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Abstract

This paper compares the mixed-data sampling (MIDAS) and mixed-frequency VAR (MF-

VAR) approaches to model speci�cation in the presence of mixed-frequency data, e.g.,

monthly and quarterly series. MIDAS leads to parsimonious models based on exponential

lag polynomials for the coe¢ cients, whereas MF-VAR does not restrict the dynamics and

therefore can su¤er from the curse of dimensionality. But if the restrictions imposed by

MIDAS are too stringent, the MF-VAR can perform better. Hence, it is di¢ cult to rank

MIDAS and MF-VAR a priori, and their relative ranking is better evaluated empirically.

In this paper, we compare their performance in a relevant case for policy making, i.e.,

nowcasting and forecasting quarterly GDP growth in the euro area, on a monthly basis

and using a set of 20 monthly indicators. It turns out that the two approaches are

more complementary than substitutes, since MF-VAR tends to perform better for longer

horizons, whereas MIDAS for shorter horizons.

JEL Classi�cation Codes: E37, C53

Keywords: nowcasting, mixed-frequency data, mixed-frequency VAR, MIDAS



1 Introduction

The development of econometric models based on mixed frequency data has attracted con-

siderable attention recently. In particular, the mixed-data sampling (MIDAS) approach

proposed by Ghysels, Santa-Clara and Valkanov (2004) and Ghysels, Sinko and Valkanov

(2007) has proven useful for di¤erent forecasting purposes. MIDAS can be regarded as

time-series regressions that allow the regressand and regressors to be sampled at di¤erent

frequencies, where distributed lag polynomials are used to ensure parsimonious speci�ca-

tions. Whereas MIDAS has been initially used for �nancial applications, e.g. Ghysels,

Santa-Clara and Valkanov (2006), it has been employed to forecast macroeconomic time

series, in particular quarterly GDP with monthly indicators, in recent applications by

Clements and Galvão (2008, 2009), Marcellino and Schumacher (2008), and Wohlrabe

(2009).

In this paper, we compare the MIDAS approach to a mixed-frequency VAR (MF-VAR)

model as proposed by Zadrozny (1988), Mittnik and Zadrozny (2005) and Mariano and

Murasawa (2007). The MF-VAR is a VAR operating at the highest sampling frequency

of the time series to be included in the model. Low-frequency variables are interpolated

according to their stock-�ow nature implying speci�c time-aggregation schemes. The high-

frequency VAR together with the time-aggregation restriction can be cast in state-space

form and estimated by maximum likelihood. In this framework, the Kalman �lter can

tackle missing values at the end of the sample, and take into account the mixed-frequency

nature of the data.

Compared to single-equation MIDAS, MF-VAR is a system approach that jointly

explains indicators and predictant without imposing a-priori restrictions on the dynamics.

This can be an advantage when few variables are modelled, their dynamics is limited, and

the VAR provides a good approximation to the data generating process (DGP). Otherwise,

MIDAS can represent a more robust forecasting device. In addition, due to its single

equation speci�cation, a direct forecasting approach is preferable for MIDAS, while an

iterated scheme is a more natural choice for the MF-VAR since it is cast in state-space

form and iterated forecasts are directly provided by the Kalman �lter. For a discussion

of direct versus iterated forecasting see, e.g., Marcellino, Stock and Watson (2006) and

Chevillon and Hendry (2005).

It is di¢ cult to rank the MIDAS and MF-VAR approaches based purely on theoretical

considerations since, as mentioned, their relative merits depend on the DGP. Therefore,

their performance is better assessed in speci�c economic applications, and in this paper

we focus on nowcasting and forecasting quarterly euro area GDP growth using a set of

monthly indicators, a relevant issue also from the economic policy perspective.

In our application, we compare various speci�cations of MIDAS and MF-VAR models

with single indicators, as well as combinations of these models. In addition, we take

into account the di¤erent availability of monthly indicators that emerges from di¤erent

statistical publication lags. The nowcast and forecast comparison is based on the relative
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mean-squared errors (MSE) at di¤erent horizons, and the analysis is conducted recursively,

in a pseudo real-time way.

Our main �nding is that in the case of euro area GDP growth, the two approaches are

more complementary than substitutes, since MF-VAR tends to perform better for longer

horizons, whereas MIDAS for shorter horizons.

The paper proceeds as follows. Section 2 provides a description of the MIDAS and MF-

VAR approaches, as well as a discussion of their relative advantages. Section 3 presents

the empirical results on nowcasting and forecasting quarterly euro area GDP growth with

a set of monthly indicators. Section 4 summarizes our main �ndings and concludes.

2 Nowcasting quarterly GDP with ragged-edge data

In this paper we focus on quarterly GDP growth, which is denoted as ytq where tq is

the quarterly time index tq = 1; 2; 3; : : : ; T yq with T
y
q as the �nal quarter for which GDP

is available. GDP growth can also be expressed at the monthly frequency by setting

ytm = ytq8tm = 3tq with tm as the monthly time index. Thus, GDP growth ytm is

observed only in months tm = 3; 6; 9; : : : ; T ym with T
y
m = 3T

y
q . The aim is to nowcast or

forecast GDP hq quarters ahead, or hm = 3hq months ahead, yielding a value for yT ym+hm.

Nowcasting means that in a particular calender month, we do not observe GDP for the

current quarter. It can even be the case that GDP is only available with a delay of two

quarters. In April, for example, Euro Area GDP is only available for the fourth quarter

of the previous year, and a nowcast for second quarter GDP requires hq = 2. Thus, if a

decision maker requests an estimate of current quarter GDP, the forecast horizon has to

be set su¢ ciently large in order to provide the appropriate �gures. For further discussion

on nowcasting, see e.g. Giannone et al. (2008).

In this Section we assume, for the sake of exposition, that the information set for

now- and forecasting includes one stationary monthly indicator xtm in addition to the

available observations of GDP. The time index tm denotes a monthly sampling frequency

of xtm for tm = 1; 2; 3; : : : ; T xm, where T
x
m is the �nal month for which an observation is

available. Usually, T xm is larger than T
y
m = 3T

y
q , as monthly observations for many relevant

macroeconomic indicators are earlier available than GDP observations. The forecast for

GDP is denoted as yT ym+hmjTxm, as we condition the forecast on information available in

month T xm, which also includes GDP observations up to T
y
q in addition to the indicator

observations up to T xm with T
x
m � T ym = 3T yq .

