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Abstract. Many contemporaneously aggregated variables have stochastic
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casts for individual disaggregate components and the aggregation weights. In
empirical illustrations based on aggregate GDP and money growth rates, we
find forecast efficiency gains from using the information in the stochastic
aggregation weights. A Monte Carlo study confirms that using the informa-
tion on stochastic aggregation weights explicitly may result in forecast mean
squared error reductions.
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1 Introduction

Many economic variables which are contemporaneous aggregates of a number
of disaggregate variables have time-varying aggregation weights. For example
the European Union (EU) growth rate is an average of the growth rates
of the individual member states weighted by the relative shares of overall
output. The EU unemployment rate is the weighted average of the individual
member states’” unemployment rates with weights being the relative shares
of the respective labor forces. As another example consider North American
output which is the sum of the outputs of the northern American countries
weighted by the exchange rates. In these examples the aggregation weights
are actually best thought of as stochastic.

Despite the stochastic nature of the weights of many aggregates, most pre-
vious studies on forecasting contemporaneously aggregated variables focus on
aggregation with fixed, time-invariant weights. Examples are Ansley, Spivey
and Wrobleski (1977), Tiao and Guttman (1980), Wei and Abraham (1981),
Kohn (1982), Liitkepohl (1984a, 1984b, 1986, 1987). See also the survey
by Liitkepohl (2010). These studies suggest that taking into account dis-
aggregate information is theoretically helpful for reducing the forecast mean
squared error (MSE). However, specification and estimation uncertainty may
reduce or even reverse the gains, in particular, when higher-dimensional mul-
tivariate models are fitted to disaggregate data. Therefore some studies also
compare aggregates of univariate forecasts of the disaggregate components
and find that such forecasts may outperform aggregated multivariate fore-
casts. Also parameter reduction methods such as subset vector autoregres-
sions as in Hubrich (2005) or factor models as in Hendry and Hubrich (2011)
have been considered in this context. The results are not uniform across stud-
ies and depend to some extent on the data generation process (DGP). Overall
there is evidence that taking into account disaggregate information can im-
prove forecast efficiency for contemporaneous aggregates with fixed weights
if methods are used which limit the estimation and specification uncertainty.
Empirical studies confirming this conclusion are, for instance, provided by
Marcellino, Stock and Watson (2003), Espasa, Senra and Albacete (2002)
and Carson, Cenesizoglu and Parker (2010).

The fact that many aggregates have time-varying weights was recognized
by Liitkepohl (2011) who developed a general framework for comparing pre-
dictors for such aggregates based on aggregate and disaggregate information.
In that framework the process generating the time-varying, possibly stochas-
tic weights is not explicitly considered, however. Hence, any information in
that process is ignored or taken into account only indirectly for forecasting
purposes. In practice, such an approach has its advantages if the aggrega-



tion weights are not available or unobservable. On the other hand, there are
also many cases where past aggregation weights are available. In this study
we focus on that case and investigate whether it is worthwhile to take the
information in the weights explicitly into account in forecasting.

There are a number of different predictors which can be used in this
situation. For instance, one may model the disaggregate series and the ag-
gregation weights separately, forecast them and then aggregate the forecasts
using the predicted weights or one may construct a joint model for the disag-
gregate series and the aggregation weights and aggregate the forecasts from
such a model. Obviously, this forecasting strategy may quickly result in
very high-dimensional models even if only a few disaggregate components
are involved and in practice we often have to deal with very large panels of
disaggregate components, as the aforementioned examples suggest. Hence,
one may consider forecasting all components and aggregation weights with
univariate models and then aggregating these forecasts. A range of other
possibilities may be useful and in Section 2 some of them will be discussed.

The main objective of this study is to check whether taking into account
the information in stochastically varying aggregation weights is potentially
beneficial for forecasting. Therefore we will focus on a small number of
plausible predictors and compare their forecasting efficiency on a limited set
of example series. We find that taking the information in the aggregation
weights explicitly into account may indeed help improving the forecasts in a
MSE sense. It is not the purpose of this study to suggest a universally optimal
predictor but rather to point out that there is a source of information which
may be worthwhile to consider. We are fully aware that in practice for each
specific forecasting problem the most suitable predictors may be different.

