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Abstract

Uncertainty about the appropriate choice among nested models is a central concern
for optimal policy when policy prescriptions from those models differ. The standard
procedure is to specify a prior over the parameter space ignoring the special status
of some sub-models, e.g. those resulting from zero restrictions. This is especially
problematic if a model’s generalization could be either true progress or the latest fad
found to fit the data. We propose a procedure that ensures that the specified set of sub-
models is not discarded too easily and thus receives no weight in determining optimal
policy. We find that optimal policy based on our procedure leads to substantial welfare
gains compared to the standard practice.
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1 Introduction

Recently, the empirical evaluation of Dynamic Stochastic General Equilibrium (DSGE) mod-

els employing Bayesian methods has made substantial progress (Smets and Wouters, 2003,

2007; An and Schorfheide, 2007; Lubik and Schorfheide, 2004). Policymakers nowadays cor-

respondingly employ relatively large estimated DSGE models, including various features and

frictions, in their policy analysis more and more. This practice is based on the implicit idea

that by capturing many aspects of the economy in one single model, policy prescriptions de-

rived from this model should guard against the risks of an uncertain economic environment.1

However, as it ignores the special status of sub-models that are defined by zero restrictions,

the recent practice is prone to uncertainty about the appropriate choice of nested models.

We show that this source of uncertainty is a central concern for optimal policy and propose

a procedure that insures against it by assigning a non-zero weight to the set of sub-models.

To fix ideas, consider the following situation. After some process of theorizing and data

analysis, a policymaker has arrived at a baseline model, Model 𝐴. One day, a researcher

proposes to extend this model by adding a new feature or friction, replacing it with Model

𝐵, in which Model 𝐴 is nested. At a first glance, this seems to be a win-win situation

because the new model nests all the advantages of Model 𝐴 and moreover may improve the

understanding of the economy and lead the policymaker to make better policy decisions.

However, the gain in explanatory power may be relatively small, i.e. the posterior odds

may not indicate substantial evidence against Model 𝐴. Discarding Model 𝐴 is further

problematic because instead of true improvement, Model 𝐵 may be just the latest fad found

to fit the data. When Model 𝐵 introduces a conflicting stabilization aim into the decision

about policy, optimal policy prescriptions from the two models differ. In this situation, the

policymaker risks welfare losses by ignoring Model 𝐴 and putting all her eggs in one basket.

In this paper, we develop an approach that takes into account both Models 𝐴 and 𝐵 to

determine optimal policy.

Starting with a baseline model, we subsequently estimate a set of competing and nested

models. This bottom-up approach puts us into a position to separately evaluate the gain in

explanatory power of each extension. Optimal policy is then computed by weighting each

model with its posterior probability. Weighting over the set of nested models allows the

policymaker to make reasonable extensions of the baseline model but also insure against the

pitfalls of only employing one potentially misspecified model.

Using Euro-13 area data, we illustrate our approach to deal with model uncertainty in

1Exemplary papers that fall in this category are Levin, Onatski, Williams, and Williams (2005), Chris-
tiano, Trabandt, and Walentin (2007), and more recently Adolfson, Laseen, Linde, and Svensson (2008).
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nested models by choosing as a baseline model one of the most popular models employed in

monetary analysis nowadays: a standard cashless New Keynesian economy with staggered

price-setting without indexation (Woodford, 2003a). As examples of uncertainty linked to

the choice between nested models, we subsequently allow for more lags in endogenous vari-

ables (indexation and habit formation) and omitted variables (money). To represent the

standard practice, we also consider one model that nests all these features. While the pre-

dominant principle of optimal policy in cashless models is price stability, a demand for money

introduces a conflicting policy aim, namely the stabilization of the nominal interest rate. In

this environment, we find that our procedure leads to welfare gains of approximately 70

percent compared to the standard practice.

The remainder of the paper is organized as follows. In the next section we introduce our

approach to analyze the optimal conduct of policy under model uncertainty. In Section 3

we describe the baseline model and its extensions. In Section 4 we present our estimation

results and its consequences for optimal monetary policy. The last section concludes.

2 Analyzing optimal policy under model uncertainty

In this section, after a short description of the general setup we present two approaches to

cope with model uncertainty and describe how we assess the policy performance under model

uncertainty. The first approach is set to represent the standard practice: without paying

special attention to the set of sub-models, the policymaker determines optimal policy by

maximizing households’ utility within one single model that nests all features and frictions.

The second approach takes uncertainty about the appropriate choice of nested models into

account and weights over the set of nested models to derive optimal policy prescriptions.

2.1 General setup

Consider a system of linear equations that represent log-linear approximations to the non-

linear equilibrium conditions under rational expectations around a deterministic steady state

of a particular Model 𝑖. Let 𝑥𝑡 be the vector of state variables, 𝑧𝑡 the vector of structural

shocks and 𝑦𝑡 the vector of observable variables. Furthermore, let Θ𝑖 denote the random

vector of deep parameters and 𝜃𝑖 a particular realization from the joint posterior distribution

in Model 𝑖. Policy influences the equilibrium outcome through simple feedback rules. The

link between the set of policy instruments as a subset of 𝑥 is characterized by the vector of
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constant policy coefficients 𝜙, i.e. by definition we consider steady state invariant policies.2

The state space form of the solution of model 𝑖 is given by3:

𝑥𝑡 = 𝑇 (𝜃𝑖, 𝜙)𝑥𝑡−1 +𝑅(𝜃𝑖, 𝜙)𝑧𝑡 (1)

𝑦𝑡 = 𝐺𝑥𝑡, (2)

where 𝑇 (𝜃𝑖, 𝜙) and 𝑅(𝜃𝑖, 𝜙) are matrices one obtains after solving a DSGE model with stan-

dard solution techniques. The matrix 𝐺 is a picking matrix that equates observable and

state variables.

We assess the performance of a particular policy 𝜙 by its effects on households’ uncon-

ditional expected utility, i.e. before any uncertainty has been resolved. In Model 𝑖 and for

a particular realization 𝜃𝑖, this unconditional expectation up to second order is represented

by:

𝐸

∞∑
𝑡=𝑡0

𝛽𝑡𝑈(𝑥𝑡, 𝜃𝑖) ≈ 𝑈(�̄�, 𝜃𝑖)

1− 𝛽
− 𝐸

∞∑
𝑡=𝑡0

𝛽𝑡𝐴(𝜃𝑖)𝑥𝑡𝑥
′
𝑡 =

𝑈(�̄�, 𝜃𝑖)

1− 𝛽
− 𝐿(𝜃𝑖, 𝑥)

1− 𝛽
. (3)

This approximation decomposes households’ utility in two parts. The first part is utility

in the steady state, and the second part comprises welfare-reducing fluctuations around the

long-run equilibrium. We assume that the policymaker can credibly commit to a policy

rule 𝜙: if a policymaker decides to follow a certain policy rule 𝜙 once and forever, agents

believe indeed that the policymaker will. Given a particular value 𝜃𝑖, the optimal steady

state invariant policy 𝜙★
𝑖 (𝜃𝑖) maximizes (3) by minimizing short-run fluctuations captured in

𝐿(𝜃𝑖, 𝑥). Since the specification of households’ preferences is independent of policy choices,

the policymaker can only indirectly influence households’ loss by shaping the dynamics of

the endogenous variables 𝑥 as defined by (1).

2.2 Two approaches to model uncertainty

We now turn to the optimal conduct of policy if the policymaker faces uncertainty about

the economic environment. We consider two approaches to cope with this uncertainty.

Specifying a marginal prior distribution with a positive unique mode for each parameter,

the first approach or the standard practice is to develop and estimate one single model that

nests all features and frictions and employ the model in determining optimal policy. This

2A steady state-invariant policy is a policy which affects the dynamic evolution of the endogenous variables
around a steady state, but not the steady state itself.

3𝑥𝑡 denotes the percentage deviation of the generic variable 𝑥𝑡 from a deterministic steady state 𝑥 chosen
as approximation point.
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is based on the idea that by capturing many aspects of the economy in one single model,

policy prescriptions derived from this model should guard against the risks of an uncertain

economic environment. The only source of uncertainty for the policymaker is uncertainty

about the structural parameters of the model. We refer to this approach as the complete-

model approach.