2.1 The MIDAS approach

To forecast quarterly GDP using monthly indicators, we rely on the mixed-data sampling

(MIDAS) approach as proposed by Ghysels and Valkanov (2006), Ghysels et al. (2007),

and Andreou et al. (2009a). The MIDAS regression approach is a direct forecasting tool.
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The dynamics of the indicators and joint dynamics between GDP and the indicators

are not explicitly modelled. Rather, MIDAS directly relates future GDP to current and

lagged indicators, thus yielding di¤erent forecasting models for each forecast horizon, see

e.g. Marcellino, Stock and Watson (2006) as well as Chevillon and Hendry (2005) for

detailed discussions of this issue in the single-frequency case.

The forecast model for forecast horizon hq quarters with hq = hm=3 is

ytq+hq = ytm+hm = �0 + �1b(Lm;�)x
(3)
tm+w + "tm+hm ; (1)

where w = T xm � T ym and b(Lm;�) is some lag polynomial

b(Lm;�) =
KX
k=0

c(k;�)Lkm (2)

with the monthly lag operator Lm de�ned as Lmxtm = xtm�1. In the MIDAS approach,

quarterly GDP ytq+hq is directly related to the indicator x
(3)
tm+w and its lags, where x

(3)
tm is

skip sampled from the monthly observations of xtm in the following way. The superscript

three indicates that every third observation starting from the tm-th one is included in the

regressor x(3)tm , thus x
(3)
tm = xtm 8 tm = : : : ; T xm � 6; T xm � 3; T xm. Lags of the monthly factors

are treated accordingly, e.g. the k-th lag x(3)tm�k = xtm�k 8 tm = : : : ; T xm � k � 6; T xm �
k � 3; T xm � k. In the time index of x

(3)
tm+w, w is equal to the number of monthly periods,

the monthly indicator is earlier available than GDP. Thus, we take into account that a

monthly indicator is typically available within the quarter for which no GDP �gure is

available, see Clements and Galvão (2008, 2009).

One of the main issues in MIDAS approach is a parsimonious parametrization of the

lagged coe¢ cients c(k; �). Since the regressors x(3)tm are observed at a higher frequency

than ytq , an adequate modelling often requires inclusion of many lags into the regression

equation, which easily leads to overparameterization in unrestricted linear case. Ghysels

et al. (2007) discuss several non-linear weighting schemes for c(k; �). The �rst scheme is

exponential Almon lag and possesses the following form

c(k;�) =
exp(�1k + : : :+ �Qk

Q)
KP
k=0

exp(�1k + : : :+ �QkQ)

: (3)

This functional form is quite �exible and allows for various shapes with only a few para-

meters, see Ghysels et al. (2007) for a more detailed discussion. An alternative weighting

scheme includes the Beta function exploiting its well-known �exibility in the presence of

only two parameters. Obviously, there are also other possible weighting schemes available

in the literature, i.e. step functions, however, a detailed discussion is beyond the scope of

the current paper, see Ghysels et al. (2007) for further reading.

In the subsequent empirical applications we follow Clements and Galvão (2008, 2009)
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as well as Ghysels et al. (2005) and employ the Almon lag weighting scheme with two

parameters � = f�1; �2g. The exponential lag function b(Lm;�) with quadratic expan-
sion provides a parsimonious and easy way to consider monthly lags of the indicators as

we can allow for large K to approximate the impulse response function of GDP to the

indicators. The longer the lead-lag relationship in the data is, the less MIDAS su¤ers

from sampling uncertainty compared with the estimation of unrestricted lags, where the

number of coe¢ cients increases with the lag length.

TheMIDASmodel can be estimated using nonlinear least squares (NLS) in a regression

of ytm onto x
(3)
tm�k, yielding coe¢ cients

b�1, b�2, b�0 and b�1. The forecast is given by
yT ym+hmjTxm =

b�0 + b�1b(Lm; b�)xTxm : (4)

Note that MIDAS is h-dependent, and thus has to be reestimated for multi-step forecasts.

The same holds when new statistical information becomes available. For example, each

month, new observations for the indicator are released, whereas GDP observations are

released only once a quarter. Thus, also w changes from month to month, which also

makes re-estimation necessary.

Autoregressive MIDAS As an extension to the basic MIDAS approach, Clements and

Galvão (2008) consider autoregressive dynamics in the MIDAS approach. In particular,

they propose the model

ytm+hm = �0 + �ytm + �1b(Lm;�)(1� �L3m)x
(3)
tm+w + "tm+hm : (5)

The autoregressive coe¢ cient � is not estimated unrestrictedly to rule out discontinuities

of the impulse response function of x(3)tm on ytm+hm, see the discussion in Ghysels et al.

(2007), pp. 60. The restriction on the coe¢ cients is a common-factor restriction to ensure

a smooth impulse response function, see Clements and Galvão (2008). The AR coe¢ cient

� can be estimated together with the other coe¢ cients by NLS. As an AR model is often

supposed to be an appropriate benchmark speci�cation for GDP, the extension of MIDAS

might give additional insights in which direction the other MIDAS approaches considered

so far might be improved. Henceforth, we denote this approach as �AR-MIDAS�, whereas

we denote MIDAS without AR terms just as �MIDAS�.

2.2 The mixed-frequency VAR

In contrast to the MIDAS approach and in line with a conventional VAR model based on

single-frequency data, the MF-VAR model speci�es the joint dynamics of monthly GDP,

which is obtained from quarterly GDP by time disaggregation, and the monthly indicator.

Following the notation of Mariano and Murasawa (2003, 2007), the disaggregation of

quarterly GDP growth ytm into unobserved month-on-month GDP growth y
�
tm is based
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on the aggregation relation

ytm =
1

3
y�tm +

2

3
y�tm�1 + y

�
tm�2 +

2

3
y�tm�3 +

1

3
y�tm�4; (6)

which holds for tm = 3; 6; 9; : : : ; T ym, because GDP is observed only every third month of

each quarter. The aggregation assumption represents the �ow nature of GDP and allows

for a linear state-space representation, see Mariano and Murasawa (2003) or Giannone et

al. (2008). The latent month-on-month GDP growth y�tm and the corresponding monthly

indicator xtm are then assumed to follow a bivariate VAR(p) process

�(Lm)

 
y�tm � ��y
xtm � �x

!
= utm ; (7)

with �(Lm) =
Pp

i=1�iL
i
m and utm � N(0;�).

