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Abstract

This thesis is motivated by the observation that the time series properties of financial security prices can vary

fundamentally with their sampling frequency. Econometric models developed for low frequency data may thus be

unsuitable for high frequency data and vice versa. For instance, while daily or weekly returns are generally well

described by a martingale difference sequence, the dynamics of intra-daily, say, minute by minute, returns can be

substantially more complex. Despite this apparent conflict between the behavior of high and low frequency data,

it is clear that the two are intimately related and that high frequency data carries a wealth of information regarding

the properties of the process, also at low frequency. The objective of this thesis is to deepen our understanding of

the way in which high frequency data can be used in financial econometrics. In particular, we focus on (i) how to

model high frequency security prices, and (ii) how to use high frequency data to estimate latent variables such as

return volatility. One finding throughout the thesis is that the choice of sampling frequency is of fundamental im-

portance as it determines both the dynamics and the information content of the data. A more detailed description

of the chapters follows below.

Chapter one examines the impact of serial correlation in high frequency returns on the realized variance mea-

sure. In particular, it is shown that the realized variance measure yields abiasedestimate of the conditional return

variance when returns are serially correlated. Using 10 years of FTSE-100 minute by minute data we demonstrate

that a careful choice of sampling frequency is crucial in avoiding substantial biases. Moreover, we find that the

autocovariance structure (magnitude and rate of decay) of FTSE-100 returns at different sampling frequencies is

consistent with that of an ARMA process under temporal aggregation. A simple autocovariance function based

method is proposed for choosing the “optimal” sampling frequency, that is, the highest available frequency at

which the serial correlation of returns has a negligible impact on the realized variance measure. We find that the

logarithmic realized variance series of the FTSE-100 index, constructed using an optimal sampling frequency of

25 minutes, can be modelled as an ARFIMA process. Exogenous variables such as lagged returns and contem-

poraneous trading volume appear to be highly significant regressors and are able to explain a large portion of the

variation in daily realized variance.

Chapter two (based on joint work with George Jiang) proposes an unbiased estimator of the latent variables

within the Affine Jump Diffusion model. The estimator is model consistent, can be implemented based on high
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frequency observations of the state variable, and we derive conditions under which it has minimum variance. In

a simulation experiment we illustrate the performance of our estimator and show that its properties compare fa-

vorably to commonly used alternatives. Because our approach can, in principle, be applied to any latent variable

model in the general Affine Jump Diffusion framework, it covers a wide range of models frequently studied in the

finance literature including the stochastic volatility model. Based on the proposed estimator of latent variables,

we outline a flexible GMM estimation procedure that relies on the matching of conditional moments or cumulants

of both the observed and the unobserved state variables.

Chapter three studies two extensions of the compound Poisson process with iid Gaussian innovations which

are able to characterize important features of high frequency security prices. The first model explicitly accounts

for the presence of the bid/ask spread encountered in price-driven markets. This model can be viewed as a mixture

of the compound Poisson process model by Press and the bid/ask bounce model by Roll. The second model gen-

eralizes the compound Poisson process to allow for an arbitrary dependence structure in its innovations so as to

account for more complicated types of market microstructure. Based on the characteristic function, we provide a

detailed analysis of the static and dynamic properties of the price process. Comparison with actual high frequency

data suggests that the proposed models are sufficiently flexible to capture a number of salient features of financial

return data including a skewed and fat tailed marginal distribution, serial correlation at high frequency, time vari-

ation in market activity both at high and low frequency. The current framework also allows for a comprehensive

investigation of the “market-microstructure-induced bias” in the realized variance measure and we find that, for

realistic parameter values, this bias can be substantial. We analyze the impact of the sampling frequency on the

bias and find that for non-constant trade intensity, “business” time sampling maximizes the bias but achieves the

lowest overall MSE.
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JOINT RESEARCHSTATEMENT CHAPTER 2

June,2003

The following is a joint statement by George Jiang and Roel Oomen which aims at detailing each author’s

relative contribution to Chapter two of this thesis; “Latent Variable Estimation for the Affine Jump Diffusion.” At

the outset it should be stressed that the chapter, as it stands, is entirely written by Roel but draws heavily on a

working version of the paper underlying this chapter. The work is in progress and the chapter in this thesis sum-

marizes the results that were derived by December 2002, with minor modifications made afterwards (including

some redrafting and updating of simulation results).

Both authors have contributed significantly to the theoreticaland simulation results. However, George has

primarily focussed on the development of the theoretical results while Roel has concentrated on the simulation

design and interpretation of the results. More specifically, George has developed the unbiased estimator of the

latent variables within the Affine Jump Diffusion framework and derived Lemma 2.2.1 and Corollary 2.2.2. Roel’s

contribution to the theory is Lemma 2.2.3. Regarding the simulation part, model specification and parameter

choice is joint work. George has derived the solutions to the Ricatti equations for both the stochastic mean

model and the stochastic volatility model while Roel has written the code for the simulations and proposed the

comparison of the UMV filter to the Kalman filter (and particle filter, work in progress). The simulation results

have been interpreted jointly leading to several intermediate revisions of model specification, parameter choice,

and reporting style. The remaining part of the chapter is joint work.

George Jiang Roel C.A. Oomen

Finance Department Department of Economics

Eller College of Business & Public Administration European University Institute

University of Arizona, Tucson AZ, USA San Domenico di Fiesole, Italy
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Chapter 1

Modelling Realized Variance when Returns

are Serially Correlated

1.1 Introduction

A crucial element in the theory and practice of derivative pricing, asset allocation and financial risk management is

the modelling of asset return variance. The Stochastic Volatility and the Autoregressive Conditional Heteroskedas-

ticity class of models have become widely established and successful approaches to the modelling of the return

variance process in both the theoretical and the empirical literature (see for example Bollerslev, Engle, and Nelson

(1994) and Ghysels, Harvey, and Renault (1996)). Despite the enormous amount of research on return variance

modelling carried out over the past two decades, complemented with overwhelming empirical evidence on the

presence of heteroskedastic effects in virtually all financial time series, the variety of competing variance models

highlights the disagreement on what the correct model specification should be. An alternative route to identifying

the dynamics of the return variance process is to utilize the information contained in option prices. Yet, also

here, several studies have documented a severe degree of model misspecification even for the more general option

pricing formulas that incorporate stochastic volatility, interest rates and jumps (see for example Bakshi, Cao, and

Chen (1997)). It is therefore not surprising that a growing number of researchers have turned their attention to the

use of high frequency data which, under certain conditions, allow for an essentially non-parametric or model-free

approach to the measurement of return variance. The objective of this paper is twofold. First, explore the extent

to which the now widely available intra-day data on financial asset prices can be used to improve and facilitate the

estimation and modelling of return variance. Special attention is given to the impact that market microstructure-

induced serial correlations, present in returns sampled at high frequency, have on the resulting variance estimates.

Second, analyze and model the time series of estimated (daily) return variance. Here the focus is on identifying

a suitable model plus a set of exogenous variables that is able to characterize and explain variation in the return

variance.

The idea of inferring the unobserved return variance from high frequency data is not new. In fact, it can be

traced back to Merton (1980) who notes that the variance of a time-invariant Gaussian diffusion process (over a

1
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fixed time-interval) can be estimated arbitrarily accurately as the sum of squared realizations, provided that the

data are available at a sufficiently high sampling frequency. Empirical studies making use of this insight include

French, Schwert, and Stambaugh (1987), who estimate monthly return variance as the sum of squared daily returns

and Andersen and Bollerslev (1998), Hsieh (1991), and Taylor and Xu (1997) who estimate daily return variance

as the sum of squared intra-day returns. More recent studies that apply and develop this idea further include

Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev, Diebold, and Labys (2001, 2003), Areal

and Taylor (2002), Barndorff-Nielsen and Shephard (2002, 2003), Blair, Poon, and Taylor (2001), Maheu and

McCurdy (2002b), and Martens (2002).

One of the main attractions that has been put forward of estimating return variance by the sum of squared intra-

period returns, a measure commonly referred to as “realized variance” (or “realized volatility” being the square

root of realized variance), is that this approach does not require the specification of a potentially misspecified para-

metric model. In addition, when constructing the realized variance measure there is no need to take the widely

documented and pronounced intra-day variance pattern of the return process into account. This feature contrasts

sharply with parametric variance models which generally require the explicit modelling of intra-day regularities

in return variance (see for example Engle (2000)). Finally, calculating realized variance is straightforward and

can be expected to yield accurate variance estimates as it relies on large amounts of intra-day data. The theoretical

justification for using the realized variance measure has been provided in a series of recent papers by Andersen,

Bollerslev, Diebold, and Labys (2001, 2003, ABDL hereafter). In particular, ABDL have shown that when the

return process follows a special semi-martingale, the Quadratic Variation (QV) process is the dominant determi-

nant of the conditional return variance. By definition, QV can be approximated by the sum of squared returns at

high sampling frequency, or in other words realized variance. Moreover, under certain restrictions on the condi-

tional mean of the process, QV is the single determinant of the conditional return variance, thereby underlining

the importance of the realized variance measure. In related work, Barndorff-Nielsen and Shephard (2003) derive

the limiting distribution of realized power variation, that is the sum of absolute powers of increments (i.e. returns)

of a process, for a wide class of SV models. It is important to note that, in contrast to conventional asymptotic

theory, here, the limit distribution results rely on the concept of “in-fill” or “continuous-record” asymptotics, i.e.

letting the number of observations tends to infinity while keeping the time interval fixed. In the context of (real-

ized) variance estimation, this translates into cutting up, say, the daily return into a sequence of intra-day returns

sampled at an increasingly high frequency (see for example Foster and Nelson (1996)).

The recently derived consistency and asymptotic normality of the realized variance measure greatly contribute

to a better understanding of its properties and, in addition, provide a formal justification for its use in high fre-

quency data based variance measurement. However, a major concern that has largely been ignored in the literature

so far, is that in practice the applicability of these asymptotic results is severely limited for two reasons. First, the

amount of data available over a fixed time interval is bounded by the number of transactions recorded. Second,

the presence of market microstructure effects in high frequency data potentially invalidate the asymptotic results.

This paper studies the properties of the realized variance in the presence of market microstructure-induced

serial correlation. In particular, we show that the realized variance measure is a biased estimator of the condi-

tional return variance when returns are serially correlated. The return dependence at high sampling frequencies is

2
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analyzedusing a decade of minute by minute FTSE-100 index returns. We find that the autocovariance structure

(magnitude and rate of decay) of returns at different sampling frequencies is consistent with that of an ARMA

process under temporal aggregation. Based on this finding, an autocovariance based method is proposed to de-

termine the “optimal” sampling frequency of returns, that is, the highest available frequency at which the market

microstructure-induced serial correlations have a negligible impact on the realized variance measure1.

Following the methodology outlined above, we find that the optimal sampling frequency for the FTSE-100

data set lies around 25 minutes. We construct a time series of daily realized variance, confirm several styled facts

reported in earlier studies, and find that the logarithmic realized variance series can be modelled well using an

ARFIMA specification. Exogenous variables such as lagged returns and contemporaneous trading volume appear

to be highly significant regressors, explaining a large portion of the variation in daily realized variance. While the

regression coefficients of lagged returns indicate the presence of Black’s leverage effect, there is no indication of

reduced persistence in the return variance process upon inclusion of contemporaneous trading volume. This latter

finding is in sharp contrast with the study by Lamoureux and Lastrapes (1990).

The remainder of this paper is organized as follows. Section 1.2 investigates the impact of serial correlation

in returns on the realized variance measure. Here, results on temporal aggregation of an ARMA process are used

to characterize the bias of the realized variance measure at different sampling frequencies. Section 1.3 reports the

empirical findings based on the FTSE-100 data set while Section 1.4 concludes.

1.2 Realized Variance

The notion of realized variance, as introduced by ABDL, is typically discussed in a continuous time framework

where logarithmic prices are characterized by a semi-martingale. More restrictive specifications have been con-

sidered by Barndorff-Nielsen and Shephard (2002, 2003). In this setting, the quadratic variation (QV) of the

return process can be consistently estimated as the sum of squared intra-period returns. It is this measure that is

commonly referred to as realized variance. Importantly, ABDL show that QV is the crucial determinant of the

conditional return (co-) variance thereby establishing the relevance of the realized variance measure. In particu-

lar, when the conditional mean of the return process is deterministic or a function of variables contained in the

information set, the QV is in fact equal to the conditional return variance which can thus be estimated consistently

as the sum of squared returns. Notice that this case precludes randomintra-period evolution of the instantaneous

mean. However, it is argued by ABDL that such effects are likely to be trivial in magnitude and that the QV

therefore remains the dominant determinant of the conditional return variance.

Below we analyze the impact of serial correlation in returns on the realized variance measure. As opposed to

ABDL and Barndorff-Nielsen and Shephard (2002, 2003), a simple discrete time model for returns is used for the

sole reason that it is sufficient to illustrate the main ideas. In what follows, the period of interest is set to one day.

Let St,j (j = 1, . . . , N) denote thejth intra day−t logarithmicprice of securityS. At sampling frequency

1Independentwork by Andersen, Bollerslev, Diebold, and Labys (2000b), Corsi, Zumbach, Müller, and Dacorogna (2001) have pro-

posed a similar approach to determine the optimal sampling frequency. Other related studies include Aı̈t-Sahalia and Mykland (2003),

Andreou and Ghysels (2001), Bai, Russell, and Tiao (2001).

3
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f , assuming equi-time spaced2 observations,Nf = N
f intra-dayreturns can be constructed asRf,t,i = St,if −

St,(i−1)f , for i = 1, . . . , Nf andSt,0 = St−1,N . By the additive property of returns, it follows that the day−t

return is given by:

Rt =
Nf∑

i=1

Rt,f,i.

We assume that the (excess) return follows amartingale difference sequenceand that its conditional distribution,

i.e. Rt,f,i|Ft,f,(i−1) whereFt,f,j denotes the information set available up to thejth period of dayt, is symmetric.

The need for this symmetry assumption will become clear later on. While this specification allows for determin-

istic and stochastic fluctuations in the return variance, it also implies that returns are necessarily uncorrelated. Let

V1 ≡ R2
t , i.e. the squared day−t return, andV2 ≡

∑Nf

i=1 R2
t,f,i , i.e. the sum of squaredintra-day−t returns

sampled at frequencyf . In the current context,V2 is referred to as the realized variance measure. Since returns

are serially uncorrelated at any given frequencyf , it follows that:

V [Rt|Ft] = E
[
R2

t |Ft

]
= E




Nf∑

i=1

R2
t,f,i|Ft


 , (1.1)

whereFt denotes the information set available prior to the start of dayt. Realized variance, like squared daily

return, is therefore anunbiased estimator of the conditional return variance. However, it turns out that the variance

of V2 is strictly smaller than the variance ofV1 and is therefore the preferred estimator. To see this, it is sufficient

to show thatE
[
V 2

2 |Ft

]
< E

[
V 2

1 |Ft

]
:

E
[
V 2

1 |Ft

]
= E


∑

i

∑

j

∑

k

∑
m

Rt,f,iRt,f,jRt,f,kRt,f,m|Ft


 = E


∑

i

R4
t,f,i + 3

∑

i

∑

j 6=i

R2
t,f,iR

2
t,f,j |Ft


 ,

because the cross product of returns is zero except when (i)i = j = k = m, (ii) i = j 6= k = m, (iii)

i = k 6= j = m, (iv) i = m 6= j = k. Notice thatE
[
Rt,f,iR

3
t,f,j |Ft

]
= 0 for i > j by the martingale difference

assumption andE
[
Rt,f,iR

3
t,f,j |Ft

]
= 0 for i < j by symmetry of the conditional distribution of returns. On the

other hand

E
[
V 2

2 |Ft

]
= E


∑

i

R4
t,f,i +

∑

i

∑

j 6=i

R2
t,f,iR

2
t,f,j |Ft


 ,

from which it directly follows that

V [V2|Ft] < V [V1|Ft] .

The conditional return variance over a fixed period can thus be estimated arbitrarily accurate by summing up

squared intra-period returns sampled at increasingly high frequency. While this result does not depend on the

choice of period (i.e. one day), it does crucially rely on the property that returns are serially uncorrelated at any

sampling frequency. The additional symmetry assumption rules out any feedback effects from returns into the

conditional third moment of returns but allows for skewness in the unconditional return distribution. Other than

that, weak conditions are imposed on the return process. As mentioned above, the specification of the return

2Thiscan straightforwardly be generalized to irregularly time spaced returns.
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dynamicsis sufficiently general so as to allow for deterministic and stochastic fluctuations in the return variance

and, as a result, encompasses a wide class of variance models.

1.2.1 Realized Variance in Practice

The results above suggest that straightforward use of high frequency returns can reduce the measurement error in

the return variance estimates provided that the return series is a martingale difference sequence (with a symmetric

conditional return distribution). This section focuses on the implementation and potential pitfalls that may be

encountered in practice. In particular, minute by minute FTSE-100 index level data3 are used to investigate

whether the method of calculating the daily realized variance measure will yield satisfactory results. The additive

property of returns allows us to decompose the squared daily return as:

R2
t =




Nf∑

i=1

Rf,t,i




2

=
Nf∑

i=1

R2
f,t,i + 2

Nf−1∑

i=1

Nf∑

j=i+1

Rf,t,iRf,t,j . (1.2)

It is clear that when the returns are serially uncorrelated at sampling frequencyf , the second term on the right

hand side of expression(1.2) is zero in expectation and the realized variance measure constitutes an unbiased

estimator of the conditional return variance. However, when returns are serially correlated the cross product of

returns may not vanish in expectation which, in turn, introduces a bias into the realized variance measure. In

particular, when returns are positively (negatively) correlated4, the sum of squared intra-day returns willunder-

estimate(over-estimate) daily conditional return variance as the cross multiplication of returns will be positive

(negative) in expectation.

At first sight, the practical relevance of this finding seems to be challenged by the efficient markets hypothesis

which claims that the presence of significant serial correlation in returns, if any, is unlikely to persist for extended

periods of time. It is important to note, however, that the efficient markets hypothesis concernseconomicand

not statistical significance of serial correlation. Therefore, due to the presence of market microstructure5 effects

and transaction costs, a certain degree of serial correlation in returns does not necessarily conflict with market

efficiency.

In the market microstructure literature, a prominent hypothesis that is able to rationalize serial correlation in

stock index returns is non-synchronous trading. The basic idea is that when individual securities in an index do

not trade simultaneously, the contemporaneous correlation among returns induces serial correlation in the index

returns. Intuitively, when the index components non-synchronously incorporate shocks to a common factor that is

driving their price, this will result in a sequence of correlated price changes at the aggregate or index price level.

3I thankLogical Information Machines, Inc.who kindly provided the data needed for the analysis. The data set contains minute by

minute data on the FTSE-100 index level, starting May 1, 1990 and ending January 11, 2000. For each day, the data is available from 8:35

until 16:10 (except for the period from July 17, 1998 until September 17, 1999 during which the data is available from 9:00 until 16:10).

The total number of observations exceeds one million.
4When returns exhibit both positive and negative serial correlation, the effect is not clear. The realized variance measure may be biased

or unbiased depending on the relative magnitudes of the return autocovariance at different orders.
5For an in depth discussion of the relation between market microstructure and price dynamics see for instance Campbell, Lo, and

MacKinlay (1997), Lequeux (1999), Madhavan (2000), O’Hara (1995), Wood (2000) and references therein.

5

Oomen, Roel C.A. (2003), Three Essays on the Econometric Analysis of High Frequency Financial Data 
European University Institute 

 
DOI: 10.2870/23324



As discussed by Lo and MacKinlay (1990), non-synchronous trading induces positive serial correlation in the

index returns. On the other hand, the Roll (1984) bid/ask bounce hypothesis often applies to single asset returns

which are typically found to exhibit negative serial correlation. Here the argument is as follows: when at a given

point in time no new information arrives in a (dealer) market, the stock price is expected to bounce between the bid

and the ask price whenever a trade occurs. Although this phenomenon may not be apparent at a daily or weekly

frequency, it is likely to have a discernible impact on returns sampled at high (intra-day) frequency. Finally,

transaction costs and feedback trading, in addition to non-synchronous trading and the bid-ask bounce, may also

induce serial correlation in returns. For an empirical investigation of these issues see for example Säfvenblad

(2000). Although this paper does not aim to analyze the various market microstructure effects in specific, we do

want to highlight the presence of such effects and study their impact on the realized variance measure.

Several studies have encountered the impact of serial correlation in returns on the estimates of return variance.

For example, French and Roll (1986) find that stock return variance is much lower when estimated using hourly

instead of daily data, indicating the presence of positive serial correlation in their data set. Recognizing the

presence of serial correlation, French, Schwert, and Stambaugh (1987) estimate monthly return variance as the

sum of squared daily returnsplustwice the sum of the products of adjacent returns. Froot and Perold (1995) also

find significant positive serial correlation in 15 minute returns on S&P500 cash index from 1983-1989 and show

that the annualized return variance estimates based on weekly data are significantly higher (about 20%) than the

variance estimates based on 15-minute data. More recently, Andersen, Bollerslev, Diebold, and Labys (2000b)

document the dependence of the realized variance measure on return serial correlation.

These findings offer an early recognition of the central idea of this paper: the results derived in the previ-

ous section, and the consistency and asymptotic results derived in ABDL and Barndorff-Nielsen and Shephard

(2003), are not applicable to return data that exhibit a substantial degree of serial dependence. In particular, the

conditional mean specification used in these studies does typically not allow for the random intra-day evolution

of the conditional mean6. It is commonly argued that this flexibility is not required at low, say daily or weekly,

frequencies. However, when moving to higher intra-day sampling frequencies, the characteristics of the data may

change dramatically due to the presence of market microstructure which in turn, leads to substantial dependence

in the conditional mean of the return process.

Because market microstructure effects are present in virtually all financial return series, the issue outlined

above is central to the discussion of high frequency data based variance measurement. This is emphasized in the

empirical analysis which is based on minute by minute returns on the FTSE-100 stock market index. Specifically,

the 10 year average (1990-2000) of the two terms on the right hand side of expression(1.2) is computed for sam-

pling frequencies between 1 and 45 minutes and the results are displayed in Figure 1.1. The implicit assumption

we make here is that the return process is weakly stationary7 so that the averaging (over time) is justified and the

estimates can be interpreted as (co)variance estimates.

It is clear that for FTSE-100 data the first term, the realized variance measure, increases with a decrease in

6An exception is the general model covered by Theorem 1 in Andersen, Bollerslev, Diebold, and Labys (2003) from which it is also

clear that the realized variance measure yields a biased estimate of the conditional return variance.
7For the bootstrap analysis of Section 1.2.2 we need to impose strict stationarity and weak dependence on the return process.
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FIGURE 1.1: REALIZED VARIANCE VERSUSSAMPLING FREQUENCY
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Notes: The 1990-2000 average daily FTSE-100 realized variance (i.e.T−1 ∑T
t=1

∑Nf

i=1 R2
f,t,i) and autocovariance bias factor (i.e.

2T−1 ∑T
t=1

∑Nf−1

i=1

∑Nf

j=i+1 Rf,t,iRf,t,j) for sampling frequencies between1 and45 minutes.

sampling frequency while the second term, the summation of cross multiplied returns, decreases. The positivity

of the second term indicates that the FTSE-100 returns are positively correlated, introducing adownward biasinto

the realized variance measure, while its decreasing pattern demonstrates that this dependence, and consequently

the bias, diminishes when sampling is done less frequently. This term, which measures the bias that is introduced

by the serial dependence of returns, is referred to as the “autocovariance bias factor” in the remainder of this

paper. Figure 1.1 illustrates that an ad hoc choice of sampling frequency can lead to a substantial (downward)

bias in the realized variance measure. In fact, at the highest available sampling frequency of 1 minute, the bias

in the variance estimate is more than 35%! To stress the economic significance of this finding, we notice that in

a Black Scholes world, a mere 10% under-estimation of the return variance leads to a 14.5% underpricing of a 3

month,15% out of the money option. Also the option’s delta is 8.2% lower than its true value. Indeed, Figlewski

(1998) finds that an accurate return variance estimate is of single most importance when hedging derivatives.

When the return variance is stochastic, Jiang and Oomen (2002) also find that for the hedging of derivatives

accurate estimation of thelevelof return variance is far more important than accurate estimation of the dynamic

parameters of the variance process. Pricing and hedging options aside, it is easy to think of a number of other

situations where accurate return variance estimates are of crucial importance. Risk managers often derive Value at

Risk figures from the estimated return variance of a position. Also, in a multivariate setting, the covariance matrix

of returns is the primary input for portfolio choice and asset allocation.

The above discussion naturally leads to the important question at which frequency the data should be sampled.

Figure 1.1 plays a central role in answering this question by providing a graphical depiction of the trade-off one

faces when constructing the realized variance measure: an increase in the sampling frequency yields a greater
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amountof data, thereby attaining higher levels of efficiency (in theory), while at the same time a decrease in the

sampling frequency mitigates the biases due to market microstructure effects surfacing at the highest sampling

frequencies. A balance must be struck between these opposing effects and it is argued here that an autocovari-

ance based method, such as the autocovariance bias factor of Figure 1.1, can be used to determinethe “optimal”

sampling frequency as the highest available sampling frequency for which the autocovariance bias term is negli-

gible8. Clearly, deciding whether the bias term is “negligible”, and whether the sampling frequency is therefore

“optimal”, may prove a difficult issue for at least two reasons. First, even though it may be possible to bootstrap

confidence bounds around the autocovariance bias factor in order to determine the frequency at which the bias is

statistically indistinguishable from zero (see Table 1.1 for some related results), for many applications economic

significance, as opposed to statistical significance, may be the relevant metric with which to measure “negligi-

bility”. The optimal sampling frequency may therefore very well depend on the particular application at hand.

Second, when aggregating returns, a reduction in bias should generally be weighed against the loss in efficiency.

In practice, however, both the loss or gain in bias and efficiency will often be difficult to quantify which, in turn,

complicates the choice of optimal sampling frequency. It should be noted that for a general SV model, Barndorff-

Nielsen and Shephard (2003) have shown that the realized variance measure converges to integrated variance at

rate
√

N whereN is the number of intra-period observations. Also, Oomen (2003) has derived an explicit char-

acterization of the bias term as a function of the sampling frequency when the price process follows a compound

Poisson process with correlated innovations. While the results in these studies may yield some valuable insights

into the bias-efficiency trade-off, it is important to keep in mind that they are derived under potentially restrictive

parametric specifications for the price process. As such, they should be interpreted cautiously when applied to

high frequency data which, as we show below, are often contaminated by market microstructure effects. Without

further going into this, it seems reasonable to expect that for the FTSE-100 data the optimal sampling frequency

lies somewhere between 25 and 35 minutes, i.e. the range indicated in Figure 1.1.

1.2.2 Serial Correlation, Time Aggregation & Sampling Frequency

We now take a closer look at the autocovariance bias term and show how its shape is intimately related to the

dynamic properties of intra-day returns at different sampling frequencies.

Table 1.1 reports some standard descriptive statistics for the FTSE-100 return data. Because it is well known

that financial returns, and in particular high frequency returns, are not independently and identically distributed

we bootstrap the confidence bounds around the statistics instead of deriving them from the well known asymptotic

distributions that are valid under the iid null hypothesis. For the return volatility and the skewness and kurtosis

coefficients we use the stationary bootstrap of Politis and Romano (1994) who show that this procedure is valid

for strictly stationary, weakly dependent data. Letx = (x1, . . . , xN ) denote the original data set (i.e. time

series of returns at a given sampling frequency) and letXi,k ≡ (xi, . . . , xi+k−1) wherei = 1, . . . , N , k =

1, 2, . . ., andxj = xj mod N for j > N . A bootstrap sample is constructed asx∗ = (Xi1,k1 , . . . , Xib,kb
) where

8Independentwork by Andersen, Bollerslev, Diebold, and Labys (2000b), Corsi, Zumbach, Müller, and Dacorogna (2001) have pro-

posed a similar approach to determine the optimal sampling frequency.
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TABLE 1.1: DESCRIPTIVESTATISTICS OFFTSE-100 RETURNS.

Frequency No. Obs. Volatility Skewness Kurtosis BL[15]

1 Min 1,046,862 11.5
(10.9;12.2)

1.61∗
(−14.9;17.0)

3305∗
(1209;5333)

26874∗
(312.4)

5 Min 209,372 13.2
(12.6;14.0)

−0.43∗
(−6.82;5.18)

508.3∗
(177.5;886.2)

4844.2∗
(223.6)

10 Min 104,686 14.2
(13.4;15.1)

−1.89∗
(−8.50;3.04)

344.8∗
(78.5;697.2)

1206.9∗
(138.0)

30 Min 34,895 15.1
(14.2;16.4)

−1.11∗
(−4.61;1.51)

115.2∗
(27.1;234.8)

221.1∗
(181.6)

60 Min 17,447 15.6
(14.3;17.3)

−0.32∗
(−2.71;1.86)

84.3∗
(14.3;161.5)

117.2∗
(146.2)

1 Day 2,407 15.2
(14.0;16.6)

0.05
(−0.21;0.32)

5.43∗
(4.37;6.56)

44.34∗
(37.3)

ρ1 ρ2 ρ3 ρ4 ρ5 ρ10 ρ15

1 Min 10.4∗
(9.06;11.7)

7.39∗
(6.22;8.55)

6.09∗
(5.08;7.12)

5.13∗
(3.89;6.68)

2.75∗
(1.77;3.68)

0.59∗
(−0.43;1.34)

0.95∗
(0.32;1.69)

5 Min 14.6∗
(12.4;16.7)

3.35∗
(1.92;4.75)

1.85∗
(0.70;3.05)

0.78∗
(−0.29;2.00)

0.96∗
(0.15;1.81)

−0.10
(−1.23;1.32)

−0.60∗
(−1.57;0.35)

10 Min 10.2∗
(8.40;12.1)

2.35∗
(0.94;3.83)

1.06∗
(0.11;2.07)

0.04
(−1.45;1.65)

−0.55
(−0.20;0.12)

0.17
(−0.71;1.13)

−0.68∗
(−2.72;0.82)

30 Min 6.39∗
(4.25;8.68)

−0.60
(−2.48;1.24)

1.28∗
(−0.58;3.19)

−0.88
(−2.21;0.50)

−0.10
(−3.57;2.58)

2.02∗
(−0.10;4.46)

−1.83∗
(−6.35;2.00)

60 Min 3.28∗
(0.12;6.41)

−0.79
(−4.59;2.58)

3.66∗
(1.16;6.04)

−0.00
(−2.40;2.41)

2.84∗
(−0.14;6.26)

−1.55∗
(−3.03;0.07)

−0.26
(−3.27;2.64)

1 Day 7.56∗
(3.64;11.2)

−3.62
(−8.45;1.64)

−3.70
(−8.76;1.63)

−0.46
(−5.69;4.73)

−2.44
(−8.20;3.20)

3.33
(−2.26;8.73)

1.84
(−3.23;6.75)

Notes: Theupper panel reports theannualizedreturn volatility in percentage points (“Volatility”), the skewness coefficient (“Skewness”),

kurtosis coefficient (“Kurtosis”), and the Box-Ljung test statistic on the first 15 autocorrelations (“BL[15]”) for FTSE-100 returns sampled

at frequencies between 1 minute and 1 day over the period 1990-2000. The lower panel reports the serial correlation coefficients in

percentage points (ρk denotes thekth order correlation coefficient). Bootstrapped 95% confidence bounds (and critical values for the

Box-Ljung test) are reported in parentheses below. An asterisk indicates significance at 95% confidence level under the null hypothesis

that returns are iid distributed;
√

TSkewness
a→ N (0, 6),

√
TKurtosis

a→ N (0, 24),
√

Tρk
a→ N (0, 1), and BL[K]

a→ X 2
K .

