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1 Introduction

In structural vector autoregressive (SVAR) modelling a major problem is
to find convincingly identified shocks which are informative about the actual
reactions of a set of variables to unexpected exogenous innovations. Although
economic theories and models often provide some information which can
be used for identification, this is not always sufficient to fully identify the
shocks of interest. Different cures for this problem have been proposed over
the years. In the earlier VAR literature a triangular orthogonalization of
the shocks which results in a recursive structure was quite popular (e.g,
Sims (1980)). This kind of identification was often based on some ad hoc
reasoning and sometimes it was proposed to try different orderings which
would result in different recursive structures and check the robustness of the
main results (Amisano and Giannini (1997), Liitkepohl (2005, Section 2.3.2)).
Another proposal is to identify only some of the shocks (see Christiano,
Eichenbaum and Evans (1999)). This approach works well as long as there
is information to identify the shocks of primary interest. Unfortunately, this
is not always possible (see again Christiano et al. (1999)). Other approaches
use restrictions for the long-run effects of the shocks (Blanchard and Quah
(1989), King, Plosser, Stock and Watson (1991), Pagan and Pesaran (2008)),
inequality restrictions (Uhlig (2005), Canova and De Nicolé (2002), Faust
(1998)), Bayesian methods (Koop (1992)) or statistical properties of the data
such as the residual distribution (Lanne and Liitkepohl (2009)), structural
breaks or heteroskedasticity (Rigobon (2003), Lanne and Liitkepohl (2008)).

In this study we will consider the latter type of identifying information. In
other words, we will use specific properties of a statistical model to achieve
identification. More precisely, we will consider special features of Markov
regime switching (MS) models to identify structural shocks. These models
were introduced by Hamilton (1989) as tools for time series econometrics.
They were extended to the VAR case by Krolzig (1997) and they have been
considered for SVAR analysis, e.g., by Sims and Zha (2006) and Rubio-
Ramirez, Waggoner and Zha (2005). Sims, Waggoner and Zha (2008) present
Bayesian methodology for handling general versions of MS-SVAR models.
They were found to be useful, for instance, in business cycle analysis. Thus,
they are potentially suitable models in many situations where SVAR models
have been used traditionally. In contrast to other MS-VAR studies we will
argue that in these models shocks can be identified by the assumption that
they are orthogonal across different regimes. Conditions will be given which
ensure identification of the shocks under this assumption. A crucial condition
is that the residual covariance matrices of the VAR model vary across regimes.
In fact, since identification will hinge on MS in the residual covariance matrix,



we will focus on a model where the other parameters are constant across
regimes. Such models were found to be particularly useful in applications
reported by Sims and Zha (2006) and Sims et al. (2008).

An important advantage of our approach is that some crucial assumptions
necessary for the identification of the shocks can be checked with statistical
methods. We will also discuss an extension of the setup to systems with
integrated and cointegrated variables. In that case we will consider vector
error correction models (VECMs) which makes it easy to accommodate long-
run restrictions for the effects of the shocks in a way proposed by King et al.
(1991) and others.

To illustrate our approach we apply it to two examples from Lanne and
Liitkepohl (2009). The first one considers a stationary system consisting of
US gross domestic product (GDP), an interest rate and stock prices. It was
used previously to investigate the impact of fundamental shocks on stock
prices. The second example is based on a VECM and analyzes the relation
between European and US interest rates.

The paper is structured as follows. In the next section our model setup is
presented, identification is discussed and the associated estimation strategy
is considered. In Section 3 the empirical applications are presented and
conclusions are provided in Section 4. A theoretical result regarding matrix
decompositions is given in the Appendix.

2 The Model

2.1 General Setup
We consider a K-dimensional reduced form VAR(p) model of the type

Y = Ddt + Alytfl + -+ Apytfp + Uy, (21)

where v, = (Y14, - - -, Yxe)" is a K-dimensional vector of observable time series
variables, d; is a deterministic term with coefficient matrix D, the A;’s (j =
1,...,p) are (K x K) coefficient matrices and wu; is a K-dimensional white
noise error term with mean zero and positive definite covariance matrix 3,
that is, u; ~ (0,%,). If some of the variables are cointegrated, the VECM
form may be more convenient,

Ayt = l)*d;;< + Oéﬂly;:,l + FlAytfl + 4 prlAyt7p+1 -+ Ug, (22)

where A denotes the differencing operator, defined such that Ay, = v, —y;_1,
Ij=—(A4+--+A4,) (G=1,...,p—1)are (K x K) coefficient matrices,



ais a (K x r) loading matrix of rank r, 3 is the (K* x r) cointegration ma-
trix which may include parameters associated with deterministic terms and
y;_1 1s y;—1 augmented by deterministic terms in the cointegration relations.
The rank r is the cointegrating rank of the system. The term d; represents
unrestricted deterministic components and its parameter matrix is denoted
by D*.

