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Abstract

This paper delivers the solution to an optimal search problem

with learning where the searcher has distinguishable search op-

portunities. The optimal sampling strategy is characterized by

simple reservation prices that determine which of the search al-

ternatives to sample and when to stop search. The reservation

price criterion is optimal for a large class of learning rules having

the so-called falling reservation price property, including Bayesian,

non-parametric and ad-hoc learning rules. The considered search

problem contains as special cases many earlier contributions to

the search literature and thereby uni¯es and generalizes two di-

rections of research: search with learning from identical search al-

ternatives and search without learning from distinguishable search

alternatives.
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1 Introduction

Economic problems involving search due to uncertainty about the lo-

cation of objects are copious and hence have received a considerable

amount of attention. After the igniting article of Stigler [18] economists

themselves have been searching, namely for sampling strategies that are

optimal in di®erent situations involving such uncertainty (Lippman and

McCall [10] or McKenna [11]). This paper stands in this tradition and

determines the optimal search strategy for a class of search problems

that is characterized by two main features: Learning during the search

process and distinguishable search alternatives.

To be explicit, consider the following job search example falling into

the class of problems I consider. A job searching unemployed worker faces

a number of job o®ering ¯rms where each ¯rm might either be willing to

higher this worker and o®er some wage or reject the worker's application.

The fundamental uncertainty in the worker's search process consists of

the fact that the worker does not know which ¯rms are willing to hire

at which wage and which ones would reject the application. Thus, the

worker has to search for a good o®er by ¯ling applications to ¯rms, ob-

serving the outcomes and deciding whether to accept an o®er or whether

to continue searching.

Learning is introduced by allowing for the natural possibility that

the searcher is not only uncertain about which ¯rm o®ers which wage

but also uncertain about the prevailing wage o®er distribution. The

searcher, possessing priors about the o®er distribution, can use a search

outcome, i.e. a job o®er of a particular ¯rm, to learn about the wage

o®er distribution by updating these priors.

It is equally natural to suppose that the searcher can distinguish

¯rms along some dimension and has di®erent priors about the type of

vacancies o®ered by di®erent ¯rms. The distinction could be based upon

¯rms belonging to di®erent sectors or local markets or upon any other

observable characteristic of ¯rms. As a result, the searcher faces distin-
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guishable search alternatives and has to choose to which sector or which

local market to apply.

In abstract terms, a search problem involving learning adds to the

uncertainty about the location of objects the uncertainty about the ob-

jects' values while the presence of distinguishable search alternatives cap-

tures the fact that search opportunities typically di®er from each other

and that search involves a thorough choice among the available alterna-

tives.

If search is sequential with full recall of previous o®ers, then I ¯nd

that the optimal search strategy for the class of search problems involv-

ing learning and distinguishable search alternatives is characterized by

a simple reservation price for each search alternative. The reservation

price of an alternative is simply a real number that is assigned to the al-

ternative and the higher this number, the more attractive it is to search

the corresponding alternative. The reservation prices for all alternatives

together determine both, which of the search alternatives to sample, and

when to stop search. The optimal strategy is very simple and prescribes

to search always the search alternative with the highest reservation price

and to stop search as soon as the best o®er exceeds the reservation prices

of all available alternatives.

The reservation prices keep changing during the search process as

new information arrives through new search outcomes and learning takes

place. In this way, it is optimal for the searcher to stay reactive to the

search outcomes and, for example, direct search towards another search

alternative, if the outcomes of the previously searched alternative have

been disappointing.

The optimality of the search strategy holds for a large class of

learning rules for which, roughly speaking, the reservation prices keep

decreasing as additional search outcomes are observed. Learning rules

with this property include Bayesian learning as well as non-parametric

and ad-hoc learning.
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In addition to answering the question on how to search optimally

in a situation involving learning and distinguishable search alternatives,

the result of this paper should be of twofold interest to economists.

First, the answer to the normative question allows for positive mod-

eling of economic behavior within the neoclassical maximization para-

digm. There are many situations of economic interest that involve both

of the above features and where the ¯ndings of this paper are applica-

ble. Besides job search these are consumers' search for the best price or

¯rms' research for new products or technologies. Examples of the latter

include oil companies searching for new oil ¯elds to exploit or pharma-

ceutical companies' research for medical drugs. The results are equally

applicable to any kind of investment decision if investment is interpreted

as the search for good investments projects.

Second, the result contains several earlier contributions to the search

literature as special cases and thereby contributes to the uni¯cation

and generalization of the search theoretical framework. Although learn-

ing and distinguishable search alternatives have already been consid-

ered in the literature only one of these features was present at a time

(Rothschild [15], Rosen¯eld and Shapiro [14], Morgan [12], Talmain [19],

Chou and Talmain [3], Bikchandani and Sharma [1] considered learning

but assumed indistinguishable search alternatives; Salop [16], Weitzman

[21], Vishwanath [20] studied distinguishable search alternatives but ab-

stracted from learning) and many of the search problems studied in ear-

lier contributions are contained in the class of problems considered in

this paper.1

It is worth noticing that removing learning or distinguishable search

alternatives both reduce the complexity and realism of search problems

considerably. On one hand, assuming indistinguishable search alterna-

tives removes the choice decision from the search problem. All search

1Exceptions from the listed articles are Vishwanath [20] dealing with non-

sequential search, Morgan [12] dealing mainly with the existence of reservation price

functions and Rothschild [15] not allowing for recall of previous o®ers.
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alternatives are (at least believed to be) the same and the search prob-

lem then reduces to the question on when to stop search optimally. On

the other hand, abstracting from learning implies that the value of a

search outcome (e.g. of a job o®er) consists solely in its payo® (i.e. the

wage), since search outcomes do not convey any valuable information

(e.g. about the wage o®er distribution). As a result the optimal search

strategy has to condition only on the best of all observed o®ers (i.e. the

best wage o®ered so far) and not on the whole sequence of observed o®ers.

Finally, notice that the problem considered in this paper di®ers

from simple armed bandit problems but that it is related to bandit su-

perprocesses.

First, consider the di®erence to the simple bandit problem. In such

a decision problem the player receives a reward every time the arm of

a bandit is pulled and nothing otherwise. In contrast to this, in the

considered search problem a number of arms are pulled without actually

receiving a reward. Only when the searcher decides not to pull any

further arms (i.e. to stop search) the best of all previously observed

rewards is obtained.

Next, consider bandit superprocesses which are a generalization of

armed bandit processes allowing for multiple arms per bandit. Adding a

second 'stopping arm' to a standard bandit (as in Glazebrook [8]) allows

for the possibility that the payo® is obtained at the end of search when

the stopping arm is pulled. Glazebrook shows that if the value of the

stopping option is non-decreasing in the number of searches, then the

optimal policy is characterized by some simple selection rule between the

arms and the indices given by Gittins and Jones [5] for simple bandits.

However, while I allow for a ¯nite or an in¯nite number of search op-

portunities, Glazebrook's result fails to hold, if there is not an in¯nite

number of search opportunities of each search alternative.2 Even if there

are in¯nite numbers, the indices in Gittins and Jones are not particularly

2It is easy to see that already in the simple example given in section 3 the so-

lution given by Glazebrook [8] does not hold anymore. A ¯nite number of search

opportunities is like an additional constraint on the action space of the superbandit.
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explicit and the monotonicity conditions that allow for a straightforward

explicit calculation (e.g. as the ones in propositions 4.2 and 4.5 in Gittins

[4]) fail to hold in our case.3 Thus, the contribution of this paper could

also be considered in delivering an explicit expression for these indices in

the absence of such monotonicity.4

The next section sets up the search problem I consider and explains

how other search problems with identical search alternatives or without

learning are special cases of the one considered here. Section 3 describes

as a benchmark the optimal search strategy when the searcher knows

the payo® distributions and is not learning. Section 4 contains the main

part of the paper. I delineate the class of admitted learning rules and

present the optimal search strategy for the case with learning. I also

explain why the sampling rule of the benchmark problem generalizes to

the case with learning. In Section 5 I ask whether one can also hope for

optimality of the search rule with more general learning rules than the

ones I considered. Unless for a very special case the answer is found to be

negative. A conclusion summarizes the ¯ndings. The appendix contains

the proofs.

