of the data set. Table 1.3, summarizes the estimatidriaresults
two different samples and= ¢ = 1, k = 4, andm = n = 2. The first sample is the full sample while the second
sample covers the period May 1, 1990 until June 15, 1997. As the point estimates for the fractional parameter
remain within a tight range (with one exception, all estimates are betwednand 0.48) and turn out to be
highly significant irrespective of the sample period or the model specification, we argue that the realized variance
series clearly exhibits a long memory feature that is not caused by structural breaks. Based statibc?,

2we have used the ARFIMA package in PcGive version 10.0. See Doornik and Ooms (1999) and Doornik (2002) for documentation.
21gee for example Diebold and Inoue (2001), Engle and Smith (1999), Granger (1999), and Granger and Hyung (1999). A simple

and representative model that can cause long memory is the stochastic break model, which takes thefoin+ ., whereu; =
Ut—1 + Qe—1Mt, E¢ ~ z‘idN(O,ai), ne ~ iid N'(0,02) andg; equals0 with probability p and 1 with probability 1 — p. Diebold and
Inoue (2001) note that in order to achieve a slowly declining autocorrelation function, whatever the model may be, the key idea is to let

decrease with the sample size so that regardless of the sample size, realizations of the process tend to have just a few breaks.
22Based on the likelihood ratio test and the AIC criterion we find that an ARFIMA(1,d,1) model provides a parsimonious specification.

The choice o, m, andn is guided by the significance of the parametéis(,, A1, andd; are included for completeness.
ZThe validity of the t-statistics crucially relies on whether the residuals are 11D Gaussian. The diagnostic tests reported in Table 1.3

indicate that even though the residuals appear uncorrelated some skewness, kurtosis and heteroskedasticity is present. Fortunately, thes
effects diminish to some extent when lagged returns and trading volume are included and we will therefore work under the assumption
that the t-statistics - in particular for the full model - are reasonably accurate.
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TABLE 1.3: ARFIMA ESTIMATION RESULTS

Full Sample (1990-2000) Sub Sample (1990-1997)
Par ARFIMA + Returns + Wolume + Interest ARFIMA + Returns + \olume + Intergest
d 0.483 0.476 0.484 0.484 0.441 0.391 0.476 0.475
(22.6) (16.6) (24.0) (23.8) (8.74) (6.73) (16.5) (16.2)
o1 0.356 0.337 0.337 0.335 0.437 0.325 0.321 0.318
(5.76) (7.27) (7.94) (7.87) (5.70) (4.69) (6.42) (6.30)
061 —0.602 —0.678 —0.695 —0.695 —0.635 —0.599 —0.680 —0.678
(10.3) (15.2) (18.9) (18.8) (7.75) (6.99) (14.8) (14.5)
(1 - -3.377 —3.863 —3.999 - —2.362 —3.708 —3.958
(5.03) (5.99) (6.18) (2.60) (4.25) (4.51)
(s - —2.652 —3.086 -3.107 - —1.906 —2.834 —2.827
(3.96) (4.79) (4.81) (2.10) (3.25) (3.22)
(3 - —1.439 —1.472 —1.449 - —2.448 —2.312 —2.290
(2.14) (2.28) (2.25) (2.69) (2.65) (2.63)
(4 - —1.206 —1.498 —1.527 - —0.925 —1.393 —1.404
(1.79) (2.32) (2.37) (1.02) (1.61) (1.62)
Zl - 30.36 27.01 27.15 - 37.22 32.73 32.99
(28.0) (25.3) (25.4) (25.4) (22.8) (23.0)
ZQ - 12.85 11.30 11.29 - 16.99 14.89 14.80
(11.7) (10.5) (10.5) (11.5) (10.3) (10.2)
Z3 - 6.468 5.817 5.729 - 6.288 5.812 5.610
(5.91) (5.52) (5.44) (4.27) (4.11) (3.97)
Z4 - 4.541 4.413 4.355 - 3.953 3.926 3.851
(4.19) (4.24) (4.19) (2.70) (2.81) (2.76)
Ao - - 0.338 0.335 - - 0.370 0.365
(14.0) (13.9) (13.1) (12.9)
A1 - - —0.007 —0.007 - - —0.011 —0.010
(0.28) (0.30) (0.39) (0.37)
do - - - —-0.179 - - - —0.198
(2.29) (2.41)
01 - - - 0.031 - - - 0.068
S T 039 | (0.83) |
—LogL 977.3 607.7 504.5 501.6 710.5 414.0 328.8 325.4
AIC/T 0.805 0.509 0.426 0.425 0.795 0.475 0.382 0.381
No. Par 5 13 15 17 5 13 15 17
Skew 0.675 0.371 0.385 0.380 0.721 0.330 0.345 0.345
Kurt 5.680 4.291 4.184 4.144 5.850 3.924 3.785 3.734
PMI5] 3.888 2.822 1.945 2.095 5.391 4.906 4.365 4.516
(0.143) (0.244) (0.378) (0.351) (0.068) (0.086) (0.113) (0.105)
ARCH[5] 4.443 4.143 2.662 2.028 3.402 5.389 4.718 3.406
(0.001) (0.001) (0.021) (0.072) (0.005) (0.000) (0.000) (0.005)

Notes: ARFIMA(1,d,1) estimation results for the full sample (2 May 1990 - 11 January 2000; 2445 observations) and the sub sample
(2 May 1990 - 15 June 1997; 1803 observations). The full model specification is given by expressions (1.7) and (1.8). The table reports
all parameter estimates (exceptwith absolute t-statistics in parenthesis below. The residual test statistics include skewness (“Skew"),
kurtosis (“Kurt”), and the Portmanteau (“PM[5]X) and ARCH ("ARCHI[5]”, F(5,1775) for sub-sample and”(5,2419) for full

sample) statistics including 5 lags. p-values are reported in parenthesis below PM[5] and ARCH[5].
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however, we cannot reject thdt> 0.5 at a95% confidence level, i.e. the realized variance series is potentially
non-stationary. Turning to the exogenous variables, we notice a dramatic increase in log likelihood - accompanied
by a substantial decrease in AIC criterion - upon inclusion of lagged (absolute) returns. In particilas for

the number of parameters increases3liyp a total of13 while the log likelihood increases by alIm@st0! As a

result, the AIC criterion drops fror.80 to 0.50. Further, the sign and significance of th@arameters suggest

that Black’s leverage effect is present at horizons up to 3 or 4 days. This finding provides support for the GJR-
GARCH (Glosten, Jaganathan, and Runkle 1993) and EGARCH (Nelson 1991) specifications which explicitly
account for this asymmetric effect that returns have on future variance. Regarding trading volume, we find that
contemporaneous values further improve the fit of the model. Consistent with Clark’s model, we find that the
sign of \q is positive and highly significant. However, in contrast to the findings of Lamoureux and Lastrapes, it
appears that theersistencef the variance process (as measuredbsemains largely unchanged when trading
volume is conditioned upon. Finally, the estimatedg@suggests that an interest rate cut is accompanied by higher
volatility than an interest rate hike. It must be said, however, that this effect is marginally significant and that the
associated likelihood increase minimal.

1.4 Conclusion

Under certain assumptions on the return process, a humber of recent papers have shown that realized variance i
a consistent and virtually measurement error-free estimator of the conditional return variance. In this paper we
show that realized variance measure constitutbsedestimate of the return variance when (excess) returns

are serially correlated. 10 years of FTSE-100 minute by minute data are used to illustrate that a careful choice
of sampling frequency is crucial in avoiding a substantial bias. The relation between the sampling frequency
and the presence of serial correlation is analyzed in detail and demonstrates that serial correlation in returns
disappears under temporal aggregation at a rate of decay that is consistent with that one of an ARMA process.
An autocovariance function based method is proposed for choosing the optimal sampling frequency, that is, the
highest available sampling frequency for which the autocovariance bias term is negligible. Many alternative
approaches to deal with this issue can be considered though. One route is to use all available data by explicitly
modelling the market microstructure effects. Another is to “correct” for the bias by dividing the biased realized
variance estimate by an appropriate constant (or any sort of function that achieves unbiasedness of the estimator).
A third approach, which we may explore in future research, is to use a Newey-West type covariance estimator in
order to take into account the serial correlation in the data. The advantage here is that it is potentially more efficient
than the aggregation approach outlines in this paper as it makes use of all available data while the non-parametric
nature of the estimator avoids the need to explicitly model the market microstructure.

Regarding the FTSE-100 data set, we find that the realized variance series can be modelled as an ARFIMA
process. Exogenous variables such as lagged returns and contemporaneous trading volume appear to be highl
significant regressors and are able to explain a large portion of the variation in realized variance. Also, statistical
tests suggest that Black’s leverage effect is significant at three or four days. Regarding contemporaneous trading
volume we find that, despite its significance, the persistence of the variance process remains largely unchanged.
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Chapter 2

Latent Variable Estimation for the Affine
Jump Diffusion

Based on joint work with George Jiang

2.1 Introduction

In recent years, there has been a remarkable pace in the development of continuous-time asset return models
as the literature strives to find a satisfactory model for the representation of the data generating process of asset
returns. Recent specifications of continuous-time asset return models have extended from univariate stochastic
volatility component to multivariate stochastic volatility components, from random jumps in asset return only to
random jumps in both asset return and asset return volatility, as well as from constant jump intensity to time-
varying or state dependent jump inten&ityVhile asset prices are inherently observed, and can thus be modelled

as such, this is certainly not the case for a number of other important variables such as the jump term and the
instantaneous mean and variance of the return process. Usually, these components are treateq asthaent

cost of substantially complicating statistical inference. The difficulty arises due to the fact that the latent variables
have to be integrated out of the likelihood. The dimension of such integrals is typically very high and sophisticated
numerical algorithms need to be employed in order to evaluate the likelihood function. An alternative approach is
to construct proxies of the latent variables using observed information. For instance, in the finance literature the
squared asset returns are often used as a proxy for time-varying stochastic volatility. More often than not, these
proxies are not only very noisy but also inconsistent with the latent variables under specific model specification.
Consequently, this can lead to inconsistent parameter estimators and invalid statistical inference as they are, in
essence, based on a misspecified model.

1Seefor example Andersen, Benzoni, and Lund (2002), Bakshi, Cao, and Chen (1997), Bates (1996, 2000), Bollerslev and Zhou
(2002), Duffie, Pan, and Singleton (2000), Chernov, Gallant, Ghysels, and Tauchen (2002), Eraker, Johannes, and Polson (2002), Pan

(2002), Singleton (2001).
2An exception is the ARCH class of model which specifies the conditional return variance as a function of (past) observables. See

Bollerslev, Engle, and Nelson (1994) or Bollerslev, Chou, and Kroner (1992) for a review of this literature.
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Motivated by the observation that many of the relevant continuous time latent variable models are nested in
the affine jump diffusion (AJD) model of Duffie, Pan, and Singleton (2000), in this paper we fully exploit the
analytical tractability of the AJD to propose model-consistent unbiased minimum-variance estimator of the
latent variables More specifically, based on the closed analytic form of the conditional characteristic function
and an uncovered dynamic relation between the latent variables and the cumulants of the observed state variables
we derive an unbiased minimum-variance estimator for the latent variables in terms of the model parameters and
observations of the state variables. An important feature of the proposed estimator, is thaideisconsistent
and can be implemented usihggh frequencydata which, in turnmaylead to substantial efficiency gains. It is
worth emphasizing that our approach can, in principle, be applied to any latent variable model in the general AJD
framework and therefore covers a wide range of models frequently studied in the finance literature.

Further, within the AJD model framework, we outline a GMM estimation appro#iuit is based on the
conditional characteristic function (to derive exact moments) in conjunction with high frequency observations of
the state variables and the proposed measurement of the latent variables. The basic idea it to match conditional
moments or cumulants of both the observed and the unobserved state variable, where the latter is evaluated at its
point estimate. In contrast to simulation based methods, such as simulated method of moments, efficient method
of moments, or markov chain monte carlo, our approach does not involve simulations or discretization error of
the continuous time model.

The remainder of this paper is organized as follows. In Section 2.2, we review the class of AJD models follow-
ing Duffie, Pan, and Singleton (2000), and develop the model-consistent unbiased minimum-variance estimator of
the latent variable based on high frequency observations on the observed state variable. In Section 2.3, we perform
a simulation experiment to study the properties of the proposed latent variable estimator for the stochastic mean
and square root diffusion model. Section 2.4 reviews the literature on the estimation of latent variable models in
finance and outlines an alternative GMM estimation approach that is based on the proposed estimator of the latent
variables. Section 2.5 concludes.

2.2 The Affine Jump-Diffusion Model with Latent Variables

Let X; € R", t > 0, be the n-dimensional vector of state variables. Without loss of generality, we partition
the whole vector ofX; into two sub-vectors, i.eX; = (S}, V/), whereS, € R™, n > m > 0, is the vector

of observedstate variables antl; € R"~ ™ is the vector ofunobserved or latentariables. For instance, in
financial modelsS; can be observed asset prices, interest rates, and exchange rates, &ccaartoe unobserved
instantaneous volatility, instantaneous mean, information flow, etc. Here, we consider a general continuous time
affine jump-diffusion (AJD) model as defined in Duffie, Pan, and Singleton (2000) for the state vafjaklsing

the same notation as in Duffie, Pan, and Singleton (2000), we fix a probability €@a€e P) and an information
filtration (F;) = {F: : t > 0}, and suppose thaX, is a Markov process in some state space R", following

%A closely related study by Bollerslev and Zhou (2002) uses the realized volatility as a proxy for the integrated variance of the return
process and propose a GMM estimation based on conditional returns and variance moments of the process.
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the stochastic differential equation (SDE):
dXe = p(Xy)dt + o(Xy)dWy + dZ, (2.1)

whereW, is an(F;)-standard Brownian motion iR", u(-) : D — R™ ando(:) : D — R™*"™ are respectively

the drift function and diffusion function, and is a pure jump process whose jumps have a fixed probability
distribution7 onR™ and arrive with intensitf A(X;) : t > 0}, for some\(-) : D — [0, c0). The initial value of

the stochastic process, is assumed to follow a trivial distribution. Fof; to be a well-defined Markov process,
regularity conditions on the filtratio(7;) = {F; : t > 0} and restrictions on the state space as well as on the
coefficient functions of the stochastic process, nan®lyu(-),o(-), A(-), J), are required. For technical details,

see e.g. Ethier and Kurtz (1986), Duffie and Kan (1996), Duffie, Pan, and Singleton (2000), and Dai and Singleton
(2000).

The jump-diffusion (JD) process defined in (2.1) consists of three components. Namely, the drjit term
representing the instantaneous time trend of the process, the varianed tgr(v)’ representing the instantaneous
variance of the process when no jump occurs, and the jump Zgroapturing the discontinuous change of the
sampling path with both random arrival of jumps and random jump sizes. Moreover we suppose, as in Duffie, Pan,
and Singleton (2000), that conditional on the pathXef the jump times ofZ; are the jump times of a Poisson
process with time varying intensityA\(X;) : 0 < s < t}, and the size of the jump df; at a jump timer is
independent of X : 0 < s < 7} and follows the probability distributiory .

For convenience and tractability, many financial models impose an “affine” structure on the coefficient func-
tions u(-),o(-)o(-)’, and A(+), i.e. all of these functions are assumed to be affin€orlUsing the notation in
Duffie, Pan, and Singleton (2000), we have

wXy) = Ko+ K1 Xy,
lo(X)o(Xy)')i; = [Holij + [Halij X,
AMXe) = lo+hXy (2.2)

whereK = (Ko, K1) € R x R™" H = (Hy, Hy) € R™" x RV " | = (I5,1;) € R* x R™™. Let

g(c) = Jpn exp{c-z}dJ (z) be the jump transform whenever the integral is well defined, wher&™ the set of
n-tuples of complex numberg(-) determines the jump size distribution. It is obvious that the set of “coefficients”
or parameter§K, H, [, g) completely specifies the AJD process and determines its statistical properties, given the
initial condition Xy. When the jump intensity is set as zero, i) = 0, the process is referred to as an affine
diffusion (AD) process.

2.2.1 Unbiased Estimators of the Latent Variables

Statistical inference of continuous-time models has presented a great challenge to statisticians and econometri-
cians as it requires the knowledge of the dynamic properties or the transition density of the process. However,
the transition density functions of the diffusion and jump-diffusion process are in general not available in a closed
analytic form. For instance, in the simplest univariate pure-diffusion casenize.1, A (-) = 0, the Brownian
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motionwith drift process, the Ornstein-Uhlenbeck process and the square-root diffusion process (also known as
the Feller or CIR process) are three well known processes with explicit transition density functions. For these
processes, both the drift functigii-) and the squared diffusion functier(-) have an affine structure. The func-
tional forms of the transition densities corresponding to specifications with non-affine coefficient structure are not
known explicitly (Wong 1964). In the presence of latent or unobserved variables, as considered in the multivariate
JD model framework, statistical inference presents an even greater challenge. Because of the latent variables in the
conditional information set, any inference procedure must either integrate out the latent state variables from the
model or rely on some proxies of the latent variables. As we shall see in Section 2.4, various estimation methods
have been proposed recently in the literature for dynamic models with latent variables in general and stochastic
volatility asset return models in particular. However, most of these methods are simulation based and involve path
simulation, which may lead to discretization error, and numerically intensive integration of the latent variables.
An alternative estimation approach relies on a proxy of the latent variable. In the finance literature, for instance,
squared daily return is often used as proxy of daily volatility in the estimation of asset return models with stochas-
tic volatility. As we will see later on, such proxies are not only very noisy but are generally inconsistent with the
volatility measure within a specific model framework. As a result the statistical inference becomes invalid as it is
in essence based on a misspecified model.

Below, we develop annbiased minimum-variance estimator of latent variahlgt can be implemented with
high frequency observations of observed state variables. The basic idea is to exploit the fact that under the affine
continuous time model framework, the conditional characteristic function often has closed analytical form. Since
there is an exact one-to-one correspondence between the characteristic function and the distribution function,
the characteristic function contains the same information as the distribution function. Consequently, the dynamic
properties can also be investigated based on the conditional characteristic function. Using the relationships derived
between the conditional cumulants of observed state variables and the latent variables, we derive the estimator.

Duffie, Pan, and Singleton (2000) showed that under the affine structure, the conditional characteristic function
of the jump-diffusion process as defined in (2.1) has a semi-closed form given by:

U(w; Xepr, t,7|Xe) = Blexp{iu' Xy, }Xe] = exp{C(7,u) + D(1,u) X} (2.3)

whereD(-) andC(-) are the solutions of complex-valued Ricatti equations:

DA — KD (ru) + LD (7w HiD (7,u) 4 1s (9 (D (7)) — 1)
acc,g:“) = K{]D(T,u)-i—%D(T,u)/HOD(T,u)-l—lo(g(D(T,u))—L)

with boundary condition®(0, u) = iu andC(0,«) = 0 and. is a vector of ones. With certain specifications of
the coefficient functio K, H, 1, g), explicit solutions ofD(-) andC(-) can be found. In other cases, as noted in
Duffie, Pan, and Singleton (2000), the solution would have to be found numerically.

In this paper, we assume that “high frequency” observations of the state vaSablesavailable at fixed sam-
pling interval$. In particular, the seriesst%g}ff:o for N = 1/¢ is observed over the time perigd¢ + 1] and
t=0,1,...,7— 1. Itis noted that our approach also works for the case with irregular sampling intervals, with the
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only difference being the more cumbersome notation. Specializing expression (2.3), and explicitly distinguishing
between observed and unobserved state variables, we obtain:

@Z)(Ul,UQ;St+7-,‘/;§+7-,t,7'|5t,‘/t) = FE [eXp {iullst+‘r +Z'LL/2‘/;§+7-} ‘Sh‘/t]
= exp {C’ (7,u1,u2) + D1 (7,uy,u2) Sy + D2 (1, u1, us)’ Vt}
whereC (t,u1,u2) = C(1,u), (D1(7,u1,uz), D2 (1,u1,u2)’) = D (7,u) with u = (u},u})". Further, we
note
w (U, St+T7 t7 T|St7 ‘/;f) = F [eXP {iu/St-‘rT} ‘Sh W]
= exp{C(7;u,0) 4+ D1 (7;u,0)" Sy + D2 (7;u,0)" V; } (2.4)
Lemma 2.2.1 Let X; = (5%, V/)’ be the affine jump-diffusion process as defined in (2.1). Given a high frequency

sampling scheme &f; with sampling intervals, the I** cumulant ofAS; 15 = Siirs — Sirk-1s B > 1,
conditional onF; is given by

K'(AS 5| Fr) = (k) +d (k) Sy +db (k) Vi, 1=1,2,... (2.5)
where
k) = ,.glul {C (6,u,0) 4+ C[(k — 1)8, —iD1 (6,u,0) — u, —iD2 (8,1, 0)]} |u=o,
d (k) = ilglul {D1[(k — 1), —iD1 (8, u,0) — u, —iD2 (6, u,0)]} |u=o,
dy (k) = Z_lglul {D2][(k —1)8, —iD1 (8,u,0) — u, —iD2 (6, u,0)]} |uzo -

In particular, we have
dy (k) Vi = E[ASyks | Fi] — ¢! (k) — di (k) S (2.6)

and
d3 (k) V; = Var [ASers | Fi] — ¢ (k) — d3 (k) S; (2.7

Proof See Appendix A.1

Moreover, given the first conditional cumulants oA S, x5, from (2.5) we have explicitly

dy (k) Vi = K'(ASpixs) — (k) — di(k)'S,

dy (k) Vi = K"(ASpips) — (k) —df (k)'S, (2.8)
based on which it is straightforward to have the following corollary:

Corollary 2.2.2 (to Lemma 2.2.1) Given the firstL. conditional cumulants ofAS;, s, from relation (2.5) or
(2.8), the latent variabléd/; is exactly (over-,under-) identified frofni’ (ASt+k5)}lL:1 if rank(da(k)'da(k)) =
(>, <) dim(V;), whered (k) = (di(k),...,dk(k))".
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Proof See Appendix A.1

Itis noted from Lemma 2.2.1 that the latent variables are related to the conditional cumulants of the observed state
variables. In particular, expression (2.6) relates the latent varigitethe conditional mean of the observed state
variableS; 1.5, while expression (2.7) relates the latent varidijleo the conditional variance of the observed state
variableS; ;. Equation (2.8) extends the results in Lemma 2.2.1, i.e. linear combinations of latent variables are
related to the conditional cumulants of certain order of the observed state variables.