State-space representation To obtain the state-space representation of the MF-VAR,

we de�ne the state vector

stm =

0B@ ztm
...

ztm�4

1CA ; ztm =
 
y�tm � ��y
xtm � �x

!
(8)

consisting of demeaned monthly GDP growth with mean ��y, and the monthly indicator

demeaned with �x, as well as their lags. Transforming (7) into companion form and

combining the latter with the aggregation constraint (6), we obtain the corresponding

state-space form as

stm+1 = Astm +Bvtm ; (9) 
ytm � �y
xtm � �x

!
= Cstm ; (10)

where vtm � N(0; I2), and �y = 3�
�
y holds. Our experience shows that the mean para-

meters �y and �x are often quite di¢ cult to estimate in the state-space framework. For

this reason, we work with demeaned series for estimation. The system matrices are

A =

"
A1

A2

#
; A1 =

h
�1 : : : �p 02�2(5�p)

i
; A2 =

h
I8 08�2

i
; (11)

B =

"
�1=2

08�2

#
; C =

h
H0 : : : H4

i
; (12)
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where matrix C contains the lag polynomial H(Lm) =
P4

i=0HiL
i
m that is de�ned as

H(Lm) =

"
1=3 0

0 1

#
+

"
2=3 0

0 0

#
Lm +

"
1 0

0 0

#
L2m +

"
2=3 0

0 0

#
L3m +

"
1=3 0

0 0

#
L4m; (13)

according to the aggregation constraint (6). For notational convenience, we consider

only p � 4 for A and B, however, the representation for p > 4 can be derived in a

straightforward manner by modifying the state vector and system matrices accordingly.

Missing observations and estimation The state-space model consisting of (9) and

(10) can be estimated with maximum likelihood techniques or the expectation-maximization

(EM) algorithm, where we have to take into account missing observations due to pub-

lication lags and the low-frequency nature of GDP. We follow Mariano and Murasawa

(2003, 2007) and �rst replace all missing values with zeros, where the missing values are

assumed to be realizations of some iid standard normal random variable. Second, the

signal equation (10) is also modi�ed accordingly: for the �rst two months of each quarter,

the upper row of C is set to zero and a standard normal error term is added, for details see

Mariano and Murasawa (2003, 2007). Then, the EM algorithm is employed for parameter

estimation.

Forecasting After estimation, the forecasting of GDP growth is done by means of

the Kalman smoother. The application of the Kalman smoother ensures that all timely

observations from the monthly indicator are taken into account. Whereas quarterly GDP

is available up to T ym = 3T yq , we have monthly indicator observations up to T
x
m with

di¤erence in publication lag of w = T xm � T ym. Although GDP for a particular quarter is
not available, the smoother considers the monthly indicator observations of the current

quarter. Thus, both the MF-VAR and the MIDAS approach can consider timely within-

quarter observations for nowcasting. For months without indicator observations, the

Kalman smoother operates equally as the Kalman �lter, as no updating step can be carried

out. As the smoother is applied iteratively, we obtain iterative multi-step forecasts for

the MF-VAR model, according to the de�nitions from Chevillon and Hendry (2005). As

GDP growth has been recursively demeaned prior to estimation, the mean is added back

to the MF-VAR forecast to obtain the �nal forecast, which can be compared to actual

GDP growth.

2.3 Discussion of MIDAS and MF-VAR

Both the MF-VAR and the MIDAS approaches can tackle the mixed-frequency nature

of the data, and both can exploit timely indicator observations that are also available at

higher frequency than GDP. However, in general, there are marked di¤erences between

the two methods:
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� MIDAS is a single-equation approach whereas MF-VAR is a system approach that

explains both GDP and the indicator. As such, misspeci�cation in one equation

can a¤ect estimation and forecast accuracy of the other model equations. However,

forecasts of the monthly indicators can be of interest by themselves.

� MIDAS has a sparse parameterization, whereas MF-VAR su¤ers more from the curse
of dimensionality. For example, with MIDAS using the Almon lag with quadratic

expansion, adding a monthly variable to the predictors requires only 3 more coe¢ -

cients (�1, �2, and �) to be estimated in the lag polynomial, whereas a VAR(p) with

N variables requires N2p coe¢ cients of the VAR lag polynomial to be estimated.

On the other hand, the MIDAS restrictions on the lag polynomial could be invalid,

whereas the coe¢ cients of VAR polynomials are estimated unrestrictedly.

� In terms of �exibility, the performance of MIDAS could also be improved by the
inclusion of higher frequency information, e.g., in the form of daily �nancial data.

For example, Ghysels and Wright (2008) �nd that daily �nancial information in-

cluded in MIDAS models is useful to predict the median GDP growth forecast in

the Survey of Professional Forecasters, see also Andreou, Ghysels and Kourtellos

(2009b) and Wohlrabe (2009) for applications. On the other hand, including daily

data in MF-VAR adds substantially to their computational complexity. In addition,

a VAR speci�cation could be not appropriate for high frequency data.

� MIDAS is a direct multi-step forecast device, in the sense that the left hand side
variable coincides with the variable of interest from the forecasting point of view, so

that the model changes with the forecasting horizon. Instead, MF-VAR provides it-

erative forecasts, in the sense that the same model is iterated forward to produce the

forecast of interest. Thus, the long-lasting discussion of the relative merits of direct

versus iterative forecasting also applies here. Marcellino, Stock and Watson (2006)

and Chevillon and Hendry (2005) are recent contributions, see Bhansali (2002) for a

survey. The literature shows that there are arguments in favour of both approaches

and, generally, the direct approach seems to dominate only in case of substantial

misspeci�cation.1

� In Ghysels and Valkanov (2006) it is shown how the MIDAS can be regarded as
an approximation to a general dynamic linear model, in their case a high-frequency

VAR(1), where the low-frequency variable is a stock variable. Thus, in case the

true high-frequency DGP behind the data is close to a VAR model, we can expect

the MF-VAR to perform better than MIDAS, depending on the dimension and

parsimony of the DGP.