The structure of the study is as follows. In Section 2 some possible predic-
tors for contemporaneous aggregates with stochastic weights are presented
and discussed. In Section 3 a small set of real life examples is investigated
and it is demonstrated that taking explicitly into account the information
in the stochastic aggregation weights helps improving forecast efficiency. In
Section 4 a small Monte Carlo study is presented which explores the poten-
tial for forecast efficiency gains in a controlled environment. Finally, Section
5 concludes.

The following notation is used throughout. E denotes the expectation
operator and FE,; denotes the corresponding conditional operator which con-
ditions on information up to period 7. The natural logarithm is denoted by
log and A is the differencing operator. We use the following abbreviations:
AR for autoregressive, VAR for vector autoregressive, iid for independently,
identically distributed, DGP for data generation process, MSE and RMSE
for mean squared error and root mean squared error, respectively, GDP for



gross domestic product, PPP for purchasing power parity, US for Unites
States of America, NAFTA for North American Free Trade Agreement.

2 Possible Predictors

Suppose y¢ = (Y11, .., Yke) is the vector of disaggregate component series
and the aggregate of interest is a; = wyy,, where w; = (wyy,...,wgy) is a
vector of stochastic (time-varying) weights. Furthermore, suppose that y;
and w, are generated by stochastic processes or possibly by a joint stochastic
process. In the empirical section it will be assumed that all DGPs are AR
or VAR processes which can at least be approximated well by finite order
versions. For discussing the predictors to be used later, such an assumption
is not required, however. The following h-step predictors at origin 7 will be
considered:

Univariate forecast Direct forecast of the univariate process a;:

Aryh|r = E(aT+h|aT7 Ar—1; .- ) = ET(aT+h)'

This predictor serves as a benchmark. It does not use any disaggregate
information. If such information is useful then forecasts based on it
should improve on this predictor.

Multivariate linear forecast Linear forecast taking into account disag-
gregate information:

o —
ar—&—h\r - E(a‘r+h|a77 Ar—15-- s Yrs Yr—15- - - ):

that is, a multivariate model is fitted to (a;, y;)’ and used for forecasting.
The first component of the vector forecast is a? Fhjr As in Liitkepohl
(2011), the forecast may be based on selected components of y; only

rather than the full disaggregate vector.

Aggregation of multivariate forecasts Forecast based on multivariate pre-
dictions of disaggregate components and weights:

mult

Q= By alwr, w1,V B alys v, ).

Aggregation of univariate forecasts Forecast based on univariate pre-
dictions for disaggregate components and weights:

. ET(yl,T—i-h)
agizhh = [Er(Wirin), - Er(Wirin)] )
E’r(yK,T-l—h)



where E;(wgr1n) = E(Wk rin|Wkry Wi -1, ... ) ete.

The last predictor is included because it may not be possible to construct
multivariate forecasts of y, and w; if there are many disaggregate compo-
nents. Of course, other predictors are conceivable. For example, one may
use a multivariate forecast of 1, and still predict the components of w; with
univariate models or vice versa. Also, it is possible that the disaggregate
components and aggregation weights are related. In that case modelling and
forecasting the joint process (y;,w;) may be plausible and then computing
the aggregate forecast on that basis. Having quickly a very high-dimensional
prediction problem is the obvious disadvantage. As mentioned earlier, it is
not the objective of this study to find a universally optimal predictor for the
case of aggregates with stochastic weights as we believe that the most suit-
able predictor will depend on the problem at hand. The small selection of
predictors described in the foregoing is enough for making our main points.
Hence, we limit attention to them.

3 Empirical Examples

Two examples based on real economic data are considered. In the first one
forecasts for real GDP growth in the NAFTA are studied, the second one
is based on European money stock variables. In both examples only three
component series are aggregated. With such a small number of disaggregate
components multivariate methods based on VARs are still feasible and may
in fact have an advantage over univariate methods. This is the reason why we
have chosen these examples although we know that there are many examples
in practice where one has many more components.

