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Abstract

We study the long-run emergence of behavioral patterns in dynamic complex
networks. Individuals display two kinds of behavior: G (“good”) or B (“bad”).
We assume that agents have an innate tendency towards G, but can also be led
towards B through the influence of peer bad behavior. We model the implications of
those peer effects as an epidemic process in the standard SIS (Susceptible-Infected-
Susceptible) framework. The key novelty of our model is that, unlike in received
epidemic literature, the network is taken to change over time within the same time
scale as behavior. Specifically, we posit that links connecting two G agents last
longer, reflecting the idea that B agents tend to be avoided. The main concern of
the paper is to understand the extent to which such biased network turnover may
play a significant role in supporting G behavior in a social system. And indeed
we find that network coevolution has nontrivial and interesting effects on long-run
behavior. This yields fresh insights on the role of (endogenous) peer pressure on
the diffusion of (a)social behavior as well as on the traditional study of disease

epidemics.
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“Company, villainous company,
hath been the spoil of me.”
W. Shakespeare, Henry IV, Part 1.

1 Introduction

We study the long-run emergence of behavior in dynamic complex networks. Individ-
uals display two kinds of behavior: G (“good”) or B (“bad”) which, depending on the
context, can be respectively conceived as behavior that is either social/cooperative or
asocial /hostile. We suppose that the population of agents is large, but each of them
interacts with a typically small group. As customary, therefore, the prevailing pattern
of interaction is modelled as a large social network. The objective is to understand
under what conditions B or G will spread and dominate the overall population. More
specifically, we address the question of whether the adjustment of the network — which
is taken to reflect the individual efforts to avoid “villainous company” — may prevent or
contain the spread of bad behavior. The leading interpretation of our model is social,
but it obviously admits an alternative one in terms of disease epidemics as well. Indeed,
as we shall explain below, our approach addresses concerns that are also at the center
of modern epidemiological theory.

The model couples two dynamics. First, the dynamics by which agents change
their behavior. This dynamics is conceived as a diffusion process, in which B spreads
through the local contact and influence of peers. Formally, we adopt one of the para-
digmatic frameworks in epidemiological theory: the so-called SIS (susceptible-infected-
susceptible) model.! In this setup, the strength of the peer effects inducing the switch
to B is linear in the number of B neighbors a G agent has. B agents, in turn, have an
internal tendency to switch back to GG, independently of their neighborhood conditions.
In a stylized sense, one could interpret this feature as reflecting a Rousseaunian view of
human nature, which is taken to intrinsically lead to good behavior unless spoiled by
bad social influence. Second, the dynamics by which the network evolves. New links
are randomly created while on going contacts’ decay depends on partners’ behavior.
Specifically, we posit that links connecting two G agents last longer, reflecting the idea
that B agents tend to be avoided.

Let us now summarize our conclusions. The model has three main parameters:

e the rate A at which peer effects turn G into B;

1See, for example, Newman (2002) [14] and Pastor-Satorras and Vespignani (2001) [17] for a detailed
discussion of this model in the framework provided by the modern theory of complex networks.



e the differential rate v at which peer avoidance destroys links connecting to B

agents;

e the rate 7 of “social turnover” at which the network adjusts, thus modulating the

relative speed of peer effects and peer avoidance.

For the sake of focus, we fix v at different levels and explore in detail the interplay
between A and 7. Our main concern, in particular, is to understand how these parameters
affect the long-run frequency p of agents displaying B —i.e. what, using the terminology
common in epidemiological models, we shall often call prevalence. As a first step, we
obtain a conclusion that is formally akin to that obtained in standard SIS models. Given
7 (and ), there is a critical value A. marking a continuous transition in the long-run
prevalence of bad behavior, i.e. its limit value p is positive iff (the strength of) peer
influence exceeds that critical value and the gradient changes discontinuously at ..

The more interesting results concern the effect of varying the pace at which the
network adjusts. In particular, we study the implications on two different (endogenous)
magnitudes. First, we consider how 7 affects the critical rate A. that establishes the
onset of long-run prevalence of bad behavior. And we find, at first sight somewhat
surprisingly, that the effect is not always monotone. This indeed depends on the value
of ~. If 7y is high (we shall refer to the situation as Regions I and II, since there are also
other parameters involved), then as 7 grows so happens with A.. This reflects the natural
idea that faster turnover checks the prevalence of bad behavior. But, interestingly, we
also find that the conclusion is not always so clear-cut. For in the complementary region
in parameter space (Region III), the behavior turns out to be non-monotone, with an
interior value of 7 where A, is maximal.

To understand why such non-monotonicity may arise, it is useful to bear in mind
that a higher degree of social turnover (network adjustment) has a two-fold implication.
On the one hand, of course, it reinforces the creation and maintenance of GG links
at the expense of other type of links, thus tending to prevent B agents from exerting
their detrimental peer pressure. But this, in turn, creates the network conditions (i.e.
long paths of G agents) on which a “seed” of B behavior can rapidly expand. Thus,
it seems intuitive that, under suitable parameter conditions, the complex interplay of
those considerations can produce non-monotone effects.

In fact, a further interesting manifestation of such complexity can be found concern-
ing the effect of the turnover rate 7 on the extent of long-run prevalence p (of course,
assuming that A > A.). In this case we find that higher turnover 7 always implies lower
prevalence p when the peer-influence rate A is low enough, but it implies higher p when
A is sufficiently high. This is indeed intuitive since higher turnover means not only faster
link destruction (which tends to isolate B agents) but also faster link creation (which

may enhance the spread of action B). Whether one effect or the other should domi-



nate must depend on the value of \. Complex patterns arise, however, when \ is at an
intermediate level and neither of those effects dominates. Then we find that the effect
is no longer monotone and it crucially depends on whether the underlying parameters
lie in one of the aforementioned regions (so, in particular, it depends on 7). In Region
I, the value of p attains an interior maximum as a function of 7, so there is a (finite)
“worst level of turnover” that maximizes the prevalence of bad behavior and the best
performance is achieved for high turnover. Instead, in Regions IT and III, p achieves an
interior minimum, so that the best level of turnover lies at some intermediate point.

Our analysis of the model relies on so-called mean-field techniques, widely used in
statistical physics for the study of large interacting systems with a substantial (and little
correlated) random component in the behavior of individual entities. In fact, since a key
feature of the model revolves around the correlation of behavior between linked agents,
our mean-field description of the network is not centered, as it is common in modern
network analysis, on its degree distribution. Rather, we focus on the distribution of the
different types of links (GG, BB, or GB), building on what is known as multisite (or
cluster) mean-field analysis.?> This approach, of course, still abstracts from correlations
that, to some extent, must play some role in the dynamics of the system. The mean-field
theory must be viewed, therefore, as an approximate description of the situation. This
leads us to check its validity through extensive Monte Carlo simulations, and we find
that both (theory and simulations) are in very close match. In particular, the theory
provides a quite accurate prediction of how the critical points as well as the induced
long-run prevalence of bad behavior depends on the different parameters of the model.