In the standard SVAR approach a transformation of the reduced form
residuals u, is used to obtain the structural shocks, say ;. A transformation
matrix B is chosen such that ¢, = B~ u; ~ (0, I) has identity covariance
matrix, that is, the structural shocks are assumed to be orthogonal and typ-
ically their variances are normalized to one. Hence, ¥, = BB’. To obtain
identified, unique structural shocks, some restrictions have to be imposed on
B. Often zero restrictions or long-run constraints are used in this context.
A zero restriction on B implies that a certain shock does not have an instan-
taneous effect on one of the variables whereas long-run restrictions exclude
permanent effects of shocks on some or all of the variables. Specific examples
will be considered in our applications in Section 3. It is also straightforward
to extend the models considered so far to allow for restrictions to be placed
on the instantaneous relations of the variables rather than the shocks. This is
most easily done in the context of the so-called AB model, the VAR version
of which has the form

Ayt = Ddt + Alyt—l + -+ Apyt—p + B€t. (23)

For this model the reduced form covariance matrix is ¥, = A"'BB'A™V.
More restrictions are needed to identify both A and B. Often one of the two
matrices is the identity matrix, however, and it is just a matter of convenience
to place the restrictions on the other matrix.

Notice that, although normality of the w;’s is often assumed for conve-
nience, such an assumption is usually not backed by theoretical considera-
tions nor is it necessarily required for asymptotic inference. Moreover, VAR
residuals are often found to be nonnormal in applied work. In the following
we will specify a Markov switching structure on the residuals which implies
a more general distribution class for the u;’s and we will discuss how that
can be used for the identification of shocks.

2.2 Markov Regime Switching Residuals

We assume that the distribution of the error term u; depends on a Markov
process s;. More precisely, it is assumed that s; (t = 0,+1,4+2,...) is a
discrete Markov process with two different regimes, 0 and 1. We focus on a



two regime case here for convenience to simplify the following notation and
discussion. An extension to more than two regimes is straightforward. The
case of two regimes only is also considered in the applications in Section 3
and is therefore preferable here to simplify the discussion of the identification
of shocks.

The transition probabilities are
pij = Pr(s; = jlsi-1 =14), 4,5 =0,1.
The conditional distribution of u; given s; is assumed to be normal,
ug|se ~ N(0,Xs,). (2.4)

Although the conditional normality assumption is made for convenience, it
should be clear that it opens up a much wider class of distributions than
just the unconditional normal. We will discuss this issue further below. The
distributional assumption will be used for setting up the likelihood function.
If normality of the conditional distribution does not hold, the estimators
will only be pseudo maximum likelihood (ML) estimators. The normality
assumption in (2.4) is not essential for our identification of shocks.

Note that in our model the transition probabilities are the same in all
periods. They can be conveniently summarized in the (2 x 2) transition

matrix
pP— Poo  Po1 .
Pio P11

This matrix contains all necessary conditional probabilities to reconstruct
the distributions of the stochastic process s;. For example, the unconditional
distribution of s; can be derived from the conditional probabilities in P (see,
e.g., Hamilton (1994, Chapter 22)). For later reference we mention that
the unconditional probabilities of the states of an ergodic Markov chain are
Pr(s; =0) =1— Pr(s; =1) = (1 — p11)/(2 — poo — p11)-

Moreover, p1g = 1 — poo and poy = 1 —p11. If poo = po1 and p11 = pio, the
conditional distributions of the states are independent of the previous state,
that is,

Pr(s; = 7) = Pr(sy = jlsi=1 =0) = Pr(sy = jlsy1 = 1), j=0,1
Hence, the MS model reduces to a model with mixed normal (MN) errors,

u N (0, %) with probability v = poo,
' N(07 Y1) with probability 1 —~ = py;.



In that case the transition matrix has the form

P:[ o7 ] (2.5)

l—vy 1—7v

Given that mixed normal distributions constitute a very large and flexible
class of distributions, this shows that assuming a conditional normal distribu-
tion in (2.4) results in a very rich distribution class for the error terms. The
case of mixed normal errors in the context of SVAR analysis was considered
by Lanne and Liitkepohl (2009).

