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Abstract

In the presence of generalized conditional heteroscedasticity (GARCH) in the residuals of a
vector error correction model (VECM), maximum likelihood (ML) estimation of the cointe-
gration parameters has been shown to be efficient. On the other hand, full ML estimation of
VECMs with GARCH residuals is computationally difficult and may not be feasible for larger
models. Moreover, ML estimation of VECMs with independently identically distributed
residuals is known to have potentially poor small sample properties and this problem also
persists when there are GARCH residuals. A further disadvantage of the ML estimator is
its sensitivity to misspecification of the GARCH process. We propose a feasible generalized
least squares estimator which addresses all these problems. It is easy to compute and has
superior small sample properties in the presence of GARCH residuals.
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1 Introduction

In vector autoregressive (VAR) models with cointegrated variables the parameters of the

cointegration relations are often of central importance for interpreting the empirical results.

Despite the superconsistency of standard estimators for these parameters, their small sample

properties are often poor. Therefore asymptotic results due to Seo (2007) are of great

importance. He shows that estimation efficiency can be improved by taking into account

generalized autoregressive conditionally heteroskedastic (GARCH) residuals.

In practice, the Johansen (1995) reduced rank (RR) maximum likelihood (ML) approach

is the most popular method for estimating the cointegration parameters in a vector error

correction model (VECM) setup of a VAR. It was derived under the assumption of indepen-

dently identically distributed (i.i.d.) Gaussian residuals. Even if the residual distribution

is non-Gaussian, the estimator has good asymptotic properties under general conditions.

Seo (2007) has shown, however, that the estimator is generally inefficient for processes with

GARCH residuals. In that case, using a full ML procedure which takes into account the

GARCH residuals is efficient. He also presents simulation evidence of efficiency gains in

finite samples of size T = 250.

Full ML estimation of VECMs with GARCH residuals has at least three major drawbacks,

however. First, computation of the estimates is quite demanding and may not even be feasible

for larger models with a moderate number of variables and a realistic number of lags. Second,

in small samples the ML estimator for VECMs with i.i.d. residuals is known to generate

occasional outliers and therefore may yield quite distorted estimates of the cointegration

parameters (e.g., Brüggemann & Lütkepohl (2005)). We show that a similar problem can

also arise for the full ML estimator when GARCH residuals are accounted for. Third, in

practice the precise GARCH structure of the residuals is unknown and ML may not be

robust to misspecification of the GARCH process. We propose a feasible generalized least

squares (GLS) estimator which takes care of all three problems. It is easy to compute even

for large models and has small sample properties superior to full ML for a range of models

with features that are typical in empirical studies. It is also more robust to misspecification

of the GARCH structure than ML.

In the next section the model setup is presented and the GLS estimator which allows for

GARCH residuals is derived in Section 3. A small sample Monte Carlo comparison of the

GLS and ML estimators is provided in Section 4. Conclusions are drawn in Section 5.

The following notation is used throughout. The difference operator is denoted by Δ, that
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is, for a stochastic process or time series yt, Δyt = yt − yt−1. The normal distribution with

mean (vector) μ and variance (covariance matrix) Σ is signified as N (μ, Σ). For a symmetric,

positive definite matrix Σ, Σ−1/2 denotes the inverse of the symmetric square root matrix,

|A| is the determinant of a square matrix A, IK is the (K × K) identity matrix, ⊗ signifies

the Kronecker product and vec is the vectorization operator which stacks the columns of a

matrix in a column vector. An indicator function, denoted I(·), is one when the conditions

in parentheses are satisfied and zero otherwise.

The following abbreviations are used: VAR for vector autoregressive, VECM for vector

error correction model, GARCH for generalized autoregressive conditional heteroskedastic-

ity, i.i.d. for independently identically distributed, ML for maximum likelihood, GLS for

generalized least squares, OLS for ordinary least squares, RR for reduced rank, CCC for

constant conditional correlation, DGP for data generating process, RMSE for root mean

squared error, RRMSE for relative root mean squared error, MAE for mean absolute error

and RMAE for relative mean absolute error.

2 The Model

Suppose the K-dimensional VAR process yt has the VECM representation

Δyt = α(β′yt−1 + δco′dco
t−1) + Γ1Δyt−1 + · · · + Γp−1Δyt−p+1 + Cds

t + ut

= αβ∗′y∗
t−1 + Γ1Δyt−1 + · · · + Γp−1Δyt−p+1 + Cds

t + ut.
(2.1)

Here α and β are (K × r) matrices of rank r associated with the long-run part of the

model, Γi (i = 1, . . . , p − 1) are (K × K) coefficient matrices associated with the short-run

dynamics, dco
t is a vector of deterministic variables which are included in the cointegration

relations with corresponding coefficient matrix δco′. The vector ds
t includes the remaining

deterministic variables with coefficient matrix C. The matrix β∗′ = [β′ : δco′] is (r×K∗) and

y∗
t−1 = [y′

t−1, d
co′
t−1]

′ is (K∗ × 1) with K∗ = K+ dimension(dco
t ). As in Seo (2007), the error

term ut is assumed to be a vector martingale difference sequence with E(ut|Ft−1) = 0 and

E(utu
′
t|Ft−1) = Σt, where Ft is the σ-field generated by yt, yt−1, . . . .

