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Abstract

We consider an asymmetric auction setting with two bidders such that the valuation of each bidder

has a binary support. We prove that in this context the second price auction yields a higher

expected revenue than the first price auction for a broad set of parameter values, although the

opposite result is common in the literature on asymmetric auctions. For instance, the second price

auction is superior both when a bidder’s valuation is more uncertain that the valuation of the other

bidder, and in case of a not too large distribution shift or rescaling. In addition, we show that in

some cases the revenue in the first price auction decreases when all the valuations increase [in doing

so, we correct a claim in Maskin and Riley (1985)], and we derive the bidders’ preferences between

the two auctions.
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1 Introduction

This paper is about a seller’s preferences between a first price auction (FPA from now on) and a

second price/Vickrey auction (SPA from now on) when the bidders’ valuations are independently

but asymmetrically distributed. Precisely, we consider a setting with two bidders such that the

valuation of each bidder has a binary support and prove that in this context the SPA yields a higher

expected revenue than the FPA for a broad set of parameter values, although the opposite result is

common in the literature on asymmetric auctions. In addition, we correct a claim in Maskin and

Riley (1985), we show that in some cases the revenue in the FPA decreases when all the valuations

increase, and we derive the bidders’ preferences among the FPA and the SPA.

As it is well known, with asymmetric distributions the revenue equivalence theorem does not

apply, and only in very specific circumstances it is possible to derive the closed form of the equi-

librium bidding functions for the FPA.1 This complicates the comparison between the FPA and

the SPA, but nevertheless some interesting results have been discovered. One of them is that the

FPA is often more profitable than the SPA for the seller. On the basis of numeric analysis for

some classes of continuous distributions, Li and Riley (2007) claim that ”the ’typical’ case leads

to greater expected revenue in the sealed high-bid auction” [i.e., in the FPA]; a similar point of

view is found in Klemperer (1999). Some general theoretical results are provided by Maskin and

Riley (2000a),2 which show that under suitable conditions on the distribution of valuations the

FPA is superior to the SPA for a two-bidder setting in which a bidder’s distribution is obtained

by shifting or stretching to the right the other bidder’s distribution; Kirkegaard (2011) generalizes

these results.3 On the other hand, some papers identify settings in which the seller prefers the

SPA, including Vickrey (1961), Maskin and Riley (2000a), Cheng (2010) and Gavious and Minchuk

(2010). However, these results mostly refer to specific examples,4 whereas the result in Kirkegaard

(2011) covers a relatively broad set of circumstances.

As we mentioned above, we study an environment with two bidders and binary distributions.5

1See Cheng (2006), Cheng (2010), Kaplan and Zamir (2010), and Plum (1992) for examples. In order to circumvent

this problem, some authors apply numerical methods: see for instance Fibich and Gavish (2011), Gayle and Richard

(2008), Li and Riley (2007), and Marshall et al. (1994).
2Lebrun (1996) and Cheng (2006) prove that the seller prefers the FPA for some classes of power distributions.
3Roughly speaking, Kierkegaard (2011) shows that the FPA is superior to the SPA if a bidder’s distribution is

flatter and more disperse than the other bidder’s distribution. In Subsection 4.1.5 we describe with more details the

main result in Kierkegaard (2011).
4Vickrey (1961) examines a setting in which a bidder’s valuation is common knowledge. Maskin and Riley (2000a)

consider the case in which a bidder’s distribution is obtained from the other bidder’s distribution by shifting some

probability mass to the lower end-point. Cheng (2010) analyzes environments such that the equilibrium bidding

functions for the FPA are linear. Gavious and Minchuk (2010) study examples in which the bidders’ distributions

are close to the uniform distribution.
5This is an extension of the set-up considered in Maskin and Riley (1983), which focus on the case in which the

bidders’ low valuations coincide; we analyze different classes of asymmetries. Cheng (2011) employs the same discrete

setting of Maskin and Riley (1983) in order to show that in some special cases the asymmetry increases the expected

revenue in the FPA, unlike in the examples studied in Cantillon (2008).
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In this environment we derive the unique equilibrium outcome and the expected revenue in the

FPA for all parameter values, and then we compare the FPA with the SPA for some classes of

asymmetries. We find that quite often the SPA is more convenient for the seller, despite the above

citation from Li and Riley (2007). Precisely, this is the case when the bidders’ high valuations

coincide. In alternative, when the probability of a high valuation is the same for the two bidders

(but values may be different), the SPA dominates unless a bidder’s values are sufficiently large with

respect to the other bidder’s values. More in detail, in this environment we prove that

• the SPA is more profitable if a bidder’s valuation is more variable than the other bidder’s

valuation,6 and in the case of distribution shift (described above) — unlike in Maskin and

Riley (2000a) — at least for not too large shifts;7

• the revenue in the FPA may decrease when all the valuations increase, because increasing the

high valuation of one bidder may induce his opponent to bid less aggressively. This makes

the FPA inferior to the SPA, in contrast with a claim in Maskin and Riley (1985) for the

particular case in which the only deviation from a symmetric setting is given by unequal high

valuations [however, for this case Maskin and Riley (1983) agree with our ranking between

the FPA and the SPA].

Finally, we show that the bidders’ preferences among the two auctions often go in the opposite

direction with respect to the seller’s preferences.

The remainder of the paper is organized as follows. In Section 2 we describe the primitives of

our model. In Section 3 we study equilibrium behavior in the SPA and in the FPA, and in Section

4 we present our results on the comparison between the FPA and the SPA.

2 The model

A (female) seller owns an indivisible object which is worthless to her and faces two (male) bidders.

Let v1 (v2) denote the monetary valuation for the object of bidder 1 (bidder 2), which he privately

observes; v1 and v2 are independently distributed. The set {v1L, v1H} is the support for v1, with

0 < v1L < v1H and λ1 ≡ Pr {v1 = v1L} ∈ (0, 1). Likewise, the support for v2 is {v2L, v2H} with

0 < v2L < v2H and λ2 ≡ Pr {v2 = v2L} ∈ (0, 1). Without loss of generality we assume that

v1L ≤ v2L. Both the seller and bidders are risk neutral, and a bidder’s utility if he wins is given

by his valuation for the object minus the price paid to the seller; his utility if he loses is zero. We

use ij to denote bidder i when his valuation is vij , thus for instance 2L is the type of bidder 2 with

valuation v2L.

6After Vickrey (1961), this is the first ranking result in the theoretical literature which does not rely on first order

stochastic dominance among the distributions of valuations.
7Kirkegaard (2011) examines an example in which the distribution of the valuation of a bidder is obtained by

rescaling the distribution of the other bidder’s valuation. In this case we show that the SPA dominates the FPA in

our setting, unless the rescaling is large.
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The main purpose of this paper is to evaluate the relative profitability of the FPA and the SPA

for the seller. In either of these auctions each bidder submits simultaneously a nonnegative sealed

bid, and the bidder who makes the highest bid wins the object (if the bidders tie, the winner is

selected according to a specified tie-breaking rule: see next section). In the FPA the winning bidder

pays the own bid; in the SPA he pays the loser’s bid (i.e., the second highest bid).

3 Equilibrium bidding

3.1 SPA

It is well known that when bidders have private values, in the SPA it is weakly dominant for

each bidder to bid the own valuation. Thus the seller’s expected revenue RS is the expectation of

min{v1, v2}, which is straightforward to evaluate (recall that v1L ≤ v2L):

RS =






λ1v1L + (1− λ1)v1H if v1H ≤ v2L

λ1v1L + (1− λ1)(λ2v2L + (1− λ2)v1H) if v2L < v1H ≤ v2H

λ1v1L + (1− λ1)(λ2v2L + (1− λ2)v2H) if v2H < v1H

(1)

3.2 FPA

The analysis for the FPA is less immediate than for the SPA. In fact, finding the closed form for

the equilibrium bidding strategies for an FPA with asymmetrically distributed valuations is often

impossible when valuations are continuously distributed. However, this is not the case given our

assumptions on the distributions of v1 and v2. We consider BNE in which no type of bidder bids

above the own valuation.

In our setting no pure-strategy Bayes-Nash equilibrium exists [except in the case that condition

(3) below is satisfied], and sometimes no mixed-strategy Bayes-Nash equilibrium (BNE in the

following) exists either. Precisely, when v1L = v2L we find that no BNE exists in the standard FPA

in which each bidder wins with probability 1
2 in case of tie.8 However, Proposition 2 in Maskin and

Riley (2000b) establishes that a BNE exists under a suitable tie-breaking rule such that each bidder

i is required to submit both an ”ordinary” bid bi ≥ 0 and a ”tie-breaker” bid ci ≥ 0.9 If b1 	= b2,

then c1, c2 are irrelevant but if b1 = b2 then bidder i wins if ci > cj and pays bi + cj (each bidder

wins with probability 1
2 if b1 = b1 and c1 = c2). Therefore c1, c2 are bids in a second price/Vickrey

auction which takes place if and only if b1 = b2. In Proposition 1 we consider the first price auction

with this ”Vickrey tie-breaking rule”.

We want to stress that this particular tie-breaking rule is needed only when v1L = v2L, since

existence is obtained for any tie-breaking rule if v1L 	= v2L. Precisely, when v1L < v2L we find

that multiple BNE exist regardless of the tie-breaking rule, but they are all outcome-equivalent. In

particular, multiple BNE arise because type 1L (and type 1H in one case) never wins and needs to

8See the proof to Proposition 1 in the appendix (step 2 for the case of v1L = v2L).
9A very similar idea appears in Lebrun (2002), in the auction he denotes with FP̄A.
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bid weakly less than v1L (weakly less than v1H) with probability one, in such a way that no type of

bidder 2 has incentive to bid below v1L (below v1H). Since there are many strategies of 1L (of 1H)

which achieve this goal,10 multiple BNE exist. However, as we specified above, each BNE generates

the same outcome in the sense that the allocation of the object, the payoff of each type of bidder

and the expected revenue are the same;11 therefore multiplicity is not an issue.

Conversely, when v1L = v2L in each BNE both types 1L and 2L bid v1L, and (generically) also

1H or 2H bid v1L with positive probability; suppose 2H does so (to fix the ideas). Then 2H ties with

positive probability with 1L by bidding v1L, and if 2H does not win the tie-break with probability

one, he has an incentive to bid slightly above v1L, which breaks the BNE. On the other hand, under

the Vickrey tie-breaking rule, for a bidder i with valuation vi submitting an ordinary bid bi, it is

weakly dominant to choose ci = vi− bi, and in particular c1L = 0, c2H = v2H − v1L > 0 for the case

we are considering; thus 2H wins the tie-break paying v1L in aggregate.12 Given this property on

weak dominance for tie-breaking bids, when we describe a strategy of bidder i we implicitly assume

that to each ordinary bid bi is associated a tie-breaking bid ci equal to vi− bi. Therefore, whenever

a tie occurs the bidder with the highest valuation wins and pays the valuation of the other bidder.