The second approach starts with a stylized baseline model and treats each extension by

an additional feature or friction as a distinct and competing model. By averaging across

models, this approach allows to take not only parameter uncertainty but also uncertainty

about model specification into account. In the following we refer to this approach as the

model-averaging approach.

When pursuing the first approach to deal with model uncertainty, the relevant uncertainty

that a policymaker faces when she makes her decision about 𝜙 is given by the joint posterior

distribution in the model that nests all features and frictions. We denote this ’complete’

model by Model c and its corresponding posterior distribution of its structural parameters

by 𝑓(𝜃𝑐) ≡ 𝑓(𝜃∣𝑌,ℳc), where 𝑌 is the set of time series used in the estimation. The optimal

policy (𝜙★
c) is defined by:

𝜙★
c = argmin

𝜙
𝐸Θc𝐿(Θc, 𝑥) (4)

𝑠.𝑡. 𝑥𝑡 = 𝑇 (𝜃c, 𝜙)𝑥𝑡−1 +𝑅(𝜃c, 𝜙)𝑧𝑡, ∀𝜃c,

where 𝐸Θc𝐿(Θc, 𝑥) is the expected loss when the structural parameters are a random vector.

Due to parameter uncertainty the policymaker has to average the loss over all possible

realizations of Θc to find the optimal vector of constant policy coefficients in Model c, 𝜙★
c.

The second approach explicitly addresses specification uncertainty and averages over dif-

ferent models. We separately estimate a discrete set of nested models ℳ = {ℳ1, ...,ℳc},
where ℳ1 denotes the baseline model, ℳc the complete model and (c − 2) possible one-

feature extensions of the baseline model. Employing the same data and prior specifica-

tion of shocks and common parameters, we calculate marginal data densities 𝑝(𝑌 ∣ℳ𝑖) =

𝐸(𝑓(𝑌 ∣Θ𝑖)), where 𝑓(𝑌 ∣Θ𝑖) denotes the data likelihood and the expectation is taken with

respect to the prior distribution of the structural parameters. Since all models are nested in

Model c, the marginal data density for Model 𝑖 satisfies:

𝑝(𝑌 ∣ℳ𝑖) ≡ 𝑝(𝑌 ∣𝜃c ∕∈𝑖 = 0,ℳc), (5)

where 𝜃c ∕∈𝑖 denotes the vector of structural parameters for Model c that are not contained in
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the set of structural parameters of Model 𝑖 = 1, 2, ...c. We employ the harmonic mean esti-

mator to compute the data likelihood in a certain model as proposed by Geweke (1999) and

more recently applied among others by An and Schorfheide (2007). To compare the explana-

tory power of each model relative to the other models, we compute posterior probabilities

which are defined as

𝑃 (𝑀𝑖∣𝑌 ) =
𝑃 (𝑀𝑖)𝑝(𝑌 ∣ℳ𝑖)∑c
𝑗=1 𝑃 (𝑀𝑗)𝑝(𝑌 ∣ℳ𝑗)

, (6)

where 𝑃 (𝑀𝑖) denotes the prior probability for each model.4 To ensure that sub-models are

not discarded too easily and to facilitate competition between the nested models, we assign

positive and equal prior weights to each model. The posterior probability of each model is

then solely determined by its relative success to explain a given set of time series, i.e. it

takes a value close to zero when the predictive density of a model relative to the others is

neglectable.

In nested models, the second approach can also be thought of as defining a bimodal prior

distribution for the parameter that represents the additional feature or friction. One part

of the distribution is centered around the assumed positive modulus of the parameter, and

the other modulus is centered around zero. The idea of paying special attention to this zero

restriction and giving this possibility relatively more weight reflects the natural scepticism

every researcher and policymaker has when extending a reasonable model.

Our approach however is more general than specifying bimodal prior distributions because

it can also be applied when models are not nested. In particular, it avoids a discontinuity

problem in the parameter space that arises when models are not nested. To see this, suppose

that the baseline model ℳ1 is replaced by a very similar model ℳ∗
1 that is not nested in the

complete Model c. In other words, there is at least one parameter that is not included in the

prior specification of the complete model. In this case, it seems to be reasonable to weight

over all models, also including ℳ∗
1. The complete-model approach – even if it includes a

bimodal prior specification – gives zero weight to the parameter included in ℳ∗
1 but not

in Model c. The model-averaging approach weights over models independent whether they

are nested or not, and thereby avoids this discontinuity. In addition, the formulation of a

bimodal prior distribution in standard Bayesian model estimation is not straightforward and

estimating a model extension to zero might cause serious troubles when approximating the

posterior mean.

4An alternative approach to compute posterior model probabilities in nested models involves calculating
Savage-Dickey density ratios as proposed by Verdinelli and Wasserman (1995).
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The optimal policy for the model-averaging approach (𝜙★
𝑎) is defined by

𝜙★
𝑎 = argmin

𝜙
𝐸ℳ,Θ𝐿(Θ𝑖, 𝑥) (7)

𝑠.𝑡. 𝑥𝑡 = 𝑇 (𝜃𝑖, 𝜙)𝑥𝑡−1 +𝑅(𝜃𝑖, 𝜙)𝑧𝑡, ∀𝜃𝑖, 𝑖 = 1, ..., 𝑛.

The complete-model approach is a limiting case of model-averaging approach; they are

equivalent if the complete model exhibits a posterior probability of unity.

2.3 Assessing policy performance within and across models

We compare the performance of the two approaches by computing the average costs of

welfare relevant short-run fluctuations over all draws and models. This allows us to assess

the pitfalls of employing only one model that nests all features and frictions in the policy

analysis, i.e. focussing on parameter uncertainty in the complete model and thereby ignoring

the issue of specification uncertainty about nested models. Throughout the paper we express

the resulting business cycle costs (ℬ𝒞) as the percentage loss in certainty (steady state)

equivalent consumption. First we compute the loss of a certain policy 𝜙 given a particular

parameter vector 𝜃 in model 𝑖 to derive overall utility:

𝑈
(
𝑐(𝜃𝑖), 𝑥∖𝑐(𝜃𝑖), 𝜃𝑖

)
− 𝐿(𝜃𝑖, 𝜙),

where the first term is steady state utility and 𝑥∖𝑐 denotes the variables vector excluding con-

sumption. Since we want to express utility as reduction in certainty consumption equivalents

we set this expression to be equal to:

𝑈
(
𝑐(𝜃𝑖)(1− ℬ𝒞), 𝑥∖𝑐(𝜃𝑖), 𝜃𝑖

)

and solve for ℬ𝒞 in percentage terms. Under parameter uncertainty this results in a distri-

bution for ℬ𝒞(𝜃𝑖, 𝜙) over Θ𝑖. Taking the expectation of this expression yields a measure of

the average losses in certainty consumption equivalents under a particular policy 𝜙.

As can be seen from (3), theoretical unconditional second moments derived from the

DSGE model are relevant for households’ utility losses due to short fluctuations – and

thus for the computation of business-cycle costs under different policies. As Del Negro

and Schorfheide (2008) point out, whether the theoretical unconditional moments relevant

for policy assessment and the ones observed in the data coincide depends in particular on the

specification of the prior distribution of standard deviations and autoregressive coefficients

for the driving exogenous disturbances. We choose the prior distribution for the standard
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deviations of the 𝑖.𝑖.𝑑. terms in 𝑧𝑡 and the autoregressive coefficients of the shocks contained

in 𝑇 (∙) such that the relevant theoretical unconditional second moments at the posterior

mean in each model are in line the ones computed directly from the stationary times se-

ries. This in turn yields welfare costs of short run fluctuations consistent with the limit put

forward by Lucas (2003).

3 Optimal monetary policy: the economic environment

To demonstrate our main result, we create a set of monetary models including one model that

nests all features and frictions. Starting with a plain-vanilla cashless new Keynesian economy

as our baseline model (Woodford, 2003a), we subsequently introduce two additional features

(indexation and habit formation) and a transaction friction (money in the utility function).