In the following the primary objective is to estimate the cointegration parameters β∗.

Because the matrix is not unique we impose just-identifying restrictions such that β∗′ = [Ir :

β∗′
(K∗−r)], that is, the first r rows of β∗ constitute an (r × r) identity matrix. As explained in

Lütkepohl (2005, Section 6.3), this normalization is not restrictive from a practical point of

view.
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3 Estimation

Before the GLS estimator for VECMs with GARCH residuals is presented, full Gaussian ML

and ML ignoring GARCH are considered.

3.1 ML Estimation with GARCH Residuals

For a given cointegrating rank r and lag order p, a sample with T observations and p presam-

ple values, ML estimation of the VECM (2.1) is theoretically straightforward if ut|Ft−1 ∼
N (0, Σt). Collecting all parameters in a vector θ, the log-likelihood function for the model

from Section 2 is l(θ) = T−1
∑T

t=1 lt(θ), where lt(θ) = −1
2
log |Σt(θ)| − 1

2
ut(θ)

′Σt(θ)
−1ut(θ)

and a constant term has been dropped (see Seo (2007, Eq. (6))). Seo (2007) derives the

asymptotic properties of the ML estimators of the cointegration parameters under the as-

sumption that either the model has no deterministic terms (dco
t = 0, ds

t = 0) or it has an

intercept term (dco
t = 0, ds

t = 1). Moreover, he assumes the GARCH process to be of the

constant conditional correlation (CCC) form (Bollerslev (1990)).

3.2 Reduced Rank Estimator

An alternative estimator of the cointegration parameters can be obtained by a pseudo-ML

method which ignores the GARCH structure of ut. As shown in Johansen (1995), it can be

obtained by RR regression. In other words, the estimator may be determined by denoting

the residuals from regressing Δyt and y∗
t−1 on ΔY ′

t−1 = [Δy′
t−1, . . . , Δy′

t−p+1, d
s′
t ] by R0t and

R1t, respectively, defining Sij = T−1
∑T

t=1 RitR
′
jt (i, j = 0, 1), and solving the generalized

eigenvalue problem |λS11 − S10S
−1
00 S01| = 0. Let λ1 ≥ · · · ≥ λK∗ be the ordered eigenvalues

with corresponding matrix of eigenvectors B = [b1, . . . , bK∗ ] satisfying λiS11bi = S ′
01S

−1
00 S01bi

and normalized such that B′S11B = IK∗ . An estimator of β∗ is given by β̃∗ = [b1, . . . , br].

Post-multiplying by the inverse of the first r rows of β̃∗ gives an RR estimator β̃∗′
RR = [Ir :

β̃∗′
(K∗−r)]. This estimator is the Gaussian ML estimator if the residuals are i.i.d..

It turns out that the asymptotic distribution of the RR estimator is invariant to condi-

tional heteroskedasticity of the form considered here (see Seo (2007, p. 78)). However, using

full ML with allowance for GARCH residuals will result in more efficient estimators if the

true GARCH structure is considered. Obviously, assuming a known GARCH structure is a

rather strong assumption and it is worth exploring the robustness of the full ML estimator

with respect to a violation of this assumption. We will do so in Section 4.
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3.3 A Feasible GLS Estimator

A GLS estimator for the cointegration parameters can be derived by premultiplying the

VECM (2.1) by Σ
−1/2
t and using standard rules for the vec operator and the Kronecker

product,

Σ
−1/2
t Δyt = Σ

−1/2
t αβ∗′y∗

t−1 + (ΔY ′
t−1 ⊗ Σ

−1/2
t )γ + Σ

−1/2
t ut, (3.1)

where γ = vec[Γ1, . . . , Γp−1, C]. Replacing γ by its GLS estimator and rearranging terms

gives

G0t = G1tvec(β∗′) + ũt, (3.2)

where

G0t = Σ
−1/2
t Δyt − (ΔY ′

t−1 ⊗ Σ
−1/2
t )

[
T∑

t=1

ΔYt−1ΔY ′
t−1 ⊗ Σ−1

t

]−1

(ΔYt−1 ⊗ Σ−1
t )Δyt,

is a (K × 1) vector,

G1t = (y∗′
t−1⊗Σ

−1/2
t α)−(ΔY ′

t−1⊗Σ
−1/2
t )

[
T∑

t=1

ΔYt−1ΔY ′
t−1 ⊗ Σ−1

t

]−1

(ΔYt−1y
∗′
t−1⊗Σ

−1/2
t α)

is a (K × rK∗) matrix and ũt is the corresponding error term. Hence, denoting by G
(1)
1t and

