This is the revised version of a paper presented at the Workshop on Mathematical Economics organized by the European University Institute in San Miniato, 8-19 September 1986. Financial support from the Scientific Affairs Division of NATO and the hospitality of the Cassa di Risparmio di San Miniato are gratefully acknowledged.

BADIA FIESOLANA, SAN DOMENICO (FI)
This paper analyses the relations between deterministic intertemporal equilibria with perfect foresight, and stationary sunspot equilibria, near a stationary state. The study takes place within the framework of an overlapping generations model, where the deterministic dynamics is described by a one-dimensional difference equation, and employs elementary geometrical arguments. One verifies that a stationary sunspot equilibrium exists in every neighbourhood of the Golden Rule if, and in general only if, it is stable in the deterministic dynamics. One shows also, by looking at what happens when a local bifurcation occurs, that a stationary sunspot equilibrium can exist in some neighbourhood of the Golden Rule, even when it is unstable in the deterministic dynamics.
The purpose of this work is to make progress toward a better understanding of the relationships that may exist between the local behaviour of deterministic intertemporal equilibria and stationary Markov sunspot equilibria near a stationary state, in economies the characteristics of which are constant over time.

We shall use a simple version of the overlapping generations model, in which the state variable is one dimensional, that was already employed in this context by Azariadis (1981), Azariadis and Guesnerie (1986). If we stay close enough to the stationary state, things are almost linear. Stationary Markov sunspot equilibria exist then in every, however small, neighborhood of the stationary state if, and in general only if, it is deterministically locally indeterminate, and the set of such sunspot equilibria is infinite dimensional. Similar results were obtained in the study of various specific examples (Guesnerie (1986), Woodford (1984,1986), Laitner (1986), Grandmont (1985b,1986)).

Matters are further complicated if we look at what happens still near the stationary state, but a little farther away from it, since the deterministic dynamics may then involve small but significant nonlinearities. We shall show that in the simple context under consideration, one can get more information on that issue through the theory of bifurcations. Suppose that we look at a one parameter family of economies having a stationary state that
changes stability at some point. Bifurcation theory describes exactly what
deterministic intertemporal equilibria look like in the vicinity of the
stationary state, immediately before and after the bifurcation takes place. One
can then characterize the set of stationary Markov sunspot equilibria, and its
relationships with the set of deterministic intertemporal equilibria, near the
stationary state. It will be shown in particular that stationary Markov sunspot
equilibria may exist in some neighborhood of the stationary state, even
though it is deterministically locally determinate.

As was said earlier, our study is carried out in a one dimensional
framework that permits a simple geometrical analysis. It remains to be seen
whether the methods of the present paper can be extended to a more realistic
multidimensional framework.

1. HOUSEHOLDS BEHAVIOUR

We consider a discrete time model with overlapping generations (OLG) of
households. There are no bequests and no population growth. Households live two
periods. We assume that they are all alike, or equivalently, that there is a
single representative household in each generation. There is a single good.
When young, households supply labour and save their wage earnings by holding
money balances; they consume when they are old.

The tastes of a generation are represented by the separable utility
function

\[V(\ell^* - \ell) + V(c), \]

where \(0 \leq \ell^* - \ell \leq \ell \) is leisure (\(\ell \) is labor
supply) and \(c > 0 \) is consumption of the good. We assume throughout

(1.a) \(\ell^* > 0 \).

(1.b) The utility functions \(V_1 \) and \(V_2 \) are continuous on \([0,\hat{\ell}] \) and \((0,\infty) \).
They are k-times continuously differentiable with $k > 4$, on $(0, \ell^*)$ and $(0, +\infty)$ respectively, with $V'(a) > 0$, $V''(a) < 0$, $\lim_{a \to 0} V'(a) = +\infty$.