Our model provides an abstract theoretical framework for the study of how local
diffusion of behavior (peer effects) and the underlying pattern of interaction (peer se-
lection/avoidance) coevolve in many social environments. Admittedly, the setup is very
stylized and thus can afford only a very simplified representation of how those processes
unfold in real-world environments. It is, however, that simple formulation which allows
us to gain a good analytical handle of the overall dynamics and obtain the insights that
could be applied to more specific scenarios. There are, specifically, two natural realms of
application, which themselves have generated a very substantial body of literature: the
evolution of cooperative behavior in social systems, and the study of disease (or elec-
tronic) epidemics in large populations of people (or interconnected computers). In both
contexts, the need to allow for the simultaneous evolution of behavior and the underly-
ing social network appears of crucial importance to understand the eventual outcome.
A thorough review of these two strands of literature is conducted in our working-paper
version, Fosco, Marsili, and Vega-Redondo (2007) [10]. Here we only provide a brief
sketch of each of them in turn.

2See ben-Avraham and Kohler (1992) [3] for a clear description of the mean-field cluster method.



The fact that the combination of local interaction and simple (but natural) rules
of behavior can jointly contain the spread of opportunistic/noncooperative behavior in
social systems was highlighted by the influential work of Nowak and May (1992) [16],
Nowak, Bonhoeffer and May (1994) [15], and Eshel, Samuelson, and Shaked (1998) [11].
These papers studied the problem for a fixed structure of interaction, but others have
followed suit by letting the interaction structure evolve endogenously over time. In-
teresting research in this vein has been conducted by Ebel and Bornholdt (2002) [9],
Zimmermann, Eguiluz and San Miguel (2004) [21], and Hanaki, Peterhansl, Dodds and
Watts (2007) [13]. Relying on numerical analysis alone, all of them identify correspond-
ing conditions (each reflecting the specific features of their setup) under which some
extent of cooperative behavior arises. An important difference between their approach
and that of the present paper hinges upon the nature of the long run outcome. In
their case, it represents an absorbing situation that is eventually reached within a sta-
ble underlying environment. QOur model, in contrast, contemplates an ever changing
environment, where the links and behavior of agents are subject to persistent volatility.

The study of epidemics, on the other hand, has a long and well-established tradition.?
But only recently has it tried to account for the local-interaction effects embodied by
a (possibly complex) social network, or consider contexts (such as internet) where the
internode diffusion goes well beyond the spread of disease-like phenomena.* Most of this
recent work, however, has presumed that the underlying network either remains fixed
throughout or changes very slowly. This is now recognized as an important limitation of
the analysis, and some interesting efforts have been devoted to allowing for a genuinely
coevolving network. Out of this starting line of research,” we want to single the recent
paper by Gross, Dommar D’Lima and Blasius (2006) [12] which is closest to our own con-
cerns.® These authors also study how a SIS epidemics unfolds on a large network, which
itself adapts over time as healthy/susceptible (i.e. G) nodes attempt to avoid/isolate
infected (B) neighbors. The network adjustment dynamics, however, is quite different:
healthy nodes rewire their links from infected neighbors to other healthy nodes. Hence,
over time, only links between healthy and infected nodes decay and new contacts arise
only between two healthy nodes.” The total average degree is preserved but healthy
nodes tend to accumulate links (with other healthy ones) while infected nodes loose

them (only keeping those with their own kind). Their model, therefore, differs substan-

3See e.g. Bailey (1975) [2] for a classic discussion of mathematical epidemiology.

4For a survey on how the complex-network literature has approached the study of epidenmics, see
the references mentioned in Footnote 1. On the other hand, for a useful elaboration on how epidemic
processes bear on the operation of the internet network, see Pastor-Satorras and Vespignani (2004) [18].

5See e.g. Ball, Mollison and Scalia-Tomba (1997) [1], Boots and Sasaki (1999) [4], and Saramiiki
and Kaski (2004) [19].

6This work is independent of ours and its first working-paper version appeared after the first version
of our paper was completed.

"Nevertheless, Zanette (2007) [20] studies a variation where susceptible nodes rewire their links to
any other node and obtains similar results.



tially from ours and so do their conclusions. Firstly, in their model, a sufficient large
increase in the rewiring rate causes the infection to be completely suppressed, i.e. a zero
level of prevalence. In contrast, in our setup, for a given rate of avoidance the final effect
on prevalence depends on the peer rate — if it is too high, increasing social turnover does
not decrease prevalence but has the opposite effect.® Secondly, they observe that, within
a certain range of parameter values (i.e. between some lower and upper thresholds of
the spreading rate — the counterpart of our peer-influence rate), the endemic and the
healthy population state can be stable simultaneously. Thus, their system displays tran-
sitions across different levels of prevalence that can also be discontinuous and between
those two thresholds a hysteresis loop is formed. Instead, in our model, both of those
thresholds are the same and the transition is always continuous.’

The paper is organized as follows. In Section 2, we present the framework, the
assumptions, the derivation of the mean-field model and its long run solutions. In
Section 3, we analyze and discuss the results and present some simulations. Finally, in
Section 4 we sum up and discuss possible avenues of future research. For the sake of
clarity, we have relegated the main bulk of mathematical derivations and proofs to the

Appendix.

2 The Model

There is a population of N individuals (implicitly supposed large) whose relationships
and behavior continuously coevolve. Relationships, or social contacts, are represented
by a network of undirected links. At each time ¢ € [0,00), each agent 7 interacts with
her immediate neighborhood, i.e. the set of individuals connected to her. Individual
behavior is a binary variable with two states: G (“good”) or B (“bad”), conceived gen-
erally as representing behavior that can be associated to cooperation, social-mindedness,
law-abidance, etc. and their opposite. Each individual displays the same behavior with
all her neighbors — hence, at each ¢, every agent may be simply characterized by her
current behavior and her neighbors.

The dynamics driving the coevolutionary process of agents’ behavior and the social

network consists of the following two components.

e Behavior dynamics: peer effects

Bad behavior spreads by bilateral contact. Specifically, there is some given peer-

influence rate A > 0 such that a G-node turns to B at a base rate that is proportional

8Naturaly, if we fix the rate at which changes in the network take place (social turnover 7), bad
behavior can always be suppressed by increasing the differential rate at which bad peers are avoided, ~.

9In the language of statistical physics, such discontinuous (continuous) transitions are called first
(second) order phase transitions.



to A and the number of B neighbors. In addition, it is useful to allow for a small
supplementary rate ¢, conceived as noise, at which this change occurs, independently
of neighborhood conditions. In total, therefore, the rate at which a G node switches
to B is given by (Mgp + €), where kgp is its number of B-neighbors. Reciprocally,
any B-agent is assumed to change her behavior to GG at a rate v, independently of her
neighbors’ behavior.

Overall, the process by which individuals change behavior may be understood as
one of stimulus/response operating on “resilient G fundamentals.” That is, we may
view individuals as naturally inclined to G but responding to bad external stimuli by
switching temporarily from G to B. In a sense, this formulation reflects a reinforcement
model of individual behavior, similar in spirit to that commonly posited in modern

learning literature.'”

e Network dynamics: peer avoidance

First, as a base framework, we consider a subprocess of link creation and destruction
that is independent of agents’ behavior and by itself would generate a random Poisson
network. Thus, suppose that each possible link not currently in place is created at
a rate 7 > 0, while each existing link is destroyed at the rate 7np > 0. If only this
subprocess were operating, it is straightforward to see that the induced social network
would be a random network with a Poisson degree distribution and average degree 2/n,
independently of 7. The parameter 7 quantifies the speed of network adjustment relative
to that of behavioral adjustment, and will be called the rate of social turnover.

