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Abstract 
This study investigates the dependence structure of extreme realization of returns between the mature 
markets of Japan and the U.S. and the emerging markets of Cyprus, Greece and that of six Asia-
Pacific counties, with the application of multivariate Extreme Value Theory that best suits to the 
problem under investigation. The evidence we obtain indicates that the left tail extreme correlations 
(downside risk) are not substantially different from the unconditional ones or from those obtained 
from a multivariate Dynamic Conditional Correlation GARCH model (DCC) with asymmetric GJR-
GARCH univariates. Moreover, a clustering analysis shows that the examined countries do not belong 
to a distinct block on the basis of the extreme correlations we have estimated. The policy implications 
are that the benefits from portfolio diversification between the Cyprus stock market and the markets of 
Asia-Pacific countries, Greece, Japan and the U.S. are not eroded during crisis periods, in that no 
“correlation breakdown” has been witnessed. 
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1. Introduction 

The most appropriate methodology to use for the estimation of the dependence 

structure between two markets, under extreme circumstances, converges on the choice of 

the most general data generating process for the tails of the distribution. In this study we 

use multivariate extreme value theory in order to calculate extreme correlations, for the 

left tail returns (downside risk), between Cyprus and six emerging Asia-Pacific equity 

markets, Japan, the U.S and Greece.  

In the literature different measures of dependence for the right and left tails imply a 

different degree of association of financial asset returns depending on the sign of the 

shocks. In our paper the focus is not on testing for the validity of the multivariate normal 

distribution for the extreme returns but rather on the classification of the examined 

markets into low, medium and high risk groups on the basis of the estimated conditional 

extreme correlations. Therefore, we answer the question whether the contagion of 

financial crises is more or less the same for the investigated countries. We are also able to 

provide some evidence on the comparison of the extreme correlations with the 

conditional and unconditional ones. This line of research is of particular interest to 

international portfolio managers who systematically monitor correlations between 

various stock markets and the success of their policies is intimately linked to the stability 

of the estimated correlations they are based one.  

In their seminal paper King and Wadhwani (1990), report that changes in the 

correlation coefficient of financial asset returns have been associated with the notion of 

contagion. This term refers to the spread of downside market shocks from one country to 
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another and it can be explained from the existence of real and financial linkages between 

the countries or the behaviour, rational and irrational, of international investors (i.e., 

Karolyi (2003) provides a survey on this issue).  However, before we proceed with the 

explanations that have been offered to the correlation breakdown issue, there must be an 

agreement that this breakdown has really occurred. 

The investigation of the stability of the correlation coefficient has proven to be an 

obscure issue and recent research in this area has highlighted two major problems. First, 

the choice of “conditioning” the correlation index on periods of high volatility is not the 

appropriate one if we intend to test for a correlation breakdown. Many recent studies 

have shown that in this case we get biased estimates of the true correlation. Forbes and 

Rigobon (2002) studied the correlation between Mexico and 28 other countries and 

showed that when the correlation is adjusted for shifts in the variances less than 5% of the 

cases, traditionally classified in the group exhibiting contagion, still presented significant 

correlation changes. Boyer et al. (1999) show how the correlation breakdown is generated, 

when conditioning on realizations of one variable, for the cases of a pair of bivariate 

normal random variables and of a bivariate GARCH(1,1) process with a constant 

contemporaneous correlation coefficient. Rigobon (2003) shows that the adjustment of the 

correlation coefficients is biased when the data on stock market returns suffers, except for 

heteroscedasticity, from simultaneous equations and omitted variables problems. He then 

applies a new methodology that allows one to test for the stability of the transmission 

mechanism, taking into account all three predicaments. In his study that covers 36 stock 

markets during the last three major financial crises (Mexico 1994, Asia 1997, Russia 1998) 
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in less than 10% of the cases does the transmission mechanism change. Loretan and 

English (2000) computed adjusted, for the effect of volatility, correlation coefficients 

between daily returns on the UK FTSE 100 and the German DAX stock indices and they 

derived no evidence of a structural change during the Mexican crisis in 1994.  