Identification of shocks in the MS model can be achieved by the assump-
tion that the shocks are orthogonal across regimes and only the variances
of the shocks change across regimes while the impulse responses are not af-
fected. In particular, the instantaneous effects are the same in all regimes.
Note that the assumption of time invariant impulse responses throughout
the sample period is common in standard SVAR analysis and, hence, not a
particularly restrictive element in our setup.

A well-known result of matrix algebra establishes that there exists a
(K x K) matrix B such that ¥y = BB’ and ¥; = BAB’, where A =
diag(\1, ..., Ak) is a diagonal matrix (e.g., Liitkepohl (1996, Section 6.1.2)).
From ¥q = BB’ and ¥; = BAB’ we get a total of K (K + 1) equations which
can be solved uniquely for the K2 elements of B and the K diagonal elements
of A under mild conditions. In the Appendix we give a result which implies
that the matrix B is unique up to changes in sign if all diagonal elements of
A are distinct and ordered in some prespecified way. For example, they may
be ordered from smallest to largest or largest to smallest. The result in the
Appendix is formulated in such a way so that it can be used for models with
more than two regimes. For the case of two regimes the important point to
note here is that our setup delivers shocks &, = B~!u, which are orthogonal
in both regimes. Since B is unique (up to sign changes), the model is in
fact identified by the assumption that the shocks have to be orthogonal and
the instantaneous effects are identical across regimes. Thus, any restrictions
imposed on B in a conventional SVAR framework become over-identifying in
our setup and, hence, can be tested against the data.

The nonuniqueness of B with respect to sign in our framework is no
problem for our purposes. The precise condition is that all signs in any of
the columns of B can be reversed. This corresponds to considering negative
shocks instead of positive ones or vice versa. Usually it will not be a problem
for the analyst to decide on whether positive or negative shocks are of interest.
Also, from the point of view of asymptotic inference, local identification
of this kind is sufficient for the usual results to hold. Provided no sign
restrictions are used, this kind of nonuniqueness of the shocks with respect



to sign changes is also common in standard SVAR analyses although this is
not always emphasized.

Rubio-Ramirez et al. (2005) also discuss identification in MS-SVAR mod-
els. However, they allow all parameters to differ across regimes. In their
setup, assuming the same impulse responses in all regimes is not plausible
and therefore assuming the same instantaneous effects of the shocks would be
restrictive. Hence, they use alternative identification conditions. In our setup
MS is confined to the error covariance matrix only and no MS is assumed
in other parameters because the latter is not needed for the identification of
the shocks and we try to remain as close as possible to the standard SVAR
approach which assumes time invariant impulse responses for the full sam-
ple period. Allowing for MS in the residuals only means that we basically
remain within a standard SVAR model. In fact, this feature of a model
was diagnosed but not used for identification in Sims and Zha (2006), for
example.

2.3 Estimation

Under our assumption of conditional normality given a particular state in
(2.4), maximum likelihood (ML) estimation is a plausible estimation method.
If the conditional normality does not hold it will deliver pseudo ML estima-
tors. Hence, for a 2-state MS-VAR model the parameters are estimated by
maximizing the (pseudo) log likelihood function

T
Ir = Z log f(y¢|Ye-1),

t=1

where }/;5—1 = (y—p-i-la s 7yt—1)7

1
FulYia) = Pr(se = j1Yiea) f(else = 5, Yio1)

J=0

and
: - - | :
Flurlse =, Yeer) = (2m) "2 det(S)) 1/Qexp{‘§uézj 1“t}’ j=0.1

Here ¥y = BB’, ¥; = BAB’' and the u; are the reduced form residuals.
Moreover,

Pr<3t = 0’1@71) _ Poo  Po1 Pl"(Stfl = O‘thl)
PY(St = 1|Y271) P10 P Pr<3t71 = 1\}/271) ’

6



where

Pr(s; = j|Y2)

1
= Pr(s; = jlYi1) f(yelse = j, Y1) ZPT(St = i|Yi 1) f(yslse =1, Yi1)
=0

j=0,1.

The optimization of [ may be done with a suitable extension of the EM
algorithm described in Hamilton (1994, Chapter 22). A blockwise algorithm
for computing the ML or, in a Bayesian framework, the posterior mode es-
timates was proposed by Sims et al. (2008) which may be more suitable for
models with many free parameters, e.g., when many variables are considered
and the number of regimes is larger than 2 or 3.