But, of course, since we do want to relate network adjustment to agents’ behavior, we
superimpose on the former subprocess another one (for simplicity, operating only on link
destruction) by which there is a supplementary pressure for the removal of any link that
connects pairs of agents in which at least one of them displays B. Formally, we posit
that any link whose corresponding behavior profile is BB,GB, or BG vanishes at a rate
7 (n+7), where ~ is the differential rate capturing the strength of the peer-avoidance
component of the model.

One possible interpretation of the whole subprocess of network adjustment is as
follows. First, there is a purely random component in the creation and destruction of
links, which is totally unrelated to behavior. In fact, all new links are taken to be formed
in this fashion, possibly because partner’s behavior is not observed until a relationship
has been established (and thus such behavior cannot have any effect on the creation
of the link). Random forces, on the other hand, are also involved in link destruction

as a reflection of what could be called volatility (i.e. unmodelled reasons for which

10These models can be traced back to the models of mathematical sociology originated by Bush and
Mostellar (1955) [6], later developed in the economic literature by authors such as Cross (1983) [8],
Borgers and Sarin (1997) [5], or Camerer and Ho (1999) [7].



links become obsolete or unfeasible and then vanish). But, in addition to those random
subprocesses, there is also an additional route for link destruction that is contingent on
the behavior currently displayed and thus observed by partners. And, in this respect,
the implicit assumption we make is a standard one, namely, that in order for a link to
persist there must be mutual consent. Hence both parties must be satisfied, which is

something that is supposed to occur only if both display G behavior.

Mean-field equations

In order to derive the system of dynamic equations that govern the expected co-
evolution of structure (social network) and behavior (node’s states), we introduce two
binary variables: the behavioral variable s; that assumes the value 1 (0) if the node i is
B (G); and the network variable a; ; that adopts the value of 1 (0) if the link between
i and j is present (missing). The dynamic equations for the expected values of these

variables are:

$; = (er)\Zai,jsj)(lfsi) —vs; (1)
J
. 2T
dij = (L= aig) =7+ (si + 85 = sis))] @i, (2)

At any ¢, >, s; is the number of B nodes, and [GB] =3, . (1 —s;) a; js;, [BB] =
i > i Siai sy and [GG| = i >i;(1=s:)a; ;(1—s;), the number of pairs (links) GB/BG,
BB and GG, respectively. For N large, the ratios ;j\,i, JG—]\?I, JB—]\?I and IG—]\?l approach
the deterministic limits p (which we call prevalence), [gb], [bb] and [gg], respectively.
From equations (1, 2), standard methods lead to a dynamic model based on multi-site
(or cluster) mean-field theory. In its general formulation, this approach yields an infinite
hierarchy of equations for multi-site correlation functions. However, in the case of a large
population connected by a sparse random network, this hierarchy can be closed in terms
of the density of triplets obtained from local densities and pair densities. And in the
end, one arrives at a dynamical system defined on the average conditional connectivities
(koy)s (koo)s (kyy) as follows:H!

p=—vp+(e+A{kep)) (1= p) (3)

<kc';13> - 27—/)7 (V+5+7_(77+7)) <kGB> +€<‘]€GG> + V<k1313> TLLP (4)
+A <kGB> (<kGG> - <kGB> - 1) + TLLP <kGB>

H'See the Appendix for the analytical derivation of the following equations.




(k) = 270 = Q07 (4 7) (k) + 26 (ko) 152 5)
+2)‘1_;2 <kGB> (<kGB> + 1) - % <kBB>

(ko) =27 (L= p) = (2= +70) (hog) +20 (k) ©)
—2A <kGB> <kGG> + Tif_p <kGG>

The interpretation of these equations is straightforward. Equation (3), for example,
reflects that the density of B agents decreases whenever B-agents spontaneously return
to good behavior, while it increases every time G agents switch to bad behavior due to
the influence of peers (in addition to the base transition occurring at the small rate ¢).
In turn, the average conditional connectivity changes when links of the type considered
(GB, BB, or GG) are created and decay and when the appropriate agents maintaining
other kind of links change their behavior. For instance, in (4), (k,,) increases when a
new encounter between a B and a G occurs, when one of the agents connected by a
GG link is “spoiled” by peer effects (or by exogenous reasons, at the small rate €), or
when one of two agents connected by a BB link changes to G. It decreases, on the other
hand, when links GB vanish, when a B partner changes exogenously to G at the rate

v, or when the G agent switches to B due to peer effects.!?

Parameter configurations

The model has the following parameters: v, A, and ¢ that shape the behavioral
dynamics; n and v that bear on the relative speeds of link destruction and creation;
and finally, 7 that models the relative pace of behavioral and network adjustment. We
reduce the range of parameters under considerations as follows.

(a) First, we set v = 1.

(b) Then, we set the range of possible values for n and ~ such that the long run total
average connectivity is relatively high if all nodes were G-agents (p — 0), while the
opposite happens if all agents were of the B type (p — 1). Specifically, we assume
that n and v are such that the connectivity in each limit case lie in separate sides

on the key threshold of unity, i.e.'?

(klp—0) > 1 and (k|p — 1) < 1 (7)

12The last terms in eqs. (4-6) embody the effect on average conditional connectivities induced by the
fact that changes in p alter the probabilities of the conditioning events.

13Bear in mind that the condition (k) = 1 is the threshold above which a random network has a giant
component, i.e. a non-negligible fraction of connected nodes when N — oo.



The role of (a) is simply that of a normalization, which fixes the time scale of the
process. The motivation of (b), on the other hand, is twofold. On one hand, we want
to consider a scenario where extremely polarized behavior would have significant effects
on the overall connectivity of the social network. For only in this case may the social
network be expected to have a significant effect on the overall spreading of bad behavior.
We also find, on the other hand, that the restriction of  and  to satisfy condition (b)
greatly sharpens the focus of the analysis on the two remaining parameters, i.e. the rate
of social turnover 7 and the strength of peer effects .

To understand, more precisely, what conditions on the parameters 1 and v are en-

tailed by (7), note that both when p — 0 and when p — 1, we must have (k,,) — 0.
Therefore, from (5) and (6) (and p = (k:BB> = (kGG> = (0) we can write
(klp—0) > 1 (hgglp— 0) = 2 > 1
(Flp = 1) <1 (koplo— 1) = Ty <1 <= n+7>2
so that the implied parameter range is given by the conditions
ne©,2);  vE(2-n00). (8)

Long-run behavior

We are interested in characterizing stable stationary states of the dynamics given
by (3)-(6). In a stationary state, p = (k:GB> = (k:BB> = (kGG> = 0. Thus, assuming a
negligible € ~ 0, we obtain the following non-linear system in the variables p, (k,),
(kaa) (bpp):

_ AMkgs)
P T M (k) ©)

_ 21+ Mkep) ((Bog) + (k)

(he) = T 420+ A (k) + 1) 1)
(kpn) = w (11)

1+ (77;7)
_ T (1 — p) + <kGB> (12)

k =
< GG> )\<k,GB>+T_2’IZ

To characterize the solutions of the system, it is useful to define the following function

of the parameters:

(I)C (777 7> >‘7 T) =

A@R+2m—n)(T(n+7)+2)+2y (13)
1

(Th+v)+1) T+ +2)

10



Then we can first establish the following result.