In Proposition 1(ii) below an important role is played by a specific bid b̂ which is the smaller

solution to the following equation:

λ2b
2+((1−λ2)v1H+(λ1 − λ2) v2L−λ1v1L−v2H)b+((1−λ1)v2H−(1−λ2)v1H)v2L+λ1v1Lv2H = 0 (2)

and assumption (4) in Proposition 1(ii) implies that b̂ satisfies v1L ≤ b̂ < min{v2L, v1H}.
13

Proposition 1 Given v1L ≤ v2L, consider the FPA with the Vickrey tie-breaking rule. Although

multiple BNE may exist, they are all outcome-equivalent to the following BNE.

Type 1L always bids v1L and the bids of the other types depend on the parameters as follows:

(i) If

v1H ≤ λ1v1L + (1− λ1)v2L (3)

then types 2L,2H bid v1H ; type 1H bids weakly less than v1H with probability one and in such a way

that no type of bidder 2 has incentive to bid below v1H .

(ii) If

λ1v1L + (1− λ1)v2L < v1H <
(1− λ1)v2H + (λ1 − λ2)v1L

1− λ2
(4)

then types 1H ,2L,2H play mixed strategies with support [v1L, b̄] for 1H , [v1L, b̂] for 2L, [b̂, b̄] for 2H ,

in which b̂ is the smaller solution to (2) and b̄ ≡ λ2b̂ + (1 − λ2)v1H . The c.d.f. for the mixed

10One example is such that 1L bids according to the uniform distribution on [αv1L, v1L] with α < 1 and close to 1.
11A slight modification of the proof of Proposition 1 (for the case of v1L < v2L) shows that all BNE are outcome-

equivalent regardless of the tie-breaking rule. Details are available upon request.
12 In fact, whenever 1L bids v1L and ties with positive probability with type 2j such that v2j > v1L, in each BNE

1L selects c1L = 0, otherwise it is profitable for 2j to bid slightly above v1L.
13For more details see Proposition 1(ii) and its proof in the appendix.
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strategies are

G1H(b) =

{
λ1(b−v1L)

(1−λ1)(v2L−b)
for b ∈ [v1L, b̂]

1
1−λ1

(v2H−b̄
v2H−b

− λ1) for b ∈ (b̂, b̄]
(5)

G2L(b) =
v1H − b̄

λ2(v1H − b)
, G2H(b) =

1

1− λ2
(
v1H − b̄

v1H − b
− λ2) (6)

and from the definitions of b̂ and b̄ it follows that G1H is continuous at b = b̂, G2L(b̂) = 1,

G2H(b̂) = 0.
14

(iii) If
(1− λ1)v2H + (λ1 − λ2)v1L

1− λ2
≤ v1H (7)

then 2L bids v1L and 1H ,2H play mixed strategies with common support [v1L, λ1v1L + (1− λ1)v2H ]

and the following c.d.f.

G1H(b) =
λ1

1− λ1

b− v1L
v2H − b

, G2H(b) =
1

1− λ2
(
v1H − λ1v1L − (1− λ1)v2H

v1H − b
− λ2) (8)

When (3) holds, Proposition 1(i) establishes that each type of bidder 2 bids v1H and wins for

sure.15 This occurs because v2L is sufficiently larger than v1H , which implies that each type of

bidder 2 has so much to gain from winning that it is profitable for him to make a bid of v1H in

order to outbid each type of bidder 1. Precisely, (3) guarantees that type 2L prefers winning for

sure by bidding v1H rather than bidding v1L and winning only when facing type 1L, that is with

probability λ1.

Conversely, if v1H is large then (3) is violated and 2L is less aggressive since he prefers to bid

v1L and win only against 1L rather than bidding v1H and winning with certainty, as the latter

alternative is too expensive. Indeed, 2L bids in the interval [v1L, b̂], with b̂ < v1H , and with an

atom at b = v1L: G2L(v1L) =
v1H−b̄

λ2(v1H−v1L)
> 0. The less aggressive bidding of 2L allows 1H to win

with positive probability by bidding in (v1L, b̂], which makes his equilibrium payoff positive. This

implies that the highest bid of 1H is smaller than v1H , since each bid in the support of a bidder’s

mixed strategy needs to maximize the expected payoff of the bidder given the strategies of the

other types. Therefore also the highest bid of 2H is smaller than v1H , as we see from Proposition

1(ii). As v1H increases, 2L becomes increasingly less aggressive: b̂ decreases and G2L(b) increases

for any b ∈ [v1L, b̂). This occurs because as v1H increases, the equilibrium payoff of 1H increases

and this requires that G2L puts more weight on v1L and becomes flatter in [v1L, b̂] to satisfy the

indifference condition of 1H .
16 For a large enough v1H such that (7) is satisfied, this effect implies

14 In the case that b̂ = v1L (which occurs if and only if v1L = v2L), 2L bids v1L and b̄ = λ2v1L + (1− λ2)v1H , thus

G1H(b) =
1

1−λ1
( v2H−b̄
v2H−b

− λ1) and G2H(b) =
1

1−λ2
( v1H−b̄
v1H−b

− λ2) for each b ∈ [v1L, b̄].
15 In a setting with continuously distributed valuations, Maskin and Riley (2000a) identify an analogous BNE and

provide the intuition we describe here and immediately after Proposition 2(i). In addition, Maskin and Riley (1983)

identify the BNE we describe in Proposition 1 for the case of v1L = v2L = 0. Thus Proposition 1 is a new result for

the case in which v1L < v2L and (3) is violated.
16We describe a similar effect (with more details) in the intuition regarding condition (9) in Proposition 2(ii).
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that 2L bids v1L with certainty and also 2H bids v1L with positive probability. In particular, when

(7) holds the equilibrium strategies — and thus also the expected revenue — do not depend on v2L.

A well known feature of the FPA when valuations are asymmetrically distributed is that an

inefficient allocation of the object is implemented with positive probability. In our setting, suppose

for instance that v1L < v2L, v2L 	= v1H and (4) holds. Then b̂ > v1L and in the state of the world

with types 1H , 2L each type has a positive probability to win and thus the highest valuation type

may not win.

4 Comparison between the FPA and the SPA

In order to derive the seller’s preferences between the FPA and the SPA we need to evaluate the

expected revenue RF in the FPA generated by the BNE described in Proposition 1. Although we

can express RF in closed form (see Section 5.3 in the appendix), in many cases RF is a complicated

function of the parameters [an exception occurs when (3) is satisfied]; this is largely due to the

inefficiency of the FPA we mentioned above. In particular, it seems difficult to obtain insights

from comparing RF with RS without any restriction on the parameters. We focus therefore on

two particular cases which yield nevertheless quite interesting results. One is such that λ1 = λ2,

and the other is such that v1H = v2H ; the analysis of the case in which v1L = v2L is performed in

Maskin and Riley (1983).

4.1 The case in which λ1 = λ2

The following proposition describes our main results when λ1 = λ2 [in fact, Proposition 2(i) does

not require λ1 = λ2]. The rest of this subsection is devoted to discussing these results and in

providing intuitions.

Proposition 2 (i) RF > RS if (3) is satisfied;

(ii) RS > RF if λ1 = λ2 ≡ λ and at least one of the following conditions is satisfied:

v1L = v2L and v1H 	= v2H (9)

v1L < v2L and v2H ≤ v1H (10)

v1L < v2L ≤ v1H < v2H and
v2L − v1L ≃ 0

v2H − v1H ≃ 0
, or λ ≥

1

2
(11)

Proposition 2(i) is very simple to interpret. Precisely, RF = v1H when (3) is satisfied as both

types of bidder 2 win the auction with a bid of v1H ; moreover, (3) implies v1H ≤ v2L and thus

RS = λ1v1L + (1 − λ1)v1H . Then RF > RS follows immediately. The intuition is that in both

auctions bidder 2 always wins, thus RS is equal to the expected valuation of the loser, bidder 1,

and RF is the high valuation of bidder 1.
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Proposition 2(ii) describes a set of circumstances which imply RS > RF , and in order to

facilitate its understanding it is useful to have in mind a benchmark symmetric environment which

we now describe.

The benchmark symmetric setting Suppose that v1L = v2L ≡ vL, v1H = v2H ≡ vH and

λ1 = λ2 ≡ λ. We know from Maskin and Riley (1985) that in this case the unique BNE in the

FPA is such that types 1L,2L both bid vL and types 1H ,2H play the same mixed strategy with

support [vL, Ev] — in which Ev ≡ λvL + (1 − λ)vH — and c.d.f. GH(b) =
λ
1−λ

b−vL
vH−b

. Furthermore,

RF = RS = (2λ− λ2)vL + (1− λ)
2vH .

4.1.1 Condition (9)

Going back to Proposition 2(ii), we start by considering (9). This condition implies RS > RF , and

in fact this result relies on the following property.

Proposition 3 Suppose that v1L = v2L = vL, v1H 	= v2H = vH and λ1 = λ2 = λ. Then RF is

increasing in v1H for v1H ∈ (vL, vH ] and is decreasing in v1H for v1H ∈ [vH ,+∞).

This proposition says that in a setting which is asymmetric only because v1H 	= vH , R
F is

maximized with respect to v1H at v1H = vH ,
17 and in particular increasing v1H above vH reduces

RF .18

In order to obtain an intuition for Proposition 3 we start with the case of v1H > vH and notice

that given λ1 = λ2, (7) is satisfied when v1H > vH and therefore Proposition 1(iii) applies. This

reveals that the behavior of types 1L, 1H , 2L is unchanged with respect to the benchmark symmetric

setting, whereas now 2H bids less aggressively. Precisely, GH and G2H have the same support

[vL, Ev], but since G2H(b) =
(1−λ)(v1H−vH)+λ(b−vL)

(1−λ)(v1H−b)
it is simple to verify that G2H(b) > GH(b) for

any b ∈ [vL, Ev), and in particular G2H(vL) > 0 = GH(vL). Since 2H is less aggressive with respect

to the symmetric setting, it follows that an increase in v1H has a negative effect on RF . In fact, the

larger is v1H the higher (lower) is the probability that G2H attaches to low (high) bids in [vL, Ev].

As a consequence, RF is monotonically decreasing with respect to v1H for v1H > vH .

It is somewhat surprising that, starting from a symmetric setting, an increase of a single (high)

valuation generates a decrease in RF . In order to see what drives the result, suppose for a moment

that 2H still bids according to GH even though v1H > vH . Then the payoff of type 1H from bidding

b ∈ [vL, Ev] is (v1H−b)[λ+(1−λ)GH(b)]. This is obviously higher than (vH−b)[λ+(1−λ)GH(b)],

his payoff before the increase in v1H , and — more importantly — is increasing in b. In order to make

1H indifferent among the bids in an interval (vL, b
∗] it is necessary that G2H is flatter than GH ,

17This fact may appear similar to the main message in Cantillon (2008), but in fact in our analysis the benchmark

symmetric setting is fixed, whereas in Cantillon (2008) it is not.
18Obviously, an analogous result holds if v1H is kept fixed and v2H is allowed to vary.
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and indeed G2H(b) =
(1−λ)(v1H−vH)+λ(b−vL)

(1−λ)(v1H−b)
has an atom at b = vL and grows more slowly than GH

for b > vL. This is how a less aggressive behavior of 2H results from an increase in v1H .
19

Given this result, it is straightforward to see that an increase in v1H favors the SPA over the

FPA since it does not affect the distribution of min{v1, v2}, and thus RS does not change.