The properties of Gaussian ML estimation in a univariate model of type
(2.4) (that is, the process is white noise conditional on a given state of the
Markov chain) were discussed by Francq and Roussignol (1997). Very general
asymptotic estimation results for stationary processes are available in Douc,
Moulines and Rydén (2004). The case of cointegrated VARs seems less well
explored. If the cointegration relations are known, there is no problem be-
cause the results for stationary processes can be used. For the situation
where the cointegration relations are unknown we propose to use a two-step
estimation procedure. In the first step the cointegration relation is estimated
by Johansen’s (1995) reduced rank regression. Then an ML estimation con-
ditional on the first-step cointegration relation is performed. Although there
is no apparent reason why this procedure should not result in estimators with
standard asymptotic properties, we admit that we do not know of a formal
proof if the cointegration matrix is unknown and has to be estimated. In
the application in Section 3.2, where cointegrated variables are considered,
assuming known cointegration relations turns out to be reasonable.

3 Illustrations

3.1 US Model

Our first example uses a small system of US macro variables from Binswanger
(2004) which has also been used by Lanne and Liitkepohl (2009). The pur-
pose of Binswanger’s analysis was to determine the impact of fundamental
shocks on the stock market. The issue has been discussed previously in
the literature. For example, in an SVAR analysis Rapach (2001) finds that
macro shocks have an important effect on real stock prices. On the other

7



hand, Binswanger (2004) uses US data from 1983 to 2006 and concludes that
real activity shocks explain only a small fraction of the real stock price vari-
ability. It is not uncommon in SVAR analyses that the specification of the
shocks is essential for the outcome.

We use quarterly US data for the period 1983Q1 — 20063 for the three
variables (gdpy, ¢, sp;)’, where gdp, denotes log real gross domestic product,
ry is the 3-months Treasury bill rate and sp; stands for log real stock prices,
as in Lanne and Liitkepohl (2009). More details on the data are given in
Appendix B of the latter paper. Binswanger’s objective was to assess the
importance of fundamental shocks for stock price movements. Fundamental
shocks in this context are shocks which have a long-term impact on economic
growth and the interest rate.

Binswanger (2004) assumes that there is just one nonfundamental shock.
It is specified by the requirement that it may have a long-term impact on
stock prices, sp;, but not on gdp; and r;. The three structural shocks are
identified by imposing zero restrictions on the matrix of long-run effects of
the shocks as follows:

A)'B = (3.1)

* % O
* O O

* % %

Here an asterisk denotes an unrestricted element. Hence, the matrix of long-
run effects, A(1)71B, is lower-triangular. The assumption that the last shock
is nonfundamental and, in particular, does not have a long-term impact on
gdp; and r;, implies the two zeros in the last column of A(1)~!B. The addi-
tional zero restriction in the second column has little justification, however.
It is to some extent arbitrary and is imposed to obtain identified shocks in
the classical SVAR framework.

Lanne and Liitkepohl (2009) argue that identifying the shocks without
such a restriction is desirable. They use a VAR(4) model in first differences
for y, = (Agdpy, Ary, Asp;) because the variables have unit roots but are
not cointegrated. The residuals are found to be nonnormal. Therefore they
fit a model with mixed normal residuals and use this data feature to iden-
tify shocks and to check the structural restrictions imposed by Binswanger
(2004). As mentioned in Section 2.2, a model with mixed normal residuals is
just a special case of our MS model. The mixed normal model assumes that
the regimes have no persistence and are assigned at random in each period.
For the present example, allowing for some persistence in the regimes may
be plausible for different reasons. For example, volatility changes could be
linked to business cycle fluctuations and, hence, may derive persistence from
the fact that periods of positive and negative growth tend to last for several



Table 1: Estimates of Structural

riod: 1983Q2 — 2006)3)

Parameters

of MS Models
(Agdpy, Ary, Asp,)' with Lag Order p = 4 and Intercept Term (Sample Pe-

for

unrestricted (3.1) (3.2)

Parameters | Estimates Std.Dev. | Estimates Std.Dev. | Estimates Std.Dev.
A 0.567 0.222 0.627 0.270 1.284 0.673
Ao 0.931 0.402 1.643 1.245 0.614 0.255
A3 12.71 4.492 11.96 4.720 12.55 4.617
Poo 0.951 0.036 0.950 0.040 0.950 0.038
P11 0.876 0.076 0.877 0.091 0.870 0.085
uncond. 0.716 0.714 0.723

state prob.s 0.284 0.286 0.277

log L/T 7.5860 7.5666 7.5668

NOTE: Standard errors are obtained from the inverse Hessian of the log-
likelihood function.

periods. Alternatively, the MS structure may just capture conditional het-
eroskedasticity which may arise from other sources than the business cycle.