2 The Model

A search problem is characterized by a searcher facing a (possibly in¯-

nite) number of search opportunities. Each search opportunity can be

thought of as a box that contains an uncertain reward. The searcher has

the possibility to open any box at a cost and ¯nd out what reward is

contained in the box. I want to allow the boxes to di®er from each other,

not only with respect to the actual reward they contain but also with

respect to the probability with which they contain (or are believed to

3Note that although we have decreasing reservation prices with our learning rules

there is always a positive probability that the search outcome is above the reservation

price.
4For similar exercises see Glazebrook [6] and [7].
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contain) certain rewards. One can think of this as di®erent boxes having

di®erent colors on the outside, while equal boxes are of equal color. Each

color then represents a search alternative and the searcher, being able to

observe these colors, has to choose among them in every search step.

More formally, let boxes be indexed by the natural numbers and

let the set J = f1; 2; : : :g contain all available boxes. Each box j 2 J

has some color i 2 f1; 2; : : : ; Ig, i.e. there are I di®erent colors or search

alternatives. The color of a box is observable for the searcher at no cost.

To simplify language a box of color i will sometimes be referred to as an

i-box.

There are M i boxes of color i where M i can be ¯nite or in¯nite.

Boxes of the same color are identical and are characterized by the triple

fci; ti; di(¢)g where ci are the costs for opening an i-box, ti is the time

span that passes from opening the box until its reward is observed and

the function di : R 7! [0; 1] describes the probability distribution of

rewards from opening the box. The parameters ci and ti are known to

the searcher while di(¢) is unknown. The functions di(¢) can have support

on R and the random variables described by them are assumed to have

¯nite mean if M j < 1 for all j = 1; 2; : : : I and to have ¯nite variance

in all other cases.

For a given point in time I denote by ri the number of already

opened i-boxes. xi
n is the outcome from opening the n-th box of color

i. The vector X i
ri

= (xi
1
; xi

2
; : : : ; xi

ri
) contains the ri so far observed

outcomes from opening i-boxes.

The searcher samples sequentially for boxes and can open a closed

box of color i by paying the amount ci. He has to wait a time span ti and

then receives an o®er drawn from di(¢).5 Recall of previously drawn o®ers

is allowed. If search stops, the searcher gets y which is the maximum of

the so far drawn o®ers and some outside opportunity xo the searcher

5
That search costs c

i have to be payed some time t
i before the search result is

observed is not restrictive. Problems where c
i is payed at the time when search

results are observed ¯t into the problem by appropriately discounting search costs.
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possesses independently from the search outcomes:

y = max
©
xo; x1

1
; x1

2
; : : : ; x1

r1
; : : : ; xI

1
; xI

2
; : : : ; xI

rI

ª
The searcher maximizes discounted expected payo®s minus costs with a

discount rate 0 · r < 1.

Uncertainty has two sources. First, o®ers from boxes are drawn

from some probability distribution. Second, there is uncertainty about

the prevailing distribution from which o®ers are drawn. Uncertainty

about di(¢) may be represented by beliefs in form of a probability dis-

tribution pi(µ) over some parameter µ that indexes the set of possible

true probability distributions di(¢ j µ) for boxes of color i, where the true

distribution function di(¢) is equal to di(¢ j µi) for some speci¯c value µi

of the parameter. Beliefs pi(µ) about boxes of color i are updated using

the observed search outcomes X i

ri
from i-boxes. Updated beliefs are de-

noted by pi(µ j X i

ri
). Given these beliefs one can calculate an expected

true probability distribution f i(x j X i

ri
) for the boxes of each color by

integrating out for the uncertainty about the parameter µ:

f i(x j X i

ri
) = E

£
di(x j µ) j X i

ri

¤
=

Z
£

di(x j µ)pi(µ j X i

ri
)dµ

For expository reasons, f i(¢j¢) has been derived from a Bayesian learning

mechanism above. Since I do not want to con¯ne myself to rational

learning, I equally allow f i(²j²) to be directly speci¯ed by some non-

rational ad-hoc learning rule.6 In both cases, rational and non-rational

learning, the functions f i(¢j¢) determine a joint prior probability for any

sequence (xi
1
; xi

2
; : : : ; xi

n
) of search outcomes with

Pr(xi

1; x
i

2; : : : ; x
i

n) = f i(xi

1) ¢ f
i(xi

2jx
i

1) ¢ : : : ¢ f
i(xi

njx
i

1; x
i

2; : : : ; x
i

n¡1) (1)

Given the probability distribution (1) de¯ned by the learning rule, the

searcher maximizes the discounted expected payo® minus costs

max
S

E
£
e¡r¿sy¿s ¡ Cs

¤
(2)

6
The random variables described by f i(¢j¢) are assumed to have ¯nite mean if

M j < 1 for all j = 1; 2; : : : I and to have ¯nite variance otherwise.
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with ¿s being the stopping time under sampling rule S, y¿s being the

o®er that got accepted in ¿s and E[Cs] being the expected discounted

sampling costs under S. Clearly, if learning is non-rational, then (2)

di®ers from expected utility maximization because the searcher is only

optimal for the given learning rule he uses. If learning is Bayesian, then

(2) is identical to expected utility maximization.

I want to make two comments with regard to the above setup.

First, it is a quite restrictive but crucial assumption that the functions

F i depend only on observations of i-boxes, i.e. outcomes of boxes of color

j 6= i do not reveal information about the parameter µi of i-boxes: For

a Bayesian learner this is an implicit assumption on having prior one on

the parameters (µ1; : : : ; µI) being chosen independently.

Second, the setup comprises as special cases models without learn-

ing and several search alternatives and models with learning but identical

boxes. In case that there is only one box of each color, no learning will

take place and the model reduces to the one studied by Weitzman [21].7

In case that all boxes have the same color, the model reduces to the search

problems considered (amongst other problems) in Rosen¯eld and Shapiro

[14], Talmain [19], Bikchandani and Sharma [1], Chou and Talmain [3].

3 Benchmark: Optimal Strategy Without

Learning

This section presents the optimal sampling rule when there is only one

box of each color and hence no learning taking place.8 Such a problem is

equivalent to a search problem with full information when the searcher's

expected payo® distributions equal the true payo® distributions. The

results presented here will serve as a helpful reference point for our later

considerations and the main result is due to Weitzman [21].

7The searcher might still learn about the box of a particular color by opening it,

yet at the time learning takes place there are no other boxes of that color left.
8Remember that we ruled out learning across boxes of di®erent color.
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For expository reasons consider the following simple but instructing

example.

Example 1 Suppose that there are only 2 boxes, a red one and a green

one. Table 1 describes the payo® distributions di(¢) of each box. For

simplicity I will refer to the zero outcome as a "failure" and to the strictly

positive outcome as a "success". With search costs for opening a box

Table 1:
Red payo® 0 70

with probability 0.1 0.9

Green payo® 0 200

with probability 0.85 0.15

equal to 20, no discounting and the value of the outside option equal to

zero, the expected payo®s from opening a single box are shown in table

2. Since the red box has a higher expected value than the green one, it

Table 2:
Expected Payo®

Red 43

Green 10

might seem better to sample the red box ¯rst. If the result of doing so is

a failure, it is clear that it pays to sample the green box as well because

it has positive expected payo®. If the result of sampling the red box was a

success, then sampling the green box yields a negative expected gain. The

expected payo® of this sampling order is therefore readily calculated to be

¡20 + 0:9 ¢ 70 + 0:1(¡20 + 0:15 ¢ 200) = 44

Yet, sampling the green box ¯rst and then in case of a failure the red box

is the optimal sampling order. Its expected value is

¡20 + 0:15 ¢ 200 + 0:85 (¡20 + 0:9 ¢ 70) = 46:55
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A simple intuition exists as to why the expectation criterion does

not work in deciding upon which box to open ¯rst: It ignores the option

value of the possibility to continue search in case of a low search outcome.