1The direct and iterated approaches have been typically compared with single frequency data. In the
case of mixed frequency data, a direct forecast could be based either on the low frequency data only or
on a MIDAS regression. See Ghysels, Rubia and Valkanov (2009) for an interesting comparison of the
two approaches in the context of volatility forecasting.
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� Ghysels and Wright (2008) note that the Kalman �lter, underlying the MF-VAR,
allows for real-time �ltering. In other words, with the Kalman �lter it is possible

to obtain an estimate of the expected value of GDP growth in each month, while

with MIDAS one can only obtain a monthly update of the future expected quarterly

realization.

This discussion suggests that we cannot expect one approach to be clearly superior

than the other one for any DGP, and either approach could dominate in a speci�c em-

pirical application. Therefore, the relative advantages of MIDAS and MF-VAR should

be evaluated empirically on a case-by-case basis, and in the next Section we focus on a

policy-relevant case, i.e., nowcasting and forecasting quarterly GDP growth in the euro

area, on a monthly basis.

3 Now- and forecasting Euro Area GDP with MI-

DAS and MF-VAR

The empirical comparison will be carried out in a recursive pseudo real-time context. In

subsection 3.1, we describe the design of the exercise, the data used and the speci�cation

of the models. In the subsequent sections, we present and discuss the empirical results.

3.1 Design of the nowcast and forecast comparison exercise

Data The dataset contains Euro Area quarterly GDP growth from 1992Q1 until 2008Q1

and about 20 monthly indicators until 2008M06. In particular, we consider industrial

production by sector, survey on consumer sentiment, and business climate, raw material

price indices, car registrations, interest rates, and monetary aggregates. More information

about the data can be found in Appendix A.

The dataset is a �nal dataset. It is not a real-time dataset and does not contain vin-

tages of data, so that we cannot discuss the role of revisions on the relative forecasting

accuracy here. However, we do not expect any major changes in the results from the

use of real-time vintages, since the data revisions are typically small after 2000, see e.g.

Marcellino and Musso (2008) for euro area GDP growth. Furthermore, many empirical

�ndings such as Bernanke and Boivin (2003) and Schumacher and Breitung (2008) sug-

gest that data revisions do not a¤ect forecast accuracy considerably. However, we take

into account another speci�c characteristic of multivariate data in real time, namely the

di¤erent availability of variables due to publication lags. These di¤erences in availability

of data lead to certain patterns of missing values at the end of every recursive sample, and

recent papers �nd that accounting for this rather than using arti�cially balanced samples

has a considerable impact on forecast accuracy, see Giannone et al. (2008), Schumacher

and Breitung (2008), for example. In our paper, to consider the availability of the data at
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the end of each subsample, we follow Giannone et al. (2008), Marcellino and Schumacher

(2008), amongst others, and replicate the availability of data in pseudo real-time from a

�nal vintage of data. When downloading the �nal data - the download date for the data

used here was 11th July 2008 -, we observe the data availability pattern in terms of the

missing values at the end of the data sample. For example, at the beginning of July 2008,

we observe interest rates until June 2008, thus there is only one missing value at the end

of the sample, whereas industrial production is available up to April 2008, implying three

missing values. For each time series, we store the missing values at the end of the sample.

Under the assumption that these patterns of data availability remain stable over time, we

impose the same missing values pattern at each point in time of the recursive experiment.

Thus, we shift the missing values back in time to mimic the availability of information as

in real time.

Nowcast and forecast design To evaluate the performance of the models, we carry

out recursive estimation and nowcasting, where the full sample is split into an evaluation

sample and an estimation sample, which is recursively expanded over time. The evaluation

sample is between 1999Q2 and 2008Q1, providing 9 years for comparison. For each

of these quarters, we want to compute nowcasts and forecasts depending on di¤erent

monthly information sets. For example, for the initial evaluation quarter 1999Q2, we

want to compute a nowcast in June 1999, one in May, and April, whereas the forecasts are

computed from March 1999 backwards in time accordingly. Thus, we have three nowcasts

computed at the beginning of each of the intra-quarter months. Concerning the forecasts,

we present results up to two quarters ahead. Thus, again for the initial evaluation quarter

1999Q2, we have six forecasts computed based on information available in December 1998

up to information available in March 1999. Overall, we have nine projections for each GDP

observation of the evaluation period, depending on the monthly information available to

make the projection.

The estimation sample depends on the information available at each period in time

when computing the now- and forecasts. Assume again we want to nowcast GDP for

1999Q2 in June 1999, then we have to identify the time series observations available at

that period in time. For this purpose, we exploit the ragged-edge structure from the

end of the full sample of data, as discussed in the previous subsection. For example, for

the nowcast GDP for 1999Q2 made in June 1999, we know from our full sample that

at each period in time, we have one missing value for interest rates and three missing

values of industrial production. These missing values are imposed also for the period

June 1999, thus replicating the same pattern of data availability. We do this accordingly

in every recursive subsample to determine the pseudo real-time �nal observation of each

time series. To replicate the publication lags of GDP, we exploit the fact that in the

Euro Area GDP of the previous quarter is available at the beginning of the third month

of the next quarter. Note that we reestimate all forecast models recursively when new
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information becomes available, so that the estimated coe¢ cients are allowed to change

over time. For each evaluation period, we compute nine now- and forecasts depending on

the available information. To compare the nowcasts with the realisations of GDP growth,

the mean-squared error (MSE) is employed.

Lag length speci�cation For estimating the MF-VAR model, a lag order determina-

tion is required. For this purpose, we apply the Bayesian information criterion (BIC) with

a maximum lag order of p = 4 months. Experimenting with higher lag orders did not

a¤ect the main results, as the chosen lag lengths are usually very small with only one or

two lags in most of the cases. Concerning the speci�cations of MIDAS and AR-MIDAS,

we use a large variety of initial parameter speci�cations, and compute the residual sum

of squares (RSS) from (1) and (5), respectively. The parameter set with the smallest

RSS then serves as the initial parameter set for NLS estimation. The parameters of the

exponential lag function are restricted to �1 < 5 and �2 < 0. The maximum number of

lags chosen for MIDAS is K = 12 months. Again, experimenting with higher lag orders

did not a¤ect the main results.

3.2 Empirical results

Individual models Below, we present a selection of well-performing models for di¤erent

now- and forecast horizons hm with respect to the relative MSE. To compute the relative

MSE in this application, the benchmark forecast is produced by an AR model of GDP

growth, which was estimated by direct estimation recursively, and where lag length was

speci�ed by BIC.