Given a set of observations of the state variables, an unbiased estimator of the cumulant can be obtained from
the k-statistic of the same order (see Kenney and Keeping (1951, 1962)). For example, for a given sample size
the first fourk-statics are given by

n n? n?[(n + 1)my — 3(n — 1)m3
1" BE g Tmog™ M= [((nt 1))(n4— 23)((n - 3)) !

ki =m1, ko

wherem, is the sample meam, is the sample variance, ama; is theith sample central moment & 3). In
other words, the unbiased estimator of cumulants can be directly calculated from sampling observations.

The uncovered relationship between the observed and unobserved variables through the conditional cumu-
lants, as detailed in expression (2.5), points to the possibility of constructing an unbiased estimator of the latent
variables from observations of the observed state variables. In particular, as both the theoretical and simulation
results will show, the properties of such unbiased estimators can be improved with the use of high frequency obser-
vations on the observed state variables. However, the results in Corollary 2.2.2 indicate that when the dimension
of V4 is greater thar, the identification of the latent variables becomes more complicated. Obviously, when
rank(da (k) d2(k)) < dim(V;), some of the latent variables can not be identified. For notational convenience,
we only present the case where the dimensions @indV; are both equal ta. Following expressions (2.6) and
(2.7), define thé N x T') x 1 vectorsy; and¢; whoseit” entries are equal to:

9 (i) = [d5 ()] [ASpyis — ' (i) — d (i)' S/]

&) = (B0 [(ASis) = (¢ () +dl () 5)°

— (i)~ d3 (1) Si]

fori =1,..., N xT. Recall thatV denotes the number of intra-period observations whitkenotes the number
of periods.

Lemma 2.2.3 (Unbiased Minimum-Variance Estimator) For a given sequence of the observed state variable,
{SHZ-&}Z%T andd} (k) # 0,Vk > 1, an unbiased estimator of the latent variabfgis given by

Vi = W0, (2.9)

forany (N x T') x 1 weighting vectolV that satisfies'TW = 1 wherevis an(N x T) x 1 vector of ones. When
d} (k) = 0 butd3 (k) # 0,Vk > 1, an unbiased estimator of the latent variabigis given by

Vi =W'¢ (2.10)
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In addition, the following weighting vector minimizes the variance of the estimator

Et_lL

Iy —1
U3

W = (2.11)
whee X, = E [0, F] — E [9¢|F,] E[9;|F] for the estimator in expression (2.9) adt] = E [&&]]F] —
E [&|F) E [&|F) for the estimator in expression (2.10).

Proof See Appendix

For the general case, diagonal element&pfcan be obtained directly from thg;-conditional characteristic
function of AS;.xs. EXxpressions for the off-diagonal elements can be derived using theZpioonditional
characteristic function oS, 15 andAS, ;5 for j # k > 0. Asillustrated in the next section using the stochastic
mean and square-root stochastic volatility model, closed-form expressions for the optimal weight functions can
be derived from various conditional cumulants.

To conclude, we note that there are two versions of asymptotics for the unbiased estimator of the latent
variables. Namely, two different sampling schemes can lead to infinite sample size. One is to increase the
sampling horizor?” while fixing the sampling interval (or V). The other is to increase the sampling frequency
N or reduce the sampling intervalwhile fixing the sampling horizon. The first scheme gives rise to a discrete
sample over infinite time horizon as mostly studied in statistics and econometrics, while the second leads to a
continuous sampling path which is unique for continuous time models. Of course the combination of the above
two sampling scheme will lead to continuous sampling over infinite time horizon. As is clear from the above, the
unbiasedness property of the estimator does not depend on the specific sampling scheme. Unfortunately, this is
not the case for the consistency of the estimator. Preliminary results have been derived (but are not included here)
and suggest that for the pure diffusion process as defined in (2.1)\ith= 0 we have that (i) the estimator
given by expression 2.9 is unbiased and consistent When oo but unbiased and inconsistent wh&n— 0
and (ii) the estimator given by expression 2.10 is both unbiased and consistent under either sampling scheme. In
other words, as the sampling horizéh— oo the estimators of latent variables are not only unbiased but also
consistent. However, as the sampling intetvab 0 (i.e. N — oco) with fixed sampling horizon, the estimators are
unbiased but may be inconsistent. The consistency depends on the particular model specification. For example,
the estimator of the latent conditional mean (variance) in the stochastic mean (volatility) model discussed below,
is inconsistent (consistent) whén— 0. The results further illustrate the advantage of our estimators as it allows
for a flexible sampling scheme. In practice, the continuous sampling of asset returns or the ultra high frequency
return observations are often plagued by the market microstructure related noises, such as the inherent discretenes
of price quotes, time-of-day effect, bid-ask bounce, etc. The above property suggests that this drawback can be
easily avoided by using the discrete sampling with extended sampling period.
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2.3 Performance of the Unbiased Minimum-Variance Latent Variable Estima-
tor

In continuous-time asset price models the observed state variable typically include the (first difference) logarith-
mic asset price, while the latent or unobserved variable can be the stochastic instantaneous mean or variance of the
process. Below we investigate the properties of the unbiased minimum-variance (“UMV”) estimator of the condi-
tional mean for the stochastic mean (SM) model and that of the conditional volatility for the square-root stochastic
volatility (SV) model respectively. We do this by studying the relative performance of the “optimal” latent variable
filter compared to alternative, potentially “sub-optimal” or inconsistent, filters. For the SM model we consider

a simple moving average, the Kalman filter, and the Kalman smoother while for the SV model, we consider the
realized variance measure, the Nelson and Foster (1994) ARCH filter, and the exponentially weighted moving av-
erage ("EWMA) filter. We emphasize that all estimators are implemented using the true model parameter values.
Estimation of these parameters will be discussed below in section 2.4.

2.3.1 The Mean-Reverting Stochastic Mean Model

Consider the following process with stochastic linear mean-reverting drift for the (de-trended) asset price:

dSt = K/(Xt - St)dt + Uths
dX; = —pXidt + 0, dWE, te0,T] (2.12)

wherex # § andW?* andW* are independent. The model exhibits linear mean reversion to a stochastic condi-
tional mean which itself follows a mean-reverting process. Both the price prdeasd its associated stochastic
conditional meanX,, follow an Ornstein-Uhlenbeck (OU) process. It can be shown that:

t+7
Xipr=e "X, + / e PTG AW
t

and

K

08—k
t+7
+ / e T G qWE 4
t

St-‘rT = e "5, + (e_HT — €_BT)Xt

K t+1
i / (e—n(t-‘rT—u) o 6_6(t+7—_u))0'$dmf
- t
ka?

Therefore both S; and X; are normal with unconditional distributions given By ~ N (0, % + Win)) and

X ~ N(0, %). Conditional mean and variance expressions follow directly from the SDE solutions above. From
earlier discussion of the general model, the joint characteristic functio$yof, X, ) conditional onF; can be
written as:

¥ (ur, ug; Setry Xiegr 8, 7S, Xo) = Eexp {iurSpyr + iua X7} S, X
= exp {C’ (T3 u1,u) + D1 (15 u,u2) Sy + D2 (T;ul,u2)/Xt} ,
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whereC (-), D1 (-) and D2 (-) can be solved from the Ricatti equations. For the above SM specification, the
solution is given by:

1 K2 ) . - .
C(riur,uz) = ﬂU%(UQ + Wai)(e 2T 1) 4 @(uz - mﬁ - R)%g(e 26T _ 1)
K K a
D1(t;ur,ug) = duie”""
D2(t5uy,u2) = i(ug —ug r (eP=R)T _ 1))e=F7
—K

Analytic expressions of the conditional cumulants of various orders can be derived for both the observed and
unobserved state variables. In particular, the first order conditional cumula$it,fgris derived as:

) [St+j5’~7:t] =a (]) Sy + C(]) X

e—ir8 _e—iBs
e
estimator of the instantaneous me#nin terms of the model parameters and an unbiased estimator of the first

wherea (j) = e 7% andc(j) = & . Based on the above expression, we can construct an unbiased

order conditional moment of the observed state variable. Define

. St+j6 —a (]) St

Ui (5) = <0 (2.13)
Any weighted sum of), (j) for j = 1,..., N x T', with weights summing to one, will yield an unbiased estimator
of X, i.e.
X, = W',

whereW and¥, are(N x T') x 1 vectors and’W = 1. Following Lemma 2.2.3, the optimal choicedf for an
unbiased minimum-variance estimator of the instantaneous volatility is given by:

-1
DI
1,0

UYL

W= (2.14)

whereY, is the conditional variance-covariance matrix of the veé¢#or;j)];—1,... nx7. Based on the conditional
characteristic function we can derive a closed form expressiokfofn particular, forj > k the off-diagonal
(7, k) and(k, j) elements o&; are given by

. 1
Cov [ft (7). & (k) ’-7:1&] = mcov [St+j67 St+k5‘-7:t}
while the diagonalj, j) elements of; are given by

Var[§ (§) | F] = C(E)QVW [SttjslFt] -

The relevant variance and co-variance expressions are given in Appendix A.2.2. It is noted from there that none
of the state variables enter into the covariance expression and, as a result, the optimal weights are constant.
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Simulation Design. In order to investigate the performance of the above estimator, we perform a simulation
experiment. In particular, based on the SM model in (2.12), we simulate a time series of high frequency observa-
tions on both the observed and unobserved state variable$Si.e¢. 15, X¢+(x—1)s} for k = 1,...,1/6, and
t=1,...,T+TT — 1. The parameter§ 17T, andT can be interpreted as the sampling frequency, sample size,
and sampling horizon respectively. In the remainder of this paper we assume without loss of generality that the
variablesT andT'T are measured in days. Due to the analytic tractability of the OU process, the sample path
can be simulated exact, without discretization error. From this simulated sample, we record the value of the latent
variable at the beginning of each period, i{X; thTl and use the high frequency realizations of the observed

state variable to construct the following four filters:

1. UMV FILTER. Based on the results in Lemma 2.2.3, we compute the SM model-consistent estimator with
optimal weights using high frequency observations of the state variable @aenling horizorof length
. T/§ .
T,i.e.{Sis(k-1)s},_, In particular,
Xim=w'y, (2.15)

where thej*" element of theV x T' vectord, and the optimal weighting matri¥’, are given by expressions
(2.13) and (2.14) respectively.

2. MoVING AVERAGE. At a sampling horizon of” days, we compute the average of the observed state

variable
T/6—1

Xgm = T kz_o Stiks (2.16)

3. KALMAN FILTER. As is shown in Appendix A.2.1, we can reformulate the SM model in (2.12) into linear
state space form after which the Kalman filter (see for example Harvey (1989, 1993), Koopman and Harvey
(2003)) can be applied to filter out the latent state variable. Here, we denote the Kalman filter estimates by
XK,

4. KALMAN SMOOTHER. The linear state space form can also be exploited to obtain Kalman smoother
estimates of the latent state variable. Here, we denote the Kalman smoother estingfés by

Notice that in order to construct an estimate of the latent variable, the UMV and Moving Average filter use
contemporaneous and future information, the Kalman filter uses past information, and the Kalman smoother uses
past, present, and future information.

Regarding the parameter choice, for the benchmark case (“Par I”, see Table 2.1)we @ixx and3 = 0.05
and adjust ando, so as to achieve an unconditional volatility of the latent instantaneous mean of 10% annually
and an unconditional volatility of the observed variable of 25% annually. Because the optimal weights, and
possibly the performance of the various filters, may depend on the specific choice of model parameters we consider
two alternative sets of parameters. The first set (“Par II") increases the mean reversion of the observed process to
its latent conditional mean while leaving the speed of mean reversion of the latent process itself unchanged. The
second set (“Par lll") increases the persistence of the latent process. Both parameter configurations are expectec
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to facilitate inference relative to the benchmark case. To investigate the impact of sampling frequency and sample

60x8? 60x8’ 60X87 608
1 day data based on a trading day of 8 hours. W&gét= 2520, corresponding to a high frequency sample path

size we fixT' = 1 and varys = { 5 30 120 480 } corresponding t& minutes,30 minutes, 2 hours, and

with a length of 10 years.

The performance of all four filters is measured by regreésing measurement error, i.6; — Xfm, X —
Xre, Xy — Xff, and X; — X, on a constant and the actual realization of the latent variablefor t =
1,...,TT. The filter is unbiased when the intercept and slope coefficients are both insignificantly different from
zero. The efficiency of the estimators is measured by the MSE statistic whilg%theeasures whether any
systematic component remains in the measurement error that can be explained by the realizations of the latent
variable. ldeally, we would want both the MSE aRd statistics to be as close to zero as possible. In anticipation
of the simulation results, we use the “AR(1) plus noise model” to provide some intuition for the behavior of the
slope coefficient in the regression suggested above. In particular, let the latent pfpbesspecified as:

t
Xi=pXi1+e=Xo+ Y ple
i=0

wheres ~ iid N(0,02). The process is stationary whés| < 1 in which case it has meah and variance
o2/ (1 — p?). Further suppose that tiidservecprocess is equal to:

Sy =Xi +mn

wheren ~ iid N(0, o—%). Notice that the dynamic specification of the latent state variabjeorresponds to the
(discretized) process in expression 2.12. However, the observed process is different (and simpler) but will still
serve its illustrative purpose here. Next, considea&e two-sided moving average estimdiarthe latent state:

where
/\w_1+§/\i+§)\i_{l—w>\ ?f0<>\<1
| P 1+ Np+ Np ifA=1
The Kalman filter (smoother) is closely related to the above estimator wher 0 and Ny = 0 (Np > 0 and
Nr > 0). Also notice that the moving average estimator is unbiased Whers- Np = 0. We are now interested
in the slope coefficient of the regression discussed above, i.e. the measurement error on the actual realization of
the latent variable:

X;— X =+ BX; + &
It can be shown that will tend to

Aw — 1 2 — (\)NF — (AP
B Aw (1 - )‘p)

“We point out that alternative regression formulations could have been considered. For example, we could have ran a regfession of

>0

on a constant and but this is likely to deliver a biased slope coefficient due to measurement error. The regreskion afconstant and
X circumvents this problem but has the drawback thatRRés difficult to interpret.
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TABLE 2.1: SMULATION PARAMETERS FOR“STOCHASTIC MEAN MODEL II”

K I5] o Oz
Par | 0.50 0.05 14.6 1.99
Par Il 2.50 0.05 32.3 1.99
Par Il 0.50 0.01 14.5 0.89

Notes: All volatility coefficients (i.e.c ando) are scaled up by, 000 in the table. The parameters are determined by fixiraqd 3,
while adjustings ando,. so as to maintai’[X] = (10%)? andV[S] = (25%)? annually. . andp are set equal to zero in which case
VIX] = (268) o2 andV[S] = (2k)"'o? + (2B8(8 + k)) ' ko2

when the sample siz&,, tends to infinity. From this it is clear that wheéYy: > 0 and / orNp > 0 the filter is
“over-smoothing” and the slope coefficient in the above regression will be (i) pdsitive: (i) increasing in with
the order (degree of smoothing) of the moving average filter. Fhetatistic will then indicate how strong this
correlation between the measurement error and the latent variable is.

To reduce variation in the simulation results, Table 2.2 reportateeageslope coefficient (plus associated
average absolute t-statistic&?, and RM S E obtained from 50 independent simulation runs. It turns out that for
some filters, sampling frequencies, and / or parameter configurations, the measurement error can be heteroskedas
tic and serially correlated. Table 2.2 therefore reports heteroskedastic and autocorrelation (HAC) consistent t-
statistics (Newey and West 1987) computed using 15 lags. Although the choice of lag length is relatively ad hoc,
and no data-driven lag selection procedure (Newey and West 1994) is implemented, inspection of the measure-
ment error time series properties indicates that the order of serial correlation does not extent beyond 15 for the
simulations we consider.

Simulation Results. The results reported in Table 2.2 illustrate that irrespective of the sampling frequency

or parameter configuration, the SM model-consistent UMV filter yields unbiased estimates of the conditional
mean process. Based on the heteroskedastic and autocorrelation consistent t-statistics, all intercept coefficients
are insignificantly different from zero (not reported) and all slope coefficients are insignificantly different from
one. At first sight, this also appears to hold true for the naive Moving Average filter. However, when the sampling
horizon extends beyond 16 days, a substantial bias can be detected. Similarly, both the Kalman filter and smoother
constitute biased estimators of the conditional mean. Further, we find that an increase in the speed of mean
reversion of the observed process to its latent conditional mean (Par II) leads to a better performance of all filters
as measured by the MSE. An increase in the persistence of the latent process itself (Par Ill) has little impact on
the performance of the UMV and Moving Average filter while the performance of the Kalman filter and smoother
do improve substantially. For the UMV filter and Par I, we find that a sampling frequency of about 2 hours is
optimal in the sense that at this frequency the MSE minimized. For the other parameter configurations (Par | and
), the performance of the filter is best at the lowest sampling frequency considered. It could well be that by

SFor example, whets = 1, N = 1, Np = 0, thenj = %(1 — p). Thus, with a autoregressive coefficientiog, the slope coefficient
will be 0.10.
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FIGURE2.1: UMV FILTER FOR ALTERNATIVE “FREQUENCY - HORIZON" SAMPLING SCHEMES
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Notes: Thetop left panel plots a time series of UMV estimates of the conditional mean in the SM model (crosses) together with the actual
latent state variable (solid line) based on a 5 minute sampling frequency over a 1 day horizon. The bottom left panel plots the measurement
error against its first lagged value. The right panel plots analogous results for a 1 day sampling frequency and a 96 day horizon. The SM
parameters are set equal to Par Il (see Table 2.1).

further decreasing the sampling frequency, the performance of the filter can be improved. Consistent with the
theory, we find that the Kalman filter and smoother achieve the lowest overall MSE among all filters. However,
the slope coefficients indicate that a substantial bias is present which is most severe for the Kalman filter. Also, we
find that the performance of the Kalman filter varies with the sampling frequency in a non-linear fashion while an
increase in the sampling frequency always leads to an improvement of the performance of the Kalman smoother.
In particular, for Par II, the Kalman filter achieves the lowest MSE at a sampling frequency of 2 hours (same for
UMV filter) as opposed to 5 minutes for the Kalman smoother. For Par | and lll, the Kalman filter performs best
at the lowest sampling frequency considered while this is exactly the opposite for the Kalman smoother. Finally, it
should be noted that the lower MSE statistics for the Kalman filter and smoother are - in part - due to the fact that
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FIGURE2.2: OPTIMAL UMYV FILTER WEIGHTS FOR THESM MODEL
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Notes: OptimalUMYV filter weights for a given sampling horizon and frequency. Left top: 1 day at 5 minutes. Right top: 6 days at 30
minutes. Left bottom: 24 days at 2 hours. Right bottom: 96 days at 1 day. The SM parameters are set equal to Par | (see Table 2.1).

these filters use more data. In particular, the UMV and Moving Average filter only use one day’s worth of data

while the Kalman smoother uses the entire data set, from start to finish. Hence, the results in the table are slightly

misleading and one should compare the performance of the Kalman smoother (filter) at say a one day frequency

to the UMV or Moving Average filter performance at the one day frequency and a 96 day horizon. It is clear from

Figure 2.2 that for this case, the horizon is sufficiently long for the UMV filter to achieve its optimal performance.
As mentioned above, an alternative to varying the samgheguencyis to vary the samplindgporizon For

example, a sampling scheme whéte= 1 day andd = 30 minutes generates the same number of observations

as a sampling scheme whefe= 16 days andd = 1 day. Nevertheless, the performance of the UMV filter

is not expected to be invariant to the specific sampling scheme and we will therefore briefly study its impact

based on some simulations. In particular, for three out of four sampling schemes discussed ab®ve; ile.

day ands = 5, 30,120 minutes, we consider the following three alternative sampling schemes, el day
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andT = 96, 16, 4 days respectively, which generate the same number of observatiohavedrarequency and

over a longer horizonBased on the sampled da{ESH(k_l)(s}Zflday, we again compute the UMV filter and the

naive Moving Average filter and compare it to the actual realization of the latent variable. To conserve space,
we only report the results for Par | in Table 2.2 (between the dotted lines). The results for Par Il and Il are
qualitatively the same. Based on the MSE statistic it is clear that, for a fixed sampling frequency, an increase in
the sampling horizon leads to better performance of the UMV filter. In particular, at a 1 days sampling frequency,
an increase in the horizon from 1 day to 96 days leads to a reduction in MSE of about 33%. The more relevant
comparison, however, is the one described above. So when sampling 4, 16, and 96 data points, the gain in MSE
associated with a “low-frequency-long-horizon” sampling schenrelative to a “high-frequency-short-horizon”
sampling scheme- is about 45%, 64%, and 66% respectively. Hence, it is clear that for the estimation of the
latent instantaneous mean, low frequency data over long horizons is preferred to high frequency data over short
horizons. This point is also illustrated in Figure 2.1. Similar results hold for the moving average filter except that
they are less pronounced and that at the long horizon a substantial bias kicks in.