∑b
j=1 kj = N , i has a discrete uniform distribution on{1, . . . , N}, andk has a geometric distribution, i.e.

P (k = m) = p (1− p)m−1 for m = 1, 2, . . .. Based on this re-sampled time series, we then compute the relevant

test statistics. By simulating a large numberB of bootstrap samples we can approximate the true distribution of

the test statistics by the empirical distribution of theB values of the associated statistics. The idea behind sampling

blocks instead of single entries is that, when the block length is sufficiently large, the dependence structure of the

original series will be preserved in the re-sampled series to a certain extent. Evidently, the correspondence between

the distribution of the original and the re-sampled series will be closer the weaker the dependence and the longer

the block length. To choosep, or equivalently the expected block lengthE [k] = 1/p, we have experimented

with a number of different values but find, in line with several other studies (Horowitz, Lobato, Nankervis, and

Savin 2002, Romano and Thombs 1996), that the results are rather insensitive to the choice ofp. The results

reported in Table 1.1 are based onp = 1/15 (i.e. E [k] = 15 ) andB = 5, 000.
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Theconfidence intervals for the correlation coefficients and the critical value the Box-Ljung test statistic are

obtained by the “blocks-of-blocks” bootstrap. Instead of sampling a1 × k block, as is done in the stationary

bootstrap, we now sample anh × k block Xi,k,h =
(
xh

i , . . . , xh
i+k−1

)
wherexh

i = (xi, . . . , xi+h−1)
′ andh − 1

matches the maximum order of correlation coefficient to be computed. Analogous to the procedure described

above, anh × N bootstrap sample is constructed asx∗ = (Xi1,k1,h, . . . , Xib,kb,h) from which thekth order

correlation coefficients can be computed as

ρ̂k =

∑N
i=1

(
x∗1,i − x∗1,.

)(
x∗k+1,i − x∗k+1,.

)

[∑N
i=1

(
x∗1,i − x∗1,.

)2 ∑N
i=1

(
x∗k+1,i − x∗k+1,.

)2
]1/2

wherex∗i,. = N−1
∑N

j=1 x∗i,j . Because the null-hypothesis for the Box-Ljung statistic is uncorrelatedness, we

first pre-whitened the data using an AR(15)9 and implement the bootstrap procedure on the residuals. As above,

the geometric parameter and the number of bootstrap replications are set asp = 1/15 andB = 5, 000. For

more details on how to approximate the sampling distribution of the correlation coefficients and the Box-Ljung

statistics using the (blocks-of-blocks) bootstrap see for example Davison and Hinkley (1997), Horowitz, Lobato,

Nankervis, and Savin (2002) and Romano and Thombs (1996).

Based on the above bootstrap procedures we construct 95% confidence bounds for the descriptive statistics

under the null that returns are weakly dependent and report them in parentheses in Table 1.1. The statistics that

are significant are printed in bold. For comparison purposes, an asterisk indicates95% significance under the al-

ternative null hypothesis that returns are independently and identically distributed. For this case, it is well known

that the square root of the sample size times thekth order serial correlation, skewness, and kurtosis coefficients of

returns are asymptotically distributed as normal with variance 1, 6, and 24 respectively. The Box-Ljung statistic

on the firstK autocorrelations, BL[K], is asymptotically distributed as chi-square withK degrees of freedom.

Turning to the results in Table 1.1, we find that there is substantial excess kurtosis and serial correlation in high

frequency returns. At the minute frequency, most of the serial correlation coefficients up to order 15 are signif-

icant and the kurtosis coefficient indicates the presence of an extremely fat tailed marginal return distribution.

However, aggregation of returns brings the distribution of returns closer to normal and reduces both the order and

magnitude of the serial correlation (see also Figure 1.2). At the daily frequency, the excess kurtosis has come

down from around 3000 to about 2.5, and the serial correlation coefficients of order higher than one are all in-

significantly different from zero. Consistent with the autocovariance bias term above (Figure 1.1), we also see

that the (annualized) return volatility increases with a decrease of the sampling frequency. Interestingly, the 95%

confidence bounds for frequencies lower than 30 minutes (i.e. 1, 5, and 10 minutes) do not include the point

estimate of the annualized return variance based on daily data. This suggests that the autocovariance bias term at

these frequencies is statistically different from zero which, in turn, corroborates our choice of “optimal” sampling

frequency range on statistical grounds.

9We note that the choice of AR-order is relatively ad hoc, and could arguably be lowered with a decrease in sampling frequency.

However, with the amount of data we work with here, it can be expected that the efficiency loss associated with the potentially redundant

AR-terms is minimal. Hence, for simplicity, we keep the AR-order fixed across the different sampling frequencies.

10

Oomen, Roel C.A. (2003), Three Essays on the Econometric Analysis of High Frequency Financial Data 
European University Institute 

 
DOI: 10.2870/23324



FIGURE 1.2: CORRELOGRAM OF1 MINUTE AND 5 MINUTE FTSE-100 RETURNS

Notes: Correlogramof 1 minute (left panel) and 5 minute (right panel) FTSE-100 index returns for the period 1990-2000

It is also clear from Table 1.1 that the bootstrapped confidence bounds deviate substantially from their iid-

asymptotic counterparts. As a result, a number of statistics that are significant under the (invalid) iid null hypoth-

esis, turn out to be insignificant based on the bootstrapped confidence bounds which allows for weak dependence

in the return data. For example, while the skewness of intra-daily returns is significant under the iid hypothesis,

none of the skewness coefficients are significant under the alternative null-hypothesis. Also, the maximum or-

der of the significant correlation coefficients is generally lower for the bootstrapped critical values than for the

iid-asymptotic values. For example, at frequencies between 5 and 30 minutes,ρ15 is found significant under the

iid-hypothesis but insignificant under the alternative hypothesis. These findings emphasize the inadequacy of the

“iid-” asymptotic distributions for this data and illustrate the value of the bootstrap method.

Turning to the specification of the return process, we notice that the overwhelming significance of the serial

correlation coefficients reported in Table 1.1 and Figure 1.2 suggests that the characteristics ofintra-day returns

are not consistent with those of a martingale difference sequence. Instead, modelling intra-day returns as an

ARMA10 process is a natural and, as it turns out, successful approach for it is well suited to account for the serial

dependence of returns at various sampling frequencies. From a market microstructure point of view, the AR part

will arguably be able to capture any autocorrelation induced by non-synchronous trading while the MA part will

account for potential negative first order autocorrelation induced by the bid-ask bounce. Further, the decreasing

order and magnitude of serial correlation with the sampling frequency is, as it turns out, a consequence of temporal

aggregation of the return process.

Suppose that returns at the highest sampling frequency,R1 (thet subscript is momentarily dropped for nota-

tional convenience), can be described as an ARMA(p,q) process:

α (L) R1,i = β (L) ε1,i,

10More generally, one could specify an ARFIMA model for returns, thereby allowing for a hyperbolic decay of serial correlation.

However, market microstructure and efficiency considerations aside, casual inspection of Table 1.1 and Figure 1.2 suggests that an ARMA

process is sufficiently flexible to capture the dynamics of the returns process at high frequency.
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whereα (L) andβ (L) arelag polynomials of lengthsp andq respectively. As before, we also assume that the

return process is weakly stationary which justifies expression 1.4 and the analysis below. Consider the case where

all the reciprocals of the roots ofα (L) = 0, denoted byθ1, ..., θp, lie inside the unit circle. The model through

which the returns at an arbitrary sampling (or aggregation) frequency can be represented is derived using the

results of Wei (1981) on temporal aggregation11. In particular, ifR1 follows an ARMA(p,q) process, the returns

sampled at frequencyf , denoted byRf , can be represented by an ARMA(p,r) process:

p∏

j=1

(
1− θf

j Lf
)

Rf,i =
p∏

j=1

1− θf
j Lf

1− θjL

1− Lf

1− L
β (L) εf,i,

wherer equals the integer part ofp+ q−p
f andεf,i =

∑f−1
j=0 ε1,fi−j . Due to the invertibility of the AR polynomial,

the above model can be rewritten in MA(∞) form with parameters{ψj}∞j=0 andψ0 = 1. Let ϕf
h denote thehth

autocovariance of the temporally aggregated returns at frequencyf :

ϕf
h = E [Rf,iRf,i−h] ∝

∞∑

j=0







j∑

i=max(0,j−f+1)

ψi







j+fh∑

i=j+1+f(h−1)

ψi





 . (1.3)

It can be shown that theψj coefficients decay exponentially fast in terms ofj and, as a result, the autocovariances

disappear under temporal aggregation. To see this, let|ψj | < wδj for |δ| < 1 andw some positive constant and

notice that:

ϕf
h ∝

∞∑

j=0




j∑

i=0

wδi
j+fh∑

i=j+f(h−1)

wδi


 <

w2

(1− δ)3
δf(h−1),

from which it can be seen that the autocovariances of order higher than two disappear when either the sampling

frequency,f , or the displacement,h, increases. While it does not follow from the above that the first order

autocovariance term also disappears, Wei (1981) has shown that the limit model of an ARMA(p,q) process under

temporal aggregation is indeed an ARMA(0,0) or equivalently white noise.

It is important to emphasize that these theoretical properties of the ARMA process appear very much in

accordance with the empirical properties of the return process as reported in Table 1.1. In particular, at high

sampling frequencies the ARMA model can account for the observed serial dependence while at lower sampling

frequencies these dependencies die off as a consequence of temporal aggregation of the return process. In addition,

as the ARMA(p,q) model converges to an ARMA(0,0) under temporal aggregation, the model specification for

returns at high frequency does not necessarily conflict with a model for returns at low frequency.

Relating the above aggregation results to the discussion of the previous section, we note that the expression

for the autocovariance function of the ARMA process can be used to check the consistency of the model with

the properties of the data by comparing the temporal aggregation implied decay of the autocovariance bias term

with the empirically observed one. To this end, we estimate various ARMA models using the minute by minute

11Temporal aggregation for ARMA models is discussed in Brewer (1973), Tiao (1972), Wei (1981), Weiss (1984) and the VARFIMA

in Marcellino (1999).
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FIGURE 1.3: THE “A UTOCOVARIANCE BIAS FACTOR”
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Term 2: Autocovariance Bias Factor 

Notes: Theempirical autocovariance bias factor (solid line, see also Figure 1.1) and the superimposed aggregation implied autocovariance

bias factor (dotted line, see also expressions (1.3) and (1.4)) for sampling frequencies between 1 and 45 minutes.

returns on the FTSE-100 index and find that an ARMA(6,0) model yields satisfactory results12. Although the

residuals are highly heteroskedastic, the OLS parameter estimates remain consistent (Amemiya 1985). Moreover,

the efficiency loss due to the non-normality of the errors is unimportant given the large amount of data. Based on

thesingleset of ARMA(6,0) parameters associated with the 1-minute data, the autocovariances for the estimated

return process at various sampling frequencies can bededucedusing expression(1.3). It is noted that:

E




Nf−1∑

i=1

Nf∑

j=i+1

Rf,t,iRf,t,j


 =

Nf−1∑

h=1

(Nf − h)ϕf
h. (1.4)

Hence, the “aggregation implied” autocovariance estimates can be used to calculate the “aggregation implied”

autocovariance bias term as in expression(1.4). In particular, a single set of ARMA(6,0) parameters for the 1-

minute data are used to imply the autocovariance bias factor at sampling frequencies between 1 and 45 minutes.

Figure 1.3 demonstrates that the empirical and theoretically implied curves are remarkably close.

The above results illustrate that the ARMA model is a good description of the return data at different sampling

frequencies. In fact, the decay of the (market microstructure-induced) serial dependencies in high frequency

returns is consistent with the decay of an ARMA process under temporal aggregation. Also, it can be shown,

based on expression 1.4, that the autocovariance bias term decays at an hyperbolic rate under temporal aggregation

(i.e.
∑Nf−1

h=1 (Nf − h)ϕf
h < N2

f2 ). Finally, we notice that it is possible to trace out the entire autocovariance bias

factor curve, and hence determine the optimal frequency, using solely asingleset of ARMA parameters.

12Someof the higher order AR terms could arguably be replaced by low order MA terms. However, the AR specification has the

advantage that inference is straightforward from a numerical point of view, as opposed to an MA specification. Since the AR and MA

specification are largely equivalent preference is given here to the AR specification.
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In summary, we have shown that the conditional return variance can be estimated consistently by the realized

variance measure, provided that the intra-day returns are serially uncorrelated. When the intra-day returns are

serially correlated, realized variance will either overestimate (with negative correlation) or underestimate (with

positive correlation) the conditional return variance. Correcting for the bias term by adding up the cross products

of intra-day returns, they are known after all, is not desirable as this is equivalent to using the squared daily

return to estimate daily realized variance. Here we suggest that when the available high frequency return data

are serially correlated, one approach13 is to aggregate the returns down to a frequency at which the correlation

has disappeared, thereby avoiding (potentially) large biases in the realized variance measure. Plotting the sum of

squared intra-day returns or the autocovariance bias factor versus the sampling frequency, as is done in Figure 1.1

proves a very helpful and easily implementable strategy to determine the frequency at which the correlation has

died off. Further analysis suggests that the decay of the autocovariance bias factor is consistent with an ARMA

process under temporal aggregation. This finding provides an alternative, yet closely related, parametric approach

to determining the optimal sampling frequency.

1.3 Modelling Realized Variance

A number of studies14 have analyzed high frequency data for a variety of financial securities. Regarding the prop-

erties of the realized variance measure, several studies find that (i) the marginal distribution of realized variance

is distinctly non-normal and extremely right skewed, whereas the marginal distribution of logarithmic realized

variance is close to Gaussian, (ii) logarithmic realized variance displays a high degree of (positive) serial corre-

lation which dies out very slowly (iii) logarithmic realized variance does not seem to have a unit root, but there

is clear evidence of fractional integration15, roughly of order 0.40 and (iv) daily returns standardized by realized

volatility16, i.e. the square root of realized variance, are close to Gaussian.

Based on the analysis in Sections 1.2.1 and 1.2.2, which indicates that the daily conditional return variance of

the FTSE-100 can be estimated unbiasedly as the sum of squared intra-day returns sampled at a frequency of25

minutes, a time series of (logarithmic) realized variance is constructed and is displayed in the left panel of Figure

1.4. Table 1.2 reports some descriptive statistics of the time series of realized variance and returns.

We find that our results are very much in line with the findings described above. In particular, the uncon-

ditional distribution of the realized variance appears significantly skewed and exhibits severe kurtosis, while the

unconditional distribution of logarithmic realized variance is much less skewed and displays significantly reduced

13An alternative approach would be to utilize all of the observations by explicitly modelling the high-frequency market microstructure.

However, as noted by Andersen, Bollerslev, Diebold, and Ebens (2001), that approach is much more complicated and subject to numerous

pitfalls of its own.
14See for example Andersen, Bollerslev, Diebold, and Labys (2000b, 2000b), Blair, Poon, and Taylor (2001), Dacorogna, Gençay,

Müller, Olsen, and Pictet (2001), Froot and Perold (1995), Goodhart and O’Hara (1997), Hsieh (1991), Lequeux (1999), Stoll and Whaley

(1990), Zhou (1996).
15See for example Baillie (1996), Baillie, Bollerslev, and Mikkelsen (1996), Breidt, Crato, and de Lima (1998), Comte and Renault

(1998), Henry and Payne (1998), Liu (2000), Lo (1991).
16In a multivariate setting it is found that the distribution of correlations between realized variance is close to normal with positive mean,

and that the autocorrelations of realized correlation decays extremely slow.
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TABLE 1.2: DESCRIPTIVESTATISTICS OF REALIZED VARIANCE AND RETURNS.

Mean Volatility Skewness Kurtosis ADF[5]

RealizedVariance 8.5e-5 2.6e-4 21.21 596 −16.2

Log Realized Variance −9.98 0.962 0.558 4.11 −8.83

Daily Returns 4.6e-4 0.009 0.063 5.29 −21.8

Standardized Daily Return 0.091 1.091 0.036 2.23 −22.3

Notes: Descriptive statistics based on the FTSE-100 data set for the period 1990-2000. The augmented Dickey Fuller test (“ADF[5]”)

includes a constant and 5 lags and has a 5% (1%) critical value of -2.865 (-3.439).

kurtosis (Table 1.2). Furthermore, the correlogram for the realized variance measure decays only very slowly but

the Augmented Dickey Fuller test strongly rejects the null hypothesis of a unit root (Table 1.2 and right panel

of Figure 1.4). This finding indicates that the (logarithmic) realized variance series may exhibit long memory,

a feature that will be discussed below. Finally, daily returns standardized by realized variance are close to nor-

mal (Table 1.2). This indicates that the empirical findings obtained by Andersen, Bollerslev, Diebold, and Labys

(2000a) on exchange rate data can be extended to the FTSE-100 stock market index data.

1.3.1 Fractional Integration & Realized Variance

A time series,Xt is said to be fractionally integrated of orderd if after applying the difference operator(1− L)d

it follows a stationary ARMA(p,q) process wherep andq are finite nonnegative integers. This concept has been

developed by Granger (1980), Granger (1981), and Granger and Joyeux (1980). For values ofd between 0 and

0.5, the fractionally integrated process17 exhibits “long memory” which has the property that the effect of a shock

to the process is highly persistent but decays over time. This is in contrast toI(1) processes, where a shock has

infinite persistence, or at the other extremeI(0) processes, where the effect of a shock decays exponentially fast.

The ARFIMA(p,d,q) model can be written as

α(L)(1− L)dXt = β(L)εt, (1.5)

whereα(L) andβ(L) are lag polynomials of orderp andq respectively. Ford < 1
2 andd 6= 0, it can be shown

that the decay of the correlogram ishyperbolic, i.e.

ϕh = corr(Xt, Xt−h) =
Γ(1− d)

Γ(d)
Γ(h + d)

Γ(h + 1− d)
∝

h large
h2d−1. (1.6)

Regarding the estimation ofd, Geweke and Porter-Hudak (1983, GPH hereafter) propose the use of a log pe-

riodogram regression. In particular, for given{Xt}T
t=1, the fractional parameterd can be estimated as the

slope coefficient in a linear regression ofI (λj) = 1
2πT

∣∣∣∑T
t=1 Xte

iλjt
∣∣∣
2
, the log periodogram at harmonic

17The process is stationary with long memory for0 < d < 0.5 but stationary with intermediate memory for−0.5 < d < 0. For

d ≥ 0.5, the process is non-stationary.
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FIGURE 1.4: LOGARITHMIC REALIZED VOLATILITY

1990 1992 1994 1996 1998 2000
−14

−12

−10

−8

−6

−4

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

d=0.45 

d=0.30 

d=0.40

Notes: Time series (left panel) and correlogram (right panel) of FTSE-100 daily logarithmic realized variance constructed at a sampling

frequency of 25 minutes over the period 1990-2000. The superimposed dotted lines in the right panel represent the correlogram of a

fractional process for values ofd equal to 0.30, 0.40, and 0.45.

frequencyλj = 2πj
T , on a constant andln

[
4 sin2 (λj/2)

]
for j = 1, . . . , m ¿ T . The “bandwidth” parame-

term is required to increase at a slower rate than the sample sizeT and in many applicationsm is set to equal to

the square root of the sample sizeT . Robinson (1995a, 1995b) derives an alternative estimator ford , which is

shown to be asymptotically more efficient than the GPH estimator, and is given by the value ofd that minimizes

the following objective function:

Q (c, d) =
1
m

m∑

j=1

[
ln

(
cλ−2d

j

)
+

λ2d
j

c
I (λj)

]
,

wherec > 0 and−1
2 < d < 1

2 .

Turning to the FTSE-100 realized variance series, it is clear that long memory features are very much present.

The right panel of Figure 1.4 displays the correlogram of the log realized variance series while the right panel

of Figure 1.5 displays the correlogram of thefractionally differencedlog realized variance series based on an ad

hoc parameter value ofd = 0.40. The serial correlations of the log realized variance series decay at a hyperbolic

rate and the resemblance between the sample correlogram and the superimposed correlograms of a fractionally

integrated process for various values ofd is remarkable. In sharp contrast, the fractionally differenced series is

virtually uncorrelated. A supplementary diagnostic check for the presence of long memory is based on expression

(1.6) above. In particular, when the realized variance series exhibits long memory, its log autocorrelation function

should yield a linear relationship in terms of log displacement, i.e.ln ϕh ∝ (2d− 1) lnh. Figure 1.6 (left panel)

indicates the required linear relationship betweenln ϕh and lnh for values ofh up to 100. An OLS regression

can be used to determine the slope. Based on the entire sample (h = 250) the results suggest a value ford of

around0.37. Ignoring the last150 autocorrelations (h = 100) raisesd to about0.43. Finally, the GPH and

Robinson estimators, described above, are implemented. The bandwidth parameterm (controlling the range of
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FIGURE 1.5: FRACTIONALLY DIFFERENCEDLOGARITHMIC REALIZED VOLATILITY
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Notes: Time series (left panel) and correlogram (right panel) of FTSE-100fractionally differenceddaily logarithmic realized variance

constructed at a sampling frequency of 25 minutes over the period 1990-2000. The dotted lines in the right panel are the 95% confidence

bounds calculated as±2N−1/2 whereN denotes the number of observations.

periodic frequencies used), is set equal to a range of values between18 25 and275. The results of this estimation

are summarized in Figure 1.6 (right panel) where the GPH and Robinson estimates are plotted as a function ofm.

For smallm, the two alternative estimates both fall into the non-stationary region while for largem (above150)

they are both below0.5. Although it is clear from this that the value ford will be close to0.5, it is difficult to

judge on the stationarity of the process as the choice ofm is relatively arbitrary. In summary, all of the test results

reported above suggest that the FTSE-100 log realized variance series is fractionally integrated and appear roughly

consistent with Andersen, Bollerslev, Diebold, and Ebens (2001) who find that for their data setd is around0.40.

1.3.2 Empirical Results

Motivated by the preliminary tests discussed above, the focus of our modelling approach will center around the

ARFIMA specification. We consider the following model:

α(L)(1− L)d
[
ln σ̂2

25,t − π′Xt

]
= β(L)εt, (1.7)

whereσ̂2
25,t denotes the day−t realized variance measure constructed based on 25 minute intra-day returns,α(L)

is a lag polynomial of orderp, β(L) a lag polynomial of orderq, andεt is a residual error term. Thek × 1 vector

Xt allows for the inclusion of exogenous variables and deterministic terms such as a constant and time trend.

Here, we consider the following specification:

π′Xt = ω +
k∑

j=1

(
ζjRt−j + ζj |Rt−j |

)
+

m∑

j=0

λj ln V OLt−j +
n∑

j=0

δj (IRt−j − IRt−j−1) (1.8)

18The sample size is 2445 and hence the range ofm is betweenT 0.40andT 0.70. This is in line with e.g. Bollerslev, Cai, and Song

(2000) which setm = T 0.50 or Dittmann and Granger (2002) which setm = T 0.8.
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FIGURE 1.6: TWO TESTS FORFRACTIONAL INTEGRATION
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Notes: Two tests for fractional integration. Linearity ofln ϕh versusln h (left panel) and the Geweke Porter-Hudak and Robinson

estimate ford as a function of the bandwidthm (right panel).

whereIRt andV OLt denote the day−t short term interest rate (1 month UK Interbank rate) and daily trading

volume respectively. The inclusion of lagged returns and lagged absolute returns mirrors the EGARCH specifica-

tion of Nelson (1991) and is, in part, motivated by the well documented Black’s leverage effect or the asymmetric

impact that lagged returns have on the return variance. In particular, Black (1976) argues that one should expect

negative returns to have a larger impact on future variance than positive returns. In the above specification we can

test whether such a leverage effect is present at horizonh by testing whetherζh is significantly less than zero19.

Next, trading volume is includes because it is often argued that it is intimately related to the return variance.

A model which can rationalize such a relationship has been proposed by Clark (1973) where prices follow a sub-

ordinated process with information flow (proxied by trading volume or number of trades) being the subordinator.

A number a papers have addressed the relationship from an empirical point of view (e.g. Karpoff (1987), Gallant,

Rossi, and Tauchen (1992) and more recently Ané and Geman (2000)) and invariably report positive correlation

between return variance and trading volume. In addition, an influential paper by Lamoureux and Lastrapes (1990)

finds that thepersistenceof return variance decreases (or even disappears) when trading volume is accounted for.

Finally, the inclusion of (changes in) the short term interest rate is motivated by Glosten, Jaganathan, and Runkle

(1993) who find that it has a significant positive effect on stock market volatility.

Before moving on to the estimation results, we point out that the above specification does not allow us to study

thecausalrelation between return volatility and trading volume. In particular, it could well be that, in addition to

trading volume causing return volatility, return volatility also has a feedback effect onto subsequent trade activity.

Whether such dynamics can be identified at a daily frequency is questionable but are clearly of interest. The

19Suppressingsubscripts momentarily, defineR+ = R whenR > 0 andR+ = 0 whenR ≤ 0. Similarly, defineR− = −R

whenR ≤ 0 andR− = 0 whenR > 0. Hence,R = R+ − R− and |R| = R+ + R−. It is now straightforward to show that

ζR + ζ |R| = ζ+R+ + ζ−R− whereζ+ = ζ + ζ andζ− = ζ − ζ. For the leverage effect to be present, it is required thatζ− > ζ+ ⇔
ζ− − ζ+ > 0 ⇔ ζ < 0.
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theoreticalmarket microstructure has studied such relationships extensively. However, the primary focus has been

on the impact of trade duration on the price process and results are mixed (see for example, Admati and Pfeiderer

(1988), Diamond and Verrecchia (1987), Easley and O’Hara (1992), and Glosten and Milgrom (1985)). Engle

(2000) has also focussed on the impact of trade durations on the price process. Using IBM high frequency data,

he finds that low trading activity leads to a reduction in future return volatility (supporting the implications of the

Easley and O’Hara (1992) model). A related study by Renault and Werker (2002) investigates theinstantaneous

causality relation between transaction durations and prices and finds that about two-thirds of return volatility can

be attributed to instantaneous durations - in other words - transaction times cause transaction prices. Under the

assumption that trade durations are inversely proportional to trade volume, the model we have specified in (1.7)

and (1.8) is directly in line with the above mentioned work, although it should be kept in mind that we work with

data at a daily frequency as opposed to transaction level data. The feedback effect of return volatility on trade

durations - or trade volume - is, although of interest, not studied here.

Under the assumptions that (i) the roots ofα(L) are simple and lie outside the unit circle, (ii) the residuals are

i.i.d. Gaussian, and (iii)d < 1
2 , the ARFIMA model, specified by (1.7) and (1.8) above, can be estimated20 using

the maximum likelihood procedure of Sowell (1992). Alternatively, the model could have been estimated using a

two-step procedure in which the fractional parameter is estimated in the first step (e.g. with the GPH or Robinson

estimator), while the remaining ARMA coefficients are estimated in the second step based on the fractionally

differenced data using ordinary least squares. However, as documented by Smith, Taylor, and Yadav (1997), such

an approach may well lead to inaccurate or biased ARMA coefficient estimates. The Sowell procedure, allowing

for the simultaneous estimation of the model parameters, is therefore preferred.

We first estimate the model without any exogenous variables and then subsequently add returns, volume, and

the short rate. To address the concern that long memory may be induced by infrequent structural breaks21, we

re-estimate the model on various subsamples of the data set. Table 1.3, summarizes the estimation results22 for

two different samples andp = q = 1, k = 4, andm = n = 2. The first sample is the full sample while the second

sample covers the period May 1, 1990 until June 15, 1997. As the point estimates for the fractional parameter

remain within a tight range (with one exception, all estimates are between0.44 and0.48) and turn out to be

highly significant irrespective of the sample period or the model specification, we argue that the realized variance

series clearly exhibits a long memory feature that is not caused by structural breaks. Based on thet-statistic23,

20We have used the ARFIMA package in PcGive version 10.0. See Doornik and Ooms (1999) and Doornik (2002) for documentation.
21See for example Diebold and Inoue (2001), Engle and Smith (1999), Granger (1999), and Granger and Hyung (1999). A simple

and representative model that can cause long memory is the stochastic break model, which takes the form:yt = ut + εt, whereut =

ut−1 + qt−1ηt, εt ∼ iidN (0, σ2
y), ηt ∼ iidN (0, σ2

u) andqt equals0 with probability p and1 with probability 1 − p. Diebold and

Inoue (2001) note that in order to achieve a slowly declining autocorrelation function, whatever the model may be, the key idea is to letp

decrease with the sample size so that regardless of the sample size, realizations of the process tend to have just a few breaks.
22Based on the likelihood ratio test and the AIC criterion we find that an ARFIMA(1,d,1) model provides a parsimonious specification.