Starting from the full set of indicators in Appendix A, we focus on those representatives

from surveys, industrial statistics, �nancial data and others that have some information

content for future GDP growth at least at some forecast horizons. In particular, we com-

pare surveys on production expectations (abbreviated in the table by: prod exp), order

books (ord book), and consumer con�dence (cons conf). We also look at industrial pro-

duction of capital goods producers (prod cap), the 3-month EURIBORmoney intermarket

rate (is3m), yields on 10-year government bonds (il10), as well as the HWWA industrial

raw material price index (hwwi ind) and passenger car registrations (car pass). In Table 1,

we provide results of MIDAS without autoregressive terms, AR-MIDAS and MF-VAR for

each of these indicators. A general �nding related to all indicators and forecast models

is that the AR benchmark can only be outperformed by a few models and not for all

forecast horizons. Furthermore, the results show that MIDAS without AR terms in most

of the cases yields uninformative forecasts with relative MSE larger than one for almost

all horizons. However, incorporating AR terms in AR-MIDAS can in many cases improve

the forecast performance. Particularly for short horizons hm = 1; 2; 3, the AR-MIDAS

shown can provide relative MSE smaller than one. At larger horizons, the evidence is

mixed, however.
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Table 1: Forecasting performance for quarterly GDP growth of selected individual mixed-
frequency models measured by MSE of the corresponding indicator relative to MSE of
the benchmark

horizon hm
model 1 2 3 4 5 6 7 8 9

prod exp midas 0.94 0.81 0.91 1.01 0.94 1.00 1.02 0.92 1.05
ar-midas 0.81 0.81 0.84 0.89 0.92 0.94 0.89 1.00 1.01
mf-var 1.01 0.89 0.91 0.82 0.75 0.97 0.97 1.00 1.04

ord book midas 1.25 1.01 1.06 1.12 1.00 1.02 1.15 1.16 1.12
ar-midas 0.89 0.89 0.91 0.94 1.07 1.07 1.07 1.04 1.04
mf-var 1.34 1.08 0.78 1.02 0.92 0.98 1.16 0.87 0.91

cons conf midas 1.20 1.01 1.10 1.12 1.05 1.10 1.25 1.35 1.34
ar-midas 0.90 0.90 0.92 0.94 1.42 1.39 1.35 1.34 1.34
mf-var 0.87 0.75 0.99 1.03 0.99 1.08 1.07 0.96 1.00

prcap midas 1.26 1.15 1.10 1.37 1.09 1.04 1.23 1.02 0.88
ar-midas 0.88 0.91 1.05 1.15 0.93 0.94 1.09 0.93 0.93
mf-var 1.45 1.24 1.23 1.16 1.02 1.03 1.04 0.94 0.93

is3m midas 1.19 0.91 1.00 1.00 0.91 0.87 1.37 1.21 1.05
ar-midas 0.88 1.00 0.96 0.96 0.93 0.87 1.13 1.01 1.06
mf-var 0.89 0.90 0.93 1.03 0.93 0.96 1.00 0.92 0.92

il10 midas 1.47 1.01 1.03 1.10 1.38 1.01 1.26 1.14 0.94
ar-midas 0.98 0.87 0.93 0.98 1.04 0.90 1.08 1.00 0.89
mf-var 0.97 0.93 1.03 1.11 1.02 1.04 1.04 0.92 0.93

hwwa ind midas 0.91 0.77 0.84 0.92 0.79 0.85 0.87 0.87 0.93
ar-midas 0.97 0.72 0.75 0.79 0.78 0.86 0.92 0.92 0.97
mf-var 1.17 0.99 1.05 1.07 0.95 1.02 1.02 0.91 0.93

carpass midas 1.41 1.13 1.39 1.25 1.24 1.19 1.07 1.09 1.12
ar-midas 0.87 0.89 0.89 0.94 0.92 0.90 1.01 0.93 0.98
mf-var 1.24 1.21 1.22 1.21 1.05 1.04 1.04 0.93 0.93

Note: We use the recursively estimated AR model as benchmark forecast. The �rst two columns
in the table include the indicator name and model type (MIDAS, AR-MIDAS or MF-VAR). For the
meaning of abbreviations of the particular indicators, see Appendix A. Details on the forecasting
exercise are reported in Section 3.1.
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To illustrate the behaviour of AR-MIDAS further, we present in Figure 1 the estimated

weights attached to the indicators and their lags in AR-MIDAS based on the full sample

of data. Most of the weights decay quickly, and with a few exceptions (hwwa ind), there

Figure 1: Weights of AR-MIDAS exponential lag polynomial
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Note: The �gure shows weights derived from estimated AR-MIDAS for the selected variables from
table 1. The data used is full dataset. It corresponds to the nowcast situation (straight line) in
the third month of a quarter, for which GDP is not available. The forecast one quarter ahead (line
with triangle symbol) shows the weights corresponding to the forecast also made in third month of
the �nal quarter. For the meaning of abbreviations of the particular indicators, see Appendix A.

is little mass at lag k = K = 12. In AR-MIDAS models with the surveys (prod exp,

ord book, cons conf), weight is attached to the most recent monthly observation (k = 0)

inducing a very parsimonious model. With respect to the other indicators, there is more

variety in the estimated weights. Overall, the evidence on the estimated weights is in line

with �ndings by Clements and Galvão (2009) for US data.

Concerning the relative performance of AR-MIDAS and MF-VAR, we cannot identify

a clear winner from the results, as their relative ranking depends on the horizon and the

indicator chosen. With respect to production expectations (prod exp), AR-MIDAS seems
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to dominate MF-VAR for most of the forecast horizons, whereas it is the other way round

with respect to consumer con�dence (cons conf). For the other cases, however, the results

are more horizon-dependent. For short-horizons, MF-VAR forecasts are uninformative

in most of the cases, whereas AR-MIDAS yields always relative MSE smaller than one.

For long horizons, for example order book (ord book), MF-VAR tends to outperform

AR-MIDAS.

Finally, it is interesting to note that there are no substantial di¤erences between the

indicators. In particular, we �nd representatives in all groups of indicators that can

provide informative forecasts. In particular, hard indicators like industrial production as

well as �nancial indicators such as interest rates turn out to have information content

with respect to future GDP.

