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Bayesian Testing of Granger Causality
in Markov-Switching VARs *

Matthieu Droumaguet?, Tomasz Wozniak"?
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Abstract

Recent economic developments have shown the importance of spillover and contagion
effects in financial markets as well as in macroeconomic reality. Such effects are not
limited to relations between the levels of variables but also impact on the volatility and
the distributions. We propose a method of testing restrictions for Granger noncausality
on all these levels in the framework of Markov-switching Vector Autoregressive Models.
The conditions for Granger noncausality for these models were derived by Warne (2000).
Due to the nonlinearity of the restrictions, classical tests have limited use. We, therefore,
choose a Bayesian approach to testing. The inference consists of a novel Gibbs sampling
algorithm for estimation of the restricted models, and of standard methods of computing
the Posterior Odds Ratio. The analysis may be applied to financial and macroeconomic
time series with complicated properties, such as changes of parameter values over time
and heteroskedasticity.

Keywords: Granger Causality, Markov Switching Models, Hypothesis Testing, Posterior
Odds Ratio, Gibbs Sampling
JEL classification: C11, C12, C32, C53, E32

1. Introduction

The concept of Granger causality was introduced by Granger (1969) and Sims (1972).
One variable does not Granger-cause some other variable, if past and current informa-
tion about the former cannot improve the forecast of the latter. Note that this concept
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refers to the forecasting of variables, in contrast to the causality concept based on ceteris
paribus effects attributed to Rubin (1974) (for the comparison of the two concepts used
in econometrics, see e.g. Lechner, 2011). Knowledge of Granger causal relations allows
a researcher to formulate an appropriate model and obtain a good forecast of values of
interest. But what is even more important, a Granger causal relation, once established,
informs us that past observations of one variable have a significant effect on the forecast
value of the other, delivering crucial information about the relations between economic
variables.

The original Granger causality concept refers to forecasts of conditional means. There
are, however, extensions referring to the forecasts of higher-order conditional moments
or to distributions. We present and discuss these in Section 3. Again, information that
they deliver not only helps in performing good forecasts of the variables, but is crucial
for decision-making in economic and financial applications as well.

Among the time series models that have been analyzed for Granger causality of dif-
ferent types are: a family of Vector Autoregressive Moving Average (VARMA) models
(see Boudjellaba, Dufour & Roy, 1994, and references therein), the Logistic Smooth Tran-
sition Vector Autoregressive (LST-VAR) model (Christopoulos & Leén-Ledesma, 2008),
some models from the family of Generalized Autoregressive Conditional Heteroskedas-
ticity (GARCH) models (Comte & Lieberman, 2000; WozZniak, 2011; WozZniak, 2012). Fi-
nally, Warne (2000) derived conditions for different types of Granger noncausality for the
Markov-switching VAR models on which we focus in this study. We present the model
and its estimation in Section 2, while in Section 3 the definitions for different types of non-
causality and restrictions on parameters are given. Note that all these works analyzed one
period ahead Granger noncausality (see Liitkepohl, 1993; Liitkepohl & Burda, 1997; Dufour,
Pelletier & Renault, 2006, for h periods ahead inference in VAR models).

For some of these models, the derived restrictions on parameters are linear and there-
fore easily testable. For others, this is not the case. For Markov-switching VAR models,
the restrictions for Granger noncausality and noncausality in variance are highly non-
linear functions of the original parameters of the model. Consequently, the asymptotic
distributions of the Wald, Likelihood Ratio and Lagrange Multiplier tests are not known.
Testing of these restrictions becomes cumbersome.

The contribution of this work is a Bayesian testing procedure that allows the testing
of all the restrictions derived by Warne (2000) for different kinds of Granger noncausality,
as well as for the inference on the hidden Markov process. None of the existing classical
solutions to the problem of testing nonlinear restrictions on parameters that we describe in
Section 4 is easily applicable to Markov-switching VAR models. The proposed approach
consists of a Bayesian estimation of the unrestricted model, allowing for Granger causality,
and of the restricted models, where the restrictions represent hypotheses of noncausality.
For this purpose, we construct a novel Gibbs sampling algorithm that allows for restricting
the models. The algorithm is discussed in Section 4 and presented in Section 5. Having
estimated the models, we compare competing hypotheses, represented by the unrestricted
and the restricted models, with standard Bayesian methods using Posterior Odds Ratios
and Bayes factors.



The main advantage of our approach is that we can test the nonlinear restrictions. The
restrictions of all the considered types of noncausality may be tested. Thus, the analysis
of causal relations between variables is profound and potentially informative. Other
advantages include an effect of adopting Bayesian inference. First, the Posterior Odds
Ratio method gives arguments in favour of the hypotheses, as posterior probabilities of
the competing hypotheses are compared. In consequence, all the hypotheses are treated
symmetrically. Finally, our estimation procedure combines and improves the existing
algorithms restricting the models, but it also preserves the possibility of using different
methods for computing the marginal density of data necessary to compute the Posterior
Odds Ratio. We discuss further the benefits and costs of our approach at the end of Section
4.

As potential applications of the testing procedure, we indicate macroeconomic as well
as financial time series. In particular, recent financial turmoil and the following global
recession are interesting periods for analysis. There exist many applied studies presenting
evidence that these events have the nature of switching the regime. Taylor & Williams
(2009), on the example of Libor-OIS and Libor-Repo spreads, being an approximation
for counterpart risk, present how different the perception of the risk by agents on the
tinancial market was, first, starting from August 2007 and then, even more, from October
2008. Further, Diebold & Yilmaz (2009) show how different behaviors characterize return
spillovers and volatility spillovers for stock exchange markets. These two studies clearly
indicate that the financial data should be analyzed in terms of Granger causality with a
model that allows for changes in regimes, such as a Markov-switching model.

For macroeconomic time series, the motivation for using Markov-switching models
comes mainly from the business cycle analysis, as in Hamilton (1989). It is important to
know whether variables have different impacts on other variables during the expansion
and recession periods. Still, allowing for higher number of states than two may allow
a more detailed analysis of the interactions between variables within the cycles. For
example, Psaradakis, Ravn & Sola (2005) used the Markov-switching VAR models to
analyze, the so called temporary Granger causality within the Money-Output system.
They proposed a restricted MS-VAR specification that assumed four states of the economy:
1. both variables cause each other; 2. money does not cause output; 3. output does not
cause money; 4. none of the variables causes another. Our approach consists of choosing
a Markov-switching VAR model specification which is best supported by the data, and
then restricting it according to the restrictions derived by Warne (2000). This approach
takes into account the two sources of relations between the variables: first, having a source
in linear relations modeled with the VAR model, and second, taking into consideration
the fact that all of the variables are used to forecast the future probabilities of the states.

The restrictions that Psaradakis et al. (2005) imposed on the parameters of the model
follow some logical inference. The model they proposed certainly investigates time-
varying parameters, modeling linear interactions between current and lagged values of
the variables. However, one may not interpret their restrictions in terms of Granger non-
causality. In the model of Psaradakis et al. (2005), the parameters responsible for Granger
noncausality in VAR models, i.e. off-diagonal elements of the matrices of auto-regressive
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terms, vary with states; restriction (Al)(vi), presented in Section 3, does not hold. In
consequence, both the variables are used by the model to forecast the probability of the
states one period ahead, Pr(s;+1|0,y). This is the channel through which all the considered
variables Granger-cause each other, irrespective of whether the off-diagonal element of
the autoregressive matrices is set to zero or not. In this study, we present a method of in-
ference referring to precisely stated definitions of Granger causality for Markov-switching
models. No confusion about the sources of Granger causality is admissible.

The remaining part of the paper is organized as follows. In Section 2 we present the
model and the Bayesian estimation of the unrestricted model. The definitions for Granger
noncausality, noncausality in variance and noncausality in distribution are presented in
Section 3, together with parameter restrictions representing them. Section 4 presents dis-
cussion and critique of classical methods of testing restrictions for Granger noncausality
in different multivariate models. The discussion is followed by a proposal of solution of
the testing problem. First, the computation of the Posterior Odds Ratio is shown, and then
the algorithm for estimating the restricted models is discussed. It is described in detail
in Section 5. Section 6 gives empirical illustration of the methodology, using the example
of the money-income system of variables in the USA. The data support the hypothesis
of Granger noncausality (in mean) from money to income, as well as the hypotheses of
causality in variance and distribution. Section 7 concludes.

2. A Markov-Switching Vector Autoregressive Model

Model. Lety = (y4,..., yT)' denote a time series of T observations, where each y; is a N-
variate vector for f € {1,..., T}, taking values in a sampling space Y C RN, y is a realization
of a stochastic process {Y;}]_,. We consider a class of parametric finite Markov mixture
distribution models in which the stochastic process Y; depends on the realizations, s;, of
a hidden discrete stochastic process S; with finite state space {1,..., M}. Such a class of
models has been introduced in time series analysis by Hamilton (1989). Conditioned on
the state, s;, and realizations of y up to time ¢ — 1, y;_1, y; follows an independent identical
normal distribution. A conditional mean process is a Vector Autoregression (VAR) model
in which an intercept, u,, as well as lag polynomial matrices, AS), fori=1,...,p, and
covariance matrices, X,,, depend on the states; = 1,..., M.

4

yt = (uSt + Z Ag)yt—i + €t, (1)
i=1

e ~ i N(0, %), )

for t = 1,...,T. We set the vector of initial values yo = (yp-1,...,¥0)" to the first p
observations of the available data.

S; is assumed to be an irreducible aperiodic Markov chain starting from its ergodic
distribution 7 = (m3, ..., ), such that Pr(Sy = i|[P) = m;. Its properties are sufficiently
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described by the (M X M) transition probabilities matrix:

pPin P12z ... PmMm
po P P2 P
Pvm1 Pm2 --- PMMm

in which an element, p;;, denotes the probability of transition from state i to state j,
pij = Pr(sy1 = jlsy = i). All the transition probabilities are positive, p;; > 0, for all
i,j €1{1,...,M}, and the elements of each row of matrix P sum to one, Z;\il pij=1.

Such a formulation of the model is called, according to the taxonomy of Krolzig (1997),
MSIAH-VAR(p). Conditioned on the state s;, it models a current vector of observations, y;,
with an intercept, s, and a linear function of its lagged values up to p periods backwards.
The linear relation is captured by matrices of the lag polynomial AS), fori=1,...,p. The
parameters of the VAR process, as well as the covariance matrix X, change with time,
t, according to discrete valued hidden Markov process, s;. These changes in parameter
values introduce nonlinear relationships between variables. Consequently, the inference
about interactions between variables must consider the linear and nonlinear relations;
this is the subject of the analysis in Section 3.