A second and more critical issue is related to the suitability of the Pearson correlation 

index as a statistical measure of dependence when returns are not drawn form the class of 

elliptical distributions, a distinct member of which is the multivariate normal 

distribution. Embrechts et al. (2001) discuss the role of the linear correlation coefficient 

and other measures of dependence outside the class of elliptical distributions. It is 

known, for example, that the conditional correlation of a multivariate normal distribution 

tends to zero as the threshold used to define the tails tends to infinity. This contradicts 

however the widely held view that correlation across markets increases dramatically in 

the presence of large negative shocks. 

In their study Longin and Solnik (2001) addressed this issue by making use of 

asymptotic results from the MEVT which hold for a wide range of parametric 

distributions. They applied their methodology on monthly stock market returns from five 

mature capital markets and showed that the left tail extreme correlations are substantially 

larger than the right tail ones and furthermore that their asymptotic distribution is 

different from the multivariate normal. Poon et al. (2004) argue that traditional tests for 

asymptotic extremal dependence bias the results in favour of this hypothesis and they 

suggest an additional measure of extremal dependence for variables that are 

asymptotically independent. They apply the pair of dependence measures on daily data 
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of stock index returns of the five largest stock markets and they conclude that the 

asymptotic dependence between the European countries (United Kingdom, Germany and 

France) has increased over time but that asymptotic independence between Europe, 

United States and Japan best characterizes their stock markets behaviour. 

In the next section we offer a brief presentation of the copula methodology that allows 

the extraction of the dependence structure of a set of variables independently of the 

marginal distributions that might refer to a wide class of models. In the third part the 

multivariate GARCH model is presented. The fourth part of the paper describes 

dependence measures that are estimated for all possible pairs of series and the results are 

discussed. The main evidence is that the case for the existence of correlation asymmetry 

does not appear to be supported empirically. Finally, the classification of the markets in 

risk groups shows that the examined emerging markets do not seem to belong in a 

distinct cluster. 

  

2.  Extreme Value Theory 

2.1. Univariate models 

The possibility of predicting extreme negative returns in international equity 

markets would result in averting vast losses in the value of portfolios. However, the 

conventional VaR models utilize the entire empirical return distribution in risk 

estimation and consequently do not focus on the tails. Extreme Value Theory (EVT) deals 

with modeling the tails of return distributions with the use of parametric methods. This 

approach has been extensively used in the past in hydrology, meteorology and 

engineering for prediction of extreme natural phenomena.  
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Within the EVT context, the Peaks Over Threshold Model (POT-EVT) has been 

developed. The key result in POT-EVT is that, for a wide class of distributions, losses 

which exceed high enough thresholds follow the generalized Pareto distribution (GPD). 

Consider a certain high threshold u. We are interested in excesses above this threshold, 

that is, the amount by which observations overshoot this level. Since there are not any 

robust statistical methods in order to select a suitable threshold, a number of 

exploratory graphical methods have been developed. According to Neftci (Neftci, 2000) 

the threshold is 1.176u σ= ⋅  where σ is the standard deviation of the empirical 

distribution. Considering that 11. 176 (0.1)F−= , extreme values will lie in above the 

10th% quantile of an F Student- t(6). Alternatively, the Sample Mean Excess function is 

defined as follows:  
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i.e. the sum of the excesses over the threshold u divided by the number of data points 

which exceed the threshold u. The sample mean excess function en(u) is an empirical 

estimate of the mean excess function which is defined as e(u) = E[X-u|X>u]. The mean 

excess function describes the expected overshoot of a threshold given that exceedance 

occurs. In plotting the sample mean excess function we choose to end the plot at the 

fourth order statistic and thus omit a possible three further points; these points, being the 

averages of at most three observations, may be erratic. The interpretation of the mean 

excess plot is explained in Beirlant, Teugels & Vynckier (1996), Embrechts et al. (1997) 

and Hogg & Klugman (1984). If the points show an upward trend, then this is a sign of 
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heavy tailed behaviour. Exponentially distributed data would give an approximately 

horizontal line and data from a short tailed distribution would show a downward trend. 

In particular, if the empirical plot seems to follow a reasonably straight line with positive 

gradient above a certain value of u, then this is an indication that the data follow a 

generalized Pareto distribution with positive shape parameter in the tail area above u. 