Proposition 1

(i) Let the parameters satisfy ®. (0,7, A, 7) < 1. Then, the mean-field dynamics has a
untque stationary state and it has p* = 0.

(ii) Let the parameters satisfy ®.(n,v,\,7) > 1. Then, the mean-field dynamics has
two stationary states. One of them has p* = 0, while the other has p* > 0.

Proof. See the Appendix. m

The previous result indicates that a stationary state with only G behavior always
exists. It is unique if ®.(n,v,A,7) < 1, while another one with positive prevalence
also exists if ®.(n,v,\,7) > 1. In view of this possible multiplicity, it is important
to evaluate the stability of the different configurations. This issue is addressed by the
following result.

Proposition 2

(i) Let the parameters satisfy ®. (n,v, A\, 7) < 1. Then, the unique stationary state (that
has p* = 0) is asymptotically stable.

(i) Let the parameters satisfy ®. (n,v,\,7) > 1. Then, only the stationary state with
p* >0 is asymptotically stable.

Proof. See the Appendix. m

The previous result indicates that the model exhibits a continuous transition at the
threshold ®. (1,7, A, 7) = 1 that separates a phase of overall G behavior from a phase
in which a positive fraction of B agents is expected to prevail in the long run. As we
shall amply illustrate in the subsequent section, these theoretical conclusions represent
a very good prediction, not only qualitatively but also quantitatively, of the results that

are obtained from extensive numerical simulations.'*

Remark 1 Note that lim,_o @c(7,7,A,7) = 0. This means that given the peer-
influence rate A > 0, the social turnover 7 > 0 and the basic volatility of relation-
ships, n > 0, it is always possible to suppress the prevalence of bad behavior by
sufficiently increasing the rate at which bad agents are avoided. If, in the limit,
agents are allowed to cut BG/GB and BB links immediately (i.e. ¥ — oo) bad

behavior will never invade the population.

141t should be stressed, however, that even if a steady state with p* = 0 is not asymptotically stable
for the mean-field dynamics, such a configuration is always absorbing in systems for ¢ = 0. That is,
eventually and with probability one, all nodes will become G agents, and misbehavior can no longer
spread thereafter whatever is the spreading rate. In this light, one can understand the role of a positive
(albeit small) ¢ as a way to expose the fragility of such situations in actual implementations of the
system through (finite) simulations.

11



3 Peer influence, social turnover and prevalence

Our main concern here is to study how the different forces at work affect the long-run
prevalence of bad behavior, p. As explained above, the parameters v, n, and « are either
fixed by normalization (v = 1) or we choose to have their range restricted in a convenient
way — cf. (8). Thus, the focus of our analysis will be on the effect on prevalence p of
the interplay between the strength of peer influence parametrized by A and the speed of
the network turnover as captured by 7. We start by studying the effect of A for a given

social turnover 7, thus in effect “slicing” the function p(A, 7) in the 7 dimension.
Peer influence and prevalence

The effect of the peer-influence rate A on p is qualitatively the same for any given
social turnover 7 and link decay rates (n,7). For any given social turnover 7, the
threshold @, (1, v, A, 7) E 1 <= A E Ae, where:

_ o+ +DH T +y)+2)

Ae = : (14)
2+2m—n)(tn+7)+2)+2n

Thus, if A < A, p(A) = 0, while if A > X, p(A) > 0 and p(-) is increasing. This

outcome is standard in the analysis of SIS models. The critical threshold A. — a point

uniquely determined once 7, and 7 are fixed — separates the phases of null and positive
(but only partial) materialization of B behavior. To obtain closed analytical expressions

for the evolution of p, we consider extreme values of 7, where it is easy to find:

2= /AN ) (14D +AE (47 =2)°

1
14 >0 A>3

P ()\|7’ = 0) = 2(74’)‘(77“"7)) (15)
0 SA<3
11— >0 o )\> 12
pOT = 00) = { 2 2 (16)
0 S AT

When 7 — 0, the network doesn’t evolve and the model is reduced to the propagation
of misbehavior on a fixed pattern of connections with average connectivity ~ % The
critical threshold is akin to that found in epidemic models when it is assumed that
the connectivity is approximately homogeneous (i.e. k; =~ (k)) and the homogeneous
mixing hypothesis holds (i.e. A, = 1/(%)) On the other extreme, when 7 — oo, all
the relationships are extremely volatile and the social structure has no real bearing on
behavior. Thus the model approaches one where every individual choosing G faces an
essentially symmetric situation, typically confronting the same number n_erw of B agents.
(This follows from the fact that every GB link is formed at the rate of 2 while it vanishes
at the rate n 4+ .) Under these conditions, B behavior can spread if )\n—f_ﬁ/ > 1, where

12



recall that v = 1 is the spontaneous recovery rate. This leads to a critical threshold for

positive prevalence equal to A\, =1/ (n_erw)

n=02;y=2
(=9
[0
(&)
c
(0]
©
>
o
o
0 ‘
0 f \ 1 2 3 4
A (t=2) Aec(t=4) peer influence A

Figurel: Prevalence p as a function of strength peer influence A.
Lines represent the mean-field predictions; circles (7 = 4) and
triangles (7 = 2), MC simulations (N = 10%, p(t = 0) = 1%, ¢ = 107°).

For finite social turnover 7, the situation can be quite complex, as the examples
displayed in Figures 1 and 2 indicate. In these examples, the lines trace our theoreti-

cal prediction, while circles/triangles represent observations derived Monte Carlo (MC)

simulations.!®

These examples suggest the possibility of a nonmonotonic effect of turnover on preva-
lence, its specific direction depending on the peer-influence rate A under consideration
(see Figure 1). Such contrasting effects also seem to arise concerning the effect of
turnover on the critical threshold A. for peer influence, the direction in this case de-
pending on the particular value of the remaining two parameters, 1 and « (cf. Figures 1
and 2). The aim of the subsequent subsections is to explore systematically such pattern

of cross dependencies.

15 A1l the simulations presented in this paper were performed with initial random networks of N = 10%;
initial number of B-agents 1%; and € = 1075, Long run outcomes are (almost) invariant to moderate
changes in the initial number of bad agents and noise. It is also highly robust to N, down to a minimum
of about N = 2000 nodes (with initial bad agents and € accordingly adjusted). Increases in N above
this lower bound do not have any significant bearing on the results.
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n=18;y=0.8

prevalence p

Ac(t=3) Ac(t=1.5) peer influence A

Figure 2: Prevalence p as a function of strength peer influence A.
Lines represent the mean-field predictions; circles (7 = 3) and
triangles (7 = 1.5), MC simulations (N = 10%, p(t = 0) = 1%, ¢ = 107°).