Complete-data likelihood function. Let 6 € ® C R be a vector of size k, collecting parameters
of the transition probabilities matrix P and all the state-dependent parameters of the VAR
process, O, s, Ai), Y, fors;=1,...,Mandi=1,...,p. Asstated by Frithwirth-Schnatter
(2006), the complete-data likelihood function is equal to the joint sampling distribution
p(S,ylO) for the complete data (S,y) given 0, where S = (sy,...,sr)". This distribution is
now considered to be a function of 0 for the purpose of estimating the unknown parameter
vector 0. It is further decomposed into a product of a conditional distribution of y given
S and 0, and a conditional distribution of S given 0:

p(S,yl0) = p(ylS, O)p(S|0). 3)

The former is assumed to be a conditional normal distribution function of ¢;, for t =
1,...,T, given the states, s;, with the mean equal to a vector of zeros and X, as the
covariance matrix:

T T
1
p(y1S,0) = [ [ pwiis, ¥y, 0) = | [y ™1m, 1" exp {——etZ } 4
t=1

t=1

The form of the latter comes from the assumptions about the Markov process and is given

by:
M M NS
ps10) = plP) [T [ (5)

i=1 j=1



where N;i(S) = #{s;.1 = j,s; = i} is a number of transitions from state i to state j, Vi,j €
{1,...,M}.

A convenient form of the complete-data likelihood function (3) results from repre-
senting it as a product of M + 1 factors. The first M factors depend on the state-specific
parameters, 0;,, and the remaining one depends on the transition probabilities matrix, P:

M M M
p(y.sI0) = | (H p(yily'™, e») [ 17" pcolp). (6)

i=1 \tis=i i=1 j=1

Classical estimation of the model consists of the maximization of the likelihood func-
tion with e.g. the EM algorithm (see Krolzig, 1997; Kim & Nelson, 1999b). For the purpose
of testing Granger-causal relations between variables, we propose, however, the Bayesian
inference, which is based on the posterior distribution of the model parameters 0. (For
details of a standard Bayesian estimation and inference on Markov-switching models, the
reader is referred to Frithwirth-Schnatter, 2006). The complete-data posterior distribution
is proportional to the product of the complete-data likelihood function (6) and the prior
distribution:

p(Oly, S) « ply, SIO)p(0). (7)

Prior distribution. The convenient factorization of the likelihood function (6) is maintained
by the choice of the prior distribution in the following form:

M
p©) = | [ r)p(®). (8)
i=1

The independence of the prior distribution of the state-specific parameters for each state
and the transition probabilities matrix is assumed. This allows the possibility to incorpo-
rate prior knowledge of the researcher about the state-specific parameters of the model,
0,,, separately for each state.

For the unrestricted MSIAH-VAR(p) model, we assume the following prior specifi-
cation. Each row of the transition probabilities matrix, P, a priori follows an M variate
Dirichlet distribution, with parameters set to 1 for all the transition probabilities except
the diagonal elements P;, for i = 1,...,M, for which it is set to 10. Therefore, we as-
sume that the states of an economy are persistent over time (see e.g. Kim & Nelson,
1999a). Further, the state-dependent parameters of the VAR process are collected in
vectors fB;, = (y;t,vec(AS))’, e ,Vec(Ag’:))’)’, fors; = 1,...,M. These parameters follow a
(N +pN?)-variate Normal distribution, with mean equal to a vector of zeros and a diagonal
covariance matrix with 100s on the diagonal. Note that the means of the prior distribution
for the off-diagonal elements of matrices A, are set to zero. If we condition our analysis on
the states, this would mean that we assume a priori the Granger noncausality hypothesis.
However, in Section 3 we show that, when the states are unknown, the inference about
Granger noncausality involves many other parameters of the model. Moreover, huge
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values of the variances of the prior distribution are assumed. Consequently, no values
from the interior of the parameters space are, in fact, discriminated a priori.

We model the state-dependent covariance matrices of the MSIAH-VAR process, de-
composing each to a N X 1 vector of standard deviations, o,,, and a N X N correlation
matrix, R;,, according to the decomposition:

X, = diag(o,, )R, diag(os,).

Modeling covariance matrices using such a decomposition was proposed in Bayesian
inference by Barnard, McCulloch & Meng (2000). We adapt this approach to Markov-
switching models, since the algorithm easily enables the imposing of restrictions on the
covariance matrix (see the details of the Gibbs sampling algorithm for the unrestricted
and the restricted models in Section 5). We model the unrestricted model in the same
manner, because we want to keep the prior distributions for the unrestricted and the
restricted models comparable. Thus, each standard deviation o, ; fors; = 1,...,M and
j=1,...,N, follows a log-Normal distribution, with a mean parameter equal to 0 and the
standard deviation parameter set to 2. Finally, we assume that the prior distributions of
the correlation matrices R,, are proportional to a constant (the implications of such a prior
specification are discussed in the original paper of Barnard et al., 2000).
To summarize, the prior specification (8) now takes the detailed form of:

M N
p(6) = H pPp(Bi)p(R;) {H p(oi. j)] , ©9)
i=1

=1
where each of the prior distributions is as assumed:

P, ~ Dp(ty + 9w
Bi ~ N(0,100Iy,n2)
gi;j ~1logN(0,2)
R;x1

fori=1,...,Mandj=1,...,N,wherey,isa M x 1 vector of ones and I,;. is i row of an
identity matrix Iy;.

Posterior distribution. The structure of the likelihood function (6) and the prior distribution
(9) have an effect on the form of the posterior distribution that is proportional to the
product of the two densities. The form of the posterior distribution (7), resulting from the
assumed specification, is as follows:

M
p(Oly,S) « [ [ r6ily, Sp(Ply, 9). (10)

i=1



It is now easily decomposed into a posterior density of the transition probabilities matrix:

M M
p(Is) e psol®) [ T [ [ o v @), (11)

i=1 j=1

and the posterior density of the state-dependent parameters:

Py, S) o [ | p(wl0: yir, (0. (12)

t:St:i

Since the form of the posterior density for all the parameters is not standard, the
commonly used strategy is to simulate the posterior distribution with numerical methods.
A Monte Carlo Markov Chain (MCMC) algorithm, the Gibbs sampler (see Casella &
George, 1992, and references therein), enables us to simulate the joint posterior distribution
of all the parameters of the model by sampling from the full conditional distributions.
Such an algorithm has also been adapted to Markov-switching models by Albert & Chib
(1993) and McCulloch & Tsay (1994).

In the Gibbs sampling algorithm, parameters of the model are split into sub-vectors,
the full conditional densities of which are of convenient form. Firstly, however, we draw
a vector of the states of the economy, S. We initialize the algorithm, conditioning on the
starting values for the parameters, ). Then, using the BLHK filter and smoother (see
Frithwirth-Schnatter, 2006, Chapter 11 and references therein), we obtain the probabilities
Pr(s; = ily, 0V), fort =1,...,Tandi = 1,...,M, and then draw S, for I iteration of the
algorithm.

Secondly, we draw from the posterior distribution of the transition probabilities matrix
(11), conditioning on the states drawn in the previous step of the current iteration, P¥ ~
p(P|S?). Assuming the Dirichlet prior distribution and that the hidden Markov process
starts from its ergodic distribution, ©, makes the posterior distribution not of standard
form. In this step of the Gibbs sampler, we use the Metropolis-Hastings algorithm as
described in (Frithwirth-Schnatter, 2006, Section 11.5.5).

Thirdly, we draw the state-dependent parameters of the VAR process collected in one
vector, B = (B;,...,B},)- Due to the form of the likelihood function and Normal prior
distribution, the full conditional distribution is also normal f(Bly, S®,P®, oD, R(-D) =
N (ﬁ_, V}), from which we draw . * and V. are the parameters of the full conditional
distribution specified in Section 5 (see also Frithwirth-Schnatter, 2006, Section 8.4.3).

Finally, we collect all the standard deviations in one vector, ¢ = (07,...,0},)’, and
all the unknown correlation coefficients into a vector, R = (vecl(R,),...,vecl(Ry)"),
where function, vecl, stacks all the lower-diagonal elements of the correlation matrix
into a vector. In order to draw from the full conditional densities of these two vectors,
f(aly, SS9, PO, g0, RI-D)and f(Rly, SO, PD, g0, 61), we employ the Griddy-Gibbs sampling
algorithm of Ritter & Tanner (1992), as described by Barnard et al. (2000).

The algorithm for the restricted models is presented in detail in Section 5.
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3. Granger Causality

Notation. Let {y; : t € Z} be a N X 1 multivariate square integrable stochastic process on
the integers Z. Write:

Ve = V1o Yoo Yo Yar) (13)
fort =1,...,T,where y;isa N;x1 vectorsuch that yi; = (Yir, - -, Ynyt) s Yor = (YNy+1ts - -0 YN, +Not) S
Y3t = (YN +Np 1t - - - /YN1+N2+N3.t)//and Yar = (YN, +Np+Ns+1.87 - - ‘/YN1+N2+N3+N4.t), (N1,N4s >1,N;,N3 >
O0and N; + N, + N3 + Ny = N). Variables of interest are contained in vectors y; and ya,
between which we want to study causal relations. Vectors y, and y; (that for N, = 0 and
N3 = 0 are empty) contain auxiliary variables that are also used for forecasting and mod-
eling purposes. Finally, define two vectors: first (N; + Ny)-dimensional, vy, = (y;,, v5,)’,
and second (N3 + Ny)-dimensional, vy = (v3,, y;,)’, such that:

|01t
=l

Suppose that there exists a proper probability density function fi(y:1ly:; 0) for each t €
{1,2,...,T}. Suppose that the conditional mean E[y;.1ly;] is finite and that the conditional
covariance matrix E [(Vi1 — E[Ye1lye])(Yee1 — E[yealy:])ly:] positive definite for all finite £.
Further, let 1,1 denote 1-step ahead forecast error for y;.1, conditional on y; when the
predictor is given by the conditional expectations, i.e.:

Ur1 = Yer1 — E[Yyraly:]- (14)

By construction, u;,1 has conditional mean zero and positive-definite conditional covari-
ance matrix. And let @1 = yp1 — E[Yi41]V1s, y3:] be 1-step ahead forecast error for y;.q,
conditional on vy; and ys; with analogous properties.

Definitions. We focus on the Granger-causal relations between variables y; and y4. The
tirst definition of Granger causality, originally given by Granger (1969), states simply that
Y4 is not causal for y; when the past and current information about, y4; cannot improve
mean square forecast error of ¥ 441.

Definition 1. y, does not Granger-cause y;, denoted by y. 5 1, if and only if:

t+1

E[u2,|=E[i,]| <o Vt=1,.,T (15)

This definition refers to the conditional mean process, and holds if and only if the two
means conditioned on the full set of variables, y;, and on the restricted set, (v, ys), are
the same (see Boudjellaba, Dufour & Roy, 1992). It is argued, however, that this definition
cannot give a full insight into relations between variables under changing economic
circumstances: if the series is heteroskedastic, then it is useful to refer to a different
concept of causality, namely Granger causality in variance, introduced by Robins, Granger
& Engle (1986). It states the noncausality condition for conditional second-order moments
of the series. Note that this definition states noncausality in conditional covariance as
well as in conditional mean processes. Therefore, this condition is stricter than (15).

9



Definition 2. y, does not Granger-cause in variance y;, denoted by v, 5 1, if and only
if:

E|u2,\lye] = E[, Vi, yau| < 00 VL. (16)

Finally, we define the third concept of Granger noncausality, Granger noncausality in
distribution.

Definition 3. y; does not Granger-cause in distribution y;, denoted by y, 2 1, if and
only if:
S+ (ut2+1|Yt/ 6) = Ny (ﬁt2+1|V1t, yst, 9) vt, 17)

where g;+1 and hy,q are probability distribution functions with properties as for f;.1.