Let y0 be the finite or infinite right endpoint of the distribution F. That is to say, F,  

{ }0
sup : ( ) 1y y R F y= ∈ < ≤ ∞ . We define the distribution function of the excesses over 

the high threshold u by:  
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0 y y u≤ < − . The theorem (Balkema & de Haan 1974, Pickands 1975) shows that 

under some conditions the generalized Pareto distribution is the limiting distribution 

for the distribution of the excesses, as the threshold tends to the right endpoint. That is, 

we can find a positive measurable function σ(u) in absolute value such that 
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where σ scale parameter (σ>0), μ location parameter and ξ tail index. When ξ>0 we have 

a reparametrized version of the usual Pareto distribution with shape α=1/ξ; if ξ<0 we 
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have a Beta distribution; ξ=0 gives the exponential distribution.  

According to Balkema - de Haan – Pickands theorem for selected high threshold 

μ=u the extreme distribution Fu(y) is approximated by Gξ,σ,u(y) for determined ξ and σ. 

The fit to the tail of the original distribution above the high threshold is given 

by ( ) ( )( ) ( )( ) 1 ( )
u

F y P Y y P Y u F Y u P Y u= ≤ = − ≤ ⋅ − + ≤ . We now know that we can 

estimate Fu(Y-u) by for Gξ,σ(y-u) for u large. We can also estimate ( ) ( )P Y u F u≤ =  from 

the data by Fn(u), the empirical distribution function evaluated at u. This means that for 

y >=u we can use the tail estimate: 

                 , ,
ˆ( ) (1 ( )) ( ) ( )

u
F y F u G y F u

ξ σ
= − +               (4) 

It can be shown that if N the number of extreme values over u and n the total sample 

number of empirical df F, the estimation of VaR is given as follows (Smith, 1987): 

( )
ˆ

ˆ
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ˆ
n

VaR u p
N

ξ
σ

ξ

−  
 = + − − 
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2.2. Multivariate models 

Linear Correlation is used as a measure of dependence between financial 

instruments based on the assumption of multivariate normally distributed returns. 

However, linear correlation cannot capture the non-linear dependence relationships 

that exist between many real world risk factors. 

If the variables have a jointly multivariate normal distribution that belongs to the 

elliptical class then the standard correlation approach to dependency is natural and 

unproblematic. The Normal, Student or Generalized error distributions are some 
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examples of the elliptical class. In addition, only in the case of the multivariate normal 

can uncorrelatedness always be interpreted as independence. Generally, if the joint 

distribution of portfolio variables is elliptical, then the following are true (Embrechts et. 

al., 1998): 

1. The estimation of the portfolio risk is based on the weights and the correlation matrix of 

the variables. No other information on dependence is necessary.  

2. Among all portfolios with the same expected return the portfolio minimizing VaR is the 

Markowitz variance minimizing portfolio. 

3. VaR is a coherent risk measure in the sense it fulfils the sub-additivity property: 

( ) ( ) ( )1 2 1 2
   

a a a
VaR Z Z VaR Z VaR Z+ ≤ +  

However, in the international markets the joint distribution is not univocally 

determined on the basis of marginals and correlation matrix. Consequently, the 

correlation coefficient does not provide any information on the dependence structure in 

the tails of the non-elliptical    distributions. Additionally, given marginal distributions, 

all linear correlations between -1 and 1 can be attained through suitable specification of 

the joint distribution, only in the case of elliptical distributions. In general, the 

attainable correlations depend on risk factors and form a closed interval [ρmin, ρmax] 

containing zero that is a subset of [-1, 1]. The upper boundary of the interval always 

represents a situation where risk variables are perfectly positively dependent, or 

comonotonic, whereas the lower boundary represents a situation where the factors are 

perfectly negatively dependent. Additionally, correlation is not invariant under 

transformations of the risks (e.g, log(X) and log(Y)) generally do not have the same 
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correlation as X and Y). Finally, correlation is only defined when the variances of the 

risks are finite. Therefore, it is not an appropriate dependence measure for very heavy-

tailed risks where variances appear infinite. 

As an alternative dependence measure the rank correlation (Spearman) is used. It 

is invariant under (strictly) increasing transformations of the risks, it does not require 

that the risks be of finite variance and for arbitrary marginals a bivariate distribution 

can be found with any rank correlation in the interval [-1, 1]. But, as in the case of linear 

correlation, this bivariate distribution is not the unique distribution satisfying these 

conditions. Consequently, linear or rank correlation bear relatively narrow value.  