2.3.2 The Square-Root Stochastic Volatility Model

Consider the following asset return process with stochastic conditional volatility for the logarithmic asset price
St = lnPt

dS; = pdt+ /VidW;
AV, = Bla—V,)dt+o\/VdWy
AWdW? = pdt,  t€0,T) (2.17)

This continuous-time SV model has been widely used in the finance literature for asset return dynamics, in part
because it has an associated closed-form expression for European option prices (Heston 1993). Following Single-
ton (2001), the drift term of the asset return process is specified as a constant. It is noted that when the drift term
of the asset return process is specified as a linear function of the state v&fidinéh the European option prices

and the conditional characteristic function of the asset return will still yield closed forms. The specification of the
instantaneous volatility process in the above model guarantees the non-negativeness of the volatility (as long as
26a > o as shown by Cox, Ingersoll, and Ross (1985)). The solution of the square-root process in (2.17) can be
written as:

t+1
Vier=a+e (V,—a)+0 / e ATV, dWY
t

whichis of an AR(1) form, wherer ftt” e Alt+m=u) /V, dW? is a martingale. The variance process can thus be
viewed as an autoregressive process of order one with heteroskedasticity in the innovation term. The parameter
[ measures the inter-temporal persistence of the volatility process, while the correlation béiieanddW
measures the level of asymmetry of the conditional volatility. In particular, when0 we have the so-called
“leverage effect”, see Black (1976).
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Again, from earlier discussion of the general model, the joint characteristic functio$y.of, V;,) condi-
tional onF; can be written as:

/I;Z) (ulv u2; St+7', ‘/2+Ta ta T|St’ V;f) — E [exp {iullst+‘l' + Zu/2‘/1H>T} ‘Sta ‘/t]
= exp {C’ (T3 u1,u2) + D1 (151, u2)" St + D2 (151, uz)/Vt} ,

whereC (-),D1(-) and D2 (-) can be solved from the Ricatti equations. For the above SV specification, the
solution is given by:

—ht
C(T;ula'UJZ) = (ZUlM—i‘Zﬁauz)T—i— Oéif |:(b— h)T— 21n <1—g€>:|
o 1— g

D1 (7;uy,u9) = idug
b—h1l—e

D2 (; = 1
(T;u1,u2) iug + PO —

with i (u1, ug) = [b? + 02 (uf + 2pourug + y*ud + 2ifus)] V2 b= B—poiug—o2ugi, g (u1,us) = (b—h) /(b+ h).
Based on the characteristic function above, analytic expressions for the conditional cumulants of any order can be
derived for both the observed and the latent variables. In particular, the second order conditional return cumulant
for the observed variable is derived as:

K[(ASi1j6)* |F] = a(j) +c(j) Vi

where 5 55
) 1—e ) e’ —1
CL(]) —Oé(S“‘OéW and C(]) = W
Based on the above expression, we can construct an unbiased estimator of the instantaneous returvi variance

terms of the model parameters and an unbiased estimator of the second order conditional return cumulant. Define

(A5t+j6)2 - (M5)2 —a(j)
c(4)

Any weighted sum of; (j) for j = 1,..., N x T, with weights summing to one, will yield an unbiased estimator

&(j) = (2.18)

of V;, i.e.:

V, = W'g
whereW and¢; are(N x T) x 1 vector and’W = 1. Following Lemma 2.2.3, the optimal choice ¢f for an
unbiased minimum-variance (“UMV") estimator of the instantaneous volatility is given by:

¥l

W= —"—.
UYL

(2.19)

Basedon the conditional characteristic function we can derive a closed form expressiBp flor particular, for
j > kthe(j, k) and(k, j) elements of; are given by

Cov [ (7). & (k) | Fi] = c(j)lc(k)COU [(AStJrjﬁ)Q L (AS16)* | Fe
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while the diagonal elements &f; are given as
. 1
Var[& (7)1 5] = anr (ASy158)° | Fe

The relevant expressions for the conditional variance and co-variance are given in Appendix A.3
An interesting case arises whgn— 0. From expression (2.18) it directly follows that:

)2 2
éli% ft (]) _ (ASt+J6)5 (/MS)

whichbasically says that the sample variance and any weighted sum (with weights summing to 1) will yield an un-

biased estimator df;. Wheng = 0 or the drift of the volatility process becomes zero, the return variance process
ASpi (i) = (16)?
[( t+(y+1(;6) () |ft] —

. 2 (18)2
E[E[<AS”(J“§5) o) | Fitjsl|Fe] = E[Viyjs|Fe] = V4. Itis quite intuitive from this result that, the weighted
sample variance of asset returns over time peltigdd+ 7| constitutes an unbiased estimator of the instantaneous

is a martingale and’[V;|F;] = V; for 7 > 0. By iterative expectation, we havé

varianceV;. Furthermore, wheha — 0, we have

. (ASjs)? .
tim 1y (2025 5 =0

That is, when the sampling frequency goes to infinity or sampling interval goes to zero, the mean return term
becomes negligible. When all weights are set equal, the estimator of the instantaneous variance coincides with
the realized variance measure that is commonly used in financial econometrics, namely the sum of squared intra-
period returns. In other words, when= 0 andj — 0, i.e. volatility is a first difference martingale and the asset
returns are sampled almost continuously, our estimator is equivalent to the model-free realized volatility measure
(see expression (2.21) below) except that our estimator provides optimal weights to the sum of squared returns.
To conclude, we include a brief illustration of the behavior of the weighting vector for the SV model. From
the moment expressions in Appendix A.3, it can be seen that, unlike for the SM model, the shape of the optimal
weighting vector depends on both the model parameters and the instantaneous value of the latent variable. Hence
for given parameters and value of the latent variable we can trace out the shape of the optimal weights. Figure
2.3 visualizes this dependence of the optimal weights on the level of the persistence parameter. In particular, for
B = 0.1 andg = 0.8 we plot the weights that multiply the squared returns in the UMV estimatoi}i@.) /c(j)
for j = 1,...,1/5. Notice that these re-scaled weights measure the structural difference between our proposed
estimator and the realized variance estimator. The remaining SV parameters are setggual tga = 0.025,
o, = 0.0075, andp = —0.25 and the sampling frequency is fixedldt minutes based o® hours of trading per
day (i.e.32 intra-day observations). The downward sloping weights indicate that future observations on the state
variable become less informative with an increase in the displacement (i.e. j). However, when the persistence
increases, the slope of the weighting scheme decreases. In the limit,GvherD, the weighting function is
flat and future observations are equally informative. Also, for the range of chosen parameter values, the weights
deviate substantially from their naive realized variance counterparts (i.e. constant at 1). The performance of the
proposed estimator can therefore be expected to be quite different from that of the realized variance measure.
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FIGURE2.3: OPTIMAL UMYV FILTER WEIGHTS FOR THESV MODEL
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Notes: There-scaled optimal weight3y (j)/c(j) for j = 1,...,1/4, that multiply squared return$ASt+j5)2, for 8 = 0.1 (high
persistence, left panel) antl = 0.8 (low persistence, right panel) and a sampling frequency of 15 minutes. The remaining SV model
parameters are set as= 0, \/a = 0.025, o, = 0.0075, p = —0.25 and the instantaneous variance is set equal to its unconditional mean
in both cases, i.eV; = a.

Simulation Design. In order to investigate the performance of the above estimator, we perform a simulation
experiment. The notation and much of the simulation design is similar to that of the SM model discussed above.
Based on the SV model in (2.17), we simufaéetime series of high frequency observations on both the observed
and unobserved state variables, {8, (,—1ys, Vi (x—1)s} fork =1,...,1/6,andt = 1,...,T+TT — 1. From

this simulated sample, we record the value of the latent variable at the beginning of each per{@@i}fiﬁ, and

use the high frequency realizations of the observed state variable to construct the following four estimators.

1. UMV FILTER. Based on the results in Lemma 2.2.3, we compute the SV model-consistent estimator with
optimal weight$ using high frequency observations of the state variable osangling horizorof length
. T/§ .
T,i.e.{Sy+(k-1)s},_, In particular,
V=W (2.20)

where thej*" element of theV x T vector¢, and the optimal weighting matri¥’, are given by expressions
(2.18) and (2.19) respectively.

2. REALIZED VARIANCE. At a sampling horizon of 1 day (i.€[' = 1), we compute the realized variance

®As opposed to the SM model, the exact sampling path is unavailable for the SV model. To reduce simulation error to a minimum, we
use an Euler scheme with 10 discretization steps per minute. Starting v&juemsd 17, are random draws from their respective marginal

distribution.
’Because the optimal weights are a function of the latent variable to be estimated, a circularity occurs. For a discussion on how to

construct the optimal weights we refer to Section 2.4 below.
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measuregdenoted by as the sum of squared intra-daily returns, i.e.

1/8
VY= (ASs)? (2.21)
k=1
Notice thaﬂ?;”’ corresponds tdffﬁ” wheny = 0, the variance process has infinite persistemce:(0), the
sampling horizon coincided (= 1), and the weighting vector is flati((j) = 9).

. ARCH FRLTER. Nelson and Foster (1994) show that for various diffusion processes, the difference between
the true conditional variance and the variance estimate producednigspecifiecdARCH model vanishes
in the continuous time limit. Based on the asymptotic distribution of the measurement error, Nelson and
Foster (1994) derive the asymptotically “optimal” ARCH filter which, for the square-root SV model in
(2.17), takes the following form:

Yrs =Yt +0 [6_@ (Ba—0?/2) — 5} +Vooe V2 | pRy s 2 4 (R?Jrée_gt - 1) (1—p?) /2}
wherey, = InV; andR;, s = [Si15 — Si] 6—1/2. For our purpose, we define the Nelson-Foster filter as
V" = exp (i) . (2.22)

It is noted that the filter is closely related to the EGARCH specification proposed by Nelson (1991) in that
it is specified in terms of logarithmic variance, includes both returns as well as squared returns, and has a
first order autoregressive structure. A noticeable difference with typical ARCH specifications, however, is
that the period-¢ (logarithmic) variance is a function of peried returns instead of lagged returns and that
lagged variance impacts in a highly non-linear fashion.

. EWMA FILTER. The exponentially weighted moving average (EWMA) filter is given by
Ve = AV 4 (1— N Ry (2.23)

whereR,.; = [Si+s — S| 6~1/2 and0 < X\ < 1. The parametek controls the persistence and is typically
chosen close to one. The EWMA filter is widely used in practice; see for example Hull (2003) or the
RiskMetrics Technical Document (Morgan Guaranty Trust Company 1996).

Itis emphasized that while the estimator developed in this paper is aimed at estimatimgjdaheaneousariance,

the realized variance measure is closer related to the integrated variance of the return process, namely:

t 1 N
IVt = AT~ — _
Vit /t—lV ! Nkzlthr(k .

Therelation between this notion of integrated volatility and instantaneous volatility defined in the continuous time

literature is clear ad (IVSt) = V,dt for any constant < t. As pointed out in Andersen, Bollerslev, Diebold,

and Labys (2001, 2003), when the returns are sampled at sufficiently high frequency, the ex post realized variance

measure, namely the sum of intra day squared re@k/fl (ASHM)Q, approximates the integrated, and not the
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instantaneousyolatility arbitrarily well under certain conditions on the underlying process. Therefore, unlike
X?;S”, we do not expecf/t’“” to yield an unbiased estimate Bf although the difference between the instantaneous
variance and the (scaled) integrated variance will diminish when the persistence of the variance process increases
The Nelson-Foster ARCH filter and the EWMA filfeare directly comparable to the instantaneous variance and

are therefore also included in this study.

The SV model parameters are setias= 0,1/a = 0.025,0, = 0.0075,p = —0.25 corresponding to an
annualized return volatility of close #)%. Because the optimal weights, and possibly the performance of the
various filters, may depend on the specific choice of model parameters we distinguish among three cases where
the persistence parameter of the variance process is varied =.1 (high persistence)j = 0.4 (intermediate
persistence), and = 0.8 (low persistence). To investigate the impact of sampling frequency and sample size we

fix T = 1 and vary§ = {601><8’ g Foog 6328}, corresponding td, 5, 15, and30 minute data based on a
trading day of 8 hours. We s&tl" = 2520, corresponding to a high frequency sample path with a length of 10
years.

As for the SM model, we assess the relative performance of the four competing filters by regressing the
measurement error, i.8/5 — V;, V¥ — Vi, V") — V4, andV;™@ — V; on a constant and the actual realizations
of the latent variableV;, fort = 1,...,TT. The filter is unbiased when the intercept and slope coefficients are
both insignificantly different from zero. The efficiency of the filter can be gauged bittend RM SE (see the
discussion on page 32 above for more details).

To reduce variation in the simulation results, Table 2.3 reportaveeageslope coefficient (plus associated
average absolute t-statisticd}?, and RM SE obtained from 50 independent simulation runs. In order to im-
plement the EWMA filter, the persistence paramétahould be set to a “reasonable” value. Since the EWMA
is effectively an integrated GARCH(1,1) model, one approach is to use the simulated return data to astimate
Unfortunately, it turns out that this only yields reasonable results when the persistence of the variance process is
relatively high (i.e. 3 < 0.25). For the simulations wittt = 0.4 and3 = 0.8 we find that the EWMA per-
sistence parameter jumps to the boundary (he= 1) which can be explained as follows. In the extreme case
when persistence is infinite, and the conditional variance constastipuld equal one (with appropriate initial
conditions onffoma) as this implies constant EWMA variance. It is this tendency ¢d converge to one when
the persistence of the variance process diminishes that explains this finding. Hence, an alternative approach is
implemented to determink, namely in each simulation run we seequal to the value that maximizes tRé of
the regression o‘ﬁm“ onV;. For3 = 0.1, this approach generates virtually indistinguishable results as compared
to the IGARCH estimation approach. F8r= 0.4 and 0.8, maximizing theR? yields much better results. It
should be stressed that, especially when persistence is low, the EWMA severely misspecifies the volatility dynam-
ics and the IGARCH restriction is clearly not appropriate. Finally - depending on the filter, sampling frequency,
and parameters - the measurement error can be heteroskedastic and serially correlated. Table 2.3 therefore repor
heteroskedastic and autocorrelation (HAC) consistent t-statistics (Newey and West 1987) computed using 15 lags.
Although the choice of lag length is relatively ad hoc, and no data-driven lag selection procedure (Newey and

8The EWMA filter is effectively the integrated GARCH model of Bollerslev and Engle (1986). Hence, its persistence pasacaeter
be estimated by specifying a GARCH(1,1) process for returns.
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West 1994) is implemented, inspection of the measurement error time series properties indicates that the order of
serial correlation does not extent beyond 15 for the simulations we consider.

Simulation Results. The second column of Table 2.3 ("UMV Filter”) illustrates that irrespective of the sam-
pling frequency or mean reversion parameter, the SV model-consistent estimator of the instantaneous variance
is unbiased. Based on the heteroskedastic and autocorrelation consistent t-statistics, both the intercept (not re-
ported) and slope coefficients are insignificantly different from zero. As expected, the coefficient of determination
is close to zero indicating that there is no systematic component in the measurement error that can be explained
by realizations of the latent variable. From the MSE statistic it is evident that (i) the efficiency of the estimator
increases with an increase in the sampling frequency and (i) the latent variance component is best identified when
the process is persistent.

Turning to the alternative filters, we find that each and every one constitutes a biased estimator of the in-
stantaneous variance. As expected, this bias is most pronounced when mean reversion is high and persistenc
low. Regarding the realized variance measure, we have noted that when persistence is low, the “optimal” weights
deviate quite substantially from the implicit realized variance weights (Figure 2.3). The reported difference in
performance can therefore be expected, even more so because the realized variance measure is known to estima
the integrated and not the instantaneous return variance. This argument is, however, not valid for the ARCH
and EWMA filters. Nevertheless, the slope coefficients reported in the fourth and the fifth column of Table 2.3
are significantly different from zero irrespective of the model parameters or sampling frequency suggesting that
also these filters deliver biased estimates. Moreover,Rheoefficients indicate that a substantial degree of
structure remains in the measurement error which, as for the SM model, could suggest that these filters are “over-
smoothing”. To investigate this a little further, Figure 2.5 plots the measurement error of the Kalman filter for
the SM model, the Nelson-Foster ARCH filter for the SV model and the UMV filter for both the SM and the
SV model, against the actual realizations of the latent variable (stochastic mean and volatility). It is clear that
the measurement error of the UMV filter has no structure left. This is not the case for either the Kalman filter
or the ARCH filter. Both these filters appear “over-smooth”. In particular, a realization of the latent variable
below (above) the unconditional mean of the process is likely to induce a negative (positive) measurement error
indicating that the estimate is too high (low) relative to the true value. Although in a different context, this finding
is in line with the discussion on page 32 above. Another interesting pattern which arises is that the MSE for the
UMV filter is often higher than for the realized variance measure and the EWMA filter, and in all cases higher
than the MSE of the ARCH filter. We argue that this is a consequence of the weighting scheme of the UMV filter.
The UMV weights are aimed at minimizing the variance of the estimatder the restriction that the estimator is
unbiased The flat weights for the realized variance measure, for instance, may lead to a lower RMSE but render
the estimator biased. Regarding the ARCH filter, we find that it achieves the lowest MSE among all competing
filters. This finding is in line with the work by Nelson and Foster (1994) who show it is asymptotically optimal.
The ranking of the remaining filters is less obvious and varies with the model parameters and sampling frequency.

As mentioned above, an alternative to varying the samgthemguencyis to vary the samplindgnorizon For
example, a sampling scheme whéte= 1 day andy = 5 minutes generates the same number of observations as
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FIGURE2.4: UMV FILTER FORALTERNATIVE “FREQUENCY - HORIZON” SAMPLING SCHEMES
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Notes: Thetop left panel plots a time series of UMV filter estimates (crosses) together with the actual latent state variable (solid line)
based on a 1 minute sampling frequency and a 1 day horizon. The bottom left panel plots the measurement error against its first lagged
value. The right panel plots analogous results for a 30 minute sampling frequency over a 30 day horizon. The SV parameters are set as
u=0,va=0.02508=04,0c, =0.0075, p = —0.25.

a sampling scheme whefé = 6 days andd = 30 minutes. Nevertheless, the performance of the UMV filter is

not expected to be invariant to the specific sampling scheme and we will therefore briefly study its impact based
on some simulations. In particular, for three out of four sampling schemes discussed befafe =.d. day

andé = 1,5,15 minutes, we consider the following three alternative sampling schemesj ke.30 minutes

andT = 2,6, 30 days, which generate the same number of observations at a lower frequency and over a longer
T/30Min
k=1

and compare it to the actual realization of the latent variable. To conserve space, we only report the results for

horizon. Based on the sampled da{[§t+(,€,1)5} , We again compute the SV model-consistent estimator

Par | in Table 2.3 (between the dotted lines). The results for Par Il and Il are qualitatively the same. Based
on the MSE statistic it is clear that, for a fixed sampling frequency, an increase in the sampling horizon leads to
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FIGURE2.5: MEASUREMENTERROR AGAINSTLATENT VARIABLE
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Notes: Thetop panel plots the measurement errai (), 000) of the latent mean against the actual realization of the latent mean for the
UMV filter (left) and the Kalman filter (right). The sampling frequency is set to 1 day, the sampling horizon equal to 96 days and the SM
parameters are set equal to Par Il (see Table 2.1). The bottom panel plots the measurement@yaf (the latent volatility against the

actual realization of the latent volatility for the UMV filter (left) and the Nelson-Foster ARCH filter (right). The sampling frequency is set
to 5 minutes, the sampling horizon equal to 1 day and the SV parameters are set equal to Pas H (0.8).

better performance of the UMV filter. In particular, at a 30 minute sampling frequency, an increase in the horizon
from 1 day to 30 days leads to a reduction in MSE of about 20%. The more relevant comparison, however, is the
one described above. So when sampling 32, 96, and 480 data points, the gain in MSE associated with a “high-
frequency-short-horizon” sampling schemeaelative to a “low-frequency-long-horizon” sampling schemés

about 12%, 37%, and 60% respectively. Thus, as opposed to the SM model, it is clear that for the estimation of
the instantaneous variance, high frequency data over short horizons is preferred to low frequency data over long
horizons. This point is also illustrated in Figure 2.4.
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2.4 Estimation of Latent Variable Models in Finance

Continuous time latent variable models have attracted a great deal of attention in the finance literature because
they provide a useful framework for the modelling of return dynamics. Prominent examples include the baseline
stochastic volatility (SV) model (Harvey, Ruiz, and Shephard 1994) or one of its many generalizations which
incorporate multiple volatility components and random jumps. The major appeal of these type of models is that
they are able to capture a number of salient features of financial asset returns including the presence of jumps in
asset prices, time varying return volatility, and a skewed and fat-tailed marginal return distribution. In addition,
many of the latent variable models have associated closed form or semi-closed form expressions for the arbitrage
free price of important financial securities such as bonds, options, futures, and volatility derivatives. It is therefore
not surprising that much effort has been spent on finding the model specification which is not only able to capture
the time series dynamics of asset returns, but also accurately prices derivative securities.