This option value is relatively small in the case of a failure of the red box,

namely 0:1¢(¡20+0:15¢200) = 1 (the probability of a failure of the red box

times the expected value of opening the green box), but relatively high in

case of a failure of the green box, namely 0:85 ¢ (¡20 + 0:9 ¢ 70) = 36:55.

Adding the ¯rst option value to the expected value of the red box gives

44, which is the value of the non-optimal sampling order. Adding the

second option value to the expected value of the green box gives 46.55,

the value of the optimal sampling order. Thus, although the immediate

payo® from sampling the green box is lower than the immediate payo®

from sampling the red box, the higher option value of continued search

more than compensates for this.

It turns out that it is not necessary to calculate the option values

of continued search to determine the right sampling order. There is a

simple way of calculating an index for every search alternative that is

based on the payo® distribution of the respective alternative alone. This

is important to know because the option value of continued search can

be a fairly complicated object, especially if one has many boxes of many

di®erent colors and, as in the next section, learning going on during the

search process. The index has already been suggested by Lippman and

McCall [10]. In the following I will describe how it is calculated and give

some intuition on why it works.

Suppose the best o®er from previous searches is y, then the expected

gain over y from opening an i-box and stopping search with what is best

then can be calculated to be

Qi(y) =

0@¯i

yZ
¡1

ydF i(x) + ¯i

1Z
y

xdF i(x)¡ ci

1A¡ y

= ¯i

1Z
y

(x¡ y)dF i(x)¡ (1¡ ¯i)y ¡ ci
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where ¯i = e¡rti · 1 is the discount factor.

De¯ne as the reservation price Ri of an i-box that value of the best

o®er y at which the searcher would be indi®erent between the following

two actions: 1.Stopping search with y, and 2.Sampling an i-box and

stopping thereafter with what is the best o®er then, i.e.

Qi(Ri) ´ 0

Notice that Ri can be calculated using the payo® distribution of i-boxes

only, ignoring any value from continued search.

The values Ri are the indices characterizing the optimal search

strategy. The optimal sampling rule for the search problem without

learning (later on also referred to as the benchmark rule) based on these

indices is as follows:

Step 1 Calculate the reservation prices for each box.

Step 2 If there is no closed box with a reservation price

higher than the current best o®er y, then stop search

and accept y, otherwise continue with step 3.

Step 3 Open the box with the highest reservation price and

go back to step 2.

A simple check of the reservation prices of the two boxes in our

previous example reveals that Rred = 47:8 < 66:7 = Rgreen.9 The rule

therefore con¯rms the optimality of sampling the green box ¯rst.

A simple intuition exists on why the above sampling rule should

be the optimal one. Consider the following alternative interpretation

of the reservation prices. It is well known that the optimal strategy

for a search problem with an in¯nite number of i-boxes (and no other

alternatives) is a reservation price strategy. The optimal reservation price

for such a problem is the same as the one calculated above. Moreover, the

reservation price is the value of a secure payo® that makes the searcher

9In the case of example 1 the reservation price formula boils down to Ri = xi

h¡
ci

pi
h

where xih is the value of the positive payo® and pih is the probability of obtaining it.
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indi®erent between accepting a secure payo® and having the opportunity

to sample i-boxes. Ri > Rj can then be understood as the return from

sampling i-boxes being higher than the return from sampling j-boxes.

Search opportunities with higher reservation prices should therefore be

sampled ¯rst.

4 Optimal Strategy with Learning

This section contains the main results of this paper. I begin by presenting

the reservation prices and discussing their properties. Then I delineate

the class of admitted learning rules and present the optimal sampling

strategy for a learning searcher. Since the optimal strategy is a gener-

alization of the benchmark strategy I explain in the last subsection why

this is the case. The section is rather technical and can be skipped by

readers mostly interested in the results.

4.1 The Reservation Prices

As in the case of known distributions, one can de¯ne the expected gainQi

of opening one more i-box and stopping search thereafter over stopping

immediately. With learning the expected distribution of search outcomes

of i-boxes, F i(¢ j X i
ri
), now depends on the information contained in the

previously observed search outcomes X i
ri
: Therefore, the expected gain

Qi is now a function of the available information:

Qi(X i
ri
; y) = ¯i

yZ
¡1

ydF i(xi
ri+1

j X i
ri
)

+ ¯i

1Z
y

xi
ri+1

dF i(xi
ri+1

j X i
ri
)¡ ci ¡ y

= ¯i

1Z
y

(xi
ri+1

¡ y)dF i(xi
ri+1

j X i
ri
)¡ (1¡ ¯i)y ¡ ci
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where ¯i = e¡rt
i

· 1 is the discount factor.

Analogously to the full information case, one can de¯ne the reser-

vation price of boxes from alternative i.10

De¯nition The reservation price Ri(X i

ri
) for boxes from alternative i is

the value of y that solves Qi(X i

ri
; y) = 0

Again, the reservation price of i-boxes is that value of the best o®er

y which makes the searcher indi®erent between stopping and doing one

more search step.

Notice that reservation prices Ri are now also a function of the

current information X i

ri
. Reservation prices may therefore change over

time as new information becomes available. Yet, how they might change

in the future does not enter into the calculation of the reservation prices.

Therefore, for given beliefs and hence given expected distribution func-

tion F (¢ j X i

ri
), the reservation prices are independent from the searcher's

learning rule.

The Ri(X i

ri
) have again an alternative interpretation as the reser-

vation price of an optimally behaving (non-learning) searcher facing an

in¯nite number of boxes with payo® distribution F i(¢ j X i

ri
).

4.2 Learning Rules

We saw in the previous section that the reservation prices depend only on

current beliefs and are independent from the potential future evolution

of these beliefs, i.e. from the learning rule. If we want to characterize

the optimal search strategy based on this momentary picture of beliefs,

we have to restrict the admitted learning rules in a way that this picture

is su±ciently informative about the future.

We can express the necessary requirements on the learning rules in

terms of an assumption on the evolution of reservation prices as learning

10Existence and uniqueness is guaranteed by the conditions of lemma 2 in the

appendix.
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proceeds. All learning rules with falling reservation prices are admitted.

Formally,

Assumption A1 Let X i

ri+1
= (X i

ri
; xi

ri+1
) , then

Ri(X i

ri+1
) · Ri(X i

ri
) or Ri(X i

ri+1
) · xi

ri+1
8i;X i

ri
; xi

ri+1

Assumption A1 requires that after observing an additional search

outcome of an i-box, the new reservation price Ri(X i

ri+1
) is either smaller

than the old reservation price Ri(X i

ri
) or smaller than new o®er xi

ri+1
.11

This can be interpreted as follows: Either the searcher gets a low

search outcome and lowers in response to that the beliefs about the at-

tractiveness of the sampled search alternative, which in turn leads to a

lower reservation price, or the searcher gets a high outcome indicating

that the search alternative is more attractive than thought before and

increases the reservation price. In the latter case, it is important that

the increase in the reservation price is moderate enough to ensure that

the second of the above inequalities holds.

What is ruled out are so-called strong positive learning e®ects.

These are search outcomes revealing a lot of good news about the at-

tractiveness of a search alternative. In fact, so much that if the searcher

were given the value of such a search outcome as the outside option, he

would terminate search, but as one told him that this outside option is

a draw from the search alternative, he would want to continue search.

In the following I give examples of learning rules that ful¯ll A1

and that have been used in the search literature dealing with identical

boxes.12 The optimal sampling strategy I derive holds for any of the

following learning rules. The searcher might even apply di®erent learning

schemes to di®erent search alternatives.
11Since Ri(Xi

ri
) < y implies Qi(Xi

ri
; y) < 0, A1 insures that the one period gains

Qi(Xi

ri
; y) stay negative, once they have become negative at some point of time.