 

2.2.1. Dependence functions (copulas) 

It is proven that every joint distribution function F can be represented as follows:  

* * * * * *

1 1 1 1 1
( ,... ) Pr [ ,..., ] ( ( ),..., ( ))

q q q q q
F y y ob Y y Y y C F y F y= ≤ ≤ =      (6) 

where *

i i i
y u y= + and iy  corresponds to the extreme values of 

i
Y over a threshold iu  

and C dependence function (Copula) of F and F1,...,Fq marginals of q variables. A copula 

may be thought of in two equivalent ways: as a function that maps values in the unit 

hypercube to values in the unit interval : 0,1 0,1
q

C    →     or as a multivariate 

distribution function with standard uniform marginal distributions (Embrechts et. al., 

1998). If the marginal distributions of F are continuous then F has a unique copula, but 

if there are discontinuities in one or more marginals then there is more than one copula 

representation for F (Sklar, 1959). The copula remains invariant under (strictly) 

increasing transformations of the risks; the marginal distributions may change but the 



 11 

copula remains the same. Additionally, in case of fat-tailed distributions where 

variances are not finite, they represent an ideal measure of dependence.  

The possible limit nondegenerate distributions satisfying the limit condition must 

satisfy two properties:  

1. Its univariate marginal distributions are generalized Pareto distributions. 

2.  There exists a function called the dependence function, which satisfies the following 

condition:  ( ) ( ) ( ) ( )( )1 2 1 2
, ,..., , , ...,u

q q
G y y y C G y G y G y=        

3.  The correlation of extreme values increases in crisis periods and in high quantiles. 

 

Specifically for the bivariate case a model commonly used in the  literature  is  the  

logistic  function  proposed  by  Gumbel  (Tawn, 1988, Longin and Solnik, 2001): 

{ }1 1( ) ( )
( , ) Pr( , ) exp  , 0 1

a

a aC s t S s T t s t a
− − 

= ≤ ≤ = − + < ≤ 
  

     (7) 

In order to dissociate the correlation structure from the marginal distributions the 

bivariate return exceedances have been transformed to unit Fréchet margins, 

1 1 2
1 / log ( ), 1 / log ( )

uu u
S F y T F y= − = − where )( iu yF

i
is the GPD of exceedance iy . The 

asymptotic dependence of (S,T)  is defined by: 

                   lim Pr( / )
s

d T s S s
→∞

= ≻ ≻                               (8) 

where 0 1d≤ ≤ , and the two variables are termed asymptotically dependent if 0≥d  and 

asymptotically independent if .0=d  The relationship between the coefficient α , of eq. 

(8), and d  is given by: 

      2 2ad = −                   (9) 
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so when the variables are exactly independent 0=d and 1=α  while when 1α <  the 

variables are asymptotically dependent to a degree depending on α . Since we have 

chosen the two thresholds, the bivariate distribution of return exceedances is then 

described by seven parameters: the two tail probabilities, the dispersion parameters and 

the tail indexes of each variable, and the dependence parameter of the logistic function. 

The parameters of the model are estimated by the maximum likelihood method. In the 

bivariate case, the correlation coefficient of extremes is related to the coefficient of 

dependence by (Tiago de Oliveira, 1973): 

21ρ α= −        (10) 

 

3. Multivariate GARCH models 

In order to investigate the empirical implications of those two different estimation 

philosophies we have also chosen to estimate the correlation indices from multivariate 

volatility models. The first model we estimate is the one suggested by Bollerslev (1990) 

that handles the high dimensionality of the parameter space of the variance – covariance 

matrix by adopting the assumption of constant contemporaneous correlations (CCC).  In 

the CCC-GARCH(1,1) specification the conditional variance matrix is specified as 

t t tH D RD= , where H t takes the form: 

11, 11,12

2122, 22,

0 01

10 0

t t

t

t t

h h
H

h h

ρ

ρ

    
   =  
       

                   (11) 

In this model the correlation matrix R is time invariant. For the bivariate GARCH(1,1) 

case the CCC model contains only 7 parameters compared to 21 encountered in the full 
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VECH model and the positive definiteness of the variance – covariance matrix is easily 

satisfied ( 1<ρ ). In this framework the asymmetric behavior of the conditional 

covariances in bull and bear markets is guaranteed by the proper parameterization of the 

conditional variances. In our case we apply the Glosten-Jagannathan-Runkle (1993) GJR-

GARCH(1,1) model: 

2 2 2 2

, 1 , 1 1 1ii t t ii t t t
h Y h Y Iω β γ δ

− − − −
= + + +            (12) 

where 0,0,0,0 ≥≥≥≥ δγβω ,It-1=1 when Yt-1<0 and zero otherwise.  