3.1 NAFTA real GDP Growth

Quarterly data on real GDP for the three NAFTA countries US, Canada and
Mexico measured at price levels and PPPs of 2005 are considered. Details
on the data sources are given in Appendix A.1. The aggregate series is
computed with weights computed based on real GDP shares. In other words,
the aggregate NAFTA real GDP growth rate is computed by aggregating
growth rates using these weights. More precisely,

(i)
NAFTA _ 9t-1

Alog q —qtNﬁ‘FTA

Alog q,gi), (3.1)

i



where qt(i) denotes output in country ¢ with ¢ = US, Canada, Mexico. Notice
that the weights are based on the output share in the previous period, as
in Beyer, Doornik and Hendry (2001), so that for one-step ahead forecasts
the weights are actually known. Data is available for the period 1970Q1-
2010Q4 although NAFTA started only in 1994. In the following only data
from 1985Q1 is used to avoid problems related to structural breaks. The
three disaggregate and the aggregate series are plotted in Figure 1 and the
aggregation weights are depicted in Figure 2. Apparently the weights vary
substantially and are quite persistent. In fact, augmented Dickey-Fuller tests
(results not shown) suggest that the Canadian series has a unit root.

We conduct a recursive pseudo out-of-sample forecasting experiment for
growth rates of real GDP. Estimation and model selection are repeated for
every sample considered. We use data from 1985Q1 onwards and the actual
starts of the estimation periods are adjusted according to the presample
values needed. We fit AR and VAR processes only and choose the lag order
by model selection criteria AIC and SC, the first one being more generous
and the second one more restrictive if they differ. The maximum lag length
is four in all cases. Potential breaks and outliers in the time series or weights
have not been modelled. The end of the initial estimation period varies
because we wanted to check the robustness of the results with respect to the
forecast period. To check how the recent recession affects the outcome one
set of results is reported using data only until 2007Q4 and another one with
data until 2010Q4. In both cases there are evaluation periods of different
length to investigate the sensitivity of the results with respect to variations
in the forecast period. Forecasting horizons are h = 1 and h = 4. RMSEs
relative to the univariate AR forecasts for different evaluation periods are
presented in Table 1.

The results in Table 1 show that the predictors which utilize forecasts of
the aggregation weights, an,lf‘T and aﬁiﬁlh, are often superior to those which
do not forecast the weights. Of course, for h = 1 the weights are known at the
time of the forecast because the lagged shares are used (see (3.1)). Therefore
it is important to note that efficiency gains are also obtained for forecast
horizons h = 4. When the lag order is selected by AIC and only data until
2007Q4 are used, that is, the recent crisis period is excluded, aﬁfhh provides
the smallest RMSEs for three out of four evaluation periods. The superior
performance of the predictor which aggregates univariate forecasts of the
disaggregate components and the weights may reflect the small sample size
used for some of the forecasts. For example, when a long evaluation period
starting in 1995Q1 is used, the associated estimation and specification period
from 1985Q1-1994Q4 is rather small and leaves only a sample size of T' = 40



Table 1: RMSEs Relative to Univariate Forecasts for NAFTA GDP Growth
(Total Sample Period: 1985Q1 - 2010Q4)