A1 therefore implies the su±cient condition used in Rosen¯eld and Shapiro ([14],

Theorem1) to establish the optimality of a myopic stopping rule.
12In many of the following references increasing reservation prices can be found be-

cause the search problem is posed in terms of search for the lowest price of some good.
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i. Let the o®er distribution be multinomial with N possible outcomes

x1; x2; : : : ; xN and the probability of observing outcome xi be equal

to µi. If learning is Bayesian and the searcher has Dirichlet priors

about the vector µ, i.e.

p(µ j ®1;®2;; : : : ®N) / µ®1¡11 µ®2¡12 ¢ ¢ ¢ µ®N¡1N with ®i > 0

then reservation prices are decreasing (e.g. Talmain [19]). The gen-

eralization of the multinomial Dirichlet case to an in¯nite number

of possible outcomes by a Dirichlet process also implies declining

reservation prices (see Bikchandani and Sharma [1]).

ii. A class of ad-hoc learning rules (generalizing the learning rule of

the previous point) where the posterior distribution is a convex

combination of the prior and the empirical distribution with the

weight on the empirical distribution non-decreasing with additional

observations:

F i(x j X i
ri) = (1¡ ari)F (x) + ariH(x j X i

ri)

with ari+1 ¸ ari, F (x) being the prior distribution before search

started and H(¢ j X i
ri
) being the empirical distribution based on

the observations X i
ri
(Bikchandani and Sharma [1]).

iii. A non-parametric learning procedure used in Chou and Talmain

([3]) that makes no assumptions on the underlying class of prob-

ability distributions and is constructing F (¢jX i
ri
) according to the

The searcher implicitely obtains some utility U from consuming the good and mini-

mizes over all search strategies ¾ the expectation of the price payed plus search costs,

i.e. min¾ E [p¾ + c¾]. Rephrasing the search problem as one of looking for rewards

with r¾ = U ¡ p¾, the above minimization problem is equivalent to max¾ E [r¾ ¡ c¾]

which is the problem considered in this paper. Furthermore, if the optimal search

strategy ¾¤ of the minimization problem is a sequence of increasing reservation prices

fp¤
i
g
N

i=1
such that search is continued if the best o®er p > p¤

i
and search is terminated

if p · p¤
i
, this implies a sequence of reservation rewardsfr¤

i
g
N

i=1
with r¤

i
= U ¡ p¤

i

that is decreasing and where search is continued if the best o®er r < r¤
i
and search is

terminated if r ¸ r¤
i
.
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maximum entropy principle. Suppose the searcher knows that out-

comes are distributed between some interval [a; b]. The conditional

probability of some outcome x, having observed x1 · x2 · : : : · xri

(not necessarily in this order) is obtained by assigning to each inter-

val [a; x1] ; [x1; x2] ; : : :
h
xri ; b

i
probability mass 1

ri+1
uniformly dis-

tributed (and a point mass if xi = xi+1).

iv. Let the o®er distribution be exponential with unknown origin µ :

f(x j µ) = aea(x¡µ) for x · µ

Learning is Bayesian and priors are such that the logarithm of the

prior distribution log(p(µ)) is concave (see Rosen¯eld and Shapiro

[14]).

4.3 Results

The following theorem states the optimal sampling strategy for the search

problem with learning and contains the main result of this paper. Its

proof is deferred to the appendix. The optimal rule is just the benchmark

rule applied to repeatedly updated reservation prices.

Theorem 1 Given A1 holds, the following sampling strategy is optimal:

Step 1 With the available observations calculate the reser-

vation prices for each alternative and go to step 2.

Step 2 It there is no closed box with a reservation price

higher than the current best o®er y, then stop

search and accept y, otherwise continue with step 3.

Step 3 Search the alternative (or one of them, if there are

several) with the highest reservation price and go

back to step 1.

The theorem tells us that the reservation prices which are based

solely on current beliefs are su±cient to determine the optimal sampling

strategy. The optimality of such a focus on current beliefs might be
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surprising. In fact, using the rate of return interpretation of reservation

prices from section 3, the rule tells us to sample the alternatives with the

currently highest returns.

In a learning context information is valuable as well, since it enables

the searcher to make better search decisions in the future. In general, it

might therefore be worth to give up payo®s in the short term to obtain

information that allows to make decisions with a higher payo® in the

long run.

In the considered search problem there is no such trade-o® between

the information gain and the payo® gain and focusing on the payo® gain

alone is su±cient to obtain optimality. The reason for this is to be found

in the restrictions on the learning rules I imposed. They exhibit enough

monotonicity to prevent the searcher from optimally going through a

'payo®-valley' to potentially reach a higher 'payo®-mountain' later on.

Obviously, the possibility of strong learning could give an incentive

to go through the 'payo®-valley', and therefore I had to rule it out. How-

ever, it is not immediately clear why the remaining learning processes do

not give such an incentive. To get some intuition on this point consider

the following example.

Imagine to have two search alternatives, a blue one and an orange

one. Suppose that at current information both have identical expected

distribution functions and thereby equal reservation prices. In terms of

payo®s the boxes are therefore identical. There is, however, only one

blue box left, while there are still many orange boxes. Sampling the blue

box therefore reveals no information on any other search opportunity,

while sampling an orange box reveals information about all the remaining

orange boxes. Thus, in addition to the payo®, opening an orange box

provides information. It therefore seems better to open an orange box

than to open the blue box.

Surprisingly, the optimal search rule in theorem 1 states that it

does not matter whether a blue or an orange box is opened ¯rst. The

intuition behind this result can be obtained by considering the rate of
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return interpretation of reservation prices more carefully: Sampling the

blue box or an orange box has equal rates of return but after sampling an

orange box, the remaining orange boxes will have a lower rate of return

(due to A1).13

Reinterpret this search problem as a search problem without learn-

ing (where the benchmark rule is optimal): There are in fact two boxes

with a high and equal rate of return, the blue box and the ¯rst sampled

orange box, and many boxes with lower rates of return, the remaining or-

ange boxes. It is irrelevant for determining the sampling order of the ¯rst

two boxes to know how much lower the rate of return for the remaining

orange boxes is: We know that it is optimal to sample the boxes with the

highest reservation rate of return and one can do this two times without

this knowledge. Or, equivalently, it is su±cient to know the rates of re-

turn for the remaining orange boxes after both high rate of return boxes

have been sampled and not important to know it already after the ¯rst

of them has been sampled. Therefore, it does not matter whether the

blue box or an orange box is sampled ¯rst. I will come back to the rein-

terpretation of the search problem with learning as one without learning

in much more detail in section 4.4.

The optimal sampling procedure above has changed only slightly

when compared to the benchmark sampling rule. An informed searcher

had to calculate reservation prices only once, while a learning searcher

has to permanently adapt them in the light of new information. Step 3

of the rule therefore points back to step 1. For the rest, the rule remains

unchanged. This slight change, however, alters optimal search behavior

substantially, as illustrates the following example.

Example 2 Suppose that there are only two search alternatives, a red

one and a green one, but many boxes of each alternative. Boxes have only

two kinds of outcomes: "success", identi¯ed with a payo® equal to 1, or

"failure", identi¯ed with a payo® equal to zero. The true probabilities for

13We abstract here from the possibility that search stops to make the argument as

simple as possible.
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success and failure for the respective alternatives are indicated in table 3

below.