Granger noncausality in distribution is the strictest concept of the three defined. It
implies Granger noncausality in variance (16) and Granger noncausality (15), which
gives the order of inference that (17) implies (16) that implies (15). All three definitions
are identical in linear Gaussian models. Therefore, in MS-VAR models, which are not
linear, stating (17) implies (15) and (16), but stating (15) does not determine either (16) or
(17). All the definitions are given in the form following Warne (2000).

Comte & Lieberman (2000) introduce a new definition of second-order Granger non-
causality and distinguish it from Granger noncausality in variance of Robins et al. (1986).
For the second-order noncausality, if there exists Granger causality (in mean), then it
needs to be modeled and filtered out; only then may the causal relations in conditional
second moments be established. The definition of noncausality in variance assumes
Granger noncausality (in mean) and second-order noncausality, and therefore is stricter
than second-order noncausality. In effect, once Granger noncausality is established, the
two definitions, noncausality in variance and second-order noncausality, are equivalent.
The consequences of testing these different concepts are presented in WozZniak (2011).

MSIAH-VARs for Granger causality testing. We now present the parameter restrictions for
different definitions of Granger noncausality for Markov-switching vector autoregres-
sions. Before that, however, we introduce the more convenient formulation of the model
specified in Section 2. Firstly, we use the decomposition of the vector of observations into
two sub-vectors, y; = (v}, v5,)’, and appropriate decomposition of the parameter matrices,

s, » Ag), and vector of residuals, €;, which has covariance matrix specified in (19). Also,
the hidden Markov process is decomposed for the purpose of setting the Granger causal-
ity relations into two sub-processes, s; = (si;,52). The sub-processes have M; and M,
states that are characterized by transition probability matrices, P’ and P® (and ergodic
probabilities, 7V and 1®) respectively, such that M = M; - M,. The construction of the
transition probabilities matrix, P, is not specified for the moment and will be the subject
of further analysis. Parameters of the equation for v;; change in time with the Markov
process s1;, whereas the parameters of the equation for v, change with process sy:

p (@) (@)
[Ult] — |>‘lll‘su‘| + A%%.Slf A%%,slt [vlt—i] + lelt] (18)
1 1 *
(%7 U2.5 Zl,: - AZLS” Azz.szf Upt—i €2
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The residual term in (18) has zero conditional mean and conditional covariance matrix
decomposed into sub-matrices as on the left-hand side of (19):

glt Qll'slf Q,Zl.st Qél.s[ Qé’ﬂ.st
Var €1t — le-slt Zzl,st , Var Eot — QZl.St QZZ.Slt Q?)Z.St Q‘/IZ.Sf , (19)
€24 Yors, Loy 3¢ Qaise Qase Qazsy Qi
Eat Quns Qus Quas, Qusy
where covariance matrices may be decomposed respectively into:
Lijs, = diag(ois,)Rijs, diag(o;s,), Qjjs, = diag(wis,)Rijs, diag(w;s,)- (20)

We further decompose vectors of observations, vy; = (F/;t/ ]/,Zt)’ and vy = (y;y ]/;H)', matrices
of model parameters with the covariance matrix of the residual term specified on the
right-hand side of (19). The decomposition of the Markov process is maintained, as in

(18):
@

0

0

0

Yt M5y, allsm alZ.slf als.slt alfl.su Yi-i E1t
p a(l) a(l) a(l) a(’) '
Yor| _ M2y, n 2 ' %%.su %%.su %%.su %;);,slt Yor—i 4|2 1)
m i i [} 1 . P .
Y3t 3.50¢ = a?%.sﬂ a?%. . a:(;%. . a?%.sﬂ Yat—i 3t
4t My ! ! ! ! 4t—i Eat
Y & U5y M2y M35y Yassy, Y

Parameter restrictions. The parameter restrictions for Markov-switching vector autoregres-
sions for the three definitions of Granger noncausality presented in this section have been
derived by Warne (2000). Firstly, we present the restrictions that are specific for the
Markov-switching models. The Restriction 1 states the relations between the two Markov
processes , si; and sy;.

Restriction 1. The regime forecast of s; .1 is independent, and there is no information in
vy, for predicting 51441, i.e.:

Pr [(51.t+1152.t+1) = (jlsz)lYt/ 6] =Pr [51,t+1 = jllVlt/ 9] - Pr [52.t+1 = j2|V2t/ 9] ’
forall jy =1,... MywithM; >2,j,=1,...,Myand t =1,...,T, if and only if either:
(A1): () P=(PDeP®?),

(i) pis, = Wis,,s

Qi) A = AL
(iv) Ziis, = Ziis, and
(v) X205, =0

foralli,je{1,2},kefl,...,plands;; €1{1,..., 41}, and
(vi) AY) =Oforallke{l,...,p}and s, € {1,...,q}; or
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(A2): P = (1, ® P?),

is satisfied.

Note that if we change the restriction (A1)(vi) into A(Zkl).51

in vy; for predicting sy ¢11.

Restriction (A1)(i) gives the condition for independence of the transition probabilities.
Restrictions (A1)(ii)-(A1)(iv) state simply that the parameters of the equation for vy, change
only according to the process sy;, and the parameters of the equation for vy change only
according to the process sy;. Consequently, the decomposition of the hidden Markov
process s; into two independent subprocesses (sy;, s2¢) is fully respected. Further, restriction
(A1)(v) states the instantaneous noncausality between the two vectors of variables, v;; and
vy, defined as zero correlation condition. Finally, restriction (Al)(vi) states the Granger
noncausality condition for the VAR process. According to condition (A2), all the states of
process si; have the same probability of appearance for all  equal to the ergodic probability,
D, which is a condition for sy; to be an independent hidden Markov chain.

Before we go on to the conditions for different types of Granger noncausality, we define
the conditional expected values of the parameters of the VAR process for one period ahead
forecast:

= 0, then there is no information

1y = E [mys,,ly:, 0], (22a)
Al = Elay, v 6], (22b)

forallr=1,...,Nand k = 1,...,p. These parameters are used for forecasting of variable
Y1.++1 (see equation (16) of Warne, 2000), as well as for the purpose of setting noncausality
conditions. Restriction 2 states the conditions for Granger noncausality.

Restriction 2. y, does not Granger-cause y; if and only if either:
(A1) or
(A3): (1) Z?il my jpij = 1,

G £, a0y = 49, and

(iii) &%) =0

forallie(l,..., M}, re({l,...,N},and ke {1,...,p},

is satisfied.

Contrary to conditions (A1) and (A2), the condition (A3) is not linear in parameters. Still,
conditions (A3)(i) and (A3)(ii) have equivalent form, Z?ﬁl myj(pij—px;) = 0fori,k=1,...,M
and i # k, which for some special cases may give restrictions linear in parameters. The
condition (A3)(iii) does not have such a form and thus stays nonlinear. Further, in
Section 4 we discuss consequences of the nonlinearity of the restrictions for testing them.
Restriction 3 for noncausality in variance contains highly nonlinear conditions as well.
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Restriction 3. v, does not Granger-cause in variance y; if and only if either:
(A1) or
(Ad): () (A2),

(ii) Z?ﬁl [(ml‘j —1i11) @ (M — 7711)] Pij = Cm,

i) i @), - ) ® @), —ad)|pij = <,

@) T} [omr - m) @ @) -2l pij = <,

wv) Y¥ j=101pij = Co, and

(vi) a(k) =0,

foralli,je{l,..., M}, r,s€{1,2,3},and k,l € {1,...,p},

is satisfied.

In condition (A4), ¢, gﬁksl), ggc)r and ¢,, are time-invariant covariance matrices of the condi-

tional expected value of the one period ahead forecast of the state-dependent parameters
(see Warne, 2000, for the exact definition). Some of these restrictions may be simplified
using the algebraically equivalent form: Z?ﬁl(mL j ® My )pij = G + (1111 @ 1i11).

Finally, we present Restriction 4, which states the conditions for noncausality in dis-
tribution.

Restriction 4. y; does not Granger-cause in distribution y; if and only if either:
(A1) or
(A5): (i) (A2)

(i) my;=myj,

(k) (k)

(111) alrj = alr.jl’

(iv) a (k) =0,and

(v) 01 =01,

forallje(l,..., M}, re{1,2,3},and k€ {1,...,p}
is satisfied.

All the Restrictions 4 are linear in parameters and can be easily tested. Conditions
(A5)(ii)—(AS5)(v) state simply that the parameters of the equation for y;; cannot vary in
time according to process sy; , but should instead be s;;-invariant.

Warne (2000) sets additional and simplified forms of restrictions (A3)—(A5), given the
condition (A2) and that rank(P®) = M,. We present these in Appendix A.

13



4. Bayesian Testing

Restrictions 14 can be tested. We first consider classical tests and their limitations and
then present the Bayesian testing procedure as a solution. The problem with classical tests
comes from the fact that conditions (A3) and (A4) are nonlinear functions of the original
parameters of the model. The proposed solution consists of a new Gibbs sampling
algorithm for the estimation of the restricted models, and of the application of a standard
Bayesian test to compare the restricted models to the unrestricted one.

Classical testing. We start the discussion of the available tests with the problem of testing
the restrictions, that state the causality relations for a hidden Markov process, (A1) and
(A2), and the restrictions for noncausality in distribution, (A5). All these conditions
are linear in parameters and can be easily tested with the Wald, Lagrange Multiplier
(LM) or the Likelihood Ratio (LR) test. Given the asymptotic normality of the maximum
likelihood estimator (the result established for Markov-switching models by Lindgren,
1978), all the test statistics are y2-distributed.

However, testing of the conditions for Granger noncausality, (A3), and for noncausality
in variance, (A4), becomes cumbersome in classical inference. Itis worth emphasizing that
these two restrictions are of special economic interest, as they deliver easily interpretable
information about the dependencies between variables in first two conditional moments.
Moreover, they are less strict than conditions (A1), (A2) and (A6), and therefore testing
them gives more information, due to a potentially lower rate of rejections of the null
hypothesis.

The problem, as already pointed out, is in the nonlinearity of these restrictions. Con-
sequently, in the general case, for any allowed value of M;, M, p, and for any value of
the rank of matrix P, the matrices of first partial derivatives of the restrictions (A3) or
(A4) with respect to O are not of full rank. In effect, the asymptotic distribution of the
test statistics of the Wald, LM and LR tests is unknown. For further explanations and
examples, the reader is referred to Section 4.2 of Warne (2000).

This problem is well known in the studies on testing parameter conditions for Granger
noncausality in multivariate models. Boudjellaba et al. (1992) derive conditions for
Granger noncausality for VARMA models that result in multiple nonlinear restrictions
on original parameters of the model. As a solution to the problem of testing the re-
strictions, they propose a sequential testing procedure. There are two main drawbacks
of this method. First, despite properly performed procedure, the test may still appear
inconclusive, and second, the confidence level is given in the form of inequalities. The
problem of testing non-linear restrictions was examined for h-periods ahead Granger
causality for VAR models. Dufour et al. (2006) propose the solution based on formulating
a new model for each &, and obtain linear restrictions on the parameters on the model.
These restrictions can be easily tested with standard tests. In another work by Dufour
(1989) the approach is based on the linear regression theory; its solutions would require
separate proofs in order to apply it to Markov-switching VARs. Finally, Liitkepohl &
Burda (1997) propose a solution for testing nonlinear hypotheses based on a modification

14



of the Wald test statistic. Given the asymptotic normality of the estimator of the parame-
ters, the method uses a modification that, together with standard asymptotic derivations,
overcomes the singularity problem.