h=1 h=4 h=1 h=4
forecast | AIC SC AIC SC AIC SC AIC SC
ev. period: 1995Q1-2007Q4 ev. period: 1995Q1-2010Q4
ag s 1.0360 1.0155 0.9553 1.0076 | 1.0783 1.0968 0.9730 0.9642
ai’f}jT 1.0497 0.9854 0.9591 1.0068 | 1.0795 1.0167 0.9750 0.9563
a1 0.9577 0.9926 0.9247 0.9976 | 1.0054 1.0076 0.9832 0.9726
ev. period: 1998Q1-2007Q4 ev. period: 1998Q1-2010Q4
ad s 0.9812 1.0178 0.9669 1.0145 | 1.0613 1.1137 0.9784 0.9626
a;"j‘,% 0.9652 0.9750 0.9682 1.0145 | 1.0456 1.0183 0.9795 0.9544
Al 0.9387 0.9843 0.9534 0.9997 | 1.0064 1.0068 0.9978 0.9711
ev. period: 2000Q1-2007Q4 ev. period: 2000Q1-2010Q4
ag s 1.0084 0.9788 0.9828 1.0233 | 1.0817 1.1072 0.9838 0.9579
aTﬂf‘T 0.9812 0.9583 0.9886 1.0203 | 1.0613 1.0154 0.9858 0.9480
a1 0.9376 0.9797 0.9746 1.0057 | 1.0138 1.0069 1.0088 0.9688
ev. period: 2003Q1-2007Q4 ev. period: 2003Q1-2010Q4
ag s 0.9741 0.9306 0.9725 0.9856 | 1.1037 1.1466 0.9831 0.9440
a;"f,llﬁT 0.9916 0.9890 0.9793 1.0000 | 1.0945 1.0430 0.9845 0.9341
Al 1.0067 1.0081 0.9787 0.9976 | 1.0573 1.0230 1.0156 0.9621




Table 2: RMSEs Relative to Univariate Forecasts for European Real M3
Growth (Total Sample Period: 1981Q2 - 2010Q3)

h=1 h=4 h=1 h=4
forecast | AIC SC AIC SC AIC SC AIC SC
ev. period: 1992Q1-2007Q4 ev. period: 1992Q1-2010Q3
ag s 1.0012 0.9861 1.0137 1.0095 | 0.9859 1.0439 1.0026 1.0061
aTﬁ}lﬁT 0.9978 0.9804 1.0097 1.0031 | 0.9877 1.0390 0.9908 1.0015
GZTMT 0.9313 0.9267 0.9821 0.9973 | 0.9412 0.9486 0.9757 0.9957
ev. period: 1996Q1-2007Q4 ev. period: 1996Q1-2010Q3
ag s 0.9946 0.9978 1.0226 1.0211 | 0.9756 1.0749 1.0058 1.0140
a;’ﬂth 1.0377 0.9894 1.0077 1.0115 | 1.0135 1.0684 0.9832 1.0075
a?fhh 0.9388 0.9666 0.9744 1.0013 | 0.9500 0.9862 0.9678 0.9983
ev. period: 2000Q1-2007Q4 ev. period: 2000Q1-2010Q3
g pir 0.9897 0.9973 1.0154 1.0230 | 0.9693 1.0875 0.9980 1.0142
aTmf}lf‘T 0.9962 0.9905 0.9923 1.0133 | 0.9810 1.0824 0.9682 1.0082
a’TLT'h‘T 0.9176 0.9741 0.9629 0.9997 | 0.9374 0.9947 0.9585 0.9966
ev. period: 2003Q1-2007Q4 ev. period: 2003Q1-2010Q3
ag s 0.9274 0.9704 0.9479 1.0228 | 0.9260 1.1077 0.9496 1.0107
an,’zﬁT 0.9818 0.9614 0.9721 1.0134 | 0.9669 1.1021 0.9460 1.0062
a?fhh 0.8258 0.9023 0.9531 0.9939 | 0.8957 0.9637 0.9508 0.9917

when forecasts for 1995 are determined. For fitting three-dimensional VARs
for such a small sample period may well lead to large estimation uncertainty
and reduced forecast precision relative to a predictor which is based exclu-
sively on univariate forecasts. It has to be noted, however, that the situation
is slightly different for evaluation periods up to 2010Q4. In that case, the
aggregation of multivariate forecasts leads to slightly smaller RMSEs. Actu-
ally, for h = 4 and lag order selection by SC, aTﬁ,ﬁT results in the smallest
RMSEs for all four evaluation periods. In any case, the smallest RMSEs in
most cases are obtained for predictors that explicitly utilize information in

the aggregation weights.