The choice ofk, m, andn is guided by the significance of the parameters.ζ4, ζ4, λ1, andδ1 are included for completeness.
23The validity of the t-statistics crucially relies on whether the residuals are IID Gaussian. The diagnostic tests reported in Table 1.3

indicate that even though the residuals appear uncorrelated some skewness, kurtosis and heteroskedasticity is present. Fortunately, these

effects diminish to some extent when lagged returns and trading volume are included and we will therefore work under the assumption

that the t-statistics - in particular for the full model - are reasonably accurate.
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TABLE 1.3: ARFIMA ESTIMATION RESULTS

Full Sample (1990-2000) Sub Sample (1990-1997)

Par ARFIMA + Returns + Volume + Interest ARFIMA + Returns + Volume + Interest

d 0.483
(22.6)

0.476
(16.6)

0.484
(24.0)

0.484
(23.8)

0.441
(8.74)

0.391
(6.73)

0.476
(16.5)

0.475
(16.2)

α1 0.356
(5.76)

0.337
(7.27)

0.337
(7.94)

0.335
(7.87)

0.437
(5.70)

0.325
(4.69)

0.321
(6.42)

0.318
(6.30)

β1 −0.602
(10.3)

−0.678
(15.2)

−0.695
(18.9)

−0.695
(18.8)

−0.635
(7.75)

−0.599
(6.99)

−0.680
(14.8)

−0.678
(14.5)

ζ1 - −3.377
(5.03)

−3.863
(5.99)

−3.999
(6.18)

- −2.362
(2.60)

−3.708
(4.25)

−3.958
(4.51)

ζ2 - −2.652
(3.96)

−3.086
(4.79)

−3.107
(4.81)

- −1.906
(2.10)

−2.834
(3.25)

−2.827
(3.22)

ζ3 - −1.439
(2.14)

−1.472
(2.28)

−1.449
(2.25)

- −2.448
(2.69)

−2.312
(2.65)

−2.290
(2.63)

ζ4 - −1.206
(1.79)

−1.498
(2.32)

−1.527
(2.37)

- −0.925
(1.02)

−1.393
(1.61)

−1.404
(1.62)

ζ1 - 30.36
(28.0)

27.01
(25.3)

27.15
(25.4)

- 37.22
(25.4)

32.73
(22.8)

32.99
(23.0)

ζ2 - 12.85
(11.7)

11.30
(10.5)

11.29
(10.5)

- 16.99
(11.5)

14.89
(10.3)

14.80
(10.2)

ζ3 - 6.468
(5.91)

5.817
(5.52)

5.729
(5.44)

- 6.288
(4.27)

5.812
(4.11)

5.610
(3.97)

ζ4 - 4.541
(4.19)

4.413
(4.24)

4.355
(4.19)

- 3.953
(2.70)

3.926
(2.81)

3.851
(2.76)

λ0 - - 0.338
(14.0)

0.335
(13.9)

- - 0.370
(13.1)

0.365
(12.9)

λ1 - - −0.007
(0.28)

−0.007
(0.30)

- - −0.011
(0.39)

−0.010
(0.37)

δ0 - - - −0.179
(2.29)

- - - −0.198
(2.41)

δ1 - - - 0.031
(0.39)

- - - 0.068
(0.83)

−LogL 977.3 607.7 504.5 501.6 710.5 414.0 328.8 325.4

AIC/T 0.805 0.509 0.426 0.425 0.795 0.475 0.382 0.381

No. Par 5 13 15 17 5 13 15 17

Skew 0.675 0.371 0.385 0.380 0.721 0.330 0.345 0.345

Kurt 5.680 4.291 4.184 4.144 5.850 3.924 3.785 3.734

PM[5] 3.888
(0.143)

2.822
(0.244)

1.945
(0.378)

2.095
(0.351)

5.391
(0.068)

4.906
(0.086)

4.365
(0.113)

4.516
(0.105)

ARCH[5] 4.443
(0.001)

4.143
(0.001)

2.662
(0.021)

2.028
(0.072)

3.402
(0.005)

5.389
(0.000)

4.718
(0.000)

3.406
(0.005)

Notes: ARFIMA(1,d,1) estimation results for the full sample (2 May 1990 - 11 January 2000; 2445 observations) and the sub sample

(2 May 1990 - 15 June 1997; 1803 observations). The full model specification is given by expressions (1.7) and (1.8). The table reports

all parameter estimates (exceptω) with absolute t-statistics in parenthesis below. The residual test statistics include skewness (“Skew”),

kurtosis (“Kurt”), and the Portmanteau (“PM[5]”,X 2
2 ) and ARCH (”ARCH[5]”, F (5, 1775) for sub-sample andF (5, 2419) for full

sample) statistics including 5 lags. p-values are reported in parenthesis below PM[5] and ARCH[5].
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however, we cannot reject thatd > 0.5 at a95% confidence level, i.e. the realized variance series is potentially

non-stationary. Turning to the exogenous variables, we notice a dramatic increase in log likelihood - accompanied

by a substantial decrease in AIC criterion - upon inclusion of lagged (absolute) returns. In particular, fork = 4,

the number of parameters increases by8 to a total of13 while the log likelihood increases by almost370! As a

result, the AIC criterion drops from0.80 to 0.50. Further, the sign and significance of theζ parameters suggest

that Black’s leverage effect is present at horizons up to 3 or 4 days. This finding provides support for the GJR-

GARCH (Glosten, Jaganathan, and Runkle 1993) and EGARCH (Nelson 1991) specifications which explicitly

account for this asymmetric effect that returns have on future variance. Regarding trading volume, we find that

contemporaneous values further improve the fit of the model. Consistent with Clark’s model, we find that the

sign ofλ0 is positive and highly significant. However, in contrast to the findings of Lamoureux and Lastrapes, it

appears that thepersistenceof the variance process (as measured byd) remains largely unchanged when trading

volume is conditioned upon. Finally, the estimate forδ0 suggests that an interest rate cut is accompanied by higher

volatility than an interest rate hike. It must be said, however, that this effect is marginally significant and that the

associated likelihood increase minimal.

1.4 Conclusion

Under certain assumptions on the return process, a number of recent papers have shown that realized variance is

a consistent and virtually measurement error-free estimator of the conditional return variance. In this paper we

show that realized variance measure constitutes abiasedestimate of the return variance when (excess) returns

are serially correlated. 10 years of FTSE-100 minute by minute data are used to illustrate that a careful choice

of sampling frequency is crucial in avoiding a substantial bias. The relation between the sampling frequency

and the presence of serial correlation is analyzed in detail and demonstrates that serial correlation in returns

disappears under temporal aggregation at a rate of decay that is consistent with that one of an ARMA process.

An autocovariance function based method is proposed for choosing the optimal sampling frequency, that is, the

highest available sampling frequency for which the autocovariance bias term is negligible. Many alternative

approaches to deal with this issue can be considered though. One route is to use all available data by explicitly

modelling the market microstructure effects. Another is to “correct” for the bias by dividing the biased realized

variance estimate by an appropriate constant (or any sort of function that achieves unbiasedness of the estimator).

A third approach, which we may explore in future research, is to use a Newey-West type covariance estimator in

order to take into account the serial correlation in the data. The advantage here is that it is potentially more efficient

than the aggregation approach outlines in this paper as it makes use of all available data while the non-parametric

nature of the estimator avoids the need to explicitly model the market microstructure.

Regarding the FTSE-100 data set, we find that the realized variance series can be modelled as an ARFIMA

process. Exogenous variables such as lagged returns and contemporaneous trading volume appear to be highly

significant regressors and are able to explain a large portion of the variation in realized variance. Also, statistical

tests suggest that Black’s leverage effect is significant at three or four days. Regarding contemporaneous trading

volume we find that, despite its significance, the persistence of the variance process remains largely unchanged.
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Chapter 2

Latent Variable Estimation for the Affine

Jump Diffusion

Based on joint work with George Jiang

2.1 Introduction

In recent years, there has been a remarkable pace in the development of continuous-time asset return models,

as the literature strives to find a satisfactory model for the representation of the data generating process of asset

returns. Recent specifications of continuous-time asset return models have extended from univariate stochastic

volatility component to multivariate stochastic volatility components, from random jumps in asset return only to

random jumps in both asset return and asset return volatility, as well as from constant jump intensity to time-

varying or state dependent jump intensity1. While asset prices are inherently observed, and can thus be modelled

as such, this is certainly not the case for a number of other important variables such as the jump term and the

instantaneous mean and variance of the return process. Usually, these components are treated as latent2, at the

cost of substantially complicating statistical inference. The difficulty arises due to the fact that the latent variables

have to be integrated out of the likelihood. The dimension of such integrals is typically very high and sophisticated

numerical algorithms need to be employed in order to evaluate the likelihood function. An alternative approach is

to construct proxies of the latent variables using observed information. For instance, in the finance literature the

squared asset returns are often used as a proxy for time-varying stochastic volatility. More often than not, these

proxies are not only very noisy but also inconsistent with the latent variables under specific model specification.

Consequently, this can lead to inconsistent parameter estimators and invalid statistical inference as they are, in

essence, based on a misspecified model.

1Seefor example Andersen, Benzoni, and Lund (2002), Bakshi, Cao, and Chen (1997), Bates (1996, 2000), Bollerslev and Zhou

(2002), Duffie, Pan, and Singleton (2000), Chernov, Gallant, Ghysels, and Tauchen (2002), Eraker, Johannes, and Polson (2002), Pan

(2002), Singleton (2001).
2An exception is the ARCH class of model which specifies the conditional return variance as a function of (past) observables. See

Bollerslev, Engle, and Nelson (1994) or Bollerslev, Chou, and Kroner (1992) for a review of this literature.
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Motivated by the observation that many of the relevant continuous time latent variable models are nested in

the affine jump diffusion (AJD) model of Duffie, Pan, and Singleton (2000), in this paper we fully exploit the

analytical tractability of the AJD to propose amodel-consistent unbiased minimum-variance estimator of the

latent variables. More specifically, based on the closed analytic form of the conditional characteristic function

and an uncovered dynamic relation between the latent variables and the cumulants of the observed state variables,

we derive an unbiased minimum-variance estimator for the latent variables in terms of the model parameters and

observations of the state variables. An important feature of the proposed estimator, is that it ismodel-consistent

and can be implemented usinghigh frequencydata which, in turn,may lead to substantial efficiency gains. It is

worth emphasizing that our approach can, in principle, be applied to any latent variable model in the general AJD

framework and therefore covers a wide range of models frequently studied in the finance literature.

Further, within the AJD model framework, we outline a GMM estimation approach3 that is based on the

conditional characteristic function (to derive exact moments) in conjunction with high frequency observations of

the state variables and the proposed measurement of the latent variables. The basic idea it to match conditional

moments or cumulants of both the observed and the unobserved state variable, where the latter is evaluated at its

point estimate. In contrast to simulation based methods, such as simulated method of moments, efficient method

of moments, or markov chain monte carlo, our approach does not involve simulations or discretization error of

the continuous time model.

The remainder of this paper is organized as follows. In Section 2.2, we review the class of AJD models follow-

ing Duffie, Pan, and Singleton (2000), and develop the model-consistent unbiased minimum-variance estimator of

the latent variable based on high frequency observations on the observed state variable. In Section 2.3, we perform

a simulation experiment to study the properties of the proposed latent variable estimator for the stochastic mean

and square root diffusion model. Section 2.4 reviews the literature on the estimation of latent variable models in

finance and outlines an alternative GMM estimation approach that is based on the proposed estimator of the latent

variables. Section 2.5 concludes.

2.2 The Affine Jump-Diffusion Model with Latent Variables

Let Xt ∈ Rn, t ≥ 0, be the n-dimensional vector of state variables. Without loss of generality, we partition

the whole vector ofXt into two sub-vectors, i.e.Xt = (S′t, V ′
t ), whereSt ∈ Rm, n > m > 0, is the vector

of observedstate variables andVt ∈ Rn−m is the vector ofunobserved or latentvariables. For instance, in

financial modelsSt can be observed asset prices, interest rates, and exchange rates, etc., andVt can be unobserved

instantaneous volatility, instantaneous mean, information flow, etc. Here, we consider a general continuous time

affine jump-diffusion (AJD) model as defined in Duffie, Pan, and Singleton (2000) for the state variableXt. Using

the same notation as in Duffie, Pan, and Singleton (2000), we fix a probability space(Ω,F , P ) and an information

filtration (Ft) = {Ft : t ≥ 0}, and suppose thatXt is a Markov process in some state spaceD ∈ Rn, following

3A closely related study by Bollerslev and Zhou (2002) uses the realized volatility as a proxy for the integrated variance of the return

process and propose a GMM estimation based on conditional returns and variance moments of the process.
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thestochastic differential equation (SDE):

dXt = µ(Xt)dt + σ(Xt)dWt + dZt (2.1)

whereWt is an(Ft)-standard Brownian motion inRn, µ(·) : D → Rn andσ(·) : D → Rn×n are respectively

the drift function and diffusion function, andZ is a pure jump process whose jumps have a fixed probability

distributionJ onRn and arrive with intensity{λ(Xt) : t ≥ 0}, for someλ(·) : D → [0,∞). The initial value of

the stochastic processX0 is assumed to follow a trivial distribution. ForXt to be a well-defined Markov process,

regularity conditions on the filtration(Ft) = {Ft : t ≥ 0} and restrictions on the state space as well as on the

coefficient functions of the stochastic process, namely(D, µ(·), σ(·), λ(·),J ), are required. For technical details,

see e.g. Ethier and Kurtz (1986), Duffie and Kan (1996), Duffie, Pan, and Singleton (2000), and Dai and Singleton

(2000).

The jump-diffusion (JD) process defined in (2.1) consists of three components. Namely, the drift termµ(·)
representing the instantaneous time trend of the process, the variance termσ(·)σ(·)′ representing the instantaneous

variance of the process when no jump occurs, and the jump termZt capturing the discontinuous change of the

sampling path with both random arrival of jumps and random jump sizes. Moreover we suppose, as in Duffie, Pan,

and Singleton (2000), that conditional on the path ofXt, the jump times ofZt are the jump times of a Poisson

process with time varying intensity{λ(Xs) : 0 ≤ s < t}, and the size of the jump ofZt at a jump timeτ is

independent of{Xs : 0 ≤ s < τ} and follows the probability distributionJ .

For convenience and tractability, many financial models impose an “affine” structure on the coefficient func-

tions µ(·), σ(·)σ(·)′, andλ(·), i.e. all of these functions are assumed to be affine onD. Using the notation in

Duffie, Pan, and Singleton (2000), we have

µ(Xt) = K0 + K1Xt,

[σ(Xt)σ(Xt)′]ij = [H0]ij + [H1]ijXt,

λ(Xt) = l0 + l1Xt (2.2)

whereK = (K0,K1) ∈ Rn × Rn×n,H = (H0,H1) ∈ Rn×n × Rn×n×n, l = (l0, l1) ∈ Rn × Rn×n. Let

g(c) =
∫
Rn exp{c ·z}dJ (z) be the jump transform whenever the integral is well defined, wherec ∈ Cn the set of

n-tuples of complex numbers,g(·) determines the jump size distribution. It is obvious that the set of “coefficients”

or parameters(K, H, l, g) completely specifies the AJD process and determines its statistical properties, given the

initial conditionX0. When the jump intensity is set as zero, i.e.λ (·) = 0, the process is referred to as an affine

diffusion (AD) process.

2.2.1 Unbiased Estimators of the Latent Variables

Statistical inference of continuous-time models has presented a great challenge to statisticians and econometri-

cians as it requires the knowledge of the dynamic properties or the transition density of the process. However,

the transition density functions of the diffusion and jump-diffusion process are in general not available in a closed

analytic form. For instance, in the simplest univariate pure-diffusion case, i.,e.n = 1, λ (·) = 0, the Brownian
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motionwith drift process, the Ornstein-Uhlenbeck process and the square-root diffusion process (also known as

the Feller or CIR process) are three well known processes with explicit transition density functions. For these

processes, both the drift functionµ(·) and the squared diffusion functionσ2(·) have an affine structure. The func-

tional forms of the transition densities corresponding to specifications with non-affine coefficient structure are not

known explicitly (Wong 1964). In the presence of latent or unobserved variables, as considered in the multivariate

JD model framework, statistical inference presents an even greater challenge. Because of the latent variables in the

conditional information set, any inference procedure must either integrate out the latent state variables from the

model or rely on some proxies of the latent variables. As we shall see in Section 2.4, various estimation methods

have been proposed recently in the literature for dynamic models with latent variables in general and stochastic

volatility asset return models in particular. However, most of these methods are simulation based and involve path

simulation, which may lead to discretization error, and numerically intensive integration of the latent variables.

An alternative estimation approach relies on a proxy of the latent variable. In the finance literature, for instance,

squared daily return is often used as proxy of daily volatility in the estimation of asset return models with stochas-

tic volatility. As we will see later on, such proxies are not only very noisy but are generally inconsistent with the

volatility measure within a specific model framework. As a result the statistical inference becomes invalid as it is

in essence based on a misspecified model.

Below, we develop anunbiased minimum-variance estimator of latent variablethat can be implemented with

high frequency observations of observed state variables. The basic idea is to exploit the fact that under the affine

continuous time model framework, the conditional characteristic function often has closed analytical form. Since

there is an exact one-to-one correspondence between the characteristic function and the distribution function,

the characteristic function contains the same information as the distribution function. Consequently, the dynamic

properties can also be investigated based on the conditional characteristic function. Using the relationships derived

between the conditional cumulants of observed state variables and the latent variables, we derive the estimator.

Duffie, Pan, and Singleton (2000) showed that under the affine structure, the conditional characteristic function

of the jump-diffusion process as defined in (2.1) has a semi-closed form given by:

ψ(u; Xt+τ , t, τ |Xt) ≡ E[exp{iu′Xt+τ}|Xt] = exp{C(τ, u) + D(τ, u)′Xt} (2.3)

whereD(·) andC(·) are the solutions of complex-valued Ricatti equations:

∂D (τ, u)
∂τ

= K ′
1D (τ, u) +

1
2
D (τ, u)′H1D (τ, u) + l1 (g (D (τ, u))− ι)

∂C (τ, u)
∂τ

= K ′
0D (τ, u) +

1
2
D (τ, u)′H0D (τ, u) + l0 (g (D (τ, u))− ι)

with boundary conditionsD(0, u) = iu andC(0, u) = 0 andι is a vector of ones. With certain specifications of

the coefficient function(K, H, l, g), explicit solutions ofD(·) andC(·) can be found. In other cases, as noted in

Duffie, Pan, and Singleton (2000), the solution would have to be found numerically.

In this paper, we assume that “high frequency” observations of the state variablesSt are available at fixed sam-

pling intervalδ. In particular, the series{St+kδ}N
k=0 for N = 1/δ is observed over the time period[t, t + 1] and

t = 0, 1, ..., T − 1. It is noted that our approach also works for the case with irregular sampling intervals, with the
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only difference being the more cumbersome notation. Specializing expression (2.3), and explicitly distinguishing

between observed and unobserved state variables, we obtain:

ψ (u1, u2; St+τ , Vt+τ , t, τ |St, Vt) = E
[
exp

{
iu′1St+τ + iu′2Vt+τ

} |St, Vt

]

= exp
{
C (τ, u1, u2) + D1 (τ, u1, u2)

′ St + D2 (τ, u1, u2)
′ Vt

}

whereC (τ, u1, u2) = C (τ, u) ,
(
D1 (τ, u1, u2)

′ , D2 (τ, u1, u2)
′) = D (τ, u)′ with u = (u′1, u

′
2)
′. Further, we

note

ψ (u;St+τ , t, τ |St, Vt) = E
[
exp

{
iu′St+τ

} |St, Vt

]

= exp
{
C (τ ; u, 0) + D1 (τ ;u, 0)′ St + D2 (τ ; u, 0)′ Vt

}
(2.4)

Lemma 2.2.1 LetXt = (S′t, V ′
t )′ be the affine jump-diffusion process as defined in (2.1). Given a high frequency

sampling scheme ofSt with sampling intervalδ, the lth cumulant of∆St+kδ = St+kδ − St+(k−1)δ, k ≥ 1 ,

conditional onFt is given by

K l (∆St+kδ|Ft) = cl (k) + dl
1 (k)′ St + dl

2 (k)′ Vt, l = 1, 2, . . . (2.5)

where

cl (k) =
∂l

il∂ul
{C (δ, u, 0) + C [(k − 1)δ,−iD1 (δ, u, 0)− u,−iD2 (δ, u, 0)]} |u=0,

dl
1 (k) =

∂l

il∂ul
{D1 [(k − 1)δ,−iD1 (δ, u, 0)− u,−iD2 (δ, u, 0)]} |u=0,

dl
2 (k) =

∂l

il∂ul
{D2 [(k − 1)δ,−iD1 (δ, u, 0)− u,−iD2 (δ, u, 0)]} |u=0 .

In particular, we have

d1
2 (k)′ Vt = E [∆St+kδ | Ft]− c1 (k)− d1

1 (k)′ St (2.6)

and

d2
2 (k)′ Vt = V ar [∆St+kδ | Ft]− c2 (k)− d2

1 (k)′ St (2.7)

Proof See Appendix A.1

Moreover, given the firstL conditional cumulants of∆St+kδ, from (2.5) we have explicitly

d1
2 (k)′ Vt = K1(∆St+kδ)− c1(k)− d1

1(k)′St

...

dL
2 (k)′ Vt = KL(∆St+kδ)− cL(k)− dL

1 (k)′St (2.8)

based on which it is straightforward to have the following corollary:

Corollary 2.2.2 (to Lemma 2.2.1) Given the firstL conditional cumulants of∆St+kδ, from relation (2.5) or

(2.8), the latent variableVt is exactly (over-,under-) identified from
{
K l (∆St+kδ)

}L

l=1
if rank(d2(k)′d2(k)) =

(>,<) dim(Vt), whered2(k) =
(
d1

2(k), . . . , dL
2 (k)

)′
.
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Proof See Appendix A.1

It is noted from Lemma 2.2.1 that the latent variables are related to the conditional cumulants of the observed state

variables. In particular, expression (2.6) relates the latent variableVt to the conditional mean of the observed state

variableSt+kδ, while expression (2.7) relates the latent variableVt to the conditional variance of the observed state

variableSt+kδ. Equation (2.8) extends the results in Lemma 2.2.1, i.e. linear combinations of latent variables are

related to the conditional cumulants of certain order of the observed state variables.

Given a set of observations of the state variables, an unbiased estimator of the cumulant can be obtained from

thek-statistic of the same order (see Kenney and Keeping (1951, 1962)). For example, for a given sample sizen,

the first fourk-statics are given by

k1 = m1, k2 =
n

n− 1
m2, k3 =

n2

(n− 1)(n− 2)
m3, k4 =

n2[(n + 1)m4 − 3(n− 1)m2
2]

(n− 1)(n− 2)(n− 3)

wherem1 is the sample mean,m2 is the sample variance, andmi is theith sample central moment (i ≥ 3). In

other words, the unbiased estimator of cumulants can be directly calculated from sampling observations.

The uncovered relationship between the observed and unobserved variables through the conditional cumu-

lants, as detailed in expression (2.5), points to the possibility of constructing an unbiased estimator of the latent

variables from observations of the observed state variables. In particular, as both the theoretical and simulation

results will show, the properties of such unbiased estimators can be improved with the use of high frequency obser-

vations on the observed state variables. However, the results in Corollary 2.2.2 indicate that when the dimension

of Vt is greater than1, the identification of the latent variables becomes more complicated. Obviously, when

rank(d2(k)′d2(k)) < dim(Vt), some of the latent variables can not be identified. For notational convenience,

we only present the case where the dimensions ofSt andVt are both equal to1. Following expressions (2.6) and

(2.7), define the(N × T )× 1 vectorsϑt andξt whoseith entries are equal to:

ϑt (i) =
[
d1

2 (i)
]−1 [

∆St+iδ − c1 (i)− d1
1 (i)′ St

]

ξt (i) =
[
d2

2 (i)
]−1

[
(∆St+iδ)

2 − (
c1 (i) + d1

1 (i)′ St

)2 − c2 (i)− d2
1 (i)St

]

for i = 1, . . . , N ×T . Recall thatN denotes the number of intra-period observations whileT denotes the number

of periods.

Lemma 2.2.3 (Unbiased Minimum-Variance Estimator) For a given sequence of the observed state variable,

{St+iδ}N×T
i=0 andd1

2 (k) 6= 0,∀k ≥ 1, an unbiased estimator of the latent variableVt is given by

V̂t = W ′ϑt (2.9)

for any(N × T )× 1 weighting vectorW that satisfiesι′W = 1 whereι is an(N × T )× 1 vector of ones. When

d1
2 (k) = 0 butd2

2 (k) 6= 0, ∀k ≥ 1, an unbiased estimator of the latent variableVt is given by

V̂t = W ′ξt (2.10)
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In addition, the following weighting vector minimizes the variance of the estimator

W =
Σ−1

t ι

ι′Σ−1
t ι

(2.11)

where Σt = E [ϑtϑ
′
t|Ft] − E [ϑt|Ft] E [ϑt|Ft]

′ for the estimator in expression (2.9) andΣt = E [ξtξ
′
t|Ft] −

E [ξt|Ft]E [ξt|Ft]
′ for the estimator in expression (2.10).

Proof See Appendix

For the general case, diagonal elements ofΣt can be obtained directly from theFt-conditional characteristic

function of ∆St+kδ. Expressions for the off-diagonal elements can be derived using the jointFt-conditional

characteristic function of∆St+kδ and∆St+jδ for j 6= k > 0. As illustrated in the next section using the stochastic

mean and square-root stochastic volatility model, closed-form expressions for the optimal weight functions can

be derived from various conditional cumulants.

To conclude, we note that there are two versions of asymptotics for the unbiased estimator of the latent

variables. Namely, two different sampling schemes can lead to infinite sample size. One is to increase the

sampling horizonT while fixing the sampling intervalδ (or N ). The other is to increase the sampling frequency

N or reduce the sampling intervalδ while fixing the sampling horizon. The first scheme gives rise to a discrete

sample over infinite time horizon as mostly studied in statistics and econometrics, while the second leads to a

continuous sampling path which is unique for continuous time models. Of course the combination of the above

two sampling scheme will lead to continuous sampling over infinite time horizon. As is clear from the above, the

unbiasedness property of the estimator does not depend on the specific sampling scheme. Unfortunately, this is

not the case for the consistency of the estimator. Preliminary results have been derived (but are not included here)

and suggest that for the pure diffusion process as defined in (2.1) withλ(·) = 0 we have that (i) the estimator

given by expression 2.9 is unbiased and consistent whenT → ∞ but unbiased and inconsistent whenδ → 0

and (ii) the estimator given by expression 2.10 is both unbiased and consistent under either sampling scheme. In

other words, as the sampling horizonT → ∞ the estimators of latent variables are not only unbiased but also

consistent. However, as the sampling intervalδ → 0 (i.e. N →∞) with fixed sampling horizon, the estimators are

unbiased but may be inconsistent. The consistency depends on the particular model specification. For example,

the estimator of the latent conditional mean (variance) in the stochastic mean (volatility) model discussed below,

is inconsistent (consistent) whenδ → 0. The results further illustrate the advantage of our estimators as it allows

for a flexible sampling scheme. In practice, the continuous sampling of asset returns or the ultra high frequency

return observations are often plagued by the market microstructure related noises, such as the inherent discreteness

of price quotes, time-of-day effect, bid-ask bounce, etc. The above property suggests that this drawback can be

easily avoided by using the discrete sampling with extended sampling period.
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2.3 Performance of the Unbiased Minimum-Variance Latent Variable Estima-

tor

In continuous-time asset price models the observed state variable typically include the (first difference) logarith-

mic asset price, while the latent or unobserved variable can be the stochastic instantaneous mean or variance of the

process. Below we investigate the properties of the unbiased minimum-variance (“UMV”) estimator of the condi-

tional mean for the stochastic mean (SM) model and that of the conditional volatility for the square-root stochastic

volatility (SV) model respectively. We do this by studying the relative performance of the “optimal” latent variable

filter compared to alternative, potentially “sub-optimal” or inconsistent, filters. For the SM model we consider

a simple moving average, the Kalman filter, and the Kalman smoother while for the SV model, we consider the

realized variance measure, the Nelson and Foster (1994) ARCH filter, and the exponentially weighted moving av-

erage (“EWMA”) filter. We emphasize that all estimators are implemented using the true model parameter values.

Estimation of these parameters will be discussed below in section 2.4.

2.3.1 The Mean-Reverting Stochastic Mean Model

Consider the following process with stochastic linear mean-reverting drift for the (de-trended) asset price:

dSt = κ(Xt − St)dt + σdW s
t

dXt = −βXtdt + σxdW x
t , t ∈ [0, T ] (2.12)

whereκ 6= β andW s andW x are independent. The model exhibits linear mean reversion to a stochastic condi-

tional mean which itself follows a mean-reverting process. Both the price process,St, and its associated stochastic

conditional mean,Xt, follow an Ornstein-Uhlenbeck (OU) process. It can be shown that:

Xt+τ = e−βτXt +
∫ t+τ

t
e−β(t+τ−u)σxdW x

u

and

St+τ = e−κτSt +
κ

β − κ
(e−κτ − e−βτ )Xt

+
∫ t+τ

t
e−κ(t+τ−u)σdW s

u +
κ

β − κ

∫ t+τ

t
(e−κ(t+τ−u) − e−β(t+τ−u))σxdW x

u

Therefore,bothSt andXt are normal with unconditional distributions given bySt ∼ N (0, σ2

2κ + κσ2
x

2β(β+κ)) and

Xt ∼ N (0, σ2
x

2β ). Conditional mean and variance expressions follow directly from the SDE solutions above. From

earlier discussion of the general model, the joint characteristic function of(St+τ , Xt+τ ) conditional onFt can be

written as:

ψ (u1, u2;St+τ , Xt+τ , t, τ |St, Xt) = E [exp {iu1St+τ + iu2Xt+τ} |St, Xt]

= exp
{
C (τ ; u1, u2) + D1 (τ ; u1, u2)

′ St + D2 (τ ; u1, u2)
′Xt

}
,
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whereC (·) , D1 (·) andD2 (·) can be solved from the Ricatti equations. For the above SM specification, the

solution is given by:

C(τ ; u1, u2) =
1
4κ

u2
1(σ

2 +
κ2

(β − κ)2
σ2

x)(e−2κτ − 1) +
1
4β

(u2 − u1
κ

β − κ
)2σ2

x(e−2βτ − 1)

+u1(u2 − u1
κ

β − κ
)

κ

β2 − κ2
σ2

x(e−(β+κ)τ − 1)

D1(τ ; u1, u2) = iu1e
−κτ

D2(τ ; u1, u2) = i(u2 − u1
κ

β − κ
(e(β−κ)τ − 1))e−βτ

Analytic expressions of the conditional cumulants of various orders can be derived for both the observed and

unobserved state variables. In particular, the first order conditional cumulant forSt+δj is derived as:

E [St+jδ|Ft] = a (j)St + c (j) Xt

wherea (j) = e−jκδ andc (j) = κ e−jκδ−e−jβδ

β−κ . Based on the above expression, we can construct an unbiased

estimator of the instantaneous meanXt in terms of the model parameters and an unbiased estimator of the first

order conditional moment of the observed state variable. Define

ϑt (j) =
St+jδ − a (j) St

c (j)
(2.13)

Any weighted sum ofϑt (j) for j = 1, . . . , N×T , with weights summing to one, will yield an unbiased estimator

of Xt, i.e.:

X̂t = W ′ϑt

whereW andϑt are(N × T )× 1 vectors andι′W = 1. Following Lemma 2.2.3, the optimal choice ofW for an

unbiased minimum-variance estimator of the instantaneous volatility is given by:

W =
Σ−1

t ι

ι′Σ−1
t ι

. (2.14)

whereΣt is the conditional variance-covariance matrix of the vector[ϑt (j)]j=1,...,N×T . Based on the conditional

characteristic function we can derive a closed form expression forΣt. In particular, forj > k the off-diagonal

(j, k) and(k, j) elements ofΣt are given by

Cov [ξt (j) , ξt (k) |Ft] =
1

c (j) c (k)
Cov [St+jδ, St+kδ|Ft]

while the diagonal(j, j) elements ofΣt are given by

V ar [ξt (j) |Ft] =
1

c (j)2
V ar [St+jδ|Ft] .

The relevant variance and co-variance expressions are given in Appendix A.2.2. It is noted from there that none

of the state variables enter into the covariance expression and, as a result, the optimal weights are constant.
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Simulation Design. In order to investigate the performance of the above estimator, we perform a simulation

experiment. In particular, based on the SM model in (2.12), we simulate a time series of high frequency observa-

tions on both the observed and unobserved state variables, i.e.{St+(k−1)δ, Xt+(k−1)δ} for k = 1, . . . , 1/δ, and

t = 1, . . . , T + TT − 1. The parametersδ, TT , andT can be interpreted as the sampling frequency, sample size,

and sampling horizon respectively. In the remainder of this paper we assume without loss of generality that the

variablesT andTT are measured in days. Due to the analytic tractability of the OU process, the sample path

can be simulated exact, without discretization error. From this simulated sample, we record the value of the latent

variable at the beginning of each period, i.e.{Xt}TT
t=1, and use the high frequency realizations of the observed

state variable to construct the following four filters:

1. UMV FILTER. Based on the results in Lemma 2.2.3, we compute the SM model-consistent estimator with

optimal weights using high frequency observations of the state variable over asampling horizonof length

T , i.e.
{
St+(k−1)δ

}T/δ

k=1
. In particular,

X̂sm
t = W ′ϑt (2.15)

where thejth element of theN×T vectorϑ, and the optimal weighting matrixW , are given by expressions

(2.13) and (2.14) respectively.