In case of the Logistic Smooth Transition Vector Autoregressive (LST-VAR) model, the
restrictions derived in Christopoulos & Leén-Ledesma (2008) are linear and can be tested.

Multivariate models for second conditional moments have also been considered for
testing second-order noncausality and noncausality in variance. First, Comte & Lieber-
man (2000) derive the conditions for second-order noncausality between two vectors of
variables for the family of BEKK-GARCH and vec-GARCH models. Nevertheless, they
do not propose any method of testing them, due to problems with the asymptotic distri-
bution of the test statistic, as described in this section. Hafner & Herwartz (2008) derive
a new set of linear restrictions that are easily testable, but which are only a sufficient
condition for second-order noncausality.

It is necessary to mention at this stage the approach to testing noncausality in variance
proposed by Cheung & Ng (1996). They propose a two-stage procedure. In the first, for
each of the variables a univariate ARMA-GARCH model is fitted and estimated. In the
second, a test based on the cross-correlation function between squared residuals from
the first stage for all the considered variables is performed. Other papers, such as Hong
(2001), Pantelidis & Pittis (2004) and van Dijk, Osborn & Sensier (2005), work on the same
testing procedure, improving its power and size properties for different features of data.
This approach allows for detection of the Granger causal relations, however, it does not
model the spillovers and is instead proposed as a pre-estimation method of constructing
multivariate models.

Finally, the problem of testing the nonlinear restrictions was faced by Warne (2000),
who derives the restrictions for Granger noncausality, noncausality in variance and non-
causality in distribution for Markov-switching VAR models. Among the solutions re-
viewed in this Section, only that proposed by Liitkepohl & Burda (1997) seems applicable
to the problem considered in this work. This finding should, however, be followed with
further studies proving its applicability.

Bayesian testing. In this study we propose a method of solving the problems of testing the
parameter restrictions, following two papers of Wozniak (2011, 2012). Both of the papers
work on the Extended CCC-GARCH model of Jeantheau (1998). WozZniak (2012) derives
the restrictions for the second-order noncausality between two vectors of variables. In
order to compare the unrestricted model, denoted by M;, and the restricted model, M;
and = j # i, he uses the Posterior Odds Ratio (POR), which is a ratio of the posterior
probabilities, Pr(Mly), attached to each of these models representing the hypotheses:

_ PriMily) _ p(yIMi) Pr(Mi)
Pr(Mjly)  p(yIM;) Pr(M,)’

POR (23)

where p(y| M) is the marginal density of data and Pr(M) is the prior probability of a model.
In order to compare two competing models, one might also consider using Bayes factors,
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defined by:

pyIM)

T pyIMy)
Note that if one chooses not to discriminate any of the models a priori, setting equal prior
probabilities for both of the models (Pr(M;)/Pr(M;) = 1), the Posterior Odds Ratio is
then equal to a Bayes factor. This method of testing does not have any of the drawbacks
of the Likelihood Ratio test, once samples of draws from the posterior distributions of
parameters for both the models are available (see Geweke, 1995; Kass & Raftery, 1995).

In this work, in order to asses the credibility of the hypotheses, each of which is rep-

resented by several sets of restrictions — and thus several models — we compute Posterior
Odds Ratios. The results of this analysis are reported in Table 7 in Section 6. Suppose
that a hypothesis is represented by several models. Let H; denote the set of indicators
of the models that represent this hypothesis, H; = {j : M, represents i hypothesis}. For
instance, in our example, the hypothesis of Granger noncausality in mean is represented
by four models, such that H, = {1,2,4,5}. Further, suppose that one is interested in
comparing the posterior probability of this hypothesis to the hypothesis H, represented
by the unrestricted model M,. Then the credibility of the hypothesis H; compared to the
hypothesis H, may be assessed with the Posterior Odds Ratio given by:

_ Pr(Hily) _ Y jer; PriMily)Pr(M;)
© Pr(Holy)  Pr(Moly)Pr(Mo)

(24)

POR

(25)

We set equal prior probabilities for all the models, which has the effect that none of the
models is preferred a priori.

In the other paper, Wozniak (2011) analyses a family of VARMA-GARCH models in
terms of Granger noncausality, second-order noncausality and noncausality in variance.
For joint testing of the multiple restrictions, he proposes a function summarizing all
the restrictions. Evaluation of the credibility of hypotheses in this case is based on the
posterior distribution of the proposed functional (see e.g. Geweke, 2010; Hoogerheide,
van Dijk & van Oest, 2009). This method of testing does not suffer from the drawbacks of
the Wald test. Moreover, the analysis is based on the posterior distribution, which is the
exact finite sample distribution, and there is no need to refer to the asymptotic theory if
the assumed model is correct.

Testing the noncausality restrictions in MS-VARs. Both of the presented approaches are
applicable to the problem of testing noncausality in Markov-switching VAR models.
However, taking into account the complicated structure of the restrictions, i.e. the fact
that the form of restrictions depends on the rank of matrix P and whether restriction
(A2) holds (see Appendix A), we focus on the first of the presented methods, namely
the Posterior Odds Ratio (23). The crucial element of this method the is computation of
marginal data densities, p(y| M), for the unrestricted and the restricted models. There are
several available methods of computing this value. In this study we choose the Modified
Harmonic Mean (MHM) method of Geweke (1999). For a chosen model, given the sample
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of draws, {67})2_, from the posterior distribution of the parameters, p(6ly), the marginal
density of data i 1s computed using:

-1
L)
Py = ( ZL(y 90);9(9@)] : 29)

where L(y; 69) is a likelihood function. h(6"), as specified in Geweke (1999), is a k-variate
truncated normal distribution with mean parameter equal to the posterior mean and
covariance matrix set to the posterior covariance matrix of 6. The truncation must be
such that /(0) had thinner tails than the posterior distribution.

Other methods of computing the marginal density of data may also be employed. Sev-
eral estimators were derived, taking into account the characteristics of Markov-switching
models. The reader is referred to the original papers by Frithwirth-Schnatter (2004), Sims,
Waggoner & Zha (2008), Chib (1995) and Chib & Jeliazkov (2001). In fact, the results of
several methods should be reported in order to present the robustness of the estimators.
Moreover, Frithwirth-Schnatter (2004) rises the problem of the bias of the estimators when
the label permutation mechanism is missing in the algorithm sampling from the poste-
rior distribution of the parameters. The bias appears to be due to the invariance of the
likelihood function, with respect to permutations of the regimes’ labels. Then the model
is not globally identified. The identification can be insured by the ordering restrictions on
parameters, and can also be implemented within the Gibbs sampler. Simply, it is sufficient
that the values taken by one of the parameters of the model in different regimes can be
ordered, and that the ordering holds for all the draws from the Gibbs algorithm to assure
global identification (see Frithwirth-Schnatter, 2004). We assure that this is the case, i.e.
that the MS-VAR models considered for causality inference are globally identified by the
ordering imposed on some parameter.

Another element of the testing procedure is the estimation of the unrestricted model
and the restricted models representing hypotheses of interest. We present a new Gibbs
sampling algorithm specially constructed for the purpose of testing noncausality hy-
potheses in the MS-VAR models in Section 5. It enables the imposing of restrictions on
parameters resulting from conditions (A1) - (A7), and in effect testing different hypotheses
of Granger noncausality between variables. In the algorithm, the restrictions are imposed
on different groups of the parameters of the model. First, linear restrictions on the param-
eters of the VAR process, 5, are implemented according to Frithwirth-Schnatter (2006).
Next, parameters of the covariance matrices are decomposed into standard deviations, o,
and correlation parameters, R. To these parameter groups we apply the Griddy-Gibbs
sampler of Ritter & Tanner (1992), as in Barnard et al. (2000). Such a form of the sampling
algorithm easily allows to restrict any of the parameters. Note that the algorithm of
Barnard et al. (2000) has not yet been applied to Markov-switching models. Finally, we
restrict the matrix of transition probabilities, P, joining the approach of Sims et al. (2008)
with the Metropolis-Hastings algorithm of Frithwirth-Schnatter (2006). The Metropolis-
Hastings step needs to be implemented, as we require the hidden Markov process to
be irreducible. Moreover, additional parts of the algorithm are constructed in order to
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impose nonlinear restrictions on the parameters of the VAR process and the decomposed
covariance matrix.

To summarize, we propose the following procedure in order to test different Granger
noncausality hypotheses in Markov-switching VAR models.

Step 1: Specify the MS-VAR model. Choose the order of VAR process,p € {0,1, ..., Pmax},
and the number of states, M € {1, ..., Mnax}, using marginal densities of data (esti-
mation of all the models is required).

Step 2: Set the restrictions. For the chosen model, derive restrictions on parameters.

Step 3: Test restrictions (A1) and (A2). Estimate the restricted models and compute for
them marginal densities of data. Compare the restricted models to the the unre-
stricted one using the Posterior Odds Ratio, e.g. according to the scale proposed by
Kass & Raftery (1995).

Step 4: Test hypotheses of noncausality. If the model restricted according to (A1) is pre-
ferred to the unrestricted model, then noncausality of all kinds is established. In the
other case, if the model restricted according to (A2) is preferred to the unrestricted
model, in order to test different noncausality hypotheses use conditions (A6)—(A7).
In the opposite case use conditions (A3)—(A5). For testing, use the Posterior Odds
Ratio as in Step 3.

Advantages and costs of the proposed approach. We start by naming the main advantages
of the proposed Bayesian approach to testing the restrictions for Granger noncausality.
First, using the Posterior Odds Ratio testing principle, we avoid all the problems of
testing nonlinear restrictions on the parameters of the model that appear in classical
tests. Secondly, in the context of the controversies concerning the choice of number of
states for Markov-switching models in the classical approach (see Psaradakis & Spagnolo,
2003; Psaradakis & Sola, 1998), the Bayesian model selection proposed in Step 1 is a
proper method free of such problems. Next, as emphasized in Hoogerheide et al. (2009),
the Bayesian Posterior Odds Ratio procedure gives arguments in favour of hypotheses.
Accordingly, the hypothesis preferred by the data is not only rejected or not rejected, but is
actually accepted with some probability. Finally, Bayesian estimation is a basic estimation
procedure proposed for the MS-VAR models and is broadly described and used in many
applied publications.

However, this approach has also its costs. First of all, in order to specify the complete
model, prior distributions for the parameters of the model and the prior probabilities of
models need to be specified. This necessity gives way to subjective interpretation of the
inference, on the one hand, but on the others it may ensure economic interpretation of
the model. The other cost of the implementation of the Bayesian approach is the time
required for simulation of all the models, first in the model selection procedure, and
second in testing the restrictions of the parameters.
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5. The Gibbs sampler for restricted MS-VAR models

This section scrutinizes the Gibbs sampler set up for sampling from the full conditional
distributions. Each step describes the full conditional distribution of one element of the
partitioned parameter vector. The parameter vector is broken up into five blocks: the
vector of the latent states of the economy S, the transition probabilities P, the regime-
dependent covariance matrices (themselves decomposed into standard deviations ¢ and
correlations R), and finally the regime-dependent vector of constants plus autoregressive
parameters 3. For each block of parameters, and conditional on the parameter draws
from the four other blocks, we describe how we sample from the posterior distribution.