Social turnover, critical threshold and prevalence

As we explained in Section 2, the onset of positive prevalence is marked by the locus
of points in the parameter space that satisfy ®.(n,~v, A,7) = 1. For given n,~ and A, it
is easy to see that the set {7 € R4y : . (n,7,A,7) = 1} may be empty, a singleton, or
consist of two points. The latter case would correspond to a situation where one could
speak of two “critical” values for social turnover. This means, in particular, that for
some given values of 7 and ~, the mapping 7.(\) defined by ®. (1,7, A\, 7.(A;n,7)) =1
is not a (single-valued) function of 7. Instead, if we fix 1, and focus on the critical
value A.(7;7,7) defined by ®. (n,v, Ac(7;1m,7),7) = 1 we find that it always specifies a
well-defined and continuous function, a feature that significantly facilitates the analysis.

We pursue, therefore, this latter approach in what follows.

Critical threshold .

Denote the critical-threshold function by A. (7) to highlight its dependence on 7.
For any 7,7 satisfying (8), this function is strictly positively valued in its domain, R,
with lim; o Ac (7) = 2 < 1 and lim, o A (7) = 1’% > 1, which follow directly from
(15) and (16), respectively. It displays two different behaviors, which allows us to divide
the parameter space {(n,7) : n € (0,2) ;v € (2—1n,00)} into two regions (see Figures 3
and 4 for typical examples). A precise description of the situation is contained in the

following result.
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Proposition 3 Let \.(7) denote the function that specifies the critical threshold for
peer influence that marks the materialization of positive prevalence.
(a) If v > 5’_21—7] (and v > 2 —n from (8)), the function . (T) is increasing and concave
in the whole range of T > 0, its asymptote being A\, (T — 00) = ﬂ%l
(b) If v < flj—n (and v > 2 —n from (8)), the function A.(T) has a unique interior

mazimum for some positive (and finite) T* with Ae(7*) > Ao (T — 00) = L2,

Proof. See the Appendix. m

For future use, it will be convenient to refer to the parameter conditions specified
in (a) above as the union of Regions I and II (or Region I+II for short), while we shall
refer to the parameter conditions specified in (b) by Region III. The situation is quite
different in each case. In Region I+II, higher turnover can just help in attaining the
full dominance of G behavior. Instead, in Region III, there is a range of values for A,
Z’%‘ < A < Ao (7%), where higher rates of turnover can lead to fresh coexistence of G
and B behavior.

M + Y2 reeeoes
1 positive prevalence p > 0 e ()
<
[0}
(]
c
9]
>
= 051
= zero prevalence p=0
3
Q
n/2
0 : .
0 10 20

social turnover 1

Figure 8: Critical threshold \. as a function of social turnover 7.
Example Region I+11 (v > n%/(2 —1n)): n = 0.2;y = 2.
Ac (7) increasing up to asymptote (n +v)/2.

The contrasting implications of the two parameter regions are an intuitive reflection
of the twin role that network turnover has in our context. On the one hand, turnover acts
as a disciplining mechanism that tends to isolate B agents and thus checks the spread of
bad behavior. But, on the other hand, faster turnover can also have a detrimental effect
on the preservation of good behavior. This happens because, as the links are adjusted
at a brisker pace, the wider become as well the possibilities afforded to B agents in

spreading their behavior though peer influence. In this light, Proposition 3 simply
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establish the intuitive fact that whether the first consideration will come to dominate
throughout or not depends on the relative magnitudes of the base and differential rates
of link destruction, respectively given by n and ~y. In particular, if 7 is not large enough
relative to n (Region III), we find that, beyond a certain point (the rate 7*), higher

turnover has the “counterproductive” effect of lowering the critical rate A..

- 159 positive prevalence p > 0

©

g e he (1)

g 1 T T T T T
= A S+

Fol

[0

1]

Q.

zero prevalence p =0
0.5 -

.10
social turnover t

Figure 4: Critical threshold \. as a function of social turnover 7.
Example for Region III (y < 7*/(2 —n)): n=1.95;v = 0.1.
Ac (7) non-monotonic; 7% = 0.79552; A, (7*) = 1.2138.

Having settled by Proposition 3 what is the effect of turnover on the threshold A.
that marks the consolidation of some extent of bad behavior in the long run, a natural
follow-up question arises. Given the prevailing turnover rate T, suppose that A > A\.(7)
so that the induced extent of long run prevalence p(7) > 0. How is this prevalence
of bad behavior affected by changes in 77 This is the question addressed in the next
subsection.

Prevalence p

Given 7 and v, and the prevailing rate of turnover 7, assume that A > 2 = A, (1 — 0)
so that the induced prevalence p(7) is positive for (at least) some 7 € Ry .1% First of
all, note that for A given, the limiting behavior of p (1) as 7 grows or falls to its extreme
values, 0 and oo, is respectively given by (15) and (16). Now denote by A the value of
A such that if A > X (< A) the slope of p(7) at 7 = 0 is strictly positive (negative).
We can then first characterize the evolution of p as a function of 7 for two polar cases:
when )\ is relatively low and when it is relatively high, given the value of 7,, and A

(which is itself, of course, a function of n and «). In those cases, the effect of 7 on

'6Note that for any 7 and v satisfying 8, the minimum value of A. () is 4 = lim; g Ac (1), thus if
A< 121, there is null prevalence (p = 0) for any social turnover 7.
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p is always monotone (decreasing and increasing, respectively), as established by the

following result.

Proposition 4 Let p (1) denote the function that specifies the prevalence of bad behavior
as a function of T, for given values of A, n and .

(a) If X € (-;l,min{j\,max{%, 1E33Y], the function p(-) is monotonically non-increasing.
Moreover, if A < Z’%, p(+) decreases monotonically until it vanishes at a finite critical
value 7.

(b) If A > max{\, %}, the function p(-) is strictly positive and increasing for all .

Proof. See the Appendix. m

Again, the former conclusions are intuitive, and can be understood along the same
lines as before. When peer influence is weak, faster social turnover is a crucial mechanism
for checking bad behavior. Indeed, as its pace accelerates, a definite point is eventually
reached when no B behavior persists in the long run, i.e. a state with zero prevalence
is attained. Instead, when peer influence is strong, the mechanism of social turnover
works in a “perverse” manner: it rides on forceful peer effects to spread bad behavior
ever faster and more widely. An illustration of this state of affairs is provided in panels
(a) and (d) of Figures 5,6.

The situation, as one would expect, is much less transparent when A displays an inter-
mediate value. In this case, the interplay between positive and negative effects operate
at different strengths for different values of 7, thus yielding nonmonotonic behavior. A

formal description of matters is the object of the following result.

Proposition 5 Let p (1) denote the function that specifies the prevalence of bad behavior
as a function of T, for given values of n, v, and \ € (min{jx,max{%, ﬂ%}},max{j\, —Z—}]
(a) If v > 22—77_%, the function p (-) has a unique interior mazimum.

(b) If v < %%, the function p(-) has a connected set [T1,72] of interior minima. If
T1 # T2, then p(7) =0 for all T € [11,T2).