As mentioned above, the estimation of these model is far from trivial and a wide variety of distinct inference
procedures for nonlinear latent variable models in general, and SV models in particular, have been proposed. For
instance, generalized method of moments (GMM) based estimation has been proposed by Andersen and Sgrense
(1996), Ho, Perraudin, and Sgrensen (1996), Melino and Turnbull (1990), and Taylor (1986). Quasi Maximum
Likelihood (QML), which relies on a state-space form transformation and the Kalman filter, has been proposed by
Harvey, Ruiz, and Shephard (1994). Although both GMM and QML are straightforward to implement, there have
been indications that the small sample properties of these methods are poor (Jacquier, Polson, and Rossi 1994)
Alternatively, a wide range of simulation based approaches have been developed, including the simulated method
of moments (SMM) proposed by Duffie and Singleton (1993), simulated maximum likelihood (SML) proposed
by Darielsson (1994), the efficient methods of moments (EMM) proposed by Gallant and Tauchen (1998), the
Monte Carlo maximum likelihood (MCL) proposed by Sandmann and Koopman (1998), direct maximum likeli-
hood estimation through recursive numerical integration by Fridman and Harris (1998), and Markov Chain Monte
Carlo (MCMC) first implemented by Jacquier, Polson, and Rossi (1994) and further developed by Kim, Shephard,
and Chib (1998) and Elerian, Chib, and Shephard (2001). A major drawback of the simulation based methods
is that they are computationally intensive and involve discretization when applied to the continuous-time pro-
cesses. An approach which circumvents these difficulties has been proposed by Carrasco, Chernov, Florens, anc
Ghysels (2001), Chacko and Viceira (1999), Jiang and Knight (2002), and Singleton (2001) who develop an esti-
mation methodology based on the empirical characteristic function (ECF), and Meddahi (2001) who exploits the
eigenfunction expansion of the latent volatility process.

Based on this wide range of estimation methodologies, a number of distinct latent variable models have been
estimated. For example, the discrete time SV model has been estimated by Andersen and Sgrensen (1996) usin
GMM, by Harvey and Shephard (1996) using QML, by Gallant, Hsieh, and Tauchen (1997) using EMM, by
Jacquier, Polson, and Rossi (1994), Kim, Shephard, and Chib (1998) and Chib, Nardari, and Shephard (2002)
using MCMC, by Liesenfeld and Jung (2000) using SML, and by Sandmann and Koopman (1998) using MCL.
“Simple” continuous time SV models have been estimated by Ho, Perraudin, and Sgrensen (1996) using GMM,
by Andersen and Lund (1997) using EMM, Jiang and Knight (2002) using the ECF, and by Chacko and Viceira
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(1999)using an ECF-related spectral GMM approach. Finally, more complicated affine and non-affine SV models
with or without multi-factor volatility components and state-dependent jump components in returns and volatility
have been estimated by Andersen, Benzoni, and Lund (2002) and Chernov, Gallant, Ghysels, and Tauchen (2002)
using EMM, by Eraker, Johannes, and Polson (2002) and Jones (1998) using MCMC, and by Pan (2002) using
“implied-state” GMM where the latent volatility component is inverted from observed option prices.

2.4.1 GMM Estimation based on the Model-Consistent Unbiased Estimator of the Latent Vari-
ables

In this section we outline yet another approach to the statistical inference of continuous time asset return models
with latent state variables. The basic idea is to implement the GMM with conditional moment restrictions on
both the observed and the unobserved variables which are then evaluated at the unbiased estimate of the laten
variables. Due to the analytic tractability of the AJD model, closed form expressions for the conditional moments
or cumulants are often available and based on the unbiased measurement of the latent variable, as described abov:
the moment restrictions for the unobserved variables can be evaluated in a straightforward fashion. This approach
is distinct from the above mentioned approaches in important ways. First and foremost, our approach exploits
the availability ofhigh frequencybservations of state variables and through the estimator of the latent variables.
Because it is derived under the exact parametric specification of the model, the estimator is consistent with the
volatility measure under the specific model. Further, unlike SMM, EMM, and MCMC, the GMM estimation
approach we propose does not require simulation and is basexaoctmoments or cumulants in the sense that

they correspond to the continuous-time DGP without any discretization or approximation error.

In a closely related study, Bollerslev and Zhou (2002) use realized volatility as a proxy for the integrated
variance process and propose a similar GMM approach estimation that is based on conditional return and variance
moments of the process. The distinguishing element of our study is that we base our estimation procedure on an
estimator of the instantaneous value of the latent variable and is not limited to SV models but can, in principle, be
applied to any latent variable model in the AJD class.

For completeness we will briefly outline the general GMM procedure, after which we specialize the discussion
around the estimation of the AJD model based on the proposed latent variable estimator. GMM estimation of a
p x 1 parameter vectdi, requires the specification of anx 1 (r > p) moment restriction vectoy (¢), which has
expectation zero when evaluated at the true population parathetes. E [f; (6y)] = 0. The GMM procedure
then minimizes a quadratic form of the moment restrictions over the admissible parametefspace,

O = arg min.Jr (6) where  Jr (0) = gr () Agr (0),
€

wheregr (0) = % ZtT:1 f+ (0), andA is anr x r positive semi-definite weighting matrix. When= p the param-

eters are exactly identified. The parameter estimates are independent of the particular choice of weighting matrix
and the objective functiodr (¢) will be zero at the minimum. Theory suggests, however, that the efficiency of
the estimator may be improved by increasing the dimensian-@9), i.e. using more moment restrictions than
parameters to be estimated £ p). In this case, the parameter estimates do depend on the specific choice of
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weightingmatrix. In fact Hansen (1982) has shown that choosing > (9) ™" whereX () = E [f: (0) f: (0)']

results in the GMM estimator df with the lowest asymptotic covariance. This “efficient” GMM estimator is
typically implemented using a two-step procedure: in the first step the parameter vector is estimated using an
arbitrary psd weighting matrix, resulting éi, while in the second step the parameter vector is re-estimated using
A=%, (0)"'. Because GMM estimation allows for serial correlation in the moment restrictions, a Newey-West
type estimator can be used to obt§]rﬁ0). Regarding the choice af Andersen and Sgrensen (1996) find that

the efficiency gain resulting from additional moment restrictions is countered by the deteriorationﬁgt;ﬂ%e
estimateccoefficients needed to construct the (optimal) weighting maitrixFor further discussion of (optimal)
moment selection see also Gallant and Tauchen (1996) and Pan (2002). Under regularity conditions, as specified
in Hansen (1982), the estima@f is consistent and asymptotically normal with covariance matrix given by:

-1

= [0/ or) )|

whereD (0) is the Jacobian o (¢) with respect t@. Due to the form ofA, the objective function/r () is a
measure of the distance betwegn(#) and zero. The objective function at the minimum can therefore be regarded

as a goodness-of-fit test for the model, i.e. a high value of this test suggests that the model is misspecified. In
particular, it can be shown thﬁ’rJT(@T) N Xf_p under the null hypothesis that the model is correctly specified.

In setting up the GMM estimation of the AJD model, we exploit the fact that in many cases the joint charac-
teristic function ofS;, 5 or AS;,s andV,,s is known in closed form. As we have seen above, this allows us to
derive closed form conditional moment or cumulant expressions for both the observed and the unobserved state
variables in terms of the model parameters and possibly the instantaneous value of (some) state variables. By the
definition of the characteristic function we have that the conditional cumulant of grdér) can be derived as:

als+lv ln¢ (ula uz, ASt-i—(Sa W+5> t, T | 007 St7 V;f)
ils o Qul duly

i (2887 7) -

u=0

forls,1, € {0,1,...}. Based on this results, we can construct moment restriétamollows:

La o) _ 8" vl Ingp(ur ug, Ay 5,Vigs 471050, Vi)
K (ASt—i-éV;H—é) o de1+ly 14 lsla Lol
i1 9u, > " Qug u=0

1. l ls,rtlu,r u2,ASyy 5, Vits,t,7)0,S¢, Ve
K (ASivi ) - nYuun Al Vs brl0Sll)
3'ss TOuy " Oy u=0

wherels 1,01, .., lsy, Loy € {0,1,...} andt € {0,1,...}. The first term of each entry ifi (¢) is the sample
cumulant® while the second term is the conditional cumulant expression derived from the model in terms of the
parameter vectaf and state variablé; andV;. Notice, however, that because the moment restriction above is
conditional on the realization of the latent variable it cannot be evaluated. The solution we propose is to replace
V; by its estimated counterpaﬂ?}. This way, the moment restriction can be evaluated while consistency of the

SInstrumentalariables, i.ez; € F;, that are uncorrelated with (0o), can be used to generate additional moment restrictions because

E[fi (60) ® (1,2)] = 0.
°The sample cumulant is estimated usihg; s andV; s only. For exampleK (AS;ysViis) = ASiisViss

49

Oomen, Roel C.A. (2003), Three Essays on the Econometric Analysis of High Frequency Financial Data
European University Institute DOI: 10.2870/23324



GMM estimator is maintained due to the consistencf/}oit is noted that the estimation approach is based on the
cumulants and not the moments. However, cumulants and moments are identical for orders lower than or equal to
two. For orders higher than two, Kendall (1958) outlines the one-to-one correspondence between moments and
cumulants. For reference related to cumulants based estimation, see Press (1967), Beckers (1981), and Knigh
and Satchell (1997).

Although the GMM procedure outlined above stands out as being quite straightforward, there are a number of
pitfalls that one should be aware of. We will briefly discuss these below.

Error in Variable and Moment Restrictions  The most important drawback of the above method is that in finite
sample, the estimator of the latent variable will inevitably contain measurement errdﬁ kelV; + ¢ where
¢ has some distribution. Because the latent variable estimator is unbiased, the raeaitl bk zero. Further
statements about the distribution of the error term are more difficult to make. Now consider the following moment
restriction:

Virs — E |Vissl0, S, ‘7t+5]

Provided that the moment restriction is a linear function of the state variable, it will have zero expectation and is
thus a valid moment restriction. However, when a non-linear function of the latent state variable enters into the
moment restriction it invalidates the restriction because it will not have zero expectation. For instance:

By [Vis = B9, 51, Vis)| #0

In a closely related setting, Bollerslev and Zhou (2002) propose to solve this problem by including a nuisance
parameter in the above moment restriction which can absorb the contribution of the measurement error, i.e.

~ ~ ?
E, [Wia +y = E(V2510, 5, Vt+6)] =0

Although the results in their work seem to suggest that this approach works quite well, a disadvantage is that it
relies on the IID’ness of, which, in many situations may not be justified. An alternative approach to the issue
may be to further study the distribution of the measurement error and possibly derive the relevant moments for
theestimatedatent variable instead of the actual realization of the latent variable, i.e.

By |V2s— B(VA40, 5, ‘7t+5)] = 0.

Clearly, the feasibility and desirability of the alternative approaches will ultimately depend on the model specifi-
cation and the properties of the data.

Construction of Optimal Weights It is noted from the definition of the optimal weighting vector (expression
2.11) and the conditional moments for the SV model (Appendix A.3) that the optimal weighting vector may
depend directly on both the model parametardthe value of the latent and observed variables at tink@r the

SM model discussed above, the latent state variable does not enter into the optimal weights which, in this case,
depend on the model parameter only. In contrast, the optimal weights for the SV model do depend both on the
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model parameter&nd the time+# instantaneous variance. In general, when latent state varidblemter into

the expression for the optimal weighting vector, its construction is not entirely trivial because in order to get a
measurement of the latent variable one would first need to specify a weighting vector. In otherﬁ?v(dﬂdﬁ) and

W (V, 0) where6 denotes the model parameters af#idthe optimal weighting matrix. Fortunately, an iterative
procedure which parallels the construction of the GMM optimal weighting matrix (Hansen 1982) provides the
solution here. Specifically, given an initial estimate of the latent variable estimat@ased on a naive proxy for
example) and an arbitrary weighting matrixy, the iteration takes the following form (set= 0):

Step 1: Estimat@H based or¥,. and givery
Step 2: ComputéV,., 1 based oﬁA/rH and giverd
Step 3: If|W,+1 — W, | < n quit, elser = r + 1 and goto Step 1

The first step clearly relies on the unbiasedness of the latent variable estimator for arbitrary weights. The initial
choice of 1} is therefore not very crucial but may, if chosen well, speed up convergence substantially. Our
experience is that two to four steps are sufficient to obtain reasonable convergence in the weighting vector. When
the model parameter vecttis unknown, the approach would be to maximize the relevant likelihood function over
the admissible parameter space with intermediate optimization steps for the construction of the optimal weighting
vector. For long time series, this procedure may turn out to be computationally intensity as in every iteration over
#, one would need to calculate an entire sequence of weighting vectors associated with each observation.

Market Microstructure-Effects and Sampling Frequency While the estimator of the latent varialdan be
implemented based on high frequency data, the question remains whether this should in fact be done. The asymp-
totics indicate that there are substantial benefits from using high frequency data, but an obvious concern is whether
the AJD model provides a good description of the data across a range of sampling frequencies. In fact, the nice
properties of the proposed estimator are derived under the assumption that the AJD model is the data generating
process and is hence “aggregationally consistent” with the observed data. A number of studies have shown that
the SV model provides a reasonable description of returns at the daily frequency. However, at higher frequen-
cies, return data seem to contain large amounts of noises which are mainly due to reporting errors and market
microstructure effects such as bid/ask bounce, price discreteness, stale trading, etc. Without getting into more
detail here, it is safe to say that the noise to signal ratio tends to increase with a decrease in the sampling interval.
Importantly, this implies that the aggregational consistency of the SV model must break down at some stage when
moving from low frequency to high frequency data. This observation should be taken into account when deciding
on the frequency that the latent variable estimator will be based on.

2.5 Conclusion

The closed analytic form of the conditional characteristic function for the AJD class (Duffie, Pan, and Singleton
2000) allows us to derive a dynamic correspondence between the latent variables and the cumulants of the ob-
served state variables. Based on this relation, we derive an unbiased minimum-variance estimator for the latent
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variables in terms of the model parameters and observations of the state variables. An important feature of the
proposed estimator, is that it model-consistendand can be implemented usihggh frequencydata. We also

derive conditions under which the estimator has minimum variance. In a simulation study we investigate the
properties of several competing latent variable estimators for the stochastic mean and volatility in the SM and SV
models. The results illustrate that (i) the UMV estimator delivers unbiased estimates irrespective of sample size,
sampling frequency, sampling horizon, or model parameters (ii) for the SM (SV) model the Kalman (ARCH) filter

is optimal in a MSE sense (iii) for the estimation of the conditional mean low-frequency-long-horizon sampling is
optimal and (iv) for the estimation of the conditional variance high-frequency-short-horizon sampling is optimal.
Based on the proposed estimator of the latent variable, we outline a flexible GMM estimation procedure that relies
on the matching of conditional moments or cumulants of both the observed and the unobserved state variables.
The major advantage of this approach is that it can be implemented using high frequency data, does not require
discretization of the continuous time process, and does not involve computationally expensive simulations. A
couple of issues are left for future research, including the treatment of the error-in-variable issue for higher order
moment restrictions, and the impact of market microstructure effects in high frequency data on the performance
of the estimator.
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Chapter 3

Statistical Models for High Frequency
Security Prices

3.1 Introduction

The distributional properties of financial asset returns are of central interest to financial economics because they
have wide ranging implications for issues such as market efficiency, asset pricing, volatility modelling, and risk
management. Although the conditional and unconditional distribution of returns at the daily and weekly frequen-
cies have been extensively studied and are typically well understood, this is certainly not the case for returns
observed at higher frequencies. Intra-daily patterns in market activity plus numerous market microstructure ef-
fects' substantially complicate the analysis of so-called “high frequency” data and often render conventional return
models inappropriate.

Much of modern finance theory builds on the martingale property of risk-adjusted asset prices, as originally
laid out in Cox and Ross (1976) and Harrison and Kreps (1979). The development of econometric models for asset
prices has progressed hand in hand and is, as a result, directed to models that are consistent with the martingale
hypothesis. A prominent example is the geometric Brownian motion from which the celebrated Black and Scholes
option pricing formula has been derived. To capture commonly observed characteristics of daily return data, such
as skewness, fat tails and heteroscedasticity, this model has been extended in a number of directions to include for
instance random jumps and the stochastic evolution of return vafiaflteough less suited for derivative pricing,
an attractive alternative to the diffusion process is the compound Poisson process. Despite its long tradition in the
statistics literaturg the model has received only moderate attention in firfaafter it has been introduced by

IMarket microstructure effects include bid/ask spreads, non-synchronous trading, stale prices, and price discreteness. See for example

Campbell, Lo, and MacKinlay (1997), Madhavan (2000), O’Hara (1995), Wood (2000).
2See for example Bakshi, Cao, and Chen (1997), Bakshi and Madan (2000), Bates (1996, 2000), Bollerslev and Zhou (2002), Heston

(1993), and Scott (1997).
3The Poisson process, often viewed as a special case of a renewal process, has been used extensively in for instance queue theory

ruin and risk theory, inventory theory, evolutionary theory, and bio-statistics. See Andersen, Borgan, Gill, and Keiding (1993), Karlin and

Taylor (1981, 1997) and references therein.
4For some recent applications of the compound Poisson process in economics, finance, insurance mathematics and risk management
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Presq1967, 1968). In its simplest form, the compound Poisson process with iid Gaussian increments is given by:
Mr(t)
Ft)=F(0)+ Y ¢ (3.1)
j=1

where F(t) denotes the timedogarithmic asset prices; ~ iid N(ur,02) and M (t) is a homogeneous Pois-

son process with intensity parameter > 0. Press (1967) has shown that the analytical characteristics of this
model agree with the empirically observed properties of (low frequency) returns, namely a skewed and leptokur-
tic marginal return distribution. An appealing interpretation can be given to the Poisson profeds, as
counting the units of information flow that induce a random change in the asset’s price. The model is therefore
intimately related to time deformation models (Clark 1973) which have found renewed interest in high frequency
data research Further, it is important to note that, like many of the diffusion processes used in finance, the
(compensated) compound Poisson process embodies the martingale property.

While the compound Poisson process, and many of the diffusion processes in particular, have been shown to
fit low frequency data relatively well, this is certainly not the case at the high frequency where market microstruc-
ture effects have been shown to have a decided, but often complex, impact on the properties of the price process.
Roll (1984) demonstrates that the existence of a bid/ask spread can lead to spurious first order negative serial
correlation in returns. Lo and MacKinlay (1990) study the impact of non-synchronous trading on the dynamic
properties of returns and find that it induces contemporaneous cross-correlation among assets and serial corre-
lation in returns. By and large, it is widely recognized that the various market microstructure effects distort the
distributional properties of high frequency returns and typically induce a substantial degree of serial correlation.
Any process that is consistent with the martingale hypothesis of (risk adjusted) asset prices, will therefore be in-
consistent with much of the theoretical market microstructure literature and, more importantly, with many of the
observed characteristics of high frequency data.