G
(2)
1t the first r2 and last r(K∗ − r) columns of G1t, respectively, and using that β∗′ = [Ir :

β∗′
(K∗−r)], the GLS estimator for vec(β∗′

(K∗−r)) can be expressed as

vec(β̆∗′
(K∗−r)) =

(
T∑

t=1

G
(2)′
1t G

(2)
1t

)−1 T∑
t=1

G
(2)′
1t

(
G0t − G

(1)
1t vec(Ir)

)
. (3.3)

Notice that this estimator is the Gaussian ML estimator of β∗
(K∗−r) for given α and Σt. In

other words, if the latter two quantities are replaced by their ML estimators, the GLS esti-

mator is identical to the ML estimator. Given the practical difficulties in computing the ML

estimator in the presence of GARCH residuals, we propose the following two-step procedure

for a feasible GLS estimator.

Step 1. Estimate the parameters in the model

Δyt = Πy∗
t−1 + Γ1Δyt−1 + · · · + Γp−1Δyt−p+1 + Cds

t + ut

by OLS and denote the residuals by ût. Then estimate the GARCH parameters, ψ say, from

a pseudo ML estimation based on maximizing l̂(ψ) = T−1
∑T

t=1 l̂t(ψ), where

l̂t(ψ) = −1

2
log |Σt(ψ)| − 1

2
û′

tΣt(ψ)−1ût.
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Let the estimate be ψ̂ and define Σ̂t = Σt(ψ̂). �

Step 2. Use the Σ̂t from Step 1 to estimate π = vec(Π) = vec(αβ∗′) and γ by OLS from

the transformed model

Σ̂
−1/2
t Δyt = (y∗′

t−1 ⊗ Σ̂
−1/2
t )π + (ΔY ′

t−1 ⊗ Σ̂
−1/2
t )γ + ṽt,

rearrange the elements of the estimator π̂ in the matrix Π̂ and use the first r columns of

Π̂ as an estimator α̂ of α because the first r columns of Π are equal to α. Finally, use

α̂ and Σ̂t in G0t and G1t in place of α and Σt, respectively, to compute a feasible GLS es-

timator of vec(β∗′
(K∗−r)) as in (3.3). The feasible GLS estimator is denoted by vec(

˘̆
β∗′

(K∗−r)). �

Although estimation of the GARCH parameters in Step 1 requires numerical optimization

of l̂(ψ), this optimization problem involves fewer parameters than optimization of the full

likelihood l(θ). Hence, the numerical evaluation of the GLS estimator is easy compared with

full ML because all other computations are based on closed form expressions.

If there are no short-term dynamics, that is,

Δyt = αβ∗′y∗
t−1 + ut, (3.4)

the model can be written in the form

Σ
−1/2
t (Δyt − αy

∗(1)
t−1 ) = (y

∗(2)
t−1

′ ⊗ Σ
−1/2
t α)vec(β∗′

(K∗−r)) + vt, (3.5)

where the normalization β∗′ = [Ir : β∗′
(K∗−r)] has been used and vt = Σ

−1/2
t ut. Furthermore,

y
∗(1)
t−1 and y

∗(2)
t−1 consist of the first r and last K∗ − r components of y∗

t−1, respectively. For

given α and Σt, the GLS estimator of vec(β∗′
(K∗−r)) in this model simplifies to

vec(β̆∗′
(K∗−r)) =

[
T∑

t=1

y
∗(2)
t−1 y

∗(2)
t−1

′ ⊗ α′Σ−1
t α

]−1 T∑
t=1

(y
∗(2)
t−1 ⊗ α′Σ−1

t )(Δyt − αy
∗(1)
t−1 ). (3.6)

These considerations suggest another feasible GLS estimator which does not reestimate

π and γ in Step 2 but uses the OLS estimates from Step 1 instead. It may be based on the

concentrated model

R0t = αβ∗′R1t + ũt, (3.7)

where R0t and R1t are the residual series from the RR regression discussed in Section 3.2 and

ũt is the corresponding error term. Thus, the GLS estimator is obtained by replacing Δyt
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and y∗
t−1 in (3.6) by R0t and R1t, respectively. Using this setup, it is straightforward to show

that, if there is no conditional heteroskedasticity so that Σt = Σu, the GLS estimator reduces

precisely to the estimator considered by Ahn & Reinsel (1990), Reinsel (1993, Chapter 6),

Saikkonen (1992) and Brüggemann & Lütkepohl (2005). In the following the estimator which

assumes no GARCH, Σt = Σu, will be denoted by GLS1, the estimator based on (3.6) and

(3.7), which does not reestimate α and γ in Step 2, is abbreviated as GLS2 and the full

two-step GLS estimator is signified as GLS3.