Therefore, we have fitted VAR models with MS residuals, assuming that
Y1 # ¥5.2 As in Lanne and Liitkepohl (2009) we have estimated an unre-
stricted model as well as one with the structural restrictions specified in (3.1).
In addition, we have also estimated a model with only two zero restrictions
on the last column of the matrix of long-run effects,

A()'B = (3.2)

* % %
* ¥ %
* O O

Some estimation results and a range of tests which will be discussed in the
following are given in Tables 1-3.

The first question of interest is whether the MS model is preferable to the
model with mixed normal residuals which was used by Lanne and Liitkepohl
(2009). Looking at the estimated state probabilities of the unrestricted model
in Table 1 they are both larger than 0.8 and, hence, the states appear to
have some persistence. Still, it is desirable to check the MS model against
the MN model more formally. Therefore we have performed a likelihood
ratio (LR) test of the restriction on the transition matrix specified in (2.5).

2The computations were done with GAUSS programs using EM iterations to get close
to the optimum and then switching to the Newton-Raphson algorithm from the CML
library for optimizing the likelihood function.



Table 2: Wald Tests for Equality of \;’s for Models from Table 1

unrestricted (3.1) (3.2)
H, test value p-value | test value p-value | test value p-value
A=Ay = A3 7.974 0.019 7.739 0.021 7.677 0.022
AL = Ao 0.611 0.434 0.630 0.427 0.969 0.325
A= A3 7.284 0.007 5.645 0.018 6.608 0.010
Ao = A3 6.756 0.009 3.869 0.049 5.732 0.017

Table 3: LR Tests of Models for (Agdp;, Ary, Asp;)’

Assumed
Hy Hy LR statistic distribution p-value
MN MS 2.959 x3(1) 0.085
(3.1) unrestricted 3.491 X2 (3) 0.322
(3.2) unrestricted 3.456 x2(2) 0.178
(3.1) (3.2) 0.036 x3(1) 0.850
1
0.9t
0.8}
_o7f
§ 0.6
“oa}
0.2}
"L |
) 1985 1090 1005 2000 2005 2010

Figure 1: Probabilities of State 0 (Pr(s; = 0|Y7)) for the unrestricted model
for (Agdp, Ary, Asp,) from Table 1.
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In other words, we test the restriction that the probabilities in each row of
P are constant. For this purpose we have reestimated the unrestricted MN
model from Lanne and Liitkepohl (2009) and compare the maximum of the
likelihood with that of the unrestricted MS model given in Table 1.> The
resulting LR test is reported in Table 3 together with some other LR tests
which will be discussed later. The corresponding p-value turns out to be
8.5%. Thus, we can reject the MN model at a 10% level but not at the 5%
level. In other words, there is weak evidence in favor of the MS model.

Further evidence is provided by the probabilities of being in State 0 which
are plotted in Figure 1. More precisely, in Figure 1 we see the state proba-
bilities conditional on the full sample information, Pr(s; = 0|Yr), based on
the estimated unrestricted model. Obviously, these probabilities are quite
persistent. They do not correspond strictly to the phases of the official US
business cycle, however. Since one of the \;’s of the unrestricted model in
Table 1 is quite large (A3 = 12.71) while the other two are around one or a
little smaller, the second state is one where at least one of the shocks has a
substantially larger volatility than in the first regime. Thus, the state proba-
bilities plotted in Figure 1 correspond to a regime of lower volatility at least
in one of the shocks. The corresponding state appears to represent periods
when the stock market had a tendency to increase. Notice that the proba-
bility of being in this state is low around the stock market crash in 1987 and
during the adjustment period after the technology bubble in the first years
of the new millennium. In any case, there appears to be some persistence
in the state which implies that the MS model may describe the data better
than the MN model. Therefore we will now consider the previously used
identifying restrictions within our MS model.