Maskin and Riley (1985) (in their Section III) consider the setting of Proposition 2(ii), except

that they assume v1L = v2L = 0, and claim that an increase in v2H favors the FPA over the SPA,

in contrast with Proposition 2(ii). However, they do not provide a formal proof of their claim. On

the other hand, Maskin and Riley (1983) conclude that RS > RF , consistently with Proposition

2(ii): see their Figure 1 between pages 18 and 19.20

For the case of v1H < vH , Proposition 3 establishes the intuitive result that RF is reduced with

respect to when v1H = vH . We can rely on Proposition 1(ii) (and in particular on footnote 14 since

v1L = v2L and thus b̂ = v1L), but a simpler argument is also available. Given v1H < vH , consider

the symmetric setting with low valuations both equal to vL and high valuations both equal to v1H .

Then RF is smaller, by (1−λ)2(vH−v1H), with respect to RF for the benchmark symmetric setting.

Now increase the valuation of type 2H from v1H to vH to obtain the asymmetric setting we are

considering. The same logic of Proposition 3 (see footnote 18) suggests that RF further decreases.

Therefore a decrease in the valuation of 1H below vH reduces RF by more than (1−λ)2(vH −v1H).

On the other hand, from (1) we see that RS decreases exactly by (1 − λ)2(vH − v1H). Hence,

RS > RF holds both if v1H > vH and also if v1H < vH .

On the effect of increasing v1L, v2L, v1H , v2H Proposition 3 suggests a simple observation.

Suppose that we start from the benchmark symmetric setting and let RF∗ denote the resulting

expected revenue. Then suppose that the valuation of 1H is increased; this reduces the revenue

below RF∗ by Proposition 3. Finally, increase slightly the valuations of 1L,2L,2H . Since RF is

a continuous function of the parameters, we infer that RF remains smaller than RF∗. Therefore,

starting from a symmetric setting and suitably increasing v1L, v2L, v1H , v2H (but not each valuation

by the same amount) we obtain a setting in which the revenue is reduced. For instance, suppose

that v1L = v2L = 100, v1H = v2H = 200 and λ1 = λ2 =
1
2 ; then RF∗ = 125. However, if

v1L = v2L = 105, v1H = 400 and v2H = 205, then R
F ≃ 123.12.

4.1.2 Condition (10)

The effects of (10) are almost straightforward. In case that v2H = v1H , Proposition 1(iii) applies

and as we mentioned in Subsection 3.2, RF does not depend on v2L ∈ [v1L, v2H); thus R
F is equal

19Lebrun (1998) considers a setting with continuously distributed valuations and assumes that the valuation dis-

tribution of one bidder changes into a new distribution which dominates the previous one in the sense of reverse

hazard rate domination (the support is unchanged). He show that, as a consequence, for each bidder the new bid

distribution first order stochastically dominates the initial bid distribution, and thus the expected revenue increases.
20Since they assume v1L = v2L = 0, Maskin and Riley (1983) do not consider the various cases covered in

Proposition 2(ii), and they do not have the results in Propositions 3 and 4.
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to the revenue in the symmetric setting. On the other hand, (1) reveals that RS is increasing in

v2L and therefore RS > RF .

In case that v2H < v1H , suppose first that v1L = v2L. We know from condition (9) that

v2H < v1H implies RS > RF , and the previous paragraph explains that an increase in v2L has no

effect on RF (but increases RS); hence the conclusion.

v1 more uncertain than v2 It is interesting to notice that (10) includes the case in which

v1L < v2L < v2H < v1H , which means that v1 has a wider range of variability than v2; obviously,

this includes the special case in which v1 is a mean-preserving-spread of v2. In each of these cases

we obtain an unambiguous ranking between RS and RF , that is the SPA is better than the FPA

when the valuation of one bidder is more uncertain then the valuation of the other bidder.

Kirkegaard (2011) notices that only Vickrey (1961) provides a theoretical ranking result without the

assumption of first order stochastic dominance between the bidders’ distributions of valuations.21

Precisely, Vickrey (1961) assumes that v1 is uniformly distributed over [0, 1] and v2 is equal to a

fixed value a, that is v2 is common knowledge; he proves that the FPA is superior to the SPA for

a > 0.43. Now consider in our framework the parameters λ = 1
2 and v1L = 0, v1H = 1, v2L = a−x,

v2H = a + x with x > 0 and close to zero. This setting is in a sense similar to that in Vickrey

(1961) since v1 is uniformly distributed over {0, 1}, and v2 is almost commonly known to be equal

to a.22 However, Proposition 2(ii) establishes that RS > RF for any a ∈ (0, 1). This difference with

respect to Vickrey (1961) arises because in our setting RF is considerably lower than in Vickrey

(1961), due to the fact that type 2L bids v1L = 0 with certainty (and type 2H bids 0 with positive

probability), as bidding 0 suffices to win the auction if the opponent is type 1L, an event with

probability 1
2 . Conversely, this does not occur when v1 is uniformly distributed over [0, 1] because if

bidder 2 bids close to zero then he wins only against a small set of types of bidder 1. For instance,

if a = 1
2 then Vickrey (1961) proves that bidder 2’s equilibrium mixed strategy has support [14 ,

7
16 ],

that is his minimum bid is 1
4 .

4.1.3 Condition (11)

Given the innocuous assumption that v1L ≤ v2L, after (9) and (10) have been considered, the only

class of asymmetry remaining is such that v1L < v2L and v1H < v2H ; the results for this case are

quite simple to describe. First, from (9) and (10) it is intuitive that RS > RF when v2L − v1L is

close to zero and v2H − v1H is close to zero. On the other hand, Proposition 2(i) establishes that

RF > RS when v2L is sufficiently larger than v1H (which implies that also v2H is quite large). From

(11) we see that as long as λ ≥ 1
2 , R

S > RF holds provided that v2L is not larger than v1H . We

notice that this result is quite conservative because of the way it is obtained. Precisely, in our final

21Gayle and Richard (2008), Li and Riley (1999) and Li and Riley (2007) apply numeric analysis to settings without

first order stochastic dominance and obtain mixed results.
22Proposition 1 still holds even though v1L = 0 violates our assumption v1L > 0. However, when v1L = 0 the

Vickrey tie-breaking rule is needed also if v1L �= v2L.
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remark in Subsection 3.2 we noticed that in the BNE described by Proposition 1(ii) the highest

valuation bidder does not always win. Conversely, the efficient allocation is always achieved in

the SPA. Therefore a sufficient condition for RS > RF is that the aggregate bidders’ rents in the

FPA, UF , are (weakly) larger than the rents in the SPA, US . Condition (11) guarantees indeed

that UF ≥ US . In words, when λ ≥ 1
2 in order for RF ≥ RS to hold it is not sufficient that

the distribution of v2 first order stochastically dominates the distribution of v1, but it is actually

necessary that v1H < v2L; broadly speaking, we could say that there need to be no overlapping of

supports.

In Figure 1 we fix λ = 1
4 and v2L, v2H , and partition the space (v1L, v1H) in two regions S and

F such that RS > RF if (v1L, v1H) ∈ S, and R
F ≥ RS if (v1L, v1H) ∈ F . In particular, S(iii) is the

set in which (10) is satisfied [in this case (7) holds and the BNE of Proposition 1(iii) applies]; F(i)

is the set in which (3) holds [then the BNE of Proposition 1(i) applies]. The region between S(iii)

and F(i) is such that (4) is satisfied — thus the BNE of Proposition 1(ii) applies — and the boundary

between S and F is obtained numerically.23 For other values of λ < 1
2 a similar figure is obtained.24

Figure1: Comparison between the FPA and the SPA when λ1 = λ2.

In the dark region S = S(ii)∪S(iii) the SPA dominates the FPA in terms of the seller’s revenue. Proposition

1(i) applies in the lower region F(i), 1(ii) in the region F(ii) ∪ S(ii) in the middle, and 1(iii) in the upper

region S(iii).

We notice that when λ1 = λ2, by Proposition 2(ii) the SPA is better than the FPA for any

small deviation from the symmetric setting, that is when v2L−v1L and v2H −v1H are close to zero,

but v2L − v1L > 0 and/or v2H − v1H 	= 0, as it is apparent from Figure 1.

23The precise values of v2L and v2H do not affect the qualitative features of Figure 1 since (i) if all valuations

are increased by a same amount α, then both RF and RS increase by α and thus RF − RS is unaffected; (ii) if

all valuations are multiplied by a same number β > 0, then both RF and RS are multiplied by β and the sign of

RF −RS is unaffected. Using these two degrees of freedom, we can fix arbitrarily v2L and v2H without affecting the

qualitative features of the sets S and F . Conversely (of course), the value of λ affects substantially S and F .
24 In fact, for λ < 1

2
but close to 1

2
each point on the boundary between S and F is such that v1H < v2L.
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Distribution shift and rescaling A particular type of asymmetry considered in the literature

is as follows. Given the c.d.f. F1 for the valuation of bidder 1, the c.d.f. for v2 is F2(v2) = F1(v2−a)

with a > 0, that is F2 is obtained by shifting F1 to the right, which implies that bidder 2 is (ex

ante) stronger than 1. In a setting with continuously distributed values, Maskin and Riley (2000a)

prove that under suitable assumptions on F1, the FPA generates a higher revenue than the SPA;

Kirkegaard (2011) obtains the same result under weaker assumptions. In our context this sort of

asymmetry is obtained by fixing v1L, v1H and setting v2L = v1L+a, v2H = v1H +a, for some a > 0.

From (11) we can find sufficient conditions for RS > RF , but in fact in the appendix we exploit this

particular structure of asymmetry to modify the proof of Proposition 2(ii) and show that RS > RF

as long as a
v1H−v1L

≤ 2λ
2−3λ (for λ ≤ 2

5) or a
v1H−v1L

≤ 2(2+λ)
3(2−λ) (for λ > 2

5). Actually, also this result

is quite conservative, as numeric analysis shows that RS > RF holds for the set of parameters in

region S in Figure 2

Figure 2: Comparison between the FPA and the SPA in case of distribution shift.

The thin curve in the dark region is such that UF> US holds for the parameters below the curve. However,

the SPA dominates the FPA in terms of the seller’s revenue in the whole dark region S.

Thus in our discrete setting a shift favors the FPA over the SPA only if the shift is sufficiently

large; for instance, RF > RS definitely holds if a is such that (3) is satisfied, that is if a
v1H−v1L

≥ 1
1−λ .

On the other hand, in their numeric analysis applied to continuous distributions, Li and Riley

(2007) find that a shift ”can result in economically very significant revenue differences [in favor of

the FPA]” for examples with uniform or truncated normal distributions, and notice that ”Analysis

of other distributions also produces broadly similar results”.