2. MOVING AVERAGE. At a sampling horizon ofT days, we compute the average of the observed state

variable

X̂ma
t =

1
T

T/δ−1∑

k=0

St+kδ (2.16)

3. KALMAN FILTER. As is shown in Appendix A.2.1, we can reformulate the SM model in (2.12) into linear

state space form after which the Kalman filter (see for example Harvey (1989, 1993), Koopman and Harvey

(2003)) can be applied to filter out the latent state variable. Here, we denote the Kalman filter estimates by

X̂kf
t .

4. KALMAN SMOOTHER. The linear state space form can also be exploited to obtain Kalman smoother

estimates of the latent state variable. Here, we denote the Kalman smoother estimates byX̂ks
t .

Notice that in order to construct an estimate of the latent variable, the UMV and Moving Average filter use

contemporaneous and future information, the Kalman filter uses past information, and the Kalman smoother uses

past, present, and future information.

Regarding the parameter choice, for the benchmark case (“Par I”, see Table 2.1) we fixκ = 0.5 andβ = 0.05

and adjustσ andσx so as to achieve an unconditional volatility of the latent instantaneous mean of 10% annually

and an unconditional volatility of the observed variable of 25% annually. Because the optimal weights, and

possibly the performance of the various filters, may depend on the specific choice of model parameters we consider

two alternative sets of parameters. The first set (“Par II”) increases the mean reversion of the observed process to

its latent conditional mean while leaving the speed of mean reversion of the latent process itself unchanged. The

second set (“Par III”) increases the persistence of the latent process. Both parameter configurations are expected
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to facilitate inference relative to the benchmark case. To investigate the impact of sampling frequency and sample

size we fixT = 1 and varyδ =
{

5
60×8 , 30

60×8 , 120
60×8 , 480

60×8

}
, corresponding to5 minutes,30 minutes, 2 hours, and

1 day data based on a trading day of 8 hours. We setTT = 2520, corresponding to a high frequency sample path

with a length of 10 years.

The performance of all four filters is measured by regressing4 the measurement error, i.e.Xt − X̂sm
t , Xt −

X̂ma
t , Xt − X̂kf

t , andXt − X̂ks
t , on a constant and the actual realization of the latent variable,Xt, for t =

1, . . . , TT . The filter is unbiased when the intercept and slope coefficients are both insignificantly different from

zero. The efficiency of the estimators is measured by the MSE statistic while theR2 measures whether any

systematic component remains in the measurement error that can be explained by the realizations of the latent

variable. Ideally, we would want both the MSE andR2 statistics to be as close to zero as possible. In anticipation

of the simulation results, we use the “AR(1) plus noise model” to provide some intuition for the behavior of the

slope coefficient in the regression suggested above. In particular, let the latent processXt be specified as:

Xt = ρXt−1 + εt = X0 +
t∑

i=0

ρiεi

whereε ∼ iid N(0, σ2
ε). The process is stationary when|ρ| < 1 in which case it has mean0 and variance

σ2/
(
1− ρ2

)
. Further suppose that theobservedprocess is equal to:

St = Xt + ηt

whereη ∼ iid N(0, σ2
η). Notice that the dynamic specification of the latent state variable,X, corresponds to the

(discretized) process in expression 2.12. However, the observed process is different (and simpler) but will still

serve its illustrative purpose here. Next, consider anaive two-sided moving average estimatorfor the latent state:

X̂t = λ−1
w

NF∑

i=−NP

λ|i|St+i

where

λw = 1 +
NF∑

i=1

λi +
NP∑

i=1

λi =

{
1− 2−λNF−λNP

λ−1 λ if 0 < λ < 1

1 + NF + NP if λ = 1

The Kalman filter (smoother) is closely related to the above estimator whenNP > 0 andNF = 0 (NP > 0 and

NF > 0). Also notice that the moving average estimator is unbiased whenNF = NP = 0. We are now interested

in the slope coefficient of the regression discussed above, i.e. the measurement error on the actual realization of

the latent variable:

Xt − X̂t = α + βXt + ξt

It can be shown thatβ will tend to

β =
λw − 1

λw
+ λρ

2− (λρ)NF − (λρ)NP

λw (1− λρ)
> 0

4We point out that alternative regression formulations could have been considered. For example, we could have ran a regression ofX

on a constant and̂X but this is likely to deliver a biased slope coefficient due to measurement error. The regression ofX̂ on a constant and

X circumvents this problem but has the drawback that theR2 is difficult to interpret.
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TABLE 2.1: SIMULATION PARAMETERS FOR“STOCHASTIC MEAN MODEL II”

κ β σ σx

Par I 0.50 0.05 14.6 1.99

Par II 2.50 0.05 32.3 1.99

Par III 0.50 0.01 14.5 0.89

Notes: All volatility coefficients (i.e.σ andσx) are scaled up by1, 000 in the table. The parameters are determined by fixingκ andβ,

while adjustingσ andσx so as to maintainV [X] = (10%)2 andV [S] = (25%)2 annually.µ andρ are set equal to zero in which case

V [X] = (2β)−1σ2
x andV [S] = (2κ)−1σ2 + (2β(β + κ))−1κσ2

x

when the sample size,T , tends to infinity. From this it is clear that whenNF > 0 and / orNP > 0 the filter is

“over-smoothing” and the slope coefficient in the above regression will be (i) positive5 and (ii) increasing in with

the order (degree of smoothing) of the moving average filter. TheR2 statistic will then indicate how strong this

correlation between the measurement error and the latent variable is.

To reduce variation in the simulation results, Table 2.2 reports theaverageslope coefficient (plus associated

average absolute t-statistics),R2, andRMSE obtained from 50 independent simulation runs. It turns out that for

some filters, sampling frequencies, and / or parameter configurations, the measurement error can be heteroskedas-

tic and serially correlated. Table 2.2 therefore reports heteroskedastic and autocorrelation (HAC) consistent t-

statistics (Newey and West 1987) computed using 15 lags. Although the choice of lag length is relatively ad hoc,

and no data-driven lag selection procedure (Newey and West 1994) is implemented, inspection of the measure-

ment error time series properties indicates that the order of serial correlation does not extent beyond 15 for the

simulations we consider.

Simulation Results. The results reported in Table 2.2 illustrate that irrespective of the sampling frequency

or parameter configuration, the SM model-consistent UMV filter yields unbiased estimates of the conditional

mean process. Based on the heteroskedastic and autocorrelation consistent t-statistics, all intercept coefficients

are insignificantly different from zero (not reported) and all slope coefficients are insignificantly different from

one. At first sight, this also appears to hold true for the naive Moving Average filter. However, when the sampling

horizon extends beyond 16 days, a substantial bias can be detected. Similarly, both the Kalman filter and smoother

constitute biased estimators of the conditional mean. Further, we find that an increase in the speed of mean

reversion of the observed process to its latent conditional mean (Par II) leads to a better performance of all filters

as measured by the MSE. An increase in the persistence of the latent process itself (Par III) has little impact on

the performance of the UMV and Moving Average filter while the performance of the Kalman filter and smoother

do improve substantially. For the UMV filter and Par II, we find that a sampling frequency of about 2 hours is

optimal in the sense that at this frequency the MSE minimized. For the other parameter configurations (Par I and

III), the performance of the filter is best at the lowest sampling frequency considered. It could well be that by

5For example, whenλ = 1, NF = 1, NP = 0, thenβ = 1
2
(1− ρ). Thus, with a autoregressive coefficient of0.8, the slope coefficient

will be 0.10.

33

Oomen, Roel C.A. (2003), Three Essays on the Econometric Analysis of High Frequency Financial Data 
European University Institute 

 
DOI: 10.2870/23324



T
A

B
L

E
2

.2
:

R
E

L
A

T
IV

E
P

E
R

F
O

R
M

A
N

C
E

O
F
F

IL
T

E
R

S
F

O
R

T
H

E
S

T
O

C
H

A
S

T
IC

M
E

A
N

M
O

D
E

L

δ
T

T
/δ

U
M

V
F

ilt
er

M
ov

in
g

A
ve

ra
ge

K
al

m
an

F
ilt

er
K

al
m

an
S

m
oo

th
er

P
ar

(m
in

)
(d

ay
)

(o
bs

)
π

1
R

2
M

S
E

π
1

R
2

M
S

E
π

1
R

2
M

S
E

π
1

R
2

M
S

E

I
5

1
96

0.
03

0
(0

.7
8
)

0.
04

%
29

.8
0.

11
0

(1
.3

9
)

0.
41

%
13

.6
0.

75
4

(2
9
.0

)
51

.6
%

6.
94

0.
60

7
(1

9
.3

)
59

.1
%

4.
93

30
1

16
0.

03
2

(0
.7

7
)

0.
04

%
29

.0
0.

11
0

(1
.4

0
)

0.
41

%
13

.6
0.

75
2

(2
8
.9

)
68

.5
%

5.
70

0.
60

7
(1

9
.3

)
59

.1
%

4.
93

12
0

1
4

0.
04

9
(0

.8
6
)

0.
06

%
26

.1
0.

11
3

(1
.4

1
)

0.
42

%
13

.7
0.

74
8

(2
8
.6

)
71

.3
%

5.
53

0.
60

7
(1

9
.3

)
59

.2
%

4.
93

48
0

1
1

0.
10

1
(1

.2
5
)

0.
31

%
15

.1
0.

12
5

(1
.5

1
)

0.
41

%
14

.8
0.

73
3

(2
7
.6

)
71

.1
%

5.
44

0.
61

1
(1

9
.4

)
59

.6
%

4.
95

48
0

4
4

0.
01

0
(0

.8
2
)

0.
19

%
14

.4
0.

10
7

(1
.4

0
)

0.
57

%
11

.4
0.

73
3

(2
7
.6

)
71

.1
%

5.
44

0.
61

1
(1

9
.4

)
59

.6
%

4.
95

48
0

16
16

0.
00

2
(0

.9
7
)

0.
50

%
10

.5
0.

27
6

(3
.9

4
)

5.
50

%
7.

64
0.

73
3

(2
7
.6

)
71

.1
%

5.
44

0.
61

1
(1

9
.4

)
59

.6
%

4.
95

48
0

96
96

0.
00

7
(1

.0
7
)

0.
60

%
10

.1
0.

79
3

(1
7
.4

)
56

.5
%

6.
61

0.
73

3
(2

7
.6

)
71

.1
%

5.
44

0.
61

1
(1

9
.4

)
59

.6
%

4.
95

II
5

1
96

0.
01

3
(0

.7
7
)

0.
04

%
13

.3
0.

03
3

(1
.0

1
)

0.
10

%
10

.4
0.

48
4

(1
8
.8

)
40

.7
%

4.
80

0.
32

3
(1

2
.0

)
32

.5
%

3.
54

30
1

16
0.

01
1

(0
.7

5
)

0.
04

%
13

.0
0.

03
2

(1
.0

0
)

0.
10

%
10

.4
0.

48
1

(1
8
.6

)
46

.5
%

4.
40

0.
32

3
(1

2
.0

)
32

.5
%

3.
54

12
0

1
4

0.
00

8
(0

.7
1
)

0.
04

%
12

.3
0.

03
1

(0
.9

6
)

0.
09

%
10

.7
0.

47
6

(1
8
.4

)
46

.7
%

4.
34

0.
32

7
(1

2
.0

)
32

.8
%

3.
56

48
0

1
1

-0.
00

3
(0

.7
5
)

0.
04

%
15

.1
0.

03
1

(0
.9

0
)

0.
06

%
14

.6
0.

50
1

(1
8
.5

)
49

.1
%

4.
46

0.
38

0
(1

3
.1

)
37

.7
%

3.
86

III
5

1
96

0.
03

2
(0

.7
1
)

0.
04

%
29

.0
0.

05
3

(0
.8

8
)

0.
21

%
13

.4
0.

51
4

(1
4
.3

)
30

.2
%

6.
11

0.
36

2
(1

1
.2

)
36

.5
%

3.
60

30
1

16
0.

03
0

(0
.7

1
)

0.
04

%
28

.3
0.

05
3

(0
.8

8
)

0.
21

%
13

.4
0.

51
4

(1
4
.4

)
42

.9
%

4.
71

0.
36

2
(1

1
.2

)
36

.5
%

3.
60

12
0

1
4

0.
04

3
(0

.8
4
)

0.
06

%
25

.6
0.

05
4

(0
.8

9
)

0.
21

%
13

.5
0.

51
2

(1
4
.4

)
45

.6
%

4.
53

0.
36

3
(1

1
.2

)
36

.6
%

3.
60

48
0

1
1

0.
05

1
(0

.8
6
)

0.
18

%
14

.6
0.

05
6

(0
.8

8
)

0.
19

%
14

.6
0.

50
7

(1
4
.1

)
46

.1
%

4.
45

0.
36

4
(1

1
.1

)
36

.4
%

3.
62

N
o

te
s:

S
lo

pe
co

ef
fic

ie
nt

s
of

th
e

re
gr

es
si

on
sX
t
−

X
f

il
e
r

t
=

π
0

+
π

1
X

t
+

εf
il

te
r

t
fo

r
th

e
U

M
V

fil
te

r,
M

ov
in

g
A

ve
ra

ge
fil

te
r,

K
al

m
an

fil
te

r,
an

d
K

al
m

an
sm

oo
th

er
as

de
sc

rib
ed

in
se

ct
io

n

2.
3.

1
ab

ov
e.

T
he

re
su

lts
ar

e
ba

se
d

on
50

in
de

pe
nd

en
t

si
m

ul
at

io
n

ru
ns

,
ea

ch
w

ith
a

le
ng

th
of

10
ye

ar
s.

T
he

m
od

el
pa

ra
m

et
er

s
ar

e
lis

te
d

in
Ta

bl
e

2.
1.

R
el

at
iv

e
to

P
ar

I,
P

ar
II

im
pl

ie
s

hi
gh

er
m

ea
n

re
ve

rs
io

n
of

th
e

ob
se

rv
ed

pr
oc

es
s

to
th

e
la

te
nt

pr
oc

es
s

w
hi

le
P

ar
III

im
pl

ie
s

hi
gh

er
m

ea
n

re
ve

rs
io

n
of

th
e

la
te

nt
pr

oc
es

s.
A

bs
ol

ut
e

va
lu

e
of

th
e

as
so

ci
at

ed
H

A
C

[1
5]

-c
on

si
st

en
t

t-
st

at
is

tic
s

ar
e

in
pa

re
nt

he
si

s
be

lo
w

w
he

re
H

0
:
π

0
=

0
an

d
π

1
=

0
(π

0
no

tr
ep

or
te

d)
.

T
he

co
lu

m
n

“R
2
”

re
po

rt
s

th
e

co
ef

fic
ie

nt
of

de
te

rm
in

at
io

n
w

hi
le

th
e

co
lu

m
n

“M
S

E
”

re
po

rt
s

th
e

ro
ot

m
ea

n
sq

ua
re

d
er

ro
r

(×1
,0

0
0
).

34

Oomen, Roel C.A. (2003), Three Essays on the Econometric Analysis of High Frequency Financial Data 
European University Institute 

 
DOI: 10.2870/23324



FIGURE 2.1: UMV FILTER FOR ALTERNATIVE “FREQUENCY - HORIZON” SAMPLING SCHEMES

Notes: Thetop left panel plots a time series of UMV estimates of the conditional mean in the SM model (crosses) together with the actual

latent state variable (solid line) based on a 5 minute sampling frequency over a 1 day horizon. The bottom left panel plots the measurement

error against its first lagged value. The right panel plots analogous results for a 1 day sampling frequency and a 96 day horizon. The SM

parameters are set equal to Par II (see Table 2.1).

further decreasing the sampling frequency, the performance of the filter can be improved. Consistent with the

theory, we find that the Kalman filter and smoother achieve the lowest overall MSE among all filters. However,

the slope coefficients indicate that a substantial bias is present which is most severe for the Kalman filter. Also, we

find that the performance of the Kalman filter varies with the sampling frequency in a non-linear fashion while an

increase in the sampling frequency always leads to an improvement of the performance of the Kalman smoother.

In particular, for Par II, the Kalman filter achieves the lowest MSE at a sampling frequency of 2 hours (same for

UMV filter) as opposed to 5 minutes for the Kalman smoother. For Par I and III, the Kalman filter performs best

at the lowest sampling frequency considered while this is exactly the opposite for the Kalman smoother. Finally, it

should be noted that the lower MSE statistics for the Kalman filter and smoother are - in part - due to the fact that
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FIGURE 2.2: OPTIMAL UMV F ILTER WEIGHTS FOR THESM MODEL

Notes: OptimalUMV filter weights for a given sampling horizon and frequency. Left top: 1 day at 5 minutes. Right top: 6 days at 30

minutes. Left bottom: 24 days at 2 hours. Right bottom: 96 days at 1 day. The SM parameters are set equal to Par I (see Table 2.1).

these filters use more data. In particular, the UMV and Moving Average filter only use one day’s worth of data

while the Kalman smoother uses the entire data set, from start to finish. Hence, the results in the table are slightly

misleading and one should compare the performance of the Kalman smoother (filter) at say a one day frequency

to the UMV or Moving Average filter performance at the one day frequency and a 96 day horizon. It is clear from

Figure 2.2 that for this case, the horizon is sufficiently long for the UMV filter to achieve its optimal performance.

As mentioned above, an alternative to varying the samplingfrequencyis to vary the samplinghorizon. For

example, a sampling scheme whereT = 1 day andδ = 30 minutes generates the same number of observations

as a sampling scheme whereT = 16 days andδ = 1 day. Nevertheless, the performance of the UMV filter

is not expected to be invariant to the specific sampling scheme and we will therefore briefly study its impact

based on some simulations. In particular, for three out of four sampling schemes discussed above, i.e.T = 1

day andδ = 5, 30, 120 minutes, we consider the following three alternative sampling schemes, i.e.δ = 1 day
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andT = 96, 16, 4 days respectively, which generate the same number of observations at alower frequency and

over a longer horizon. Based on the sampled data,
{
St+(k−1)δ

}T/1day
k=1

, we again compute the UMV filter and the

naive Moving Average filter and compare it to the actual realization of the latent variable. To conserve space,

we only report the results for Par I in Table 2.2 (between the dotted lines). The results for Par II and III are

qualitatively the same. Based on the MSE statistic it is clear that, for a fixed sampling frequency, an increase in

the sampling horizon leads to better performance of the UMV filter. In particular, at a 1 days sampling frequency,

an increase in the horizon from 1 day to 96 days leads to a reduction in MSE of about 33%. The more relevant

comparison, however, is the one described above. So when sampling 4, 16, and 96 data points, the gain in MSE

associated with a “low-frequency-long-horizon” sampling scheme− relative to a “high-frequency-short-horizon”

sampling scheme− is about 45%, 64%, and 66% respectively. Hence, it is clear that for the estimation of the

latent instantaneous mean, low frequency data over long horizons is preferred to high frequency data over short

horizons. This point is also illustrated in Figure 2.1. Similar results hold for the moving average filter except that

they are less pronounced and that at the long horizon a substantial bias kicks in.

2.3.2 The Square-Root Stochastic Volatility Model

Consider the following asset return process with stochastic conditional volatility for the logarithmic asset price

St = ln Pt

dSt = µdt +
√

VtdW s
t

dVt = β (α− Vt) dt + σ
√

VtdW v
t

dW s
t dW v

t = ρdt, t ∈ [0, T ] (2.17)

This continuous-time SV model has been widely used in the finance literature for asset return dynamics, in part

because it has an associated closed-form expression for European option prices (Heston 1993). Following Single-

ton (2001), the drift term of the asset return process is specified as a constant. It is noted that when the drift term

of the asset return process is specified as a linear function of the state variableVt, both the European option prices

and the conditional characteristic function of the asset return will still yield closed forms. The specification of the

instantaneous volatility process in the above model guarantees the non-negativeness of the volatility (as long as

2βα ≥ σ2 as shown by Cox, Ingersoll, and Ross (1985)). The solution of the square-root process in (2.17) can be

written as:

Vt+τ = α + e−βτ (Vt − α) + σ

∫ t+τ

t
e−β(t+τ−u)

√
VudW v

u

which is of an AR(1) form, whereσ
∫ t+τ
t e−β(t+τ−u)

√
VudW v

u is a martingale. The variance process can thus be

viewed as an autoregressive process of order one with heteroskedasticity in the innovation term. The parameter

β measures the inter-temporal persistence of the volatility process, while the correlation betweendW s anddW v

measures the level of asymmetry of the conditional volatility. In particular, whenρ < 0 we have the so-called

“leverage effect”, see Black (1976).
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Again, from earlier discussion of the general model, the joint characteristic function of(St+τ , Vt+τ ) condi-

tional onFt can be written as:

ψ (u1, u2;St+τ , Vt+τ , t, τ |St, Vt) = E
[
exp

{
iu′1St+τ + iu′2Vt+τ

} |St, Vt

]

= exp
{
C (τ ;u1, u2) + D1 (τ ;u1, u2)

′ St + D2 (τ ; u1, u2)
′ Vt

}
,

whereC (·) , D1 (·) andD2 (·) can be solved from the Ricatti equations. For the above SV specification, the

solution is given by:

C (τ ;u1, u2) = (iu1µ + iβαu2) τ +
αβ

σ2

[
(b− h) τ − 2 ln

(
1− ge−hτ

1− g

)]

D1 (τ ;u1, u2) = iu1

D2 (τ ;u1, u2) = iu2 +
b− h

σ2

1− e−hτ

1− ge−hτ

with h (u1, u2) =
[
b2 + σ2

(
u2

1 + 2ρσu1u2 + γ2u2
2 + 2iβu2

)]1/2
, b = β−ρσiu1−σ2u2i, g (u1, u2) = (b− h) / (b + h).

Based on the characteristic function above, analytic expressions for the conditional cumulants of any order can be

derived for both the observed and the latent variables. In particular, the second order conditional return cumulant

for the observed variable is derived as:

K[(∆St+jδ)
2 |Ft] = a (j) + c (j) Vt

where

a (j) = αδ + α
1− eβδ

βejβδ
and c (j) =

eβδ − 1
βeβjδ

.

Based on the above expression, we can construct an unbiased estimator of the instantaneous return varianceVt in

terms of the model parameters and an unbiased estimator of the second order conditional return cumulant. Define

ξt (j) =
(∆St+jδ)

2 − (µδ)2 − a (j)
c (j)

(2.18)

Any weighted sum ofξt (j) for j = 1, . . . , N ×T , with weights summing to one, will yield an unbiased estimator

of Vt, i.e.:

V̂t = W ′ξt

whereW andξt are(N × T )× 1 vector andι′W = 1. Following Lemma 2.2.3, the optimal choice ofW for an

unbiased minimum-variance (“UMV”) estimator of the instantaneous volatility is given by:

W =
Σ−1

t ι

ι′Σ−1
t ι

. (2.19)

Basedon the conditional characteristic function we can derive a closed form expression forΣt. In particular, for

j > k the(j, k) and(k, j) elements ofΣt are given by

Cov [ξt (j) , ξt (k) |Ft] =
1

c (j) c (k)
Cov

[
(∆St+jδ)

2 , (∆St+kδ)
2 |Ft

]
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while the diagonal elements ofΣt are given as

V ar [ξt (j) |Ft] =
1

c (j)2
V ar

[
(∆St+jδ)

2 |Ft

]

The relevant expressions for the conditional variance and co-variance are given in Appendix A.3

An interesting case arises whenβ → 0. From expression (2.18) it directly follows that:

lim
β→0

ξt (j) =
(∆St+jδ)

2 − (µδ)2

δ

whichbasically says that the sample variance and any weighted sum (with weights summing to 1) will yield an un-

biased estimator ofVt. Whenβ = 0 or the drift of the volatility process becomes zero, the return variance process

is a martingale andE[Vt+τ |Ft] = Vt for τ > 0. By iterative expectation, we haveE[ (
∆St+(j+1)δ)

2−(µδ)2

δ |Ft] =

E[E[ (
∆St+(j+1)δ)

2−(µδ)2

δ |Ft+jδ]|Ft] = E[Vt+jδ|Ft] = Vt. It is quite intuitive from this result that, the weighted

sample variance of asset returns over time period[t, t + T ] constitutes an unbiased estimator of the instantaneous

varianceVt. Furthermore, whenδ → 0, we have

lim
δ→0

lim
β→0

(∆St+jδ)
2

δ
− ξt (j) = 0

That is, when the sampling frequency goes to infinity or sampling interval goes to zero, the mean return term

becomes negligible. When all weights are set equal, the estimator of the instantaneous variance coincides with

the realized variance measure that is commonly used in financial econometrics, namely the sum of squared intra-

period returns. In other words, whenβ = 0 andδ → 0, i.e. volatility is a first difference martingale and the asset

returns are sampled almost continuously, our estimator is equivalent to the model-free realized volatility measure

(see expression (2.21) below) except that our estimator provides optimal weights to the sum of squared returns.

To conclude, we include a brief illustration of the behavior of the weighting vector for the SV model. From

the moment expressions in Appendix A.3, it can be seen that, unlike for the SM model, the shape of the optimal

weighting vector depends on both the model parameters and the instantaneous value of the latent variable. Hence,

for given parameters and value of the latent variable we can trace out the shape of the optimal weights. Figure

2.3 visualizes this dependence of the optimal weights on the level of the persistence parameter. In particular, for

β = 0.1 andβ = 0.8 we plot the weights that multiply the squared returns in the UMV estimator, i.e.W (j)/c(j)

for j = 1, . . . , 1/δ. Notice that these re-scaled weights measure the structural difference between our proposed

estimator and the realized variance estimator. The remaining SV parameters are set equal toµ = 0,
√

α = 0.025,

σv = 0.0075, andρ = −0.25 and the sampling frequency is fixed at15 minutes based on8 hours of trading per

day (i.e.32 intra-day observations). The downward sloping weights indicate that future observations on the state

variable become less informative with an increase in the displacement (i.e. j). However, when the persistence

increases, the slope of the weighting scheme decreases. In the limit, whenβ → 0, the weighting function is

flat and future observations are equally informative. Also, for the range of chosen parameter values, the weights

deviate substantially from their naive realized variance counterparts (i.e. constant at 1). The performance of the

proposed estimator can therefore be expected to be quite different from that of the realized variance measure.
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FIGURE 2.3: OPTIMAL UMV F ILTER WEIGHTS FOR THESV MODEL

Notes: The re-scaled optimal weights,W (j)/c(j) for j = 1, . . . , 1/δ, that multiply squared returns,(∆St+jδ)
2, for β = 0.1 (high

persistence, left panel) andβ = 0.8 (low persistence, right panel) and a sampling frequency of 15 minutes. The remaining SV model

parameters are set asµ = 0,
√

α = 0.025, σv = 0.0075, ρ = −0.25 and the instantaneous variance is set equal to its unconditional mean

in both cases, i.e.Vt = α.

Simulation Design. In order to investigate the performance of the above estimator, we perform a simulation

experiment. The notation and much of the simulation design is similar to that of the SM model discussed above.

Based on the SV model in (2.17), we simulate6 a time series of high frequency observations on both the observed

and unobserved state variables, i.e.{St+(k−1)δ, Vt+(k−1)δ} for k = 1, . . . , 1/δ, andt = 1, . . . , T +TT −1. From

this simulated sample, we record the value of the latent variable at the beginning of each period, i.e.{Vt}TT
t=1, and

use the high frequency realizations of the observed state variable to construct the following four estimators.

1. UMV FILTER. Based on the results in Lemma 2.2.3, we compute the SV model-consistent estimator with

optimal weights7 using high frequency observations of the state variable over asampling horizonof length

T , i.e.
{
St+(k−1)δ

}T/δ

k=1
. In particular,

V̂ sv
t = W ′ξt (2.20)

where thejth element of theN×T vectorξ, and the optimal weighting matrixW , are given by expressions

(2.18) and (2.19) respectively.

2. REALIZED VARIANCE. At a sampling horizon of 1 day (i.e.T = 1), we compute the realized variance

6As opposed to the SM model, the exact sampling path is unavailable for the SV model. To reduce simulation error to a minimum, we

use an Euler scheme with 10 discretization steps per minute. Starting values,S1 andV1, are random draws from their respective marginal

distribution.
7Because the optimal weights are a function of the latent variable to be estimated, a circularity occurs. For a discussion on how to

construct the optimal weights we refer to Section 2.4 below.

40

Oomen, Roel C.A. (2003), Three Essays on the Econometric Analysis of High Frequency Financial Data 
European University Institute 

 
DOI: 10.2870/23324



measure,denoted bŷV rv
t as the sum of squared intra-daily returns, i.e.

V̂ rv
t =

1/δ∑

k=1

(∆St+kδ)
2 . (2.21)

Notice thatV̂ rv
t corresponds tôV sv

t whenµ = 0, the variance process has infinite persistence (β = 0), the

sampling horizon coincides (T = 1), and the weighting vector is flat (W (j) = δ).

3. ARCH FILTER. Nelson and Foster (1994) show that for various diffusion processes, the difference between

the true conditional variance and the variance estimate produced by amisspecifiedARCH model vanishes

in the continuous time limit. Based on the asymptotic distribution of the measurement error, Nelson and

Foster (1994) derive the asymptotically “optimal” ARCH filter which, for the square-root SV model in

(2.17), takes the following form:

ŷt+δ = ŷt + δ
[
e−ŷt

(
βα− σ2/2

)− β
]

+
√

δσe−ŷt/2
[
ρRt+δe

−ŷt/2 +
(
R

2
t+δe

−ŷt − 1
) √

(1− ρ2) /2
]

whereyt ≡ lnVt andRt+δ ≡ [St+δ − St] δ−1/2. For our purpose, we define the Nelson-Foster filter as

V̂ nf
t = exp (ŷt) . (2.22)

It is noted that the filter is closely related to the EGARCH specification proposed by Nelson (1991) in that

it is specified in terms of logarithmic variance, includes both returns as well as squared returns, and has a

first order autoregressive structure. A noticeable difference with typical ARCH specifications, however, is

that the period−t (logarithmic) variance is a function of period−t returns instead of lagged returns and that

lagged variance impacts in a highly non-linear fashion.

4. EWMA FILTER. The exponentially weighted moving average (EWMA) filter is given by

V̂ ma
t = λV̂ ma

t−δ + (1− λ)R
2
t−δ (2.23)

whereRt+δ ≡ [St+δ − St] δ−1/2 and0 ≤ λ < 1. The parameterλ controls the persistence and is typically

chosen close to one. The EWMA filter is widely used in practice; see for example Hull (2003) or the

RiskMetrics Technical Document (Morgan Guaranty Trust Company 1996).

It is emphasized that while the estimator developed in this paper is aimed at estimating theinstantaneousvariance,

the realized variance measure is closer related to the integrated variance of the return process, namely:

IV t
t−1 ≡

∫ t

t−1
Vτdτ ≈ 1

N

N∑

k=1

Vt+(k−1)δ

Therelation between this notion of integrated volatility and instantaneous volatility defined in the continuous time

literature is clear asd
(
IV t

s

)
= Vtdt for any constants < t. As pointed out in Andersen, Bollerslev, Diebold,

and Labys (2001, 2003), when the returns are sampled at sufficiently high frequency, the ex post realized variance

measure, namely the sum of intra day squared return
∑1/δ

k=1 (∆St+kδ)
2, approximates the integrated, and not the
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instantaneous,volatility arbitrarily well under certain conditions on the underlying process. Therefore, unlike

V̂ sv
t , we do not expect̂V rv

t to yield an unbiased estimate ofVt although the difference between the instantaneous

variance and the (scaled) integrated variance will diminish when the persistence of the variance process increases.