The vector of states of the economy is drawn from a discrete conditional distribution,
for which the weights are given by the filter of the multi-move Gibbs sampler. Transition
probabilities are sampled from Dirichlet distributions in a Metropolis-Hastings sampler.
For the covariance matrices, two steps are considered. In the first, posteriors for the
standard deviations are sampled thanks to a griddy-Gibbs sampler. In the second, another
griddy-Gibbs setup allows us to draw from the full conditional distribution of correlations
bounded by the necessity of positive definiteness of the resulting covariance matrix.
Finally, the last block of parameters, the regime-dependent autoregressive parameters,
are simultaneously drawn from a multivariate normal distribution. In the upcoming
notation, the symbols  and | — 1 often appear. They refer to the iteration of the Gibbs
sampler, i.e. iteration / will often make use of draws from iteration / — 1. For the first
iteration of a Gibbs run, [ = 1, initial parameter values either come from the EM parameter
estimates in the case of a burn-in run of the Gibbs, or they are the last posterior draws
from a burn-in run. The rest of this section describes all the constituting blocks that form
the Gibbs sampler.

5.1. Sampling of the vector of the states of the economy

The first drawn parameter is the vector representing the states of the economy, S. Being
a latent variable, there are no priors nor restrictions on S. We first use a filter (see Section
11.2 of Frithwirth-Schnatter, 2006, and references therein) and obtain the probabilities
Pr(s; = ily, 0V), fort =1,...,Tandi = 1,...,M, and then draw SO, for " iteration of the
algorithm.

Algorithm 1. Multi-move sampling of the states.

1. BLHK filter: Inherited from classical inference, and following its description from
Krolzig (1997), it performs the filtering and smoothing operations on the regime
probabilities &;. &; denotes the probabilities for the unobserved state of the system.

Pr(s; =1)
& = :
Pr(s; = M)

The filter, introduced by Hamilton (1989), is an iterative algorithm calculating the
optimal forecast of the value of &;,1 on the basis of the information set in f consisting
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of the observed values of y;, namely y; = (v, v, ..., y'l_p)'. The initial state &y is

initialized with the vector of ergodic regime probabilities & = 1, where 7t satisfies
the equation Pt = . This step is a forward recursion, i.e. fort =1, ..., T, written as:

P (ﬂt ©) étlt—l)
1;\4 (T]t O] P/ét—llt—l)’

5t+1|t =

where © denotes the element-wise matrix multiplication and 7, is the collection of
M densities, defined as:

Pr (ytlst =1,y11, 9(1‘1))

Ny = : .
Pr (}/t|5t =M, y;1, 9(1_1))

To compute the smoothed probabilities, full-sample information is used to make an
inference about the unobserved regimes by incorporating the previously neglected
sample information y1.1 = (y,,,,--,Y;) into the inference about &;. This step is
a backward recursion, for j = 1,...,T — 1. The iteration consists of the following
equation:

éT—le = [P (éT—jHlT % éT—j+1lT—j)] ) éT—le—jl
where @ denotes the element-wise matrix division.
. Using the smoothed probability &rr as the conditional distribution for srly, ¢,
we sample sr.
. The conditional distributions for s;|s;41,y, 0V witht =T -1,T - 2,...,0 are given
by the smoother:

Enprlsirr, y, 007V = [P (ém %) ét+1|t—j)] ® &

s is thereby sampled for all periods, t =1,...,T.

5.2. Sampling the transition probabilities

In this step of the Gibbs sampler, we draw from the posterior distribution of the transition
probabilities matrix, conditioning on the states drawn in the previous step of the current
iteration, PO ~ p(P|S"). For the purpose of testing, we impose restrictions of identical rows
of P. Sims et al. (2008) provide a flexible analytical framework for working with restricted
transition probabilities, and the reader is invited to consult Section 3 of that work for an
exhaustive description of the possibilities provided by the framework. We, however, limit
the latitude given by the reparametrization in order to ensure the stationarity of Markov
chain S.
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Reparametrization. The transitions probabilities matrix P is modeled with Q vectors w;,
j=1,---,Q and each of size d;. Let all the elements of w; belong to the (0, 1) interval and
sum up to one, and stack all of them into the column vector w = (w, . .., w'Q)' of dimension

d= Z?zl d;. Writing p = vec(P’) as a M? dimensional column vector, and introducing the
(M? x d) matrix M, the transition matrix is decomposed as:

p = Mw, (27)

where the M matrix is composed of the M;; sub-matrices of dimension (M X d;), where
i=1,...,M,andj=1,...,Q:

My ... M1Q
M = . ,
Mun Mo

where each M;; satisfies the following conditions:

1. For each (i, j), all elements of M;; are non-negative.
2. z}VIMi]' = Aijz;lj, where A;; is the sum of the elements in any column of M;;.
3. Each row of M has, at most, one non-zero element.

4. M is such that P is irreducible: for all j,d; > 2.

The first three conditions are inherited from Sims et al. (2008), whereas the last condi-
tion assures that P is irreducible, forbidding the presence of an absorbing state that would
render the Markov chain S non-stationary. The non-independence of the rows of P is
described in Frithwirth-Schnatter (2006, Section 11.5.5). Once the initial state s is drawn
from the ergodic distribution 7t of P, direct Gibbs sampling from the conditional posterior
distribution becomes impossible. However, a Metropolis-Hastings algorithm can be set
up to circumvent this issue, since a kernel of joint posterior density of all rows is known:
p(P|S) o ]_[?:1 Dy (wj)n. Hence, the proposal for transition probabilities is obtained by
sampling each w; from the convenient Dirichlet distribution. The priors for w; follow a
Dirichlet distribution, w; ~ Dy.(B1,j, - - -, fa, ;). We then transform the column vector w into
our candidate matrix of transitions probabilities using equation (27). Finally, we compute
the acceptance rate before retaining or discarding the draw.

Algorithm 2. Metropolis-Hastings for the restricted transition matrix.

1. sp ~ 7. The initial state is drawn from the ergodic distribution of P.

2. w; ~ Z)d/.(nl,]- + /‘31,]‘,-~-,ndj,j + ﬁd],,j) for j =1,...,Q. n;; corresponds to the number
of transitions from state i to state j, counted from S. The candidate transition
probabilities matrix — in the transformed notation — are sampled from a Dirichlet
distribution.

3. P = Mw. The proposal for the transitions probabilities matrix is reconstructed.

new

4. Accept P ifu < :7—91, where u ~ U0, 1].

50
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5.3. Sampling the covariance matrices

In the standard non-restricted case, the conditional posterior of X, can be simulated from
inverse-Wishart distributions. However, in the present case we aim to estimate covariance
matrices upon which we will impose restrictions such as state-invariant variance or corre-
lation, and zero correlation for any parameter. In that case, the simultaneous sampling of
all the covariance parameters from an inverted-Wishart becomes impossible. Adapting
the approach proposed by Barnard et al. (2000) to Markov-switching models, we are able
to sample from the full conditional distribution of non-restricted and restricted covariance
matrices. We thus decompose each covariance matrix of the MSIAH-VAR process into a
vector of standard deviations, o,,, and a correlation matrix, R;,, thanks to the equality:

L, = diag(o,,)R,,diag(os,).

This decomposition — statistically motivated — enables the partition of the covariance
matrix parameters into two categories that are well suited for the restrictions we want to
impose on the matrices. In a standard covariance matrix, restricting a variance parameter
to some value has some impact on the depending covariances, whereas here variances
and covariances (correlations) are treated as separate entities. The second and not the
least advantage of the approach of Barnard et al. (2000) lies in the employed estimation
procedure, the griddy-Gibbs sampler. The method introduced in Ritter & Tanner (1992)
is well suited for sampling from an unknown univariate density p(X;|X;,i # j). This
is done by approximating the inverse conditional density function, which is done by
evaluating p(Xi|X;,i # j) thanks to a grid of points. Imposing the desired restrictions
on the parameters, and afterwards iterating a sampler for every standard deviation o,
and every correlation R;,, we are able to simulate desired posteriors of the covariance
matrices. While adding to the overall computational burden, the griddy-Gibbs sampler
gives us full latitude to estimate restricted covariance matrices of the desired form.

Algorithm 3. Griddy-Gibbs for the standard deviations. The algorithm iterates on all the
standard deviation parameters o, fori =1,...,Nands; = 1,..., M. Similarly to Barnard
et al. (2000), we assume log-normal priors, log(o;s,) ~ N(0,2). The grid is centered on the
residuals’ sample standard deviation §;,, and divides the interval (5;, — 206,05 + 206,.,St)
into G grid points.

1. Regime-invariant standard deviations: Draw from the unknown univariate den-
sity p(oily, S, P, B,0-5, R). This is done by evaluating a kernel on a grid of points,
using the proportionality relation, with the likelihood function times the prior:
oily,S,P,B,0_5,R o p(ylS, 0) - p(0;). Reconstruct the c.d.f. from the grid through
deterministic integration and sample from it.

2. Regime-varying standard deviations: For all regimes s = 1,..., M, draw from the
univariate density p(oisly, S, P, ,0_,,, R), evaluating a kernel thanks to the propor-
tionality relation, with the likelihood function times the prior: o4y, S, P, 5, O—g;, Rox

p(ylS, 0) - p(ois,)-
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Algorithm 4. Griddy-Gibbs for the correlations The algorithm iterates on all the correlation
parameters R, fori=1,..., (N_Zl)N and s; = 1,..., M. Similarly to Barnard et al. (2000),
we assume uniform distribution on the feasible set of correlations, R;s ~ U(a, b), with a
and b being the bounds that keep the implied covariance matrix positive definite; see the
aforementioned reference for details of setting a and b. The grid divides (g, b) into G grid
points.

1. Depending on the restriction scheme, set correlations parameters to 0.

2. Regime-invariant correlations: Draw from the univariate density p(R;ly, S, P, 3, 0, R-)),
evaluating a kernel thanks to the proportionality relation, with the likelihood func-
tion times the prior: Rily, S, P, B, 0, R_; o< p(y|S, 0) - p(R)).

3. Regime-varying correlations: For all regimes s; = 1,..., M, draw from the univari-
ate density p(R;5ly, S, P, 5, 0,R_;,,), evaluating a kernel thanks to the proportional-
ity relation, with the likelihood function times the prior: R4ly,S,P,pB, 0, R g, o
p(ylS, 0) - p(Rys,).