The deterministic case

We look first at the behavior of a representative household under certain conditions. Consider a young household at any date, who observes the current money wage $w > 0$ and expects the money price $p^e > 0$ of the good to prevail at the next date. He has to choose his current labor supply $0 < \ell < \ell^*$, his current money demand $m > 0$ and his future consumption $c > 0$, so as to maximize his utility function subject to $w\ell = m$ and $p^e c = m$. The solution is unique, and c, ℓ, m are positive if and only if $\theta = w/p^e$ exceeds

$$\theta = V'(\ell^*)/\lim_{c \to 0} V'(c).$$

It is easily seen from the first order conditions of the problem that if $\theta > \theta^*$, the optimum pair (ℓ, c) is the unique solution satisfying $\ell > 0$, $c > 0$, of the system

$$v_1(\ell) = v_2(c) \quad \text{and} \quad \theta \ell = c,$$

in which v_1 and v_2 are defined, for $0 < \ell < \ell^*$ and $c > 0$, by

$$v_1(\ell) = \ell V'(\ell^* - \ell) \quad \text{and} \quad v_2(c) = c V'(c).$$

The function v_1 is increasing and maps $(0, \ell^*)$ onto $(0, +\infty)$. Thus we may define the household's offer curve by the equation $\ell = \chi(c)$, where

$$\chi(c) = v_1^{-1}(v_2(c)) \quad \text{for} \ c > 0 \quad \text{and} \ \chi(0) = 0.$$

Then, for any $\theta > \theta^*$, as shown in Fig. 1, the optimum values of c and ℓ are obtained as the unique intersection verifying $c > 0$, $\ell > 0$, of the line
\(\delta \ell = c \) with the offer curve. When \(0 < \delta < \bar{\delta} \), this intersection reduces to the origin.

Fig. 1

The case \(\lim_{c \to 0} cV'(c) = 0 \) is described in Fig. 1a, while Fig. 1b represents the case in which this relation does not hold. In all cases, the functions \(v_1, v_2 \) and \(x \) are \((k-1)\) times continuously differentiable for \(0 < \ell < \ell^* \) or \(c > 0 \). Moreover \(x \) has a positive fixed point, which is then unique, if and only if \(\delta < 1 \); it corresponds to \(\delta = 1 \).

It is useful to note at this stage that the elasticity of the function \(x \), i.e. \(\varepsilon = cx'(c)/x(c) \), for \(c > 0 \), is given by

\[
(1.4) \quad \varepsilon = \frac{1 - R(c)}{1 + \frac{\ell}{\ell^* - \ell}}
\]

with \(\ell = x(c) \), where \(R \) is the coefficient of relative risk aversion of \(V \), i.e. \(R(a) = -aV''(a)/V'(a) > 0 \), for \(a > 0 \) and each \(\tau = 1, 2 \).

Uncertainty

In preparation to the analysis of sunspot equilibria, we look at the household’s behaviour under uncertainty. Consider a young agent at any date, who observes the current money wage \(w > 0 \), and expects the prices \(p^e = (p_1^e, \ldots, p_r^e) \) to prevail at the next date, with probability \(q_j > 0 \), \(j = 1, \ldots, r \), where \(p_j^e > 0 \) for all \(j \). He has to choose his current labor supply \(\ell \), his current money demand \(m > 0 \), and his future contingent consumption \(c_j \), so as to maximize his **expected utility** \(V(\ell^* - \ell) + \sum_{j=1}^r q_j V(c_j) \) subject to

\[
(1.5) \quad w\ell = m \quad \text{and} \quad \sum_{j=1}^r p_j^e c_j = m, \quad \text{for} \quad j = 1, \ldots, r.
\]
Again, the solution is unique, and from the first order conditions, each of the quantities ℓ, m, c is positive if and only if $\theta < \sum_j q_j b_j$, where $\theta = w/p_j$. When this relation holds, labor supply and future contingent consumption is the unique solution verifying $\ell > 0$, $c > 0$, of the system

$$v_j(\xi) = \sum_j v_j(c_j) \quad \text{and} \quad \theta \ell = c_j, \quad \text{for all } j.$$

2. INTERTEMPORAL EQUILIBRIA AND SUNSPOTS

We consider a simple version of the overlapping generations model, in which 1) the money stock is constant and equal to $M > 0$, and 2) the good is perishable and produced from labor in each period, with no production lag, one unit of labor yielding one unit of output.