As usual, an estimator of the covariance matrix of our GLS estimator may be obtained

as (
T∑

t=1

G
(2)′
1t G

(2)
1t

)−1

, (3.8)

where again α and Σt are replaced by the estimators α̂ and Σ̂t, respectively, from Steps 1

and 2. For the special case model (3.4) the estimator simplifies to[
T∑

t=1

y
∗(2)
t−1 y

∗(2)
t−1

′ ⊗ α̂′Σ̂−1
t α̂

]−1

. (3.9)

This estimator is used in computing t-ratios for GLS2 and GLS3 in the simulation experiment

reported in the next section. In (3.9), α̂ is the OLS estimator for GLS2 and the GLS estimator

from Step 2 for GLS3.

4 Monte Carlo Comparison

In the following Monte Carlo experiments we compare the five estimators based on ML

without allowance for GARCH (RR), ML with GARCH (ML), GLS1, GLS2 and GLS3.

The Monte Carlo design is described in Section 4.1 and the main simulation results are

summarized in Section 4.2.

4.1 Monte Carlo Design

Our Monte Carlo experiments use the same bivariate model setup as Seo (2007) but replace

some of the parameters by values more common in applied work. Thus, the model is

Δyt = αβ′yt−1 + ut,

where α = (α1, 0)′, β = (1, β2)
′ with β2 = −1, and ut is a CCC-GARCH process. More

precisely, the conditional covariance, E(utu
′
t|Ft−1) = Σt, is based on the orthogonalized
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Table 1: Parameter Values Used in Monte Carlo Simulations

DGP α1 β2 λ ωj ψj φj

1 −1.0 −1.0 0 1 0 0
2 −1.0 −1.0 −0.5 1 0.25 0.70
3 −1.0 −1.0 0.5 0.05 0.05 0.90
4 −1.0 −1.0 0.5 0.05 0.10 0.85
5 −1.0 −1.0 0.5 ωj, ωj 0.05 0.90
6 −1.0 −1.0 BEKK
7 −0.1 −1.0 0 1 0 0
8 −0.1 −1.0 −0.5 1 0.25 0.70
9 −0.1 −1.0 0.5 0.05 0.05 0.90
10 −0.1 −1.0 0.5 0.05 0.10 0.85
11 −0.1 −1.0 0.5 ωj, ωj 0.05 0.90
12 −0.1 −1.0 BEKK

process et defined such that E[ete
′
t|Ft−1] = Ωt with Ωt = diag(σ2

1t, σ
2
2t) and σ2

j,t = ωj +

ψje
2
j,t−1 + φjσ

2
j,t−1, where ejt = σjtξjt, ξjt ∼ N (0, 1). The relation between ut and et is given

by ut = Let, where

L =

⎛⎝ 1 0

λ 1

⎞⎠ .

Thus, λ determines the correlation between the two components of ut.

In all the simulations the cointegration parameter β2 = −1. This value is in line with

typical cointegration parameters in economic models and was also used by Seo (2007). The

values of the parameters α, λ, ωj, ψj, φj, used in the simulations are summarized in Table

1. The first two processes were also considered by Seo (2007) in a simulation study aimed

at demonstrating the virtues of ML estimation with GARCH residuals. The first one has

no GARCH so that it is suitable for investigating possible estimation efficiency losses due to

assuming GARCH when there is none. In all models considered by Seo, α1 = −1. Therefore

we also use this parameter value for the first six processes in the simulation comparison. Such

strong error correction dynamics make estimation of the cointegration parameter potentially

easier. It is not very realistic from a practical point of view because in empirical studies

loading coefficients much closer to zero are common. Therefore we use a more realistic value

of α1 in DGPs 7 - 12. The choice of α2 = 0 in all DGPs implies that the second variable is

weakly exogenous. This situation is not uncommon in practice and was also used in most of

Seo’s DGPs.
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We also use a range of GARCH specifications different from those employed by Seo.

In most of his DGPs the correlation parameter λ is zero implying that the components of

ut follow independent univariate processes which is not of particular interest in a vector

GARCH context. The only exception is a process with λ = −0.5 in one of Seo’s DGPs.

Again this is a somewhat unrealistic case because it implies that the correlation among the

two residual components is negative. Hence, we choose some DGPs with positive values of

λ.

As in most of Seo’s DGPs, we also choose identical values for the GARCH parameters ωj,

ψj, φj of the two residual components. Again we select complementarily parameter settings

that are more in line with empirical analyses of conditionally heteroskedastic processes.

Considering higher frequency data, daily or weekly say, GARCH parameters ψj tend to be

closer to zero while φj is often close to unity. To mention a particular framework where

cointegration features and second order moment characteristics at higher frequency are core

model ingredients one could think of term structure modelling/monitoring or price discovery

in financial markets (see Diebold & Li (2006) and Hasbrouck (1995)).