Example 4 in Kirkegaard (2011) starts from F2 such that F2(ev) is convex and log-concave and

obtains F1 as F1(v) = F2(γv) for some γ > 1 and not too large; thus v1 is a rescaling of v2, and

Kirkegaard (2011) proves that RF > RS . In our context this sort of asymmetry is obtained by

fixing v2L, v2H and setting v1L =
1
γ
v2L, v1H = 1

γ
v2H . The comparison between the SPA and the

12



FPA yields results similar to those obtained for a shift. Precisely, (11) reveals that RS > RF if γ

is not much larger than 1, whereas a large γ makes (3) satisfied and thus RF > RS .

4.1.4 The distribution of bids in the FPA and the bidders’ preferences

For i = 1, 2, let Gi denote the ex ante c.d.f. of the equilibrium bids submitted by bidder i in the

FPA, that is Gi(b) = λGiL(b)+(1−λ)GiH(b). Using Proposition 1 we can compare the equilibrium

bid distributions of bidder 1 and 2 in the FPA, and we find that G2 first order stochastically

dominates G1 when v2H > v1H ; the opposite result obtains if v1H > v2H . Notice that when

v2H > v1H , the distribution of v2 first order stochastically dominates the distribution of v1 and

the result that G2 first order stochastically dominates G1 agrees with Corollary 1 in Kirkegaard

(2009), for a setting with continuous distributions. On the other hand, when v2H < v1H there

is no first order stochastic dominance between the distribution of v1 and v2, but second order

stochastic dominance applies if v1H ≤ v2H +
λ
1−λ(v2L − v1L), that is if the expected value of v2 is

weakly larger than the expected value of v1. Under second order stochastic dominance between the

valuations distributions, Proposition 5 in Kirkegaard (2009) shows that the bid distributions must

cross, whereas we find that G1 first order stochastically dominates G2.

Proposition 1 also allows us to compare the bidders’ payoffs in the FPA with their payoffs in

the SPA: it turns out that bidder 1 weakly prefers the FPA, whereas bidder 2 weakly prefers the

SPA. These results largely agree with the results in Propositions 3.3(ii) and 3.6 in Maskin and Riley

(2000a).

4.1.5 Relationship with Kirkegaard (2011)

Proposition 2(ii) reveals that RS > RF for a broad set of deviations from the benchmark symmetric

setting, provided that λ1 = λ2. On the other hand, a frequent result in the literature on asymmetric

auctions is that RF > RS . Since the most general theoretical results are obtained in Kirkegaard

(2011), we explain why his analysis does not apply to our setting.

Kirkegaard (2011) considers a two-bidder environment with supports [β1, α1] for v1 and [β2, α2]

for v2 such that β1 ≤ β2 and α1 < α2. The c.d.f. F1, F2 have no atoms and have continuous and

positive densities f1, f2 in the respective supports; moreover, 1 is ex ante weaker than 2 in the sense

that F2 first order stochastically dominates F1. A crucial ingredient for the result is r(v), which

is defined as F−12 [F1(v)] for each v ∈ [β1, α1], that is r(v) satisfies Pr{v2 ≤ r(v)} = Pr{v1 ≤ v}

and r(v) ≥ v as F2 first order stochastically dominates F1. The main result in Kirkegaard (2011),

13



Theorem 1, establishes that RF > RS if25

f2(v)

F2(v)
≥

f1(v)

F1(v)
for any v ∈ [β1, α1] ∩ [β2, α2] (12)

f1(v) ≥ f2(x) for any x ∈ [v, r(v)] and any v ∈ [β1, α1] (13)

This theorem results from a clever application of the mechanism design techniques introduced

by Myerson (1981), and precisely relies on the following argument — expressed only for the case

of β1 = β2 for simplicity. In the SPA bidder 1 wins if and only if v2 < v1, but (12) implies

that 1 wins more frequently in the FPA. Precisely, 1 wins as long as v2 < kF (v1) for a certain

function kF such that kF (v1) > v1, since bidder 1 (the weak bidder) bids more aggressively than 2

(the strong bidder) for a given valuation. However, (12) also implies that the ex ante equilibrium

bid distribution of 2 first order stochastically dominates the ex ante bid distribution of 1, which

is equivalent to kF (v) ≤ r(v). Since β1 = β2, the expected revenue is given by the expected

virtual valuation of the winning bidder, and the FPA dominates the SPA if its inefficient allocation

increases the expected virtual valuation of the winner. Condition (13) guarantees that this is the

case, which establishes the result.26

The assumptions in Kirkegaard (2011) obviously rule out our discrete setting, but given the

c.d.f.

F̃1(v1) =






0 if v1 < v1L

λ if v1L ≤ v1 < v1H

1 if v1H ≤ v1

, F̃2(v2) =






0 if v2 < v2L

λ if v2L ≤ v2 < v2H

1 if v2H ≤ v2

for v1, v2 in our model, we can approximate F̃1, F̃2 using atomless c.d.f.27 Precisely, consider two

sequences of atomless c.d.f. {Fn1 , F
n
2 }

+∞
n=1, with continuous and positive densities fn1 , f

n
2 for each n,

which converges weakly to F̃1, F̃2. We prove in the appendix that for any large n, (12) and/or (13)

are violated by Fn1 , F
n
2 .

4.2 The case in which v1H = v2H

In this subsection we remove the assumption λ1 = λ2 but we suppose that v1H = v2H . Then a very

simple result holds, as stated by next proposition.

25Condition (12) is a standard condition of dominance in terms of reverse hazard rates. On the other hand, (13)

is innovative and Kirkegaard (2011) proves that it implies that r(v) − v is increasing, which means that F2 is more

disperse than F1 according to a specific order of dispersion between c.d.f. Moreover, Kirkegaard (2011) gives an

economic interpretation to (13) linked to the relative steepness of the demand function of bidder 1 with respect to

the demand function of bidder 2.
26Kirkegaard (2011) shows that Theorem 1 holds also when there are several bidders with c.d.f. F1, and sometimes

when there are several bidders with c.d.f. F2.
27Lebrun (2002) establishes that the equilibrium correspondence is upper hemicontinuous with respect to the

valuation distributions, for the weak topology. Given that all BNE are outcome-equivalent at each given information

structure, it follows that the equilibrium correspondence is in fact continuous. Therefore also RF is continuous, as it

is the expectation of a continuous function of bids (the maximum).
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Proposition 4 Suppose that v1H = v2H . Then the inequality R
S > RF holds as long as v1L < v2L

and/or λ1 	= λ2.

In a sense, Proposition 4 is quite intuitive since we know that RS > RF when v1H = v2H if

(i) v1L < v2L and λ1 = λ2 [from Proposition 2(ii)], or (ii) v1L = v2L and λ1 	= λ2 [from Maskin

and Riley (1983)]. Proposition 4 essentially verifies that RS > RF still holds if both inequalities

v1L < v2L and λ1 	= λ2 hold. Precisely, when v1H = v2H condition (3) is violated and (7) reduces

to λ1 ≥ λ2; therefore Proposition 1(iii) applies if λ1 ≥ λ2, and Proposition 1(ii) applies if λ1 < λ2.

In both cases the equality v1H = v2H yields a simple expression for RF and it follows immediately

that RS > RF .28

The simplest way to see why RS > RF when v1H = v2H consists in arguing as in Subsection

4.1.3, and proving that the bidders’ rents are larger in the FPA than in the SPA. In fact, in the

proof to Proposition 4 we show that bidder 1 (bidder 2) strictly (weakly) prefers the FPA to the

SPA since (i) 1H earns zero in the SPA when facing 2H , earns v1H − v2L against 2L; (ii) 1H can

beat 2L in the FPA by bidding v1L or b̂ (depending on whether λ1 ≥ λ2 or λ1 < λ2), and both

v1L and b̂ are smaller than v2L. Likewise, the payoff of bidder 2 in the SPA is zero against 1H , is

v2 − v1L against 1L. The FPA is certainly not worse for 2 as he can beat 1L by bidding v1L.
29

We conclude with a remark on the equilibrium bid distributions of the two bidders, G1(b) =

λ1G1L(b) + (1 − λ1)G1H(b) and G2(b) = λ2G2L(b) + (1 − λ2)G2H(b), which are obtained from

Proposition 1. For the case in which λ1 ≥ λ2, we find that G1(b) = G2(b) = λ1
vH−v1L
vH−b

for each

b ∈ [v1L, λ1v1L+(1−λ1)vH ], and therefore each bidder faces the same distribution of bids from his

opponent even though the distribution of v2 first order stochastically dominates the distribution

of v1. This occurs because v1H = v2H implies that the payoffs of 1H and 2H are the same, hence

either type needs to have the same probability of winning for any given bid.30

5 Appendix

5.1 Proof of Proposition 1 for the case of v1L < v2L

For i = 1, 2 and j = L,H, let Gij denote the c.d.f. for the mixed strategy of type j of bidder i,

with bij = inf{b : Gij(b) > 0} and b̄ij = sup{b : Gij(b) < 1}. Recall that in a mixed-strategy BNE

any bid made by type ij must generate the same expected payoff, that is the equilibrium payoff of

type ij, which we denote by ueij . We use uij(b) and pij(b) to denote the payoff of type ij and his

28 In fact, if λ1 ≥ λ2 then the FPA allocates the object efficiently since v1H = v2H > v2L and 1H always wins

against 2L. This further simplifies the expression of RF .
29Here the bidders have the same preferences between the FPA and the SPA, whereas under the assumptions on

Maskin and Riley (2000a) that is never the case.
30When instead λ1 < λ2, we obtain G1(b) = λ1

v2L−v1L
v2L−b

< G2(b) = λ2
vH−b̂

vH−b
for b ∈ [v1L, b̂) and G1(b) = G2(b) =

vH−b̄

vH−b
for b ∈ [̂b, b̄]; hence G1 first order stochastically dominates G2. Since now 2L randomizes over the interval

[v1L, b̂] (rather than bidding v1L with certainty), G1 needs to make 2L indifferent among bids in [v1L, b̂] and thus

G1(b) = G2(b) does not hold for b ∈ [v1L, b̂).
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probability to win — respectively — as a function of his bid b, given the strategies of the two types

of the other bidder.

This proof is organized in several steps, and throughout the proof ε denotes a number which is

positive and close to zero. We start by recording a feature of any BNE.

Lemma 1 If a profile of strategies has the property that there is a bid b′ such that with a positive

probability type 1j and type 2k tie bidding b
′ and min{v1j , v2k} > b′, then the profile of strategies is

not a BNE.

Proof. By bidding b′, at least one of these types loses the auction with positive probability; for

instance type 1j. Since b′ < v1j, type 1j is better off bidding b′+ ε rather than b′ as in this way his

probability of winning increases discretely, whereas his payment in case of victory increases only

slightly.