As mentioned earlier, the zero restrictions in (3.1) and (3.2) are over-
identifying if the \;’s are distinct. Hence, it is instructive to look at the es-
timates in Table 1. Clearly, the estimated \;’s of the unrestricted model are
quite different. Their standard errors are also quite large, however. There-
fore we have performed Wald tests of equality of these quantities and present
them in Table 2. These tests have asymptotic y?-distributions because the
estimators have the usual normal limiting distributions under our assump-
tions. The p-values reported in Table 2 are based on these y2-distributions.
In this context it may be worth noting that, in contrast to the matrix B,

3Since the likelihood is highly nonlinear and has multiple local maxima, it is not un-
common to obtain slightly different results with another estimation algorithm. Therefore
it was necessary to reestimate the MN model with our estimation algorithm to ensure
strict comparability of the results which is important for a proper comparison of the like-
lihood maxima. The results in Lanne and Liitkepohl (2009) are qualitatively similar to
our estimation results for the MN model although they differ slightly numerically.

11



the \;’s are identified even if they are identical. Thus, testing their equality
makes sense. The test that all three \;’s are equal has a p-value of 1.9%
and, hence, clearly rejects at a 5% level. The null hypotheses Hy : A\; = A3
and Hy : Ay = A3 are even rejected at the 1% level. On the other hand,
at common significance levels, it cannot be rejected that A\; = Ay. Similar
results are also obtained if the restrictions in (3.1) and (3.2) are imposed.
Thus, there is strong evidence that at least two of the three \;’s are distinct.

Let us for the moment still pretend that the three A;’s in the unrestricted
model are distinct and, hence, all three shocks are identified without further
restrictions on B. In that case, the zero restrictions imposed in (3.1) and
(3.2) are overidentifying and can be tested by LR tests. These test results are
also given in Table 3. It turns out that none of the zero restrictions can be
rejected at conventional significance levels. This result is also obtained when
only the additional restriction in the second column of the matrix of long-run
effects in (3.1) is tested which was not backed by theoretical considerations
(see the last row in Table 3). The resulting p-value is 0.850 and, hence,
the data clearly do not object to this restriction. Although this means that
we end up with the same model which was used by Binswanger (2004), the
advantage of our approach is that the restrictions can be backed by statistical
tests.

Of course, these conclusions are based on the assumption that all three
A;’s are distinct which does not have strong support from the data. Therefore
it is worth reflecting on the implications of some \;’s being identical. This
would mean that some of the restrictions imposed on the matrix of long-run
effects in (3.1) and (3.2) may in fact not be overidentifying and, hence, the
LR tests may have fewer degrees of freedom than assumed in Table 3. In
that case the p-values would be smaller than the ones reported in the table.
However, in the absence of further information, we have no basis for rejecting
the restrictions in (3.1).

3.2 European/US Interest Rate Linkages

Our next example is also from Lanne and Liitkepohl (2009). It considers euro
area and US interest rate linkages to investigate the relation between Euro-
pean and US monetary policy. It is based on an earlier study by Briiggemann
and Liitkepohl (2005) who performed a standard SVAR analysis for cointe-
grated variables and concluded that European monetary policy depends to
some extent on US monetary policy whereas the reverse direction is not ap-
parent from the data.

They considered monthly data for a euro area three months money market

rate PV, a euro area 10-year bond rate RFY, a US three months money mar-

12



ket rate 7% and a US 10-year bond rate RYS. Thus, y; = (RYS, VS REV rEUY.
The sampling period is 1985M 1 — 2004M12. Details on the data construc-
tion and their sources are also given in Appendix B of Lanne and Liitkepohl
(2009). Briiggemann and Liitkepohl (2005) found that all four variables
are I(1) and that both the expectations hypothesis of the term structure
and the uncovered interest rate parity hold. Hence, stationarity of the two
spreads RYS —rVS and REV —rEV as well as the two parities RV® — RFV and
r7 — rEU is supported. These four relations represent three linearly inde-
pendent cointegration relations from which the fourth one can be derived by
a linear transformation. Therefore Lanne and Liitkepohl (2009) considered
a four-dimensional system with three known cointegration relations.

They used a VECM for y; with a constant term, three lags of Ay, (i.e.,
p = 4), a cointegrating rank of r = 3 and MN residuals to investigate the
impact of monetary shocks in the US and in Europe. Again it is easy to
think of arguments for a more general MS specification of the residuals and,
hence, we have estimated the corresponding MS model and we have tested
it against an MN model. Estimation and test results are given in Tables 4-6.
They will be discussed in the following.