To ensure that the simulation results for DGPs 3-6 and 9-12 are unaffected by the un-

conditional variances of the variables, the intercept term of the GARCH equation is selected

such that the unconditional variance is unity. DGPs 5 and 11 are characterized by a shift

of the unconditional variance such that after one fourth of the generated time span the un-

conditional variance shifts by a factor of 4. Accordingly, GARCH intercept parameters are

chosen as

ωjt = ωjI(t ≤ T/4) + ωjI(t > T/4),

with ωj = 0.05/3.25 ≈ 0.0154, ωj = 0.05 × 4/3.25 ≈ 0.0615.

Finally, we consider GARCH processes which do not have a CCC structure. They allow

us to determine the effects of other types of misspecifying the residual process. DGPs 6 and

12 are so-called BEKK models (Engle & Kroner (1995)), i.e.,

Σt = Γ0Γ
′
0 + Dut−1u

′
t−1D

′ + FΣt−1F
′ (4.1)

with

D =

⎛⎝ 0.229 −0.173

0.005 0.174

⎞⎠ and F =

⎛⎝ 0.954 0.033

0.008 0.981

⎞⎠ .

The parameter values are estimates for a bivariate residual series obtained from a VAR that

is composed of so-called breakeven inflation rates (generated from prices of nominal and
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inflation protected long-term government bonds) prevailing in France and the UK, covering

the time period 8/3/2000 - 9/30/2005 (see Hafner & Herwartz (2009) for details). The

moduli of the eigenvalues of the matrix (D⊗D)+(F ⊗F ) are close to but smaller than one.

Hence, the BEKK process has high persistence in second moments but remains covariance

stationary. The variables are again normalized to have unit unconditional variances and Γ0

is chosen accordingly.

For each DGP, M = 5000 sets of time series were generated and the cointegration param-

eter β2 was estimated by the five methods RR, ML, GLS1, GLS2 and GLS3. ML estimators

were determined using first order numerical derivatives (GAUSS 6.0, gradp) to implement

BHHH optimization and covariance estimation which is justified given the conditional nor-

mality of all DGPs considered (Berndt, Hall, Hall & Hausman (1974)). The estimators will

be compared on the basis of their root mean squared error (RMSE), mean absolute error

(MAE) and rejection frequencies of t-tests of a null hypothesis H0 : β2 = −1 with significance

level 5%. Since the finite sample moments of the ML estimator do not exist, it seems sensible

to consider the MAE in addition to the RMSE. The rejection frequencies of the t-tests give

an impression of the usefulness of the estimators for doing inference regarding the actual

parameter value.

4.2 Monte Carlo Results

Simulation results for sample sizes T = 100, 250 and 500 are presented in Tables 2 and 3

as well as Figures 1 - 4. In the tables RMSEs and MAEs relative to RR are given for all

estimators but RR and denoted by RRMSE and RMAE, respectively. The actual RMSEs

and MAEs of RR, which are given in boldface in the tables, show that estimation precision

increases with the sample size, reflecting consistency of the estimator. In Figures 1, 2 and

3 only relative MAEs are depicted. Figure 4 shows relative rejection frequencies for t-tests

based on a nominal significance level of 5%. The following observations emerge from these

results.

Overall the GLS estimators have smaller RMSEs and MAEs than the RR and ML esti-

mators. There are, in fact, only two processes where ML is clearly preferable, namely when

DGPs 2 or 8 and relatively large samples of sizes T = 250 or 500 are used. Recall that both

DGPs have somewhat uncommon GARCH parameters. DGP 2 was also considered by Seo

who does not report results for sample sizes T = 100 or 500. Thus, only for two DGPs with

unusual GARCH parameters ML has a sizable lead over GLS when at least a moderately
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large sample is considered. In all other cases GLS with GARCH correction (GLS2/GLS3)

is superior or roughly at the same level in terms of RMSE and MAE. The GLS estimators

are substantially superior to ML if there is no GARCH in the residuals (DGPs 1 and 7).

This outcome is obtained especially for larger samples (T = 250 and 500). It may be an

implication of the lack of identification of the GARCH parameters for this case.

All three GLS estimators are typically rather close together in terms of RMSE and MAE.

GLS2 and GLS3 results are in fact almost indistinguishable in the figures for all DGPs and

sample sizes. Thus, reestimating α in Step 2 of the GLS procedure does not make much

difference for estimation precision. Only in rare occasions sizable gains are obtained by

accounting for GARCH. This behaviour prevails even in larger samples. For our simple

models, the superconsistency of the estimators may well become effective for samples of size

T = 250 or 500 so that for such sample sizes accounting for specific residual properties is of

limited value for the precision of the estimators.