5.1.1 Step 1: When v1L < v2L, any BNE is such that (i) b̄1L ≤ b1H, b̄2L ≤ b2H; (ii) either

b1L = b2L = v1L = b̄1L or b1L < b2L; (iii) ue1L = 0, u
e
2L > 0, v1L ≤ b2L; (iv) b̄1H = b̄2H

(i) The monotonicity properties b̄1L ≤ b1H and b̄2L ≤ b2H follow from Proposition 1 in Maskin and

Riley (2000b).

(ii) In order to prove that b1L ≤ b2L, suppose in view of a contradiction that b2L < b1L. Since

2L bids in the interval [b2L, b1L) with positive probability, it follows that ue2L = 0. However, since

b1L ≤ v1L < v2L we find that p2L(b) > 0 and u2L(b) > 0 if 2L bids b = b1L + ε: contradiction.

We now show that if b1L = b2L ≡ b, then b = v1L, and as a consequence we obtain b̄1L = v1L.

Suppose b < v1L. We distinguish several cases depending on whether G1L and/or G2L puts an

atom on b; in each case we obtain a contradiction.

• G1L(b) = 0 [G2L(b) = 0 or G2L(b) > 0 does not matter]. In this case ue2L = 0 as p2L(b) is

about zero for b close to b (as G1L is right continuous). However, since b < v1L < v2L we find

that p2L(b) > 0 and u2L(b) > 0 if 2L bids b = b+ ε.

• G1L(b) > 0 and G2L(b) > 0. This case is ruled out by Lemma 1.

• G1L(b) > 0 and G2L(b) = 0. In this case ue1L = 0 as p1L(b) = 0. However, since b < v1L we

find that p1L(b) > 0 and u1L(b) > 0 if 1L bids b = b+ ε < v1L.

(iii) We notice that ue1L = 0 both if b1L = b2L = b̄1L = v1L and if b1L < b2L. Hence v1L ≤ b2L,

since if b2L < v1L then any bid in (b2L, v1L) yields a positive payoff to 1L. Finally, p2L(b) ≥ λ1 for

any b ≥ v1L + ε, thus u
e
2L ≥ λ1(v2L − v1L − ε) > 0 for each small ε > 0.

(iv) If b̄1H > b̄2H , then it is profitable for 1H to move some probability from (b̄1H − ε, b̄1H ] to

(b̄2H , b̄2H + ε), since the probability of winning remains 1 but his payment in case of victory is

smaller. If b̄1H < b̄2H , a symmetric argument applies to 2H .
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5.1.2 Step 2: When v1L < v2L, there exists a BNE such that b̄1H ≤ b2L if and only if

(3) is satisfied; any such BNE is outcome-equivalent to the BNE in Proposition

1(i)

We start by proving that b1L < b2L. Suppose in view of a contradiction that b1L = b2L. Then Step

1(i-ii) imply b1L = b̄1L = b1H = b̄1H = b2L = v1L. It is impossible that G2L(v1L) > 0, because in

such a case 1H and 2L would tie with positive probability at b = v1L, and then Lemma 1 would

apply. As a consequence, p1H(v1L) = 0 and ue1H = 0. However, if 1H plays b = v1L + ε then

p1H(b) > 0 and u1H(b) > 0 since v1L < v1H : contradiction.

From the inequality b̄1H ≤ b2L it follows that 2L wins with probability one;31 thus ue1H = 0.

Moreover, (i) b̄1H = b̄2H by Step 1(iv) and thus b̄1H = b2L = b̄2L = b2H = b̄2H ; (ii) v1H ≤ b2L

otherwise any bid in (b2L, v1H) yields a positive payoff to 1H . Hence, ue2L = v2L − b2L and ue2H =

v2H − b2L.

We need to examine the incentives of bidder 2 to bid below b2L, and in particular we notice

that bidding b = b̄1L + ε yields bidder 2 a probability of winning not smaller than λ1. Thus the

inequalities

λ1(v2L − b̄1L − ε) ≤ v2L − b2L and λ1(v2H − b̄1L − ε) ≤ v2H − b2L

need to hold for any ε > 0, and since v2H > v2L it is simple to see that the first inequality is

more restrictive than the second one. Given b̄1L ≤ v1L and b2L ≥ v1H , the first inequality is most

likely to be satisfied when b̄1L = v1L and b2L = v1H , and then it reduces to (3). This inequality is

therefore a necessary condition for the existence of a BNE such that b̄1H ≤ b2L.

Bids above v1H are obviously suboptimal for bidder 2 because u2L(b) = v2L − b < v2L − v1H

if b > v1H . On the other hand, for bids smaller than v1H the strategies of 1L and 1H need to

be such that no b < v1H is a profitable deviation for type 2L.
32 For instance, we verify that this

condition is satisfied if G1H is the uniform distribution over [αv1H , v1H ], with α < 1 and close

to 1; recall that 1L bids v1L with certainty. Then p2L(b) = 0, u2L(b) = 0 for b < v1L, whereas

p2L(v1L) = λ1 (recall the Vickrey tie-breaking rule and v2L > v1L), u2L(v1L) = λ1(v2L − v1L),

but we know from (3) that this payoff is smaller than v2L − v1H , the payoff of 2L if he bids v1H .

For b ∈ (v1L, αv1H) we find that u2L(b) = λ1(v2L − b) is decreasing. Finally, for b ∈ [αv1H , v1H ],

u2L(b) = (v2L−b)[λ1+(1−λ1)
b−αv1H
v1H−αv1H

] and is increasing for α > 1− (1−λ)(v2L−v1H)
v1H

, which implies

that b = v1H is a best reply for 2L.

5.1.3 Step 3: When v1L < v2L, there exists no BNE such that b2L < b̄1H ≤ b̄2L

If b2L < b̄1H ≤ b̄2L, then b2L < b̄1H = b̄2L = b2H = b̄2H ≡ b∗ by Step 1(iv). This implies b∗ ≤ v1H ,

and thus b2L < b∗ implies ue1H > 0, and in turn b∗ < v1H . Since 2H bids b∗ with certainty, it is

31 In particular, if b̄1H = b2L and 1H and 2L tie with positive probability at b
2L, then 2L needs to win the tie-break

with probability 1, otherwise it is profitable for him to bid b
2L + ε rather than b

2L (b
2L < v2L since ue2L > 0).

32 If this property is satisfied, then no deviation is profitable for 2H since (v2L − b)p2L(b) ≤ v2L − v1H implies

(v2H − b)p2H(b) ≤ v2H − v1H , as p2L(b) = p2H(b) for any b
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profitable for 1H to bid b∗+ ε rather than b∗− ε, as in this way his probability of victory increases

by at least 1− λ2 > 0 and his payment in case of victory increases only slightly.

5.1.4 Step 4: When v1L < v2L, there exists a BNE such that b2L < b̄2L < b̄1H if and

only if (4) is satisfied; any such BNE is outcome-equivalent to the BNE in

Proposition 1(ii)

The inequality b2L < b̄1H implies ue1H > 0 because b̄1H ≤ v1H and p1H(b) > 0 for b ∈ (b2L, b̄1H).

Next lemma provides a list of features of any BNE such that b2L < b̄1H .

Lemma 2 In any BNE such that b2L < b̄1H the following equalities hold: b̄1L = b1H = b2L = v1L,

b̄2L = b2H ; moreover, G2L(b2L) > 0.

Proof. The proof is split in two claims.

Claim 1 b̄1L = b1H .

In view of a contradiction, assume that b̄1L < b1H . If G1H(b1H) > 0 and G2L(b1H) > 0,33 then

Lemma 1 applies since ue1H > 0 and ue2L > 0 imply v1H > b1H and v2L > b1H . If G1H(b1H) > 0

and 2 puts no atom at b1H , then 2 bids with zero probability in (b̄1L + ε, b1H ] and 1H can increase

his payoff by moving the atom from b1H to any point in (b̄1L + ε, b1H ]. If G1H(b1H) = 0, then 2

bids with zero probability in (b̄1L + ε, b1H ] (in particular, 2 puts no atom in b1H) and then 1H can

increase his payoff by moving some probability from [b1H , b1H + ε) to (b̄1L + ε, b̄1L + 2ε).

Claim 2 b1H = b2L = v1L, G2L(v1L) > 0 and b̄2L = b2H .

If b1H < b2L, then 1H bids in [b1H , b2L) with positive probability and thus ue1H = 0: contradiction.

Thus b2L ≤ b1H and since b̄1L ≤ v1L, v1L ≤ b2L [by Step 1(iii)] and b̄1L = b1H (by Claim 1), we

infer that b̄1L = b2L = b1H = v1L. Moreover, given b1H = b2L, if G2L(b2L) = 0 then ue1H = 0; thus

G2L(b2L) > 0. The equality b̄2L = b2H is proved along the same lines followed in Claim 1 to prove

b̄1L = b1H .

Lemma 3 In any BNE such that b2L < b̄2L < b̄1H , the mixed strategies of 1H ,2L,2H are given by

(5)-(6), and they constitute a BNE if and only if (4) is satisfied.

Proof. In the following of this proof we use b̂ and b̄, respectively, instead of b̄2L and of b̄2H = b̄1H .

Given that v1L < b̂, types 1H , 2L, 2H are all employing mixed strategies and we can argue like in

the proof of Claim 1 in Lemma 2 to show that G1H , G2L, G2H are strictly increasing and continuous

in the intervals [v1L, b̄], [v1L, b̂], [b̂, b̄], respectively. This implies that the following conditions must

be satisfied.

Indifference condition of type 1H :

(v1H − b)[λ2G2L(b) + (1− λ2)G2H(b)] = v1H − b̄ for any b ∈ (v1L, b̄] (14)

33 If we consider type 2H instead of 2L, the same the argument applies.

18



Indifference condition of type 2L:

(v2L − b)[λ1 + (1− λ1)G1H(b)] = λ1(v2L − v1L) for any b ∈ [v1L, b̂] (15)

Indifference condition of type 2H :

(v2H − b)[λ1 + (1− λ1)G1H(b)] = v2H − b̄ for any b ∈ [b̂, b̄] (16)

From (15) and (16) we obtain G1H in (5). For b ∈ (v1L, b̂], (14) reduces to (v1H − b)λ2G2L(b) =

v1H − b̄ and thus G2L satisfies (6). For b ∈ [b̂, b̄], (14) reduces to (v1H − b)[λ2 + (1− λ2)G2H(b)] =

v1H − b̄ and then G2H satisfies (6).

Since G2L(b̂) = 1, we deduce that b̄ = λ2b̂+(1−λ2)v1H , and since G1H needs to be continuous

at b = b̂ we infer that b̂ solves (2); here we use Z(b) to denote the left hand side of (2). The

strategies in Proposition 1(ii) require that b̂ satisfies v1L < b̂ < min{v2L, v1H}, and since Z(v2L) =

−λ1 (v2L − v1L) (v2H − v2L) < 0 we infer that b̂ is the smaller solution of (2); moreover, Z(v1L) =

(1 − λ2) (v2L − v1L)
(
(λ1−λ2)v1L+(1−λ1)v2H

1−λ2
− v1H

)
and thus (λ1−λ2)v1L+(1−λ1)v2H

1−λ2
> v1H needs to

hold. The inequality b̂ < v1H is obviously satisfied if v2L ≤ v1H , while if v1H < v2L then it

is equivalent to Z(v1H) < 0. Since Z(v1H) = −[v1H − λ1v1L − (1 − λ1)v2L] (v2H − v1H) and

v1H < v2L < v2H , we deduce that the converse of (3) needs to hold. Thus (4) is a necessary

condition for the existence of a BNE such that b2L < b̄2L < b̄1H .