Table 4: Estimates of MS-VECM for (RV® rU% REV rPV) with Lag Or-
der p = 4, Cointegrating Rank r = 3 and Intercept Term (Sample Period:
1985M1 — 2004M12)

unrestricted one trans. shock two trans. shocks
Parameters | Estimates Std.Dev. | Estimates Std.Dev. | Estimates Std.Dev.
A1 0.812 0.169 0.811 0.168 0.849 0.186
Ao 15.87 3.433 15.90 3.332 14.73 3.232
A3 3.499 0.807 3.487 0.796 3.386 0.901
A4 8.422 1.818 8.445 1.802 8.233 1.757
Doo 0.904 0.036 0.905 0.036 0.911 0.038
P11 0.919 0.033 0.919 0.033 0.928 0.035
uncond. 0.459 0.458 0.448
state prob.s 0.541 0.542 0.552
log L/T 1.65305 1.65294 1.63751

NOTE: Standard errors are obtained from the inverse Hessian of the log-

likelihood function.

A test of our unrestricted MS model against an unrestricted MN model,

i.e., of the restriction in (2.5) is reported in Table 6. The p-value is extremely
small so that the MN model is rejected at any reasonable significance level.
Hence, there is strong evidence that the MS model is preferable to the MN
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Table 5: Wald Tests for Equality of A\;’s for Models from Table 4
unrestricted one trans. shock two trans. shocks
H, test value p-value | test value p-value | test value p-value
AL = Ao 19.22 0.000 20.46 0.000 18.58 0.000
Al = A3 10.70 0.001 10.87 0.001 7.251 0.007
AL =M 17.40 0.000 17.82 0.000 17.59 0.000
Ay = A3 12.34 0.000 13.10 0.000 10.76 0.001
Ay = Mg 3.808 0.051 3.940 0.047 3.206 0.073
A3 = Mg 5.996 0.014 6.230 0.013 5.991 0.014

Table 6: LR Tests of Models for (RVS, 7S REU rEUY

Assumed
Hy Hy LR statistic distribution p-value
MN MS 1530 () 0.000
one trans. shock unrestricted 0.051 x2(1) 0.822
two trans. shocks unrestricted 7.335 X2 (2) 0.026

model for the present data set. This result is not surprising given that the
estimated transition probabilities pgg and py; are both larger than 90% which
indicates that the states have considerable persistence. The estimated prob-
abilities of State 0, Pr(s; = 0|Yr), are plotted in Figure 2. Three of the \;’s
associated with the unrestricted model in Table 4 are considerably larger
than one while the remaining one is not much smaller than one. Hence, over-
all the volatility in the second state (State 1) is considerably larger than in
the first state. The probabilities in Figure 2 are those of the low volatility
state. Apparently, the second half of the sample is characterized by lower
volatility of shocks to the system. Indeed, the first differences notably of the
short-term interest rate series appear to have overall a smaller variability in
the second part of the sample except for the period around the year 2000 (see
Figure 3). The lower volatility periods correspond to the high probabilities
of State 0 in Figure 2. Thus, the states reflect the change in volatility. For
our purposes it is important to note that the MS model describes the data
better than previous SVAR counterparts. Hence, it is of interest to study its
implications for structural analysis.

The estimated A;’s of all the models in Table 4 are quite different. One-
standard error intervals around the estimates do not overlap. Again we have
performed Wald tests to check equality of the A\;’s. The results of pairwise
tests are presented in Table 5 and confirm distinct A;’s. The p-values of all
pairwise tests are smaller than 10% and most of them are even smaller than
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Figure 2: Probabilities of State 0 (Pr(s; = 0|Y7)) for the unrestricted model
for (RYS, rUS REV rEUY from Table 4.

1%. Thus, there is evidence that the \;’s are distinct and, hence, the shocks
can be identified by assuming that they are orthogonal and have identical
instantaneous impacts in both states. Consequently, we can check some of
the structural assumptions that were used by Briiggemann and Liitkepohl
(2005) and Lanne and Liitkepohl (2009).