In this paper, we argue that the continuous time diffusion processes studied in the finance literature, valuable
as they are, seem to lack the flexibility required for the modelling of high frequency security prices. We propose
two distinct statistical models that we believe are capable of capturing many important features of high frequency
returns. The first model generalizes the standard compound Poisson process, as given in expression (3.1), to ac
count for the presence of a bid/ask spread. The second model allows for a general form of serial dependence in
returns. We also study the case where there is both deterministic and stochastic time variation in the trading inten-
sity and show that this can be used to capture (i) deterministic patterns in market activity, (ii) serial dependence
in trade durations at high frequency (i.e. "“ACD-effects”) and (iii) persistence in the conditional return variance
at low frequency (i.e. “ARCH-effects”). Based on the characteristic function, we analyze the static and dynamic
properties of the price process in detail. Comparison with actual high frequency data suggests that the proposed
models are sufficiently flexible to capture a number of salient features of financial return data including a skewed
and fat tailed marginal distribution, serial correlation at high frequency, time variation in market activity both at

seefor exampleChan and Maheu (2002), Embrechts$ipiikelberg, and Mikosch (1997), Madan and Seneta (1984), Maheu and McCurdy

(2002a), Mirmann (2001), Rogers and Zane (1998), Rolski, Schmidli, Schmidt, and Teugels (1999), Rydberg and Shephard (2003).
®See for example Andersen (1996),&and Geman (2000), Carr, Geman, Madan, and Yor (2002, 2003).
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high and low frequency. A common feature of both models is that even though the martingale property is lost at
high frequency, it can be retained under temporal aggregation. Motivated by this observation, we seek to address
two issues that are relevant to the measurement of return volatility. Firstly, within the context of our models,
we investigate the impact of serial correlation in returns on the recently proposed realized variance measure as
discussed in Andersen, Bollerslev, Diebold, and Labys (2001, 2003) and Barndorff-Nielsen and Shephard (2002,
2003). We show that serial correlation in returns can induce a substantial bias in the variance estimate and charac-
terize its decay under temporal aggregation of returns. Secondly, we discuss a set of sampling strategies which aim
at minimizing this bias. Here, the key result is that the magnitude of the bias can be altered by a deformation of
the time scale. Importantly, we find that when the trade arrival intensity is non-constant, “business” time sampling
maximizes the bias for a given sampling frequency while it achieves the lowest overall MSE relative to calendar
time sampling. Moreover, for both sampling schemes, the “optimal” sampling frequency which minimizes the
MSE is much higher than the one which minimizes the bias.

In the present context, it is also important to emphasize a fundamental difference between the compound
Poisson process and the diffusion process, namely, the formdingeavariation process while the latter is an
infinite variation process. By taking a microscopic view at the data, it is evident that variation in high frequency
returns is inherently finite because the number of price-change-inducing trades is finite. Diffusion processes are,
by construction, not able to capture this prominent feature of the data. In contrast, the finite variation property
of the compound Poisson process appears ideally suited for the modelling of asset price both at high and low
frequency.

The remainder of this paper is organized as follows. In Section 2, we generalize the compound Poisson
process for the presence of a bid/ask spread, derive the characteristic function of the price process, and analyze
the properties of the price process. Section 3 contains analogous results for the compound Poisson process with
correlated innovations. Section 4 derives additional results for when the trading intensity process is allowed to
vary both deterministically and stochastically through time. Section 5 discusses the impact of serial correlation in
returns on the realized variance measure. Section 6 concludes.

3.2 The Bid/Ask Spread

Financial market design distinguishes between two types of trading mechanisms, namely, price-driven markets
and order-driven markets. In a price-driven market, all trades take place through a market maker (also referred to
as a specialist or dealer) which serves as an intermediary between buyers and sellers. The market maker posts
bid (ask) price at which he is willing to buy (sell), thereby providing immediacy to the traders. Because the market
maker is exposed to inventory risk and insider traflihg requires a compensation that is equal to the disparity
between the ask and the bid price, i.e. the “spread”. Examples of price-driven markets include the NASDAQ
and FOREX. In an order-driven market, on the other hand, traders submit their orders to an electronic order book

®Referencesf inventory and asymmetric information models include Admati and Pfeiderer (1988), Demsetz (1968), Easley, Kiefer,
and O’Hara (1997), Easley and O’Hara (1992), Glosten and Milgrom (1985), Ho and Stoll (1983), Huang and Stoll (1997), Kyle (1985),
O’Hara (1995) Stoll (1978).

55

Oomen, Roel C.A. (2003), Three Essays on the Econometric Analysis of High Frequency Financial Data
European University Institute DOI: 10.2870/23324



which automatically matches orders based on price and time prioritization. In this trading mechanism, traders are
exposed to execution risk due to the absence of a market maker. Examples of order-driven markets include the
Paris Bourse and the LSE. Hybrid structures, combining both trading mechanisms, are adopted by the NYSE and
Deutsche Brse.

The first model we discuss is designed to account for the presence of a bid/ask spread encountered in price-
driven markets. For illustrative purposes, Figure 3.1 displays a time-series of 250 transaction prices of the German
Bund Futures contract on August 24, 2000. The presence of the bid/ask spread is apparent. It is also clear that
the infinite variation processes, such as the popular
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diffusion models widely used in finance, are not well
suited to characterize this type of price evolution. To
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investigate the serial correlation of returns, we distin-
guish between two sampling schemes, namely “busi-
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(most recent) price at equi-distaitheintervals, e.g.
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I I I I
0 50 100 150 200 250

Number of Trades (Transaction Clock)

whenever a trade (or a certain amount of trades) has
occurred. Clearly, when the duration between trades
is non-constant, the two sampling schemes will dif- Figure 3.1: Transaction Prices of the German Bund Future

fer. However, the impact of this on the distributional properties returns is non-trivial and will be discussed below

in the context of our model. Based on all data for August 24 (over 2000 transaction prices), we find a highly
significant first order serial correlation coefficient of -0.447 for returns sampled in business time (trade by trade)
and -0.133 for returns sampled in calendar time (minute by minute). These results are in line with Roll (1984).
Second order serial correlation is substantially reduced in magnitude and significantly different from zero only
for the “trade by trade” returns. Higher order serial correlation is insignificant for both sampling schemes. All in
all, it is clear that the price process violates the martingale property, at least when sampled at high frequency. The
model we propose below aims to capture the presence of the bid/ask spread and allows us to analyze its impact on
the distributional properties of returns.

In what follows, we decompose the observed transaction price into the unobserved mid-price (the average of
the bid and ask) plus a spread component. The transaction price is thus equal to the mid-price plus or minus half
the bid/ask spread depending on whether a trade is buy-side or sell-side initiated. We assume that the logarithmic
mid-price F'(t), evolves according to the standard compound Poisson process given in expression (3.1). More
general specifications are avoided because the focus is on isolating the impact of the bid/ask spread. The process
of the logarithmidransaction price Q(t), inherits the properties of the mid-price process and we assume that its
dynamics are governed by:

Q(t)=Q(t7) [l —dMips (t)] + F (t) dM;ps (t) + §[dMp (t) — dMs (t)], (3.2)
NO TRADE ANY TRADE Buy SELL
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whereMp (t) and M (t) denotePoisson processes with intensity parametags > 0 and\g > 0, dM;ps (t) =
dM;y (t) +dMp (t) + dMs (t), andd is a positive constant. The intensity parameter of the “combined” Poisson
processM;pg is equal tox = \; + Ap + As.

In the absence of consistent mispricing, the mid-price process reflects the true or fundamental value of the
asset. Only the arrival of new information will cause this price to change. In a trading environment, it is reasonable
to assume that information is disseminated through order flow and one can thus thiiakasfa process counting
the number of “informative” trades which randomly move the asset’s fundamental value (and the transaction price
by necessity). Notice that the teemin expression (3.1) represents the innovation to the mid-price proe¢ss
the bid/ask spread. A second source of randomness in the price process comes through “uninformative” trades.
One can think of these as hedge or liquidity motivated trades that are non-speculative of nature and do not contain
any (price sensitive) information. Uninformative trades leave the fundamental value of the asset unchanged, but
they have the potential to move the transaction price process up or down as they are executed at the mid-price
plus or minus a proportional spreaddepending on whether the trade was buy-side or sell-side initiated. Notice
from expression (3.2) that a sequence of uninformative buy orders will only move the transaction price once at the
start. Similarly for a sequence of uninformative sell orders. The dynamics of the processes counting the number
of uninformative buy- and sell-side initiated trades are governedflyand Mg respectively. The combined
Poisson process\/;ps (t), therefore counts the total number of trades that occurred up to and including time
Before moving on, we point out that based on the above interpretation of the model it follows that informative
trades are transacted at zero bid-ask spread and that at such instances the mid-price is effectively observable. Thit
contradicts both with what we observe in reality and with the statement that the mid-price is latent. What does
remain valid, is that the transaction price associated with an informed trade serves as the mid-price for subsequent
uninformative trades. However, it is important to stress that this inconsistency lies iimt¢hgretationof the
model and not in the model itself. In fact, we will see that the statistical properties of the specified price process
are in close correspondence with the ones observed in practice. Because it is these statistical properties that are o
primary interest at this stage we stick to the convenient interpretation of the model above although we recognize
that alternative, and possibly more appropriate, interpretations can be assignedl tanti€) processes.

For the analysis in the remainder of this paper it proves useful to define a third prédess; Q (t) — F (1),
which measures the difference between the transaction price and the mid-price. Becgupeoitess, as defined
in (3.2), can be rewritten as:

dQ (t) = —Q (t7) dMips (t) + F (t7) dMips (t) + dF (t) 4+ § [dMp (t) — dMs ()] .
it directly follows that the dynamics fak are given by:

dG (t) = =G (t7) dMps (t) + 6 [dMp (t) — dMs (t)]. (3.3)

"The Poisson intensity parameters are defined suchBhaiM s (t)] = Apdt, E [dMs (t)] = Asdt and E [dM; (t)] = Ardt. The
sequence(e; } is assumed to be independent{a¥/; (¢),¢ > 0}. Moreover, it is assumed thdtM; (¢),¢ > 0}, {Mp (t),t > 0},
and {Ms (t) ,t > 0} are independent which implies thBt {dMp (t) dMs (t') =1} = 0, Pr{dMpg (t)dM;(t') =1} = 0, and
Pr{dMgs (t)dM; (¢') =1} =0fort > 0,¢ > 0.
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Expression(3.3) is known as thevolterra equationand the unique solutiof? is given by Theorem 11.6.3 in
Andersen, Borgan, Gill, and Keiding (1993):

t
G(t)=G(0) ][ —dMips (u)] + 6 / [dMp (u) — dMs (w)] [ [ — dMips (u)] . (3.4)
0.4 0 (]
Theorem 3.2.1 The joint characteristic function df andG, as defined by expressions (3.1) and (3.4), conditional

on initial values is given by:

ra (m,m2,&,&,t,m) = Ep [6”“F(tHWF(Hm)H&G(t)HgQG(Hm)]

_ f (772’ €2) ¢F,G (771 + 19, &1, t) <€m)\1(¢a(n2)*1) _ eme)

+e b6 (M + 12,61 + Ea,1) (3.5)
where
orc(m&t) = By {einF(t)Jrz‘&G(t)}
= f(n,€) < or (n,1) — einF(O)ftX> 4 e F(0)+iEG(0)~tX (3.6)

for m > 0, ¢ (n) = exp (inur — 50°07) , ¢r (1,t) = exp (inF (0) +tA; (¢- () — 1)), and

A1¢e () + Ape®d + \ge™H0
A1¢e (1) + A + As

(0.8
Proof See Appendix B.3.

Based on expression (3.5), moments and cumulants of the mid-price prétemsd the transaction price
process(, can be derived (see Appendix B.1 for details). In particularhtherderconditionalmoment of mid-
price returns, i.eRp(t/m) = F(t) — F(t —m), and transaction price returns, iRg(tjm) = Q(t) — Q(t —m),
can be derived as:

8h¢* _77770707t7m ah(b* =77 _7777t7m
i_h PG ( ) and i_h FG ( )

h h
oy =0 Iy =0

Unconditionalmoments are obtained by lettingend to infinity. For completeness, we will briefly discuss the
properties of the mid-price process below. More details can be found in Press (1967, 1968).

Whenp; # 0, the unconditionameanandvarianceof Rp(t|m), are equal ton\;uy andmAr(u? + o?)
respectively. Thehird momentakes the form:

mArpg (1+3mAr +m2A7) + 3mAruroq (1 4+ mAp)

A non-zero mean of the innovation term therefore induces skewness in returns which increases under temporal
aggregation of returns. In contrast, the distribution of returns on the de-trended price process is normal and thus
symmetric. Thdourth momenof returns is equal to:

mArpg (1+7TmA; + 6m* X2+ m3\3) + 6mArpio? (1+3mAr + m?A3) + 3mArof (1 +mh;)
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As is the case for skewness, whep # 0 return kurtosis increases under temporal aggregation of returns. The
expression for the kurtosis simplifiesdot 3/(mA;) whenu; = 0. In this case, temporal aggregation of returns
leads to a decrease in kurtosis. Also note thaand \; enter multiplicatively in all moment expressions. The
impact of a change in either or \; is thus identical.

We now turn to the properties of the transaction price process. Except for the first moment, we will state
the moment expressions for the case where= 0. Although it is straightforward to derive conditional and
unconditional return moments when # 0, it needlessly complicates notation and is therefore avoided. The
conditionalfirst momenof returns is given by:

EO[RQ(t‘m)] = mArpr + eit/\(l _ eim)\) (5(:\3 — )‘S) — XG(O))
Theabove expression points out an interesting feature of the model: evenavhen it follows thatEy[Rg (m|m)] =
Ey[Q(m)] — Q(0) # 0 aslong as\p # A\g and / orG(0) # 0. This directly implies that the logarithmic trans-
action price process isot a martingale. However, the compensated process(}(@z) — mA;u, looks more

and more like a martingale when — oo. Because the innovations to the mid-price are iid, this property of the
transaction price process is exclusively due to the presence of the bid/ask spread.t Takithgr)— oo yields

the unconditionameanof returns which equals: ;. and thus corresponds to the mean of returngorfor

w1 = 0, thesecond momenor equivalently therariance of returns is given by:

AAs +4AsAB + At A\B

)\2

We can decompose the variance into two components, namely the return variance of the mid-price process (left

mAjos 4+ 26%(1 — e_mx)

hand side) plus a contribution of the bid/ask spread to the total return variance of the transaction price process
(right hand side). Because m, and the intensity parameters are strictly positive, the variance of retur@s on
always exceeds the variance of returnsfkanHowever, the relative difference, i.€¢V [Rg] — V[RFr])/V[RF],
decreases with (i) a decrease in the spr&agii) an increase in the return horizon, (iii) an increase in the

arrival rate of informed trades;, and (iv) a decrease in the arrival rate of uninformed tradesnd A\g. The
unconditionathird momenof returns is given by:

3)\](50% ()\B — /\5) (1 — €7m’\)

X2

Even thoughu; = 0, the return distribution may be skewed depending\gnand A\g, i.e. whenip > g

(AB < Ag), there is positive (negative) skewness while the distribution of returns is symmetric when the arrival
rates of uninformed buy-side and sell-side initiated trades are equal. Noticeghat\g does not necessarily
imply that the market maker builds up or drains his inventory, as the informed trades may off-set the buy/sell
imbalance of uninformed traders. The unconditidioalrth momenof returns is given by the lengthy expression
below:

)\QB—F)\%—)\])\S_)\B)\[—G)\B)\S
7
A1As +4ABAs + ABA T ATAs + 16AAs + ApA
525221 s+ fQS‘i‘ BAL | 95i(1 — ¢=m¥) AL s+ 6752; s +ABAr
A A

3mA; (1+mAp) o + 6X;0262(1 — e ™)

+12mAg

59

Oomen, Roel C.A. (2003), Three Essays on the Econometric Analysis of High Frequency Financial Data
European University Institute DOI: 10.2870/23324



FIGURE 3.2: MID-PRICE AND TRANSACTION PRICE FOR"“BID-ASK SPREAD MODEL"
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Notes: Simulatedtime series of 250 mid-prices (F; left panel) based on expression (3.1) and transaction prices (Q; right panel) based on
expression (3.2). The model parameters are set equdl t05.16¢ — 7, A\; = 1/minute,As = Az = 2.5/minute, and’ = 0.0003.

The relation between the fourth moment or kurtosis and the model parameters is substantially more complicated
than for the lower order moments. A few things can be said though. As for the mid-price process, when the
return horizonyn, tends tad (co), the kurtosis tends teo (3). When the spread, or the uninformed intensity
parametersip and\g, tend tooo, the kurtosis tends to a strictly positive constant which can be either smaller,
equal or larger than 3 depending on the model parameters. Negative excess kurtosis can thus be induced by the
bid/ask spread although this seems to require unrealistic values for either the spread or the intensity parameters.
Finally, the returrcovariance at displacement > 0, can be derivetlas:

S AAs + AAsAs + ArAp

XZ

E[Rq (tjm) Rg (t — m — k|m)] = —w (k,m, X) &

wherew (k,m, \) = e+ (1 — e*m’\)2. Interestingly, it is noted that the auto-covariance function above corre-
sponds to that of an ARMAL, 1) proces8. Becausev (k,m, \) > 0 the bid-ask bounce induces negative serial
correlation in returns which disappears under temporal aggregation (increastrdncreasing arrival frequency
of informative trades (increasing). Roll (1984) finds that the “effective” bid-ask spread, 2&.can be measured
by 2 times the square root of the negative of the first order serial covariance of returns. The model discussed here,
is consistent with Roll’'s finding for the degenerate case where- 0, A\g = \g, k = 0 (first order covariance)
andm is large (long horizon returns, e.g. daily / weekly).

To illustrate a possible price path realization of the model, we simulate a time series of 250 mid-prices and
associated transaction prices. The model parameters are set eqtiaktd.16e — 7, A\ = 1/minute, \g =

8Usingthat Eo [Q (t + m) Q (t)] = F (0)2 +thjo? + 25F(0)(§B*>\S) + 52(>\E¥As)2 + efmx(g?%_
Recallthat the auto-covariance function of an ARNIA1) process with zero mean, i.e, = ax;—1 + €; + Be;—1 for |a|] < 1 and

e ~ ITIDN(0,0?), is given byE[z:z:—x] = akw

while 3 ando? can be chosen so as to match the first order covariance term.

o2 forj =1,2,.... Settinga = e * ensures the same rate of decay
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Ap = 2.5/minute, ands = 0.0003 which corresponds to an annualized return volafifityf 25% (28.4%) for

minute by minute mid-price (transaction price) returns, an arrival rate of 60 informed trades per hour, an arrival
rate of 150 uninformed buy-side and sell-side initiated trades, and a spread of 3 basis points. At first sight the
resemblance between the actual Bund futures data (Figure 3.1) and the simulated data (Figure 3.2) seems striking.
The ad hocparameter values used in the simulation imply a first order serial correlation of minute by minute
returns of—0.112. Increasing the spread to= 0.0005 increases the annualized transaction return variance to
33.6% and decreases the first order serial correlationi®22. Returns aggregated over 5-minute intervals, have

a theoretical first order serial correlation coefficient-@f.027 for 6 = 0.0003 and—0.069 for § = 0.0005.

The discussion above illustrates the ability of the model to capture a number of salient features of high fre-
quency transaction data. The presence of a bid/ask spread is explicitly accounted for and the magnitude of serial
correlation implied by the model is in the right ball park for realistic parameter values. Moreover, it is noted that
our model can be viewed as a mixture of the bid/ask bounce model of Roll (1984) and the compound Poisson
process model of Press (1967). Specifically, whea 0, our model coincides with Press’. When = 0 and
Ap = Ag our model is closely related to Roll's.

To conclude, we point out a possible weakness of the model. A number of studies have reported a substantial
degree of time variation in the bid/ask spread. Demsetz (1968), as one of the first to look into this issue, finds
that most of the variation in the spread can be explained by changes in (i) market capitalization, (ii) the inverse of
the price, (iii) return volatility, and (iv) market activity. Cross-sectional variation due to changes in market capi-
talization is clearly not relevant in the current context. Moreover, the proportionality of the spread can arguably
capture most of the time variation that is induced by changes in the reciprocal of the price. However, variation of
the spread due to changes in market volatility, or market activity, is something that our model clearly cannot ac-
count for. Because the arrival intensity parameters are constant, both market activity and return volatility are also
constant. In additiod is not allowed to depend on time or other exogenous variables sudhas(t). Unfortu-
nately, it is not easy to resolve this shortcoming of the model because time variatipnagoludes a closed form
solution for the characteristic function @f(¢). Although the properties of the model can still be analyzed numer-
ically, the need to choose specific parameter values would narrow the scope of the discussion substantially and is
therefore not attempted here. We emphasize, however, that while the properties of the transaction return process
will undoubtedly be more complex in such a case, we do not anticipate the qualitative features of the model to
change much, i.e. the bid/ask spread is still expected to induce negative serial correlation which disappears under
temporal aggregation as is observed in practice.

3.3 General Return Dependence

The bid/ask spread is arguably the most apparent and dominant market microstructure component in the price
process of a price-driven market and can, as shown above, be modelled explicitly. However, a host of other
market microstructure effects exist which are, as opposed to the bid/ask spread, more concealed or complex in
nature. It is therefore not possible to individually address each and every one of these effects. The model we

1%Basedon 8 trading hours per day, 252 trading days per year.
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proposebelow, exploits the view that no matter what the nature of the market microstructure effect is, it's impact
on the return distribution will likely be revealed through the autocorrelation function of returns. We thus study the
return dependence structure without explicitly identifying its source. For example, high frequency index returns
may be subject to non-synchronous trading, non-trading periods, temporary mispricing, and recording delays.
While each and every attribute may be difficult to model, it seems reasonable to anticipate some sort of serial
correlation in the first moment of returns, be it negative or positive, of high or low order, transient or persistent.
This observation motivates us to generalize the compound Poisson process to allow for a general form of serial
correlation in returns. In particular, we assume that the innovations of the logarithmicpyicdiow an MA(Qq)-
process!:

M(t)
F (t) =F (0) + z €j where €5 = povj + p1Vji—1 4+ ...+ PqVi—q; (37)
j=1

vj ~iid N (,02), pg # 0 andM (t) is a homogeneous Poisson process with intensity pararhetef. No
restrictions orpy, . . ., p; Need to be imposed in order to ensure stationarity of the innovation process. Regarding
the MA structure, it is important to emphasize that it is imposed on the innovation proceaasactiontime.
Interestingly, the results below indicate that the autocovariance of returns, sampled at equcdistaddrtime
intervals, decays exponentially similar to that of an ARMA process. Finally, we note that the price pfoisess

as opposed to the previous section, assumed to be observable and the single object of interest.