Now we verify that for each type of each bidder the strategy specified by Proposition 1(ii) is a

best reply given the strategies of the two types of the other bidder. Notice that p1H(b̄) = p2H(b̄) = 1,

thus we do not need to consider bids above b̄. The same remark applies to the BNE described by

Proposition 1(iii).

Type 1L. The strategies of types 2L and 2H are such that each type of bidder 2 bids at least v1L

with probability one. Therefore the payoff of 1L is zero if he bids v1L as specified by Proposition

1, and it is impossible for him to obtain a positive payoff.

Type 1H . We know from (14) that the payoff of 1H is v1H − b̄ > 0 for any b ∈ (v1L, b̄]. If b < v1L,

then p1H(b) = 0 and u1H(b) = 0. If b = v1L, then 1H loses against 2H and loses also against 2L

unless 2L bids v1L, in which case 1H ties with 2L — an event with probability G2L(v1L). Consider

the most favorable case for 1H , which means that he wins the tie-break against 2L with probability

one (this occurs if v2L < v1H): his expected payoff from bidding v1L is then (v1H−v1L)λ2G2L(v1L),

which turns out to be equal to v1H − b̄.

Type 2L. We know from (15) that the payoff of 2L is λ1(v2L − v1L) > 0 for any b ∈ [v1L, b̂].

For bids smaller than v1L, the payoff of 2L is zero as p2L(b) = 0 if b < v1L. If b ∈ [b̂, b̄], then

u2L(b) = (v2L − b)[λ1 + (1 − λ1)G1H(b)] = (v2L − b)
v2H−b̄
v2H−b

which is decreasing in b, and therefore

u2L(b̂) > u2L(b) for any b ∈ (b̂, b̄].

Type 2H . We know from (16) that the payoff of 2H is v2H − b̄ > 0 for any b ∈ [b̂, b̄]. For

bids smaller than v1L, the payoff of 2H is zero as p2H(b) = 0 if b < v1L. If b ∈ [v1L, b̂], then

p2H(b) = λ1 + (1− λ1)G1H(b) = λ1
v2L−v1L
v2L−b

and u2H(b) = (v2H − b)λ1
v2L−v1L
v2L−b

, which is increasing

in b and therefore u2H(b) < u2H(b̂) for any b ∈ [v1L, b̂).
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5.1.5 Step 5: When v1L < v2L, there exists a BNE such that b2L = b̄2L < b̄1H if and

only if (7) is satisfied; any such BNE is outcome-equivalent to the BNE in

Proposition 1(iii)

In this case Lemma 2 (in the proof of Step 4) applies, thus we infer that b̄1L = b1H = b2L = b̄2L =

b2H = v1L; this means that 2L plays a pure strategy and bids v1L. Conversely, types 1H and 2H

employ mixed strategies and thus the following indifference conditions need to hold, in which we

still use b̄ instead of b̄2H = b̄1H . For type 1H :

(v1H − b)[λ2 + (1− λ2)G2H(b)] = v1H − b̄ for any b ∈ (v1L, b̄] (17)

For type 2H :

(v2H − b)[λ1 + (1− λ1)G1H(b)] = v2H − b̄ for any b ∈ (v1L, b̄] (18)

Notice that G1H(v1L) = 0 since if G1H(v1L) > 0, then 1H ties with 2L with positive probability

by bidding v1L, and thus Lemma 1 applies. From G1H(v1L) = 0 and (18) we obtain b̄ = λ1v1L +

(1− λ1)v2H , and then (17)-(18) yield G1H , G2H in (8). The inequality (7) needs to hold since it is

equivalent to G2H(v1L) ≥ 0.

Now we verify that for each type of each bidder the strategy specified by Proposition 1(iii) is a

best reply given the strategies of the two types of the other bidder.

Type 1L. The same argument given in the proof of Lemma 3 in Step 4 applies.

Type 1H . We know from (17) that the payoff of 1H is v1H − b̄ > 0 for any b ∈ (v1L, b̄],
34 and

b < v1L implies p1H(b) = 0, u1H(b) = 0. If b = v1L, then 1H ties with type 2L and loses against 2H ,

unless also 2H bids v1L — an event with probability G2H(v1L). Consider the most favorable case for

1H , which means that he wins the tie-break against each type of bidder 2 with probability one (this

occurs if v2H < v1H): his expected payoff from bidding v1L is then (v1H−v1L)[λ2+(1−λ2)G2H(v1L)]

which turns out to be equal to v1H − b̄.

Type 2L. The payoff of 2L is λ1(v2L − v1L). For bids smaller than v1L we can argue exactly like

in the proof of Lemma 3 in Step 4. If b ∈ [v1L, b̄], then p2L(b) = λ1
v2H−v1L
v2H−b

and thus u2L(b) =

(v2L − b)λ1
v2H−v1L
v2H−b

is decreasing in b.

Type 2H . The payoff of 2H is v2H − b̄ > 0 for any b ∈ [v1L, b̄]. For bids smaller than v1L we can

argue exactly like in the proof of Lemma 3 in Step 4.

5.2 Proof of Proposition 1 for the case of v1L = v2L

5.2.1 Step 1: When v1L = v2L = vL, any BNE is such that b1L = b2L = b̄1L = b̄2L = vL

We start by proving that b1L = b2L. In view of a contradiction, suppose that b2L < b1L. Since 2L

bids in [b2L, b1L) with positive probability, it follows that ue2L = 0. Then vL ≤ b1L, since b1L < vL

implies that p2L(b) > 0 and u2L(b) > 0 for any b ∈ (b1L, vL). Moreover, vL ≤ b1L implies ue1L = 0,

34Notice that v1H − b̄ > 0 given (7).
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but p1L(b) > 0 and u1L(b) > 0 for any b ∈ (b2L, b1L): contradiction. Therefore the inequality

b2L < b1L cannot hold in equilibrium, and a similar argument applies to rule out b1L < b2L.

Given that b1L = b2L ≡ b, we prove that b = vL. In view of a contradiction, suppose that b < vL.

In case that G1L(b) > 0 and G2L(b) > 0, Lemma 1 applies; thus G1L(b) = 0 and/or G2L(b) = 0. If

G1L(b) = 0, we find that ue2L = 0 since p2L(b) is about 0 for b close to b, but in fact 2L can make

a positive payoff by bidding in (b, vL): contradiction. The same argument applies if G2L(b) = 0.

Thus b = vL, which implies b̄1L = b̄2L = vL: hence both 1L and 2L bid vL with probability one.

5.2.2 Step 2: When v1L = v2L = vL, in the unique BNE 1H,2H play the mixed strategies

described by Proposition 1(iii) if (7) holds; if (7) is violated, then 1H,2H play

the mixed strategies described by (5) and (6) with b̂ = vL

As in the proof of Proposition 1(ii) (Lemma 2 in Step 4) we can prove that b̄1L = b1H(= vL) and

b̄2L = b2H(= vL). Using again b̄ instead of b̄1H , b̄2H we infer that G1H , G2H need to satisfy

(v1H − b)[λ2 + (1− λ2)G2H(b)] = v1H − b̄ for any b ∈ [vL, b̄] (19)

and

(v2H − b)[λ1 + (1− λ1)G1H(b)] = v2H − b̄ for any b ∈ [vL, b̄] (20)

From (19)-(20) we obtain G1H(vL) =
1

1−λ1
( v2H−b̄
v2H−vL

−λ1) and G2H(vL) =
1

1−λ2
( v1H−b̄
v1H−vL

−λ2). Lemma

1 implies that G1H(vL) > 0 and G2H(vL) > 0 cannot hold. Thus we consider the other cases.

If G1H(vL) > 0 = G2H(vL) we obtain b̄ = λ2vL+ (1− λ2)v1H and G1H(vL) > 0 is equivalent to

the converse of (7); from (19)-(20) we obtain G1H , G2H as in footnote 14.35 Now we prove that no

profitable deviation exists for any type. The payoff of 1L (2L) is zero and he needs to bid above vL

in order to win. For 1H , we know from (19) that his payoff is v1H − b̄ for any b ∈ [vL, b̄] and b < vL

yields u1H(b) = 0. A similar argument applies to 2H .

In case that G2H(vL) ≥ 0 = G1H(vL) we obtain b̄ = λ1vL + (1 − λ1)v2H , and G2H(v1L) ≥ 0

is equivalent to (7); from (19)-(20) we obtain G1H ,G2H as in (8). The proof that no profitable

deviation exists for any type is exactly as when (7) is violated.

35Step 1 and the proof of Step 2 up to this point apply for any tie-breaking rule. However, no BNE exists under

the standard tie-breaking rule if (7) is violated since (i) G1H(vL) > 0 and 1H and 2L tie with positive probability at

the bid vL; (ii) it is profitable for 1H to bid vL+ ε rather than vL, which breaks the BNE [a similar argument applies

if (7) holds with strict inequality]. On the other hand, with the Vickrey tie-breaking rule we have c1H = v1H−vL > 0

and c2L = 0; thus 1H wins (paying vL as aggregate price) in case of tie with 2L.
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5.3 Derivation of RF given the BNE described by Proposition 1

5.3.1 The BNE of Proposition 1(ii) when v1L < v2L

We evaluate RF as the difference between the social surplus SF generated by the FPA minus the

bidders’ rents UF : RF = SF − UF . Thus we need to derive SF and UF :

SF = λ1λ2v2L + λ1(1− λ2)v2H + (1− λ1)λ2[v2L + (v1H − v2L) Pr{1H def 2L}]

+(1− λ1)(1− λ2)[v2H + (v1H − v2H) Pr{1H def 2H}]

and

UF = (1− λ1)(v1H − λ2b̂− (1− λ2)v1H) + (1− λ2)(v2H − λ2b̂− (1− λ2)v1H) + λ2λ1(v2L − v1L)

in which Pr{1H def 2j}, for j = L,H, is the probability that 1H wins when he faces type 2j .