Proof. See the Appendix. =

The implications of the above result are illustrated by panels (b)-(c) of Figures 5,
6. In line with the region labelling used to present the results of Proposition 3, let us
denote by Region I the parameter configurations induced by (a) in Proposition 5. It
is the clear that Region I is a subset of what we called before “Region I4+II” and, by

comparison, we want to identify Region II with the inequality gjl—n <y < f—ﬁ%
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Figure 5: Prevalence p as a function of social turnover 7.
Examples for Region I (v > 2n2/(2 —n)): n=0.2;7 = 2.
Lines represent the mean-field predictions, circles, MC
simulations (N = 104, p(t = 0) = 1%, ¢ = 107°).
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Figure 6: Prevalence p as a function of social turnover 7.
Examples for Region I1I (y < 2n?/(2 —n)): n = 1.95;y = 0.1.
Lines represent the mean-field predictions, circles, MC
simulations (N = 10%, p(t =0) = 1%, e = 107?).
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Table 1: Peer effects A\, peer avoidance v and social turnover 7

Synthesis of main effects on prevalence p.

With the aforementioned labelling conventions (see Figure 7), the conclusions of
the Proposition 5 can be summarized as follows. Provided A lies in the intermediate
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range being considered, prevalence in Region I is first increasing and then decreasing as
turnover becomes faster, while in regions II+I11, it is first decreasing and then increasing.
This again is a reflection of the rich interplay between conflicting forces that arises when
the peer effects are neither very strong nor very weak and the turnover rate operates at
intermediate levels as well. In contrast, when turnover is high, we find once more (cf.
Proposition 3) that the key consideration is whether peer avoidance is strong enough —
or, more precisely, whether there is an enough significant wedge between the base and

differential rates of link destruction.

4 Summary and Conclusions

The paper has proposed a simple model to study the interplay between peer effects and
peer avoidance in the diffusion and prevalence of “bad” behavior in large social networks.
Our analysis has focused on understanding how different speeds of network adjustment
(i.e. what we have called social turnover) affect the long-run performance of the model.
In particular, we have studied how it impinges on (a) the critical peer-influence rate
required for positive prevalence of bad behavior, and (b) the precise magnitude of such
prevalence. We have found that for a wide range of parameters, both magnitudes behave
as intuitively expected—i.e. in a monotone fashion. For example, when the peer-influence
rate is relatively low (respectively, high), higher turnover induces lower (respectively,
higher) prevalence throughout. But for intermediate values of the peer-influence rate,
conflicting tendencies operate and the picture is much more complex. In particular,
prevalence can display either an interior local maximum or minimum, depending on the
precise parameter configuration. These results point to the subtle effects at work when
peer effects and peer avoidance interact in dynamic processes of behavioral diffusion. In
a nutshell, the main insight we gain from the analysis is that such interaction is sharply
affected by the speed at which the network adjusts, which crucially affects the final
outcome.

The paper has focused on only one dimension of the problem, namely, the long run
prevalence of bad behavior. Future research along these lines should address as well
other important features of the system such as the entailed characteristics of the social
network, e.g. its connectivity, degree distribution, clustering, etc. It would also be
interesting to study certain variations of the present framework that might required to
capture how different processes of diffusion operate in some social contexts. For example,
one could introduce so-called frequency-dependent considerations in the formulation
of peer effects. Specifically, it could be assumed that the switch to bad behavior by
a particular agent depends on the proportion of her neighbors who choose B rather

than their absolute number. In some setups, where behavior is shaped by strategic

20



considerations, this formulation might indeed be more appropriate. Finally, another

interesting variation would be to have B and G behavior play a symmetric role in

the model, with the switch in either direction being dependent on the behavior being

displayed by neighbors.
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A Appendix
System of dynamic equations
The evolution of the average density of B-agents for N large is approximated by:
EN‘ST _ 82-(]1\7—37;) 4 )\Zi j(l—]\?wz)ui,jb‘j _ V;j\%
p=ce(l—p)+Agb —vp

—
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Replace by (k) = égjb}];) and obtain (3). The average density of links GB/BG

evolves as:

(O8] _ 9rZuilomdn (22 47 (4 ) o e 4 A) Zloo)tey
+£Zi,j(lisijz[ai’j(lisj) n Vzi’j $i;,;8;
>igk(I=si)aij(1=s;)a; ks Dijik,igk Si®i,g (1—8;)a5,ks8

For N — oo and always growing faster than 7 (= %, % — 0):

aB :
2 g = 2mp (1 - p) — (v + e+ 7 (0 +7) + Mgl
+e2[gg] + v2[bb] + A (2[ggb] — [bgb])
The last term is the difference between the expected number of triplets GGB and
triplets BGB (JG—]C\';Bl — [ggb] and JB—]C\';BI — [bgb]).!" Similarly, for N large the evolution
of the average densities of links BB and GG approach:

B = - <v + W) 2[b] + (¢ + A)[gb] + Albgb]
[99] T(1-p)° - (6 + %7) 2[gg] + v[gb] — A2[ggb]

To close the model, we condition on the state of the central site (G) and approximate
the triplets as follows. Under the assumption that the number of B and G neighbors

of a G site are independent, [ggb] ~ I%];[%bl (in other words, the influence of an agent

on the behavior of her second neighbor in a triplet is negligible). Next, we consider any
(central) agent G influenced by a B neighbor provided that she already has another B
neighbor and denote by l(;)gp the number of links GB of that G-agent, then [bgb] ~
Ellneslmes—1] _ Elilyes]|—Ellocs]
1—p - 1—p
Poisson distributed with mean [gb] and second moment F [l(zi)c B} = [gb]® + [gb], thus

; we assume then that [;gp is approximately

2
[bgb] ~ ffp. This same result can be obtained under the assumption that any two

different B neighbors of the central agent G are independent: [bgb] ~ lg—flj%bl = Jlg_f]; (as

[bg] = [gb]). Finally, we simply rely on the expressions (k_,) = %]p_), (kpp) = ﬁ?l,
and (k,,) = (—21%')]5 to obtain (4)-(6) after time differentiation and suitable algebraic

manipulations. |

"The term —\[gb] is the expected density of links GB that become BB because the node B “infects”
her partner G at a rate \; the term —\ [bgb] denotes the expected density of triplets BGB where the pair
BG becomes BB because the center node G is influenced by other B neighbor than the one involved in
the first pair BG. By the same token, 2X [ggb] is the expected density of triplets GGB where the pair
GG becomes GB due to the influence of agent B at the end of the triplet (we must count it twice, as
given any pair GG both end nodes can be connected to a B).
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Proof of Proposition 1

By substitution, the system yields one equation in terms of (k.,). We show under
Y > 0. Iff (k)" >0 p* €]0,1].
From eqs. 9, 11, and 12 in eq. 10 it follows that the long run solution (k)" is a zero
of the function f (ko)) = a(key)* +b(kop)® + ¢ (kyp)? + d (k) where:

which conditions the solution of such equation is (k,

_ 3T +7)
=N (17)
bz)\Qi[(n-i-'Y) (277 + 3T+ 6) + 2\ (n + v — 2)] (18)
c=A3[@n+m+7)(+2) A +70m+7)+ 0 +7) (Tn+2) (19)
—A((47 = (tn+2))(y +n) + 27 + 8)]
d=Z[A+7+))2+7Mm+7)n (20)

“A(2=n4+2m) (v +n) +4+4m)]