Theorem 3.3.1 For the price process defined by expression (3.7) &h¢t) >> ¢, the joint characteristic func-
tion of F' (¢) and F' (t + m), conditional on initial values, is accurately approximated by:

¢F (&1,62,t,m) = Ey [ei&F(t)H@F(Hm)} = a(§) 9% (&1, &,t,m) (3.8)
where
— 2 9 ! PP 17 2¢2-2 2 2 (m)‘)h
o5 (&1,6,t,m) = b (f,t) o8 oop(a,9) Z€z§2hp#u—§hoyﬁzp (e—&&mp(q,h) _ 6_51520'1/!’(‘]1‘])) AR
h=0

+b (€,1) b (€2, m) e€ ~6162)oEo(a0)

for€ = &+ &, 9 = Xg pj» al&) = exp(i€F(0)), b (¢, ) = exp [tA (eP—38°0E7 — 1) ], and

p(q,p) = ;zn;nl(%p) Z?:h hpjpj—n forg>1,p>1
0 otherwise

For t — oo, the above expression of the characteristic function is exact.

Proof See Appendix B.3.

Mn principle it is also possible to impose an AR(q) structure on the price innovations. However, the expression for the characteristic
function turns out to be substantially more complicated as it involves an infinite summation of thg Jgtmexp (p™) which cannot be
simplified.
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The characteristic function, given by expression (3.8) above, can be used to eegiginconditional mo-
ments of the price and return process as this requireand thusM (t) - to tend toco. Expressions for the
conditional moments will be arbitrarily accurate whih(t) exceeds the order of the MA procegshy a suffi-
ciently large amount. Whef/ (¢) is small the above characteristic function cannot be used to derive conditional
moments. For this case, however, it is possible to derive exact expressions at the cost of cumbersome notation.
Because the focuss of this paper lies elsewhere, we do not go into this (see footnote 1 in Appendix B.3 for more
details on the source of this approximation error).

Below we discuss the properties of the compound Poisson procegs=fot for it is sufficient to illustrate
the main features of the model. The casedar 1 adds to the notational complexity without providing much
additional insight into the workings of the model. In practice, of course, the increased flexibility that comes with
the higher order return dependence may be necessary to model the data and this case therefore remains of grec
interest. To simplify notation further, we s@f = 1 andp; = p. As mentioned above, no restrictions are imposed
on the coefficients, although = —1 is a degenerate case in the sense that all innovations to the price process
cancel out with the exception of the first and last one. Analogous to the previous section, the unconditional return
moments can be derived based on the characteristic fuhttiven by expression (3.8). When, # 0 the
unconditionafirst momenof returns equals Ay, (1 + p) while its varianceis given by:

mA (u?, + O'E) (14 p)? —202p (1 - e_m)‘> (3.9)

Because the impact of the innovation mean is trivial wa:iset 0 and focuss on the remaining model parameters.

As expected, the contribution of the right hand side term in expression (3.9) diminishes relative to the left hand side
term whenm increases. In other words, the serial correlation of the innovations introduces a transient component
into the return variance which disappears under temporal aggregation. To study the impant tife return
variance it is important to take into account that a change iceteris paribus, will change the return variance
because? = V[e;] = (1+ p)o2. We therefore consider two cases, namely (i) vawhile 02 = (1 + p?)o2 and

(i) vary p while keepingo? fixed atz. Furthermore, in order to isolate the impact of a changeve choose

the MA(0) model with a return variance aefi\o? as a benchmark.

For the first case, MAL) innovations inflate the return variance Byo2(e ™ + m\ — 1) relative to the
benchmark case. Serial correlation increases the return variance when it is positive and decreases the return
variance when it is negative. Intuitively, when serial correlation is negative (positive), innovations partly offset
(reinforce) each other which leads to a decrease (increase) in the return variance. Moreover, notice that the
contribution to the return variance consists of a component that only impacts the return variance at high frequency,
i.e. 2po2(e”™* — 1), and a component which impacts the return variance at any given sampling frequency, i.e.
2p02m.

For the second case, the impact of a changeifless obvious because it requires a simultaneous change in
o2 s0 as to keep? constant. Here, the return variance exceeds the benchmaykBye ™ +m\ —1)/(1 + p?)
which is similar as before but now includes the tefin+ p?)~! and makes the relationship non-linear. To
facilitate the discussion, the left panel of Figure 3.3 visualizes this expression as a fungiitor eiA = 1 and

“Noticethaté; = —¢&; implies thata(§) = b (,¢) = 1.
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FIGURE 3.3: VARIANCE AND KURTOSIS AS AFUNCTION OF MA(1) COEFFICIENT
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Notes: Theleft panel plots the return variance increase when the MA(1) parameésemoved away from zero. We setA = 1 and
o2 =3%/(1 + p*) = 1in order to keep? fixed atz>. The left panel plots the return kurtosis as a function of the MA(1) parampeter
(againm\ = 1).

o2 =3%/(1 + p*) = 1. While a negative (positive) return correlation decreases (increases) the return variance

relative to the benchmark, the amount by which it does tends to zero whews in magnitude. Intuitively, an
increase irp “shifts” variance from the contemporaneous innovatigno the lagged innovatiopr;_;. Whenp
is sufficiently large in magnitude, the variance of the lagged innovation will swamp that of the contemporaneous
one and the process will effectively behave as if it was an(®)Arocess.

As opposed to the bid/ask model, ttterd momentof returns is zero unlesg, # 0. The expression for
this case is straightforward but sizeable and is therefore omitted. The unconditiorialmomentf returns for
wy, = 0 is given by:

3m*\ et (14 p)* + 3mAo (p2 — 1)2 — 1203 p? (e_m)‘ — 1)

It is clear from the expressions for the second and fourth moment, that the kurtosis of returns does not depend
on o,%. Also we note that the return horizom, and the arrival rate of tradea, enter multiplicatively into all
expressions. The impact of an increasenins therefore equivalent to the impact of an increase.inThis
simplifies matters substantially and to analyze the kurtosis, we only need#oXfiwhile varyingp. The right

panel of Figure 3.3 displays the return kurtosis as a functionfof mA = 1. Here the MAO) process serves

as a benchmark with a kurtosis coefficient3of 3/mA = 6. Positive (negative) serial correlation in the price
innovations thus induces an increase (decrease) in kurtosis relative to the benchmark. The maximum (minimum)
return kurtosis is attained by settipg= 1 (p = —1) and is equal tq.43 (4.75) for the current parameter values.
Finally, for 1, = 0, thecovarianceof non-overlapping returns can be derivéds:

E[Rr (tm) R (t — k — m|m)] = o2pw (k,m, \),

BUsingthat B [F(t +m)F(t)] = F (0)* + tAo2 (1 + p) — (e7™* + 1) pos.
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FIGURE 3.4: ERIAL CORRELATION OFRETURNS AND THE SAMPLING FREQUENCY
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Notes: Firstorder (i.e.k = 0) serial correlation of returns for the MA(1) compound Poisson process, as a functioi,dbr positive
(left panel) and negative (right panel) valuesof

wherem > 0, k > 0 andw (k,m, \) = e=** (1 — e_m)z_ The discussion of the covariance is analogous to that
of the variance. For fixed?, an increase (decrease) reads to an increase (decrease) of auto-covariance. For
fixed o2, on the other hand, the expression is proportional/td + p*) and thus takes on the same form as the
graph in the left panel of Figure 3.3. Based on the covariance and variance expresssamiaheorrelationof

returns can be derived as:
pw (k,m, \)

mA(1+p)2 —=2p(1—e™)
As expected, an increase in the displacement between returns, leads to an exponential reduction in the

magnitude of serial correlation and vice versa. The impact of a change owever, is less obviols Figure

3.4 displays the serial correlation of adjacent retukns:(0) for return horizons betwedhand10 () is kept fixed

at1). All curves are hump shaped, with the exception of the degenerate casepnherd, implying that serial
correlation may either increase or decrease under temporal aggregation depending on thenahtdiodt sight

this seems quite peculiar. However, when the return horizon (or sampling frequency) tends to zero, the time-series
of sampled returns will contain an increasing number of entries that are equal to zero. This, in turn, causes the
serial correlation to disappear in the limit. Importantly, thiadsthe case for the covariance.

3.3.1 Multiple Component Compound Poisson

Jumps inow frequency financial data are widely documenftedVhile transaction data are inherently discontin-
uous at any sampling frequency, the fact that some jumps can be identified even at low frequency indicates the

—kX

14Although the impact of a change im is not equivalent to that of a change Jn due to the terme=*?, it is very similar and will

therefore not be discussed separately.
155ee for example Andersen, Benzoni, and Lund (2002), Bates (1996, 2000), Duffie, Pan, and Singleton (2000), Eraker (2001), Jiang

and Knight (2002), Pan (2002).
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presencef jumps of different magnitude. While the jumps observable at high frequency are typically due to the
bid/ask spread and price resolution, jumps observable at low frequency can be due to for example a market crash
or certain macro-policy announcements. It therefore seems natural to extend the above médeldmponent
compound Poisson process with MA(Q) innovations:

M) My (®)
F)=F0)+ > eij+...+ > ey (3.10)
j=1 j=1

where

€rj = ProVrj + PraVrj—1+ ...+ ProVrj—q;
for v, ~ iid N (pr, 07,) and {M, (t)}¥_, are independent homogenous Poisson processes with intensity pa-
rameters\, > 0 for » = 1,..., k. Notice thaty denotes thenaximumorder of the MA(q) process driving the
components. Because ; and M, (t) are assumed to be independent, the present speciféatibthe process
doesnot allow for cross correlation among the components driiingThe derivation of the joint characteristic
function of F' (¢t) and F' (t + m) is therefore analogous to the single component case.

Corollary 3.3.2 (to Theorem 3.3.1) For the price process defined by expression (3.10) &hd¢) >> ¢, the
joint characteristic function of’ (¢) and F' (¢ + m), conditional on initial values, is accurately approximated by:

k
& (€1, €., m) = Fo {ei&F(t)JriézF(ter)} = a(&) [] ¢4, (61, 2.t m)
r=1

where

* z &2 ,pr(0,9) S i&ahP,pir,y—2ho? €302 ( ,—E1&202 ,pr(q;h) —&16202 ,pr(0,9) (m)"")h

¢5, (E1,&,t,m) = by (&,t) " TrwPri® Ze iRl (e e v 7)h!em’\r
h=0

+by (&) by (£2,m) & —6162)02 ,pr(0,0)

for o, = 325_o prj, br (§,t) = exp [tAr(eiémr,rég?ag,uﬁ% - 1)] , € anda(¢) asdefined in Theorem 3.3.1, and

Z?;(q’p) S inhprgprj—n  forg>1,p>1
0 otherwise

pr(q,p) = {

For t — oo, the above expression of the characteristic function is exact.
Proof See Appendix B.3.

For illustrative purposes we will now derive some properties for the 2-component compound Poisson process
with MA(1) innovations, i.ek = 2 andq = 1:
M (t) Ma(t)
Ft)=F0)+ Y c1j+ Y e
j=1 j=1

N—_—— N—_——
“DIFFUSION’ “Jump”

BAllowing for cross dependence among components is likely to be unimportant for the applications we have in mind here and will
therefore not be discussed.
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wheree; ; andes ; follow an MA(1) process. For the analysis of the return moments, weisgt= 2, = 0 and
p1,0 = p2,0 = 1 for notational convenience. Timeanis therefore zero while the retusarianceis given as:

m)\la% (1 + p1,1)2 + m)\gag (1 + p271)2 -2 (1 — e_m)\l) U%le -2 (1 — e_m/\Q) U%,OQJ
and thecovarianceof returns can be derivéfas:
E[R (tm) R (t — k — m|m)] = 03p11w (b, m, M) + 02ps,10 (k,m, M)

wherew (k,m, \) = e=** (1 — e*m)2 as before. Notice that the contribution of both individual components is
clearly separated and each take the same form as in the single-component casaialkerrelationof returns
can now be expressed as:

‘mw

P1,1W (k7 m, )‘1> + P2,1W (k7 m, )\2)

g
o

=N

(2

(V18]

o2
mA (14 p11)% = 2(1 —e=™\) p1g +mAg (1+ p21)’ 7% —2pa1 (1 —e~mA2)

S

In contrast to the single component case, the innovation variance does not cancel out indicating that its relative
magnitude is of interest. Because the return horizomppears in the denominator, it follows that temporal
aggregation of returns will lead to a reduction of serial correlation. A more distinctive feature of the model is that
the multiple component structure may induce serial correlation in the price process which can be zero, negative
and positive depending on the return horizon. This point is illustrated by Figure 3.5. We have set the parameter
values to extreme, and empirically unrealistic values, so as to magnify the effeat, ie6/min, A2 = 4/hour,
0? =8¢ —8,0% =8 —6,p = 0.8, po = —0.8. It appears that the first component generates positive serial
correlation in returns at high frequency (up to approximately a 100 second return horizon). At lower frequencies
the second component dominates and thereby induces negative return serial correlation. The location of the
“turning” points in the correlogram is closely related to the value\pfelative to\,, although a closed form
solution cannot be obtained.

An empirically interesting case is one where the parameters values are chosen sugh:that\, while
0? << o3. In particular, at low frequency, the sample path of the first component will be observationally equiv-
alent to that of a standard diffusion process such as a Brownian Motion. Howevet, sofficiently large, the
second component will generate infrequent discontinuities or jumps in the path which are observable even at low
sampling frequencies. This case is illustrated by Figure 3.6. The left panel displays minute by minute FTSE-100
prices for June 2, 1998. The right panel, contains simulated data based on the 2-component compound Poisson
process with MA1) innovations. The parameter values are chosen as 4/minute,\; = 2/day,o? = 8¢ — 8,
a% =8e — 5, p1,1 = 0.6, p2.1 = 0.1 and correspond to an annualized return volatilitp®hH % and first order se-
rial correlation of4.4%. Although the parameter values are chosen ad hoc, the features of the actual and simulated
data seem to agree. Clearly, more elaborate specifications can be considered. For instance, one may introduce
third component with an even lower arrival frequency and even higher variance so as to capture the impact of rare
events such as the outbreak of a war or the occurrence of an earthquake. Because the discussion of the model i
only illustrative at this point, we will not go further into the determination of the number of components or the
estimation of the model parameters.

17UsingthatEo[F(t)F(t + ’ITL)] = F(O)2 + t)qO’%(l + p171)2 + t)\zog(l + p2>1)2 — (1 + 67M)\1)0'?p1,1 — (1 + eim)\z)(f%pz,y
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FIGURE 3.5: SERIAL CORRELATION OFRETURNS AND THE SAMPLING FREQUENCY
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Notes: Firstorder (i.e.k = 0) serial correlation of returns for the 2-component compound Poisson process with) iiovations at
horizons between 1 and 250 seconds (left panel) and between 251 second and 2.5 hours (right panel). The model parameters are set a
A1 = 6/min, Ay = 4/hour,o3 = 8¢ — 8,05 = 8¢ — 6, p1 = 0.8, po = —0.8.

3.3.2 Time Varying Trading Intensity

While the models discussed above are able to capture a variety of dependence structtuessinhedurations
between successive trades are necessarily independent due to the “memory-less” property of the Poisson proces
(see Bauwens and Giot (2001) for a discussion). A number of empirical studies, however, find compelling ev-
idence that trade durations exhibit a substantial degree of time variation and serial dependence. In this section,
we will therefore generalize the model in such a way that it can account for this characteristic feature of high
frequency transaction data.

In what follows, we assume that the intensity processan be decomposed intadaterministiccomponent
s, and astochasticcomponenﬁ. Hence, we have = h\ + s when the deterministic component is additive,
and) = s\ when the deterministic component is multiplicative. Examples of a deterministic component include
the widely documented U-shaped pattern in intra-day market activity, day-of-the-week effects, time trends, and
any other seasonalities that may be present (see for example Andersen, Bollerslev, and Das (2001), Dacorogna
et al. (1993), Harris (1986)). The stochastic component, on the other hand, can account for serial dependencies
in the deseasonalized trade intensity and duration. For example, Engle and Russell (1998) find strong evidence
of autoregressive serial dependence in deseasonalized intra-day trade durations which motivates them to specify
the Autoregressive Conditional Duration (ACD) model. Moreover, the extensive evidence of ARCH effects in
low frequency (say daily / weekly) return data indicates that time variation in market activity is not only limited
to intra-day frequencies, but extends forcefully to lower frequencies. At this level, the stochastic component
typically dominates the deterministic one and, as a result, the time variation induced in low frequency return
variance is predominantly stochastic. In this section we will discuss specifications for both components of the
intensity process through which we seek to capture the following important stylized characteristics of return data
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FIGURE 3.6: ACTUAL AND SIMULATED HIGH FREQUENCY DATA
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Notes: Minute by minute FTSE-100 index data (left panel) for June 2, 1998. Simulated minute by minute data (right panel) using
the 2-component compound Poisson process with(MAnnovations. The model parameters are sekas= 4/minute,\. = 2/day,

Uf = 8e — 8§, US =8e —5,p1,1 =0.6,p2,1 =0.1.

both at low and high frequency:

() seasonality in trade durations and market activity
(ii) serial dependence in deseasonalized trade duration
(iii) persistence in return variance at low sampling frequencies

We refer to property (ii) as “ACD"-effects and to property (iii) as "ARCH"-effects, thereby alluding to the
seminal work of Engle and Russell (1998), and Engle (1982) and Bollerslev (1986) respectively. Because the aim
is to capture all of the above effects through the specification of the intensity process exclusively, a brief discussion
of the relation between trading intensity, return variance, and trade duration is in order. Recall that for the standard
compound Poisson process with unit innovation variance and (trade) inténgige expected return variance
over a unit time interval equals while the expected trade duration is equalljo\ . Trading intensity is thus
proportional to return variance and inversely proportional to trade durations. However, these relations may break
down when we generalize the compound Poisson process. For example, when a bid/ask spread “contaminates”
the data, we have shown that the return variance is equalpiois a non-linear correction term involving the
spread. What's more, when the trading intensity is a (non-degenerate) deterministic function of time, the return
variance equalg A (u) du even though the expected trade duratiomasequal tol/ [ A (u) du. These cases
are examples where the proportionality between trading intensity, return variance, and inverse of trade duration,
is lost. However, it seems reasonable to expect that in many cases the proportionality will hold approximately.
Clearly, the extent to which this is true depends on the model specification and also on the sampling frequency of
the data (as we have shown that market microstructure effects vanish under temporal aggregation).
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Corollary 3.3.3 (to Theorem 3.3.1)For the price process defined by expression (3.7), with a non-constant in-
tensity process) (-), and M (¢) >> ¢, the joint characteristic function of (¢) and F' (¢t + m), conditional on
initial values, is accurately approximated by:

% (&1, &2, t,m) = Ey {ei&F(tHi&F(Hm)} = a(§)¢s (€1, &2, t,m) (3.11)

where¢ (&1, &2, t, m) equals:

72 2 iy e g — 13 2¢2-2 2 2 — ()\* (t m))h
& oup(a:q) Zel£2hpuu—§h0u£gp (6—5152%9(%’1) _ 6‘5162”»%’(‘]7‘1)) Eydb (5 0 t) ' /\’(t )
b ) h,e * m
h=0

4@ —a&)odolaa) g {b(E,0,t) b(Eat,m))

A (t, 1) = tt+T A(u)du, b(&,t,7) = exp [(ei@“"’%f%gﬁz - 1) A* (t,T)}, and¢, p, a(€), p(q,p) are as
defined in Theorem 3.3.1.
For t — oo, the above expression of the characteristic function is exact.

Proof See Appendix B.3.

Allowing for time variation in the intensity process, leads to a modified characteristic function of the price
process as can be seen by comparing expression (3.11) in Corollary 3.3.3 to expression ( 3.8) in Theorem 3.3.1.
If time variation in the intensity process is entirely deterministic, or knowt at 0, the expectation operator
vanishes in the expression fot, (£1, &2, t,m) and moments can be derived in the usual fashion. This holds true
irrespective of the, potentially complex, functional form fof-). However, when time variation in the intensity
process is (partly) stochastic, i.e. unknowrt at 0, the expectations operator remains because the integrated
intensity process is now a random variable. Moments cannot be derived without explicit specification of the
dynamics of the intensity process, and even then, closed form solutions will not be available in many cases.