Average performance of models over all indicators The selection above concen-

trates on a selection of models only. To investigate the relative performance of MIDAS

and MF-VAR further, we now follow Marcellino et al. (2006) and compare the relative

performance of MIDAS and MF-VAR over the full set of indicators. For MIDAS, AR-

MIDAS as well as MF-VAR, we compute the pairwise relative MSE of each model to the

benchmark and average over all models within a class, see Table 2. On average, MIDAS

Table 2: Average relative MSE performance for forecasting quarterly GDP growth of
mixed-frequency model classes against benchmark

horizon hm
model 1 2 3 4 5 6 7 8 9

midas 1.29 1.04 1.10 1.13 1.01 1.03 1.07 0.98 0.98
ar-midas 0.98 0.93 0.93 0.96 0.96 0.99 1.03 0.99 1.00
mf-var 1.27 1.09 1.05 1.08 0.97 0.98 1.01 0.91 0.92

Note: The recursively estimated in-sample mean is used as benchmark forecast. The entries in the
tables are obtained as follows: First, pairwise relative MSEs, de�ned as the MSE of a particular
model relative to MSE of the benchmark, are calculated. Second, we take means over all models
within a model class (MIDAS, AR-MIDAS or MF-VAR).

cannot do better than the benchmark for almost all the horizons. On the other hand,

AR-MIDAS models are on average slightly better than the average up to horizons hm = 7,

however, only to a small extent. MF-VAR provides an average relative MSE smaller than

one only for a few larger horizons, in particular for horizons hm = 8; 9. This indicates that

MF-VAR forecasts have information content for longer horizons than MIDAS, though the

gains with respect to the benchmark are small. However, the AR-MIDAS models clearly

outperform the MF-VAR approach for short nowcasting horizons. This is due to the

more �exible dynamic speci�cation of MIDAS, which can be particularly helpful at short

horizons.
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Finally, to relate MIDAS and MF-VAR directly, we compute the relative MSE of

MIDAS to MSE of MF-VAR. We then average over all these relative MSEs, see Table

3. The ranking is very similar to that emerging from Table 2. For short horizons up

Table 3: Relative performance: (AR-)MIDAS vs. MF-VAR

horizon hm
1 2 3 4 5 6 7 8 9

midas
mean 1.05 0.96 1.06 1.05 1.07 1.08 1.06 1.09 1.07
median 0.94 0.98 1.03 1.06 1.04 1.03 1.03 1.03 1.01

ar-midas
mean 0.77 0.85 0.88 0.90 1.01 1.02 1.02 1.08 1.09
median 0.76 0.83 0.86 0.91 0.97 1.00 0.99 1.03 1.05

Note: The entries in the table are average relative MSEs, where MF-VAR models serve as bench-
mark for MIDAS and AR-MIDAS. They are computed as follows: First, for each single indicator,
the MSE of MIDAS and AR-MIDAS forecasts is respectively divided by the corresponding MSE
of the corresponding MF-VAR model. Second, means and medians over all relative MSE are
computed.

to hm = 4, AR-MIDAS has an average relative MSE smaller than one, and thus tends

to outperform MF-VAR. MIDAS without AR component is in most of the cases worse

than MF-VAR. For longer horizons MF-VAR tends to outperform both MIDAS and AR-

MIDAS.

Forecast combinations The availability of many indicators and the possible presence

of model misspeci�cation and parameter instability suggest that combining forecast from

alternative models could yield sizeable gains, since these are the conditions when the

advantages from forecast pooling are maximized, see e.g. the review by Timmermann

(2006). Clements and Galvão (2008) consider combinations of MIDAS models. A more

detailed evaluation of pooling in the presence of a large, mixed-frequency dataset is un-

dertaken in Kuzin, Marcellino and Schumacher (2009). Here we focus on a smaller set

of variables chosen, following more closely e.g. Clements and Galvão (2008, 2009). We

provide results for the mean, the median, and the weighted mean of the models of a

particular class, where combination weights are obtained from the inverse MSE of the

previous four-quarter performance of a model.

Below, we provide the relative MSE of the combinations to the benchmark (Table 4),

as well as the relative MSE of the combination of MIDAS and MIDAS-AR with respect to

the combined MF-VARs (Table 5). To investigate the relative performance of the forecast

combinations against the individual models, we compute the percentiles of the forecast

combinations with respect to all MSEs of individual models within a corresponding class,

see Table 6. The �gures in Table 6 represent the percentage of single indicator models

that outperform the combined forecast.
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Table 4: Relative MSE performance for forecasting quarterly GDP growth of model pool-
ing within a given model class against benchmark

horizon hm
1 2 3 4 5 6 7 8 9

midas
mean 1.01 0.85 0.91 0.95 0.88 0.92 0.97 0.90 0.93

weighted mean 0.99 0.81 0.84 0.91 0.79 0.85 0.90 0.83 0.88
median 1.04 0.91 0.98 1.00 0.93 0.96 1.01 0.93 0.93

ar-midas
mean 0.87 0.83 0.80 0.87 0.87 0.87 0.91 0.92 0.93

weighted mean 0.87 0.83 0.81 0.87 0.84 0.86 0.90 0.88 0.91
median 0.90 0.90 0.91 0.93 0.91 0.89 0.94 0.92 0.91

mf-var
mean 0.96 0.90 0.93 0.98 0.90 0.93 0.97 0.88 0.89

weighted mean 0.92 0.82 0.88 0.95 0.86 0.88 0.90 0.82 0.84
median 0.98 0.99 1.06 1.06 0.99 1.02 1.03 0.92 0.93

Note: The entries are obtained as follows: First, means, weighted averages based on past MSE
performance and medians of all forecasts within a given class of models are computed. Second,
the MSE of the combination is computed and �nally divided by the MSE of the benchmark, the
recursively in-sample sample mean.