The roots of the polynomial are four, of which (k)" = 0 is always one solution (there-
fore, p* = 0 is always a solution). The other three roots satisfy a <k:GB>3 +b (kGB>2 +
clkopy+d=0. Given A >0, 7>0,7 € (0,2) and y € (2—17,0), ¢ >0 and b > 0,
while ¢ ; 0 and d ; 0. Next we show that there can be at most one sign change (in
the polynomial of degree 3), thus by the Descartes’ Rule of Signs there can be at most
one strictly positive real root (k,,)" > 0 (= p* > 0). Consider eq. (19). The first
term between brackets is strictly positive, while the factor multiplying A (between the
brackets):
(47— (m+2)(v+n) +2m+8)Z0

> n+~v—4
<:>T<T 2 ~v(4—n)+n(6— 7;>0<:>(77+’7)>4

the factor multiplying A is < 0 and
or (n+7) <4) it is

Hence, if (n++v) > 4 and 7 € (0, Q(Trl,ﬁw;—m]

__niy—4
therefore VA, ¢ > 0; otherwise ((n+7) > 4 A7 > 2-—Lr—0s

strictly positive. In this latter case:

M+ +m) +72+70)M+7)]+21
2(44+mm)+(v+n) @r—1mm—2)

cS0 = A2\ = >0 (21)

In the case of d (eq.20), for all 7> 0:

2+3(+NT+Mm+9)° 7
T W+ @—m)r+2mm+)7

dS0 <= A2\ = >0
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When condition (21) applies, A1 > Aa:

Al > Ay —

2, 4 3 3 2
20°7% (n+7)" +2n7° (6 + ) (n +7)
+72(n+7) (n* (26 — 1) + 1 (16 — n) + 49?)
+27 (yn (18 +2n+ ) + 82 + n* (12 + 1))
+4((2+n) (n+v)+27) >0

Therefore, the possible signs for ¢ and d (for 7 > 0) are:

(i) ¢c>0 AN d>0 <= A< A
(i) ce>0ANd=0 <= A=)\

nty—4
{)‘>)‘2/\77+7>4/\T§27(4777)%7(6*77)} =
(ili) e>0ANd <0 <=

{ A1 > A > AoA }
+v—4

N4y >4AT>2——1=2

_ n+y<4 V¥
(IV) c=0Nd<0 < A=) > XA { }
v(4—n)+n(6—n)

Cases (i) and (ii) imply there is not any strictly positive real root, (iii) and (iv),
exactly one. Other combinations of signs are not possible because they are incompatible
with Ay > Ag. Therefore, the necessary and sufficient condition for the existence of a
strictly positive solution is that A > A2, which (after some algebraic manipulations) is

equivalent to @, (n,v, A\, 7) > 1 in text. |
Proof of Proposition 2

We show analytically the conditions under which p* = 0 is asymptotically stable.
The stability of the positive solution has been checked numerically, finding that it is

stable whenever it exists. Given the dynamic system, the Jacobian evaluated in the long
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run solution, p — 0,(k.,) — 0,(k,,) — 52—, (kee) — %, is:18

2+7(n+v)’
-1 A
2 2
27‘+m )\7]7)\77—(774’7)71 0
2 4
277X74+W 0 717’7’(7’]+’}/) 0
—27'—% 2—)\% 0 -7

The eigenvalues are:
ry = 7(1+7’(77+’)/)) <0

rg =—1n <0
—m++/m2—4pg
r3 = 3
—m—+/m2—4pq
T4 = 2

with:

p=02+7Mm+7)n
m=@2+71Mm+7)n2+7Mn+7)-A(2-n)
g=nMm+7)M+v=20)7>+((n+7) (A +3n—2X) —4xn) T —2(2X — 1)

Hence, if r3 < 0 and r4 < 0, p* = 0 is stable, otherwise (if either r3 > 0 or r4 > 0)
it is not.

First, note that given p > 0 and > 0:

2
m2 — 4dpq = p? (2—)\4-%(2)\—;0)) +8pA(n+7p) > 0.

Second, for n > 0, when ®.(n,v,A,7) < 1, ¢ > 0 and m > 0. To see this, denote
by Ac: ®. (1,7, Ae, 7) = 1 (uniquely determined and @, (1, v, Ac, 7) ; 1 <= A ; Ac),
thus:

q z 0 <= A é Ae and
m ; 0 < A § A = %%m

with A > A always (A > A\ <= 2+ 2m2+7(n+7))+n > 0, trivially
true). Therefore, when A < A\, = A < A, = ¢ > 0, m > 0. It follows that
oy ot /g
A< A (Do (0,7, 06,7) < 1) = 0< /m2—4dpg < Vm?2 = r3 = +2p2 e
*—m‘*z"p‘/—”? =0and ry = /2 —ipg < 0, hence p* = 0 is stable.

2p
On the other hand, if A > A. (D, (9,7, Ae, 7) < 1), ¢ < 0, while m E 0. Whatever is

the sign of m, v/m2 —4pq > 0. If m < 0, trivially, r3 = Zmet/m?—dpg > 0; if m > 0,

2p

18The fact that analytically (kpg) — m is due to its asymptotic behavior; when p — 0,
lim, o (kgp) = 2?]3\,3 is undetermined.
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r —m++/m2—4pq
3 =

2p

> —m;;/y? =0, thus p* = 0 is unstable. |
Proof of Proposition 3

First note that A () is a continuous function of 7, as under our assumptions its
denominator is always positive. Its first derivative is:

O :n87+2v7(77+7)+87(77+7)T+(77+7)2(27*77(77+7))72
or

3 (22)
(Ad+4m+1+7)2-—n)+2m2(n+7)n)

It follows that if 2y —n(n+v) >0 (<= ~
horizontal asymptote, lim,_ s Ac (7)

2 oA .
2571_—,]), 52 > 0 V7 > 0 up to its
Il_l; . Its second derivative is:

2. 4P (@y=n(m+7) (r+m)° T8 129 (v4n) > T2+ ((67—1) (y+1) +4) (dy+n(n+)) +2(n+7))
or? (A+4rn+7(n+7) (2=n)+272 (n+7)n)*

(23)
Expression 23 is in general negative, unless v is too large relatively to 7, in which
case it can be positive for 7 very close to zero. For any value of n and ~, as a sufficient
condition, it is strictly negative (thus A. (-) concave) for all > £.
- ) VS ifF:
In the complementary region, v < 5”_—7], 5o = 0 iff:

w Ay /20ty (2 +yn+27)
= (m*+yn—27)(n+7) >0

The second candidate is infeasible: it is always negative, since (772 +n — 27) z

2
0 = 4y—2n(n+7)(P®+m+2y) S 0. The second order condition (i.e. 23
evaluated at 7 = 7*) is:

A | _
or2 |lT=7* —

n(2'y((7]+"/)+27*(ﬂ%z)Q)—n(ﬂ%z)élT*(ﬂ%‘z)z) <0
(242 nt7e (242 ) @—n)+72(n+7)n)
= dy-—7"(n+7) (772—1-777—27) <0

Replacing 7%, the last inequality holds since:

dy =7 (n+7) (1 +n —27) = =20 (n+7) (1% + 1+ 27)
Therefore if v < S/

g Ac has a maximum for 7* < co. Trivially (because it is a global
maximum), A, (7%) > Z’%ﬂ‘ =lim, o Ac (7):

e (T*) _ nty

N [=

V2107 (P +27) (147) (> —27)* 0
V2/1(0+7) (P2 +yn+27) ((6—n)n2+(4—n2)7) (n+7)+47 (2 +yn—27))+802 (n+7) (N2 +yn+27) '
[ |
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Proof of Proposition 4

We first describe the relevant values of A that allow us to characterize the behavior
of p (7). Denote py = lim;_0 p(7), poo = limr_oo p (7).