The assumption that the conditional correlations are constant may seem 

unrealistic in many empirical applications like the dependence of international equity 

returns. Engle (2002) extends the CCC estimator by allowing the conditional correlations 

to be time varying, that is the conditional variance is
t t t t

H D R D= . The dynamic conditional 

estimator (DCC) is obtained in two stages. In the first stage univariate GJR-GARCH(1,1) 

models are estimated for each return series. The standardized residuals from the first 

stage,
, , ,

( / )
i t i t ii t

n hε= , are used in the second stage in the estimation of the correlation 

parameters. The correlation structure R is also the correlation of the original data and is 

given by * 1 * 1

t t t tR Q Q Q− −= , where Q* is a diagonal matrix whose elements are the square 

root of the diagonal elements of the covariance matrix Q that is specified by a GARCH 

process as below: 

'

1 1 1
(1 ) ( )t t t tQ S n n Qλ µ λ µ

− − −
= − − + +       (13) 

where the sum of λ and μ measures the long -run persistence. Q is calculated as a 

weighted average of S, the unconditional covariance of the standardized residuals, a 
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lagged function of the standardized residuals and the past realization of the conditional 

variance (Engle, 2002).      

                                       

4.  Empirical results  

 The presented results have been based on data from 10 countries downloaded 

from Datastream. The period covered is 29/3/96 – 31/12/04 and the analysis has been 

broken down in 2 sub-periods 29/3/96 - 5/3/01 and 27/1/00 - 31/12/04  in order to 

juxtapose the differences between upward and downward trends in Cyprus Stock 

Exchange. Specifically, the indices used are: Cyprus: Cyprus General Index , Japan: Nikkei 

255 Stock Average, USA: S&P 500 Composite, Hong Kong: Hang Seng Price Index, Taiwan: 

Stock Exchange Weighted Price Index, Malaysia: KLCI Composite Price Index, Indonesia: Jakarta 

Stock Exchange Composite Price Index, Singapore: Straits Times (New) Price Index, Thailand: 

SET 100 Basic Industries Index,  Greece:  Athens Composite Index. 

 The Cyprus pound had been pegged to ecu and from January 1999 to euro with 

fluctuation margins %25.2± . From January 1st, 2001, wider bands of %15± were 

introduced. This exchange rate policy meant that the Cyprus pound was effectively 

floating against the US dollar. The Cyprus Stock exchange started operating on 3/29/1996 

and its performance can be divided into three periods. The first period, until 6/30/1999, 

was characterized by low volatility, low volumes and persistence of the General index 

around the initial level of 100.  The second period, up to 10/31/2000, had all the features 

of a bubble that burst after 1.5 years. During the ensuing period the General index 

returned to its initial levels but with a higher volatility than the first period (Nerouppos 

et. al. 2002).   
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The EVT-POT method is applied on the exceedances of the return series for high 

enough thresholds. In order to estimate the threshold we followed Neftçi (2000), therefore 

the threshold is 1.176u σ= ⋅  where σ is the standard deviation of the empirical 

distribution. The choice of the optimal threshold for EVT is a delicate issue since it is 

confronted with a bias-variance tradeoff. If we choose too low a threshold we might get 

biased estimates because the limit theorems do not apply any more, while high 

thresholds generate estimates with high standard errors due to the limited number of 

observations. For threshold estimation we follow Neftçi, S. (2000), according to whom a 

Student-t (6) distribution, is being assumed. The selected values are shown in Table 1. 