While optimal policy in the baseline model and in the models that feature indexation and

habit formation seeks to stabilize fluctuations in inflation and in the output gap, a transaction

friction adds the stabilization of the nominal interest rate as an additional and conflicting

policy aim. In this section we describe the models, derive the equations characterizing the

equilibrium and the relevant policy objectives as the unconditional expectation of households’

utility for each model.

3.1 The baseline economy: Model 1

The baseline economy consists of a continuum of infinitely-lived households indexed with

𝑗 ∈ [0, 1] that have identical initial asset endowments and identical preferences. Household

𝑗 acts as a monopolistic supplier of labor services 𝑙𝑗. Lower (upper) case letters denote real

(nominal) variables. At the beginning of period 𝑡, households’ financial wealth comprises a

portfolio of state contingent claims on other households yielding a (random) payment 𝑍𝑗𝑡,

and one-period nominally non-state contingent government bonds 𝐵𝑗𝑡−1 carried over from

the previous period. Assume that financial markets are complete, and let 𝑞𝑡,𝑡+1 denote the

period 𝑡 price of one unit of currency in a particular state of period 𝑡+ 1 normalized by the

probability of occurrence of that state, conditional on the information available in period

𝑡. Then, the price of a random payoff 𝑍𝑡+1 in period 𝑡 + 1 is given by 𝐸𝑡[𝑞𝑡,𝑡+1𝑍𝑗𝑡+1]. The

budget constraint of the representative household reads

𝐵𝑗𝑡 + 𝐸𝑡[𝑞𝑡,𝑡+1𝑍𝑗𝑡+1] + 𝑃𝑡𝑐𝑗𝑡 ≤ 𝑅𝑡−1𝐵𝑗𝑡−1 + 𝑍𝑗𝑡 + 𝑃𝑡𝑤𝑗𝑡𝑙𝑗𝑡 +

∫ 1

0

𝐷𝑗𝑖𝑡𝑑𝑖− 𝑃𝑡𝑇𝑡, (8)
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where 𝑐𝑡 denotes a Dixit-Stiglitz aggregate of consumption with elasticity of substitution

𝜁, 𝑃𝑡 the aggregate price level, 𝑤𝑗𝑡 the real wage rate for labor services 𝑙𝑗𝑡 of type 𝑗, 𝑇𝑡 a

lump-sum tax, 𝑅𝑡 the gross nominal interest rate on government bonds, and 𝐷𝑖𝑡 dividends

from monopolistically competitive firms. The objective of the representative household is

𝐸𝑡0

∞∑
𝑡=𝑡0

𝛽𝑡{𝑢(𝑐𝑗𝑡)− 𝑣(𝑙𝑗𝑡)}, 𝛽 ∈ (0, 1), (9)

where 𝛽 denotes the subjective discount factor. The instantaneous utility function is as-

sumed to be non-decreasing in consumption, decreasing in labor time, strictly concave,

twice differentiable, and to fulfill the Inada conditions. Households are wage-setters sup-

plying differentiated types of labor 𝑙𝑗, which are transformed into aggregate labor 𝑙𝑡 with

𝑙
(𝜖𝑡−1)/𝜖𝑡
𝑡 =

∫ 1

0
𝑙
(𝜖𝑡−1)/𝜖𝑡
𝑗𝑡 𝑑𝑗. We assume that the elasticity of substitution between different

types of labor, 𝜖𝑡 > 1, varies exogenously over time. Cost minimization implies that the de-

mand for differentiated labor services 𝑙𝑗𝑡, is given by 𝑙𝑗𝑡 = (𝑤𝑗𝑡/𝑤𝑡)
−𝜖𝑡𝑙𝑡, where the aggregate

real wage rate 𝑤𝑡 is given by 𝑤1−𝜖𝑡
𝑡 =

∫ 1

0
𝑤1−𝜖𝑡

𝑗𝑡 𝑑𝑗. The transversality condition is given by

lim
𝑖→∞

𝐸𝑡𝛽
𝑖𝜆𝑗𝑡+𝑖(𝐵𝑗𝑡+𝑖 + 𝑍𝑗𝑡+1+𝑖)/𝑃𝑗𝑡+𝑖 = 0 (10)

.

The final consumption good 𝑌𝑡 is an aggregate of differentiated goods produced by mo-

nopolistically competitive firms indexed with 𝑖 ∈ [0, 1] and defined as 𝑦
𝜁−1
𝜁

𝑡 =
∫ 1

0
𝑦

𝜁−1
𝜁

𝑖𝑡 𝑑𝑖,

with 𝜁 > 1. Let 𝑃𝑖𝑡 and 𝑃𝑡 denote the price of good 𝑖 set by firm 𝑖 and the price index

for the final good. The demand for each differentiated good is 𝑦𝑑𝑖𝑡 = (𝑃𝑖𝑡/𝑃𝑡)
−𝜁 𝑦𝑡, with

𝑃 1−𝜁
𝑡 =

∫ 1

0
𝑃 1−𝜁
𝑖𝑡 𝑑𝑖. A firm 𝑖 produces good 𝑦𝑖 using a technology that is linear in the labor

bundle 𝑙𝑖𝑡 = [
∫ 1

0
𝑙
(𝜖𝑡−1)/𝜖𝑡
𝑗𝑖𝑡 𝑑𝑗]𝜖𝑡/(𝜖𝑡−1): 𝑦𝑖𝑡 = 𝑎𝑡𝑙𝑖𝑡, where 𝑙𝑡 =

∫ 1

0
𝑙𝑖𝑡𝑑𝑖 and 𝑎𝑡 is a productivity

shock with mean 1. Labor demand satisfies: 𝑚𝑐𝑖𝑡 = 𝑤𝑡/𝑎𝑡, where 𝑚𝑐𝑖𝑡 = 𝑚𝑐𝑡 denotes real

marginal costs independent of the quantity that is produced by the firm. We allow for a

nominal rigidity in form of a staggered price setting as developed by Calvo (1983). Each

period firms may reset their prices with probability 1−𝛼 independently of the time elapsed

since the last price setting. A fraction 𝛼 ∈ [0, 1) of firms are assumed to keep their previous

period’s prices, 𝑃𝑖𝑡 = 𝑃𝑖𝑡−1. In each period a measure 1 − 𝛼 of randomly selected firms set

new prices 𝑃𝑖𝑡 as the solution to

max
˜𝑃𝑖𝑡

𝐸𝑡

∞∑
𝑇=𝑡

𝛼𝑇−𝑡𝑞𝑡,𝑇 (𝑃𝑖𝑡𝑦𝑖𝑇 (1− 𝜏)− 𝑃𝑇𝑚𝑐𝑇𝑦𝑖𝑇 ), s.t. 𝑦𝑖𝑇 = (𝑃𝑖𝑡)
−𝜁𝑃 𝜁

𝑇𝑦𝑇 , (11)

where 𝜏 denotes an exogenous sales tax. We assume that firms have access to contingent
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claims.

The aggregate resource constraint is given by

𝑦𝑡 = 𝑎𝑡𝑙𝑡/Δ𝑡, (12)

where Δ𝑡 =
∫ 1

0
(𝑃𝑖𝑡/𝑃𝑡)

−𝜁𝑑𝑖 ≥ 1 and thus Δ𝑡 = (1− 𝛼)(𝑃𝑡/𝑃𝑡)
−𝜁 + 𝛼𝜋𝜁

𝑡Δ𝑡−1. The dispersion

measure Δ𝑡 captures the welfare decreasing effects of staggered price setting. Goods’ market

clearing requires

𝑐𝑡 + 𝑔𝑡 = 𝑦𝑡. (13)

The central bank as the monetary authority is assumed to control the short-term interest

rate 𝑅𝑡 with a simple feedback rule contingent on past interest rates, inflation and output:

𝑅𝑡 = 𝑓(𝑅𝑡−1, 𝜋𝑡, 𝑦𝑡). (14)

The consolidated government budget constraint reads: 𝑅𝑡−1𝐵𝑡−1 + 𝑃𝑡𝐺𝑡 = 𝐵𝑡 + 𝑃𝑡𝑇𝑡 +∫ 1

0
𝑃𝑖𝑡𝑦𝑖𝑡𝜏𝑑𝑖. The exogenous government expenditures 𝑔𝑡 evolve around a mean 𝑔, which is

restricted to be a constant fraction of output, 𝑔 = 𝑦(1 − 𝑠𝑐). We assume that tax policy

guarantees government solvency, i.e., ensures lim𝑖→∞ (𝐵𝑡+𝑖)
∏𝑖

𝑣=1 𝑅
−1
𝑡+𝑣 = 0.