(i) A = ¢ is the minimum value of A below which p (7) = 0 for any 7 as for 7 — 0,
Ac (7) attains its minimum value, i.e. lim, .o A (1) = 4.

(ii) A = A\ is the value of \ such that %ﬁh 0= = 0 iff A > A, where \ satisfies \ =

(4 Ao )
2 (=)t +an+27p,(N) (1=po (V)
differentiation of the following self-consistency condition:

This implicit condltlon is obtained by (implicit)

RS I B i G P>+A—<1‘”T S O ey R
p X T or =+ ) P CE ] X(1—p)

obtained from the long run system. Thus if A > A (A < \), the slope of p(7) at 7 = 0
is strictly positive (negative).
(iii) A = 2 is the value of A such that if A < 22, p =0, otherwise, p,, > 0.
(iv) A = ("%47)(1 +1/1487y/(n+7)?) is the value of \ such that p__ E Py =

A z £%1(1 +4/1+8v/(n+ 7)?) (provided that A > 2£3 | 50 that both p, and p,, are
strictly positive).

(v) A = 1 together with the last value A = ”J”) (1+1/1+8y/(n+7)?) define an
interval of values of A for which, provided that p,, > 0 (A > Z£2), prevalence p(7) is
equal to p, for some finite and strictly positive value of 7 and the slope of p(7) at such
7 may be positive or negative. More precisely:

If A > 2 and max{m(l + \/1—1-87/(77—1-7)2) > A > min{@(l +

YA (y+n) —2X2
Y1487/ (n+7)%), 1} then p(7) = py, at 2,](,]“( 2y >0

As W (14 1/1487/(n+7)°) 22 <= 7 = 25, we find that if y < 255

< n -n’
7 > 0 when M( 1+87/(n+7)%) > A > 2+ and the slope is %Tﬁ%:% < 0;
if v > 2—71— 7 > 0 when 1 > A > Llwl(l+ \/1+8v/(n+7)%) and the slope is
%}1|727>0.

(vi) A = A.(7*) is the maximum critical value of A when function A.(7) is non-
monotonic, i.e. given that v < {’j—n

The order of these values of A depends on the values of both decay rates n and 7. In
particular-

If v < 7= (Region I10):

2—n

min{4, 1} < max{g, 1} < 12
< min{X (7%), (1 + /1 +8y/ (n+7)%)}
< max{\ (7*), £%2(1 +4/1+8y/(n +'y)2)} <\
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If 75 <y < 27 (Region II):

< B <2 < 04 /14+8y/(n+9)%) < A

If v > 22—77_2—7] (Region I):

2 <min{A, 2} < max{}, B2} < L1+ /14 87/ (n+7)?) < 2.

Note that what we call Region III coincides with the zone where A. (7) is non-monotonic,

(SIS

while Regions I and IT with the other, in which A, () is always increasing. Next consider
the two monotonic behaviors of p (7).

For p (-) being monotonically decreasing, the following conditions should hold: A > Z
(st. po > 0), A < A (s.t. the slope at 7 = 0 is negative). Additionally, if p_ > 0
something that occurs when A > ﬂ?, necessarily py > poo and p(7) should not be equal
to poo for any finite 7 (hence A should not belong to the interval defined in (v) above).
In this latter case, we would observe that p(-) decreases until p., > 0. If instead p,, =0
(ie. A< Z’%), p(7) decreases until p(7) =0 at 7 = 7.

Now consider the order of these values within each region:

In Region III, p(-) decreases until p(r.) = 0 when 2 < A < ZE2. In Region II p(-)
decreases until p(7.) = 0 when 2 < A < 11%27 and for Z%“‘ <AL % decreases until
p(T) — ps, > 0. At last, in Region I whenever min{}\, 3 = A and <A< A, p(-)
decreases until p(7.) = 0; when otherwise for min{, Ery = A p(-) decreases until
p(te) = 0if 2 < XA < 22 and decreases until p(1) — p,, > 0 for T2 < X\ < A All
together, p (-) monotonically decreases whenever A € (3, min{}\, max{%, I3

On the other hand, for p () being monotonically increasing, the following conditions
should hold: A > X (s.t. the slope at 7 = 0 is positive), A > L‘;’l (8.8, ps > 0);

A > %{Q(l +4/1487/(+7)7) (5.t pe > pp), and p(7) should not be equal p,, for
any finite 7 (A should not belong to the interval defined in (v) above). It is easy to see
that in Regions IT and III this occurs when A > 5\, while in Region I when A\ > -;]‘ (this

is because if £%2(1 +14/1+8y/ (n:i— 7)?) < A < L, p(7) = pso)- All together, p ()
monotonically increases if A > max{\, %} [ |

Proof of Proposition 5

Consider the same relevant values of A and their order within each region used in the

Proof of Proposition 4. First of all note that in Region I, p (-) cannot display an interior

minimum because when the slope ag(:)hzo <0 (ie. A <A), p(-) is monotonically

decreasing. By the same token, in Regions II and III, p () cannot display an interior
mazimum, because when the slope %}HT:O >0 (ie. A > N), p(r) is monotonically

increasing.
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The existence of maxima (minima) in Region I (IT and III) can be then elicited
following analogous arguments as in the Proof of Proposition 4. We provide here two
examples.

First, consider the case of p(-) with a maximum, followed by the suppression of
prevalence (as in Figure 5 panel b). The following conditions should hold: A < ﬂ%l
(st. po, = 0) and the slope at 7 = 0 must be positive, i.e. A > A. These conditions
are necessary and sufficient to say that we will observe this behavior only in Region I
whenever A < \ < 242 (which requires that min{}\, Y = A).

Second, consider the existence of an interior minimum of such that p; > p,, >
p(T)min > 0. In this case, we need A < A. Also, we should observe that p(7) =

Pso and that at 7 > 0, with ag—(:)|r:% < 0, which only occurs if v < 257’_2—7] when

W) (14 /14 87/(n+7)?) > A > 2 (ie. in Regions II and III). As A > {4201+
1+8y/(n+7)%), the upper bound is given by W(l +4/148y/(n+7)7). But in

Region IIT we need A > A, (7*), otherwise we could observe the interval of p(7) = 0

(i.e. the minimum is not unique, but a connected set). All together, we observe this
behavior in Region II for £%2(1 +/1+8y/(n+7)%) > x> 2 and in Region III for
WD (14 1/14 87/ (1 +7)°) > A > A (7%) (because A, (7*) > 2).

Other cases (i.e. maximum without suppression of prevalence; minimum s.t. p., >
Po > p(T)min > 0, etc.) can be showed in the same way. Note that the principal

difference between Regions IT and IIT is that we would observe the interval of p(7) =0
only in Region III for 22X < X < A, (7). ]
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