The Nelson-Foster ARCH filter and the EWMA filter8 are directly comparable to the instantaneous variance and

are therefore also included in this study.

The SV model parameters are set asµ = 0,
√

α = 0.025, σv = 0.0075, ρ = −0.25 corresponding to an

annualized return volatility of close to40%. Because the optimal weights, and possibly the performance of the

various filters, may depend on the specific choice of model parameters we distinguish among three cases where

the persistence parameter of the variance process is varied, i.e.β = 0.1 (high persistence),β = 0.4 (intermediate

persistence), andβ = 0.8 (low persistence). To investigate the impact of sampling frequency and sample size we

fix T = 1 and varyδ =
{

1
60×8 , 5

60×8 , 15
60×8 , 30

60×8

}
, corresponding to1, 5, 15, and30 minute data based on a

trading day of 8 hours. We setTT = 2520, corresponding to a high frequency sample path with a length of 10

years.

As for the SM model, we assess the relative performance of the four competing filters by regressing the

measurement error, i.e.̂V sv
t − Vt, V̂ rv

t − Vt, V̂ nf
t − Vt, andV̂ ma

t − Vt on a constant and the actual realizations

of the latent variable,Vt, for t = 1, . . . , TT . The filter is unbiased when the intercept and slope coefficients are

both insignificantly different from zero. The efficiency of the filter can be gauged by theR2 andRMSE (see the

discussion on page 32 above for more details).

To reduce variation in the simulation results, Table 2.3 reports theaverageslope coefficient (plus associated

average absolute t-statistics),R2, andRMSE obtained from 50 independent simulation runs. In order to im-

plement the EWMA filter, the persistence parameterλ should be set to a “reasonable” value. Since the EWMA

is effectively an integrated GARCH(1,1) model, one approach is to use the simulated return data to estimateλ.

Unfortunately, it turns out that this only yields reasonable results when the persistence of the variance process is

relatively high (i.e. β < 0.25). For the simulations withβ = 0.4 andβ = 0.8 we find that the EWMA per-

sistence parameter jumps to the boundary (i.e.λ = 1) which can be explained as follows. In the extreme case

when persistence is infinite, and the conditional variance constant,λ should equal one (with appropriate initial

conditions onV̂ ma
0 ) as this implies constant EWMA variance. It is this tendency ofλ to converge to one when

the persistence of the variance process diminishes that explains this finding. Hence, an alternative approach is

implemented to determineλ, namely in each simulation run we setλ equal to the value that maximizes theR2 of

the regression of̂V ma
t on V̂t. Forβ = 0.1, this approach generates virtually indistinguishable results as compared

to the IGARCH estimation approach. Forβ = 0.4 and0.8, maximizing theR2 yields much better results. It

should be stressed that, especially when persistence is low, the EWMA severely misspecifies the volatility dynam-

ics and the IGARCH restriction is clearly not appropriate. Finally - depending on the filter, sampling frequency,

and parameters - the measurement error can be heteroskedastic and serially correlated. Table 2.3 therefore reports

heteroskedastic and autocorrelation (HAC) consistent t-statistics (Newey and West 1987) computed using 15 lags.

Although the choice of lag length is relatively ad hoc, and no data-driven lag selection procedure (Newey and

8TheEWMA filter is effectively the integrated GARCH model of Bollerslev and Engle (1986). Hence, its persistence parameterλ can

be estimated by specifying a GARCH(1,1) process for returns.
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West 1994) is implemented, inspection of the measurement error time series properties indicates that the order of

serial correlation does not extent beyond 15 for the simulations we consider.

Simulation Results. The second column of Table 2.3 (“UMV Filter”) illustrates that irrespective of the sam-

pling frequency or mean reversion parameter, the SV model-consistent estimator of the instantaneous variance

is unbiased. Based on the heteroskedastic and autocorrelation consistent t-statistics, both the intercept (not re-

ported) and slope coefficients are insignificantly different from zero. As expected, the coefficient of determination

is close to zero indicating that there is no systematic component in the measurement error that can be explained

by realizations of the latent variable. From the MSE statistic it is evident that (i) the efficiency of the estimator

increases with an increase in the sampling frequency and (ii) the latent variance component is best identified when

the process is persistent.

Turning to the alternative filters, we find that each and every one constitutes a biased estimator of the in-

stantaneous variance. As expected, this bias is most pronounced when mean reversion is high and persistence

low. Regarding the realized variance measure, we have noted that when persistence is low, the “optimal” weights

deviate quite substantially from the implicit realized variance weights (Figure 2.3). The reported difference in

performance can therefore be expected, even more so because the realized variance measure is known to estimate

the integrated and not the instantaneous return variance. This argument is, however, not valid for the ARCH

and EWMA filters. Nevertheless, the slope coefficients reported in the fourth and the fifth column of Table 2.3

are significantly different from zero irrespective of the model parameters or sampling frequency suggesting that

also these filters deliver biased estimates. Moreover, theR2 coefficients indicate that a substantial degree of

structure remains in the measurement error which, as for the SM model, could suggest that these filters are “over-

smoothing”. To investigate this a little further, Figure 2.5 plots the measurement error of the Kalman filter for

the SM model, the Nelson-Foster ARCH filter for the SV model and the UMV filter for both the SM and the

SV model, against the actual realizations of the latent variable (stochastic mean and volatility). It is clear that

the measurement error of the UMV filter has no structure left. This is not the case for either the Kalman filter

or the ARCH filter. Both these filters appear “over-smooth”. In particular, a realization of the latent variable

below (above) the unconditional mean of the process is likely to induce a negative (positive) measurement error

indicating that the estimate is too high (low) relative to the true value. Although in a different context, this finding

is in line with the discussion on page 32 above. Another interesting pattern which arises is that the MSE for the

UMV filter is often higher than for the realized variance measure and the EWMA filter, and in all cases higher

than the MSE of the ARCH filter. We argue that this is a consequence of the weighting scheme of the UMV filter.

The UMV weights are aimed at minimizing the variance of the estimatorunder the restriction that the estimator is

unbiased. The flat weights for the realized variance measure, for instance, may lead to a lower RMSE but render

the estimator biased. Regarding the ARCH filter, we find that it achieves the lowest MSE among all competing

filters. This finding is in line with the work by Nelson and Foster (1994) who show it is asymptotically optimal.

The ranking of the remaining filters is less obvious and varies with the model parameters and sampling frequency.

As mentioned above, an alternative to varying the samplingfrequencyis to vary the samplinghorizon. For

example, a sampling scheme whereT = 1 day andδ = 5 minutes generates the same number of observations as
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FIGURE 2.4: UMV FILTER FOR ALTERNATIVE “FREQUENCY - HORIZON” SAMPLING SCHEMES

Notes: The top left panel plots a time series of UMV filter estimates (crosses) together with the actual latent state variable (solid line)

based on a 1 minute sampling frequency and a 1 day horizon. The bottom left panel plots the measurement error against its first lagged

value. The right panel plots analogous results for a 30 minute sampling frequency over a 30 day horizon. The SV parameters are set as

µ = 0,
√

α = 0.025, β = 0.4, σv = 0.0075, ρ = −0.25.

a sampling scheme whereT = 6 days andδ = 30 minutes. Nevertheless, the performance of the UMV filter is

not expected to be invariant to the specific sampling scheme and we will therefore briefly study its impact based

on some simulations. In particular, for three out of four sampling schemes discussed before, i.e.T = 1 day

andδ = 1, 5, 15 minutes, we consider the following three alternative sampling schemes, i.e.δ = 30 minutes

andT = 2, 6, 30 days, which generate the same number of observations at a lower frequency and over a longer

horizon. Based on the sampled data,
{
St+(k−1)δ

}T/30Min
k=1

, we again compute the SV model-consistent estimator

and compare it to the actual realization of the latent variable. To conserve space, we only report the results for

Par I in Table 2.3 (between the dotted lines). The results for Par II and III are qualitatively the same. Based

on the MSE statistic it is clear that, for a fixed sampling frequency, an increase in the sampling horizon leads to
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FIGURE 2.5: MEASUREMENTERROR AGAINST LATENT VARIABLE

Notes: Thetop panel plots the measurement error (×10, 000) of the latent mean against the actual realization of the latent mean for the

UMV filter (left) and the Kalman filter (right). The sampling frequency is set to 1 day, the sampling horizon equal to 96 days and the SM

parameters are set equal to Par II (see Table 2.1). The bottom panel plots the measurement error (×100) of the latent volatility against the

actual realization of the latent volatility for the UMV filter (left) and the Nelson-Foster ARCH filter (right). The sampling frequency is set

to 5 minutes, the sampling horizon equal to 1 day and the SV parameters are set equal to Par III (i.e.β = 0.8).

better performance of the UMV filter. In particular, at a 30 minute sampling frequency, an increase in the horizon

from 1 day to 30 days leads to a reduction in MSE of about 20%. The more relevant comparison, however, is the

one described above. So when sampling 32, 96, and 480 data points, the gain in MSE associated with a “high-

frequency-short-horizon” sampling scheme− relative to a “low-frequency-long-horizon” sampling scheme− is

about 12%, 37%, and 60% respectively. Thus, as opposed to the SM model, it is clear that for the estimation of

the instantaneous variance, high frequency data over short horizons is preferred to low frequency data over long

horizons. This point is also illustrated in Figure 2.4.
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2.4 Estimation of Latent Variable Models in Finance

Continuous time latent variable models have attracted a great deal of attention in the finance literature because

they provide a useful framework for the modelling of return dynamics. Prominent examples include the baseline

stochastic volatility (SV) model (Harvey, Ruiz, and Shephard 1994) or one of its many generalizations which

incorporate multiple volatility components and random jumps. The major appeal of these type of models is that

they are able to capture a number of salient features of financial asset returns including the presence of jumps in

asset prices, time varying return volatility, and a skewed and fat-tailed marginal return distribution. In addition,

many of the latent variable models have associated closed form or semi-closed form expressions for the arbitrage

free price of important financial securities such as bonds, options, futures, and volatility derivatives. It is therefore

not surprising that much effort has been spent on finding the model specification which is not only able to capture

the time series dynamics of asset returns, but also accurately prices derivative securities.

As mentioned above, the estimation of these model is far from trivial and a wide variety of distinct inference

procedures for nonlinear latent variable models in general, and SV models in particular, have been proposed. For

instance, generalized method of moments (GMM) based estimation has been proposed by Andersen and Sørensen

(1996), Ho, Perraudin, and Sørensen (1996), Melino and Turnbull (1990), and Taylor (1986). Quasi Maximum

Likelihood (QML), which relies on a state-space form transformation and the Kalman filter, has been proposed by

Harvey, Ruiz, and Shephard (1994). Although both GMM and QML are straightforward to implement, there have

been indications that the small sample properties of these methods are poor (Jacquier, Polson, and Rossi 1994).

Alternatively, a wide range of simulation based approaches have been developed, including the simulated method

of moments (SMM) proposed by Duffie and Singleton (1993), simulated maximum likelihood (SML) proposed

by Dańıelsson (1994), the efficient methods of moments (EMM) proposed by Gallant and Tauchen (1998), the

Monte Carlo maximum likelihood (MCL) proposed by Sandmann and Koopman (1998), direct maximum likeli-

hood estimation through recursive numerical integration by Fridman and Harris (1998), and Markov Chain Monte

Carlo (MCMC) first implemented by Jacquier, Polson, and Rossi (1994) and further developed by Kim, Shephard,

and Chib (1998) and Elerian, Chib, and Shephard (2001). A major drawback of the simulation based methods

is that they are computationally intensive and involve discretization when applied to the continuous-time pro-

cesses. An approach which circumvents these difficulties has been proposed by Carrasco, Chernov, Florens, and

Ghysels (2001), Chacko and Viceira (1999), Jiang and Knight (2002), and Singleton (2001) who develop an esti-

mation methodology based on the empirical characteristic function (ECF), and Meddahi (2001) who exploits the

eigenfunction expansion of the latent volatility process.

Based on this wide range of estimation methodologies, a number of distinct latent variable models have been

estimated. For example, the discrete time SV model has been estimated by Andersen and Sørensen (1996) using

GMM, by Harvey and Shephard (1996) using QML, by Gallant, Hsieh, and Tauchen (1997) using EMM, by

Jacquier, Polson, and Rossi (1994), Kim, Shephard, and Chib (1998) and Chib, Nardari, and Shephard (2002)

using MCMC, by Liesenfeld and Jung (2000) using SML, and by Sandmann and Koopman (1998) using MCL.

“Simple” continuous time SV models have been estimated by Ho, Perraudin, and Sørensen (1996) using GMM,

by Andersen and Lund (1997) using EMM, Jiang and Knight (2002) using the ECF, and by Chacko and Viceira
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(1999)using an ECF-related spectral GMM approach. Finally, more complicated affine and non-affine SV models

with or without multi-factor volatility components and state-dependent jump components in returns and volatility

have been estimated by Andersen, Benzoni, and Lund (2002) and Chernov, Gallant, Ghysels, and Tauchen (2002)

using EMM, by Eraker, Johannes, and Polson (2002) and Jones (1998) using MCMC, and by Pan (2002) using

“implied-state” GMM where the latent volatility component is inverted from observed option prices.

2.4.1 GMM Estimation based on the Model-Consistent Unbiased Estimator of the Latent Vari-

ables

In this section we outline yet another approach to the statistical inference of continuous time asset return models

with latent state variables. The basic idea is to implement the GMM with conditional moment restrictions on

both the observed and the unobserved variables which are then evaluated at the unbiased estimate of the latent

variables. Due to the analytic tractability of the AJD model, closed form expressions for the conditional moments

or cumulants are often available and based on the unbiased measurement of the latent variable, as described above,

the moment restrictions for the unobserved variables can be evaluated in a straightforward fashion. This approach

is distinct from the above mentioned approaches in important ways. First and foremost, our approach exploits

the availability ofhigh frequencyobservations of state variables and through the estimator of the latent variables.

Because it is derived under the exact parametric specification of the model, the estimator is consistent with the

volatility measure under the specific model. Further, unlike SMM, EMM, and MCMC, the GMM estimation

approach we propose does not require simulation and is based onexactmoments or cumulants in the sense that

they correspond to the continuous-time DGP without any discretization or approximation error.

In a closely related study, Bollerslev and Zhou (2002) use realized volatility as a proxy for the integrated

variance process and propose a similar GMM approach estimation that is based on conditional return and variance

moments of the process. The distinguishing element of our study is that we base our estimation procedure on an

estimator of the instantaneous value of the latent variable and is not limited to SV models but can, in principle, be

applied to any latent variable model in the AJD class.

For completeness we will briefly outline the general GMM procedure, after which we specialize the discussion

around the estimation of the AJD model based on the proposed latent variable estimator. GMM estimation of a

p×1 parameter vectorθ0 requires the specification of anr×1 (r ≥ p) moment restriction vector,ft (θ), which has

expectation zero when evaluated at the true population parameterθ0, i.e. E [ft (θ0)] = 0. The GMM procedure

then minimizes a quadratic form of the moment restrictions over the admissible parameter space,Θ, i.e.

θ̂T = arg min
θ∈Θ

JT (θ) where JT (θ) ≡ gT (θ)′ ΛgT (θ) ,

wheregT (θ) = 1
T

∑T
t=1 ft (θ), andΛ is anr×r positive semi-definite weighting matrix. Whenr = p the param-

eters are exactly identified. The parameter estimates are independent of the particular choice of weighting matrix

and the objective functionJT (θ) will be zero at the minimum. Theory suggests, however, that the efficiency of

the estimator may be improved by increasing the dimension ofgT (θ), i.e. using more moment restrictions than

parameters to be estimated (r > p). In this case, the parameter estimates do depend on the specific choice of
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weightingmatrix. In fact Hansen (1982) has shown that choosingΛ = Σ (θ)−1 whereΣ(θ) = E
[
ft (θ) ft (θ)′

]

results in the GMM estimator ofθ with the lowest asymptotic covariance. This “efficient” GMM estimator is

typically implemented using a two-step procedure: in the first step the parameter vector is estimated using an

arbitrary psd weighting matrix, resulting inθ1, while in the second step the parameter vector is re-estimated using

Λ = Σ̂1 (θ)−1. Because GMM estimation allows for serial correlation in the moment restrictions, a Newey-West

type estimator can be used to obtainΣ̂ (θ). Regarding the choice ofr, Andersen and Sørensen (1996) find that

the efficiency gain resulting from additional moment restrictions is countered by the deterioration of ther(r+1)
2

estimatedcoefficients needed to construct the (optimal) weighting matrixΛ . For further discussion of (optimal)

moment selection see also Gallant and Tauchen (1996) and Pan (2002). Under regularity conditions, as specified

in Hansen (1982), the estimatorθ̂T is consistent and asymptotically normal with covariance matrix given by:

1
T

[
D′(θ̂T )Σ−1(θ̂T )D′(θ̂T )

]−1

whereD (θ) is the Jacobian ofgT (θ) with respect toθ. Due to the form ofΛ, the objective functionJT (θ) is a

measure of the distance betweengT (θ) and zero. The objective function at the minimum can therefore be regarded

as a goodness-of-fit test for the model, i.e. a high value of this test suggests that the model is misspecified. In

particular, it can be shown thatTJT (θ̂T ) a∼ X 2
r−p under the null hypothesis that the model is correctly specified.

In setting up the GMM estimation of the AJD model, we exploit the fact that in many cases the joint charac-

teristic function ofSt+δ or ∆St+δ andVt+δ is known in closed form. As we have seen above, this allows us to

derive closed form conditional moment or cumulant expressions for both the observed and the unobserved state

variables in terms of the model parameters and possibly the instantaneous value of (some) state variables. By the

definition of the characteristic function we have that the conditional cumulant of order(ls, lv) can be derived as:

K
(
∆Sls

t+δV
lv
t+δ|Ft

)
=

∂ls+lv lnψ (u1, u2, ∆St+δ, Vt+δ, t, τ | θ0, St, Vt)
ils+lv∂uls

1 ∂ulv
2

∣∣∣∣∣
u=0

for ls, lv ∈ {0, 1, . . .}. Based on this results, we can construct moment restrictions9 as follows:

ft (θ) =





K
(
∆S

ls,1

t+δV
lv,1

t+δ

)
− ∂ls,1+lv,1 ln ψ(u1,u2,∆St+δ,Vt+δ,t,τ |θ,St,Vt)

ils,1+lv,1∂u
ls,1
1 ∂u

lv,1
2

∣∣∣∣
u=0

...

K
(
∆S

ls,r

t+δV
lv,r

t+δ

)
− ∂ls,r+lv,r ln ψ(u1,u2,∆St+δ,Vt+δ,t,τ |θ,St,Vt)

ils,r+lv,r ∂u
ls,r
1 ∂u

lv,r
2

∣∣∣∣
u=0





wherels,1, lv,1, . . . , ls,r, lv,r ∈ {0, 1, . . .} andt ∈ {0, 1, . . .}. The first term of each entry inft (θ) is the sample

cumulant10 while the second term is the conditional cumulant expression derived from the model in terms of the

parameter vectorθ and state variableSt andVt. Notice, however, that because the moment restriction above is

conditional on the realization of the latent variable it cannot be evaluated. The solution we propose is to replace

Vt by its estimated counterpart,̂Vt. This way, the moment restriction can be evaluated while consistency of the

9Instrumentalvariables, i.e.zt ∈ Ft, that are uncorrelated withft (θ0), can be used to generate additional moment restrictions because

E[ft (θ0)⊗ (1, zt)] = 0.
10The sample cumulant is estimated using∆St+δ andVt+δ only. For example,K (∆St+δVt+δ) = ∆St+δVt+δ
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GMM estimator is maintained due to the consistency ofV̂t. It is noted that the estimation approach is based on the

cumulants and not the moments. However, cumulants and moments are identical for orders lower than or equal to

two. For orders higher than two, Kendall (1958) outlines the one-to-one correspondence between moments and

cumulants. For reference related to cumulants based estimation, see Press (1967), Beckers (1981), and Knight

and Satchell (1997).

Although the GMM procedure outlined above stands out as being quite straightforward, there are a number of

pitfalls that one should be aware of. We will briefly discuss these below.

Error in Variable and Moment Restrictions The most important drawback of the above method is that in finite

sample, the estimator of the latent variable will inevitably contain measurement error, i.e.V̂t = Vt + εt where

ε has some distribution. Because the latent variable estimator is unbiased, the mean ofε will be zero. Further

statements about the distribution of the error term are more difficult to make. Now consider the following moment

restriction:

V̂t+δ −E
[
Vt+δ|θ, St, V̂t+δ

]

Provided that the moment restriction is a linear function of the state variable, it will have zero expectation and is

thus a valid moment restriction. However, when a non-linear function of the latent state variable enters into the

moment restriction it invalidates the restriction because it will not have zero expectation. For instance:

Et

[
V̂ 2

t+δ − E(V 2
t+δ|θ, St, V̂t+δ)

]
6= 0

In a closely related setting, Bollerslev and Zhou (2002) propose to solve this problem by including a nuisance

parameter in the above moment restriction which can absorb the contribution of the measurement error, i.e.

Et

[
V̂ 2

t+δ + γ − E(V 2
t+δ|θ, St, V̂t+δ)

]
?= 0

Although the results in their work seem to suggest that this approach works quite well, a disadvantage is that it

relies on the IID’ness ofε, which, in many situations may not be justified. An alternative approach to the issue

may be to further study the distribution of the measurement error and possibly derive the relevant moments for

theestimatedlatent variable instead of the actual realization of the latent variable, i.e.

Et

[
V̂ 2

t+δ −E(V̂ 2
t+δ|θ, St, V̂t+δ)

]
= 0.

Clearly, the feasibility and desirability of the alternative approaches will ultimately depend on the model specifi-

cation and the properties of the data.

Construction of Optimal Weights It is noted from the definition of the optimal weighting vector (expression

2.11) and the conditional moments for the SV model (Appendix A.3) that the optimal weighting vector may

depend directly on both the model parametersand the value of the latent and observed variables at timet. For the

SM model discussed above, the latent state variable does not enter into the optimal weights which, in this case,

depend on the model parameter only. In contrast, the optimal weights for the SV model do depend both on the
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modelparametersand the time-t instantaneous variance. In general, when latent state variables,V , enter into

the expression for the optimal weighting vector, its construction is not entirely trivial because in order to get a

measurement of the latent variable one would first need to specify a weighting vector. In other words,V̂ (W, θ) and

W (V, θ) whereθ denotes the model parameters andW the optimal weighting matrix. Fortunately, an iterative

procedure which parallels the construction of the GMM optimal weighting matrix (Hansen 1982) provides the

solution here. Specifically, given an initial estimate of the latent variable estimate,V0, (based on a naive proxy for

example) and an arbitrary weighting matrix,W0, the iteration takes the following form (setr = 0):

Step 1: EstimatêVr+1 based onWr and givenθ

Step 2: ComputeWr+1 based on̂Vr+1 and givenθ

Step 3: If|Wr+1 −Wr| < η quit, elser = r + 1 and goto Step 1

The first step clearly relies on the unbiasedness of the latent variable estimator for arbitrary weights. The initial

choice ofV0 is therefore not very crucial but may, if chosen well, speed up convergence substantially. Our

experience is that two to four steps are sufficient to obtain reasonable convergence in the weighting vector. When

the model parameter vectorθ is unknown, the approach would be to maximize the relevant likelihood function over

the admissible parameter space with intermediate optimization steps for the construction of the optimal weighting

vector. For long time series, this procedure may turn out to be computationally intensity as in every iteration over

θ, one would need to calculate an entire sequence of weighting vectors associated with each observation.

Market Microstructure-Effects and Sampling Frequency While the estimator of the latent variablecan be

implemented based on high frequency data, the question remains whether this should in fact be done. The asymp-

totics indicate that there are substantial benefits from using high frequency data, but an obvious concern is whether

the AJD model provides a good description of the data across a range of sampling frequencies. In fact, the nice

properties of the proposed estimator are derived under the assumption that the AJD model is the data generating

process and is hence “aggregationally consistent” with the observed data. A number of studies have shown that

the SV model provides a reasonable description of returns at the daily frequency. However, at higher frequen-

cies, return data seem to contain large amounts of noises which are mainly due to reporting errors and market

microstructure effects such as bid/ask bounce, price discreteness, stale trading, etc. Without getting into more

detail here, it is safe to say that the noise to signal ratio tends to increase with a decrease in the sampling interval.

Importantly, this implies that the aggregational consistency of the SV model must break down at some stage when

moving from low frequency to high frequency data. This observation should be taken into account when deciding

on the frequency that the latent variable estimator will be based on.

2.5 Conclusion

The closed analytic form of the conditional characteristic function for the AJD class (Duffie, Pan, and Singleton

2000) allows us to derive a dynamic correspondence between the latent variables and the cumulants of the ob-

served state variables. Based on this relation, we derive an unbiased minimum-variance estimator for the latent
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variables in terms of the model parameters and observations of the state variables. An important feature of the

proposed estimator, is that it ismodel-consistentand can be implemented usinghigh frequencydata. We also

derive conditions under which the estimator has minimum variance. In a simulation study we investigate the

properties of several competing latent variable estimators for the stochastic mean and volatility in the SM and SV

models. The results illustrate that (i) the UMV estimator delivers unbiased estimates irrespective of sample size,

sampling frequency, sampling horizon, or model parameters (ii) for the SM (SV) model the Kalman (ARCH) filter

is optimal in a MSE sense (iii) for the estimation of the conditional mean low-frequency-long-horizon sampling is

optimal and (iv) for the estimation of the conditional variance high-frequency-short-horizon sampling is optimal.

Based on the proposed estimator of the latent variable, we outline a flexible GMM estimation procedure that relies

on the matching of conditional moments or cumulants of both the observed and the unobserved state variables.

The major advantage of this approach is that it can be implemented using high frequency data, does not require

discretization of the continuous time process, and does not involve computationally expensive simulations. A

couple of issues are left for future research, including the treatment of the error-in-variable issue for higher order

moment restrictions, and the impact of market microstructure effects in high frequency data on the performance

of the estimator.
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Chapter 3

Statistical Models for High Frequency

Security Prices

3.1 Introduction

The distributional properties of financial asset returns are of central interest to financial economics because they

have wide ranging implications for issues such as market efficiency, asset pricing, volatility modelling, and risk

management. Although the conditional and unconditional distribution of returns at the daily and weekly frequen-

cies have been extensively studied and are typically well understood, this is certainly not the case for returns

observed at higher frequencies. Intra-daily patterns in market activity plus numerous market microstructure ef-

fects1 substantially complicate the analysis of so-called “high frequency” data and often render conventional return

models inappropriate.

Much of modern finance theory builds on the martingale property of risk-adjusted asset prices, as originally

laid out in Cox and Ross (1976) and Harrison and Kreps (1979). The development of econometric models for asset

prices has progressed hand in hand and is, as a result, directed to models that are consistent with the martingale

hypothesis. A prominent example is the geometric Brownian motion from which the celebrated Black and Scholes

option pricing formula has been derived. To capture commonly observed characteristics of daily return data, such

as skewness, fat tails and heteroscedasticity, this model has been extended in a number of directions to include for

instance random jumps and the stochastic evolution of return variance2. Although less suited for derivative pricing,

an attractive alternative to the diffusion process is the compound Poisson process. Despite its long tradition in the

statistics literature3, the model has received only moderate attention in finance4 after it has been introduced by

1Market microstructure effects include bid/ask spreads, non-synchronous trading, stale prices, and price discreteness. See for example

Campbell, Lo, and MacKinlay (1997), Madhavan (2000), O’Hara (1995), Wood (2000).
2See for example Bakshi, Cao, and Chen (1997), Bakshi and Madan (2000), Bates (1996, 2000), Bollerslev and Zhou (2002), Heston

(1993), and Scott (1997).
3The Poisson process, often viewed as a special case of a renewal process, has been used extensively in for instance queue theory,

ruin and risk theory, inventory theory, evolutionary theory, and bio-statistics. See Andersen, Borgan, Gill, and Keiding (1993), Karlin and

Taylor (1981, 1997) and references therein.
4For some recent applications of the compound Poisson process in economics, finance, insurance mathematics and risk management
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Press(1967, 1968). In its simplest form, the compound Poisson process with iid Gaussian increments is given by:

F (t) = F (0) +
MI(t)∑

j=1

εj , (3.1)

whereF (t) denotes the time-t logarithmic asset price,εj ∼ iid N (µI , σ
2
I ) andMI (t) is a homogeneous Pois-

son process with intensity parameterλI > 0. Press (1967) has shown that the analytical characteristics of this

model agree with the empirically observed properties of (low frequency) returns, namely a skewed and leptokur-

tic marginal return distribution. An appealing interpretation can be given to the Poisson process,MI (t), as

counting the units of information flow that induce a random change in the asset’s price. The model is therefore

intimately related to time deformation models (Clark 1973) which have found renewed interest in high frequency

data research5. Further, it is important to note that, like many of the diffusion processes used in finance, the

(compensated) compound Poisson process embodies the martingale property.

While the compound Poisson process, and many of the diffusion processes in particular, have been shown to

fit low frequency data relatively well, this is certainly not the case at the high frequency where market microstruc-

ture effects have been shown to have a decided, but often complex, impact on the properties of the price process.

Roll (1984) demonstrates that the existence of a bid/ask spread can lead to spurious first order negative serial

correlation in returns. Lo and MacKinlay (1990) study the impact of non-synchronous trading on the dynamic

properties of returns and find that it induces contemporaneous cross-correlation among assets and serial corre-

lation in returns. By and large, it is widely recognized that the various market microstructure effects distort the

distributional properties of high frequency returns and typically induce a substantial degree of serial correlation.

Any process that is consistent with the martingale hypothesis of (risk adjusted) asset prices, will therefore be in-

consistent with much of the theoretical market microstructure literature and, more importantly, with many of the

observed characteristics of high frequency data.

In this paper, we argue that the continuous time diffusion processes studied in the finance literature, valuable

as they are, seem to lack the flexibility required for the modelling of high frequency security prices. We propose

two distinct statistical models that we believe are capable of capturing many important features of high frequency

returns. The first model generalizes the standard compound Poisson process, as given in expression (3.1), to ac-

count for the presence of a bid/ask spread. The second model allows for a general form of serial dependence in

returns. We also study the case where there is both deterministic and stochastic time variation in the trading inten-

sity and show that this can be used to capture (i) deterministic patterns in market activity, (ii) serial dependence

in trade durations at high frequency (i.e. “ACD-effects”) and (iii) persistence in the conditional return variance

at low frequency (i.e. “ARCH-effects”). Based on the characteristic function, we analyze the static and dynamic

properties of the price process in detail. Comparison with actual high frequency data suggests that the proposed

models are sufficiently flexible to capture a number of salient features of financial return data including a skewed

and fat tailed marginal distribution, serial correlation at high frequency, time variation in market activity both at

seefor exampleChan and Maheu (2002), Embrechts, Klüppelberg, and Mikosch (1997), Madan and Seneta (1984), Maheu and McCurdy

(2002a), M̈urmann (2001), Rogers and Zane (1998), Rolski, Schmidli, Schmidt, and Teugels (1999), Rydberg and Shephard (2003).
5See for example Andersen (1996), Ané and Geman (2000), Carr, Geman, Madan, and Yor (2002, 2003).
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high and low frequency. A common feature of both models is that even though the martingale property is lost at

high frequency, it can be retained under temporal aggregation. Motivated by this observation, we seek to address

two issues that are relevant to the measurement of return volatility. Firstly, within the context of our models,

we investigate the impact of serial correlation in returns on the recently proposed realized variance measure as

discussed in Andersen, Bollerslev, Diebold, and Labys (2001, 2003) and Barndorff-Nielsen and Shephard (2002,

2003). We show that serial correlation in returns can induce a substantial bias in the variance estimate and charac-

terize its decay under temporal aggregation of returns. Secondly, we discuss a set of sampling strategies which aim

at minimizing this bias. Here, the key result is that the magnitude of the bias can be altered by a deformation of

the time scale. Importantly, we find that when the trade arrival intensity is non-constant, “business” time sampling

maximizes the bias for a given sampling frequency while it achieves the lowest overall MSE relative to calendar

time sampling. Moreover, for both sampling schemes, the “optimal” sampling frequency which minimizes the

MSE is much higher than the one which minimizes the bias.