ML performs particularly poorly for smaller samples (T = 100) when the loading coeffi-

cient is large in absolute value (α = −1) and there is no GARCH (DGP 1), realistic GARCH

parameters are considered (DGPs 3 and 4) or the GARCH process is misspecified (DGPs 5

and 6). In these cases ML is in fact inferior to all other estimators in terms of RMSE and/or

MAE. The very poor performance of ML for DGP 1 even for large samples (see Figure 3) is

likely to be driven by the fact that the GARCH parameters are not identified in this case

and this affects the estimator for the cointegration parameter if a full likelihood optimization

is attempted. The results for DGP 1 illustrate particularly forcefully the lack of robustness

of the ML estimator. The relatively poor performance of RR in small samples (T = 100) for

DGPs with more realistic loading coefficients (see, e.g., DGPs 9 - 12 in Table 3) reflects its

heavy-tailed small sample distribution (see Brüggemann & Lütkepohl (2005)).

The rejection frequencies for testing H0 : β2 = −1 by means of t-ratios with 5% nominal

significance level vary substantially across DGPs for all the estimators (see Tables 2 and 3

and Figure 4). In some cases the relative rejection frequencies are considerably larger than

0.05, especially when the loading coefficient α has a more realistic value (see, e.g., DGPs 7

- 12). As can be seen in Figure 4, all tests overreject for these processes even for samples

as large as T = 250. In fact, the rejection frequencies based on the ML estimator for DGP

1 which does not have GARCH residuals, do not even improve with increasing sample size

due to the lack of identification of the GARCH parameters (see the results for T = 500 in

Table 2). Thus, ML is particularly unreliable for inference if the true DGP is unknown. In

contrast, the GLS estimators are more robust and the rejection frequencies improve with
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increasing sample size for all DGPs.

In summary, these observations imply that the GLS estimators are overall superior to ML

in terms of RMSE and MAE if DGPs with realistic parameter values are used. Comparing

GLS with and without allowance for GARCH shows that gains from taking GARCH into

account are limited, in particular, if the true model structure is unknown. Inference based on

any of the estimators is likely to be distorted in samples of realistic size. ML with allowance

for GARCH may produce very unreliable estimates especially if the assumed GARCH process

is not the true one. Obviously, the latter situation is common in practice.

4.3 Other Simulation Experiments

We have also considered other estimators and simulation setups for which we do not report

detailed results because they do not add much to the conclusions we can draw from the

results in Tables 2 and 3 and Figures 1 - 4. They may still be worth summarizing here.

First of all we have considered even smaller samples of size T = 50. For such small

samples RR produces extremely poor RMSEs and MAEs especially when α1 = −0.1. This

result is in line with the simulations reported by Brüggemann & Lütkepohl (2005). It is due

to the heavy-tailed small sample distribution of the RR estimator (for a theoretical analysis

see Phillips (1994)). Clearly, one would not expect the problem to disappear when there is

GARCH in the residuals. It is not surprising that the problem also arises to some extent for

the ML estimator which accounts for GARCH, although to a lesser extent. We do not report

detailed results because for samples as small as T = 50, GARCH residuals are typically not

viewed as a major problem in applied work.

Instead of using the RR estimator we have computed the ML estimator without allowance

for GARCH residuals by a numerical algorithm similar to the one used in the GARCH ML

procedure. This was done primarily to check our algorithms. Although there were slight

deviations in the estimates, the results were very similar, in particular for larger samples. In

small samples (T = 50) numerical differences were found between RR and the ML algorithm

without GARCH.

To further improve the robustness of the t-tests based on the GLS estimator we have

also considered a “heteroskedasticity consistent” covariance estimator of the asymptotic

distribution of GLS2 and GLS3 of the form[
T∑

t=1

y
∗(2)
t−1 y

∗(2)′
t−1 ⊗ α̂′Σ̂−1

t α̂

]−1 {
T∑

t=1

y
∗(2)
t−1 y

∗(2)′
t−1 ⊗ α̂′Σ̂−1

t
ˆ̃ut

ˆ̃u′
tΣ̂

−1
t α̂

}[
T∑

t=1

y
∗(2)
t−1 y

∗(2)′
t−1 ⊗ α̂′Σ̂−1

t α̂

]−1

.
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Here ˆ̃ut denotes a residual based on the corresponding GLS estimator. Unfortunately, preci-

sion gains for the t-tests were rather limited, especially for the misspecified GARCH models

where one might have expected more substantial improvements.

5 Conclusions

Despite the superconsistency of standard estimators for the cointegration parameters in a

VAR model, the small sample properties are often poor. This state of affairs is particularly

problematic because the cointegration parameters are often of central interest for interpret-

ing empirical findings. Therefore attempts have been made to improve the small sample

estimation efficiency. In particular, it was proposed recently to use ML estimation when

the residuals have GARCH properties. In this study we use a Monte Carlo experiment to

show that ML is problematic in the present context because it may produce very unreliable

estimates when realistic parameter values for the conditional first and second moments of

the model are considered. We propose feasible GLS estimators which produce more efficient

estimates for the cointegration parameters in terms of RMSE and MAE than ML in a sim-

ple model setup. They are also more robust than ML to misspecification of the GARCH

process. Moreover, the GLS estimators have the advantage of being much easier to compute

than the full ML estimator accounting for GARCH residuals. Overall, the efficiency gains

from accounting for GARCH are rather limited, however.