Table 5: Relative MSE performance: Pooling of (AR-)MIDAS vs. pooling of MF-VAR

horizon hm
1 2 3 4 5 6 7 8 9

midas
mean 1.04 0.95 0.97 0.97 0.97 0.98 1.00 1.03 1.04

weighted mean 1.07 0.98 0.96 0.96 0.92 0.97 0.99 1.00 1.04
median 1.06 0.92 0.92 0.94 0.94 0.95 0.98 1.02 1.00

ar-midas
mean 0.91 0.92 0.86 0.89 0.96 0.93 0.93 1.05 1.04

weighted mean 0.94 1.00 0.92 0.92 0.97 0.98 1.00 1.07 1.08
median 0.92 0.91 0.86 0.88 0.91 0.87 0.91 1.01 0.97

Note: MF-VAR models serve as benchmark for MIDAS and AR-MIDAS. For further comments,
see Tables 3 and 4.
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Table 6: Quantiles of MSEs of pooled (AR-)MIDAS and MF-VAR forecasts

horizon hm
1 2 3 4 5 6 7 8 9

midas
mean 0.12 0.09 0.15 0.08 0.17 0.21 0.18 0.26 0.34

weighted mean 0.11 0.06 0.06 0.00 0.04 0.11 0.08 0.05 0.08
median 0.13 0.16 0.22 0.14 0.27 0.24 0.27 0.33 0.34

ar-midas
mean 0.13 0.12 0.11 0.10 0.11 0.11 0.09 0.17 0.15

weighted mean 0.12 0.12 0.11 0.10 0.09 0.11 0.08 0.07 0.12
median 0.28 0.33 0.33 0.27 0.17 0.18 0.16 0.18 0.11

mf-var
mean 0.11 0.16 0.28 0.19 0.18 0.18 0.08 0.07 0.07

weighted mean 0.08 0.07 0.14 0.17 0.15 0.08 0.06 0.06 0.06
median 0.12 0.33 0.49 0.38 0.46 0.43 0.37 0.30 0.67

Note: We implement the pooling exercise as in Table 4 and then compute the quantiles of MSEs
of pooled forecasts in the empirical distribution of all MSEs of individual indicators within a given
class of models.

According to the results, most of the combinations do well relative to the benchmark.

This results is relatively stable over all forecast horizons, with only few exceptions (MIDAS

without AR terms and hm = 1, MF-VAR and the median). Comparing Tables 2 and 4, we

conclude that forecast combination is a useful method both in case of MIDAS and MF-

VAR models, since the performance of forecast combinations relative to our benchmark

is in most of the cases better then the average of all relative MSEs within a given class

over all indicators. Following the direct comparison of the combinations in Table 5, AR-

MIDAS seems to outperform MF-VAR at short forecast horizons, but its advantage seems

not so pronounced as in Table 2, where only individual models were compared. Pooling

of MF-VARs performs better at long forecast horizons (hm = 8; 9).

The percentiles of the forecast combinations in Table 6 indicate that pooling is a

useful alternative to forecasting with individual models. When the weighted mean is

applied, several �gures in Table 6 are clearly below 10% for MIDAS and MF-VAR models.

However, even the forecast combinations cannot outperform all of the individual models.

For example, in the case of pooling with weighted means for AR-MIDAS at hm = 1,

there are 12% individual models within the AR-MIDAS class with smaller MSE than the

combination. But it should be considered that with a large set of indicators, it is natural

to �nd that some of them perform particularly well. In addition, the analysis of Banerjee

and Marcellino (2005) clearly indicates that the best leading indicators for euro area GDP

growth change over time, and the pooled forecast can protect from this instability. With

respect to the other weighting schemes, the results are worse than the weighted mean.

For example, the median seems to work worse, in particular, when applied to MF-VAR
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models.

4 Conclusions

This paper considers MIDAS and MF-VAR as alternative forecasting methods suitable

for now- and forecasting with mixed-frequency data that is also subject to di¤erent pub-

lication lags.

Theoretical arguments indicate that we cannot expect one approach to be clearly su-

perior than the other. For example, MIDAS is a direct multi-step forecast approach,

whereas MF-VAR provides iterative forecasts. MIDAS is more parsimonious than MF-

VAR, but depends on certain distributed lag assumptions that might be too rigid. Thus,

the relative performance of the two approaches will depend on the underlying unknown

data generating process, and either MIDAS or the MF-VAR could dominate in a speci�c

empirical application. Hence, we compare the alternative forecasting approaches empir-

ically. In particular, we carry out a recursive comparison exercise in terms of now- and

forecasting quarterly Euro Area GDP with a set of about twenty monthly indicators.

The main results are the following.

1. If we look at selected indicators, we �nd representatives of both MIDAS and MF-

VAR classes of models that work well compared to the benchmark. However, the

relative performance of MIDAS and MF-VAR di¤ers with respect to the predictors

and forecast horizons, and there seems to be no clear winner in terms of forecasting

performance.

2. If we compare all the models pairwise with the same indicator and compute the

average MSE over the whole set of models, we �nd that MF-VAR outperforms MI-

DAS and AR-MIDAS at long forecast horizons, whereas AR-MIDAS can do better

at short horizons up to three months.

3. When the single MIDAS and MF-VAR forecasts are combined, there are advantages

compared to the single-indicator models. In addition, pooled MF-VAR forecasts are

better at longer horizons, and pooled MIDAS forecasts at shorter horizons.

Overall, the MF-VAR seems to be a reasonable competitor to MIDAS in macroeco-

nomic datasets such as the one chosen here. More generally, it can be useful to consider

both classes of models for forecasting speci�c variables of interest, and pooling can provide

additional advantages.

A possible area of future research would be the use of other MIDAS weighting schemes,

i.e. the exponential Almon lag with richer structure or the Beta polynomial suggested by

Ghysels et al. (2007), especially for long horizon predictions. Further improvements in

predictability could be also possible by exploiting daily data in the MIDAS approach, see

Andreou, Ghysels, and Kourtellos (2009b) as an example for US data.

17



References

[1] Andreou, E., Ghysels, E., Kourtellos, A. (2009a), Regression Models with Mixed

Sampling Frequencies, Journal of Econometrics, forthcoming.

[2] Andreou, E., Ghysels, E., Kourtellos, A. (2009b), Should macroeconomic forecasters

look at daily �nancial data?, mimeo.

[3] Banerjee, A., Marcellino, M., Masten, I. (2005), Leading indicators for Euro area

in�ation and GDP growth, Oxford Bulletin of Economics and Statistics, 67, 785-813.

[4] Bernanke, B. S., Boivin, J. (2003), Monetary Policy in a Data-Rich Environment,

Journal of Monetary Economics 50, 525-546.

[5] Bhansali, R. J. (2002), Multi-step forecasting, in: Clements, M. P., and Hendry, D.