Therefore

RF = λ2(2− λ1 − λ2)b̂+ (1 + λ
2
2 + λ1λ2 − 3λ2)v1H + λ2(1− λ1)v2L + λ2λ1v1L

+(1− λ1)λ2(v1H − v2L) Pr{1H def 2L}+ (1− λ1)(1− λ2)(v1H − v2H)Pr{1H def 2H}

Derivation of Pr{1H def 2L} For the case that v1H 	= v2L we need to evaluate

Pr{1H def 2L} =

∫ b̂

v1L

G′1H(b)G2L(b)db+ 1−G1H(b̂)

and using b̄ = λ2b̂+ (1− λ2)v1H in G2L we find G2L(b) =
v1H−b̂
v1H−b

:

Pr{1H def 2L} =

∫ b̂

v1L

λ1

1− λ1

v2L − v1L
(v2L − b)2

v1H − b̂

v1H − b
db+ 1−

λ1(b̂− v1L)

(1− λ1)(v2L − b̂)

=
λ1(v2L − v1L)(v1H − b̂)

1− λ1

∫ b̂

v1L

1

(v2L − b)2(v1H − b)
db+ 1−

λ1(b̂− v1L)

(1− λ1)(v2L − b̂)

We exploit
∫

1

(v2L − b)2(v1H − b)
db =

1

(v1H − v2L)2
ln
v2L − b

v1H − b
+

1

(v1H − v2L)(v2L − b)

to obtain
∫ b̂

v1L

1

(v2L − b)2(v1H − b)
db =

1

(v1H − v2L)2
ln
(v2L − b̂)(v1H − v1L)

(v1H − b̂)(v2L − v1L)
+

b̂− v1L

(v1H − v2L) (v2L − b̂) (v2L − v1L)

thus

Pr{1H def 2L} =
λ1(v1H − b̂)(v2L − v1L)

(1− λ1)(v1H − v2L)2
ln
(v2L − b̂)(v1H − v1L)

(v1H − b̂)(v2L − v1L)
+
(1− λ1) (v1H − v2L) + λ1(b̂− v1L)

(1− λ1) (v1H − v2L)

and

(1− λ1)λ2(v1H − v2L) Pr{1H def 2L} =
λ1λ2(v1H − b̂)(v2L − v1L)

v1H − v2L
ln
(v2L − b̂)(v1H − v1L)

(v1H − b̂)(v2L − v1L)

+λ2 (1− λ1) (v1H − v2L) + λ1λ2(b̂− v1L)
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Derivation of Pr{1H def 2H} For the case that v1H 	= v2H we need to evaluate

Pr{1H def 2H} =

∫ b̄

b̂

G′1H(b)G2H(b)db

and using b̄ = λ2b̂+ (1− λ2)v1H in G2H we find G2H(b) =
λ2(b−b̂)

(1−λ2)(v1H−b)
:

Pr{1H def 2H} =

∫ b̄

b̂

v2H − b̄

(1− λ1)(v2H − b)2
λ2(b− b̂)

(1− λ2)(v1H − b)
db

=
λ2(v2H − b̄)

(1− λ1)(1− λ2)

∫ b̄

b̂

b− b̂

(v1H − b)(v2H − b)2
db

We exploit

∫
b− b̂

(v1H − b)(v2H − b)2
db =

v1H − b̂

(v1H − v2H)
2 ln

v2H − b

v1H − b
−

v2H − b̂

(v2H − v1H) (v2H − b)

to obtain

∫ b̄

b̂

b− b̂

(v1H − b)(v2H − b)2
db =

v1H − b̂

(v1H − v2H)
2 ln

v2H − λ2b̂− (1− λ2)v1H

λ2(v2H − b̂)

−
(1− λ2) (v1H − b̂)

(v2H − v1H)
(
v2H − λ2b̂− (1− λ2)v1H

)

thus

Pr{1H def 2H} =
λ2(v2H − λ2b̂− (1− λ2)v1H)

(1− λ1)(1− λ2)

v1H − b̂

(v1H − v2H)
2 ln

v2H − λ2b̂− (1− λ2)v1H

λ2(v2H − b̂)

−
λ2(v1H − b̂)

(1− λ1) (v2H − v1H)

and

(1− λ1)(1− λ2)(v1H − v2H)Pr{1H def 2H}

=
λ2(v1H − b̂)(v2H − λ2b̂− (1− λ2)v1H)

v1H − v2H
ln
v2H − λ2b̂− (1− λ2)v1H

λ2(v2H − b̂)

+(1− λ2)λ2(v1H − b̂)

Evaluation of RF

RF = λ2b̂+ (1− λ2)v1H +
λ1λ2(v1H − b̂)(v2L − v1L)

v1H − v2L
ln
(v2L − b̂)(v1H − v1L)

(v1H − b̂)(v2L − v1L)

+
λ2(v1H − b̂)(v2H − λ2b̂− (1− λ2)v1H)

v1H − v2H
ln
v2H − λ2b̂− (1− λ2)v1H

λ2(v2H − b̂)
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An expression for b̂ is found by solving (2):

b̂ =
1

2λ2
(v2H + λ1v1L − (1− λ2)v1H + (λ2 − λ1)v2L −Q)

with

Q =
√
((1− λ2)v1H + (λ1 − λ2) v2L − λ1v1L − v2H)2 − 4λ2(((1− λ1)v2H − (1− λ2)v1H)v2L + λ1v1Lv2H)

5.3.2 The BNE of Proposition 1(ii) when v1L = v2L (footnote 14)

SF = λ1λ2v1L + λ1(1− λ2)v2H + λ2(1− λ1)v1H + (1− λ1)(1− λ2)(v1H + (v2H − v1H)Pr{2H def 1H})

UF = (1− λ1)(v1H − λ2vL − (1− λ2)v1H) + (1− λ2)(v2H − λ2vL − (1− λ2)v1H)

Therefore

RF = λ2 (2− λ2) v1L − (1− λ1) (1− λ2) v2H + (2− λ1 − λ2) (1− λ2) v1H

+(1− λ1)(1− λ2)(v2H − v1H) Pr{2H def 1H}

Derivation of Pr{2H def 1H} For the case that v1H 	= v2H we need to evaluate

Pr{2H def 1H} =

∫ λ2v1L+(1−λ2)v1H

v1L

G′2H(b)G1H(b)db

=

∫ λ2v1L+(1−λ2)v1H

v1L

λ2

1− λ2

v1H − v1L
(v1H − b)2

1

1− λ1
(
v2H − λ2v1L − (1− λ2)v1H

v2H − b
− λ1)db

=
λ2(v1H − v1L)

(1− λ2)(1− λ1)

∫ λ2v1L+(1−λ2)v1H

v1L

(
v2H − λ2v1L − (1− λ2)v1H

(v2H − b)(v1H − b)2
−

λ1

(v1H − b)2

)
db

We exploit

∫
1

(v2H − b)(v1H − b)2
db =

1

(v2H − v1H)2
ln
v1H − b

v2H − b
+

1

(v2H − v1H)(v1H − b)

to obtain

∫ λ2v1L+(1−λ2)v1H

v1L

v2H − λ2v1L − (1− λ2)v1H
(v2H − b)(v1H − b)2

db

=
v2H − λ2v1L − (1− λ2)v1H

(v2H − v1H)
2 ln

λ2 (v2H − v1L)

v2H − λ2v1L − (1− λ2)v1H

+
(1− λ2)(v2H − λ2v1L − (1− λ2)v1H)

λ2 (v2H − v1H) (v1H − v1L)

Moreover, ∫ λ2v1L+(1−λ2)v1H

v1L

λ1

(v1H − b)2
db =

λ1(1− λ2)

λ2 (v1H − v1L)
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thus

Pr{2H def 1H} =
λ2(v1H − v1L)(v2H − λ2v1L − (1− λ2)v1H)

(1− λ2)(1− λ1) (v2H − v1H)
2 ln

λ2 (v2H − v1L)

v2H − λ2v1L − (1− λ2)v1H

+
v2H − λ2v1L − (1− λ2)v1H
(1− λ1) (v2H − v1H)

−
λ1

1− λ1

and

(1− λ1)(1− λ2)(v2H − v1H)Pr{2H def 1H}

=
(v2H − λ2v1L − (1− λ2)v1H)λ2(v1H − v1L)

v2H − v1H
ln

λ2 (v2H − v1L)

v2H − λ2v1L − (1− λ2)v1H
+(1− λ2) ((λ2 + λ1 − 1) v1H + (1− λ1)v2H − λ2v1L)

Evaluation of RF

RF = λ2v1L+(1−λ2)v1H+
(v2H − λ2v1L − (1− λ2)v1H)λ2(v1H − v1L)

v2H − v1H
ln

λ2 (v2H − v1L)

v2H − λ2v1L − (1− λ2)v1H

5.3.3 The BNE in Proposition 1(iii)

SF = λ1λ2v2L + λ1(1− λ2)v2H + λ2(1− λ1)v1H + (1− λ1)(1− λ2)(v2H + (v1H − v2H)Pr{1H def 2H})

UF = (1− λ1)(v1H − λ1v1L − (1− λ1)v2H) + (1− λ2)(v2H − λ1v1L − (1− λ1)v2H) + λ2λ1(v2L − v1L)

Therefore

RF = λ1(2− λ1)v1L − (1− λ1)(1− λ2)v1H + (1− λ1)(2− λ1 − λ2)v2H

+(1− λ1)(1− λ2)(v1H − v2H)Pr{1H def 2H}

Derivation of Pr{1H def 2H} For the case that v1H 	= v2H we need to evaluate

Pr{1H def 2H} =

∫ λ1v1L+(1−λ1)v2H

v1L

G′1H(b)G2H(b)db

=

∫ λ1v1L+(1−λ1)v2H

v1L

λ1

1− λ1

v2H − v1L
(v2H − b)2

1

1− λ2
(
v1H − λ1v1L − (1− λ1)v2H

v1H − b
− λ2)db

=
λ1(v2H − v1L)

(1− λ1)(1− λ2)

∫ λ1v1L+(1−λ1)v2H

v1L

(
v1H − λ1v1L − (1− λ1)v2H

(v1H − b)(v2H − b)2
−

λ2

(v2H − b)2
)db

We exploit
∫

1

(v1H − b)(v2H − b)2
db =

1

(v1H − v2H)2
ln
v2H − b

v1H − b
+

1

(v1H − v2H)(v2H − b)

to obtain
∫ λ1v1L+(1−λ1)v2H

v1L

v1H − λ1v1L − (1− λ1)v2H
(v2H − b)2(v1H − b)

db

=
v1H − λ1v1L − (1− λ1)v2H

(v1H − v2H)2
ln

λ1(v1H − v1L)

v1H − λ1v1L − (1− λ1)v2H

+
(1− λ1)(v1H − λ1v1L − (1− λ1)v2H)

λ1(v1H − v2H)(v2H − v1L)
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Moreover, ∫ λ1v1L+(1−λ1)v2H

v1L

λ2

(v2H − b)2
db =

λ2(1− λ1)

λ1(v2H − v1L)

thus

Pr{1H def 2H} =
λ1(v2H − v1L)(v1H − λ1v1L − (1− λ1)v2H)

(1− λ1)(1− λ2)(v1H − v2H)2
ln

λ1(v1H − v1L)

v1H − λ1v1L − (1− λ1)v2H

+
v1H − λ1v1L − (1− λ1)v2H
(1− λ2)(v1H − v2H)

−
λ2

1− λ2

and

(1− λ1)(1− λ2)(v1H − v2H)Pr{1H def 2H}

=
λ1(v2H − v1L)(v1H − λ1v1L − (1− λ1)v2H)

v1H − v2H
ln

λ1(v1H − v1L)

v1H − λ1v1L − (1− λ1)v2H
+(1− λ1)((1− λ2)v1H − λ1v1L + (λ1 + λ2 − 1)v2H)

Evaluation of RF

RF = λ1v1L+(1−λ1)v2H+
(v1H − λ1v1L − (1− λ1)v2H)λ1(v2H − v1L)

v1H − v2H
ln

λ1 (v1H − v1L)

v1H − λ1v1L − (1− λ1)v2H

5.4 Proof of Proposition 2

(i) The proof is given in the text, immediately after the statement.