In the simulation study we have assumed that the cointegrating rank and the lag order of

the VAR process are known. Thereby we have been able to focus attention on the differences

between the estimators under ideal conditions. Clearly, this is a simplification which is hardly

realistic. Even though unit root and cointegration tests which account for heteroskedasticity

have been proposed, it is by no means clear that they will necessarily lead to a correctly

specified cointegrating rank in practice. Moreover, the models used in the Monte Carlo study

are particularly simple in that there is only one cointegration parameter to estimate. A simple

model setup is a concession to the ML estimator which is computationally problematic for

more complicated models. However, even for our simple model setup ML does not work well

relative to GLS. We have no reason to believe that the relative performance of ML improves

in more complicated setups. Thus, we conclude that if one wants to account for GARCH in

the residuals of a VAR, our GLS estimators for the cointegration parameters are preferable to

ML. In fact, GLS2, the simpler version based on OLS estimates of the short-run parameters,

can be recommended because it is very easy to compute and performs about as well as the

12



full two-step estimator.
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Table 2: Simulation Results for Estimators of β2 Based on DGPs 1 - 6

DGP Estim. RRMSE RMAE 5% RRMSE RMAE 5% RRMSE RMAE 5%
T = 100 T = 250 T = 500

1 RR 0.0195 0.0131 0.0666 0.0085 0.0058 0.0546 0.0045 0.0031 0.0518
ML 1.2103 1.2894 0.1332 1.3194 1.4176 0.1766 1.4074 1.4626 0.1944
GLS1 0.9986 0.9988 0.0670 0.9992 0.9998 0.0550 1.0001 1.0001 0.0514
GLS2 1.0059 1.0037 0.0696 1.0012 1.0024 0.0558 1.0009 1.0001 0.0552
GLS3 1.0053 1.0034 0.0688 1.0010 1.0025 0.0556 1.0011 1.0003 0.0552

2 RR 0.0155 0.0102 0.0634 0.0067 0.0045 0.0538 0.0036 0.0025 0.0562
ML 0.9732 0.9895 0.0804 0.8322 0.8289 0.0514 0.7631 0.7744 0.0538
GLS1 0.9978 0.9988 0.0634 1.0008 1.0003 0.0538 1.0007 1.0002 0.0560
GLS2 0.9147 0.9282 0.0710 0.8761 0.8700 0.0606 0.8200 0.8278 0.0640
GLS3 0.9108 0.9260 0.0712 0.8740 0.8669 0.0610 0.8173 0.8268 0.0622

3 RR 0.0173 0.0118 0.0662 0.0075 0.0052 0.0598 0.0040 0.0028 0.0498
ML 1.1358 1.1474 0.0888 1.0682 1.0734 0.0758 1.0133 1.0037 0.0580
GLS1 0.9992 0.9990 0.0660 0.9979 0.9992 0.0598 0.9998 0.9998 0.0496
GLS2 1.0017 1.0049 0.0734 0.9976 0.9989 0.0604 0.9944 0.9879 0.0568
GLS3 1.0018 1.0045 0.0722 0.9972 0.9987 0.0606 0.9951 0.9882 0.0570

4 RR 0.0173 0.0118 0.0684 0.0074 0.0052 0.0584 0.0040 0.0028 0.0520
ML 1.0770 1.0844 0.0820 0.9871 0.9864 0.0600 0.9492 0.9390 0.0552
GLS1 0.9991 0.9985 0.0684 0.9984 0.9993 0.0586 0.9999 0.9998 0.0516
GLS2 0.9872 0.9932 0.0752 0.9771 0.9771 0.0596 0.9645 0.9534 0.0584
GLS3 0.9863 0.9925 0.0742 0.9768 0.9767 0.0582 0.9653 0.9536 0.0592

5 RR 0.0195 0.0138 0.0678 0.0086 0.0061 0.0724 0.0046 0.0032 0.0640
ML 1.1435 1.1628 0.0934 0.9929 0.9916 0.0756 0.9427 0.9483 0.0716
GLS1 0.9991 0.9994 0.0676 0.9984 0.9992 0.0726 0.9998 0.9999 0.0638
GLS2 1.0001 1.0048 0.0716 0.9879 0.9836 0.0706 0.9688 0.9693 0.0630
GLS3 1.0004 1.0052 0.0708 0.9877 0.9835 0.0710 0.9701 0.9702 0.0624