F. (eds.), A Companion to Economic Forecasting, 206�221.

[6] Chevillon, G., Hendry, D. F. (2005), Non-parametric direct multi-step estimation for

forecasting economic processes, International Journal of Forecasting 21, 201-218.

[7] Clements, M. P., Galvão, A. (2008), Macroeconomic Forecasting With Mixed-

Frequency Data: Forecasting Output Growth in the United States, Journal of Busi-

ness & Economic Statistics 26, 546-554.

[8] Clements, M. P., Galvão, A. (2009), Forecasting US output growth using Leading

Indicators: An appraisal using MIDAS models, Journal of Applied Econometrics,

forthcoming.

[9] Ghysels, E., Rubia, A., Valkanov, R. (2009), Multi-period forecasts

of volatility: direct, iterated and mixed-data approaches. Available at:

http://www.unc.edu/~eghysels/papers/Var_9.pdf.

[10] Ghysels, E., Santa-Clara, P., Valkanov, R. (2004), The MIDAS touch: Mixed Data

Sampling regression models, mimeo.

[11] Ghysels, E., Santa-Clara, P., Valkanov, R. (2005), There is a risk-return after all,

Journal of Financial Economics 76, 509-548.

[12] Ghysels, E., Santa-Clara, P., Valkanov, R. (2006), Predicting volatility: Getting the

most out of return data sampled at di¤erent frequencies, Journal of Econometrics

131, 59�95.

[13] Ghysels, E., Sinko, A., Valkanov, R. (2007), MIDAS Regressions: Further Results

and New Directions, Econometric Reviews 26, 53-90.

[14] Ghysels, E., Valkanov, R. (2006), Linear Time Series Processes with Mixed Data

Sampling and MIDAS Regression Models, mimeo.

18



[15] Ghysels, E., Wright, J. (2008), Forecasting Professional Forecasters, Journal of Busi-

ness and Economic Statistics, forthcoming.

[16] Giannone, D., Reichlin, L., Small, D. H. (2008), Nowcasting GDP and In�ation:

The Real-Time Informational Content of Macroeconomic Data Releases, Journal of

Monetary Economics 55, 665-676.

[17] Kuzin, V., Marcellino, M., Schumacher, C. (2009), Pooling versus model selection

for nowcasting with many predictors: An application to German GDP, Deutsche

Bundesbank Discussion Paper, Series 1: Economic Studies, 03/2009.

[18] Marcellino, M., Musso, A. (2008), Real time estimates of the euro area output gap:

Reliability and forecasting performance, mimeo.

[19] Marcellino, M., Schumacher, C. (2008), Factor-MIDAS for now- and forecasting with

ragged-edge data: A model comparison for German GDP, CEPR Discussion Papers

6708.

[20] Marcellino, M., Stock, J. H., Watson, M. W. (2006), A comparison of direct and

iterated multistep AR methods for forecasting macroeconomic time series, Journal

of Econometrics 135, 499-526.

[21] Mariano, R., Murasawa, Y. (2003), A New Coincident Index of Business Cycles Based

on Monthly and Quarterly Series, Journal of Applied Econometrics 18, 427-443.

[22] Mariano, R., Murasawa, Y. (2007), Constructing a Coincident Index of Business

Cycles Without Assuming a One-Factor Model, Discussion Paper 2004-6, College of

Economics, Osaka Prefecture University.

[23] Mittnik, S., Zadrozny, P. A. (2005), Forecasting German GDP at Monthly Frequency

Using Monthly IFO Business Conditions Data, in: Sturm, J.-E., Wollmershäuser, T.

(eds.), Ifo Survey Data in Business Cycle and Monetary Policy Analysis, Springer-

Verlag, 19-48.

[24] Schumacher, C., Breitung, J. (2008), Real-time forecasting of German GDP based

on a large factor model with monthly and quarterly data, International Journal of

Forecasting, 24, 368-398.

[25] Timmermann, A. (2006), Forecast Combinations, in: Elliot, G., Granger, C. W. J.,

Timmermann, A. (eds.), Handbook of Economic Forecasting, Vol 1, 135-196.

[26] Wohlrabe, K. (2009), Forecasting with Mixed-frequency Time Series Models, Ph. D.

dissertation, University Munich.

[27] Zadrozny, P. A. (1988), Gaussian-Likelihood of countinuous-time ARMAX models

when data are stocks and �ows at di¤erent frequencies, Econometric Theory 4, 108-

124.

19



A Euro Area dataset

This appendix describes the time series for the Euro Area economy used in the forecasting

exercise. The whole data set for Euro Area contains 23 monthly time series over the

sample period from 1992M1 until 2008M6. The time series cover broadly the following

groups of data: industry statistics, surveys, �nancial data (interest rates, exchange rates,

money stocks), and miscellaneous indicators, such as raw material price indices and car

registrations. A complete list of variables is provided below, together with abbreviations

used in the description of results in the main text.

The sources of the time series are the databases of the Bundesbank and the ECB.

Original sources are the European Commission, the ECB, and the HWWA. Natural log-

arithms were taken for all time series except interest rates and the surveys. Stationarity

was obtained by appropriately di¤erencing the time series. All of the time series taken

from the above sources are already seasonally adjusted, where this was necessary.

A.1 Industrial production

prind - production: total

prcap - production: capital goods industry

print - production: intermediate goods industry

prcons - production: consumer goods industry

prcs - production: construction sector

A.2 Surveys

indconf - business con�dence industry

prodexp - business production expectations

ordbook - business order books

assstock - assessment of stocks of �nished goods

consconf - consumer con�dence

A.3 Interest rates, exchange rates, money stocks

is3m - money market rate, 3-months EURIBOR

il10 - yields on 10-year government bonds (GDP weights)

zdi¤103 - yield spread: bond yields with 10 years minus 3 months EURIBOR

m1 - monetary aggregate M1

m3 - monetary aggregate M3

loans - loans

een - nominal e¤ective exchange rate of the euro against the currencies of the EER-22 group

eer - real e¤ective exchange rate of the euro against the currencies of the EER-22 group (on

basis of consumer price index)
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A.4 Raw material prices, car registrations

hwwa - HWWA raw material price index

hwwaind - HWWA raw material price index: industrial raw materials

hwwaenerg - HWWA raw material price index: energy industrial raw materials

carcomm - car registrations: new commercial

carpass - car registrations: new passenger cars

21