Table 3:
payo® 0 1

Red with probability 0.5 0.5

Green with probability 0.7 0.3

In addition, assume a discount factor equal to 1, sampling costs for

both boxes equal to 0:1 and the value of the outside option equal to 0.

a.) Optimal sampling strategy under full information

Consider ¯rst the sampling strategy under full information. Know-

ing the true probabilities of outcomes, the reservation prices are Rred =

0:8 and Rgreen = 0:6. Hence, an informed searcher prefers to open red

boxes and stops with the ¯rst success. Suppose that the searcher encoun-

ters a sequence of failures. Optimally, his strategy is to continue opening

red boxes until they have all been opened and to switch then to the opening

of green boxes. Green boxes are opened until a success is encountered or

all of them have been searched. Notice the following feature of the optimal

strategy: Since the ranking of alternatives is constant during the search

process, the searcher does not switch sampling from one alternative to

another, unless there are no boxes of that alternative left.

b.) Optimal Sampling Strategy with Learning

Now consider a searcher that is uncertain about the true underlying

probability distribution and is learning by taking a convex combination be-

tween his prior distribution and the empirical distribution function (This

is the second learning rule in section 4.2):

F i(x j X i
ri) = (1¡ ari)F (x) + ariH(x j X i

ri)

Let the weight on the empirical distribution be ari=
ri

1+ri
and the searcher's

priors F (x) be unbiased in the sense that they are equal to the true un-

derlying probability function as shown in table 3.
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At the beginning of search, reservation prices are therefore equal to

the ones of an informed searcher, but as the searcher makes additional

observations, they are adjusted downwards. The ranking of alternatives

is therefore changing during the search process. The searcher might well

search green boxes before all red boxes have been opened. Negative results

from searching red boxes 'bid' down their reservation price and make

the searcher believe that green boxes are more interesting. The same

reasoning applied to green boxes might cause a switch back to sampling

red boxes again. In further contrast to the full information case, sampling

might even stop with a failure and not all boxes been searched because

of beliefs having worsened so much that the outside option looks more

pro¯table than continued search.

The previous e®ects can be seen in table 2 for the above learning rule

and a sequence of failures. The table reads as follows. The ¯rst column

indicates the search stage, the second the number of so far made observa-

tions of red and green boxes (i.e. the number of observed failures of each),

the following two columns show the current reservation prices. The last

column gives the optimal search strategy according to theorem 1. The

searcher bids down reservation prices and switches between sampling red

and green boxes in response to failures until ¯nally the reservation prices

of both boxes are so low that the outside option appears more attractive

than continued search.

Table 2

t (rred,rgreen) Rred Rgreen Optimal strategy

0 (0,0) 0.8 0.66 search a red box

1 (1,0) 0.6 0.66 search a green box

2 (1,1) 0.6 0.33 search a red box

3 (2,1) 0.4 0.33 search a red box

4 (3,1) 0.2 0.33 search a green box

5 (3,2) 0.2 0.0 search a red box

6 (4,2) 0.0 0.0 stop search and take outside option
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4.4 An Equivalent Search Problem

In this section I explain why the benchmark rule generalizes to the case

with learning. The argument is quite abstract but the general idea is as

follows: To the original search problem with learning P one can construct

an equivalent search problem P e without learning in the following sense:

To any search rule S of the original problem exists a corresponding search

rule Se, such that Se yields in P e the same payo® as S in P . It follows

that the optimal rule S¤ for the original problem P is then just the rule

corresponding to the optimal rule Se
¤

in P e (given the corresponding rule

S¤ to Se
¤

exists). It is easy to show that the optimal rule Se
¤

in P e is

the benchmark rule. One can show that the rule S¤ corresponding to Se
¤

exists and is just the generalization of the benchmark rule found to be

optimal in theorem 1.14

Consider a search problem with learning P . P is described by the

number I of alternatives, the numbers M i of boxes of each alternative

i = 1; : : : ; I, prior beliefs and the learning rule. A sampling rule S for P

is a mapping from the set of available information (X1

r1
;X2

r2
; : : :Xn

rn
) to

the set of integers f0; 1; : : : Ig, where S = 0 indicates to stop search and

S = i for i ¸ 1 indicates to continue search with an i-box.

At the beginning of search the M i boxes of alternative i have an

expected distribution function F i(¢) and an associated reservation price

Ri

0
. As soon as one i-box has been opened, the expected distribution

of outcomes for the remaining M i ¡ 1 boxes from i becomes F i(¢jxi

1
)

and the associated reservation price Ri(xi

1
). If still another box of this

alternative is opened, then the remaining M i ¡ 2 boxes from alternative

i have expected distribution F i(¢jxi

1
; xi

2
) and associated reservation price

Ri(xi

1
; xi

2
), etc.

Alternatively, one could interpret the previous observations as fol-

14
What follows is basically a sketch of an alternative proof for the optimality of the

sampling strategy of theorem 1.

21



lows: In fact, the searcher has only one box with reservation price Ri

0

(after sampling one i-box the reservation price of the remaining i-boxes

changes), one box with reservation priceRi(xi

1
), another one withRi(xi

1
; xi

2
),

and so on.

Based on this alternative interpretation I will construct the equiv-

alent search problem P e: There is an equal number of boxes as in P ,

namely
P

iM
i. The ¯rst M 1 boxes in P e have reservation prices

R1

0
; R1(w1

1
); R1(w1

1
; w1

2
); : : : ; R1(w1

1
; w1

2
; : : : ; w1

M1
¡1
)

respectively, where the R1(¢) are the reservation price functions of 1-

boxes in P . For the moment take the values w1

j as given. From assump-

tion A1 we know that (for any values of the w1

j ) reservation prices of the

boxes can be ordered as15

R1

0
¸ R1(w1

1
) ¸ R1(w1

1
; w1

2
) ¸ : : : ¸ R1(w1

1
; w1

2
; : : : ; w1

M1
¡1
)

Similarly, let the next M 2 boxes in P e have reservation prices

R2

0
¸ R2(w2

1
) ¸ R2(w2

1
; w2

2
) ¸ : : : ¸ R2(w2

1
; w2

2
; : : : ; w2

M1
¡1
)

Continue to assign reservation prices to boxes in the above manner until

each box in P e got one reservation price.

For simplicity, I will refer to the ¯rst M1 boxes in P e also as "1-

boxes" (always in quotation marks), to the next M 2 boxes as "2-boxes",

etc., since their reservation price functions correspond to the respective

alternatives in P . Notice that for given values wi
j, P

e is the benchmark

search problem and hence the benchmark strategy is the optimal sam-

pling rule.

Consider the M i "alternative i boxes" in P e and suppose the fol-

lowing informational structure: At the beginning of search the values wi
j

are unknown to the searcher. Ri
0
is hence the only known reservation

15
We ignore the potential increase in the reservation price admitted by A1 because

it leads to termination of search.
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price of "i-boxes". However, it is known to the searcher that, whatever

the value of the wi

j, the remaining "i-boxes" have some lower reservation

value ordered as listed above.

As search proceeds the searcher observes gradually the variables wi
j.

The ¯rst value wi
1
is observed after the ¯rst "i-box" with reservation price

Ri
0
has been opened and wi

2
after the second with Ri(wi

1
) has been opened,

and so on. In short, the searcher knows only the reservation price of the

best unopened box of each "alternative". The reservation price of the

next best box of some "alternative" is revealed only after the previously

best box of the same "alternative" has been opened. The information

available to the searcher is su±cient to execute the benchmark rule in

P e, since the highest reservation price is just the reservation price of the

best of all best "i-boxes".

As already mentioned for given sequences the benchmark rule is

clearly optimal. However, I am interested in stochastic sequences, since

the xij in P are stochastic as well. For stochastic wi
1
; wi

2
; : : : ; wi

Mi
¡1

the

optimality of the benchmark rule in P e is in general not guaranteed. If the

distribution of the wi
j could be in°uenced by sampling decisions, then the

searcher could change the expected reservation prices of closed boxes and

thereby the value of search. However, as long as the stochastic nature of

the sequences can not be in°uenced by the searcher's sampling decisions,

it is optimal to sample according to the benchmark rule because it is

optimal to do so for all given sequences.16

To make P e equivalent to P it remains to specify a particular dis-

tribution for the wi
j. This can be done by choosing the wi

1
; wi

2
; : : : ; wi

Mi
¡1

to have a true distribution equal to the expected distribution of the

xi
1
; xi

2
; : : : ; xi

Mi
¡1

in P , i.e. wi
1
to be drawn from F i(¢), wi

2
from F i(¢jwi

1
),

16The assumption that the distribution of the wi

j can not be in°uenced by the

searcher will be important when considering in the next section the potential opti-

mality of the search rule with more general learning rules.
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wi

3
from F (¢jwi

1
; wi

2
), and so on.17 P e is now equivalent to P in the

following sense:

i. There is an 'informational' equivalence: Having sampled ri times

"i-boxes" in P e the searcher has observed W i

ri
= wi

1
; wi

2
; : : : ; wi

ri

while when having sampled ri times i-boxes in P the searcher has

observed X i

ri
= xi

1
; xi

2
; : : : ; xi

ri
.

ii. Suppose that W i

ri
has been observed in P e and the same sequence

X i

ri
= W i

ri
in P . Then the reservation price of the best "i-box" in

P e is equal to the reservation price of all i-boxes in P:

iii. Suppose that W i

ri
has been observed in P e and the same sequence

X i

ri
= W i

ri
in P . Then opening the best "i-box" in P e has (objec-

tive) expected utility equal to the (subjective) expected utility of

opening an i-box in P .

iv. The (objective) probability to observe some particular sequence

W i

ri
in P e equals the (subjective) probability to observe the same

sequence X i

ri
= W i

ri
in P .