5.4. Sampling the vector autoregressive parameters

Finally, we draw the state-dependent autoregressive parameters, §,, fors; = 1,..., M. The
Bayesian parameter estimation of finite mixtures of regression models when the realiza-
tions of states is known has been precisely covered in Frithwirth-Schnatter (2006, Section
8.4.3). The procedure consists of estimating all the regression coefficients simultaneously
by stacking them into = (B, f1, . . ., Pm), Where fj is a common regression parameter for
each regime, and hence is useful for the imposing of restrictions of state invariance for
the autoregressive parameters. The regression model becomes:

Ye = ZiPpo + ZiDufpr + - -+ + ZiDipim + €4, (28)

e ~ iiN(0, ). (29)

We have here introduced the Dj;, which are M dummies taking the value 1 when the
regime occurs and set to 0 otherwise. A transformation of the regressors Zr also has
to be performed in order to allow for different coefficients on the dependent variables,
for instance to impose zero restrictions on parameters. In the context of VARs, Koop &
Korobilis (2010, Section 2.2.3) detail a convenient notation that stacks all the regression
coefficients on a diagonal matrix for every equation. We adapt this notation by stacking
all the regression coefficients for all the states on diagonal matrix. If z,,; corresponds
to the row vector of 1 + Np independent variables for equation n, state s; (starting at 0
for regime-invariant parameters), and at time t, the stacked regressor Z; will be of the
following form:

Zy = dlag(zl,o,t/ c e s ZNOE 21t e s ANt e r ZLMtr s vy ZN,M,t)-

This notation enables the restriction of each parameter, by simply setting z, s, to 0 where
desired.
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Algorithm 5. The Gibbs sampler for the autoregressive parameters. We assume normal prior

for g, ie. p ~ N(E, E) )

1. For all Z;s, impose restrictions by setting z,,,  to zero accordingly.

2. Bly,S,P,0,R ~ N(B, V). Sample g from the conditional normal posterior distribu-
tion, with the following parameters:

T -1
Vs = [v/‘;1 Y Z;z;zt)

t=1

and .
B=W[Vélé+zzlz;lyt}
- t=1

5.5. Simulating restrictions in the form of functions of the parameters.

Some of the restrictions for Granger noncausality presented in Section 3 will be in the
form of complicated functions of parameters. Suppose some restriction is in the form:

0; = g(6-y),

where g(.) is a scalar function of all the parameters of the model but 0;. The restricted
parameter, 0;, in this study may be one of the parameters from the autoregressive param-
eters, B, or standard deviations, 0. In such a case, the full conditional distributions for
p or o are no longer independent and need to be simulated with a Metropolis-Hastings
algorithm.

Restriction on the vector autoregressive parameters . In this case, the deterministic function
restricting parameter f8; will be of the following form:

ﬁi = g(,B—i/ o, R, P)-

We draw from the full conditional distribution of the vector autoregressive parameters,
p(Bly, S, P, 0,R), using the Metropolis-Hastings algorithm:

Algorithm 6. Metropolis-Hastings for the restricted vector autoregressive parameters f.

1. Form a candidate draw, ", using Algorithm 7.
2. Compute the probability of acceptance of a draw:

1-1 pnewy _ . P(Y|S, P' p)new’ o, R)p(ﬁnew)
AP BT = min S P B o, Ryp(p )|

3. Accept " if u < a(f1, p°), where u ~ U[0, 1].

(30)
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The algorithm has its justification in the block Metropolis-Hastings algorithm of Green-
berg & Chib (1995). The formula for computing the acceptance probability from equation
(30) is a consequence of the choice of the candidate generating distributions. For the
parameters f_;, it is a symmetric normal distribution, as in step 2 of Algorithm 5, whereas
Bi is determined by a deterministic function.

Algorithm 7. Generating a candidate draw p.

1. Restrict parameter ; to zero. Draw all the parameters (f1,...,i-1,0,Bi+1,---,Pr)’
according to the algorithms described in Section 5.4.

2. Compute B; = g(B-i,0, R, P).

3. Return the vector (81, ..., Bi-1,8(f-i,0, R, P), Bis1, ..., Br)’

6. Granger causal analysis of US money-income data

In both studies focusing on Granger causality analysis within Markov-switching vector
autoregressive models, Warne (2000) and Psaradakis et al. (2005),! the focus of study is
the causality relationship between U.S. money and income. At the heart of this issue is
the empirical analysis conducted in Friedman & Schwartz (1971) asserting that money
changes led income changes. The methodology was rejected by Tobin (1970) as a post hoc
ergo propter hoc fallacy, arguing that the timing implications from money to income could
be generated not only by monetarists” macroeconomic models but also by Keynesian
models. Sims (1972) initiated the econometric analysis of the causal relationship from
the Granger causality perspective. While a Granger causality study concentrates on
forecasting outcomes, macroeconomic theoretical modeling tries to remove the question
mark over the neutrality of monetary policy for the business cycle. The causal relationship
between money and income is, however, of particular interest to the econometric debate,
since over the past forty years researchers have not reached a consensus.

This historical debate between econometricians is well narrated by Psaradakis et al.
(2005), and the interested reader is advised to consult this paper for a depiction of events.
Without detailing the references of the aforementioned paper, there is a problem in the
instability of the empirical results found for the causality between money and output.
Depending on the samples considered (postwar onwards data, 1970s onwards data, 1980s
onwards, 1980s excluded, etc.), the existence and intensity of the causal effect of money
on output are subject to different conclusions. Hence, the strategy of Psaradakis et al.
(2005): to set up a Markov-switching VAR model in which the parameters responsible for
noncausality in VAR models are subject to regime switches, with some regimes in which
they are set to zero (noncausality for VARs) and others in which they are allowed to be
different from zero. MS-VAR models are convenient tools because the switches in regimes
are endogenous and can occur as many times as the data impose.

The total US economic activity is approached from two different perspectives in these papers: Warne
(2000) uses monthly income data, whereas Psaradakis et al. (2005) use quarterly output data.
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However, the model of Psaradakis et al. (2005) is ad-hoc, in that the number of states
is imposed by the necessity of the analysis, while not necessarily supported by the data.
Moreover, despite the fact that their model resembles the setting of restriction (Al), i.e.
the most strict restriction, implying noncausality in mean, variance and distribution, it
cannot be interpreted as testing the Granger noncausality hypothesis. The reason for this
is that the off-diagonal elements of autoregressive polynomial matrices are not set to zero
in all states of the model (e.g. the elements A(lz using our notation are not set to zero in
states one and three). This is a violation of restriction (A1)(vi). Therefore, the model of
Psaradakis et al. (2005) is a suitable tool for modeling parameters that change over time
and are responsible for Granger noncausality in VAR models, however it cannot be used
as a tool for investigating Granger noncausality in MS-VARs.

As outlined in the introduction, with the approach of Warne (2000) which we follow, the
MS-VAR models are ‘standard” ones, and we perform Bayesian model selection through
the comparison of their marginal densities of data, to determine the number of states
as well as the number of autoregressive lags. Moreover, we perform an analysis with
precisely stated definitions of Granger causality for Markov-switching models. In this
section, we use the Bayesian testing apparatus to investigate this relationship once again.

0 20 40 60

income

30 -40
1

10 20
1

money

-10

1960 1965 1970 1975 1980 1985 1990 1995

Time

Figure 1: Log-differentiated series of money and income.

Data. The data are identical to those estimated by Warne (2000) and cover the same time
period as in the original paper. Two monthly series are included, the US money stock M1
and the industrial production, both containing 434 observations covering the period, from
1959:1 to 1995:2, and both were extracted from the Citibase database. As in the original
paper, the data are seasonally adjusted, transformed into log levels, and multiplied by
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Table 1: Summary statistics

Variable Mean Median Standard Deviation Minimum Maximum

Ay 3.396 4.18 10.99 -51.73 73.72
Am 5.851 524 5.79 -17.39 30.03

Data Source: Citibase.

1200. Warne (2000) performed Johansen tests for cointegration, and — unlike for level
series — trace statistics indicated no cointegration for differentiated series. Similarly, we
work with the first difference of the series.

The summary statistics of both series are presented in Table 1. Income grows yearly
by 3% on average, with a standard deviation of 11%, which seems a lot, but one has to
note that we manipulate the monthly series for which the rates are annualized. Money
has a stronger growth rate of nearly 6% on average, with a lower standard deviation than
the income, below 6%.

Figure 1 plots the transformed series. Observation indicates that at least some het-
eroskedasticity is present, as can be seen with the money series, where a period of higher
volatility starts around 1980. Summary statistics and series observations all seem to in-
dicate the possibility of different states in the series, in which case MS-VAR models can
provide a useful framework for analysis. We, however, start our analysis with Granger
causality testing in the context of linear VAR models.

Granger causal analysis with VAR model. The reason why we begin by studying Granger
causality with linear models is that we want to relate to the standard methodology, and to
illustrate whether a non-linear approach brings added value to the analysis by comparing
the results. Also, the Gibbs sampler of Section 5 can easily be simplified to a Gibbs sampler
for VAR models. By doing so, estimating linear VAR models and comparing marginal
densities, we will also compare whether or not these models are preferred by the data to
more complex MS-VAR ones.

We estimate the data with the VAR models for different lag lengths, p = 0,...,17. Each
of the Gibbs algorithms is initiated by the OLS estimates of the VAR coefficients. Then
follows a 10,000-iteration burn-in and, after convergence of the sampler, 5000 final draws
are to constitute the posteriors. The prior distributions are as follow:

Bi ~ N(0,100Iy.pn2)
Oij~ lOgN(O, 2)
Ri o1

fori=1,...,Mand j=1,...,N.
Table 2 displays the marginal density of data for each model, computed with the
modified harmonic mean obtained by applying formula (26) to the posteriors draws. As
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Table 2: Model selection for VAR(p) — determination of number of lags

Lags 0 1 2 3 4 5 6 7 8
MHM -3149.63 -2991.7 -2983.4 -2966.49 -2970.25 -2954.49 -2948.57  -2944  -2939.52
Lags 9 10 11 12 13 14 15 16 17

MHM -2936.67 -2941.2 -2917.97 -2916.77 -2917.87 -2926.21 -2923.23 -2930.82 -2936.96

in Warne (2000), models with long lags are preferred. The VAR(12) model, i.e. with
12 lags for the autoregressive coefficients, yields the highest MHM and hence is the
model we choose for the Granger causality analysis. Table B.8 in Appendix B displays,
for each parameter of the model, the mean, standard deviations, naive standard errors,
autocorrelations of the Markov Chain at lag 1 and lag 10. Low autocorrelation at lag 10
indicates that the Gibbs sampler has good properties.

The set of restrictions to impose on the parameters for vector autoregressive moving
average models were covered in Sims (1972) and Boudjellaba et al. (1992). Translated into
the VAR representation, and in the case of a bivariate VAR(p) model:

4 (@) (O]
Yue| || Ay Ap ||y L |€
L/z,t] [Hz] ;‘[A(ﬁ Ag; Yo,i—i €|’

the restrictions for money, y,,, being Granger noncausal on income, vy, read:
0 _ -
A,=0fori=1,...,p.

Note that these restrictions, with assumed normal residual terms, are simultaneously
encompassing Granger noncausality in mean, variance, and distribution.

The estimation of the restricted VAR(12) model, with its upper-right autoregressive
coefficients Ag set to O for all lags returns posteriors that yield a MHM of -2901.63. Ex-
pressed in logarithms, the posterior odds ratio of the null hypothesis of Granger causality
from money to income is equal to 15.13. Table 3 summarizes the results for VAR models.

In Table 4, we reproduce the interpretation scale for the Bayes factor (equivalent to the
posterior odds ratio when not discriminating between the hypotheses a priori) of Kass
& Raftery (1995). This is a very strong acceptance of the restricted model M, over the
nonrestricted one My, hence Bayesian testing provides evidence in favour of Granger
noncausality from money to income, within the VAR framework. This result is in line
with Christiano & Ljungqvist (1988), where Granger noncausality from money to output
is established for the VAR model with log-differences with US data. The authors contest
this result and argue for a specification error for models with first differences. We continue
our analysis with nonlinear models that allow switches within their parameters.