Apparently, Cyprus threshold corresponds to the average of the developing countries, 

whereas mature markets of US and Japan exhibit a lower threshold. Additionally, in 

period I the threshold values are higher due the increased volatility of all the examined 

countries. In order to investigate the sensitivity of the results, we have calculated more 

threshold values that correspond to various confidence levels of the empirical return 

distribution of CSE and ASE. The results are depicted in Figure 1. In the Cyprus case, the 

left tail index is decreasing when the threshold increases in period I, whereas it remains 

relatively stable for period II. The opposite occurs for Greece.  

 The maximum likelihood estimates of the tail index, ξ, with their corresponding 

standard errors, and the scale parameters are also presented in Table 1. The bigger the tail 

index the more fat-tailed is the distribution of the extreme values over the threshold 

(downside risk). It is evident from the standard error of the left tail index in Table 1 that 

the empirical distribution of the CSE returns is exponential in the tails (the same applies 
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to Normal), whereas in case of the other emerging markets the tails fit to the Pareto 

distribution function (df) and therefore exhibit higher risk. The above results apply for 

both periods. In Table 2 we present the VaR estimations in 99% confidence level, based on 

the eq. (5) and the point estimates of Table 1. The evidence suggests that CSE presents 

high probability for the one-day-ahead risk prediction. The highest loss on a 99% 

confidence interval is 5% and 4.6% for the 2 corresponding sub-periods. These 

estimations are similar to the other emerging markets specifically for period I.  In Table 3 

we present the correlation coefficients from the MEVT. The parameters of the model are 

estimated by the maximum likelihood method developed by Ledford and Tawn (1996). 

The basic assumptions of this method are that returns are assumed to be independent 

and that return observations below thresholds are treated as censored data. This implies 

that the likelihood contributions of those observations are calculated by using as inputs 

the threshold values and not the actual observations. Substantial differences between the 

two periods are not observed although slightly higher estimates have been obtained in 

the second period. The left tail extreme correlation estimates are always higher than the 

unconditional ones. 

Table 3 also presents the estimated value of the correlation coefficients for the 

DCC-GARCH(1,1) model. In this framework the asymmetric behaviour of the conditional 

covariances in the left tails is guaranteed by the proper parameterization of the 

conditional variances. In our case we have applied the asymmetric Glosten–Jagannathan–

Runkle (1993) model, and therefore the GARCH model we employ is signified by DCC-

GJR(1,1). In the case of the DCC-GJR(1,1) model we report both the average correlation 
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estimate over the entire estimation period (in parenthesis) and the last estimate. The 

average values of the estimated correlation coefficients are close to the unconditional 

ones and lower from the MEVT estimates. This evidence supports the argument that tail 

dependency exists even if we allow for volatility clustering. Furthermore, the proximity 

of the correlation estimates from the MEVT with the conditional and unconditional ones 

(although somewhat different not actually high in value), weakens the argument that 

there has been a contagion effect among the examine markets during the most recent 

crises. Since from a completely statistical perspective one would expect a larger 

correlation index during periods of high volatility, contagion is not simply an increased 

correlation coefficient during a crisis period (Bekaert and Harvey, 2003). 

In order to classify the various pairs of capital markets into different groups on 

the basis of the estimated dependence measures, we apply a clustering analysis that 

assigns each estimate to the cluster having the nearest mean. K-means is one of the 

simplest unsupervised learning algorithms that solve the well known clustering problem. 

The procedure follows a simple and easy way to classify a given data set through a 

certain number of clusters (assume k clusters) fixed a priori. The main idea is to define k 

centroids, one for each cluster. Group membership is determined by calculating the 

centroid for each group (the multidimensional version of the mean) and assigning each 

observation to the group with the closest centroid, (MacQueen, 1967). The evidence 

appears in Table 4.  The main result is that the classification of the estimated correlations 

into low, medium and high dependence groups is very similar between the MEVT, the 

average DCC-GJR and the unconditional correlations, perhaps with the exceptions of the 
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low classifications in case of the unconditional estimate in PI for Cyprus-USA and the 

extreme estimate in PI for Cyprus-Singapore. Finally, we examine whether there is any 

validity to the argument that the emerging capital markets belong to a distinct cluster of 

markets where the other two could be the U.S. and Japan. If this argument was correct 

then we would expect to find that the correlation indices between the emerging markets 

would be always classified to the high correlation cluster. A simple inspection of Table 4 

shows that this is not the case. Cyprus market exhibits varying degrees of extreme 

correlation with the other emerging and mature markets of Japan and U.S. and therefore 

investors can benefit from diversifying their portfolios even in periods characterized as 

being “extreme.” Overall, the evidence indicates that extreme correlations are not 

substantially different from the unconditional ones or from those obtained from 

multivariate GARCH models, thus they should be attributed to the increased volatility in 

turbulent periods.    