Deterministic Intensity Process. We will now briefly illustrate the usefulness of allowing for deterministic
variation in the intensity process. As mentioned above, one of the most prominent features of high frequency data
in financial markets is the U-shaped pattern in intra-day market activity and return volatility. In particular, it is
widely documented that market activity is substantially higher around the open and close of the market than around
lunch time. Another important characteristic is that the overnight return typically accounts for a non-negligible
fraction of the overall daily return variance. While trading in many securities is halted overnight, information
flow is not. This in turn, leads to an accumulation of information which can only be incorporated into the price
at the next open of the market. The overnight return may therefore reflect a disproportionately large amount of
information relative to the subsequent intra-day returns. A highly stylized specification of the intensity process,
that is consistent with the above observations, is the following:

A(t) = a+bcos (2mt) + cly_[<na) (3.12)

wherea > b, ¢ > 0,0 < A << 1, [t] denotes the integer part 6fand is an indicator function which equals
whenever — [t] is less tham\ and zero otherwise. Using the single component compound Poisson process with
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FIGURE 3.7: ACTUAL AND SIMULATED HIGH FREQUENCY DATA
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Notes: Correlogramof minute by minute absolute returns for the FTSE-100 index (left, period 1990-2000) and for simulated minute by
minute data (right) using a single component compound Poisson process with) M#ovations and a deterministic intensity process
given by expression (3.12). The parameter values are set=ast/ minute,b = 2.25, ¢ = 120/minute, A = 2/480, p = 0.3, and

o2=7e—8

MA (1) innovations and an intensity process as specified above, we simulate 5 years of high frequency transaction
prices using the following ad hoc parameter values: 4/ minute,b = 2.25, ¢ = 120/minute, A = 2/480,

p = 0.3, ando2 = Te — 8. Based or8 hours of trading per day, these parameters imply an average6of

trades per day, an annualized daily return volatilit®#%, and a more tha®5 fold increase in market activity
(relative to the daily average) during the first two minutes following the market open. The overnight return aside,
trading intensity at open and close (mid-day}@$s higher (lower) than the daily average.

The left-hand panel of Figure 3.7 plots the correlogram of minute by minute absolute returns on the FTSE-
100 over the period 1990-2000. The displacement is up to 2400 lags, or equivalently, five trading days. The
U-shaped pattern in market activity and the impact of the overnight return is apparent. Moreover, the magnitude
of both effects underline the importance of allowing for a deterministic pattern in the intensity process. The
right-hand panel of Figure 3.7 plots the correlogram for the simulated data sampled at minute intervals. The
strong agreement among the correlograms of the actual and simulated data demonstrates that the naive and overl
simplistic specification of the intensity process does capture important patterns in high frequency return data at
least to some extent. However, a more detailed inspection of the graphs points to some important differences.
For example, the correlogram for the FTSE-100 data indicates a peak in market activity during the afternoon
trading session that is, most likely, associated with the open of the US markets. A more subtle difference in
the correlogram for the actual data is that the correlations are strictly positive at any displacement and that there
appears to be a slow decline in their magnitude. One possible explanation for thissthetsticvariation in
market activityacrossdays induces (positive) serial dependence in the return variance which comes to dominate
the intra-daily seasonal pattern at longer horizons. Such dynamics are clearly absent in the above specification of
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theintensity process and will be discussed next.

Stochastic Intensity Process. As can be seen from Corollary 3.3.3, when the intensity process is (partly)
stochastic the expectation operator in the characteristic function remains. Hence, an expectation of the form
Ey |exp (aX* (0,t) + bA* (t,m)) A* (t,m)h} for h = 0,...,¢ — 1 needs to be computed. If the joint Laplace
transform forA* (0,¢) and\* (¢, m) is available, i.e.® (a,b) = Ep [exp (aX* (0,t) + bA* (t,m))], this expecta-

tion can be obtained as:
o"® (a,b)

ovh
However, for many specifications the joint Laplace transform will not be available in closed form and moments
need to be obtained by simulation. Below we will discuss a dynamic specification of the intensity process which
is capable of generating both ACD and ARCH effects in the price process and for which the Laplace transform
does exist in closed form (see Appendix B.2 for details). In spite of the models flexibility and analytic tractability,
a major drawback of the specification is that there is nothing that prevents the intensity process from becoming
negative. In practice this feature of the model is clearly undesirable. Here, however, this deficiency does not pose
a problem to us as the discussion is purely illustrative and the intuition derived from this case is likely to remain
in tact for alternative specifications.

ACD and ARCH effects are known to unveil themselves at different frequencies and we therefore decompose
the stochastic intensity process into a high frequency and a low frequency component. In particular, ARCH
effects are modelled through the low frequency component while ACD effects are modelled through the high
frequency component. Market microstructure considerations are clearly of less importance for the low frequency
component as they are for the high frequency component. It therefore seems reasonable to rely on proportionality
between (integrated) intensity and (integrated) return variance when modelling the ARCH effects. For this case,
the dependence structure of the intensity process will (closely) corresponds to that of the variance process and an
appropriate specification for the low frequency componenis as follows:

do(t) = —p(a(t) — p)dt + codWy (1), (3.13)

wherep > 0, 0, > 0, andW,, (¢) is a standard Brownian motion. The above process is known as the Ornstein-
Uhlenbeck (OU) process and has the interesting property that it can be viewed as the continuous-time analogue
of the Gaussian first order autoregression. One way to see this is to discretize the time scateiAswhere
i =1,...,T/A so thatA can be interpreted as the frequency at which the continuous time process is sampled
while T'A represents the total number of periods. The solution to the SDE in expression (3.13) can now be written
as

at) =p(1- e_“"A) + e PPa(ti1) + ey

wherezs;, ~i.i.d. N/ (O, 1‘62:;)% 03). The discretized sample pathefthus follows an autoregressive process of

order one with autoregressive parameter equal . Its persistence therefore depends both on the parameter
¢ and the sampling frequencyA. In particular, for fixed parameters and o,,, the persistence of the process
increases with an increase of the sampling frequelgcie. smallerA (see Boswijk (2002, Chapter 6) for more
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details).Because ARCH effects are a low frequency phenomenon, weasdo,, sufficiently small causing to
appear roughly constant at high frequency. However, at lower frequencies, the mean reversion will become more
apparent, leading to an autoregressive dependence structure in return variance - ARCH effects.

The modelling of ACD-effects is unfortunately more complicated. At high frequency, market microstructure
effects and time variation in the intensity process can distort the proportionality between trade intensity and
trade duration. In addition, we need to address the question what dependence structure should be imposed on
the intensityprocess in order to generate ACD effects, i.e. autoregressive dependencalimatien process.

Even in idealized situations, there is no clear answer to this question and we will proceed under the debatable
assumption that ACD effects can be captured by means of an autoregressive component in the (deseasonalized
intensity process. With this in mind, we specify the high frequency component as follows:

AN (1) = —k (X (t) — (t)) dt + o\dWy (t) (3.14)

wherex > 0, k # ¢, o) > 0, andW,, is a standard Brownian motion independentiaf. The process given by
expression (3.14) is a generalization of the standard Gaussian OU process. It has the propemgémateverts
towards the low frequency component,which itself varies stochastically through time. In the current context,

the difference betweeh anda constitutes the high frequency component of the intensity process. Quick mean
reversion of\ towards the stochastic long run meancan be expected to generate mean reversion in the duration
process at high frequency, thereby leading to ACD effects. Hence, both ARCH and ACD effects can be generated
wheny << k ando, << o) ando? /¢ >> o3 /k. At high sampling frequencies, the process}onvill quickly
“oscillate” around the stochastic long run meanwhich itself is roughly constant due to its extreme persistence

and small innovation variance relative o The stochastic time variation of the intensity process sherttime

intervals will therefore be mainly driven by the OU processXarhose mean reversion will lead to ACD effects.

On the other hand, at low(er) sampling frequencies, the stochastic variation in the average (or integrated) intensity
process arising from the OU process fowill be minimal due to its quick mean reversion, and at some stage

the stochasticity of the long run mean component will come to dominate. Slow mean reversidramslates

directly into slow mean reversion of trade intensity which, in turn, leads to ARCH effects. Another way to see
this is by considering the intensity variance at low frequency which can be shown to"éqw% which

is approximately equal té’% + % for k >> . Because, by assumption, the parameters are chosen such that
02/p >> o2 /K, itis clear that the stochastic long run mean dominates at low frequency. One can thus think of
the OU process fok as driving time variation in the intensity process at high sampling frequencies, ahis
a “level-shifting” effect in the sense that it slowly moves tbeelat which\ operates.

In order to further illustrate this property of the model, we fix soa@hocparameter values that satisfy the
above criteria, i.ex = 5, oy = 0.25, ¢ = 0.0001, 0, = v/0.001, andp = 5 and simulate x 252 periods of
the intensity process with’0 discretization steps per period. The left panel of Figure 3.8 graphs a time series of
intensity proces§ over the first two periods of the simulated sample. The superimposed dashed line represents
the corresponding long run mean component. It is clear that most of the variation in the intensity process at
high frequency comes from the OU dynamics?of The right panel of Figure 3.8 plots the period by period
average (or integrated) intensity process which corresponds very closely to the low frequency component (not
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FIGURE 3.8: TRADE INTENSITY PROCESS ATHIGH AND LOW FREQUENCY
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Notes: Simulatedntensity process (without deterministic component) based on the “double OU” process as defined by expressions (3.13)
and (3.14). The left panel plots the intensity process at high frequency (thin line) for 2 periods together with its associated long run mean
component (thick line). The right panel plots the average intensity process at lower frequency for the full simulated sample of 504 periods.
The model parameters are setas 5, o) = 0.25, ¢ = 0.0001, 0, = +/0.001, andu = 5.

displayed). At this frequencyy drives the overall variation in the intensity process, while the OU component for

X contributes little. Next, we estimate a simple Exponential-ACD(1,1) and GARCH(1,1) model on simulated trade
durations and daily returns respectively and find that (results not reported) for appropriate parameter values, the
autoregressive dependence structure in these (squared) variables can indeed be uncovered. However, as expecte
the lagged duration (ACD) and lagged squared daily return (GARCH) terms enter insignificantly suggesting that
our model is in fact more closely related to the Stochastic Volatility model (Harvey, Ruiz, and Shephard 1994)
and the Stochastic Conditional Duration model (Bauwens and Veredas 2003).

In summary, stochastic variation in the high and low frequency component of the intensity process can lead
to ACD and ARCH effects respectively. For the specification discussed above, closed form solutions for the
intensity process are available (see Appendix B.2 for details). Because the integrated intensity process turns out
to be conditionally normal, a closed form expression for the characteristic function in Corollary 3.3.3 is available
as well. As mentioned above, a major flaw of the model is that there is nothing that prevents the intensity process
from becoming negative. In the context of volatility modelling, Gupta and Subrahmanyam (2002), Stein and Stein
(1991) have used a similar specification and justified this on the basis that for a wide range of relevant parameter
values, the probability of actually reaching a negative value is so small as to be of no significant consequence.
Also, at this point the discussion of the model is purely illustrative and the intuition derived from this case is likely
to remain in tact for alternative specifications. Nevertheless, in practice it may clearly make sense to sacrifice
analytic tractability in return for a more appropriate specification which ensures positivity of the intensity process.
One approach is to specify the model is terms of logarithmic intensity or incorporate a state-dependent innovation
variance as is done in the Feller or CIR process. Other models of potential interest are some of the non-Gaussian
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OU processes discussed by Barndorff-Nielsen and Shephard (2001).

3.4 Realized Variance and Return Dependence

In the context of the models analyzed above, we now study the impact of - market microstructure induced -
serial correlation in returns on the properties of the realized variance (RV) measure. Importantly, we show that
serial correlation renders the RVbéasedestimator of the conditional return variance. We derive closed form
expressions for the bias term as a function of the sampling frequency and the model parameters and show that the
magnitude of the bias decays under temporal aggregation of returns at a rate that is inversely proportional to the
sampling frequency. We also discuss the optimality of alternative sampling schemes.

In an influential series of papers Andersen, Bollerslev, Diebold, and Labys (2001, 2003, ABDL hereafter) have
shown that when the logarithmic price process follows a semi-martingale (i.e. a process which can be decomposed
into a finite variation component and a martingale component), its associated quadratic variation (QV) process
is a critical determinant of the conditional return variance. Importantly, the QV process can - by definition -
be approximated as the sum of squared returns sampled at high frequency. It is this approximation of the QV
process that is commonly referred to as realized variance or volatility. In full generality, the relation between
the conditional return variance and the RV measure is not clear-cut. However, under certain (possibly restrictive)
assumptions on the finite variation component of the semimartingale, ABDL showetHiaied variance is an
efficient and unbiased estimator of the conditional return variand8DL also argue that a violation of the
assumptions ensuring unbiasedness is likely to have a trivial impact on the properties of the RV measure, thereby
establishing it as an unbiased, efficieamd robust estimator of the conditional return variance. In the notation
established above, ABDL exploit the following equality:

N/m

E Y R(t+jmm)*|F| = E|R(t+ N|N)*|7|. (3.15)

j=1
where R denotes excess returns,denotes the sampling frequency, wherdasgenotes the length of the period
over which RV is calculated. It is clear from expression (3.15) that the unbiasedness of the RV measure crucially
relies on the martingale property of logarithmic (risk adjusted) prices, or equivalently, the absence of serial cor-
relation in excess returns. Nevertheless, a number of recent studies have implemented the RV measure without
much concern for possible violations of the martingale assumption underlying the unbiasedness of this measure. It
therefore seems appropriate to study the dependence structure of high frequency returns and its associated impac
on the properties of the RV meastfteAlthough this is largely an empirical matter, and results can be expected to
vary across securities and time, the models discussed in this paper seem to capture a number of salient features o
high frequency returns particularly well and are therefore well suited to assess the properties of RV in a realistic,
yet theoretical, setting.

185eeAndreou and Ghysels (2001), Bai, Russell, and Tiao (2001), and Oomen (2002) for related work.
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3.4.1 The “Covariance Bias Term”

We investigate the properties of the RV measure for the single component compound Poisson procesgyith MA
innovations. Because the results for the “bid/ask model” take the same form, we do not discuss this model
separately. In the discussion below we distinguish between the case where trade intensity is constant and the case
where it is time varying. To simplify notation we also g&t= 0.

Constant Trade Intensity. Due to the stationarity of the return process, the conditional and unconditional return
variance coincide and can be expressed as

NI
E[R(t+ N|N)2| = NXo2 (1 + p)* — 202%p (1 - e_N)‘> = NAo2 (1+ p)? (3.16)
On the other hand, the expectation of the RV measure is equal to:
N/m 9
N
E S R(t+ jmim)?| = NAo2 (14 p)® -2 (1 - e—mA> P9y (3.17)
. S———— m
J=1

RETURN VARIANCE
COVARIANCE BIAS TERM

In practice,N is typically large (e.g. a day or week) and the approximation error in expression (3.16) can there-
fore safely be ignored. In contrast, is typically small (e.g. minute or hour) and the second term on the right
hand side in expression (3.17) may therefore be substantial. This illustrates a crucial point: when high frequency
(intra-period) returns are used to construct the RV mea- ¢

o

sure, i.e.m < N, serial correlation of returns induces a
Positive Serial Correlation (0=0.30)

bias that is characterized by the second term on the right, |, — — Negative Serial Correlation (o=—0.30)

—— Limit (25% Annualized)

hand side of expression (3.17). This bias can be either”
positive or negative depending on the signpofMore- 3 \

0
/

over, the magnitude of the bias term decays atwate f N
under temporal aggregation while it tendst@N \o2p e

25

form — 0. Itis emphasized that this result does not rely °
on the approximation in expression (3.16) and will hold

true as long as intra-period return are used to constructss 2 s+ s & 7 & o 1

m (in minutes)

the RV measure, i.eV > m. Clearly, the magnitude of
the bias will depend on specific parameter values andFtiBEre 3.9: Covariance Bias Term for MA(1) with positive and
sampling frequency. negative correlation coefficients

This is illustrated in Figure 3.9. Fbtp = 0.3 andp = —0.3, we plot the return variance (standardizedsy
plus the bias component for return horizons up to 10 minutes. The paramjeteadjusted so as to maintain an
annualized return variance 25%, i.e. forp = 0.30 (p = —0.30) we haver2 = 1.529¢ — 7 (02 = 5.272¢ — 7). It
turns out that for these parameter values the bias term is substantial, i.e. 206u(t2%) of the return variance

1Remembethat the MA structure is imposed on returnstiansactiontime. For the bond futures data analyzed in Section 3.2 we
found a first order serial correlation of abou.45. The chosen parameter values in the simulation are therefore reasonable from an
empirical point of view.
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whenreturns are negatively (positively) correlated and sampled at the 1 minute frequency. The magnitude of
this bias can go up t60% (20%) when sampled at even higher frequencies! These analytical results are in line
with a recent study by Oomen (2002) which finds that for the FTSE-100 index over the period 1990-2000 (i)
high frequency returns feature substantial serial dependence (for minute by minute data, the serial correlation
is positive and significant up to high orders), (ii) the covariance bias term is around 40% for minute by minute
returns and (iii) the magnitude of this bias term decays hyperbolically under temporal aggregation.

Time-Varying Trade Intensity For simplicity we focus on the case where the time variation in the trading
intensity is a deterministic function of time only. Although more general results can be derived within the OU
framework outlined above, the notation is complex and the stochastic case does not add much additional insight
for the discussion below. In the deterministic setting, it directly follows from Corollary 3.3.3 that

Nlarge
~ 02

B [Rp (t+ NINY?| = 02 (14 p)* X (¢, N) = 2002 (1= ¥V 2(1+p)> M\ (£, N)

On the other hand, the conditional expectation of RV is:

N/m N/m—1
Er | Y R(t+jmim)?| =02 (1+p)* X" (t,N) — 2002 Y (1 - e**“ﬂmm)) (3.18)
7=1 7=0

RETURNVARIANCE

COVARIANCE BIAS TERM

Again, the bias term can be substantial depending on the sampling frequency and model parameters and similar
results can be derived for this case as for the constant intensity case. A more interesting feature of the bias
characterization for non-constant trade intensity, is that it allows us to analyze the performance of alternative
sampling schemes to which we turn next.

3.4.2 Bias Reduction and Optimality of Sampling Schemes

As pointed out above, the presence of serial correlation in returns introduces a bias in the RV measure which can
be substantial for realistic model parameter values. Because the efficiency of the RV measure crucially relies on
the use of intra-period returns, one faces a trade off between the sampling returns at a high frequency, thereby
minimizing the measurement error, and sampling returns at low frequency, thereby minimizing the bias term.
This trade-off suggest the existence of an “optimal” sampling frequency, that is the highest available frequency at
which the bias term is negligible. Alternatively, one could estimate the model parameters and correct for the bias
term based on the expression derived above. In practice it is not clear which of these two approaches is preferable.
While the bias correction method allows one to use all available data, it is clearly model dependent. The gain
in efficiency may therefore be offset by the impact of model and parameter uncertainty. On the other hand,
while specifying an “optimal” sampling frequency is essentially non-parametric or niodighendent, valuable
information may be lost by the aggregation of returns.

Arelated issue that arises in this context is how to sample the data. Up to now we have only considered returns
that are sampled at equidistaimieintervals, i.et + jm for j = 1,..., N/m. However, when transaction data is
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available it is also possible to consider alternative sampling schemes. A particularly interesting one is where the
price process is sampled at time poinfdor j = 1,..., N/m wherery = t, T/, =t + N and

Tj+1 m TN/'m
/ AMu)du = N / AMu)du = A\, (3.19)
T T0

J
The above sampling scheme effectively “deforms” the calendar time scale by compressing it when the arrival rate
of trades is low and stretching it when the arrival rate of trades is high. In this case, one can think of returns being
equally spaced on a “transaction” or “business” time scale as opposed to a calendar time scale. An attractive
feature of this sampling scheme is that the statistical properties of returns sampled on this deformed time scale
coincide with those of @aomogenousompound Poisson process with intensity parameter equay), t@ecause
the construction in expression (3.19) ensures that both sampling schemes generate the same number of intra-
period returnsV/m), it is of interest to compare the bias term associated with each scheme. As can be seen from
expression (3.18), for the calendar time sampling, the bias term is equal to:

N/m—1

o 3 (1 e emm)
§=0

On the other hand, for the “business time” sampling, the bias is simply:

N/m—1

2p02 Z (1—67)"”)

§=0
Surprisingly, it turns out that the bias term associated with calendar time sampled returns issstrédkly than
the bias term associated with “business time” sampled returns. In order to show this it is sufficient to prove that

N/m—1 N/m—1 N/m—1
o e Mlmm 5 N e=Am o or equivalently == ) emAlImm) 5
; ; N 4
J=0 J=0 J=0

By the definition of),, and the convexity of the exponential function, the above inequality must hold as long as
the intensity parameter ison-constant Note thatR measures the biasductionassociated with calendar time
sampling relative to transaction sampling. This gain increases with an increase in the variability &hen

the intensity parameter is constant, we have fat 1, and both sampling schemes are equivalent.