6 RR 0.0183 0.0125 0.0646 0.0082 0.0056 0.0564 0.0043 0.0029 0.0534
ML 1.1444 1.1881 0.1060 1.0777 1.0974 0.0856 1.0192 1.0084 0.0616
GLS1 0.9984 0.9992 0.0652 0.9974 0.9991 0.0564 0.9995 1.0000 0.0536
GLS2 0.9859 0.9892 0.0670 0.9722 0.9785 0.0552 0.9746 0.9735 0.0514
GLS3 0.9849 0.9886 0.0660 0.9739 0.9794 0.0556 0.9742 0.9733 0.0510

Note: The numbers listed in boldface for RR are RMSEs and MAEs.
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Table 3: Simulation Results for Estimators of β2 Based on DGPs 7 - 12

DGP Estim. RRMSE RMAE 5% RRMSE RMAE 5% RRMSE RMAE 5%
T = 100 T = 250 T = 500

7 RR 0.5123 0.1786 0.1918 0.0986 0.0631 0.0992 0.0470 0.0325 0.0776
ML 0.4293 0.8209 0.1546 1.0075 1.0498 0.0978 1.1108 1.0764 0.0960
GLS1 0.4376 0.8182 0.1774 0.9397 0.9798 0.0976 0.9934 0.9954 0.0792
GLS2 0.4399 0.8207 0.1816 0.9396 0.9821 0.1002 0.9939 0.9960 0.0804
GLS3 0.4410 0.8228 0.1832 0.9401 0.9831 0.1000 0.9949 0.9963 0.0802

8 RR 0.4690 0.1437 0.1598 0.0783 0.0507 0.0924 0.0393 0.0260 0.0794
ML 0.4546 0.8214 0.1016 0.7944 0.8130 0.0646 0.7419 0.7652 0.0608
GLS1 0.4110 0.8540 0.1560 0.9643 0.9896 0.0942 1.0021 1.0014 0.0792
GLS2 0.3761 0.7914 0.1890 0.8510 0.8769 0.1132 0.8360 0.8466 0.0966
GLS3 0.3727 0.7833 0.1666 0.8410 0.8623 0.0982 0.8058 0.8222 0.0814

9 RR 1.0982 0.1855 0.2148 0.0993 0.0581 0.1172 0.0424 0.0291 0.0806
ML 0.1973 0.6944 0.1594 0.8491 0.9663 0.1054 0.9757 0.9777 0.0760
GLS1 0.1828 0.7012 0.1890 0.8013 0.9472 0.1122 0.9788 0.9892 0.0804
GLS2 0.1822 0.7000 0.1938 0.7991 0.9413 0.1148 0.9737 0.9796 0.0874
GLS3 0.1832 0.7008 0.1938 0.7989 0.9399 0.1104 0.9758 0.9793 0.0866

10 RR 0.6809 0.1779 0.2106 0.4941 0.0649 0.1186 0.0425 0.0291 0.0804
ML 3.0086 0.9263 0.1584 0.1734 0.8451 0.1046 0.9425 0.9337 0.0786
GLS1 0.2988 0.7285 0.1864 0.1629 0.8520 0.1144 0.9832 0.9909 0.0826
GLS2 0.2935 0.7186 0.1956 0.1593 0.8256 0.1218 0.9515 0.9508 0.0926
GLS3 0.2978 0.7171 0.1910 0.1586 0.8222 0.1146 0.9503 0.9468 0.0864

11 RR 4.3177 0.2970 0.2240 0.1054 0.0676 0.1378 0.0487 0.0339 0.1020
ML 0.2615 0.5680 0.1592 0.9125 0.9717 0.1162 0.9379 0.9444 0.0930
GLS1 0.0519 0.5134 0.1974 0.8752 0.9543 0.1348 0.9798 0.9890 0.1008
GLS2 0.0517 0.5127 0.1948 0.8644 0.9416 0.1254 0.9474 0.9559 0.0946
GLS3 0.0535 0.5155 0.1958 0.8635 0.9420 0.1230 0.9484 0.9561 0.0914

12 RR 4.9552 0.3134 0.2010 0.1037 0.0630 0.1160 0.0459 0.0307 0.0794
ML 0.0758 0.4606 0.1520 0.8906 0.9605 0.1006 0.9668 0.9726 0.0708
GLS1 0.0432 0.4441 0.1822 0.8566 0.9496 0.1142 0.9848 0.9966 0.0778
GLS2 0.0426 0.4388 0.1866 0.8325 0.9313 0.1138 0.9596 0.9730 0.0792
GLS3 0.0427 0.4397 0.1850 0.8305 0.9300 0.1114 0.9550 0.9703 0.0754

Note: The numbers listed in boldface for RR are RMSEs and MAEs.
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Figure 1: MAEs of estimators relative to RR for sample size T = 100.
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Figure 2: MAEs of estimators relative to RR for sample size T = 250.
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Figure 3: MAEs of estimators relative to RR for sample size T = 500.
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Figure 4: Relative rejection frequencies in 5000 Monte Carlo replications of t-tests with
nominal 5% significance level for sample size T = 250.
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