3.2 European M3 Growth

The second example is based on quarterly real money stock M3 series from
the three European countries Germany, France and Italy. Details on the
data sources are given in Appendix A.2. The weights are computed based
on real M3 shares and the aggregate real M3 growth rate is computed by



aggregating growth rates using these weights. Data is available from 1981Q2-
2010Q3, that is, our sample period starts well before the introduction of the
euro. The series and the weights are plotted in Figures 3 and 4. Again, the
aggregation weights vary substantially and show considerable persistence. In
fact, in this case unit roots are not rejected in either of the series.

Forecasting is done as in the previous example, that is, recursive pseudo
out-of-sample forecasting for growth rates of real M3 is carried out. Estima-
tion and model selection is repeated for every sample considered. Different
initial estimation and evaluation periods are used. We use data from 1981Q2
onwards and again the beginnings of the estimation periods depend on the
number of presample values needed. We compare results for samples until
2007Q4 and also consider samples with data until 2010Q3. Forecasting hori-
zons are again h = 1 and 4. Relative RMSEs are reported with the univariate
forecasts as benchmark. We fit only AR and VAR models without accounting
for potential breaks or outliers. The model orders are chosen by AIC and SC
using a maximum order of four.

The results are similar to those in the previous example in that the pre-
dictors based on forecasts for the aggregation weights have smaller RMSEs
than the other two predictors. Note that again the one-step ahead forecasts
a:”f,% and aﬁ%h use known weights whereas the 4-step ahead forecasts use
predicted weights. If AIC is used for lag order selection, aﬁ%h results in
the smallest RMSEs for forecast horizon h = 4 in six out of eight evaluation
periods considered in Table 2, the exceptions being the evaluation periods
2003Q1-2007Q4 and 2003Q1-2010Q3 where a“  has a marginally larger

T+h|T
RMSE than a? h Tl A similar result is obtained with SC where
uni

arh) is best in seven out of eight evaluation periods and in this case the ex-
ception is the evaluation period 1996Q1-2007Q4 where the direct univariate
predictor has about the same RMSE as a”;‘fhh. The multivariate predictor
based on disaggregate information in the aggregation weights, a

mult
_and/or a

mult
T+h|T>
ung

ways worse than a! i when SC is used. It may again suffer from the small
sample sizes used for the longest evaluation periods. It is also interesting to
note that there are never substantial losses due to using the information in
the aggregation weights.

Of course, forecast efficiency gains for a specific dataset and sample period
may be obtained by chance. One way to explore whether the gains are real is
to conduct a Monte Carlo experiment based on DGPs similar to the models
used in the empirical studies. This is what we will do next.

is al-



4 Monte Carlo Experiment

In the following we first describe our Monte Carlo setup and then discuss the
results.

4.1 Monte Carlo Setup

We have used a number of DGPs with parameter values estimated from our

example data. In each case, the disaggregate component series are generated
by a VAR(p) process,

Yy =v+ Ayt Ay + (4.1)

where A; are (3 x 3) coefficient matrices and u; ~ N (0, X,) is an iid Gaussian
white noise process with covariance matrix >,. The aggregation weights w;
are generated by a finite order VAR of dimension two because the aggrega-
tion weights add up to one. Although we have experimented with a number
of other processes as well, we focus on the following two processes to discuss
results.

DGP1: The parameters of a VAR(1) for the disaggregate series are es-
timated from the NAFTA country data for 1985Q1-2007Q4, that is, y; is
meant to mimic 100 x (Alog ¢S, Alog ¢oN, Alog ¢M"FX)’ with