We collect the exogenous disturbances in the vector 𝜉𝑡 = [𝑎𝑡, 𝑔𝑡, 𝜇𝑡], where 𝜇𝑡 = 𝜖𝑡
𝜖𝑡−1

is a wage mark-up shock. It is assumed that the percentage deviations of the first two

elements of the vector from their means evolve according to autonomous AR(1)-processes

with autocorrelation coefficients 𝜌𝑎, 𝜌𝑔 ∈ [0, 1). The process for log(𝜇𝑡/�̄�) and all innovations,

𝑧𝑡 = [𝜀𝑎𝑡 , 𝜀
𝑔𝑡 , 𝜀𝜇𝑡 ], are assumed to be i.i.d..

The recursive equilibrium is defined as follows:

Definition 1 Given initial values 𝑃𝑡0−1 > 0 and Δ𝑡0−1 ≥ 1, a monetary policy and a Ricar-

dian fiscal policy 𝑇𝑡 ∀ 𝑡 ≥ 𝑡0, and a sales tax 𝜏 , a rational expectations equilibrium (REE)

for 𝑅𝑡 ≥ 1, is a set of sequences {𝑦𝑡, 𝑐𝑡, 𝑙𝑡, 𝑚𝑐𝑡, 𝑤𝑡, Δ𝑡, 𝑃𝑡, 𝑃𝑖𝑡,𝑅𝑡}∞𝑡=𝑡0
for {𝜉𝑡}∞𝑡=𝑡0

(i) that solve the firms’ problem (11) with 𝑃𝑖𝑡 = 𝑃𝑡,

(ii) that maximize households’ utility (9) s.t. their budget constraints (8),

(iii) that clear the goods market (13),

(iv) and that satisfy the aggregate resource constraint (12) and the transversality condition

(10).

In the next step, we seek to estimate the model by employing Bayesian methods. To

do so, we log-linearize the structural equations around the deterministic steady state under

10



zero inflation. Thus, the dynamics in the baseline economy are described by the following

two structural equations:

𝜎(𝐸𝑡𝑦𝑡+1 − 𝐸𝑡𝑦
𝑛
𝑡+1) = 𝜎(𝑦𝑡 − 𝑦𝑛𝑡 ) + �̂�𝑡 − 𝐸𝑡𝜋𝑡+1 − �̂�𝑛

𝑡 (15)

𝜋𝑡 = 𝛽𝐸𝑡𝜋𝑡+1 + 𝜅(𝑦𝑡 − 𝑦𝑛𝑡 ), (16)

where 𝜎 = −𝑢𝑐𝑐𝑐/(𝑢𝑐𝑠𝑐), 𝜔 = 𝑣𝑙𝑙𝑙/𝑣𝑙 and 𝜅 = (1 − 𝛼)(1 − 𝛼𝛽)(𝜔 + 𝜎)/𝛼. Furthermore, �̂�𝑡

denotes the percentage deviation of a generic variable 𝑘𝑡 from its steady-state value 𝑘. The

natural rates of output and interest, i.e the values for output and real interest under flexible

prices, are given by the following expressions

𝑦𝑛𝑡 =
(1 + 𝜔)�̂�𝑡 + 𝜎𝑔𝑡 − 𝜇𝑡

𝜔 + 𝜎
, �̂�𝑛

𝑡 = 𝜎[(𝑔𝑡 − 𝑦𝑛𝑡 )− 𝐸𝑡(𝑔𝑡+1 − 𝑦𝑛𝑡+1)],

where 𝑔𝑡 = (𝑔𝑡 − 𝑔)/𝑦. The model is closed by a simple interest rate feedback rule as an

approximation to (14):

�̂�𝑡 = 𝜌𝑅�̂�𝑡−1 + 𝜙𝜋𝜋𝑡 + 𝜙𝑦𝑦𝑡. (17)

The general system (1) in the baseline model then is the fundamental locally stable and

unique solution that satisfies (15)-(17) for a certain vector of constant policy coefficients

𝜙 = (𝜌𝑅, 𝜙𝜋, 𝜙𝑦).

Our welfare measure is the unconditional expectation of representative households’ util-

ity. Building on Woodford (2003a), after averaging over all households, a second-order

approximation to (9) results in the following quadratic loss function (for a given realization

𝜃1)
5:

𝐿(𝜃1, 𝑥) =
𝑢𝑐𝑦𝜁(𝜔 + 𝜎)

2𝜅
{𝑣𝑎𝑟(𝜋𝑡) + 𝜆𝑑𝑣𝑎𝑟(𝑦𝑡 − 𝑦𝑒𝑡 )}, (18)

where 𝜆𝑑 = 𝜅/𝜁 and the efficient rate of output is given by

𝑦𝑒𝑡 = 𝑦𝑛𝑡 + 𝜇𝑡/(𝜔 + 𝜎).

In the next subsection we consider habit formation and indexation to past inflation as ex-

amples of missing lags in consumption and inflation.

5Throughout we assume that the steady state is rendered efficient by an appropriate setting of the sales
tax rate.
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3.2 Habit formation (Model 2) and indexation (Model 3)

One example of a missing lag in an endogenous variable is to allow for an internal habit

(e.g. Boivin and Giannoni (2006); Woodford (2003a)) in households’ total consumption.

The constituting equations for (1) are the policy rule (17) and the modified versions of the

Euler equation and the New Keynesian Philips curve:

𝜑[𝑑𝑡 − 𝜂𝑑𝑡−1]− 𝜑𝛽𝜂𝐸𝑡[𝑑𝑡+1 − 𝜂𝑑𝑡] = 𝐸𝑡𝜋𝑡+1 + �̂�𝑛
𝑡 − �̂�𝑡...

+ 𝐸𝑡𝜑[𝑑𝑡+1 − 𝜂𝑑𝑡]− 𝜑𝛽𝜂𝐸𝑡[𝑑𝑡+2 − 𝜂𝑑𝑡+1] (19)

𝜋𝑡 = 𝜅ℎ[(𝑑𝑡 − 𝛿∗𝑑𝑡−1)− 𝛽𝛿∗𝐸𝑡(𝑑𝑡+1 − 𝛿∗𝑑𝑡)] + 𝛽𝐸𝑡𝜋𝑡+1, (20)

where 𝑑𝑡 = 𝑦𝑡 − 𝑦𝑛𝑡 , 𝜅ℎ = 𝜂𝜑𝜅[𝛿∗(𝜔 + 𝜎)]−1, 𝜑 = 𝜎/(1− 𝜂𝛽), and the natural rate of output

follows6

[𝜔 + 𝜑(1 + 𝛽𝜂2)]𝑦𝑛𝑡 − 𝜑𝜂𝑦𝑛𝑡−1 − 𝜑𝜂𝛽𝐸𝑡𝑦
𝑛
𝑡+1 = 𝜑(1 + 𝛽𝜂2)𝑔𝑡 − 𝜑𝜂𝑔𝑡−1 − 𝜑𝜂𝛽𝐸𝑡𝑔𝑡+1...

+ (1 + 𝜔)�̂�𝑡 − 𝜇𝑡.

Approximating households’ utility to second order results in the following loss function:

𝐿(𝜃2, 𝑥) =
(1− 𝛽𝜂)𝜂𝜑𝑢ℎ

𝑐 𝑦
ℎ𝜁

2𝜅ℎ𝛿∗
{𝑣𝑎𝑟(𝜋𝑡) + 𝜆𝑑,ℎ𝑣𝑎𝑟(𝑦𝑡 − 𝑦𝑒𝑡 − 𝛿∗(𝑦𝑡−1 − 𝑦𝑒𝑡−1))}, (21)

where 𝜆𝑑,ℎ = 𝜅ℎ/𝜁 and the efficient rate of output is characterized by

[𝜔 + 𝜑(1 + 𝛽𝜂2)]𝑦𝑒𝑡 − 𝜑𝜂𝑦𝑒𝑡−1 − 𝜑𝜂𝛽𝐸𝑡𝑦
𝑒
𝑡+1 = 𝜑(1 + 𝛽𝜂2)𝑔𝑡 − 𝜑𝜂𝑔𝑡−1 − 𝜑𝜂𝛽𝐸𝑡𝑔𝑡+1...