One important conclusion of the previous studies was that there are
two transitory shocks which were viewed as candidates for monetary shocks.
Since there are three cointegration relations, there can be up to three tran-
sitory shocks and Lanne and Liitkepohl (2009) find that the data actually
only support two such shocks in their MN framework. This issue is in-
vestigated by testing suitable zero restrictions on the matrix of long-term
effects of the shocks. This matrix is known to be of the form =B, where
E =0 (Ixk — Zf:_ll [)B.] '/, and o) and (3, signify orthogonal com-
plements of o and 3, respectively (e.g., Liitkepohl (2005, Section 9.2)). A
shock is transitory if the corresponding column of this matrix consists of ze-
ros. Such restrictions become testable in our MS models because the shocks
are identified via the MS structure.

LR tests are presented in Table 6. The restrictions associated with one
transitory shock (one zero column in ZB) are not rejected at conventional
significance levels whereas two transitory shocks are rejected at the 5% level,
the p-value being 0.026. Note that the number of degrees of freedom of the
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asymptotic x? distribution of the LR statistic implied by restricting a column
of ZB to zero take into account the reduced rank of the matrix of long-run
effects. In particular, since the cointegrating rank is three, the (4 x 4) matrix
=B has rank one so that a zero column of =B stands for a single restriction.
Thus, in our model, the data do not support the existence of two transitory
shocks.

Assuming one transitory shock only, we have also tested a number of
alternative restrictions on its effects which did not help in determining a
specific interpretation of this shock. In particular, we cannot identify it as
a US or European monetary policy shock. Thus, we find little support for
assumptions that allow us to explore the relation between US and European
monetary shocks. Consequently, we do not find evidence for the hypothesis
that US monetary policy has a more important impact on European mone-
tary policy than vice versa. Thus, using the MS framework sheds doubt on
whether the matter can be settled within a simple model of this type.

4 Conclusions

In this study we have augmented VAR models by Markov switching to obtain
identified shocks. We have shown that under general conditions it is enough
to assume orthogonality of the shocks and invariance of the impulse responses
across regimes to obtain identification. A main advantage of this setup is that
the data are informative with respect to the additional conditions needed
for identification. Moreover, other assumptions which are typically used in
SVAR analysis become overidentifying in our framework and, hence, are
testable.

We have applied these ideas to two SVAR models from the literature
where a MS structure in the residual volatility is plausible. In the first
example a US macro system consisting of GDP, an interest rate and a stock
price index is analyzed and it is found that in our framework previously
assumed identifying restrictions can be confirmed. In the second example the
interest rate linkage between the US and the euro area is investigated. The
MS model is found to be a better description of the data than previous SVAR
models. Thus, it makes sense to use our framework for testing previously
made identifying assumptions against the data. It turns out that a crucial
restriction cannot be confirmed in our framework. Overall our setup appears
to be a useful tool to extract more information on identifying assumptions
in SVAR analysis from the data.

The limited knowledge on the statistical inference procedures in partic-
ular when cointegrated variables are considered offer directions for further
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research. Moreover, the numerical challenges in estimating the models are
nonnegligible if larger models with many variables and states are of interest.
The algorithms proposed by Sims et al. (2008) may be useful in this context
and may help to overcome numerical problems in difficult situations. Further
investigations in this direction are also left for the future.

Appendix. A Uniqueness Result for Covari-
ance Matrix Decomposition

PI’OpOSitiOH A. Let 20 = BB and Ez = BAZ‘B/7 where Az = diag()\il, ey )\zK)a
i=1,..., M, benonsingular (K x K) covariance matrices. Then the (K x K)
matrix B in the decomposition ¥ = BB’ is unique apart from sign reversal
of its columns if for all k # j € {1,..., K} there exists an ¢ € {1,..., M}
such that >\zk 7é /\Z] O

Proof: Suppose Q) = [¢;5] is a (K x K) matrix such that
o, = BB' = BQQ'B' (A1)

and

To show the uniqueness of B up to multiplication of its columns by —1, we
have to show that the only feasible matrix @) is a diagonal matrix with +1
on the main diagonal.

Pre- and post-multiplying (A.1) by B~! and its transpose, respectively,
implies that QQ’ = Ik and, hence, () must be orthogonal. Similarly, it follows
from (A.2) that QA;Q" = \; or QA; = NQ, i = 1,..., M. Consequently,
AirQr = Aiqe for all e =1,..., M. Thus, g = 0 for k # [ because \jx # Ay
for at least one i € {1,..., M}. In other words, () is an orthogonal diagonal
matrix and, hence, all diagonal elements of () are +1 because the diagonal
elements of a diagonal matrix are its eigenvalues and the eigenvalues of a
diagonal real orthogonal matrix are all £1. This proves the proposition.
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