0.540 0.025  0.255 0.022
ye=| 0159 | + | 0.399 0.324 0.004 | yp—1 + wy
0.360 0.238 —0.126 0.313

and associated white noise covariance

0.227 0.102 0.132
Yo = 0.102 0.280 0.091
0.132 0.091 1.585

The moduli of the roots of the characteristic polynomial of the VAR coeffi-
cient matrix are 0.527, 0.323 and 0.187. Hence, the process is stable and the
persistence is moderate or small, as one would expect for GDP growth rates.
Given that there are three disaggregate components and the aggregation
weights add to one, the DGP of the weights is bivariate. It is obtained by
fitting a VAR(1) to US and Canadian data, w; = (w5, wCAN)’ giving

v, — (0082 N 0.903 —0.011 o
£\ 0.008 —0.006  0.966 t=1 T T

9



and white noise covariance matrix

w (1072 —0.109 i
P = ( —0.109  0.167 ) <10

The moduli of the roots of the characteristic polynomial of A; in this case
are 0.967 and 0.902. Hence, the DGP of the weights is quite persistent, in
line with the visual impression of persistent weights in Figure 2. U

DGP2: The second DGP is a VAR(2) for the disaggregate components
estimated using data from 1981Q2-2007Q4 for the three M3 growth rates,
that is, y; = 100 x (A logm3rSER Alog m3rfRA Alog m3r!T)’ | where

0.949 0.095 0.150 0.124
ye=| 0421 | + 0.030 0.364 0.026 | y4—1
0.462 —0.022 0.055 0.244

—0.089 —0.110 —0.288
+ 1 —0.019 0.217 —0.069 | yi—2 + u;
—0.071  0.048  0.062

and

1.526 —0.215 —0.036
Yo =1 —0.215 1.146  0.090
—-0.036  0.090 1.711

The moduli of the roots of the characteristic polynomial of the VAR operator
are 0.655, 0.532, 0.418, 0.418, 0.322 and 0.322 which again means that the
persistence is moderate only.

The associated bivariate process for the aggregation weights is also a
VAR(2) with parameters estimated from the German and French series, that

is, w; = (wFER, wERA) and
_( 0050, (1043 —0.056 L ( —0.087 ~0.039 o
=1 _0.008 0.008 1301 )"\ —0.076 —0.304 ) V1T

with
w [ 1458 —0.859 i
> = < —0.859  1.079 ) <107

The moduli of the roots of the characteristic VAR polynomial are 0.970,
0.970, 0.331 and 0.075 which again implies a high persistence in this aggre-
gation weights, although the roots are still a bit away from unity. 0

10



Table 3: RMSEs Relative to Univariate Forecasts for DGP1

h=1 h=2 h=4

T forecast | AIC SC AIC SC AIC SC

50 ag i pir 1.0108 1.0095 1.0131 1.0026 1.0098 1.0004
a:”f}llﬁ,r 0.9824 0.9955 0.9979 0.9999 1.0020 0.9987

aum 0.9877 0.9871 0.9926 0.9987 0.9989 0.9992

T+h|T
100 a2+h\‘r 0.9741 1.0107 0.9925 1.0052 0.9951 0.9994
an}le 0.9684 0.9720 0.9898 0.9939 0.9952 0.9983
am 0.9992 0.9979 0.9990 1.0012 0.9982 0.9999

T+h|T
250 a$+h‘7 0.9739 0.9716 0.9963 0.9940 0.9981 0.9987

a:”f,lfh 0.9715 0.9689 0.9944 0.9928 0.9977 0.9986

aﬁihh 0.9953 0.9971 0.9984 0.9991 0.9987 0.9999

We have also considered a number of alternative artificial DGPs obtained
by fitting other VARs to the data or based on selected other processes. Some
results obtained for those processes will be mentioned in the following. We
have chosen DGP1 and DGP2 for a more detailed discussion of the results
because they are similar to those for other DGPs.

Samples of sizes T' = 50, 100 and 250 were generated plus 50 presample
observations which were discarded to reduce the impact of starting-up val-
ues. Moreover, four values were generated at the end of each sample for the
forecast comparison. In the following, 7" denotes the gross sample size used
for estimation and model specification but excluding the values for forecast
evaluation. Full AR and VAR models with a constant term are fitted using
lag orders selected by AIC and SC with a maximum order four, as in the
empirical studies. The number of replications is 5000.