+ (1 + 𝜔)�̂�𝑡.

Like habit formation, the indexation of prices to past inflation induces the economy to

evolve in a history-dependent way. We assume that the fraction of prices that are not

reconsidered, 𝛼, adjusts according to log𝑃𝑖𝑡 = log𝑃𝑖𝑡−1 + 𝛾 log 𝜋𝑡−1 with 0 ≤ 𝛾 ≤ 1 as

the degree of indexation. This implies that price dispersion evolves according to Δ𝑡 =

(1−𝛼)(
˜𝑃𝑡

𝑃𝑡
)−𝜁+𝛼𝜋−𝜁𝛾

𝑡−1 Δ𝑡−1𝜋
𝜁
𝑡 . Correspondingly, the economy with indexation is characterized

by a modified aggregate supply curve

𝜋𝑡 − 𝛾𝜋𝑡−1 = 𝛽𝐸𝑡(𝜋𝑡+1 − 𝛾𝜋𝑡) + 𝜅(𝑦𝑡 − 𝑦𝑛𝑡 ), (22)

6The parameter 𝛿∗, 0 ≤ 𝛿∗ ≤ 𝜂, is the smaller root of the quadratic equation 𝜂𝜑(1 + 𝛽𝛿2) = [𝜔 + 𝜑(1 +
𝛽𝜂2)]𝛿. This root is assigned to past values of the natural and efficient rate of output in their stationary
solutions.
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(15) and (17). The corresponding loss function of the central bank reads Woodford (2003a):

𝐿(𝜃3, 𝑥) =
𝑢𝑐𝑦𝜁(𝜔 + 𝜎)

2𝜅
{𝑣𝑎𝑟(𝜋𝑡 − 𝛾𝜋𝑡−1) + 𝜆𝑑𝑣𝑎𝑟(𝑦𝑡 − 𝑦𝑒𝑡 )}, (23)

where 𝜆𝑑 and the efficient rate of output are defined as in the baseline economy.

3.3 Money in the utility function (Model 4)

We introduce a transaction friction by letting real money balances enter households’ utility

in a separable way. More precisely, households’ utility of holding real money balances is

augmented by the amount 𝑧(𝑚𝑡) and a demand equation for real money balances enters the

set of equilibrium conditions. In log-linearized form this additional equilibrium condition is

given by:

�̂�𝑡 = − 1

𝜎𝑚(𝑅− 1)
�̂�𝑡 − 1

𝜎𝑚

�̂�𝑡, (24)

where 𝜎𝑚 = −𝑧𝑚𝑚𝑚/𝑧𝑚 and �̂�𝑡 denotes the Lagrangian multiplier on the budget constraint

of the household. The stabilization loss in Model 4 is given by:

𝐿(𝜃4, 𝑥) =
𝑢𝑐𝑦𝜁(𝜔 + 𝜎)

2𝜅
{𝑣𝑎𝑟(𝜋𝑡) + 𝜆𝑑𝑣𝑎𝑟(𝑦𝑡 − 𝑦𝑒𝑡 ) + 𝜆1𝑅𝑣𝑎𝑟(�̂�𝑡)}, (25)

where 𝜆𝑑 = 𝜅/𝜁, 𝜆1𝑅 = 𝜆𝑑𝛽[𝑣(𝜔 + 𝜎)(1 − 𝛽)𝜎𝑚]
−1 and 𝑣 = 𝑦/𝑚. The general form (1) has

to satisfy the (15)-(17) and (??).

3.4 The complete model (Model c)

The complete model builds on the baseline model and comprises habit formation, indexation

and money in the utility function. The equilibrium conditions in this case are: (19), (17),

(??) and

𝜋𝑡 − 𝛾𝜋𝑡−1 = 𝛽𝐸𝑡(𝜋𝑡+1 − 𝛾𝜋𝑡) + 𝜅ℎ[(𝑑𝑡 − 𝛿∗𝑑𝑡−1)− 𝛽𝛿∗𝐸𝑡(𝑑𝑡+1 − 𝛿∗𝑑𝑡)]. (26)

In the following proposition we state the loss function for Model c.

Proposition 1 If the fluctuations in 𝑦𝑡 around 𝑦, 𝑅𝑡 around 𝑅, 𝜉𝑡 around 𝜉, 𝜋𝑡 around 𝜋

are small enough, (𝑅 − 1)/𝑅 is small enough, and if the steady state distortions 𝜙 vanish

due to the existence of an appropriate subsidy 𝜏 , the utility of the average household can be
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approximated by:

𝑈𝑡0 = −𝐸𝑡0

∞∑
𝑡=𝑡0

𝛽𝑡−𝑡0𝐿(𝜃c, 𝑥) + 𝑡.𝑖.𝑠.𝑝.+𝒪(∥𝜉𝑡, (𝑅− 1)/𝑅∥3), (27)

where 𝑡.𝑖.𝑠.𝑝. indicate terms independent of stabilization policy,

𝐿(𝜃c, 𝑥) =
(1− 𝛽𝜂)𝜂𝜑𝑢ℎ

𝑐 𝑦
ℎ𝜁

2𝜅ℎ𝛿∗
{𝑣𝑎𝑟(𝜋𝑡−𝛾𝜋𝑡−1)+𝜆𝑑,ℎ𝑣𝑎𝑟(𝑦𝑡−𝑦𝑒𝑡−𝛿∗(𝑦𝑡−1−𝑦𝑒𝑡−1))+𝜆2𝑅𝑣𝑎𝑟(�̂�𝑡)},

(28)

𝜆𝑥 = 𝜆𝑑,ℎ = 𝜅ℎ/𝜁, 𝜆2𝑅 =
𝜆𝑑,ℎ𝛽𝛿

∗

𝑣𝜎𝑚(1− 𝛽)𝜂𝜑
,

and 𝑣 = 𝑦/𝑚 > 0.

Proof: see appendix A.1.

4 Results

In this section we first present and interpret the estimation results. These results will be

key for the assessment of the relevant model uncertainty faced by the policymaker. In the

second part we compute optimal simple rules along with the procedures laid out in section

2. As a standard, we determine optimal monetary policy at the posterior mean, i.e. optimal

policy in the absence of any model uncertainty. Then we analyze optimal policy when there

is uncertainty about the appropriate choice of nested models.

4.1 Data and estimation results

We treat the variables real wage, output and consumer price inflation as observable. The

data consists of HP filtered quarterly values of these variables for the EU 13 countries from

1970-2006.7

We calibrate the discount factor to 𝛽 = 0.99, the steady-state fraction of private con-

sumption relative to GDP 𝑐/𝑦 = 0.8 and the elasticity of substitution between differentiated

goods to 𝜁 = 6 (see Woodford, 2003a). The specification of the prior distributions of the

estimated deep parameters closely follows Negro and Schorfheide (2009), Smets and Wouters

(2003) and Smets and Wouters (2007).8 While we assume the disturbances 𝑔𝑡 and �̂�𝑡 to follow

stationary 𝐴𝑅(1) processes, 𝜇𝑡 is supposed to be 𝑖.𝑖.𝑑.. Since we are interested in evaluating

7The dataset we use was kindly provided by the Euro Area Business Cycle Network (EABCN). For a
description of how this data is constructed see Fagan, Henry, and Mestre (2001).

8See Appendix A.2 Table 6 for a detailed description.
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the explanatory power of each extension of the baseline model separately, common param-

eters in the set of models need to exhibit the same sufficient prior statistics. In particular,

the marginal prior distributions for the set of coefficients that describe the shock processes,

𝜓𝑔, 𝜓𝑎 and 𝜎𝑔, 𝜎𝑎, 𝜎𝜇, do not change across models, and they are specified according to the

procedure explained in Section 2.3.