(ii) We consider the three conditions (9)-(11) separately.

5.4.1 The proof when (9) is satisfied

Suppose that v1H > v2H . Then Proposition 3 establishes that RF is smaller than when v1H

satisfies v1H = v2H ; furthermore, from (1) it follows that an increase in v1H above the level such

that v1H = v2H has no effect on RS. Therefore RS > RF when v1H > v2H .

Now suppose that v1H < v2H . We know that RS = RF in the symmetric setting such that both

high valuations are equal to v1H , and an increase in v2H implies RS > RF by the argument in the

previous paragraph (after reversing the bidders’ identities).

5.4.2 The proof when (10) is satisfied

This proof is provided in the text.

5.4.3 The proof when (11) is satisfied

When v1L < v2L ≤ v1H < v2H , Proposition 1(ii) applies and thus the aggregate bidders’ rents in

FPA are UF = (1 − λ)(v1H − b̄) + (1 − λ)(v2H − b̄) + λ2(v2L − v1L) with b̄ = λb̂ + (1 − λ)v1H .

Since US = λ2(v2L − v1L) + λ(1 − λ)(v2H − v1L) + (1 − λ)λ(v1H − v2L) + (1 − λ)2(v2H − v1H),
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the difference UF − US is equal to λ (1− λ) (v2L + v1L − 2b̂). Given λ1 = λ2 = λ, (2) reduces to

λb2 + ((1− λ)v1H − λv1L − v2H)b+ (1− λ)(v2H − v1H)v2L + λv1Lv2H = 0 and thus

b̂ =
1

2λ
(λv1L + v2H − (1− λ) v1H −Q)

with Q =
√
((1− λ)v1H − λv1L − v2H)2 − 4λ(1− λ)(v2H − v1H)v2L − 4λ

2v1Lv2H . Therefore U
F ≥

US boils down to Q ≥ v2H−(1− λ) v1H−λv2L and (after squaring — notice that v2H−(1− λ) v1H−

λv2L > 0) ultimately to

λ(v2L − v1L)[2(1− λ)v1H + 2(2λ− 1)v2H − λv1L − λv2L] ≥ 0 (21)

Setting v2L = v1L + εL and v2H = v1H + εH , it is simple to see that (21) is satisfied for εL > 0,

εH > 0 and close to zero. Furthermore, given v2H > v1H and λ ≥ 1
2 , we find that 2(1 − λ)v1H +

2(2λ− 1)v2H − λv1L − λv2L ≥ λ(2v1H − v1L − v2L), which holds for any v2L ≤ v1H .

Proof for the case of distribution shift In the case of shift, (21) reduces to 2λ(v1H − v1L) ≥

(2 − 3λ)a for a ≤ v1H − v1L. If instead a > v1H − v1L, then v2L > v1H and US = λ2a +

λ(1 − λ)(a + v1H − v1L) + λ(1 − λ)(v1L + a − v1H) + (1 − λ)
2a = a; thus UF ≥ US reduces to

2(2 + λ)(v1H − v1L) ≥ 3(2− λ)a.

5.5 Proof of Proposition 3

Given λ1 = λ2 and v1L = v2L = vL, when v1H < v2H = vH Proposition 1(ii) (footnote 14)

applies and reveals that types 1L,2L bid as in the benchmark symmetric setting, whereas G1H(b) =
1
1−λ(

vH−λvL−(1−λ)v1H
vH−b

− λ) and G2H(b) =
λ
1−λ

b−vL
v1H−b

with support [vL, b̄], in which b̄ = λvL + (1−

λ)v1H . It is simple to see that both G1H(b) and G2H(b) are decreasing with respect to v1H for any

b ∈ (vL, b̄), and this implies that 1H and 2H are both more aggressive, in the sense of first order

stochastic dominance, the larger is v1H in (vL, vH ].
36 Given that

RF = λ2vL+λ(1−λ)

∫ b̄

vL

bdG2H(b)+λ(1−λ)

∫ b̄

vL

bdG1H(b)+ (1−λ)
2

∫ b̄

vL

bd(G1H(b)G2H(b)) (22)

we infer that RF is increasing in v1H .

When v1H > vH , Proposition 1(iii) applies and reveals that types 1L, 1H , 2L bid as in the benchmark

symmetric setting, whereas G2H(b) =
(1−λ)(v1H−vH)+λ(b−vL)

(1−λ)(v1H−b)
for any b ∈ [vL, Ev]. Since G2H(b) is

strictly increasing in v1H for any b ∈ [vL, Ev), we infer that 2H is less aggressive, in the sense of

first order stochastic dominance, the larger is v1H . Using again (22), after replacing G1H with GH

and b̄ with Ev, it follows that R
F is strictly decreasing with respect to v1H .

36Precisely, if v1H < v′1H < vH , then F1H and F2H given v′1H first order stocastically dominate, respectively, F1H

and F2H given v1H .
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5.6 Proof of the claims in Subsection 4.1.4

When (3) is satisfied, G2(b) ≤ G1(b) obviously holds for any b. Moreover, bidder 1 never wins in

either auction when (3) holds. Conversely, 2 wins with probability one and in the FPA he pays

v1H ; in the SPA his expected payment is the expected valuation of bidder 1, which is smaller than

v1H .

For i = 1, 2, let UFi denote bidder i’s ex ante expected equilibrium payoff in the FPA; USi has a

similar meaning with reference to the SPA. When (4) is satisfied we find UF1 = (1− λ)λ(v1H − b̂),

US1 = (1 − λ)λmax{v1H − v2L, 0}, and UF1 > US1 since b̂ < min{v2L, v1H}. Moreover, UF2 =

λ2(v2L− v1L)+ (1−λ)[v2H −λb̂− (1−λ)v1H ], U
S
2 = λ[λ(v2L− v1L)+ (1−λ)max{v2L− v1H , 0}]+

(1− λ)[v2H − λv1L − (1− λ)v1H ], and U
S
2 −U

F
2 = (1− λ)λ[max{v2L − v1H , 0}+ b̂− v1L] > 0 since

b̂ > v1L.

For equilibrium bid distributions we find that G1(b) > G2(b) for any b ∈ [v1L, b̂] as G1(v1L) =

G2(b̂) = λ. For b ∈ (b̂, b̄], G1(b) =
v2H−b̄
v2H−b

and G2(b) =
v1H−b̄
v1H−b

, hence G1(b) > G2(b) for each

b ∈ (b̂, b̄).

When (7) holds we obtain UF1 = (1−λ)(v1H−λv1L−(1−λ)v2H), U
S
1 = (1−λ)(v1H−λv2L−(1−

λ)v2H), and U
F
1 ≥ US1 since v1L ≤ v2L. Moreover, UF2 = US2 = λ2(v2L−v1L)+(1−λ)λ(v2H − v1L).

For equilibrium bid distributions we find that G1(b) = λv2H−v1L
v2H−b

and G2(b) =
v1H−b̄
v1H−b

with b̄ =

λv1L + (1− λ)v2H and G2(b) > G1(b) for any b ∈ [v1L, b̄).

5.7 Proof of the final claim in Subsection 4.1.5

We consider two sequences of atomless c.d.f. {Fn1 , F
n
2 }

+∞
n=1, with continuous and positive densities

fn1 , f
n
2 for each n, which converges weakly to F̃1, F̃2. We show that for any large n, (12) and/or

(13) are violated by Fn1 , F
n
2 .

When v1L < v2L, select an arbitrary v̂ ∈ (v1L, v2L) and notice that given a small ε > 0, for

a large n the inequality Fn1 (v̂) > λ − ε holds. Therefore rn(v̂) = (Fn2 )
−1[Fn1 (v̂)] ≥ v2L − ε > v̂

[because limn→+∞ Fn2 (v) = 0 for each v < v2L − ε] and
∫ rn(v̂)
v̂

fn2 (x)dx = Fn2 [r
n(v̂)] − Fn2 (v̂) >

λ − 2ε for a large n. If fn1 (v̂) ≥ fn2 (x) for any x ∈ [v̂, rn(v̂)], then limn→+∞ f
n
1 (v̂) = 0 implies

limn→+∞
∫ rn(v̂)
v̂

fn2 (x)dx = 0: contradiction. Hence (13) is violated if Fn1 , F
n
2 are close to F̃1, F̃2

and v1L < v2L.

Now assume that v1L = v2L and v1H < v2H . Then given a small ε > 0 and a large n, the

inequality Fn1 (v1H + ε) − F
n
1 (v1H − ε) =

∫ v1H+ε
v1H−ε

fn1 (x)dx > 1 − λ − ε holds, and Fn2 (v1H + ε) −

Fn2 (v1H − ε) =
∫ v1H+ε
v1H−ε

fn2 (x)dx tends to zero. Now notice that if there exists a number t > 0 such

that
fn
1
(x)

fn
2
(x) ≤ t for any x ∈ (v1H − ε, v1H + ε) and any n, then

∫ v1H+ε
v1H−ε

fn1 (x)dx ≤ t
∫ v1H+ε
v1H−ε

fn2 (x)dx

and limn→+∞
∫ v1H+ε
v1H−ε

fn1 (x)dx = 0. Thus for any t > 0, for any large n there exists some xn ∈

(v1H − ε, v1H + ε) such that
fn
1
(xn)

fn
2
(xn)

> t, which implies that (12) cannot hold since Fn2 (xn) > λ− ε.
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5.8 Proof of Proposition 4

Suppose that λ1 < λ2. Then Proposition 1(ii) applies and the ex ante expected payoffs of bidders

1 and 2 in the FPA and in the SPA are

UF1 = (1− λ1)λ2(vH − b̂) and US1 = (1− λ1)λ2(vH − v2L)

UF2 = λ2λ1(v2L − v1L) + (1− λ2)λ2(vH − b̂) and US2 = λ2λ1(v2L − v1L) + (1− λ2)λ1(vH − v1L)

From (2) we obtain b̂ = v2L −
λ1
λ2
(v2L − v1L), and this reveals that UF1 > US1 and UF2 > US2 .

In the opposite case such that λ1 ≥ λ2, Proposition 1(iii) applies and

UF1 = (1− λ1)λ1(vH − v1L) > US1 = (1− λ1)λ2(vH − v2L)

UF2 = US2 = λ2λ1(v2L − v1L) + (1− λ2)λ1(vH − v1L)

In either case, UF = UF1 + U
F
2 > US = US1 + U

S
2 and thus RS > RF .
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