In the present context, it is also important to emphasize a fundamental difference between the compound

Poisson process and the diffusion process, namely, the former is afinite variation process while the latter is an

infinite variation process. By taking a microscopic view at the data, it is evident that variation in high frequency

returns is inherently finite because the number of price-change-inducing trades is finite. Diffusion processes are,

by construction, not able to capture this prominent feature of the data. In contrast, the finite variation property

of the compound Poisson process appears ideally suited for the modelling of asset price both at high and low

frequency.

The remainder of this paper is organized as follows. In Section 2, we generalize the compound Poisson

process for the presence of a bid/ask spread, derive the characteristic function of the price process, and analyze

the properties of the price process. Section 3 contains analogous results for the compound Poisson process with

correlated innovations. Section 4 derives additional results for when the trading intensity process is allowed to

vary both deterministically and stochastically through time. Section 5 discusses the impact of serial correlation in

returns on the realized variance measure. Section 6 concludes.

3.2 The Bid/Ask Spread

Financial market design distinguishes between two types of trading mechanisms, namely, price-driven markets

and order-driven markets. In a price-driven market, all trades take place through a market maker (also referred to

as a specialist or dealer) which serves as an intermediary between buyers and sellers. The market maker posts a

bid (ask) price at which he is willing to buy (sell), thereby providing immediacy to the traders. Because the market

maker is exposed to inventory risk and insider trading6 he requires a compensation that is equal to the disparity

between the ask and the bid price, i.e. the “spread”. Examples of price-driven markets include the NASDAQ

and FOREX. In an order-driven market, on the other hand, traders submit their orders to an electronic order book

6Referencesof inventory and asymmetric information models include Admati and Pfeiderer (1988), Demsetz (1968), Easley, Kiefer,

and O’Hara (1997), Easley and O’Hara (1992), Glosten and Milgrom (1985), Ho and Stoll (1983), Huang and Stoll (1997), Kyle (1985),

O’Hara (1995) Stoll (1978).
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whichautomatically matches orders based on price and time prioritization. In this trading mechanism, traders are

exposed to execution risk due to the absence of a market maker. Examples of order-driven markets include the

Paris Bourse and the LSE. Hybrid structures, combining both trading mechanisms, are adopted by the NYSE and

Deutsche B̈orse.

The first model we discuss is designed to account for the presence of a bid/ask spread encountered in price-

driven markets. For illustrative purposes, Figure 3.1 displays a time-series of 250 transaction prices of the German

Bund Futures contract on August 24, 2000. The presence of the bid/ask spread is apparent. It is also clear that

the infinite variation processes, such as the popular

diffusion models widely used in finance, are not well

suited to characterize this type of price evolution. To

investigate the serial correlation of returns, we distin-

guish between two sampling schemes, namely “busi-

ness time” sampling and “calendar time” sampling.

Sampling in calendar time amounts to recording the

(most recent) price at equi-distanttime intervals, e.g.

annual, weekly, hourly etc. On the other hand, sam-

pling in business time, amounts to recording the price

whenever a trade (or a certain amount of trades) has

occurred. Clearly, when the duration between trades

is non-constant, the two sampling schemes will dif- Figure 3.1: Transaction Prices of the German Bund Future

fer. However, the impact of this on the distributional properties returns is non-trivial and will be discussed below

in the context of our model. Based on all data for August 24 (over 2000 transaction prices), we find a highly

significant first order serial correlation coefficient of -0.447 for returns sampled in business time (trade by trade)

and -0.133 for returns sampled in calendar time (minute by minute). These results are in line with Roll (1984).

Second order serial correlation is substantially reduced in magnitude and significantly different from zero only

for the “trade by trade” returns. Higher order serial correlation is insignificant for both sampling schemes. All in

all, it is clear that the price process violates the martingale property, at least when sampled at high frequency. The

model we propose below aims to capture the presence of the bid/ask spread and allows us to analyze its impact on

the distributional properties of returns.

In what follows, we decompose the observed transaction price into the unobserved mid-price (the average of

the bid and ask) plus a spread component. The transaction price is thus equal to the mid-price plus or minus half

the bid/ask spread depending on whether a trade is buy-side or sell-side initiated. We assume that the logarithmic

mid-price, F (t), evolves according to the standard compound Poisson process given in expression (3.1). More

general specifications are avoided because the focus is on isolating the impact of the bid/ask spread. The process

of the logarithmictransaction price, Q(t), inherits the properties of the mid-price process and we assume that its

dynamics are governed by:

Q (t) = Q
(
t−

)
[1− dMIBS (t)]︸ ︷︷ ︸

NO TRADE

+ F (t) dMIBS (t)︸ ︷︷ ︸
ANY TRADE

+ δ[dMB (t)︸ ︷︷ ︸
BUY

− dMS (t)︸ ︷︷ ︸
SELL

], (3.2)
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whereMB (t) andMS (t) denotePoisson7 processes with intensity parametersλB > 0 andλS > 0, dMIBS (t) =

dMI (t) + dMB (t) + dMS (t), andδ is a positive constant. The intensity parameter of the “combined” Poisson

processMIBS is equal toλ = λI + λB + λS .

In the absence of consistent mispricing, the mid-price process reflects the true or fundamental value of the

asset. Only the arrival of new information will cause this price to change. In a trading environment, it is reasonable

to assume that information is disseminated through order flow and one can thus think ofMI as a process counting

the number of “informative” trades which randomly move the asset’s fundamental value (and the transaction price

by necessity). Notice that the termεj in expression (3.1) represents the innovation to the mid-price processnetof

the bid/ask spread. A second source of randomness in the price process comes through “uninformative” trades.

One can think of these as hedge or liquidity motivated trades that are non-speculative of nature and do not contain

any (price sensitive) information. Uninformative trades leave the fundamental value of the asset unchanged, but

they have the potential to move the transaction price process up or down as they are executed at the mid-price

plus or minus a proportional spreadδ, depending on whether the trade was buy-side or sell-side initiated. Notice

from expression (3.2) that a sequence of uninformative buy orders will only move the transaction price once at the

start. Similarly for a sequence of uninformative sell orders. The dynamics of the processes counting the number

of uninformative buy- and sell-side initiated trades are governed byMB andMS respectively. The combined

Poisson process,MIBS (t), therefore counts the total number of trades that occurred up to and including timet.

Before moving on, we point out that based on the above interpretation of the model it follows that informative

trades are transacted at zero bid-ask spread and that at such instances the mid-price is effectively observable. This

contradicts both with what we observe in reality and with the statement that the mid-price is latent. What does

remain valid, is that the transaction price associated with an informed trade serves as the mid-price for subsequent

uninformative trades. However, it is important to stress that this inconsistency lies in theinterpretationof the

model and not in the model itself. In fact, we will see that the statistical properties of the specified price process

are in close correspondence with the ones observed in practice. Because it is these statistical properties that are of

primary interest at this stage we stick to the convenient interpretation of the model above although we recognize

that alternative, and possibly more appropriate, interpretations can be assigned to theF andQ processes.

For the analysis in the remainder of this paper it proves useful to define a third process,G (t) = Q (t)−F (t),

which measures the difference between the transaction price and the mid-price. Because theQ process, as defined

in (3.2), can be rewritten as:

dQ (t) = −Q
(
t−

)
dMIBS (t) + F

(
t−

)
dMIBS (t) + dF (t) + δ [dMB (t)− dMS (t)] .

it directly follows that the dynamics forG are given by:

dG (t) = −G
(
t−

)
dMIBS (t) + δ [dMB (t)− dMS (t)] . (3.3)

7The Poisson intensity parameters are defined such thatE [dMB (t)] = λBdt, E [dMS (t)] = λSdt andE [dMI (t)] = λIdt. The

sequence{εi} is assumed to be independent of{MI (t) , t ≥ 0}. Moreover, it is assumed that{MI (t) , t ≥ 0} , {MB (t) , t ≥ 0} ,

and{MS (t) , t ≥ 0} are independent which implies thatPr {dMB (t) dMS (t′) = 1} = 0, Pr {dMB (t) dMI (t′) = 1} = 0 , and

Pr {dMS (t) dMI (t′) = 1} = 0 for t > 0, t′ > 0.
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Expression(3.3) is known as theVolterra equationand the unique solutionG is given by Theorem II.6.3 in

Andersen, Borgan, Gill, and Keiding (1993):

G (t) = G (0)
∏

[0,t]

[1− dMIBS (u)] + δ

∫ t

0
[dMB (u)− dMS (u)]

∏

(u,t]

[1− dMIBS (u)] . (3.4)

Theorem 3.2.1 The joint characteristic function ofF andG, as defined by expressions (3.1) and (3.4), conditional

on initial values is given by:

φ∗F,G (η1, η2, ξ1, ξ2, t, m) ≡ E0

[
eiη1F (t)+iη2F (t+m)+iξ1G(t)+iξ2G(t+m)

]

= f (η2, ξ2) φF,G (η1 + η2, ξ1, t)
(
emλI(φε(η2)−1) − e−mλ

)

+e−mλφF,G (η1 + η2, ξ1 + ξ2, t) (3.5)

where

φF,G (η, ξ, t) ≡ E0

[
eiηF (t)+iξG(t)

]

= f (η, ξ)
(
φF (η, t)− eiηF (0)−tλ

)
+ eiηF (0)+iξG(0)−tλ (3.6)

for m > 0, φε (η) = exp
(
iηµI − 1

2η2σ2
I

)
, φF (η, t) = exp (iηF (0) + tλI (φε (η)− 1)) , and

f (η, ξ) =
λIφε (η) + λBeiξδ + λSe−iξδ

λIφε (η) + λB + λS

Proof See Appendix B.3.

Based on expression (3.5), moments and cumulants of the mid-price process,F , and the transaction price

process,Q, can be derived (see Appendix B.1 for details). In particular, thehth orderconditionalmoment of mid-

price returns, i.e.RF (t|m) ≡ F (t)−F (t−m), and transaction price returns, i.e.RQ(t|m) ≡ Q(t)−Q(t−m),

can be derived as:

i−h
∂hφ∗F,G (−γ, γ, 0, 0, t, m)

∂γh

∣∣∣∣∣
γ=0

and i−h
∂hφ∗F,G (−γ, γ,−γ, γ, t,m)

∂γh

∣∣∣∣∣
γ=0

Unconditionalmoments are obtained by lettingt tend to infinity. For completeness, we will briefly discuss the

properties of the mid-price process below. More details can be found in Press (1967, 1968).

WhenµI 6= 0, the unconditionalmeanandvarianceof RF (t|m), are equal tomλIµI andmλI(µ2
I + σ2

I )

respectively. Thethird momenttakes the form:

mλIµ
3
I

(
1 + 3mλI + m2λ2

I

)
+ 3mλIµIσ

2
I (1 + mλI)

A non-zero mean of the innovation term therefore induces skewness in returns which increases under temporal

aggregation of returns. In contrast, the distribution of returns on the de-trended price process is normal and thus

symmetric. Thefourth momentof returns is equal to:

mλIµ
4
I

(
1 + 7mλI + 6m2λ2

I + m3λ3
I

)
+ 6mλIµ

2
Iσ

2
I

(
1 + 3mλI + m2λ2

I

)
+ 3mλIσ

4
I (1 + mλI)
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As is the case for skewness, whenµI 6= 0 return kurtosis increases under temporal aggregation of returns. The

expression for the kurtosis simplifies to3 + 3/(mλI) whenµI = 0. In this case, temporal aggregation of returns

leads to a decrease in kurtosis. Also note thatm andλI enter multiplicatively in all moment expressions. The

impact of a change in eitherm or λI is thus identical.

We now turn to the properties of the transaction price process. Except for the first moment, we will state

the moment expressions for the case whereµI = 0. Although it is straightforward to derive conditional and

unconditional return moments whenµI 6= 0, it needlessly complicates notation and is therefore avoided. The

conditionalfirst momentof returns is given by:

E0[RQ(t|m)] = mλIµI +
e−tλ(1− e−mλ)

(
δ(λB − λS)− λG(0)

)

λ

Theabove expression points out an interesting feature of the model: even whenµI = 0 it follows thatE0[RQ(m|m)] =

E0[Q(m)] − Q(0) 6= 0 as long asλB 6= λS and / orG(0) 6= 0. This directly implies that the logarithmic trans-

action price process isnot a martingale. However, the compensated process, i.e.Q(m) − mλIµ, looks more

and more like a martingale whenm → ∞. Because the innovations to the mid-price are iid, this property of the

transaction price process is exclusively due to the presence of the bid/ask spread. Takingt (andm)→ ∞ yields

the unconditionalmeanof returns which equalsmλIµ and thus corresponds to the mean of returns onF . For

µI = 0, thesecond moment, or equivalently thevariance, of returns is given by:

mλIσ
2
I + 2δ2(1− e−mλ)

λIλS + 4λSλB + λIλB

λ
2

We can decompose the variance into two components, namely the return variance of the mid-price process (left

hand side) plus a contribution of the bid/ask spread to the total return variance of the transaction price process

(right hand side). Becauseδ, m, and the intensity parameters are strictly positive, the variance of returns onQ

always exceeds the variance of returns onF . However, the relative difference, i.e.(V [RQ] − V [RF ])/V [RF ],

decreases with (i) a decrease in the spreadδ, (ii) an increase in the return horizonm, (iii) an increase in the

arrival rate of informed tradesλI , and (iv) a decrease in the arrival rate of uninformed tradesλB andλS . The

unconditionalthird momentof returns is given by:

3λIδσ
2
I (λB − λS) (1− e−mλ)

λ
2

Even thoughµI = 0, the return distribution may be skewed depending onλB andλS , i.e. whenλB > λS

(λB < λS), there is positive (negative) skewness while the distribution of returns is symmetric when the arrival

rates of uninformed buy-side and sell-side initiated trades are equal. Notice thatλB 6= λS does not necessarily

imply that the market maker builds up or drains his inventory, as the informed trades may off-set the buy/sell

imbalance of uninformed traders. The unconditionalfourth momentof returns is given by the lengthy expression

below:

3mλI (1 + mλI) σ4
I + 6λIσ

2
I δ

2(1− e−mλ)
λ2

B + λ2
S − λIλS − λBλI − 6λBλS

λ
3

+12mλIσ
2
Iδ

2 λIλS + 4λBλS + λBλI

λ
2 + 2δ4(1− e−mλ)

λIλS + 16λBλS + λBλI

λ
2
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FIGURE 3.2: MID-PRICE AND TRANSACTION PRICE FOR“B ID-ASK SPREAD MODEL”

Notes: Simulatedtime series of 250 mid-prices (F; left panel) based on expression (3.1) and transaction prices (Q; right panel) based on

expression (3.2). The model parameters are set equal toσ2
I = 5.16e− 7, λI = 1/minute,λS = λB = 2.5/minute, andδ = 0.0003.

The relation between the fourth moment or kurtosis and the model parameters is substantially more complicated

than for the lower order moments. A few things can be said though. As for the mid-price process, when the

return horizon,m, tends to0 (∞), the kurtosis tends to∞ (3). When the spread,δ, or the uninformed intensity

parameters,λB andλS , tend to∞, the kurtosis tends to a strictly positive constant which can be either smaller,

equal or larger than 3 depending on the model parameters. Negative excess kurtosis can thus be induced by the

bid/ask spread although this seems to require unrealistic values for either the spread or the intensity parameters.

Finally, the returncovariance, at displacementk > 0, can be derived8 as:

E [RQ (t|m) RQ (t−m− k|m)] = −ω
(
k,m, λ

)
δ2 λIλS + 4λSλB + λIλB

λ
2

whereω (k,m, λ) = e−kλ
(
1− e−mλ

)2
. Interestingly, it is noted that the auto-covariance function above corre-

sponds to that of an ARMA(1, 1) process9. Becauseω (k, m, λ) > 0 the bid-ask bounce induces negative serial

correlation in returns which disappears under temporal aggregation (increasingm) or increasing arrival frequency

of informative trades (increasingλI ). Roll (1984) finds that the “effective” bid-ask spread, i.e.2δ, can be measured

by 2 times the square root of the negative of the first order serial covariance of returns. The model discussed here,

is consistent with Roll’s finding for the degenerate case whereλI = 0, λB = λS , k = 0 (first order covariance)

andm is large (long horizon returns, e.g. daily / weekly).

To illustrate a possible price path realization of the model, we simulate a time series of 250 mid-prices and

associated transaction prices. The model parameters are set equal toσ2
I = 5.16e − 7, λI = 1/minute,λS =

8UsingthatE0 [Q (t + m) Q (t)] = F (0)2 + tλIσ2
I + 2δF (0)(λB−λS)

λ
+ δ2(λB−λS)2

λ
2 + e−mλδ2 λIλS+4λSλB+λIλB

λ
2 .

9Recallthat the auto-covariance function of an ARMA(1, 1) process with zero mean, i.e.xt = αxt−1 + εt + βεt−1 for |a| < 1 and

ε ∼ IIDN (0, σ2), is given byE[xtxt−k] = αk (α + β)(1 + αβ)

α(1− α2)
σ2 for j = 1, 2, . . .. Settingα = e−λ ensures the same rate of decay

while β andσ2 can be chosen so as to match the first order covariance term.
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λB = 2.5/minute, andδ = 0.0003 which corresponds to an annualized return volatility10 of 25% (28.4%) for

minute by minute mid-price (transaction price) returns, an arrival rate of 60 informed trades per hour, an arrival

rate of 150 uninformed buy-side and sell-side initiated trades, and a spread of 3 basis points. At first sight the

resemblance between the actual Bund futures data (Figure 3.1) and the simulated data (Figure 3.2) seems striking.

The ad hocparameter values used in the simulation imply a first order serial correlation of minute by minute

returns of−0.112. Increasing the spread toδ = 0.0005 increases the annualized transaction return variance to

33.6% and decreases the first order serial correlation to−0.222. Returns aggregated over 5-minute intervals, have

a theoretical first order serial correlation coefficient of−0.027 for δ = 0.0003 and−0.069 for δ = 0.0005.

The discussion above illustrates the ability of the model to capture a number of salient features of high fre-

quency transaction data. The presence of a bid/ask spread is explicitly accounted for and the magnitude of serial

correlation implied by the model is in the right ball park for realistic parameter values. Moreover, it is noted that

our model can be viewed as a mixture of the bid/ask bounce model of Roll (1984) and the compound Poisson

process model of Press (1967). Specifically, whenδ = 0, our model coincides with Press’. WhenλI = 0 and

λB = λS our model is closely related to Roll’s.

To conclude, we point out a possible weakness of the model. A number of studies have reported a substantial

degree of time variation in the bid/ask spread. Demsetz (1968), as one of the first to look into this issue, finds

that most of the variation in the spread can be explained by changes in (i) market capitalization, (ii) the inverse of

the price, (iii) return volatility, and (iv) market activity. Cross-sectional variation due to changes in market capi-

talization is clearly not relevant in the current context. Moreover, the proportionality of the spread can arguably

capture most of the time variation that is induced by changes in the reciprocal of the price. However, variation of

the spread due to changes in market volatility, or market activity, is something that our model clearly cannot ac-

count for. Because the arrival intensity parameters are constant, both market activity and return volatility are also

constant. In additionδ is not allowed to depend on time or other exogenous variables such asMIBS(t). Unfortu-

nately, it is not easy to resolve this shortcoming of the model because time variation inδ precludes a closed form

solution for the characteristic function ofQ(t). Although the properties of the model can still be analyzed numer-

ically, the need to choose specific parameter values would narrow the scope of the discussion substantially and is

therefore not attempted here. We emphasize, however, that while the properties of the transaction return process

will undoubtedly be more complex in such a case, we do not anticipate the qualitative features of the model to

change much, i.e. the bid/ask spread is still expected to induce negative serial correlation which disappears under

temporal aggregation as is observed in practice.

3.3 General Return Dependence

The bid/ask spread is arguably the most apparent and dominant market microstructure component in the price

process of a price-driven market and can, as shown above, be modelled explicitly. However, a host of other

market microstructure effects exist which are, as opposed to the bid/ask spread, more concealed or complex in

nature. It is therefore not possible to individually address each and every one of these effects. The model we

10Basedon 8 trading hours per day, 252 trading days per year.
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proposebelow, exploits the view that no matter what the nature of the market microstructure effect is, it’s impact

on the return distribution will likely be revealed through the autocorrelation function of returns. We thus study the

return dependence structure without explicitly identifying its source. For example, high frequency index returns

may be subject to non-synchronous trading, non-trading periods, temporary mispricing, and recording delays.

While each and every attribute may be difficult to model, it seems reasonable to anticipate some sort of serial

correlation in the first moment of returns, be it negative or positive, of high or low order, transient or persistent.

This observation motivates us to generalize the compound Poisson process to allow for a general form of serial

correlation in returns. In particular, we assume that the innovations of the logarithmic price,F , follow an MA(q)-

process11:

F (t) = F (0) +
M(t)∑

j=1

εj where εj = ρ0νj + ρ1νj−1 + . . . + ρqνj−q, (3.7)

νj ∼ iid N (
µν , σ

2
ν

)
, ρq 6= 0 andM (t) is a homogeneous Poisson process with intensity parameterλ > 0. No

restrictions onρ0, . . . , ρq need to be imposed in order to ensure stationarity of the innovation process. Regarding

the MA structure, it is important to emphasize that it is imposed on the innovation process intransactiontime.

Interestingly, the results below indicate that the autocovariance of returns, sampled at equi-distantcalendartime

intervals, decays exponentially similar to that of an ARMA process. Finally, we note that the price processF is,

as opposed to the previous section, assumed to be observable and the single object of interest.

Theorem 3.3.1 For the price process defined by expression (3.7) andM (t) >> q, the joint characteristic func-

tion ofF (t) andF (t + m), conditional on initial values, is accurately approximated by:

φ∗F (ξ1, ξ2, t, m) = E0

[
eiξ1F (t)+iξ2F (t+m)

]
= a(ξ)φ∗S (ξ1, ξ2, t, m) (3.8)

where

φ∗S (ξ1, ξ2, t,m) = b
(
ξ, t

)
eξ

2
σ2

νρ(q,q)
q−1∑

h=0

eiξ2hρµν− 1
2
hσ2

νξ2
2ρ2

(
e−ξ1ξ2σ2

νρ(q,h) − e−ξ1ξ2σ2
νρ(q,q)

) (mλ)h

h!emλ

+b
(
ξ, t

)
b (ξ2, m) e(ξ

2−ξ1ξ2)σ2
νρ(q,q)

for ξ = ξ1 + ξ2, ρ =
∑q

j=0 ρj , a(ξ) = exp(iξF (0)), b (ξ, t) = exp
[
tλ

(
eiξρµν− 1

2
ξ2σ2

νρ2 − 1
)]

, and

ρ (q, p) =

{ ∑min(q,p)
h=1

∑q
j=h hρjρj−h for q ≥ 1, p ≥ 1

0 otherwise

For t →∞, the above expression of the characteristic function is exact.

Proof See Appendix B.3.

11In principle it is also possible to impose an AR(q) structure on the price innovations. However, the expression for the characteristic

function turns out to be substantially more complicated as it involves an infinite summation of the form
∑∞

n=0 exp (ρn) which cannot be

simplified.
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Thecharacteristic function, given by expression (3.8) above, can be used to deriveexactunconditional mo-

ments of the price and return process as this requirest - and thusM (t) - to tend to∞. Expressions for the

conditional moments will be arbitrarily accurate whenM (t) exceeds the order of the MA process,q, by a suffi-

ciently large amount. WhenM (t) is small the above characteristic function cannot be used to derive conditional

moments. For this case, however, it is possible to derive exact expressions at the cost of cumbersome notation.

Because the focuss of this paper lies elsewhere, we do not go into this (see footnote 1 in Appendix B.3 for more

details on the source of this approximation error).

Below we discuss the properties of the compound Poisson process forq = 1 for it is sufficient to illustrate

the main features of the model. The case forq > 1 adds to the notational complexity without providing much

additional insight into the workings of the model. In practice, of course, the increased flexibility that comes with

the higher order return dependence may be necessary to model the data and this case therefore remains of great

interest. To simplify notation further, we setρ0 = 1 andρ1 = ρ. As mentioned above, no restrictions are imposed

on the coefficients, althoughρ = −1 is a degenerate case in the sense that all innovations to the price process

cancel out with the exception of the first and last one. Analogous to the previous section, the unconditional return

moments can be derived based on the characteristic function12 given by expression (3.8). Whenµν 6= 0 the

unconditionalfirst momentof returns equalsmλµν (1 + ρ) while itsvarianceis given by:

mλ
(
µ2

ν + σ2
ν

)
(1 + ρ)2 − 2σ2

νρ
(
1− e−mλ

)
(3.9)

Because the impact of the innovation mean is trivial we setµν = 0 and focuss on the remaining model parameters.

As expected, the contribution of the right hand side term in expression (3.9) diminishes relative to the left hand side

term whenm increases. In other words, the serial correlation of the innovations introduces a transient component

into the return variance which disappears under temporal aggregation. To study the impact ofρ on the return

variance it is important to take into account that a change inρ, ceteris paribus, will change the return variance

becauseσ2
ε ≡ V [εj ] = (1 + ρ)σ2

ν . We therefore consider two cases, namely (i) varyρ while σ2
ε = (1 + ρ2)σ2

ν and

(ii) vary ρ while keepingσ2
ε fixed atσ2. Furthermore, in order to isolate the impact of a change inρ we choose

the MA(0) model with a return variance ofmλσ2
ε as a benchmark.

For the first case, MA(1) innovations inflate the return variance by2ρσ2
ν(e

−mλ + mλ − 1) relative to the

benchmark case. Serial correlation increases the return variance when it is positive and decreases the return

variance when it is negative. Intuitively, when serial correlation is negative (positive), innovations partly offset

(reinforce) each other which leads to a decrease (increase) in the return variance. Moreover, notice that the

contribution to the return variance consists of a component that only impacts the return variance at high frequency,

i.e. 2ρσ2
ν(e

−mλ − 1), and a component which impacts the return variance at any given sampling frequency, i.e.

2ρσ2
νmλ.

For the second case, the impact of a change inρ is less obvious because it requires a simultaneous change in

σ2
ν so as to keepσ2

ε constant. Here, the return variance exceeds the benchmark by2ρσ2(e−mλ +mλ−1)/(1+ρ2)

which is similar as before but now includes the term(1 + ρ2)−1 and makes the relationship non-linear. To

facilitate the discussion, the left panel of Figure 3.3 visualizes this expression as a function ofρ for mλ = 1 and

12Noticethatξ1 = −ξ2 implies thata(ξ) = b
(
ξ, t

)
= 1.
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FIGURE 3.3: VARIANCE AND KURTOSIS AS AFUNCTION OF MA(1) COEFFICIENT

Notes: The left panel plots the return variance increase when the MA(1) parameterρ is moved away from zero. We setmλ = 1 and

σ2
ν = σ2/(1 + ρ2) = 1 in order to keepσ2

ε fixed atσ2. The left panel plots the return kurtosis as a function of the MA(1) parameterρ

(againmλ = 1).

σ2
ν = σ2/(1 + ρ2) = 1. While a negative (positive) return correlation decreases (increases) the return variance

relative to the benchmark, the amount by which it does tends to zero whenρ grows in magnitude. Intuitively, an

increase inρ “shifts” variance from the contemporaneous innovationνj to the lagged innovationρνj−1. Whenρ

is sufficiently large in magnitude, the variance of the lagged innovation will swamp that of the contemporaneous

one and the process will effectively behave as if it was an MA(0) process.

As opposed to the bid/ask model, thethird momentof returns is zero unlessµν 6= 0. The expression for

this case is straightforward but sizeable and is therefore omitted. The unconditionalfourth momentof returns for

µν = 0 is given by:

3m2λ2σ4
ν (1 + ρ)4 + 3mλσ4

ν

(
ρ2 − 1

)2 − 12σ4
νρ

2
(
e−mλ − 1

)

It is clear from the expressions for the second and fourth moment, that the kurtosis of returns does not depend

on σ2
ν . Also we note that the return horizon,m, and the arrival rate of trades,λ, enter multiplicatively into all

expressions. The impact of an increase inm is therefore equivalent to the impact of an increase inλ. This

simplifies matters substantially and to analyze the kurtosis, we only need to fixmλ while varyingρ. The right

panel of Figure 3.3 displays the return kurtosis as a function ofρ for mλ = 1. Here the MA(0) process serves

as a benchmark with a kurtosis coefficient of3 + 3/mλ = 6. Positive (negative) serial correlation in the price

innovations thus induces an increase (decrease) in kurtosis relative to the benchmark. The maximum (minimum)

return kurtosis is attained by settingρ = 1 (ρ = −1) and is equal to7.43 (4.75) for the current parameter values.

Finally, for µν = 0, thecovarianceof non-overlapping returns can be derived13 as:

E [RF (t|m) RF (t− k −m|m)] = σ2
νρω (k, m, λ) ,

13UsingthatE0[F (t + m)F (t)] = F (0)2 + tλσ2
ν (1 + ρ)− (

e−mλ + 1
)
ρσ2

ν .
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FIGURE 3.4: SERIAL CORRELATION OFRETURNS AND THESAMPLING FREQUENCY

Notes: First order (i.e.k = 0) serial correlation of returns for the MA(1) compound Poisson process, as a function ofmλ, for positive

(left panel) and negative (right panel) values ofρ.

wherem > 0, k ≥ 0 andω (k, m, λ) = e−kλ
(
1− e−mλ

)2
. The discussion of the covariance is analogous to that

of the variance. For fixedσ2
ν , an increase (decrease) inρ leads to an increase (decrease) of auto-covariance. For

fixed σ2
ε , on the other hand, the expression is proportional toρ/(1 + ρ2) and thus takes on the same form as the

graph in the left panel of Figure 3.3. Based on the covariance and variance expression, theserial correlationof

returns can be derived as:
ρω (k, m, λ)

mλ (1 + ρ)2 − 2ρ (1− e−mλ)
.

As expected, an increase ink, the displacement between returns, leads to an exponential reduction in the

magnitude of serial correlation and vice versa. The impact of a change inm, however, is less obvious14. Figure

3.4 displays the serial correlation of adjacent returns (k = 0) for return horizons between0 and10 (λ is kept fixed

at 1). All curves are hump shaped, with the exception of the degenerate case whereρ = −1, implying that serial

correlation may either increase or decrease under temporal aggregation depending on the value ofm. At first sight

this seems quite peculiar. However, when the return horizon (or sampling frequency) tends to zero, the time-series

of sampled returns will contain an increasing number of entries that are equal to zero. This, in turn, causes the

serial correlation to disappear in the limit. Importantly, this isnot the case for the covariance.