It is now easy to de¯ne a sampling rule Se corresponding S. Se

must be the same as S but evaluated at W 1

r1
;W 2

r2
; : : : ;W n

rn
and specifying

to sample the best "i-box", whenever S would specify to sample some

i-box, i.e. Se = S(W 1

r1
;W 2

r2
; : : : ;W n

rn
) with Se = 0 indicating to stop

search and Se = i with i ¸ 1 indicating to sample the best "i-box". From

observations (3) and (4) above should be clear that Se in P e achieves an

(objective) expected payo® equal to the (subjective) expected payo® of

S in P:

The optimal search rule Se
¤

in P e is the benchmark rule which

states to sample the best of all best "i-boxes". The optimal rule S¤ in

17
Clearly, with such a speci¯cation the distribution of any wi

j is independent from

sampling decisions.
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P must be the rule corresponding to Se
¤

.18 From the above de¯nition

is easily seen that the strategy S¤ corresponding to Se
¤

is to sample the

search alternative with the currently highest reservation price which is

precisely the optimal sampling rule from theorem 1.

5 Limitations and Extensions

In this section I discuss the possibility to generalize the class of admitted

learning rules such that the search rule of theorem 1 preserves its optimal-

ity. I mainly consider a relaxation of the assumption on the independence

of boxes from di®erent alternatives, since it is the most restrictive and

unrealistic one. Unfortunately, the optimality of the proposed search rule

turns out to be relatively sensitive to it.

The following simple example shows that in general the proposed

sampling strategy is not optimal when the reservation price of some

search alternative is a®ected by the search outcomes of another alter-

native.

Example 3 Suppose that there are only two alternatives, red and green,

and only one box of each alternative.19 Currently, the searcher's expected

payo® distributions of the respective alternatives are as given in table 4

below. Assume the current best o®er to be y = 0:5. Without discounting

and search costs equal to 0:1 for both alternatives, the reservation prices

are R1 = 0:7 and R2 = 0:65 for alternative 1 and 2, respectively.

Suppose that the searcher ¯rst samples a red box, as theorem 1 sug-

gests. Furthermore, suppose that learning is such that the new reservation

18The optimality ofR¤ in P follows from the following considerations: The expected

value of search in P
e can take on at least all expected values of P , since to every R

in P there exists a corresponding R
e in P

e taking on the same value. Therefore, if a

R
¤ corresponding to R

e¤ exists it must be optimal in P:
19With only one box of each type learning can take place only across di®erent types

of boxes.
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Table 4:
Red payo® 0 0:5 1

with probability 1

3

1

3

1

3

Green payo® 0 0:6 0:95

with probability 1

3

1

3

1

3

price of the green box drops below 0:5 when the outcome of the red box is

0 or 0:5 and that it is anything smaller than 1 if the outcome of the red

box is 1. Interpret this as low outcomes of the red box revealing that low

outcomes of the green box are more likely to occur.

With these assumptions search optimally stops after sampling the

red box, independently from the search result. The new reservation price

of the green box is always below the new best o®er and a sampling of

the green box would result in an expected loss.20 The expected payo® of

sampling the red box ¯rst is therefore 2

3
0:5 + 1

3
1 = 2

3
.

Consider the alternative strategy of opening the green box ¯rst and

stopping search thereafter. The expected payo® is 1

3
0:5 + 1

3
0:6 + 1

3
0:95 =

0:683 > 2

3
. Clearly, opening the red box ¯rst is not optimal although its

reservation price is higher than that of the green box.

To see why the sampling rule might be sub-optimal in this more

general setting consider the equivalent search problem P e to the original

search problem P I constructed in section 4.4. For the benchmark rule

to be optimal in the P e (and its corresponding rule in P ), it was crucial

that the searcher could not in°uence the distribution of the sequences

wi

1
; wi

2
; : : : ; wi

Mi
¡1

by his sampling decisions. In the above example this

assumption is not ful¯lled. By sampling the red box the distribution of

the green box changes. The benchmark sampling rule is therefore not

necessarily optimal in P e. The same holds in turn for its corresponding

rule in P .

20This is easily veri¯ed looking at the de¯nition of the reservation price.
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In one special case the optimal sampling rule generalizes to depen-

dent alternatives. Recognize that theorem 1 requires only the reservation

prices Ri of i-boxes not to depend on observations xj of j-boxes (j 6= i).

This is not equivalent with the expected payo® distributions F i

being independent from xj. It is possible that observations of j-boxes

a®ect the distribution F i without changing Ri. Clearly, as long as xj

leaves the values of F i above the current best o®er y unchanged, then

the reservation price Riof i-boxes will be una®ected, given that Ri > y.

If Ri < y, then Ri might change but Ri < y will hold also after the

change.21 Since boxes with reservation prices below the current best o®er

are irrelevant for the search problem and all reservation prices above the

best current o®er are una®ected, this special case of dependent boxes is

covered by theorem 1.

6 Conclusions

This paper constructed the optimal sampling strategy for a search prob-

lem where the searcher faces di®erent search alternatives and is learning

about these alternatives during the search process. I thereby uni¯ed

and generalized two kinds of earlier contributions: search problems with

learning but identical search opportunities and search problems with dis-

tinguishable search alternatives but without learning.

The optimal sampling rule is characterized by a simple reservation

price criterion. The rule implies that search opportunities with higher

reservation prices should be sampled before ones with lower reservation

prices. In contrast to the full information case, the ordering of di®erent

search alternatives in terms of reservation prices keeps changing during

the search process. Learning therefore makes a substantial di®erence

for the optimal sampling order. At the same time the sampling rule

retains its simple structure and learning can be accounted for without

complicating the analysis.

21To verify these claims simply check the de¯nition of the reservation price.

27



The independence of di®erent search alternatives has been found to

be crucial for the optimality of the sampling rule and ¯nding conditions

on the learning process that allow for an extension of the results to the

case of dependent search alternatives is left for future research.
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7 Appendix

Lemma 2 If either ¯i < 1 or ci > 0, then a unique reservation price

exists.

Proof of Lemma 2: The function Qi(X i

ri
; ¢) is continuous, di®er-

entiable and decreasing.

d

dy
Qi(X i

ri ; y) =
d

dy

·
¯i

Z
1

y

(xi ¡ y)dF i(xijX i
ri)

¸
¡ (1¡ ¯i) (3)

= ¯i

Z
1

y

¡1dF i(xijX i
ri) (4)

¡
£
(xi ¡ y)dF i(xijX i

ri)
¤
xi=y

¡ (1¡ ¯i) (5)

= ¡¯i(1¡ F i(yjX i
ri))¡ (1¡ ¯i) (6)

· 0 (7)

Since

Qi(X i
ri ;¡1) = 1 (8)

Qi(X i
ri ;+1) =

½
¡1 if ¯i < 1

¡ci if ¯i = 1

¾
(9)

a solution exists. If ¯i < 1, then d
dy
Qi < 0 and the solution is also

unique. If ¯i = 1, then d
dy
Qi < 0 only if F i(yjX i

ri
) < 1. With ci > 0

this is guaranteed at the reservation price: F i(Ri(X i
ri
)jX i

ri
) = 1 implies

Qi(X i
ri;
Ri(X i

ri
)) < 0 which contradicts the de¯nition of the reservation

price.¥

Proof of Theorem 1:22 I begin by proving the optimality of the

stopping rule (i.e. step 2 of the theorem). If there is some i-box with

22The proof owes the construction of the strategy S
0

to Weitzman [21].