There are competitive markets for labor, output and money at each date. At a monetary equilibrium, consumption of the old trader at date t, i.e. c_t, is equal to his real money balance $\mu_t = M/p_t > 0$, in which $p_t > 0$ is the equilibrium money price of the good. Clearly c_t is also equal to the current equilibrium output y_t and labor supply ℓ_t. Profit maximization implies then that the equilibrium real wage is unity, so that we can identify equilibrium money wages and prices at all dates, $w_t = p_t$ for all t.

Deterministic intertemporal equilibria

We first look at the case in which the households are certain about future prices and have perfect foresight. A deterministic intertemporal (monetary) equilibrium is an infinite sequence of money prices $p_t > 0$, $t > 1$, such that markets clear at all dates. As noted earlier, one has $\mu_t = c_t = \ell_t$ along such an equilibrium. Thus, from the first order condition (1.1), one may
define equivalently such an intertemporal equilibrium as a sequence of positive real balances $\mu_t = M/p_t$ that satisfy for all t $v(\mu_t) = v(\mu_{t+1})$, or

$$\mu_t = x(\mu_{t+1}).$$

Fig. 2.a describes the backward perfect foresight (b.p.f.) dynamics on real balances implied by (2.1) by means of the offer curve, as well as the dynamics of the corresponding gross real interest rates $\theta_t = p_t/p_{t+1}$. The same figure can be used to generate intertemporal equilibria, in which time goes forward. The trick is to reverse the direction of the arrows: start from the offer curve, go vertically to the 45° line, and horizontally back to the offer curve, see Fig. 2.b. There exists a monetary stationary state, which is unique, if and only if $\theta < 1$. It corresponds to $\theta_t = 1$ or to $\mu_t = \bar{\mu}$ for all t, where $\bar{\mu}$ is the unique positive fixed point of x.

Fig. 2

Stationary sunspot equilibria

We consider now the same economy and look at the case where traders believe that prices and quantities are affected by random factors (sunspots), although they do not influence the "fundamental" characteristics of the economy, and where this belief turns out to be self-fulfilling, in equilibrium.

Assume that the traders observe a Markov process of signals s_t (sunspots) that belong to $S = (s_1, \ldots, s_r)$, with known transition probabilities $q_{ij} > 0$. Assume further that households believe these signals to be perfectly correlated with equilibrium prices through the relation

$$p_i = f(s_i), \text{ all } i, \text{ with } 0 < p_1 < \cdots < p_i < \cdots < p_r.$$
Note that here, as in the previous section, the equilibrium real wage is unity at all dates, so that we do not need to distinguish between money wages and prices.

The belief (2.2) generates a stationary Markov sunspot equilibrium (s.m.s.e.), with r states, corresponding to the given sunspot process, if it is self-fulfilling, i.e. if \(p = p_i \) clears indeed the market when the sunspot \(s_i \) is observed, for each \(i = 1, \ldots, r \) and at each date.

Note that here also, every date, and in any equilibrium corresponding to the observation of an arbitrary value of the sunspot, the real balance \(M/p \) is equal to the equilibrium values of output, of consumption and of the labour supply. Thus if the households have the belief (2.2), from the first order condition (1.6), the price \(p \) that achieves equilibrium at some date when the sunspot \(s_i \) is observed is given by

\[
v(M/p) = \sum_{j=1}^{r} q_{ij} v(M/p_j)
\]

A s.m.s.e. may therefore be equivalently defined by real balances \(\mu_i = M/p_i \) that satisfy

\[
(2.3) \quad 0 < \mu_1 < \ldots < \mu_r \quad \text{and} \quad v(\mu_i) = \sum_{j=1}^{r} q_{ij} v(\mu_j), \quad \text{all } i.
\]

Equilibrium real balances follow then a Markov chain on \(\langle \mu_1, \ldots, \mu_r \rangle \) with transition probabilities \(q_{ij} > 0 \). Conversely, any such Markov chain of real balances can be interpreted as a stationary sunspot equilibrium, by constructing a Markov process on \(S \) with transition probabilities \(q_{ij} > 0 \), provided that the underlying probability space is rich enough.