3.3.1 Multiple Component Compound Poisson

Jumps inlow frequency financial data are widely documented15. While transaction data are inherently discontin-

uous at any sampling frequency, the fact that some jumps can be identified even at low frequency indicates the

14Although the impact of a change inm is not equivalent to that of a change inλ, due to the terme−kλ, it is very similar and will

therefore not be discussed separately.
15See for example Andersen, Benzoni, and Lund (2002), Bates (1996, 2000), Duffie, Pan, and Singleton (2000), Eraker (2001), Jiang

and Knight (2002), Pan (2002).
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presenceof jumps of different magnitude. While the jumps observable at high frequency are typically due to the

bid/ask spread and price resolution, jumps observable at low frequency can be due to for example a market crash

or certain macro-policy announcements. It therefore seems natural to extend the above model to ak−component

compound Poisson process with MA(q) innovations:

F (t) = F (0) +
M1(t)∑

j=1

ε1,j + . . . +
Mk(t)∑

j=1

εk,j , (3.10)

where

εr,j = ρr,0νr,j + ρr,1νr,j−1 + . . . + ρr,qνr,j−q,

for νr ∼ iid N (µr,ν , σ
2
r,ν) and{Mr (t)}k

r=1 are independent homogenous Poisson processes with intensity pa-

rametersλr > 0 for r = 1, . . . , k. Notice thatq denotes themaximumorder of the MA(q) process driving thek

components. Becauseνr,j andMr (t) are assumed to be independent, the present specification16 of the process

doesnot allow for cross correlation among the components drivingF . The derivation of the joint characteristic

function ofF (t) andF (t + m) is therefore analogous to the single component case.

Corollary 3.3.2 (to Theorem 3.3.1)For the price process defined by expression (3.10) andMr (t) >> q, the

joint characteristic function ofF (t) andF (t + m), conditional on initial values, is accurately approximated by:

φ∗F (ξ1, ξ2, t,m) ≡ E0

[
eiξ1F (t)+iξ2F (t+m)

]
= a(ξ)

k∏

r=1

φ∗S,r (ξ1, ξ2, t,m)

where

φ∗S,r (ξ1, ξ2, t, m) = br

(
ξ, t

)
eξ

2
σ2

r,νρr(q,q)
q−1∑

h=0

eiξ2hρrµr,ν− 1
2
hσ2

r,νξ2
2ρ2

r(e−ξ1ξ2σ2
r,νρr(q,h) − e−ξ1ξ2σ2

r,νρr(q,q))
(mλr)

h

h!emλr

+br

(
ξ, t

)
br (ξ2,m) e(ξ

2−ξ1ξ2)σ2
r,νρr(q,q)

for ρr =
∑q

j=0 ρr,j , br (ξ, t) = exp
[
tλr(eiξρrµr,ν− 1

2
ξ2σ2

r,νρ2
r − 1)

]
, ξ anda(ξ) asdefined in Theorem 3.3.1, and

ρr (q, p) =

{ ∑min(q,p)
h=1

∑q
j=h hρr,jρr,j−h for q ≥ 1, p ≥ 1

0 otherwise

For t →∞, the above expression of the characteristic function is exact.

Proof See Appendix B.3.

For illustrative purposes we will now derive some properties for the 2-component compound Poisson process

with MA(1) innovations, i.e.k = 2 andq = 1:

F (t) = F (0) +
M1(t)∑

j=1

ε1,j

︸ ︷︷ ︸
“ DIFFUSION”

+
M2(t)∑

j=1

ε2,j

︸ ︷︷ ︸
“ JUMP”

16Allowing for cross dependence among components is likely to be unimportant for the applications we have in mind here and will

therefore not be discussed.
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whereε1,j andε2,j follow an MA(1) process. For the analysis of the return moments, we setµ1,ν = µ2,ν = 0 and

ρ1,0 = ρ2,0 = 1 for notational convenience. Themeanis therefore zero while the returnvarianceis given as:

mλ1σ
2
1 (1 + ρ1,1)

2 + mλ2σ
2
2 (1 + ρ2,1)

2 − 2
(
1− e−mλ1

)
σ2

1ρ1,1 − 2
(
1− e−mλ2

)
σ2

2ρ2,1

and thecovarianceof returns can be derived17 as:

E [R (t|m)R (t− k −m|m)] = σ2
1ρ1,1ω (k, m, λ1) + σ2

2ρ2,1ω (k, m, λ2)

whereω (k, m, λ) = e−kλ
(
1− e−mλ

)2
as before. Notice that the contribution of both individual components is

clearly separated and each take the same form as in the single-component case. Theserial correlationof returns

can now be expressed as:

ρ1,1ω (k, m, λ1) + ρ2,1ω (k, m, λ2)
σ2
2

σ2
1

mλ1 (1 + ρ1,1)
2 − 2 (1− e−mλ1) ρ1,1 + mλ2 (1 + ρ2,1)

2 σ2
2

σ2
1
− 2ρ2,1 (1− e−mλ2) σ2

2

σ2
1

In contrast to the single component case, the innovation variance does not cancel out indicating that its relative

magnitude is of interest. Because the return horizonm appears in the denominator, it follows that temporal

aggregation of returns will lead to a reduction of serial correlation. A more distinctive feature of the model is that

the multiple component structure may induce serial correlation in the price process which can be zero, negative

and positive depending on the return horizon. This point is illustrated by Figure 3.5. We have set the parameter

values to extreme, and empirically unrealistic values, so as to magnify the effect, i.e.λ1 = 6/min, λ2 = 4/hour,

σ2
1 = 8e − 8, σ2

2 = 8e − 6, ρ1 = 0.8, ρ2 = −0.8. It appears that the first component generates positive serial

correlation in returns at high frequency (up to approximately a 100 second return horizon). At lower frequencies

the second component dominates and thereby induces negative return serial correlation. The location of the

“turning” points in the correlogram is closely related to the value ofλ1 relative toλ2, although a closed form

solution cannot be obtained.

An empirically interesting case is one where the parameters values are chosen such thatλ1 >> λ2 while

σ2
1 << σ2

2. In particular, at low frequency, the sample path of the first component will be observationally equiv-

alent to that of a standard diffusion process such as a Brownian Motion. However, forσ2
2 sufficiently large, the

second component will generate infrequent discontinuities or jumps in the path which are observable even at low

sampling frequencies. This case is illustrated by Figure 3.6. The left panel displays minute by minute FTSE-100

prices for June 2, 1998. The right panel, contains simulated data based on the 2-component compound Poisson

process with MA(1) innovations. The parameter values are chosen asλ1 = 4/minute,λ2 = 2/day,σ2
1 = 8e− 8,

σ2
2 = 8e− 5, ρ1,1 = 0.6, ρ2,1 = 0.1 and correspond to an annualized return volatility of38.5% and first order se-

rial correlation of4.4%. Although the parameter values are chosen ad hoc, the features of the actual and simulated

data seem to agree. Clearly, more elaborate specifications can be considered. For instance, one may introduce a

third component with an even lower arrival frequency and even higher variance so as to capture the impact of rare

events such as the outbreak of a war or the occurrence of an earthquake. Because the discussion of the model is

only illustrative at this point, we will not go further into the determination of the number of components or the

estimation of the model parameters.

17UsingthatE0[F (t)F (t + m)] = F (0)2 + tλ1σ
2
1(1 + ρ1,1)

2 + tλ2σ
2
2(1 + ρ2,1)

2 − (1 + e−mλ1)σ2
1ρ1,1 − (1 + e−mλ2)σ2

2ρ2,1.
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FIGURE 3.5: SERIAL CORRELATION OFRETURNS AND THESAMPLING FREQUENCY

Notes: First order (i.e.k = 0) serial correlation of returns for the 2-component compound Poisson process with MA(1) innovations at

horizons between 1 and 250 seconds (left panel) and between 251 second and 2.5 hours (right panel). The model parameters are set as

λ1 = 6/min, λ2 = 4/hour,σ2
1 = 8e− 8, σ2

2 = 8e− 6, ρ1 = 0.8, ρ2 = −0.8.

3.3.2 Time Varying Trading Intensity

While the models discussed above are able to capture a variety of dependence structures inreturns, thedurations

between successive trades are necessarily independent due to the “memory-less” property of the Poisson process

(see Bauwens and Giot (2001) for a discussion). A number of empirical studies, however, find compelling ev-

idence that trade durations exhibit a substantial degree of time variation and serial dependence. In this section,

we will therefore generalize the model in such a way that it can account for this characteristic feature of high

frequency transaction data.

In what follows, we assume that the intensity process,λ, can be decomposed into adeterministiccomponent

s, and astochasticcomponent̂λ. Hence, we haveλ = λ̂ + s when the deterministic component is additive,

andλ = sλ̂ when the deterministic component is multiplicative. Examples of a deterministic component include

the widely documented U-shaped pattern in intra-day market activity, day-of-the-week effects, time trends, and

any other seasonalities that may be present (see for example Andersen, Bollerslev, and Das (2001), Dacorogna

et al. (1993), Harris (1986)). The stochastic component, on the other hand, can account for serial dependencies

in the deseasonalized trade intensity and duration. For example, Engle and Russell (1998) find strong evidence

of autoregressive serial dependence in deseasonalized intra-day trade durations which motivates them to specify

the Autoregressive Conditional Duration (ACD) model. Moreover, the extensive evidence of ARCH effects in

low frequency (say daily / weekly) return data indicates that time variation in market activity is not only limited

to intra-day frequencies, but extends forcefully to lower frequencies. At this level, the stochastic component

typically dominates the deterministic one and, as a result, the time variation induced in low frequency return

variance is predominantly stochastic. In this section we will discuss specifications for both components of the

intensity process through which we seek to capture the following important stylized characteristics of return data
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FIGURE 3.6: ACTUAL AND SIMULATED HIGH FREQUENCYDATA

Notes: Minute by minute FTSE-100 index data (left panel) for June 2, 1998. Simulated minute by minute data (right panel) using

the 2-component compound Poisson process with MA(1) innovations. The model parameters are set asλ1 = 4/minute,λ2 = 2/day,

σ2
1 = 8e− 8, σ2

2 = 8e− 5, ρ1,1 = 0.6, ρ2,1 = 0.1.

both at low and high frequency:

(i) seasonality in trade durations and market activity

(ii) serial dependence in deseasonalized trade duration

(iii) persistence in return variance at low sampling frequencies

We refer to property (ii) as “ACD”-effects and to property (iii) as “ARCH”-effects, thereby alluding to the

seminal work of Engle and Russell (1998), and Engle (1982) and Bollerslev (1986) respectively. Because the aim

is to capture all of the above effects through the specification of the intensity process exclusively, a brief discussion

of the relation between trading intensity, return variance, and trade duration is in order. Recall that for the standard

compound Poisson process with unit innovation variance and (trade) intensityλ, the expected return variance

over a unit time interval equalsλ while the expected trade duration is equal to1/λ . Trading intensity is thus

proportional to return variance and inversely proportional to trade durations. However, these relations may break

down when we generalize the compound Poisson process. For example, when a bid/ask spread “contaminates”

the data, we have shown that the return variance is equal toλ plus a non-linear correction term involving the

spread. What’s more, when the trading intensity is a (non-degenerate) deterministic function of time, the return

variance equals
∫

λ (u) du even though the expected trade duration isnot equal to1/
∫

λ (u) du. These cases

are examples where the proportionality between trading intensity, return variance, and inverse of trade duration,

is lost. However, it seems reasonable to expect that in many cases the proportionality will hold approximately.

Clearly, the extent to which this is true depends on the model specification and also on the sampling frequency of

the data (as we have shown that market microstructure effects vanish under temporal aggregation).
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Corollary 3.3.3 (to Theorem 3.3.1)For the price process defined by expression (3.7), with a non-constant in-

tensity process,λ (·), andM (t) >> q, the joint characteristic function ofF (t) andF (t + m), conditional on

initial values, is accurately approximated by:

φ∗F (ξ1, ξ2, t, m) = E0

[
eiξ1F (t)+iξ2F (t+m)

]
= a(ξ)φ∗S (ξ1, ξ2, t, m) (3.11)

whereφ∗S (ξ1, ξ2, t, m) equals:

eξ
2
σ2

νρ(q,q)
q−1∑

h=0

eiξ2hρµν− 1
2
hσ2

νξ2
2ρ2

(
e−ξ1ξ2σ2

νρ(q,h) − e−ξ1ξ2σ2
νρ(q,q)

)
E0

{
b
(
ξ, 0, t

) (λ∗ (t,m))h

h!eλ∗(t,m)

}

+e(ξ
2−ξ1ξ2)σ2

νρ(q,q)E0

{
b
(
ξ, 0, t

)
b (ξ2, t, m)

}

λ∗ (t, τ) ≡ ∫ t+τ
t λ (u) du, b (ξ, t, τ) = exp

[(
eiξρµν− 1

2
ξ2σ2

νρ2 − 1
)

λ∗ (t, τ)
]
, and ξ, ρ, a(ξ), ρ (q, p) are as

defined in Theorem 3.3.1.

For t →∞, the above expression of the characteristic function is exact.

Proof See Appendix B.3.

Allowing for time variation in the intensity process, leads to a modified characteristic function of the price

process as can be seen by comparing expression (3.11) in Corollary 3.3.3 to expression ( 3.8) in Theorem 3.3.1.

If time variation in the intensity process is entirely deterministic, or known att = 0, the expectation operator

vanishes in the expression forφ∗S (ξ1, ξ2, t, m) and moments can be derived in the usual fashion. This holds true

irrespective of the, potentially complex, functional form forλ (·). However, when time variation in the intensity

process is (partly) stochastic, i.e. unknown att = 0, the expectations operator remains because the integrated

intensity process is now a random variable. Moments cannot be derived without explicit specification of the

dynamics of the intensity process, and even then, closed form solutions will not be available in many cases.

Deterministic Intensity Process. We will now briefly illustrate the usefulness of allowing for deterministic

variation in the intensity process. As mentioned above, one of the most prominent features of high frequency data

in financial markets is the U-shaped pattern in intra-day market activity and return volatility. In particular, it is

widely documented that market activity is substantially higher around the open and close of the market than around

lunch time. Another important characteristic is that the overnight return typically accounts for a non-negligible

fraction of the overall daily return variance. While trading in many securities is halted overnight, information

flow is not. This in turn, leads to an accumulation of information which can only be incorporated into the price

at the next open of the market. The overnight return may therefore reflect a disproportionately large amount of

information relative to the subsequent intra-day returns. A highly stylized specification of the intensity process,

that is consistent with the above observations, is the following:

λ (t) = a + b cos (2πt) + cI{t−[t]<∆} (3.12)

wherea > b, c > 0, 0 < ∆ << 1, [t] denotes the integer part oft, andI is an indicator function which equals1

whenevert− [t] is less than∆ and zero otherwise. Using the single component compound Poisson process with
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FIGURE 3.7: ACTUAL AND SIMULATED HIGH FREQUENCYDATA

Notes: Correlogramof minute by minute absolute returns for the FTSE-100 index (left, period 1990-2000) and for simulated minute by

minute data (right) using a single component compound Poisson process with MA(1) innovations and a deterministic intensity process

given by expression (3.12). The parameter values are set asa = 4/ minute,b = 2.25, c = 120/minute,∆ = 2/480, ρ = 0.3, and

σ2
ν = 7e− 8

MA(1) innovations and an intensity process as specified above, we simulate 5 years of high frequency transaction

prices using the following ad hoc parameter values;a = 4/ minute,b = 2.25, c = 120/minute,∆ = 2/480,

ρ = 0.3, andσ2
ν = 7e − 8. Based on8 hours of trading per day, these parameters imply an average of2160

trades per day, an annualized daily return volatility of25.4%, and a more than25 fold increase in market activity

(relative to the daily average) during the first two minutes following the market open. The overnight return aside,

trading intensity at open and close (mid-day) is50% higher (lower) than the daily average.

The left-hand panel of Figure 3.7 plots the correlogram of minute by minute absolute returns on the FTSE-

100 over the period 1990-2000. The displacement is up to 2400 lags, or equivalently, five trading days. The

U-shaped pattern in market activity and the impact of the overnight return is apparent. Moreover, the magnitude

of both effects underline the importance of allowing for a deterministic pattern in the intensity process. The

right-hand panel of Figure 3.7 plots the correlogram for the simulated data sampled at minute intervals. The

strong agreement among the correlograms of the actual and simulated data demonstrates that the naive and overly

simplistic specification of the intensity process does capture important patterns in high frequency return data at

least to some extent. However, a more detailed inspection of the graphs points to some important differences.

For example, the correlogram for the FTSE-100 data indicates a peak in market activity during the afternoon

trading session that is, most likely, associated with the open of the US markets. A more subtle difference in

the correlogram for the actual data is that the correlations are strictly positive at any displacement and that there

appears to be a slow decline in their magnitude. One possible explanation for this is thatstochasticvariation in

market activityacrossdays induces (positive) serial dependence in the return variance which comes to dominate

the intra-daily seasonal pattern at longer horizons. Such dynamics are clearly absent in the above specification of
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theintensity process and will be discussed next.

Stochastic Intensity Process. As can be seen from Corollary 3.3.3, when the intensity process is (partly)

stochastic the expectation operator in the characteristic function remains. Hence, an expectation of the form

E0

[
exp (aλ∗ (0, t) + bλ∗ (t,m))λ∗ (t,m)h

]
for h = 0, . . . , q − 1 needs to be computed. If the joint Laplace

transform forλ∗ (0, t) andλ∗ (t,m) is available, i.e.Φ(a, b) = E0 [exp (aλ∗ (0, t) + bλ∗ (t,m))], this expecta-

tion can be obtained as:
∂hΦ(a, b)

∂bh

However, for many specifications the joint Laplace transform will not be available in closed form and moments

need to be obtained by simulation. Below we will discuss a dynamic specification of the intensity process which

is capable of generating both ACD and ARCH effects in the price process and for which the Laplace transform

does exist in closed form (see Appendix B.2 for details). In spite of the models flexibility and analytic tractability,

a major drawback of the specification is that there is nothing that prevents the intensity process from becoming

negative. In practice this feature of the model is clearly undesirable. Here, however, this deficiency does not pose

a problem to us as the discussion is purely illustrative and the intuition derived from this case is likely to remain

in tact for alternative specifications.

ACD and ARCH effects are known to unveil themselves at different frequencies and we therefore decompose

the stochastic intensity process into a high frequency and a low frequency component. In particular, ARCH

effects are modelled through the low frequency component while ACD effects are modelled through the high

frequency component. Market microstructure considerations are clearly of less importance for the low frequency

component as they are for the high frequency component. It therefore seems reasonable to rely on proportionality

between (integrated) intensity and (integrated) return variance when modelling the ARCH effects. For this case,

the dependence structure of the intensity process will (closely) corresponds to that of the variance process and an

appropriate specification for the low frequency component,α, is as follows:

dα (t) = −ϕ (α (t)− µ) dt + σαdWα (t) , (3.13)

whereϕ ≥ 0, σα > 0, andWα (t) is a standard Brownian motion. The above process is known as the Ornstein-

Uhlenbeck (OU) process and has the interesting property that it can be viewed as the continuous-time analogue

of the Gaussian first order autoregression. One way to see this is to discretize the time scale asti = i∆ where

i = 1, . . . , T/∆ so that∆ can be interpreted as the frequency at which the continuous time process is sampled

while T∆ represents the total number of periods. The solution to the SDE in expression (3.13) can now be written

as

α (ti) = µ
(
1− e−ϕ∆

)
+ e−ϕ∆α (ti−1) + εti

whereεti ∼ i.i.d. N
(
0, 1−e−2ϕ∆

2ϕ σ2
α

)
. The discretized sample path ofα thus follows an autoregressive process of

order one with autoregressive parameter equal toe−ϕ∆. Its persistence therefore depends both on the parameter

ϕ and the sampling frequency∆. In particular, for fixed parametersϕ andσα, the persistence of the process

increases with an increase of the sampling frequency∆, i.e. smaller∆ (see Boswijk (2002, Chapter 6) for more
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details).Because ARCH effects are a low frequency phenomenon, we setϕ andσα sufficiently small causingα to

appear roughly constant at high frequency. However, at lower frequencies, the mean reversion will become more

apparent, leading to an autoregressive dependence structure in return variance - ARCH effects.

The modelling of ACD-effects is unfortunately more complicated. At high frequency, market microstructure

effects and time variation in the intensity process can distort the proportionality between trade intensity and

trade duration. In addition, we need to address the question what dependence structure should be imposed on

the intensityprocess in order to generate ACD effects, i.e. autoregressive dependence in theduration process.

Even in idealized situations, there is no clear answer to this question and we will proceed under the debatable

assumption that ACD effects can be captured by means of an autoregressive component in the (deseasonalized)

intensity process. With this in mind, we specify the high frequency component as follows:

dλ̂ (t) = −κ
(
λ̂ (t)− α (t)

)
dt + σλdWλ (t) (3.14)

whereκ ≥ 0, κ 6= ϕ, σλ > 0, andWλ is a standard Brownian motion independent ofWα. The process given by

expression (3.14) is a generalization of the standard Gaussian OU process. It has the property thatλ̂ mean-reverts

towards the low frequency component,α, which itself varies stochastically through time. In the current context,

the difference between̂λ andα constitutes the high frequency component of the intensity process. Quick mean

reversion of̂λ towards the stochastic long run mean,α, can be expected to generate mean reversion in the duration

process at high frequency, thereby leading to ACD effects. Hence, both ARCH and ACD effects can be generated

whenϕ << κ andσα << σλ andσ2
α/ϕ >> σ2

λ/κ. At high sampling frequencies, the process forλ̂ will quickly

“oscillate” around the stochastic long run meanα, which itself is roughly constant due to its extreme persistence

and small innovation variance relative toλ̂. The stochastic time variation of the intensity process overshort time

intervals will therefore be mainly driven by the OU process forλ̂ whose mean reversion will lead to ACD effects.

On the other hand, at low(er) sampling frequencies, the stochastic variation in the average (or integrated) intensity

process arising from the OU process forλ̂ will be minimal due to its quick mean reversion, and at some stage

the stochasticity of the long run mean component will come to dominate. Slow mean reversion inα translates

directly into slow mean reversion of trade intensity which, in turn, leads to ARCH effects. Another way to see

this is by considering the intensity variance at low frequency which can be shown to equal
σ2

λ
2κ + κσ2

α
2ϕ(ϕ+κ) which

is approximately equal to
σ2

λ
2κ + σ2

α
2ϕ for k >> ϕ. Because, by assumption, the parameters are chosen such that

σ2
α/ϕ >> σ2

λ/κ, it is clear that the stochastic long run mean dominates at low frequency. One can thus think of

the OU process for̂λ as driving time variation in the intensity process at high sampling frequencies, whileα has

a “level-shifting” effect in the sense that it slowly moves thelevelat whichλ̂ operates.

In order to further illustrate this property of the model, we fix somead hocparameter values that satisfy the

above criteria, i.e.κ = 5, σλ = 0.25, ϕ = 0.0001, σα =
√

0.001, andµ = 5 and simulate2 × 252 periods of

the intensity process with480 discretization steps per period. The left panel of Figure 3.8 graphs a time series of

intensity procesŝλ over the first two periods of the simulated sample. The superimposed dashed line represents

the corresponding long run mean component. It is clear that most of the variation in the intensity process at

high frequency comes from the OU dynamics ofλ̂. The right panel of Figure 3.8 plots the period by period

average (or integrated) intensity process which corresponds very closely to the low frequency component (not
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FIGURE 3.8: TRADE INTENSITY PROCESS ATHIGH AND LOW FREQUENCY

Notes: Simulatedintensity process (without deterministic component) based on the “double OU” process as defined by expressions (3.13)

and (3.14). The left panel plots the intensity process at high frequency (thin line) for 2 periods together with its associated long run mean

component (thick line). The right panel plots the average intensity process at lower frequency for the full simulated sample of 504 periods.

The model parameters are set asκ = 5, σλ = 0.25, ϕ = 0.0001, σα =
√

0.001, andµ = 5.

displayed). At this frequency,α drives the overall variation in the intensity process, while the OU component for

λ̂ contributes little. Next, we estimate a simple Exponential-ACD(1,1) and GARCH(1,1) model on simulated trade

durations and daily returns respectively and find that (results not reported) for appropriate parameter values, the

autoregressive dependence structure in these (squared) variables can indeed be uncovered. However, as expected,

the lagged duration (ACD) and lagged squared daily return (GARCH) terms enter insignificantly suggesting that

our model is in fact more closely related to the Stochastic Volatility model (Harvey, Ruiz, and Shephard 1994)

and the Stochastic Conditional Duration model (Bauwens and Veredas 2003).

In summary, stochastic variation in the high and low frequency component of the intensity process can lead

to ACD and ARCH effects respectively. For the specification discussed above, closed form solutions for the

intensity process are available (see Appendix B.2 for details). Because the integrated intensity process turns out

to be conditionally normal, a closed form expression for the characteristic function in Corollary 3.3.3 is available

as well. As mentioned above, a major flaw of the model is that there is nothing that prevents the intensity process

from becoming negative. In the context of volatility modelling, Gupta and Subrahmanyam (2002), Stein and Stein

(1991) have used a similar specification and justified this on the basis that for a wide range of relevant parameter

values, the probability of actually reaching a negative value is so small as to be of no significant consequence.

Also, at this point the discussion of the model is purely illustrative and the intuition derived from this case is likely

to remain in tact for alternative specifications. Nevertheless, in practice it may clearly make sense to sacrifice

analytic tractability in return for a more appropriate specification which ensures positivity of the intensity process.

One approach is to specify the model is terms of logarithmic intensity or incorporate a state-dependent innovation

variance as is done in the Feller or CIR process. Other models of potential interest are some of the non-Gaussian
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OU processes discussed by Barndorff-Nielsen and Shephard (2001).

3.4 Realized Variance and Return Dependence

In the context of the models analyzed above, we now study the impact of - market microstructure induced -

serial correlation in returns on the properties of the realized variance (RV) measure. Importantly, we show that

serial correlation renders the RV abiasedestimator of the conditional return variance. We derive closed form

expressions for the bias term as a function of the sampling frequency and the model parameters and show that the

magnitude of the bias decays under temporal aggregation of returns at a rate that is inversely proportional to the

sampling frequency. We also discuss the optimality of alternative sampling schemes.

In an influential series of papers Andersen, Bollerslev, Diebold, and Labys (2001, 2003, ABDL hereafter) have

shown that when the logarithmic price process follows a semi-martingale (i.e. a process which can be decomposed

into a finite variation component and a martingale component), its associated quadratic variation (QV) process

is a critical determinant of the conditional return variance. Importantly, the QV process can - by definition -

be approximated as the sum of squared returns sampled at high frequency. It is this approximation of the QV

process that is commonly referred to as realized variance or volatility. In full generality, the relation between

the conditional return variance and the RV measure is not clear-cut. However, under certain (possibly restrictive)

assumptions on the finite variation component of the semimartingale, ABDL show thatrealized variance is an

efficient and unbiased estimator of the conditional return variance. ABDL also argue that a violation of the

assumptions ensuring unbiasedness is likely to have a trivial impact on the properties of the RV measure, thereby

establishing it as an unbiased, efficient,and robust estimator of the conditional return variance. In the notation

established above, ABDL exploit the following equality:

E




N/m∑

j=1

R (t + jm|m)2 |Ft


 = E

[
R (t + N |N)2 |Ft

]
. (3.15)

whereR denotes excess returns,m denotes the sampling frequency, whereasN denotes the length of the period

over which RV is calculated. It is clear from expression (3.15) that the unbiasedness of the RV measure crucially

relies on the martingale property of logarithmic (risk adjusted) prices, or equivalently, the absence of serial cor-

relation in excess returns. Nevertheless, a number of recent studies have implemented the RV measure without

much concern for possible violations of the martingale assumption underlying the unbiasedness of this measure. It

therefore seems appropriate to study the dependence structure of high frequency returns and its associated impact

on the properties of the RV measure18. Although this is largely an empirical matter, and results can be expected to

vary across securities and time, the models discussed in this paper seem to capture a number of salient features of

high frequency returns particularly well and are therefore well suited to assess the properties of RV in a realistic,

yet theoretical, setting.

18SeeAndreou and Ghysels (2001), Bai, Russell, and Tiao (2001), and Oomen (2002) for related work.

75

Oomen, Roel C.A. (2003), Three Essays on the Econometric Analysis of High Frequency Financial Data 
European University Institute 

 
DOI: 10.2870/23324



3.4.1 The “Covariance Bias Term”

We investigate the properties of the RV measure for the single component compound Poisson process with MA(1)

innovations. Because the results for the “bid/ask model” take the same form, we do not discuss this model

separately. In the discussion below we distinguish between the case where trade intensity is constant and the case

where it is time varying. To simplify notation we also setµ2
ν = 0.

Constant Trade Intensity. Due to the stationarity of the return process, the conditional and unconditional return

variance coincide and can be expressed as

E
[
R(t + N |N)2

]
= Nλσ2

ν (1 + ρ)2 − 2σ2
νρ

(
1− e−Nλ

) N large≈ Nλσ2
ν (1 + ρ)2 (3.16)

On the other hand, the expectation of the RV measure is equal to:

E




N/m∑

j=1

R (t + jm|m)2


 = Nλσ2

ν (1 + ρ)2︸ ︷︷ ︸
RETURN VARIANCE

− 2
(
1− e−mλ

) Nρσ2
ν

m︸ ︷︷ ︸
COVARIANCE BIAS TERM

(3.17)

In practice,N is typically large (e.g. a day or week) and the approximation error in expression (3.16) can there-

fore safely be ignored. In contrast,m is typically small (e.g. minute or hour) and the second term on the right

hand side in expression (3.17) may therefore be substantial. This illustrates a crucial point: when high frequency

(intra-period) returns are used to construct the RV mea-

sure, i.e.m < N , serial correlation of returns induces a

bias that is characterized by the second term on the right

hand side of expression (3.17). This bias can be either

positive or negative depending on the sign ofρ. More-

over, the magnitude of the bias term decays at ratem−1

under temporal aggregation while it tends to−2Nλσ2
νρ

for m → 0. It is emphasized that this result does not rely

on the approximation in expression (3.16) and will hold

true as long as intra-period return are used to construct

the RV measure, i.e.N > m. Clearly, the magnitude of

the bias will depend on specific parameter values and the

sampling frequency.
Figure 3.9: Covariance Bias Term for MA(1) with positive and

negative correlation coefficients

This is illustrated in Figure 3.9. For19 ρ = 0.3 andρ = −0.3, we plot the return variance (standardized byN )

plus the bias component for return horizons up to 10 minutes. The parameterσ2
ν is adjusted so as to maintain an

annualized return variance of25%, i.e. forρ = 0.30 (ρ = −0.30) we haveσ2
ν = 1.529e− 7 (σ2

ν = 5.272e− 7). It

turns out that for these parameter values the bias term is substantial, i.e. around20% (12%) of the return variance

19Rememberthat the MA structure is imposed on returns intransactiontime. For the bond futures data analyzed in Section 3.2 we

found a first order serial correlation of about−0.45. The chosen parameter values in the simulation are therefore reasonable from an

empirical point of view.
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whenreturns are negatively (positively) correlated and sampled at the 1 minute frequency. The magnitude of

this bias can go up to50% (20%) when sampled at even higher frequencies! These analytical results are in line

with a recent study by Oomen (2002) which finds that for the FTSE-100 index over the period 1990-2000 (i)

high frequency returns feature substantial serial dependence (for minute by minute data, the serial correlation

is positive and significant up to high orders), (ii) the covariance bias term is around 40% for minute by minute

returns and (iii) the magnitude of this bias term decays hyperbolically under temporal aggregation.