An alternative proof along the lines of section 4.4 could be given reducing

the problem to one where Weitzman's results apply. However, since he

did not consider the case of in¯nitely many search boxes, we would then

not cover this case.
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Ri > y (Ri < y), then the one period gain Qi > 0 (Qi < 0). Therefore,

as long as there is some closed i-box with Ri > y stopping cannot be

optimal, since opening an i-box and stopping then gives already a higher

payo®. If all closed boxes have a reservation value below y, then A1

insures that reservation prices will also be below the best o®er in all

future search steps. Gains from continued search will always be negative

and stopping is therefore optimal.

Suppose that S is a sampling rule where stopping is optimal as

derived above. In addition, suppose that S speci¯es at some search stage

to sample a k-box with reservation price Rk and in case that the stopping

rule prescribes continuation in the next search step an l-box with Rl >

Rk. I will show that S cannot be optimal. To do so I will construct an

alternative sampling rule S
0

and show that S
0

has higher expected valued

than S: S
0

is like S but interchanges the sampling order such that the

box with the higher reservation price Rl is sampled ¯rst and the one with

the lower reservation price Rk thereafter.23

Before constructing S
0

and proving the claim I have to introduce

some notation. At the search stage where S speci¯es to sample a k-box,

let the previous observations of search outcomes be
©
X i

ri

ªI
i=1

and the

current best o®er y = max
©
X1

r1
;X2

r2
: : : XI

rI

ª
. De¯ne

Rj = max
ijri<Mi

Ri(X i
ri
)

R
h(xj

rj+1
)

= max

½
Rj(Xj

rj+1
)jrj + 1 < M j; max

iji 6=j^ri<Mi

©
Ri(X i

ri
)
ª¾

j-boxes have currently the highest reservation price of all closed boxes

and h-boxes are the ones that have the highest reservation price after one

j-box has been sampled and the search outcome x
j

rj+1
been observed.24

h may depend on x
j

rj+1
because the decrease of the reservation price of

j-boxes depends on x
j

rj+1
.

23Notice that the sampling order of S
0

is feasible. k = l is not possible, since

reservation prices k-boxes are decreasing with additional information. Therefore, the

box with the reservation price Rl is already available before having sampled the k-box.
24ri < M i is a condition insuring that there is still an unopened i-box.
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By assumption we know that

Rk(Xk
rk) < Rl(X l

rl) · Rj

We should distinguish two cases: l 6= j and l = j. The ¯rst case is the

easier one: The highest reservation price Rj remains una®ected by the

sampling of a k- and an l-box. The optimal stopping criterion is therefore

the same in both search stages: Stop if the current best o®er is larger

than Rj and continue otherwise. In the second case the best reservation

price drops to R
h(xj

rj
) after sampling the l-box (l = j). The stopping

criterion therefore changes when sampling the l-box. I will only consider

this more complicated case.25

Recall that the rule S speci¯es to sample ¯rst a k-box and in case of

continuation a j-box with the stopping decision being optimal as derived

above. Figure 1a gives a graphical representation of the strategy for the

¯rst two search steps. Depending on the search outcome several cases can

be distinguished that are represented by branches. The values written at

the end of these branches represent the payo®s for the respective cases.

If search outcomes fall into the case represented by the lowest branch,

then search continues. © represents the value of continued search with

rule S for this case.

The proposed alternative strategy S
0

di®ers from S for the ¯rst

two search steps but is identical to S for later search steps: S
0

speci-

¯es to ¯rst sample a j-box (instead of a k-box). If the new best o®er

max
©
y; x

j

rj+1

ª
¸ R

h(xj
rj+1

)
, then S

0

speci¯es to stop search. Otherwise it

prescribes to sample a k-box and to continue as prescribed by the rule S.

Figure 2a represents the sampling rule S
0

graphically. Again, © repre-

sents the value of continued search with rule S
0

when search is optimally

continued. This value is the same as the value of search with rule S

because by de¯nition S
0

equals S for all steps after the second.

The following notation will prove useful to calculate the expected

payo®s of S and S
0

:

25
The results for the ¯rst case can be obtained by replacing j by l and R

h(xj
rj

)
by

Rj in the following.
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¦k = Pr(xk
rk+1

¸ Rj)

¦j = Pr(xj

rj+1
¸ Rj)

¸k = Pr(Rj > xk
rk+1 ¸ R

h(xj
rj+1

)
)

¸j = Pr(Rj > x
j

rj+1
¸ R

h(xj
rj+1

)
)

¹k = Pr(R
h(xj

rj+1
)
> xk

rk+1
¸ Rk)

wk = E
£
xk
rk+1jx

k
rk+1 ¸ Rj

¤
wj = E

£
x
j

rj+1
jxj

rj+1
¸ Rj

¤
evk = E

h
max

©
xk
rk+1; y

ª
jRj > xk

rk+1 ¸ R
h(xj

rj+1
)
i

evj = E
h
max

©
x
j

rj+1
; y
ª
jRj > x

j

rj+1
¸ R

h(xj
rj+1

)
i

vk = E
h
xk
rk+1

jRj > xk
rk+1

¸ R
h(xj

rj+1
)
i

uk = E
h
xk
rk+1jR

h(xj
rj+1

)
> xk

rk+1 ¸ Rk

i
d = E

h
max

n
x
j

rj+1;; x
k
rk+1; y

o
jRj > xk

rk+1 ¸ R
h(xj

rj+1
)
;

Rj > x
j

rj+1
¸ R

h(xj
rj+1

)
i

© = E
h
ª(Sn fj; kg ;max

©
x
j

rj+1
; xk

rk+1
; y
ª
; SjR

h(xj
rj+1

)
> xk

rk+1
;

R
h(xj

rj+1
)
> x

j

rj+1

i
All probabilities and expectation operators are conditional on the

information
©
X i

ri

ªI

i=1
. The function ª(Sn fj; kg ;max

©
x
j

rj+1
; xk

rk+1; y
ª
; S)

represents the value of continued search when the set of closed boxes is

S less one j- and one k-box, the best o®er is max
©
x
j

rj+1
; xk

rk+1
; y
ª
and

the sampling rule S or S
0

. Figures 1b describes the probabilities and the

expected payo®s of strategy S for the cases distinguished in Figures 1a

using the above notation. Similar does Figure 2b for strategy S
0

and the

cases of Figure 2a. Looking at these ¯gures reveals that the expected

payo®s of the strategies S and S
0

are

S = ¡ck + ¯k¦kwk + ¸k¯k(¡cj + ¦j¯jwj + ¸j¯jd (10)

+(1¡ ¦j ¡ ¸j)¯jevk) + (1¡ ¦k ¡ ¸k)¯k(¡cj + ¦j¯jwj (11)

+¸j¯jevj + (1¡ ¦j ¡ ¸j)¯j©) (12)

S
0

= ¡cj +¦j¯jwj + ¸j¯jwj + (1¡ ¦j ¡ ¸j)¯j(¡ck +¦k¯kwk(13)

+¸k¯kwk + (1¡ ¦k ¡ ¸k)¯k©) (14)

32



The payo® di®erence between S
0

and S is

S
0

¡ S =
¡
ck ¡¦k¯kwk

¢
(1¡ (1¡ ¦j ¡ ¸j)¯j)

¡
¡
cj ¡¦j¯jwj

¢ ¡
1¡ (1¡ ¦k)¯k

¢
¡ d

+(1¡ (1¡ ¦k ¡ ¸k)¯k)¸j¯j (15)

From the de¯nition of the reservation prices we have

cj = ¦j¯j(wj ¡Rj)¡ (1¡ ¯j)Rj (16)

ck = ¯k(¦k(wk ¡ Rk) + ¸k(vk ¡ Rk)