We approximate the joint posterior distribution of structural parameters by drawing

100, 000 times employing a standard MCMC-algorithm as described in An and Schorfheide

(2007) and discard the first 80, 000 draws. The estimation results are displayed in Table 7 and

the posterior and prior distributions are plotted in Figure 1-5 in Appendix A.2. The estimates

of the posterior mean of the degree of relative risk aversion with respect to consumption (𝜎𝑐),

the degree of indexation (𝛾), and the degree of price stickiness (𝛼) correspond almost one-

for-one to the findings by Smets and Wouters (2003). In line with Woodford (2003a) we

find the labor supply decision with respect to changes in the real wage (1/𝜔) to be elastic,

i.e. values for 𝜔 vary between 0.3 and 0.4. Our estimate of the internal habit parameter

(𝜂) is comparable to Negro and Schorfheide (2009). Real money balances contribute only

separately to households’ utility in Model 4 and Model c and do not influence the equilibrium

dynamics of output, inflation and the real wage. The parameter of relative risk aversion with

respect to real money balances (𝜎𝑚) cannot be identified and thus the prior distribution and

the posterior distribution are alike (see Figures 4 and 5).

In order to assess the explanatory power of each model, we compute marginal likelihoods

and the corresponding posterior probabilities. The results are presented in Table 1. Here the

key result is, that adding frictions and features to the baseline model does not necessarily

increase the posterior probability. First, enriching the baseline model with a demand for

cash does not increase the marginal likelihood for Model 4: real money balances do not help

to predict the observable variables. Second, although the posterior distribution of the habit

parameter (𝜂) in Model 2 indicates a positive posterior mean of this parameter, a habit in

consumption does not improve the fit to the data. This points to a well-known problem

in Bayesian model estimation: The informative prior on the habit parameter introduces

curvature into the posterior density surface (as pointed out by Poirier (1998) and An and

Schorfheide (2007)). Third, history dependence in inflation improves the fit of the model.

With approximately 81% Model 3 exhibits the highest posterior probability. Thus, the

complete model incorporates features that helps to predict the data (indexation) and others

that do not (habit and money). It therefore exhibits a marginal likelihood higher than Model

1 but lower than Model 3.
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Table 1: Posterior probabilities and marginal data densities

𝑀1 𝑀2 𝑀3 𝑀4 𝑀c

𝑝(𝑌 ∣ℳ𝑖) 1683.98 1682.69 1696.83 1683.57 1695.39

𝑃 (𝑀𝑖∣𝑌 ) 0.00 0.00 0.81 0.00 0.19

The welfare-assessment of optimal and sub-optimal policies in and across models depends

on the magnitude of the resulting stabilization losses, i.e. the welfare relevant unconditional

variances or standard deviations. In our context, these are the unconditional fluctuations

in inflation and consumption (expressed in terms of a welfare-relevant output gap) for the

models without a transaction friction (see e.g. (18)), and additionally fluctuations in interest

rates, when money enters the utility function (see e.g (28)). As can be verified in Table 2, our

estimated theoretical moments at the posterior mean are consistent with the corresponding

ones directly estimated from the stationary times series.

Table 2: Welfare-relevant standard deviations: models vs. data

𝑀1 𝑀2 𝑀3 𝑀4 𝑀c 𝐷𝑎𝑡𝑎
𝑠𝑡𝑑(𝑐, 𝜃𝑖) 0.0070 0.0090 0.0068 0.0070 0.0078 0.0073

𝑠𝑡𝑑(𝜋, 𝜃𝑖) 0.0020 0.0020 0.0023 0.0020 0.0022 0.0020

𝑠𝑡𝑑(𝑅, 𝜃𝑖) 0.0028 0.0027 0.0031 0.0028 0.0031 0.0028

In the next section we begin the analysis of optimal policies in and across models.

4.2 Optimal policy at the posterior mean

To establish a standard and to explain the stabilization trade-off, we determine the optimal

policy 𝜙★
𝑖 = (𝜌★𝑅, 𝜙

★
𝜋, 𝜙

★
𝑦)𝑖 at the posterior mean 𝜃𝑖 for each Model 𝑖, 𝑖 = 1, 2, ..,c. To ease the

numerical computation and to exclude unreasonably high policy responses, we assume the

following bounds for the policy coefficients of the simple interest rate rule:

𝜌𝑅 ∈ [0, 20], 𝜌𝜋 ∈ [0, 20], and 𝜌𝑦 ∈ [0, 20].

The optimal coefficients and the resulting business cycles costs (ℬ𝒞) expressed as equivalent

reductions in steady-state consumption are displayed in Table 3.
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Table 3: Optimal policy at the posterior mean (𝜙★
𝑖 )

�̂�𝑡 = 𝜌𝑅�̂�𝑡−1 + 𝜙𝜋𝜋𝑡 + 𝜙𝑦𝑦𝑡

𝑀1 𝑀2 𝑀3 𝑀4 𝑀c

𝜌𝑅 0.81 1.05 0.62 1.26 1.36

𝜙𝜋 20.00 20.00 20.00 2.42 1.01

𝜙𝑦 0.00 0.02 0.00 0.00 0.00

ℬ𝒞(𝜃𝑖, 𝜙★
𝑖 ) 0.0014% 0.0014% 0.0020% 0.0194% 0.0178%

Optimal policies are characterized by drawing on past interest rates. Put differently, optimal

policy is history-dependent (Woodford, 2003a,b). In the first three models inflation stabi-

lization is the predominant aim. Correspondingly, optimal policies feature a strong reaction

on inflation.9 In Models 4 and c, households value real money balances as a medium for

transactions. This introduces stabilization of the nominal interest rate as a conflicting aim

to price stability (see (25) and (27)) in the presence of fluctuations in the natural rate of

interest. For intuition on this, suppose that 𝜙𝑦 is small and that the economy in Model 1 is

hit by a wage-markup shock. To fight inflationary tendencies the output gap must decrease

according to the aggregate supply curve (16). This in turn requires a strong increase in the

nominal interest rate to fulfil the Euler equation (15), since the cost-push shock affects the

natural rate of interest. Therefore, optimal policies in models with a demand for cash exhibit

a higher coefficient 𝜌𝑅 to smooth interest rates and a less aggressive response to inflation.

Welfare costs in models that feature a transaction friction are substantially higher. This

increase is due to two effects. First, the stabilization of the interest rate adds a new com-

ponent to the welfare-relevant stabilization loss, which accounts for over fifty percent of the

increase in business cycle costs in Model 4 relative to Model 1. The second effect relates

to the conflict of stabilizing interest rates, inflation and the output gap simultaneously, as

apparent in the muted response to inflation in the optimal rules for Models 4 and c. The

resulting increase in the unconditional weighted variances of inflation and the output gap

accounts for the remaining increase in the costs of business cycle fluctuations.

9The optimal policy response on inflation in these models always corresponds to its upper bound. However,
the welfare comparison between the two approaches to model uncertainty is independent of the particular
choice of the upper bound on the inflation response.
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Table 4: The weights 𝜆𝑑 and 𝜆𝑅 at the posterior mean

Weights 𝑀1 𝑀2 𝑀3 𝑀4 𝑀c

𝜆𝑑 0.0063 0.0231 0.0079 0.0057 0.0328
𝜆𝑅 - - - 0.0602 0.0728

Table 4 shows how the importance of stabilization aims relative to inflation for households

changes across models. For example, the stabilization of the output gap is five times more

important in Model c than in Model 1. In addition, the exact gap that policy should stabilize

to maximize welfare differs (see (18) and (27)). Furthermore, comparing the two models that

feature a demand for cash reveals that the optimal response to changes in inflation is larger in

Model 4 than in Model c. Although both specifications incorporate stabilizing the nominal

interest rate as a policy aim, this aim is relatively more important in Model c than in Model

4.

4.3 Evaluating two approaches to model uncertainty

In this section we quantitatively compare the two approaches to model uncertainty, the

complete-model and the model-averaging approach. We start by determining the set of

policy coefficients for the former approach according to (5), which yields

𝜙★
c : 𝜌𝑅 = 1.34; 𝜙𝜋 = 1.17; 𝜙𝑦 = 0.00.

However, Model c is not the likeliest model since it also contains features which do not

help to explain the given time series of GDP, inflation and the real wage (see Table 1).