Time-Varying Trade Intensity For simplicity we focus on the case where the time variation in the trading

intensity is a deterministic function of time only. Although more general results can be derived within the OU

framework outlined above, the notation is complex and the stochastic case does not add much additional insight

for the discussion below. In the deterministic setting, it directly follows from Corollary 3.3.3 that

E
[
RF (t + N |N)2

]
= σ2

ν (1 + ρ)2 λ∗ (t, N)− 2ρσ2
ν

(
1− e−λ∗(t,N)

) N large≈ σ2
ν (1 + ρ)2 λ∗ (t,N)

On the other hand, the conditional expectation of RV is:

Et




N/m∑

j=1

R (t + jm|m)2


 = σ2

ν (1 + ρ)2 λ∗ (t,N)︸ ︷︷ ︸
RETURNVARIANCE

− 2ρσ2
ν

N/m−1∑

j=0

(
1− e−λ∗(t+jm,m)

)

︸ ︷︷ ︸
COVARIANCE BIAS TERM

(3.18)

Again, the bias term can be substantial depending on the sampling frequency and model parameters and similar

results can be derived for this case as for the constant intensity case. A more interesting feature of the bias

characterization for non-constant trade intensity, is that it allows us to analyze the performance of alternative

sampling schemes to which we turn next.

3.4.2 Bias Reduction and Optimality of Sampling Schemes

As pointed out above, the presence of serial correlation in returns introduces a bias in the RV measure which can

be substantial for realistic model parameter values. Because the efficiency of the RV measure crucially relies on

the use of intra-period returns, one faces a trade off between the sampling returns at a high frequency, thereby

minimizing the measurement error, and sampling returns at low frequency, thereby minimizing the bias term.

This trade-off suggest the existence of an “optimal” sampling frequency, that is the highest available frequency at

which the bias term is negligible. Alternatively, one could estimate the model parameters and correct for the bias

term based on the expression derived above. In practice it is not clear which of these two approaches is preferable.

While the bias correction method allows one to use all available data, it is clearly model dependent. The gain

in efficiency may therefore be offset by the impact of model and parameter uncertainty. On the other hand,

while specifying an “optimal” sampling frequency is essentially non-parametric or modelindependent, valuable

information may be lost by the aggregation of returns.

A related issue that arises in this context is how to sample the data. Up to now we have only considered returns

that are sampled at equidistanttime intervals, i.e.t + jm for j = 1, . . . , N/m. However, when transaction data is

77

Oomen, Roel C.A. (2003), Three Essays on the Econometric Analysis of High Frequency Financial Data 
European University Institute 

 
DOI: 10.2870/23324



available it is also possible to consider alternative sampling schemes. A particularly interesting one is where the

price process is sampled at time pointsτj for j = 1, . . . , N/m whereτ0 = t, τN/m = t + N and

∫ τj+1

τj

λ(u)du =
m

N

∫ τN/m

τ0

λ(u)du ≡ λm (3.19)

The above sampling scheme effectively “deforms” the calendar time scale by compressing it when the arrival rate

of trades is low and stretching it when the arrival rate of trades is high. In this case, one can think of returns being

equally spaced on a “transaction” or “business” time scale as opposed to a calendar time scale. An attractive

feature of this sampling scheme is that the statistical properties of returns sampled on this deformed time scale

coincide with those of ahomogenouscompound Poisson process with intensity parameter equal toλm. Because

the construction in expression (3.19) ensures that both sampling schemes generate the same number of intra-

period returns (N/m), it is of interest to compare the bias term associated with each scheme. As can be seen from

expression (3.18), for the calendar time sampling, the bias term is equal to:

2ρσ2
ν

N/m−1∑

j=0

(
1− e−λ∗(t+jm,m)

)

On the other hand, for the “business time” sampling, the bias is simply:

2ρσ2
ν

N/m−1∑

j=0

(
1− e−λm

)

Surprisingly, it turns out that the bias term associated with calendar time sampled returns is strictlysmallerthan

the bias term associated with “business time” sampled returns. In order to show this it is sufficient to prove that

N/m−1∑

j=0

e−λ∗(t+jm,m) >

N/m−1∑

j=0

e−λm or equivalently R ≡ m

N

N/m−1∑

j=0

eλm−λ∗(t+jm,m) > 1

By the definition ofλm and the convexity of the exponential function, the above inequality must hold as long as

the intensity parameter isnon-constant. Note thatR measures the biasreductionassociated with calendar time

sampling relative to transaction sampling. This gain increases with an increase in the variability ofλ(·). When

the intensity parameter is constant, we have thatR = 1, and both sampling schemes are equivalent.

Bias versus Mean Squared Error

The approach outlined above, classifies competing sampling schemes solely based on the relative magnitude of

its associated bias. An alternative well known measure of performance is the mean squared error (MSE) which

trades off a reduction in the bias against the loss of efficiency. While we have shown that calendar time sampling

strictly dominates business time sampling when we use a bias-based ranking, it may very well be that this result

is reversed when we use an MSE-based ranking which takes both bias and efficiency into account. Unfortunately,

an analytic treatment of an MSE-based ranking of competing sampling schemes is not feasible because we do not

have a closed form solution for the variance of the RV measure available. A small-scale simulation experiment
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is therefore undertaken to gauge whether an MSE-based ranking will yield qualitatively different results than the

bias-based ranking.

We focus on the single component compound Poisson process with MA(1) innovations and deterministic time

variation of the intensity process, i.e.λ (t) = s (t). The specification we use fors (t) is similar to expression

(3.12) with the indicator function left out. The parameter values are the same as discussed on page 70. Next, we

simulateT = 1000 (disjoint) days of transaction prices. LetFt (u) denote the security price at timeu during day

t whereu ⊂ [0, N ] andt = 1, . . . , T . In addition, letFt (τi) denote the security price associated with theith

transaction on dayt. The implementation of calendar time sampling is straightforward, i.e. for a given dayt and

a sampling frequencym, we sampleN/m returns as

Rc
t (j|m) = Ft (jm)− Ft ((j − 1)m)

for j = 1, . . . , N/m. The corresponding business time sampling scheme, in contrast, samples the same amount

of returns as follows:

Rb
t (j|k) = Ft (τjk)− Ft

(
τ(j−1)k

)

for j = 1, . . . , N/m andk = mnt/N wherent denotes the total number of transactions for dayt. Based on these

return series we then compute the sample average of the realized variance measure under both sampling schemes:

CRV (m) =
1
T

T∑

t=1

N/m∑

j=1

Rc
t (j|m)2 ,

BRV (m) =
1
T

T∑

t=1

N/m∑

j=1

Rb
t (j|k)2 ,

and the mean squared error under both sampling schemes:

CMSE (m) =
1
T

T∑

t=1



Et

[
R2

t

]−
N/m∑

j=1

Rc
t (j|m)2





2

,

BMSE (m) =
1
T

T∑

t=1



Et

[
R2

t

]−
N/m∑

j=1

Rb
t (j|m)2





2

.

Figure 3.10 displays all of the above statistics for sampling frequencies (m) between1 second and5 minutes.

A number of interesting patterns arise. As expected, based on the bias-ranking, the calendar time scheme domi-

nates. However, the difference in performance between both schemes rapidly shrinks as the sampling frequency

decreases. At sampling frequencies lower than 1 minute, the difference is minimal which implies that the optimal

sampling frequency will be the same for both schemes. In contrast, when the MSE is used to rank the sampling

schemes, it appears that the business time sampling achieves the lowest overall MSE. Moreover, the sampling

frequency which minimizes the MSE is substantially higher than the sampling frequency which minimizes the

bias. Ignoring the efficiency loss associated with aggregation of returns, as is done for the bias-based ranking,

clearly leads one to choose a much lower sampling frequency than if the MSE is taken as the relevant performance

79

Oomen, Roel C.A. (2003), Three Essays on the Econometric Analysis of High Frequency Financial Data 
European University Institute 

 
DOI: 10.2870/23324



FIGURE 3.10: REALIZED VARIANCE AND MSE FOR CALENDAR AND BUSINESSCLOCK SAMPLING

Notes: Sampleaverage of realized variance measure (CRV andBRV , left panel) and mean squared error (CMSE andBMSE,

right panel) for “Calendar” clock (solid line) and “Business” clock” (dashed line) sampling schemes. The results are based on the single

component compound Poisson process with MA(1) innovations and deterministic time variation in trade intensity, i.e.λ (t) = s (t) where

s (t) is given by expression (3.12). The model parameters are set asa = 4/ minute,b = 2.25, c = 0, ∆ = 0, ρ = 0.3, andσ2
ν = 7e− 8.

measure. Based on this simulation experiment we conclude that business time sampling dominates calendar time

sampling when the objective is to either minimize the bias (in which case both schemes perform roughly equal)

or minimize the MSE (in which case business time sampling dominates).

3.5 Conclusion

This article studies several extensions of the compound Poisson process which are able to capture important

static and dynamic characteristics of high frequency security prices. In contrast to diffusion-based models, our

framework is consistent with the finite variation property of high frequency returns and does not impose the usual

martingale restriction on asset prices. By comparing the properties of simulated data to actual high frequency

data we illustrate the flexibility of the model and its ability to capture important features of high frequency data

including, (i) skewness, excess kurtosis and return serial correlation which diminishes under temporal aggregation,

(ii) deterministic variation in trading activity such as the U-shaped intra-day pattern, day of the week effects, and

the increased variance of the overnight return, and (iii) stochastic variation in trading activity leading to serial

dependence in trade durations at high frequency (ACD-effects) and return volatility at low frequency (ARCH-

effects). In addition, our models provide a useful context in which to investigate “market-microstructure-induced”

serial correlation of returns at different sampling frequencies and its associated impact on the recently popularized

realized volatility or variance measure. In particular, we show that for realistic parameter values the realized

variance measure is a biased estimator of the integrated variance process and that the choice of sampling frequency

proves crucial in minimizing this bias. Allowing for time variation in the trade intensity process yields interesting
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insightsinto the properties of alternative, time-deformation-based, sampling schemes.

Throughout this paper we have illustrated the properties of the model for realistic parameter values but an

issue which remains for future research is the specification and estimation of the various models using actual high

frequency data. Specification and estimation of the bid-ask spread model is relatively straightforward because

few parameters are involved and the availability of a closed form characteristic function suggests a variety of

inference techniques that can be applied. For example, it is straightforward to specify a number of moment

conditions (based on for example return variance, skewness, kurtosis, and serial correlation) and use GMM for

estimation. Alternatively, it is possible to use a “continuum” of moment conditions by matching the theoretical

characteristic function to its empirical counterpart (Carrasco, Chernov, Florens, and Ghysels 2002, Jiang and

Knight 2002). However, the model that is potentially more relevant for the modelling of security prices both at

low and high sampling frequency, is the multiple compound Poisson process with correlated innovations and time

varying trade intensities. Specification and estimation of such a model is clearly more involved as it requires one

to determine the MA-order, number of components, and dynamic specification of deseasonalized trade intensities.

Also, the double OU process discussed above is clearly not well suited for practical purposes since it admits

negative trade intensities and may cause numerical instability in the inference procedure. A host of alternative,

and more appropriate, specification can be thought of including a simple log transformation or more elaborate

non-Gaussian OU processes (Barndorff-Nielsen and Shephard 2001). Because analytic tractability is often lost

for such models, moment conditions or characteristic function will have to be evaluated numerically, adding to

the complexity of the inference procedure. Nevertheless, inference is still feasible and worthwhile pursuing as it

may provide important insights into the dynamic properties of financial security prices across a range of sampling

frequencies.
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Appendix A

A.1 Proofs

Proof of Lemma 2.2.1 From (2.3) and (2.4), we have

ψ
(
u;St+kδ − St+(k−1)δ | St, Vt

)

= E
[
exp

{
iu′(St+kδ − St+(k−1)δ)

} | St, Vt

]

= E
[
E

[
exp

{
iu′St+kδ − iu′St+(k−1)δ

} | St+(k−1)δ, Vt+(k−1)δ

] | St, Vt

]

= E
[
exp

{
C (δ, u, 0) +

(
D1 (δ, u, 0)′ − iu′

)
St+(k−1)δ + D2 (δ, u, 0)′ Vt+(k−1)δ

} | St, Vt

]

= exp{C (δ, u, 0) + C [(k − 1)δ,−iD1 (δ, u, 0)− u,−iD2 (δ, u, 0)]

+D1 [(k − 1)δ,−iD1 (δ, u, 0)− u,−iD2 (δ, u, 0)]′ St

+D2 [(k − 1)δ,−iD1 (δ, u, 0)− u,−iD2 (δ, u, 0)]′ Vt}

The conditional cumulants follow by definition.

Proof of Corollary 2.2.2 The results are follow directly from the equations in expression (2.8).

A.2 Stochastic Mean Model

A.2.1 State-Space Representation

It is straightforward to show that the stochastic mean model in (2.12) can be written as:

Rt+τ =
κ

β − κ

(
e−κτ − e−βτ

)
Xt + εs

t+τ

Xt+τ = e−βτXt + εx
t+τ
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whereRt+τ ≡ St+τ − e−κτSt, andεs
t andεx

t are iid jointly normal random variables with

V
[
εx
t+τ

]
=

1− e−2τβ

2β
σ2

x

V [εs
t ] = σ2 1− e−2τκ

2κ
+

κσ2
x

(
1− e−2κτ

)

2 (β − κ)2
+

κ2σ2
x

(
1− e−2βτ

)

2β (β − κ)2
− 2

κ2σ2
x

(
1− e−(β+κ)τ

)

(β + κ) (β − κ)2

E [εx
t εs

t ] =
κσ2

x

2β (β + κ)
+

κσ2
xe−2τβ

2 (β − κ)β
− κσ2

xe−τ(β+κ)

(β + κ) (β − κ)

Note that the marginal distribution ofR (andS) ∼ N
(
0, σ2

2κ + κσ2
x

2β(β+κ)

)
andXt ∼ N

(
0, σ2

x
2β

)
. The above

formulation is in (time-invariant) state-space form:

yt = Zαt + Gεt (observation / measurement eqn)

αt+1 = Tαt + Hεt (state / transition eqn)

whereεt ∼i.i.d. N (0, I2), yt = Rt+τ , αt = Xt, Z = κ (β − κ)−1 (
e−κτ − e−βτ

)
, T = e−βτ , G = (a; b),

H = (b; c) and

a =
1 + δ2

(
σ2

y − σ2
α

)

2δ
; b = δθ; c =

1− δ2
(
σ2

y − σ2
α

)

2δ
; δ =


σ2

α + σ2
y + 2

√
σ2

ασ2
y − θ2

4θ2 +
(
σ2

y − σ2
α

)2




1/2

for σ2
y ≡ V [Gεt] = V [εx

t ] = a2 + b2, σ2
α ≡ V [Hεt] = V [εs

t ] = b2 + c2, andθ ≡ Cov [Gεt,Hεt] = E [εx
t εs

t ] =

ab + bc.

A.2.2 Covariance Expressions

For the stochastic mean model in (2.12), the variance expression,V ar [St+jδ|Ft] = V ar [St+jδ], is given as:

−
(−1 + e−2jβδ

)
σ2

xκ2

2β (β − κ)2
+

2
(−1 + e−jδ(β+κ)

)
σ2

xκ2

(β − κ)2 (β + κ)
−

(−1 + e−2jδκ
) (

σ2
xκ2

(β−κ)2
+ σ2

)

2κ

Thecovariance expression,Cov [St+jδ, St+kδ|Ft] = Cov [St+jδ, St+kδ] for j 6= k, is given as:

e−(j+k)βδ
(−1 + e2kβδ

)
σ2

xκ2

2β (β − κ)2
+

e(−j+k)δκ
(−1 + e−kδ(β+κ)

)
σ2

xκ2

(β − κ)2 (β + κ)

−e−δ(jβ+kκ)
(−1 + ekδ(β+κ)

)
σ2

xκ2

(β − κ)2 (β + κ)
−

e(−j+k)δκ
(−1 + e−2kδκ

) (
σ2

xκ2

(β−κ)2
+ σ2

)

2κ

A.3 Stochastic Volatility Model

For notational convenience we assume thatµ = 0. This implies thatE
[
x2

]
= K

[
x2

]
andE

[
x4

]
= K

[
x4

]
+

3K
[
x2

]2
. The results below can be generalized straightforwardly for a non-zero mean. The first conditional

moment/cumulant of squared returns equals

E
[
(∆St+jδ)

2 |Ft

]
= K

[
(∆St+jδ)

2 |Ft

]
= a (j) + c (j) Vt
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Thecross moment of squared returns,E[(∆St+kδ)
2 (∆St+jδ)

2 |Ft], is given by:

α2δ2 +
(
1− eβδ

)2 (α− 2Vt) σ2 + 2β (α− Vt)
2

2β3e(j+k)βδ
− ασ2

(
eβδ − 1

) 4ρ2
(
1 + βδ − eβδ

)
+ 1− eβδ

2β3e(j−k+1)βδ

+δ
(
eβδ − 1

)
(Vt − α)

βα + σ2δρ2β + σ2

β2ejβδ
+ αδ

(
eβδ − 1

) Vt − α

βekβδ

for j > k. The fourth conditional cumulant of returns,K[(∆St+jδ)
4 |Ft], is given by

3σ2 (α− 2Vt)

(
1− eβδ

)2

2β3e2jβδ
+ 6σ2 (α− Vt)

δ2ρ2β2 − (
2ρ2 + 1

) (
eβδ − βδ − 1

)

β3ejβδ

+3ασ2 1 + eβδ (βδ − 1)− 8ρ2
(
eβδ − 1

)
+ 4ρ2δβ

(
1 + eβδ

)

β3eβδ

from which we can derive the fourth moment using the following cumulant-moment relation:

E
[
(∆St+jδ)

4 |Ft

]
= K

[
(∆St+jδ)

4 |Ft

]
+ 3K

[
(∆St+jδ)

2 |Ft

]2
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Appendix B

B.1 The Characteristic Function

Following Feller (1968), letX denote a random variable with probability measureµ. The characteristic function

of X (or µ) is the functionφ (ξ) defined for realξ by:

φ (ξ) ≡ E
[
eiξX

]
=

∫ ∞

−∞
eiξxµ (dx) =

∫ ∞

−∞
(cos (ξx) + i sin (ξx))µ (dx) .

The characteristic function ofaX + b equalseibξφ (aξ). WhenX is Gaussian with zero mean and unit variance

φ (ξ) = e−
1
2
ξ2

. Non-centralmoments(mn) and cumulants (κn) of ordern can be derived as:

mn = i−n ∂nφ (ξ)
∂ξn

|ξ=0 and κn = i−n ∂n ln φ (ξ)
∂ξn

|ξ=0

There exists a one-to-one relationship between moments and cumulants of any order. For the first four orders

they are as follows:κ1 = m1, κ2 = m2 −m2
1, κ3 = m3 − 3m1m2 + 2m3

1, andκ4 = m4 − 3m2
2 − 4m1m3 +

12m2
1m2 − 6m4

1. See Kendall (1958) for more details. Thejoint characteristic function of the set of random

variables{Xj}k
j=1 is given by:

φ (ξ1, . . . , ξk) ≡ E [exp (iξ1X1 + iξ2X2 + . . . + iξkXk)] ,

which generates joint moments as follows:

E
[
Xp1

1 Xp2
2 · · ·Xpk

k

]
= i−p ∂pφ (ξ1, . . . , ξk)

∂ξp1
1 ∂ξp2

2 · · · ∂ξpk
k

|ξ=0,

wherep =
∑k

i=1 pi.

B.2 The Intensity Process

The solution to the SDE in expression (3.14) directly follows from a general result on one-dimensional linear SDE

as discussed by Karatzas and Shreve (1991, Section 5.6C):

λ̂ (t + τ) = e−κτ λ̂ (t) + κ

∫ t+τ

t
e−κ(t+τ−u)α (u) du + σλ

∫ t+τ

t
e−κ(t+τ−u)dWλ (u) . (B.1)
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for τ > 0. The OU specification forα allows us to further specialize expression (B.1) above:

λ̂ (t + τ) = µ + e−κτ
(
λ̂ (t)− µ

)
+

κ (e−κτ − e−ϕτ )
ϕ− κ

(α (t)− µ) (B.2)

+κσα

∫ t+τ

t

e−ϕ(t+τ−u) − e−κ(t+τ−u)

κ− ϕ
dWα (u) + σλ

∫ t+τ

t
e−κ(t+τ−u)dWλ (u)

using that ∫ t+τ

t
f (h)

{∫ h

t
g (h, u) dW (u)

}
dh =

∫ t+τ

t

{∫ t+τ

u
f (h) g (h, u) dh

}
dW (u) (B.3)

wheref (h) andg (h, u) are deterministic functions. Based on expression (B.2) above, it is straightforward to

derive an expression for the integrated intensity process.

B.3 Proofs

Proof of Theorem 3.2.1 Let the characteristic function of innovations to the mid-price be given by

φε (η) = E0

[
eiηε

]
= eiηµI− 1

2
η2σ2

I

where ε ∼ N (
µI , σ

2
I

)
. Now derive the characteristic function of the mid-price process, i.e.φF (η, t) =

E0

[
eiηF (t)

]
. DefineS (n) =

∑n
j=1 εj and notice that

φF (η, t) =
∞∑

n=0

(tλI)
n e−tλI

n!
E0

[
eiη(F (0)+S(n))

]
= eiηF (0)−tλI

∞∑

n=0

(
tλIe

iηµI− 1
2
η2σ2

I

)n

n!

= eiηF (0)−tλI

∞∑

n=0

[tλIφε (η)]n

n!
= eiηF (0)+tλI(φε(η)−1)

using thatS (n) ∼ N (nµI , nσ2
I ) and

∑∞
n=0

an

n! = ea. To derive the joint characteristic function ofF andG, i.e.

φF,G (η, ξ, t) = E0

[
eiηF (t)+iξG(t)

]
, use that:

φF,G (η, ξ, t + h)− φF,G (η, ξ, t) = E0

(
eiηF (t)+iξG(t)Et

[
eiηRF (t+h|h)+iξRG(t+h|h) − 1

])
.

Consider the random variableeiηRF (t+h|h)+iξRG(t+h|h) and notice that, forh sufficiently small, the memory-less

property of the Poisson process implies:

Pr
[
eiηRF (t+h|h)+iξRG(t+h|h) = e−iξG(t)+iηεMI (t+h)

]
= hλI ,

Pr
[
eiηRF (t+h|h)+iξRG(t+h|h) = eiξ(−δ−G(t))

]
= hλS ,

Pr
[
eiηRF (t+h|h)+iξRG(t+h|h) = eiξ(δ−G(t))

]
= hλB,

Pr
[
eiηRF (t+h|h)+iξRG(t+h|h) = 1

]
= 1− hλ,

whereεMI(t+h) ∼ N (
µI , σ

2
I

)
. Therefore

Et

[
eiηRF (t+h|h)+iξRG(t+h|h) − 1

]
= hλIe

−iξG(t)Ete
iηεMI (t+h) + hλBeiξ(δ−G(t)) + hλSeiξ(−δ−G(t)) − hλ
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Multiplying with eiηF (t)+iξG(t) yields:

Et

[
eiηF (t+h)+iξG(t+h) − eiηF (t)+iξG(t)

]
=

[
hλIEte

iηεMI (t+h) + hλBeiξδ + hλSe−iξδ
]
eiηF (t)−hλeiηF (t)+iξG(t)

Taking expectations of the above expression, dividing byh, and takingh to zero results in:

∂φF,G (η, ξ, t)
∂t

= lim
h→0

φF,G (η, ξ, t + h)− φF,G (η, ξ, t)
h

=
[
λIφε (η) + λBeiξδ + λSe−iξδ

]
φF (η, t)− λφF,G (η, ξ, t) , (B.4)

with the expressions forφε (η, t) andφF (η, t) given above. Solving the differential equation in expression (B.4),

subject to the boundary conditionφF,G (η, ξ, 0) = eiηF (0)+iξG(0), yields the joint characteristic function ofF and

G:

φF,G (η, ξ, t) = f (η, ξ)
(
φF (η, t)− eiηF (0)−tλ

)
+ eiηF (0)+iξG(0)−tλ

where

f (η, ξ) =
λIφε (η) + λBeiξδ + λSe−iξδ

λIφε (η) + λB + λS

This completes the proof of expression 3.6.

Now, based on the joint characteristic function ofF andG, it is straightforward to derive that form > 0:

φ∗F,G (η1, η2, ξ1, ξ2, t, m) = E0

[
eiη1F (t)+iη2F (t+m)+iξ1G(t)+iξ2G(t+m)

]

= E0

[
eiη1F (t)+iξ1G(t)Ete

iη2F (t+m)+iξ2G(t+m)
]

= E0

[
eiη1F (t)+iξ1G(t)a (η2, ξ2)

(
φF,t (η2,m)− eiη2F (t)−mλ

)]

+E0

[
eiη1F (t)+iξ1G(t)eiη2F (t)+iξ2G(t)−mλ

]

= f (η2, ξ2) φF,G (η1 + η2, ξ1, t)
(
emλI(φε(η2)−1) − e−mλ

)

+e−mλφF,G (η1 + η2, ξ1 + ξ2, t)

which completes the proof of expression 3.5.

Proof of Theorem 3.3.1Define the cumulative innovationsS (n) =
∑n

j=1 εj and notice that the joint character-

istic function ofF (t) andF (t + m) can be written as

E0

[
eiξ1F (t)+iξ2F (t+m)

]
= a(ξ)φ∗S (ξ1, ξ2, t, m)

whereφ∗S (ξ1, ξ2, t, m) ≡ E0

[
eiξ1S(MI(t))+iξ2S(MI(t+m))

]
, ξ = ξ1 + ξ2 anda(ξ) = exp(iξF (0)). The variance

of S (n) equals:

Σq (n) = nσ2
ν

q∑

j=0

ρ2
j + 2σ2

ν

min(q,n)∑

h=1

q∑

j=h

(n− h) ρjρj−h, (B.5)

which, forn ≥ q, simplifies to:

Σq (n) = nσ2
νρ

2 − 2σ2
νρ (q, q) ,
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whereρ =
∑q

j=0 ρj and

ρ (q, k) =

{ ∑min(q,k)
h=1

∑q
j=h hρjρj−h for q ≥ 1, k ≥ 1

0 otherwise

Note thatS (n) ∼ N (nρµν , Σq (n)) and thusE
[
eiξS(n)

]
= eiξnρµν− 1

2
ξ2Σq(n). The covariance ofS (n) and

S (n + h) equals:

Σq (n, h) = Σq (n) + σ2
νρ (q, h) ,

and becauseS (n) andS (n + h) are jointly normal, their joint characteristic function can be derived as:

E0

[
eiξ1S(n)+iξ2S(n+h)

]
= eiξnρµν+iξ2hρµν− 1

2 [ξ2
1Σq(n)+ξ2

2Σq(n+h)+2ξ1ξ2Σq(n,h)]

= eiξnρµν+iξ2hρµνe−
1
2 [(ξ2

1+2ξ1ξ2)Σq(n)+ξ2
2Σq(n+h)+2ξ1ξ2σ2

νρ(q,h)]

Recall that

φ∗S (ξ1, ξ2, t, m) = E0

[ ∞∑

h=0

∞∑

n=0

eiξ1S(n)+iξ2S(n+h) (mλ)h

h!emλ

(tλ)n

n!etλ

]
(B.6)

which, for t sufficiently large1, can be approximated accurately by:

eξ
2
σ2

νρ(q,q)
∞∑

h=0

eiξ2hρµν− 1
2 [hξ2

2σ2
νρ2+2ξ1ξ2σ2

νρ(q,h)] (mλ)h

h!emλ

∞∑

n=0

eiξnρµν− 1
2
ξ
2
nσ2

νρ2 (tλ)n

n!etλ

= b
(
ξ, t

)
eξ

2
σ2

νρ(q,q)
∞∑

h=0

eiξ2hρµν− 1
2 [hξ2

2σ2
νρ2+2ξ1ξ2σ2

νρ(q,h)] (mλ)h

h!emλ

whereb (ξ, t) = exp
[
tλ

(
eiξρµν− 1

2
ξ2σ2

νρ2 − 1
)]

. The summation overh can be rewritten as:

q−1∑

h=0

eiξ2hρµν− 1
2 [hσ2

νξ2
2ρ2+2ξ1ξ2σ2

νρ(q,h)] (mλ)h

h!emλ
+ e−ξ1ξ2σ2

νρ(q,q)
∞∑

h=q

eiξ2hρµν− 1
2
hξ2

2σ2
νρ2 (mλ)h

h!emλ

where
∞∑

h=q

eiξ2hρµν− 1
2
hσ2

νξ2
2ρ2 (mλ)h

h!emλ
= b (ξ2,m)−

q−1∑

h=0

eiξ2hρµν− 1
2
hσ2

νξ2
2ρ2 (mλ)h

h!emλ

Collectingabove expressions yields:

φ∗S (ξ1, ξ2, t,m) = b
(
ξ, t

)
eξ

2
σ2

νρ(q,q)
q−1∑

h=0

eiξ2hρµν− 1
2
hσ2

νξ2
2ρ2

(
e−ξ1ξ2σ2

νρ(q,h) − e−ξ1ξ2σ2
νρ(q,q)

) (mλ)h

h!emλ

+b
(
ξ, t

)
b (ξ2, m) eξ

2
σ2

νρ(q,q)e−ξ1ξ2σ2
νρ(q,q)

which completes the proof of expression 3.8.

1Strictly speaking this is an approximation to the true characteristic function (which can be avoided at the cost of cumbersome notation)

sinceΣq (n) is approximated bynσ2
νρ2 − 2σ2

νρ (q, q) for all n ≥ 0 while this is only justified forn ≥ q. However,q is typically small

(say1 or 2) and the contribution of the terms for which the variance expression is incorrect is negligible whent is large. Moreover, when

calculating the unconditional moments, i.e. havingt →∞, the approximation is exact.
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Proof of Corollary 3.3.2 Define the cumulative innovationsSr (n) =
∑n

j=1 εr,j . The joint characteristic func-

tion of Sr (n) andSr (n + k) is derived in the proof of Theorem 3.3.1. BecauseCov [Sh (n) , Sj (n′)] = 0 for

h 6= j andn, n′ > 0 it directly follows that:

E0

[
eiξ1F (t)+iξ2F (t+m)

]
= a(ξ)

k∏

r=1

φ∗S,r (ξ1, ξ2, t, m)

wherea(ξ) = exp(iξF (0)) andφ∗S,r (ξ1, ξ2, t, m) = E0

[
eiξ1Sr(Mr(t))+iξ2Sr(Mr(t+m))

]
.

Proof of Corollary 3.3.3 Follows directly from the proof of Theorem 3.3.1

101

Oomen, Roel C.A. (2003), Three Essays on the Econometric Analysis of High Frequency Financial Data 
European University Institute 

 
DOI: 10.2870/23324