+¹k(uk ¡ Rk))¡ (1¡ ¯k)Rk (17)

Substituting (16) and (17) into (15) gives:

S
0

¡ S = (Rj ¡ Rk)(1¡ ¯j(1¡ ¦j))(1¡ ¯k(1¡¦k))

+(vk ¡ Rk)(¸k¯k(1¡ ¯j(1¡ ¦j)))

+(evj ¡ Rk)(¸j¯j(1¡ ¯k(1¡ ¦k)))

+(uk ¡Rk)(¹k¯k(1¡ ¯j(1¡¦j ¡ ¸j)))

+(evj + vk ¡Rk ¡ d)¸k¯k¸j¯j (18)

Furthermore,

d = E

24 max
n
max

©
x
j

rj+1
; y
ª
¡R

h(xj
rj+1

)
; xk

rk+1
¡R

h(xj
rj+1

)
o

+R
h(xj

rj+1
)
j Rj > xk

rk+1
¸ R

h(xj
rj+1

)
; Rj > x

j

rj+1
¸ R

h(xj
rj+1

)

35
· E

"
max

©
x
j

rj+1
; y
ª
¡R

h(xj
rj+1

)
+ xk

rk+1
¡ R

h(xj
rj+1

)

+R
h(xj

rj+1
)
j Rj > xk

rk+1 ¸ R
h(xj

rj+1
)
; Rj > x

j

rj+1 ¸ R
h(xj

rj+1
)

#
= evj + vk

¡E
h
R

h(xj
rj+1

)
jRj > xk

rk+1 ¸ R
h(xj

rj+1
)
; Rj > x

j

rj+1
¸ R

h(xj
rj+1

)
i

· evj + vk ¡Rk

The last inequality is due to the fact that by de¯nition R
h(xj

rj+1
)
¸ Rk for

any realization of xj
rj+1

. Therefore, any term in (18) is greater or equal

zero with the ¯rst term being strictly greater than zero. This proves the

sub-optimality of any strategy of the form S. Optimal strategies must
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sample boxes in the order of decreasing reservation prices. However,

this does not mean that at each search stage the box with the highest

reservation price has to be sampled as the theorem prescribes. I will turn

attention to this point in the following.

Suppose T is a sampling rule that stops according to the optimal

stopping rule and samples boxes in order of decreasing reservation prices.

However, suppose that T speci¯es at some search stage not to sample

the box with the currently highest reservation price. I will show that T

cannot be optimal by proving that there exists a strategy T
0

that has a

higher expected value.

Suppose again that available observations are
©
X i

ri

ªI
i=1

and that

j-boxes have the highest reservation price equal to Rj. T speci¯es to

sample a k-box with Rk < Rj. Thereafter (in case of continued search),

T prescribes to sample l; m; n; : : :-boxes with Rk ¸ Rl ¸ Rm ¸ Rn ¸

: : :.26 Since a sampling of a j-box is incompatible with the assumption

of sampling in order of decreasing reservation prices, j-boxes will never

be sampled. The optimal stopping rule then implies that search stops

only if y ¸ Rj. To calculate the expected value of search rule T de¯ne

for ® = j; k; l;m; : : ::

¦® = Pr(x®ra+#® ¸ Rj)

w® = E
£
x®r®+#®jx

®
ra+1 ¸ Rj

¤
where #® is the number of alternative ®-boxes in the sequence k; l;m; : : : ®:27

¦® is the probability that search stops when sampling box ®. w® is the

expected value of x® given that search stops.28

The expected value of T is easily calculated to be

T =
£
¡ck + ¯k¦kwk

¤
26
m might depend on the outcome xk

rk+1
, similarly the types n; l; : : : might depend

on previous observations. For notational simplicity, we will ignore this dependence.
27Remember that each alternative k; l;m; : : : is a number from the set f1; 2; : : : Ig.

For example, if ® = n and k; l;m; n = 1; 4; 3; 4 then #® = 2, i.e. it is the second box

of alternative 4:
28Probabilities and expectations are again conditional on the available information©
Xi

ri

ªI

i=1
.
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+¯k(1¡¦k)
£
¡cl + ¯l¦lwl

¤
+¯k(1¡¦k)¯ l(1¡ ¦l) [¡cm + ¯m¦mwm]

+¯k(1¡¦k)¯ l(1¡ ¦l)¯m(1¡¦m) [¡cn + ¯n¦nwn]

+ : : : (19)

Now consider the following alternative strategy T
0

. T
0

uses the same

stopping rule as T : Stop if y ¸ Rj and continue otherwise. However,

T
0

samples ¯rst a j-box and then (in case of continuation) k; l;m; n; : : :

boxes. The expected value of T
0

is

T
0

=
£
¡cj + ¯j¦jwj

¤
+ ¯j(1¡ ¦j)T

Remembering from the de¯nition of the reservation price that

c® = ¯®¦®(w® ¡ Rj) + ¯®¸®(v® ¡ R®)¡ (1¡ ¯®)R® (20)

where

¸® = Pr
¡
Rj > x®ra+1+#® ¸ R®

¢
v® = E

£
x®ra+#®jR

j > x®ra+1+#® ¸ R®
¤

I can calculate the payo® di®erence between T
0

and T to be

T
0

¡ T =
£
¡cj + ¯j¦jwj

¤
+
£
¯j(1¡¦j)¡ 1

¤
T (21)

= ¯j¦jRj + (1¡ ¯j)Rj +
£
¯j(1¡¦j)¡ 1

¤
T

=
£
¯j(¦j ¡ 1) + 1

¤ ¡
Rj ¡ T

¢
The ¯rst bracket in the last line of (21) is strictly positive.29 It remains

to show that Rj > T . Substituting (20) into (19) and recognizing that

29
From the de¯nition of the reservation price we have ¦j

> 0.
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¯®¸®(v® ¡R®) ¸ 0 we obtain

T =
£
¯k¦kRk + (1¡ ¯k)Rk ¡ ¯k¸k(vk ¡ Rk)

¤
+¯k(1¡ ¦k)

£
¯ l¦lRl + (1¡ ¯ l)Rl ¡ ¯ l¸l(vl ¡Rl)

¤
+¯k(1¡ ¦k)¯l(1¡¦l) [¯m¦mRm + (1¡ ¯m)Rm

¡¯m¸m(vm ¡ Rm)]

+ : : :

·
£
¯k¦kRk + (1¡ ¯k)Rk

¤
+¯k(1¡ ¦k)

£
¯ l¦lRl + (1¡ ¯ l)Rl

¤
+¯k(1¡ ¦k)¯l(1¡¦l) [¯m¦mRm + (1¡ ¯m)Rm]

+ : : :

=
£
1¡ ¯k(1¡ ¦k)

¤
Rk + ¯k(1¡ ¦k)

£
1¡ ¯ l(1¡ ¦l)

¤
Rl

+¯k(1¡ ¦k)¯l(1¡¦l) [1¡ ¯m(1¡¦m)]Rm

De¯ning

s® = ¯®(1¡¦®) ¸ 0

we can write

T =
£
1¡ sk

¤
Rk + sk

£
1¡ sl

¤
Rl + sksl [1¡ sm]Rm + : : :

= Rk + sk[(Rl ¡ Rk)| {z }
·0

+sl[(Rm ¡Rl)| {z }
·0

+sm[: : :

· Rk

< Rj

Thus (21) is strictly positive and strategies of the form T cannot be

optimal.

The only strategy that is not of the form S or T and that has not

been proven to be suboptimal is the sampling strategy of theorem 1. It

uses the optimal stopping rule, samples boxes in the order of decreasing

reservation prices and always chooses the box with the highest reservation

price. Since an optimal strategy exists (either due to the ¯niteness of

expectations in the case of a ¯nite number of search opportunities or

due to the assumption of ¯nite variance in the case of in¯nitely many

search opportunities, see DeGroot [2] chap. 12 and 13), this establishes

the optimality of the proposed rule.¥
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