A policymaker pursuing a model-averaging approach to model uncertainty weights welfare

losses in a particular model with its posterior probability, i.e. derives an optimal policy over

all draws and models according to (7):

𝜙★
𝑎 : 𝜌𝑅 = 1.39; 𝜙𝜋 = 3.36; 𝜙𝑦 = 0.00.

Comparing the characteristics of the two rules reveals two similarities and one difference.

Both rules draw heavily on past interest rates to avoid welfare-reducing fluctuations in the

interest rate in Models 4 and c, and put no emphasize on stabilizing the output gap. The

main difference between both rules is the preference to stabilize inflation. While there is a

conflict in stabilizing inflation and the nominal interest rate jointly in Model c, this trade-off

is absent in the likeliest model, Model 3.

18



To evaluate the performance of the two approaches as a guard against model uncertainty

we compute the business cycle cost for both policy rules in each Model 𝑖, i.e. ℬ𝒞(Θ𝑖, 𝜙
★
c) and

ℬ𝒞(Θ𝑖, 𝜙
★
𝑎) for 𝑖 = 1, 2, 3, 4,c.

Table 5: Relative performance of 𝜙★
c and 𝜙★

𝑎

𝑀1 𝑀2 𝑀3 𝑀4 𝑀c 𝑊𝐴

ℬ𝒞(Θ𝑖, 𝜙
★
c)/ℬ𝒞(Θ𝑖, 𝜙

★
𝑎) 2.22 2.16 1.90 1.26 0.74 1.68

𝑊𝐴 denotes the posterior-model probability average of business cycle costs.

As can be seen from Table 5, the optimal rule 𝜙★
𝑎 performs twice as good as 𝜙★

c in

Models 1, 2 and 3 where inflation stabilization is the predominant principle. Nevertheless,

by reacting less harshly to inflation than the optimal rules from those models (see Table

3), it avoids high welfare losses in Model c. On average, optimal policy derived from the

model-averaging approach leads to welfare gains of 68% relative to the optimal policy rule

derived by the complete-model approach.

5 Conclusion

In this paper we have analyzed how to optimally conduct policy from a Bayesian perspective

when the policymaker faces uncertainty about the appropriate choice among nested models.

In particular, we have compared two approaches to model uncertainty. The complete-model

approach is set to represent the standard practice: without paying special attention to the

set of sub-models, the policymaker determines optimal policy by maximizing households’

utility within one single model that nests all features and frictions. The model-averaging

approach takes uncertainty about the appropriate choice of nested models into account and

weights over the set of nested models to derive optimal policy prescriptions. Using EU-13

data, we find that the model-averaging approach leads to welfare gains of approximately 70

percent compared to the standard practice.
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A Appendix

A.1 Proof of proposition 1

The period utility function of the average household in equilibrium is given by:

∫ 1

0

[𝑢(∙)− 𝑣(𝑙𝑗𝑡) + 𝑧(𝑚𝑡)]𝑑𝑗 = 𝑢(𝑦𝑡 − 𝑔𝑡 − 𝜂(𝑦𝑡−1 − 𝑔𝑡−1))−
∫ 1

0

𝑣(𝑙𝑗𝑡)𝑑𝑗 + 𝑧(𝑚𝑡).

To derive (27) we need to impose that, in the optimal steady state, real money balances are

sufficiently close to being satiated (see Woodford, 2003a, Assumption 6.1) such that we can

treat (𝑅− 1)/𝑅 as an expansion parameter.

The first summand can be approximated to second order by:

𝑢(𝑦𝑡 − 𝑔𝑡 − 𝜂(𝑦𝑡−1 − 𝑔𝑡−1)) = 𝑢𝑐𝑦(1− 𝛽𝜂)[𝑦𝑡 +
1

2
(1− 𝜑(1 + 𝜂2𝛽))𝑦2𝑡 + 𝜑𝜂𝑦𝑡𝑦𝑡−1

+ 𝜑𝑦𝑡(−𝜂𝑔𝑡−1 − 𝛽𝜂𝑔𝑡+1 + (1 + 𝜂2𝛽)𝑔𝑡)] + 𝑡.𝑖.𝑠.𝑝.+𝒪(∥𝜉𝑡∥3), (29)

where we used (𝑥𝑡−𝑥) = 𝑥(𝑥𝑡+0.5𝑥2
𝑡 )+𝒪(∥𝑥𝑡∥3), 𝜑 = 𝜎

1−𝛽𝜂
, t.i.s.p denotes terms independent

of stabilization policy, 𝜎 = −𝑦𝑢11/𝑢1, and 𝑔𝑡 = (𝐺𝑡 −𝐺)/𝑦.

Since 𝑦𝑡 = 𝑎𝑡𝑙𝑡/Δ𝑡, the second term can be approximated by

𝑣(𝑙𝑡) = 𝑢𝑐(1− 𝛽𝜂)[𝑦𝑡 +
1 + 𝜔

2
𝑦2𝑡 − (1 + 𝜔)�̂�𝑡𝑦𝑡 + Δ̂𝑡] + 𝑡.𝑖.𝑠.𝑝.+𝒪(∥𝜉𝑡∥3), (30)

where we posited that in the equilibrium under flexible wages each household supplies the

same amount of labor, 𝑙 = 𝑦, 𝜔 = 𝑣𝑙𝑙
𝑣𝑙
𝑙, and that due to the existence of an output subsidy

the steady state is rendered efficient with 𝑣𝑙 = 𝑢𝑐(1− 𝛽𝜂). In the next step we combine (29)

and (30), employ 𝑔𝑡 = −𝜂𝑔𝑡−1 − 𝛽𝜂𝐸𝑡𝑔𝑡+1 + (1 + 𝜂2𝛽)𝑔𝑡, and obtain:

𝑢(𝑦𝑡 − 𝑔𝑡 − 𝜂(𝑦𝑡−1 − 𝑔𝑡−1))−
∫ 1

0

𝑣(𝑙𝑗𝑡)𝑑𝑗 = 𝑢𝑐𝑦(1− 𝛽𝜂)[
1

2
(−𝜑(1 + 𝜂2𝛽)− 𝜔)𝑦2𝑡

+ 𝜑𝜂𝑦𝑡𝑦𝑡−1 + 𝜑𝑦𝑡𝑔𝑡 + (1 + 𝜔)�̂�𝑡𝑦𝑡 − Δ̂𝑡] + 𝑡.𝑖.𝑠.𝑝.+𝒪(∥𝜉𝑡∥3). (31)

The efficient rate of output is defined by the following difference equation:

[𝜔 + 𝜑(1 + 𝛽𝜂2)]𝑦𝑒𝑡 − 𝜑𝜂𝑦𝑒𝑡−1 − 𝜑𝜂𝛽𝐸𝑡𝑦
𝑒
𝑡+1 = 𝜑𝑔𝑡 + (1 + 𝜔)�̂�𝑡 + 𝒪(∥𝜉𝑡∥2).

If we use this expression to rewrite (31), we obtain the following:
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𝐸𝑡0

∞∑
𝑡=𝑡0

𝛽𝑡−𝑡0{𝑢(∙)−
∫ 1

0

𝑣(𝑙𝑗𝑡)𝑑𝑗} = −𝐸𝑡0

∞∑
𝑡=𝑡0

𝛽𝑡−𝑡0𝑢𝑐𝑦(1− 𝛽𝜂){1
2
(𝜑(1 + 𝜂2𝛽) + 𝜔)𝑦2𝑡

− 𝜑𝜂𝑦𝑡𝑦𝑡−1 − [𝜔 + 𝜑(1 + 𝛽𝜂2)]𝑦𝑒𝑡 𝑦𝑡 + 𝜑𝜂𝑦𝑒𝑡−1𝑦𝑡 + 𝜑𝜂𝛽𝐸𝑡𝑦
𝑒
𝑡+1𝑦𝑡 + Δ̂𝑡}+ 𝑡.𝑖.𝑠.𝑝.+𝒪(∥𝜉𝑡∥3).