Granger causal analysis with MS-VARs. MS-VAR models capture the nonlinearities of the
data, such as heteroskedasticity. Endogeneity in the regime estimation gives lots of
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Table 3: Noncausality and conditional regime independence in a VAR(12) model. Numerical efficiency
results for these models are presented in table C.10 of Appendix C.

M, Hypothesis Restrictions # restrictions Inp(y|M;) InBj
Ho: Unrestricted model

M, VAR(12) - 0 2,916.77 0

H.: Granger noncausality from money to income

Mi  (A]) AY =0 p 290163 15.13
fori=1,...,p.

Table 4: Interpretation of the Bayes factor in weights against the null hypothesis

1 ( PrAMY) ) M) Evidence against Hy

Pr(Moly) Pr(Moly)

Oto1l 1to3 Not worth more than a bare mention
1to3 3to20 Positive

3tob 20 to 150 Strong

>10 > 150 Very strong

Source: Kass & Raftery (1995).

latitude for the capture of a variety of nonlinear features of the data, hence in a way
reducing the risk of model misspecification. The legitimacy of these models against VARs
can easily be tested through the computation of the marginal distribution of data for the
respective models.

Moreover, the Markov-switching models, framework provides a more detailed anal-
ysis of causality, as MS-VAR models produce different sets of restrictions for different
types of noncausality, i.e. noncausality in mean, variance, or distribution. Therefore, we
distinguish between more and less strict hypotheses, and make inferences that are more
informative by investigating causality in moments of different order.

We estimate the data MSIAH(m)-VAR(p) models for different number of regimes m =
2,3,4 and different lag lengths, p = 0,...,6. Each of the Gibbs algorithm is initiated by
the estimates from the EM algorithm of the corresponding model. Then follows a 10,000-
iteration burn-in and, after convergence of the sampler, we sample 5000 final draws from
the posteriors. The prior distributions are as defined in Section 2.

Table 5 reports the MHMs for the estimated models with 2 regimes. Though we
also estimated models with 3 or 4 regimes, estimation encountered difficulties of low
occurrences of regimes. These phenomena indicate that the data does not support MS-
VAR models with 3 or more regimes, and explains why we only present results with 2
regimes. The number of estimated lags for the autoregressive coefficients is limited to 6
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Table 5: Model selection for MSIAH(2)-VAR(p) — determination of the lag order

Lags 0 1 2 3 4 5 6
MHM -3,002.64 -2,92642 -2,903.89 -2,898.21 -2,895.22 -2,914.87 -2,913.49

lags —less than the 12 lags for VAR models —also due to insufficient state occurrences when
the number of AR parameters increases. The model preferred by the data is the MSIAH(2)-
VAR(4), i.e. with 2 regimes and VAR process of order 4. Table B.9 in Appendix B displays,
for each parameter of the model, the mean, standard deviations, naive standard errors,
and autocorrelations of the Markov chains at lag 1 and lag 10. Decaying autocorrelation
between Gibbs draws indicates that the Gibbs sampler has desirable properties.

Figure 2 plots the regime probabilities from the selected model. In comparison with
the second regime, the first regime matches times of higher variance for both variables.
As well the constant for income growth, 4., is negative during the occurrences of the
first regime. Hence, the first regime can be interpreted as the bad state of the economy.

Comparing the best MS-VAR model to the best VAR model yields a posterior odds
ratio of 6.41 in favour of the MS-VAR model, which in Table 4 enters the category of strong
evidence for MS-VARs against VARs.

L

1960 1965 1970 1975 1980 1985 1990 1995

0.8

Regime 1
0.4
|

0.8 0.0

T

Regime 2
0.4

0.0

Year

Figure 2: Estimated probabilities of regimes for a MSIAH(2)-VAR(4) model

Similarly to Warne (2000), we proceed with the analysis of Granger noncausality for the
selected MSIAH(2)-VAR(4) model. The Bayesian testing strategy we employ renders the
process straightforward: each type of causality implies different restrictions on the model
parameters; we impose them, estimate the models and compute all marginal densities
of data. The final test statistic to consider is the posterior odds ratio (which, with our
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prior probabilities of models, is equal to the Bayes factor), where the non-restricted
MSIAH(2)-VAR(4) model constitutes the null hypothesis. Table 6 summarizes all the sets
of restrictions to impose when testing the noncausality from money to income, and also
logarithms of the marginal densities of data given the model, In p(y|M;), and logarithms
of the Bayes factors, In8;; for j = 1,...,7. A positive logarithm of the Bayes factor is
to be interpreted as evidence in favour of the restricted model. The scale of Table 4 is
informative about the strength of the evidence. In a symmetric way, negative logarithm
of the Bayes factor indicates that the non-restricted model is preferred by the data.

Analysis of Table 6 shows that only model M; is more probable a posteriori than the
unrestricted model M;. This model represents one of the sets of restrictions for Granger
noncausality in mean. All other models, however, are less probable than the unrestricted
model, which is represented with the negative values of the logarithms of the Bayes
factors.

Table 7 presents a summary of the assessment of the considered hypotheses. We found
strong support for Granger noncausality in mean. This hypothesis has much bigger
posterior probability compared to all other hypotheses, including the unrestricted model.
Warne (2000) found a similar result, but holding only at the 10% level of significance,
which cast doubt on his conclusion. However, Bayesian testing establishes this strong
result, and the conditional mean of income is invariant to the history of money. Table
7 provides strong evidence for Granger causal relations in variance and, in effect, in
distribution, as these two hypotheses for the considered model are represented by the
same set of models.

Summary. The results of Bayesian testing for Granger causality from money to input
on the US monthly series covering the period 1959-1995 are in line with the narration
of Psaradakis et al. (2005), in the sense that the strongly established noncausality in
mean within VAR models (which is equivalent to the noncausality in variance and in
distribution) does not hold with MS-VAR models. Allowing non-linearity in the models’
coefficients, here by a Markov chain permitting switches between regimes of the economy,
and testing for causality from money to income yields a different result and the strong
noncausal evidence is decomposed. We found that the history of money helps to predict
the regimes of income. We also found that money causes income both in variance and
in distribution. However, we did find evidence for Granger noncausality in mean from
money to income, as did Warne (2000). Bayesian model estimation associated with
Bayesian testing provided tools with which to select the correct model specification, and
also with which to compare it to the VAR specifications, and the posterior odds ratio tests
allowed us to test for the three types of Granger noncausality.

These findings have particular consequences for the forecasting of the income. Despite
the fact that past information about money does not change the forecast of income, it is
still crucial for its modeling. Past observations of money improves the forecast of the
state of the economy when modelled with a Markov-switching process. Therefore, if one
is interested in forecasting regime switches in the income equation, then one should add
the money variable into the considered system. The same conclusion applies to the fore-
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Table 6: Noncausality and conditional regime independence in a MSIAH(2)-VAR(4) model. Numerical
efficiency results for these models are presented in table C.10 of Appendix C.

M,  Hypothesis Restrictions #restrictions Inp(y|M;) InBj;

Ho: Unrestricted model

My  MS(2)-VAR(4) - 0 -2895.22 0

H.: History of money does not impact on the regime forecast of income

My (ADMy=1,My =2 s =, A =AY, AD =0 3p+4 296472 -69.50

Y11 = L1, L1zs = 0

, - y
Mo (ADM =2,My =1 s =, A} = AJL A = AT), dp+4 292154 2632
Yoys, = Yoo, Xigg, = O/A(f;,s! =0
(A2) M; =1,M,; =2 Always holds, no restrictions - - -
Mz (A2)M;=2,My =1 p11=pn 1 -2907.39  -12.17
H,: Granger noncausality in mean
(A1) or - - - -
M (A6)Mi =1, My =2 g =, AY = AfLAD =0 3p+1 -2880.63  14.59
Ms (A6)Mi=2,My=1 pi=pn, LAl m;=0 p+1 289724 -2.02
Hs: Granger noncausality in variance
(Al) or - - - -
Ms (ADMy=1,My=2 =AY =AY AN =0 3p+2 -2953.15  -57.93
Lits = X1
Mz (A7YMy=2,My =1 pn=pn, A =0 2p+1 2900.58  -5.36

Hy: Granger noncausality in distribution

(Al) or - - - -
Restriction 7 = (A7) - - - -

fori=1,...,p.

casting of future variability of income and, in particular, for its density forecast. The last
finding is especially relevant for the Bayesian Markov-switching vector autoregressions.
We justify this statement with two features of such a model. First, Markov-switching
vector autoregressions are designed to model and forecast a complicated distribution of
the residuals with heteroskedastic variances and non-normal distribution. Second, the
Bayesian inference is particularly suitable for the density forecast with MS-VARs, due
to the fact that the predictive density is constructed by integrating out the parameters
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Table 7: Summary of the hypotheses testing

‘H; Hypothesis Represented by models 1 %{’3

Hy Unrestricted model My 0

‘H, History of money does not impact on M, My, My -12.17
the regime forecast of income

H, Granger noncausality in mean My, My, My, Ms 14.59

H; Granger noncausality in variance My, My, Me, My -5.36

‘H; Granger noncausality in distribution Mi, My, Mg, M5 -5.36

of the models. In consequence, the forecast incorporates the uncertainty with respect
to the parameter values. Moreover, the integration required in order to construct the
forecasts conditioned only on past observations of the variables, and not conditioned on
the unobserved states, as in classical forecasting (see Hamilton, 1994), is straightforward.

7. Conclusions

We proposed a method of testing the nonlinear restrictions for the hypotheses of Granger
noncausality in mean, in variance and in distribution for Markov-switching Vector Au-
toregressions. The employed Bayes factors and Posterior Odds Ratios overcome the
limitations of the classical approach. It requires, however, an algorithm of estimation of
the unrestricted model and of the restricted models, representing hypotheses of interest.
The algorithm we proposed, allows for the restriction of all the groups of parameters of
the model in an appropriate way. It combines several existing algorithms and improves
them in order to maintain the desired properties of the model and the efficiency of estima-
tion. The estimation method allows us to use all the existing methods of computating of
the marginal density of data that are required for both Bayes factors and Posterior Odds
Ratios.

The Bayesian approach to testing has also consequences for the way in which the
competing hypotheses are treated. Contrary to classical tests, the hypotheses of Granger
causality or noncausality of different types are, in our approach, treated symmetrically.
We obtain this effect by comparing the posterior probabilities of the hypotheses (models).
In consequence, the output of our inference, in the form of choosing the hypothesis of the
highest posterior probability, reflects the choice of the hypothesis supported in the biggest
rate by the data. This applies, of course, to cases in which the chosen prior probabilities
and densities do not discriminate a priori some of the hypotheses.

In the empirical illustration of the methodology, we have found that in the USA money
does not cause income in mean. We have, however, found that the money impacts on the
forecast of the future state of the economy, as well as on the forecast of the variability of the
income and on its density forecast. If the empirical analysis is to be something more than
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just an illustration of the methodology, and in effect be conclusive, robustness checks are
required. In particular, considering more relevant variables in the system could impact
on the conclusions of the analysis of the Granger causality between money and income.