  

5. Conclusions 

In the present study, following the results of many recent empirical papers on 

contagion in international equity markets, we have concluded that the degree of co-

movement of the returns did not change significantly over the most recent crises that 

occurred in 1990s. We estimate the degree of dependence of extreme realization of 

returns between Cyprus, six Asia-Pacific equity markets, Greece and the mature markets 

of the U.S and Japan. Methodologically, we applied the multivariate extreme value 

theory. The main advantage of this approach is that it generates dependence measures 



 19 

even if the multivariate Gaussian distribution does not apply, as the case is for the tails of 

high frequency stock index returns. The evidence we obtain indicates that extreme 

correlations are not substantially different from the unconditional ones or from those 

obtained from multivariate GARCH models. This evidence corroborates the conclusion 

that correlation breakdown is not prevailing during crisis periods as we used to believe 

initially. Moreover, we apply a clustering analysis that shows that the examined countries 

do not belong to a distinct block of countries on the basis of the extreme correlations we 

have estimated. The evidence of this study hinges on two conditions; the first is related to 

the choice of the threshold. A sensitivity analysis has shown that our results are robust to 

the chosen thresholds, albeit the application of optimally chosen thresholds will 

substantiate the results we have reached. The second condition is related to the choice of 

the tail dependence measure we use which has been criticized that biases the results in 

favor of the presence of asymptotic dependence. Combined evidence from alternative 

measures will provide more unequivocal conclusions. The policy implications are that 

that “extreme” correlations should be attributed to the increased volatility in turbulent 

periods and the benefits from portfolio diversification with assets from the examined 

stock markets are not eroded during crisis periods. 
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Table 1 : Extreme-value Parameters 

 

Notation: 

Total In-sample Period observations: 2286 (29/3/96 - 31/12/04) 

 

Cyprus: Cyprus General Index  

Japan: Nikkei 255 Stock Average 

USA: S&P 500 Composite 

Hong Kong: Hang Seng Price Index 

Taiwan: Stock Exchange Weighted Price Index  

Malaysia: KLCI Composite Price Index 

Indonesia: Jakarta Stock Exchange Composite Price Index 

Singapore: Straits Times (New) Price Index  

Thailand: SET 100 Basic Industries Index  

Greece:  Athens Composite Index  

 

 

 

 

 

Parameter ξ (Left Tail Index) σ (scale parameter) Threshold 

In-sample 

Period 
29/3/96 - 5/3/01 27/1/00 - 31/12/04 29/3/96 - 5/3/01 27/1/00 - 31/12/04 29/3/96 - 5/3/01 27/1/00 - 31/12/04 

Japan 0.069 (0.046) -0.037 (0.047) 0.009 (0.001) 0.009 (0.001) 0.016 0.017 

USA 0.245 (0.063) 0.055 (0.052) 0.006 (0.002) 0.007 (0.001) 0.012 0.012 

Hong Kong 0.325 (0.078) 0.128 (0.062) 0.011 (0.001) 0.011 (0.001) 0.022 0.019 

Taiwan -0.172 (0.047) 0.009 (0.063) 0.019 (0.001) 0.013 (0.001) 0.025 0.021 

Malaysia 0.265 (0.075) 0.206 (0.073) 0.012 (0.001) 0.011 (0.001) 0.020 0.018 

Indonesia 0.275 (0.095) 0.183 (0.074) 0.012 (0.002) 0.011 (0.002) 0.021 0.018 

Singapore 0.355 (0.084) 0.189 (0.068) 0.008 (0.001) 0.008 (0.001) 0.017 0.015 

Thailand 0.116 (0.071) 0.151 (0.069) 0.016 (0.001) 0.013 (0.001) 0.026 0.025 

Cyprus 0.116 (0.106) 0.126 (0.100) 0.014 (0.002) 0.010 (0.001) 0.022 0.019 

Greece -0.073 (0.107) 0.250 (0.121) 0.016 (0.002) 0.007 (0.001) 0.023 0.017 
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Table 2: EVT-POT VaR (99%) Estimates (in absolute value) 