(32)

We seek to rewrite this expression in purely quadratic terms of the welfare-relevant gaps

for inflation and output. To do so we apply the method of undetermined coefficients to

reformulate the first part (all but Δ̂𝑡), i.e. we seek to find the coefficient 𝛿0, such that (32)

and

−1

2
𝛿0(𝑦𝑡 − 𝑦𝑒𝑡 − 𝛿∗(𝑦𝑡−1 − 𝑦𝑒𝑡−1))

2

= −1

2
𝛿0[𝑦

2
𝑡 − 2𝑦𝑡𝑦

𝑒
𝑡 + (𝑦𝑒𝑡 )

2 − 2𝛿∗(𝑦𝑡 − 𝑦𝑒𝑡 )(𝑦𝑡−1 − 𝑦𝑒𝑡−1) + (𝛿∗)2(𝑦2𝑡−1 − 2𝑦𝑡−1𝑦
𝑒
𝑡−1 + (𝑦𝑒𝑡−1)

2)]

= −1

2
𝛿0[𝑦

2
𝑡 − 2𝑦𝑡𝑦

𝑒
𝑡 − 2𝛿∗𝑦𝑡𝑦𝑡−1 + 2𝛿∗𝑦𝑡𝑦𝑒𝑡−1 + 2𝛿∗𝑦𝑒𝑡 𝑦𝑡−1 + (𝛿∗)2𝑦2𝑡−1 − 2(𝛿∗)2𝑦𝑡−1𝑦

𝑒
𝑡−1]

= −1

2
𝛿0[((𝛿

∗)2𝛽 + 1)𝑦2𝑡 − 2𝛿∗𝑦𝑡𝑦𝑡−1 + 2𝛿∗𝑦𝑡𝑦𝑒𝑡−1 + 2𝛿∗𝛽𝑦𝑒𝑡+1𝑦𝑡 − (2(𝛿∗)2𝛽 + 2)𝑦𝑡𝑦
𝑒
𝑡 ]

= −1

2
𝛿0((𝛿

∗)2𝛽 + 1)𝑦2𝑡 + 𝛿0𝛿
∗𝑦𝑡𝑦𝑡−1 − 𝛿0𝛿

∗𝑦𝑡𝑦𝑒𝑡−1 − 𝛿0𝛿
∗𝛽𝑦𝑒𝑡+1𝑦𝑡 + 𝛿0((𝛿

∗)2𝛽 + 1)𝑦𝑡𝑦
𝑒
𝑡

are consistent. We use that 𝑦𝑡0−1 is 𝑡.𝑖.𝑠.𝑝.. The parameter 𝛿∗, 0 ≤ 𝛿∗ ≤ 𝜂, is the smaller

root of this quadratic equation: 𝜂𝜑(1+𝛽𝛿2) = [𝜔+𝜑(1+𝛽𝜂2)]𝛿. This root is assigned to past

values of the natural and efficient rate of output in their stationary solutions. Comparing

coefficients, 𝛿0 is

𝛿0 =
𝑢𝑐𝑦(1− 𝛽𝜂)𝜂𝜑

𝛿∗
.

If firms are allowed to index with past inflation, such that

𝐸𝑡0

∞∑
𝑡=𝑡0

𝛽𝑡−𝑡02Δ̂𝑡 = 𝐸𝑡0

∞∑
𝑡=𝑡0

𝛽𝑡−𝑡0
𝜁𝛼

(1− 𝛼)(1− 𝛼𝛽)
(𝜋𝑡 − 𝛾𝜋𝑡−1)

2 + 𝑡.𝑖.𝑠.𝑝.+𝒪(∥𝜉𝑡∥3),

the quadratic approximation in (32) can be written as:

−𝐸𝑡0

∞∑
𝑡=𝑡0

𝛽𝑡−𝑡0
𝑢𝑐𝑦(1− 𝛽𝜂)

2
[
𝜂𝜑

𝛿∗
(𝑦𝑡 − 𝑦𝑒𝑡 − 𝛿∗(𝑦𝑡−1 − 𝑦𝑒𝑡−1))

2 +
𝜁𝛼

(1− 𝛼)(1− 𝛼𝛽)
(𝜋𝑡 − 𝛾𝜋𝑡−1)

2]

+ 𝑡.𝑖.𝑠.𝑝.+𝒪(∥𝜉𝑡∥3).

The last approximation needed is that involving the utility of real money balances. Applying
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similar techniques we get

𝑧(𝑚𝑡) = 𝑧 + 𝑦𝑢𝑐(𝑠𝑚(�̂�𝑡 +
1

2
𝑠𝑚(1− 𝜎𝑚)�̂�

2
𝑡 ) + 𝑡.𝑖.𝑠.𝑝+𝒪(∥𝜉𝑡∥3), (33)

where we employ 𝑠𝑚 = 𝑧𝑚𝑚/(𝑢𝑐𝑦) = (𝑅 − 1)(1 − 𝛽𝜂)𝑅 and 𝜎𝑚 = −𝑧𝑚𝑚𝑚/𝑧𝑚. Since we

treat (𝑅− 1)/𝑅 as an expansion parameter, 𝑠𝑚 and 1/𝜎𝑚 are of first order. However, 𝑠𝑚𝜎𝑚

approaches a finite limit for (𝑅− 1)/𝑅 → 0, which is given by

𝑠𝑚𝜎𝑚 =
𝑧𝑚𝑚𝑚2

𝑦𝑢𝑐

.

The interest elasticity of money demand is given by the following expression:

𝜂𝑖 = −𝑢𝑐(1− 𝛽𝑛)

𝑧𝑚𝑚

1− 𝑅−1
𝑅

𝑚
=

1

𝜎𝑚(𝑅− 1)
.

At the limit for (𝑅 − 1)/𝑅 → 0, it follows that 𝜂𝑖 = −𝑢𝑐(1 − 𝛽𝜂)/(𝑧𝑚𝑚𝑚) and therefore

𝑠𝑚𝜎𝑚 = (1 − 𝛽𝜂)/(𝑣𝜂𝑖), with 𝑣 = 𝑦/𝑚. A first-order approximation of the money demand

equation (24) yields

�̂�𝑡 = −𝜂𝑖�̂�𝑡 − 1

𝜎𝑚

�̂�𝑡 +𝒪(∥𝜉𝑡∣2),

where

�̂�𝑡 = −𝜑(𝑦𝑡 − 𝜂𝑦𝑡−1) + 𝛽𝜂𝜑(𝑦𝑡+1 − 𝜂𝑦𝑡) + 𝜑(𝑔𝑡 − 𝜂𝑔𝑡−1)− 𝛽𝜂𝜑(𝑔𝑡+1 − 𝜂𝑔𝑡) +𝒪(∥𝜉𝑡∣2).

Using all the above we can rewrite 𝑧(𝑚𝑡) in the following way:

𝑧(𝑚𝑡) = −𝜂𝑖𝑦𝑢𝑐

2𝑣
(1− 𝛽𝜂)(�̂�2

𝑡 + 2
𝑅− 1

𝑅
�̂�𝑡) + 𝑡.𝑖.𝑠.𝑝+𝒪(∥𝜉𝑡, (𝑅− 1)/𝑅∥3). (34)

We assume for simplicity that [(𝑅 − 1)/𝑅 − 0] is of second order, and sum the results in

expression (27) in the text.
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A.2 Estimation Results

Table 6: Prior distribution of the structural parameters

𝑃𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
Parameter distribution mean std

𝜌 beta 0.8 0.1
𝜙𝜋 normal 1.7 0.1
𝜙𝑦 normal 0.125 0.05
𝜔 gamma 1 0.5
𝜎𝑐 normal 1.5 0.375
𝛼 beta 0.75 0.05
𝜂 beta 0.7 0.1
𝛾 beta 0.75 0.15
𝜎𝑚 normal 1.25 0.375
𝜓𝑔 beta 0.7 0.1
𝜓𝑎 beta 0.7 0.1
𝜎𝑔 invgamma 0.04 0.026
𝜎𝑎 invgamma 0.04 0.026
𝜎𝜇 invgamma 0.04 0.026
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Figure 1: Deep parameters prior vs. posterior distribution in Model 1
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Figure 2: Deep parameters prior vs. posterior distribution in Model 2
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Figure 3: Deep parameters prior vs. posterior distribution in Model 3
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Figure 4: Deep parameters prior vs. posterior distribution in Model 4
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Figure 5: Deep parameters prior vs. posterior distribution in Model 5
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