4.2 Monte Carlo Results

RMSES relative to the direct univariate forecasts for forecast horizons h = 1,
2 and 4 are presented in Tables 3 and 4 for DGP1 and DGP2, respectively.
As in the empirical studies, the weights are known for 1-step ahead forecasts
while they are forecasted when an,le and aﬁfhh are used and h > 1. The
results in Table 3 show that utilizing the information in the aggregation
weights explicitly is beneficial for the forecast efficiency, but the gains are
very moderate when the weights are actually forecasted (h = 2,4). Also there

is very little difference between the RMSEs of af’f}lfh and aﬁfhh for DGP1.

11



Table 4: RMSEs Relative to Univariate Forecasts for DGP2

h=1 h=2 h=4
T forecast | AIC SC AIC SC AIC SC
50 a2+h‘7 1.0284 1.0171 0.9977 0.9852 1.0281 0.9986

aTmf}lf‘T 0.9911 1.0144 0.9843 0.9837 1.0096 0.9976

aﬁTh‘T 0.9744 0.9680 0.9711 0.9719 1.0016 0.9998
100 a2, 0.9752 1.0322 0.9783 0.9885 0.9978 1.0001
an}le 0.9614 1.0103 0.9678 0.9820 0.9967 0.9979
a7y, 0.9735 0.9665 0.9745 0.9732 0.9962 0.9977

250 a7 . 0.9546 0.9969 0.9622 0.9845 0.9956 0.9970
aTﬁ}jT 0.9476 0.9611 0.9586 0.9646 0.9947 0.9955
aum 09772 0.9735 0.9799 0.9752 0.9953 0.9939

T+h|T

Moreover, it does not make much difference whether the order is chosen by
AIC or SC. Clearly, for DGP1 the choice between the four predictors does
not make much difference for the forecast efficiency for h = 2 or 4. This is
true for all sample sizes considered. The fact that it holds also for larger
samples of size T = 250 indicates that the structure of the DGP does not
leave much room for improvements even when specification and estimation
problems are less import. A similar result was also obtained for a number of
other artificial DGPs.

The situation is a bit different for DGP2. In Table 4 it can be seen
that forecasting the aggregation weights can make a difference and, in fact,
improve forecast RMSEs at least for small forecast horizons. In other words,
there are sizable gains for h = 2 but not for h = 4. Of course, one would not
expect substantive efficiency gains for larger forecast horizons given that the
persistence in the disaggregate components is low. This is nicely reflected in
the results for h = 4 which are again very similar for all four predictors.

We have also generated an aggregate by using a VAR(1) for the disag-
gregate components and weights generated by a random walk to explore the
impact of persistence in the aggregation weights. The results were more like
those in Table 3. In other words, forecasting the aggregation weights im-
proves the forecast efficiency but at a very small margin. Thus, for practical
purposes there is very little to recommend one of the predictors over the
others.

Generally we found a number of DGPs where the difference between the
four predictors in terms of RMSE were small. However, we never found cases
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where taking into account the information in the aggregation weights was
harmful. In other words, for none of our DGPs the forecasts an,lf‘T and
aﬁ"h‘T were substantially inferior to the other two predictors. Thus, the risk
of loosing efficiency by using predictors for the aggregation weights is small

while there is a chance for MSE improvements.

5 Conclusions

In this study we have considered forecasting contemporaneous aggregates
with stochastic aggregation weights. We have pointed out that such aggre-
gates are quite common in practice and that taking into account the infor-
mation in the weights may lead to better forecasts in a MSE sense. We have
compared four predictors for such variables: (1) a standard direct univariate
AR forecast which is based only on the past of the aggregate series, (2) a
multivariate linear VAR forecast of the aggregate which takes into account
information from the disaggregate components, (3) a forecast which aggre-
gates a multivariate forecast of the disaggregate components and the aggre-
gation weights and (4) a forecast which is based on aggregating univariate
AR forecasts for the individual disaggregate components and the aggregation
weights. In two empirical examples we have shown that the last two forecasts
may lead to lower forecast MSEs than the first two forecasts. In other words,
using the information in the stochastic aggregation weights explicitly may in-
deed improve forecast efficiency. In a Monte Carlo study we have confirmed
that such efficiency gains are not just spurious but are a consequence of the
stochastic structure of the DGP, although the efficiency gains are not large.