 

 

 

 

 

 

 

 

 

 

 

Notation as in Table 1 

 

 

 

 

 

 

 

 

 

Parameter VaR (99%) 

In-sample Period 29/3/96 - 5/3/01 27/1/00 - 31/12/04 

Japan 3.9% 3.9% 

USA 3.1% 3.2% 

Hong Kong 5.6% 3.7% 

Taiwan 4.6% 4.7% 

Malaysia 5.5% 2.8% 

Indonesia 5.9% 3.8% 

Singapore 4.4% 3.3% 

Thailand 7.4% 4.8% 

Cyprus 5.0% 4.6% 

Greece 5.7% 3.9% 
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Table 3: Cyprus Correlations’ Estimation  

 

Notation as in Table 1 

 

 

 

 

 

 

 

 

 

 

 

Bivariate Model MEVT  MGARCH DCC-GJR UNCONDITIONAL 

In-sample Period 29/3/96 - 5/3/01 27/1/00 - 31/12/04 29/3/96 - 5/3/01 27/1/00 - 31/12/04 29/3/96 - 5/3/01 27/1/00 - 31/12/04 

Cyprus – USA 0.146 0.249 0.039 (0.043) 0.150 (0.148) -0.022 0.088 

Cyprus – Hong Kong 0.093 0.275 0.197 (-0.028) -0.001 (0.091) 0.033 0.158 

Cyprus – Taiwan 0.210 0.227 -0.152 (-0.135) -0.104 (0.072) -0.007 0.082 

Cyprus – Malaysia 0.035 0.211 -0.051 (-0.029) -0.091 (0.042) -0.009 0.072 

Cyprus – Indonesia 0.050 0.132 0.051 (0.002) 0.006 (-0.007) 0.010 0.009 

Cyprus – Singapore 0.066 0.256 -0.040 (0.019) -0.212 (0.090) 0.019 0.141 

Cyprus – Thailand 0.034 0.178 0.010 (0.024) 0.059 (0.046) 0.024 0.070 

Cyprus – Japan 0.112 0.212 0.238 (0.013) 0.122 (0.102) 0.044 0.106 

Cyprus – Greece  0.109 0.203 0.122 (0.090) 0.087 (0.132) 0.107 0.150 
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Table 4: Clustering Analysis  

 

K-Means Centers 

 

Notation: 1,2,3 refer to the classification to Low, Medium and High Correlation 

 

 

 

 

 

Bivariate Model MEVT  MGARCH DCC-GJR UNCONDITIONAL 

In-sample Period 29/3/96 - 5/3/01 27/1/00 - 31/12/04 29/3/96 - 5/3/01 27/1/00 - 31/12/04 29/3/96 - 5/3/01 27/1/00 - 31/12/04 

Cyprus – USA 2 3 3 3 1 2 

Cyprus – Hong Kong 2 3 2 3 2 3 

Cyprus – Taiwan 3 2 1 2 1 2 

Cyprus – Malaysia 1 2 2 2 1 2 

Cyprus – Indonesia 1 1 2 1 2 1 

Cyprus – Singapore 1 3 2 3 2 3 

Cyprus – Thailand 1 2 2 2 2 2 

Cyprus – Japan 2 2 2 3 2 2 

Cyprus – Greece  2 2 3 3 3 3 

K-Groups MEVT  MGARCH DCC-GJR UNCONDITIONAL 

In-sample Period 29/3/96 - 5/3/01 27/1/00 - 31/12/04 29/3/96 - 5/3/01 27/1/00 - 31/12/04 29/3/96 - 5/3/01 27/1/00 - 31/12/04 

G1 : Low Correlation 0.046 0.132 -0.135 -0.007 -0.013 0.009   

G2 : Medium Correlation 0.115 0.206 0.000 0.053 0.026 0.084  

G3 : High Correlation 0.210 0.260 0.066 0.113 0.107 0.149  
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Figure 1: Threshold Simulation (Period I) 
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Figure 1: Threshold Simulation (Period II) 
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