Bias versus Mean Squared Error

The approach outlined above, classifies competing sampling schemes solely based on the relative magnitude of
its associated bias. An alternative well known measure of performance is the mean squared error (MSE) which
trades off a reduction in the bias against the loss of efficiency. While we have shown that calendar time sampling
strictly dominates business time sampling when we use a bias-based ranking, it may very well be that this result
is reversed when we use an MSE-based ranking which takes both bias and efficiency into account. Unfortunately,
an analytic treatment of an MSE-based ranking of competing sampling schemes is not feasible because we do not
have a closed form solution for the variance of the RV measure available. A small-scale simulation experiment
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is therefore undertaken to gauge whether an MSE-based ranking will yield qualitatively different results than the
bias-based ranking.

We focus on the single component compound Poisson process with MA(1) innovations and deterministic time
variation of the intensity process, i.e.(t) = s(t). The specification we use far(¢) is similar to expression
(3.12) with the indicator function left out. The parameter values are the same as discussed on page 70. Next, we
simulateT’ = 1000 (disjoint) days of transaction prices. LEft (u) denote the security price at timeduring day
t whereu C [0, N] andt = 1,...,T. In addition, letF; (7;) denote the security price associated with itfe
transaction on day. The implementation of calendar time sampling is straightforward, i.e. for a giveh atay
a sampling frequency:, we sampleV/m returns as

Ri (jlm) = Fy (jm) — Fi ((j — 1) m)

for j = 1,..., N/m. The corresponding business time sampling scheme, in contrast, samples the same amount

of returns as follows:
R (jlk) = Fy (tjx) — Fy (TG-1)k)
forj=1,..., N/mandk = mn,/N wheren; denotes the total number of transactions for id§ased on these
return series we then compute the sample average of the realized variance measure under both sampling scheme!

T N/m

1 o
CRV (m) = => > Ri(jlm)?,
t=1 j=1
T N/m

BRV(m) = =33 RIK?,

t=1 j=1

and the mean squared error under both sampling schemes:

T N/m
1 .
CMSE(m) = =Y (B[R]~ Ri(jlm) .
t=1 7j=1
1 T NG 2 2
BMSE(m) = >4 B[R]~ Y R (jlm)
t=1 7j=1

Figure 3.10 displays all of the above statistics for sampling frequencigbdtweenl second and minutes.

A number of interesting patterns arise. As expected, based on the bias-ranking, the calendar time scheme domi-
nates. However, the difference in performance between both schemes rapidly shrinks as the sampling frequency
decreases. At sampling frequencies lower than 1 minute, the difference is minimal which implies that the optimal
sampling frequency will be the same for both schemes. In contrast, when the MSE is used to rank the sampling
schemes, it appears that the business time sampling achieves the lowest overall MSE. Moreover, the sampling
frequency which minimizes the MSE is substantially higher than the sampling frequency which minimizes the
bias. Ignoring the efficiency loss associated with aggregation of returns, as is done for the bias-based ranking,
clearly leads one to choose a much lower sampling frequency than if the MSE is taken as the relevant performance
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FIGURE3.10: REALIZED VARIANCE AND MSE FOR CALENDAR AND BUSINESSCLOCK SAMPLING
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right panel) for “Calendar” clock (solid line) and “Business” clock” (dashed line) sampling schemes. The results are based on the single
component compound Poisson process with MA(1) innovations and deterministic time variation in trade intensit¥) e s (¢t) where

s (t) is given by expression (3.12). The model parameters are setas/ minute,b = 2.25, ¢ = 0, A = 0, p = 0.3, ando? = 7e — 8.

measure. Based on this simulation experiment we conclude that business time sampling dominates calendar time
sampling when the objective is to either minimize the bias (in which case both schemes perform roughly equal)
or minimize the MSE (in which case business time sampling dominates).

3.5 Conclusion

This article studies several extensions of the compound Poisson process which are able to capture important
static and dynamic characteristics of high frequency security prices. In contrast to diffusion-based models, our
framework is consistent with the finite variation property of high frequency returns and does not impose the usual
martingale restriction on asset prices. By comparing the properties of simulated data to actual high frequency
data we illustrate the flexibility of the model and its ability to capture important features of high frequency data
including, (i) skewness, excess kurtosis and return serial correlation which diminishes under temporal aggregation,
(i) deterministic variation in trading activity such as the U-shaped intra-day pattern, day of the week effects, and
the increased variance of the overnight return, and (iii) stochastic variation in trading activity leading to serial
dependence in trade durations at high frequency (ACD-effects) and return volatility at low frequency (ARCH-
effects). In addition, our models provide a useful context in which to investigate “market-microstructure-induced”
serial correlation of returns at different sampling frequencies and its associated impact on the recently popularized
realized volatility or variance measure. In particular, we show that for realistic parameter values the realized
variance measure is a biased estimator of the integrated variance process and that the choice of sampling frequenc
proves crucial in minimizing this bias. Allowing for time variation in the trade intensity process yields interesting
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insightsinto the properties of alternative, time-deformation-based, sampling schemes.

Throughout this paper we have illustrated the properties of the model for realistic parameter values but an
issue which remains for future research is the specification and estimation of the various models using actual high
frequency data. Specification and estimation of the bid-ask spread model is relatively straightforward because
few parameters are involved and the availability of a closed form characteristic function suggests a variety of
inference techniques that can be applied. For example, it is straightforward to specify a number of moment
conditions (based on for example return variance, skewness, kurtosis, and serial correlation) and use GMM for
estimation. Alternatively, it is possible to use a “continuum” of moment conditions by matching the theoretical
characteristic function to its empirical counterpart (Carrasco, Chernov, Florens, and Ghysels 2002, Jiang and
Knight 2002). However, the model that is potentially more relevant for the modelling of security prices both at
low and high sampling frequency, is the multiple compound Poisson process with correlated innovations and time
varying trade intensities. Specification and estimation of such a model is clearly more involved as it requires one
to determine the MA-order, number of components, and dynamic specification of deseasonalized trade intensities.
Also, the double OU process discussed above is clearly not well suited for practical purposes since it admits
negative trade intensities and may cause numerical instability in the inference procedure. A host of alternative,
and more appropriate, specification can be thought of including a simple log transformation or more elaborate
non-Gaussian OU processes (Barndorff-Nielsen and Shephard 2001). Because analytic tractability is often lost
for such models, moment conditions or characteristic function will have to be evaluated numerically, adding to
the complexity of the inference procedure. Nevertheless, inference is still feasible and worthwhile pursuing as it
may provide important insights into the dynamic properties of financial security prices across a range of sampling

frequencies.
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Appendix A

A.1 Proofs
Proof of Lemma 2.2.1 From (2.3) and (2.4), we have

(w; Stks — Sexe—1)5 | St Vi)
lexp {iv/ (Siks — Serw—1)5) } | St Vi]
[E [exp {it/Spyrs — it/ Sy i—1)s § | Serb—1y85 Viro—1ys) | St, Vi)
= E[exp{C(6,u,0) 4 (D1(6,u,0) —iv') Spt (515 + D2 (6,u,0) Viy_1ys } | St, Vi
= exp{C (6,u,0) + C[(k — 1)8, —iD1(6,u,0) — u, —iD2 (5, u,0)]
+D1[(k —1)8,—iD1 (6,u,0) —u, —iD2 (6, u,0)]" S,
+D2[(k —1)8,—iD1 (6,u,0) — u, —iD2 (6,u,0)]' V;}

(0
- F
E

The conditional cumulants follow by definitidm.

Proof of Corollary 2.2.2 The results are follow directly from the equations in expression @&.8).

A.2 Stochastic Mean Model

A.2.1 State-Space Representation

It is straightforward to show that the stochastic mean model in (2.12) can be written as:

K
08—k
Xt+7- = e_ﬂTXt + Ef_;'_,[.

Risr (efm' _ eiﬁ”') X: + 5?—}-7—
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whereR;, = Si1r — e 7S, andef ande} are iid jointly normal random variables with

1— 67275

Vet = Tgi
V[ S] 5 1 — e 27 I{O’g (1 — e—QHT) K‘QO'% (1 _ 6—257) /{20.;% (1 _ e—(ﬁ-‘rﬁ)T)
€l = o _
t 2 20-r7 | 28G-r B+
.8 /10'3/, 50—926@*27'5 HU%e*T(ﬂ+K)
Eleiei] = + —
26(+r) 2B-mB (B+r)(B-r)
Note that the marginal distribution @@ (and S) ~ /\/( ,% + W‘%H)) and X, ~ NV (07 %) The above

formulation is in (time-invariant) state-space form:

v = Zop+ Gey (observation / measurement eqn)
a1 = Top+ Hey (state / transition eqgn)

wheree; ~i.i.d. N (0,12), yt = Riyry a0 = Xy, Z = 6 (6 — Ii)il (e_"” — e_ﬂT), T = e P, G = (a;b),
H = (b;c¢) and

1/2
02 +02+2,/0202 — 2
a= e b=060; c= Cos= | oY

_1+52(02—02). 1—52(02—03)
20 20 7 462 + (05 — 03)2

foro2 =V [Gey] =V [ef] = a* + V%, 0% =V [He) = V [ef] = b + ¢, andf = Cov [Gey, Hey| = E [efef] =
ab + be.

A.2.2 Covariance Expressions

For the stochastic mean model in (2.12), the variance expressionS;,;s|F:] = Var St 5], is given as:

. 0.252
(_1 i e-ggﬂ(s) o2k2 2 (_1 + e—jé(ﬁ-l—m)) o252 (—1 + e*m“) <(ﬂin)2 =+ 02>
2 + 2 B
26 (8 — k) (B—r)"(B+kK) 28

Thecovariance expressiof,ov [Si4 js, Si4ks| Fi] = Cov [Si1js, Si+ks) for j # k, is given as:

e_(j+k)65 (_1 + erﬁé) U§E2 6(—j+k)6r~c (_1 + e—k(S(ﬁ-‘rH)) U{%HQ

+
28(8 — ) (B—r)* (B+ k)
. 0‘2,‘{2
_efa(jfﬂrlm) (_1 4 ek&(ﬁJm)) o2k B e(—i+k)sk (_1 + 6—21@5,@) (W + 02)
(B—r)*(B+ k) 2k

A.3 Stochastic Volatility Model

For notational convenience we assume fhat 0. This implies that?’ [2?] = K [z?] andE [2*] = K [2*] +
3K [:cz]z. The results below can be generalized straightforwardly for a non-zero mean. The first conditional
moment/cumulant of squared returns equals

E [(AS;yj5)? |ft} =K [(ASH]@V |-7:t} =a(j)+c()Vi
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Thecross moment of squared returd&{ AS; , x5)* (ASi15)* | i), is given by:

) ) 23Uk N 233cG k1B

5 Ba+ o25p%3 + o s Vi—«
+0 <eﬁ — 1> (Vi —a) F2ei + ad (eﬂ — 1) 5

for j > k. The fourth conditional cumulant of return&(,[(AStJrj(;)4 | Fz], is given by

(1—e%)? 32232 — (2p% 4+ 1) (P — 5 — 1)
302 (a — 2V}) e +60% (a — V) Bei
3002t e (85 — 1) — 8p? (e”° — 1) +4p?08 (1 + %)

ﬂSeﬁé

from which we can derive the fourth moment using the following cumulant-moment relation:

B[(8S50)! 17 = K [(8S50)'17] + 3K [(88110)217]
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Appendix B

B.1 The Characteristic Function

Following Feller (1968), lefX denote a random variable with probability measuré he characteristic function
of X (or 1) is the functiong (£) defined for reat by:

¢ =F [eigx} = /OO

—00

(e 9]

e (dx) = / (cos (§x) + isin (§x)) p (dx) .

—00

The characteristic function @fX + b equalse™® ¢ (a&). WhenX is Gaussian with zero mean and unit variance
o) = e3¢, Non-centraimomentgm,,) and cumulantsx,) of ordern can be derived as:

06O a6 ()

mp =1 8§n |5:0 and Rp = Tgn ’é‘:(]

There exists a one-to-one relationship between moments and cumulants of any order. For the first four orders
they are as followsk, = mq, kKo = mo — m%, K3 = m3 — 3mimsg + 2m£{’, andky = my — 3m% —4dmims +

12m2my — 6m{. See Kendall (1958) for more details. Tjwnt characteristic function of the set of random
variables{ X;}"_, is given by:

¢ (&1, &) = Elexp (i61.X1 + i Xo + ... + 1, X})]

which generates joint moments as follows:

5 PP (1., &)
p1yP2 | yPr| p _
E[XP'XE - XD = PETOEL" - D" =0,

- k
wherep = > | pi.

B.2 The Intensity Process

The solution to the SDE in expression (3.14) directly follows from a general result on one-dimensional linear SDE
as discussed by Karatzas and Shreve (1991, Section 5.6C):

~ ~ t+7 t+T
At+T1)=€e"TA(t)+ /f/ e FHT 0 (u) du + o / e FEHTU AW, (u) . (B.1)
t t
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for 7 > 0. The OU specification fotx allows us to further specialize expression (B.1) above:

o~

K(ehT —e ¥7)

NEET) = preT (X(t)—u)+ e CIORYY (B.2)
t+71 e—gp(t—i-T—u) _ e—n(t+7—u) t+71 (b
+I<&Ua/t pr— AW, (u) + O')\/t e dWy (u)
using that
i+ h t+7 t+1
(1) {/ g (hy ) dW (u)} dh = / { £ () g (hu) dh} 4w () (B.3)
t t t U

where f (k) andg (h,u) are deterministic functions. Based on expression (B.2) above, it is straightforward to
derive an expression for the integrated intensity process.

B.3 Proofs
Proof of Theorem 3.2.1 Let the characteristic function of innovations to the mid-price be given by
e (1) = By [¢"F] = b

wheree ~ N (ur,07). Now derive the characteristic function of the mid-price process, ie.(n,t) =
Eo [eF®)]. DefineS (n) = 3", ¢; and notice that

j=1
o) o) inﬂl—lﬁ2‘7? "
_ (tAp)" e~ in(FO)4+8m)] _ _inF(0)—tr (t/\l © ’ )
(Z)F(T],t) = nz:;]n,'EO |:6n _677 11;) n'

_ )t i [tArge (m)]" IF(O)+A1 (9= (m)=1)

|
n.
n=0

n

using thatS (n) ~ N (nur,no?) andy 22 9 = . To derive the joint characteristic function 8fandG, i.e.
bra (n,& 1) = Eo [emFO+EE0] yse that:

dra(m,Et+h) —dra (n, & t) = Eo (einF(t)+i£G(t) E, [einRF(t+h\h)+ifRG(t+h|h) _ 1]) .

Consider the random variabtéir (t+hlh)+isRe(t+hlh) gnd notice that, foh sufficiently small, the memory-less
property of the Poisson process implies:

Pr [emRF<t+h|h>+z'sRG(t+hlh) — e—z‘&G(t)ﬂ‘neMI(Hh)} — s,
Pr [emRF(t+h\h)+igRG(t+mh> _ ei&(—é—G(t))} — hs,
Pr [emRF<t+h|h)+z‘5fzc(t+mh> _ ez‘&(a—G(t»} — hAg,

Pr [emRF(t+h|h>+isRG<t+h|h) — 1] —1—h,

wheres (1) ~ N (p1,07). Therefore

E, [emRF<t+h|h>+isRc(t+h\h> _ 1} — hAe €GO B emenpain 4 A pei0=G®) 4 b e#(-0-G(®) _ px
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Multiplying with ¢ ()+i€G(®) yields:

E, [enF+h)+igGt+h) _ einF(t)Jri{G(t)} _ [h AL EMIEh 4 BA et 4 hag efi§6:| oMF (1) _ ) pinF (D) +i€G(t)

Taking expectations of the above expression, dividing band takingh to zero results in:

8¢F,G (77,§7t) — lim d)F,G (naé?t"*—h) _¢F,G (naé?t)
ot N h—0 h
= |:)\I¢£ (77) + ABei&; + )\Seiigé (Z)F (777 t) - X¢F,G (77» 57 t) 3 (B4)

with the expressions fap. (n,t) and¢r (1, t) given above. Solving the differential equation in expression (B.4),
subject to the boundary conditi@ir ¢ (1, £, 0) = e (0)+%G0) yields the joint characteristic function &fand
G:
drc (n,6,) = f (1,€) ( or (n,) — emF(o)_tx> 1 inF(0)+i6G(0)—tX
where A1ge (1) + Ape™® + Age 0
T8 = 6 ) + 2 + As

This completes the proof of expression 3.6.

Now, based on the joint characteristic functionfondG, it is straightforward to derive that fon > 0:
S (01,712, €1, Ea,tm) = By [eimF(t)+in2F(t+m)+i§1G(t)+i£2G(t+m)}

— B [eimF(t)-&-i&G’(t) EteinzF(t—l—m)-i-iEQG(t-&-m)}

= Fy |:ei771F(t)+if1G(t)a (7727 52) (¢F,t (772’ m) _ einzF(t)me):|

+E, [ oM F(t)+i61G(1) 6in2F(t)+i§2G(t)—mﬂ

_ f (772752) ¢F,G (771 + 7727517t) (em)\l(¢s(772)—l) _ e—mX)

+e ™\ br (m + n, &1 + Ea,t)

which completes the proof of expression b.

Proof of Theorem 3.3.1Define the cumulative innovatiorfs(n) = 37, ¢; and notice that the joint character-
istic function of F' (¢) and F' (¢ + m) can be written as

E() |:€i£1F(t)+i§2F(t+m):| = CL(E)¢§ (617 527 tv m)

whereg (&1, &, t,m) = Ey [ SMrt)+i&SOMilttm)] ¢ = ¢ + & anda(€) = exp(i€F(0)). The variance
of S (n) equals:

q min(g,n) ¢
Sy = ot S 4208 Y S (0 h) i, )
=0 h=1 j=h

which, forn > ¢, simplifies to:
% (n) =noip* —200p(q,q),
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wherep = >77_ p; and

( k) mln(‘]vk) Z hp‘]pjfh fOI‘ q 2 17k Z 1
P4, = i
0 otherwise

Note thatS (n) ~ N (npp., £, (n)) andthus E [¢%5()] — ¢i€nprv=38*%a(n) The covariance of (n) and
S (n + h) equals:
Sq (n,h) =g (n) +opp (g, ),
and becaus§ (n) andS (n + h) are jointly normal, their joint characteristic function can be derived as:
Ey [ ei§1S(n)+i§2S(n+h):| — €L ibahpu, — § (6750 (n)+E3 T (n+h)+261£250 (n,h)]

o lenpp Fi€2hpuy ,—3 (67 +26162) S () +€5 5 (n+h)+261 €207 p(q,h)

Recall that

>
—~
~

¢ (£1,&2,t,m) = Ey

i i 1S (n)+iEaS(nth) (mA)" (tN)" (8.6)
= hlemA pletA '

which, for ¢ sufficiently largé, can be approximated accurately by:

E2020(0.0) N gitahpin— b [he3o25 261 €202p(a,h)] ( Enpp— L Eno2p? (A"
Ze I hlem)\ Z nleth
h=0

— b (E. 1) £ ora) N i&2hppy — 3 [hE302p? +2616202 p(q,h))] (m)\)
- (f’ t) € Z € 2 h!em)\

h=0

whereb (£,t) = exp [t)\ (e@“" 38%00p” _ 1)] The summation ovel can be rewritten as:

(mA\)" > . (mA)"
Z oi62hppn— 5 [hoZ &3P +261 6207 p(a,h)] + e—61€2000(2:0) Z i€2hppn—3h&3orp

hlemA — hlemA
where :
0o q— h
e 126252 m\ oD, — L ho2e252 mA
S eehpr—3holes (h‘eW?A =b(&,m) =Y elhprvmahostp (h'em))‘
h=gq ) h=0 ’
Collectingabove expressions yields:
! 2 2 2 (m)\)h
* hp, u_*h - 7h - v )
¢S (gla {27 L, m) = (6 t) E ovela) Z 6152 " 0 5 (6 femr(ah) - € furts Q)) hlemA
h=0

b(&,t)b(&,m) eg%gp(qvq)e—§1§20’3p(q,q)

which completes the proof of expression IB.

!strictly speaking this is an approximation to the true characteristic function (which can be avoided at the cost of cumbersome notation)
sinceX, (n) is approximated by.o2p> — 202p (¢, ¢) for all n. > 0 while this is only justified fom > ¢. Howeverq is typically small
(say1 or 2) and the contribution of the terms for which the variance expression is incorrect is negligible vgHarge. Moreover, when
calculating the unconditional moments, i.e. having> oo, the approximation is exact.
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Proof of Corollary 3.3.2 Define the cumulative innovatiorts. (n) = >°7_, & ;. The joint characteristic func-
tion of S, (n) and.S, (n + k) is derived in the proof of Theorem 3.3.1. Becadse [S, (n),S; (n')] = 0 for
h # j andn,n’ > 0 it directly follows that:

k
By eile(t)-i-iEzF(t‘i‘m)} = a(§) H b5 (§1,62,t,m)
r=1

wherea(¢) = exp(i{F(0)) andgy . (1,2, t, m) = Ep [ S (M) &S (M- (tm))| '

Proof of Corollary 3.3.3 Follows directly from the proof of Theorem 3.3.1
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