As the main limitation of the whole analysis of Granger causality for MS-VAR models,
we find that only one period ahead Granger causality is considered in this study. The
conditions for h periods ahead noncausality should be further explored. We only mention
that potentially establishing that one variable does not improve the forecast of the hidden
Markov process, taking into account the Markov property, may imply the same for all
periods in the future. Still, establishing conditions for the noncausality & periods ahead for
the autoregressive parameters, including covariances, would potentially require tedious
algebra. This statement is motivated by the complexity of formulating forecasts with
MS-VAR models.
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Appendix A. Alternative restrictions for Granger noncausality

The following restrictions were set by Warne (2000), and are all derived under the condi-
tion (A2) and rank(P?®) = M.

Restriction 5. Suppose that P = (1p, 7Y ® P?) with rank(P®) = M,, then condition (A3)
is equivalent to:

(A6): () X%, iy iy, = 1,
(k) 1 _ —(k)
(i) YM e G, T = and
Gii) a® = 0
forall , €{1,...,M,},r€{1,2,3},and k€ {1,...,p},
] p

Restriction 6. Suppose that P = (1p, 7'V ® P?) with rank(P®) = M,, then condition (A4)
is equivalent to:

(A7): (i) (A3),

cer wM _ _ 1
(i) Zjlil [(ml.(j1 )~ ml) ® (ml.(jl,jz) - ml)] 7'((~ ) = Cus

M1 0) @ _ kD
(iii) Z [( M)~ ® (a (i) )] =Crs s
) B ®) (k) _

(iv) Zj 5 [(muh )~ 1) ® (‘er.(]’u )] = Cur

(v) Z L oGy, ]2)71() Cw, and

(k) _
14.]

forall je{l,...,M}, ja€{1,...,Ma}, 1,5 € {1,2,3}, and k, 1 € {1,...,p}

(vi) a

is satisfied.

Restriction 7. Suppose rank(P) € {1, M}, then y, does not Granger-cause in distribution
1y if and only if it does not Granger-cause y; in variance.
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Appendix B. Summary of the posterior densities simulations

Table B.8: VAR(12): posterior properties

Mean Std. dev. Naive Std. error Autocorr. lag1  Autocorr. lag 10

Standard deviations

o1 9.192 0.137 0.002 0.028 0.006
07 4912 0.095 0.001 0.046 0.002
Correlations

p1 -0.025 0.058 0.001 0.060 -0.014
Intercepts

Hi -0.004 0.300 0.004 0.001 -0.009
U2 0.582 0.266 0.004 -0.011 0.006

Autoregressive coefficients

AY 0284 0.049 0.001 -0.007 0.005
A%15 0.138 0.088 0.001 -0.006 -0.028
A%ﬁ 0.027 0.027 0.000 -0.024 -0.016
A%15 0.361 0.049 0.001 0.020 0.027
A% 0.076 0.049 0.001 -0.009 0.014
AE) 0.108 0.094 0.001 -0.034 -0.014
A%ZZ) -0.044 0.026 0.000 -0.001 0.012
A%25 -0.005 0.052 0.001 0.007 -0.001
A%:% 0.068 0.049 0.001 0.002 0.011
Ag) 0.133 0.093 0.001 -0.035 0.009
Ag) -0.054 0.026 0.000 -0.014 -0.009
Aé]) 0.199 0.052 0.001 0.001 -0.001
A%‘% 0.085 0.049 0.001 0.004 0.009
A%4]) -0.053 0.092 0.001 -0.014 -0.008
A%‘% -0.024 0.027 0.000 0.012 -0.011
A%‘l]) -0.106 0.051 0.001 -0.026 0.002
Ag) -0.054 0.049 0.001 -0.003 -0.010
A%55 0.032 0.094 0.001 -0.019 -0.010
Ag) 0.007 0.026 0.000 0.008 -0.005
A%i) 0.228 0.051 0.001 0.004 0.008
A® 0,004 0.047 0.001 0.000 0.009
A%65 0.106 0.095 0.001 0.009 0.019
A%g) 0.000 0.026 0.000 0.004 0.011
A%65 0.067 0.052 0.001 0.008 -0.010
A%% 0.035 0.048 0.001 -0.002 -0.007
A% -0.100 0.095 0.001 -0.008 0.003
A%% 0.001 0.025 0.000 0.017 -0.002

36



Mean Std. dev. Naive Std. error  Autocorr. lag1  Autocorr. lag 10
AT -0.012 0.053 0.001 -0.025 -0.008
A® s 0.048 0.001 0.035 -0.017
A® .06 0.094 0.001 0.005 -0.005
A® 0052 0.025 0.000 -0.015 0.005
AD 0104 0.051 0.001 0.011 0.010
AB 015 0.048 0.001 -0.016 0.019
A 0054 0.093 0.001 0.006 0.004
A% 003 0.025 0.000 0.016 -0.004
A%i) 0.181 0.052 0.001 0.023 -0.012
Aalo) 0.020 0.047 0.001 0.023 0.020
A%lz(” 0.008 0.090 0.001 0.007 -0.022
A%llo) -0.008 0.026 0.000 -0.010 -0.005
A%12°> -0.077 0.052 0.001 0.018 -0.012
A%ll) 0.008 0.048 0.001 -0.017 0.021
A%l;) -0.064 0.093 0.001 -0.014 0.001
A%lf) -0.036 0.026 0.000 0.007 -0.006
Aﬁz” -0.023 0.052 0.001 -0.022 0.001
Aaf) -0.069 0.044 0.001 0.008 0.003
A%lj) -0.042 0.087 0.001 -0.031 0.006
A%ll” 0.061 0.024 0.000 0.010 -0.013
A 0,09 0.049 0.001 -0.004 -0.002
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Table B.9: MSIAH(2)-VAR(4): posterior properties

Mean Std. dev. Naive Std. error  Autocorr. lag1  Autocorr. lag 10

Transition probabilities

P11 0.734 0.066 0.001 0.557 -0.005
P21 0.059 0.018 0.000 0.624 0.088

Standard deviations

011 17.129 1.207 0.017 0.625 0.150
02,1 8.746 0.646 0.009 0.559 0.111
012 6.983 0.276 0.004 0.669 0.173
022 4.011 0.179 0.003 0.666 0.105
Correlations

P11 -0.173 0.127 0.002 0.203 0.008
P12 0.078 0.070 0.001 0.284 0.018

Intercepts regime 1

H,1 -0.213 0.949 0.013 0.014 0.032
H2,1 1.107 0.885 0.013 0.101 0.011

Autoregressive coefficients regime 1

AL 0497 0.147 0.002 0.128 0.016
AD 0209 0.287 0.004 0.142 -0.018
AY) 0069 0.075 0.001 0.156 0.027
AD 0419 0.156 0.002 0.222 -0.002
A 0253 0.191 0.003 0.238 0.020
AD), 0134 0.361 0.005 0.191 -0.005
AD 0018 0.094 0.001 0.131 0.025
AD, -0.092 0.202 0.003 0.237 0.002
AT, 0172 0218 0.003 0.173 0.001
A% 0176 0.376 0.005 0.105 0.008
AD 0126 0.122 0.002 0.265 0.006
AD) 0112 0217 0.003 0.191 0.004
A% 049 0217 0.003 0.325 0.078
A% 0409 0.343 0.005 0.164 0.019
AY) 0.088 0.106 0.001 0.252 0.029
AY 0.098 0.205 0.003 0.281 0.031

Intercepts regime 2

Hi2 0.295 0.634 0.009 0.163 -0.005
U2, 2.058 0.420 0.006 0.210 -0.012

Autoregressive coefficients regime 2
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Mean Std. dev.

Naive Std. error

Autocorr. lag 1

Autocorr. lag 10

0.237
0.028
-0.026
0.398
0.130
0.165
-0.032
0.092
0.099
0.214
-0.014
0.285
0.106
-0.174
-0.019
-0.066

0.059
0.099
0.031
0.058
0.048
0.088
0.028
0.057
0.053
0.086
0.026
0.053
0.052
0.092
0.025
0.055

0.001
0.001
0.000
0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.000
0.001

0.391
0.333
0.259
0.297
0.210
0.195
0.194
0.321
0.377
0.195
0.176
0.284
0.394
0.272
0.200
0.323

0.041

-0.002

0.025

-0.024

0.014
0.013
0.005
0.038
0.057
0.006
0.023
0.007
0.039
0.014
0.009
0.031
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Appendix C. Characterization of estimation efficiency

Table C.10: Characterization of the efficiency in the models’ esti-
mations

RNE Autocorr. lag 1 Autocorr. lag 10 Geweke z-score
M; Median Min Max Median Min Max Median Min Max Median Min Max

Vector autoregressive models

My 1.00 085 1.19 0.00 -0.03 0.06 0.00 -0.03 0.03 -010 -2.37 2.38
M, 1.00 076 1.08 0.01 -0.03 0.07 0.00 -0.04 0.02 007 -257 243

Markov switching vector autoregressive models

Mo 048 0.10 1.00 024 001 0.67 0.02 -0.02 0.17 -0.56 -214 3.27
M, 047 0.06 1.00 017 -0.02 0.78 0.01 -0.03 0.29 022 -198 258
M, 071 013 1.12 014 -0.02 071 0.01 -0.03 0.08 013 -210 159
Mz 030 0.02 094 027 003 0.89 0.04 -0.01 0.56 -032 -243 194
My 046 0.08 0.83 025 0.07 0.78 0.01 -0.03 0.23 -020 -1.57 1.56
Ms 022 002 043 044 012 0.85 0.07 -0.01 0.50 -0.10 -239 216
M 024 0.02 092 026 004 090 0.04 -0.02 0.58 -0.08 -143 191
My 033 0.05 0.83 031 003 0.84 0.04 -0.01 0.39 -016 -234 1.67

Table C.10 reports statistics for assessing the efficiency of each estimated model. Three types of
statistics are presented: the relative numerical efficiency of Geweke (1989), autocorrelations at
different lags, and the convergence diagnostic of Geweke (1992). Statistics should be presented
separately for each parameter of each model, but to save space, we summarize each model with a
median, minimum, and maximum.

The relative numerical efficiency represents the ratio of the variance of a hypothetical draw
from the posterior density over the variance of the Gibbs sampler. Thus, it can be interpreted as
a measure of the computational efficiency of the algorithm. The columns of Table C.10, unsur-
prisingly, tell us that the algorithm for VAR models is more efficient than that for MS-VAR. The
same observation can be made when comparing unrestricted models with restricted ones. What
is interesting for us is the magnitude of the RNE statistics between unrestricted and restricted
models. Those are comparable, which is a good sign that the algorithm for constrained models
are, computationally, reasonable efficient.

The columns displaying the autocorrelations at lag 1 and lag 10 are here to ensure that there
is a decay over time. This is the case here, and the Gibbs samplers explore the entire posterior
distribution.

Geweke (1992) introduces the z scores test which tests the stationarity of the draws from the
posterior distribution simulation comparing the mean of the first 30% of the draws with the last
40% of the draws. We compare the two means with a z-test. Typically, values outside (-2,2)
indicate that the mean of the series is still drifting, and this occurs for some parameters in each
models, except My and Mg for MS-VARs. Increasing the burn in period might improve the scores
and stationarity of the MCMC chain.
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