There are a number of related problems which we have not addressed in
this study but which may be of interest for future work. First, we have in-
vestigated the potential for forecast efficiency gains by using the information
in the aggregation weights only for a very small set of empirical examples.
A larger scale investigation may shed light on the general potential for gains
in forecast precision and perhaps for which aggregates they can be expected.
Second, we have considered a rather limited number of possible predictors in
our comparison. While they are sufficient to demonstrate that there is scope
for improving efficiency by using information in the stochastic aggregation
weights, there are a number of other predictors that seem to be natural
competitors and may further improve the exploitation of the information in
the aggregation weights. For example, one may consider modelling the joint
DGP of the disaggregate components and the aggregation weights or one
may combine univariate forecasts for the weights with multivariate forecasts
for the disaggregate components or vice versa. Another strand of related
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research may consider the precise stochastic structure of the aggregate for
given DGPs of the weights and disaggregate components. In general this
is not likely to be an easy problem because the aggregate is a product of
two multivariate processes. A very limited set properties under rather spe-
cial condition for such processes are provided in Appendix B of Liitkepohl
(2011). More general results may well be helpful in assessing the potential
for forecast improvements in the aggregation weights. These issues are left
for future research.

A Data Sources

A.1 NAFTA GDP Data

The real GDP series denoted as qt(i) are taken from Thomson Datastream
and correspond to seasonally adjusted gross domestic product measured at
constant 2005 PPPs in millions of US Dollar as reported by the OECD. The
Datastream mnemonics for the US, Canada and Mexico are USOCFGVOD,
CNOCFGVOD, MXOCFGVOD, respectively. Growth rates and weights are
computed as described in Section 3.1.

A.2 European M3 Data

Germany: Seasonally adjusted monthly values of nominal money supply
M3 (in billions of EUR) as reported by the Deutsche Bundesbank are taken
from Thomson Datastream (Mnemonic: BDM3....B). Quarterly values cor-
respond to observations of the last month in the respective quarters. Real
M3 is obtained by using the GDP deflator with base year 2005 (Datastream
Mnemonic: BDONAQOLE). German unification effects are accounted for by
regressing the growth rate of real M3 on a constant, four lags and a unifica-
tion dummy that takes on value 1 in 1990Q3 and 0 elsewhere. The estimated
effect on the growth rates is 0.143 and thus the pre-unification figures are
multiplied by 1.143.

France: Seasonally non-adjusted monthly values of nominal money sup-
ply M3 (in millions of EUR) as reported by the Banque de France are taken
from Thomson Datastream (Mnemonic: FRM3....A). The data has been sea-
sonally adjusted by the X12-ARIMA method and converted into billions of
EUR. Quarterly values correspond to observations of the last month in the
respective quarters. Real M3 is obtained by using the GDP deflator with
base year 2005 (Datastream Mnemonic: FRONAOOLE).
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Italy: Seasonally non-adjusted monthly values of nominal money sup-
ply M3 (in millions of EUR) as reported by the Banca d’Italia are taken
from Thomson Datastream (Mnemonic: ITM3....A). The data has been sea-
sonally adjusted by the X12-ARIMA method and converted into billions of
EUR. Quarterly values correspond to observations of the last month in the
respective quarters. Real M3 is obtained by using the GDP deflator with base
year 2005, which is obtained by rebasing a price deflator that corresponds to
the base year 2000 (Datastream Mnemonic: ITESGDDFE).
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Figure 1: GDP growth rates of NAFTA and NAFTA countries.
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Figure 2: Weights for NAFTA GDP growth rates.
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Figure 3: Aggregate and individual real M3 growth rates for Germany, France

and Italy.
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Figure 4: Weights for aggregate real M3 growth rates.
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