Studying the set of stationary Markov sunspot equilibria, with \(r \) states, amounts therefore to analyzing the set of real balances \(\langle \mu_i \rangle \) and of transition
probabilities \(q_{ij} > 0 \) that verify (2.3).

A constructive Global Characterization

The set of s.m.s.e. is easily characterized in this particular case, as shown in Grandmont (1985b, 1986). Consider real balances \(\mu_i \) and transition probabilities \(q_{ij} > 0 \) that satisfy (2.3). Let \(m, n \) be integers such that \(v_2(\mu_i) < v_2(\mu_j) < v_2(\mu_k) \) for all \(i \). It follows then from (2.3) that \(v_2(\mu_i) < v_2(\mu_j) < v_2(\mu_k) \) for all \(i \), or equivalently

\[
2^m \quad (2.4) \quad \chi(\mu_n) < \mu_1 < \ldots < \mu_r < \chi(\mu_m)
\]

One cannot have \(\mu_n < \mu_m \) in this model, for there would exist then more than one monetary stationary state. Thus, if one considers a s.m.s.e., there are two real balances \(\mu_m < \mu_n \) that verify (2.4).

Consider, conversely, real balances \(0 < \mu_1 < \ldots < \mu_r \), with \(\mu_n < \mu_m \) that satisfy (2.4). Then there are transition probabilities verifying (2.3).

They are given by

\[
(2.5) \quad q_{ij} = [v(\mu_i) - v(\mu_j) - \sum_{m, n \neq \mu_i, \mu_j} q_{ij} (v(\mu_i) - v(\mu_j))]/v(\mu_i) - v(\mu_j)
\]

\[
(2.6) \quad q_{ij} = [v(\mu_i) - v(\mu_j) - \sum_{m, n \neq \mu_i, \mu_j} q_{ij} (v(\mu_i) - v(\mu_j))]/v(\mu_i) - v(\mu_j)
\]

in which the \(q_{ij} > 0 \) are chosen arbitrarily for \(j \neq m, n \), subject to the constraints that \(q_{im} > 0 \) and \(q_{in} > 0 \), i.e.

\[
(2.7) \quad \sum_{j \neq m, n} q_{ij} (v(\mu_i) - v(\mu_j)) < v(\mu_i) - v(\mu_j)
\]

\[
(2.8) \quad \sum_{j \neq m, n} q_{ij} (v(\mu_i) - v(\mu_j)) < v(\mu_i) - v(\mu_j)
\]

Clearly, given the real balances \(\mu_i \), the set of such transition probabilities \(q_{ij} \), \(i = 1, \ldots, r \), \(j \neq m, n \), is non empty (think of the case where all \(i \)
\(q_{ij} \) in (2.7) are close to 0), convex, open and thus of dimension \(r(r - 2) \).

To sum up this discussion, the real balances \((\mu_1) \) define a stationary Markov sunspot equilibrium, with \(r \) states - in the sense that there are corresponding transition probabilities \(q_{ij} > 0 \) that verify (2.3) - if and only if there exist \(\mu_1 < \mu_2 \) that satisfy (2.4). The corresponding transition probabilities are given (non uniquely) by (2.5), (2.6), (2.7). Obviously, the stationary state \(\bar{\mu} \) must belong to the interval \((\mu_m, \mu_n) \).

Local sunspots

We apply now the foregoing characterization to \(\varepsilon \)-local sunspot equilibria, i.e. stationary Markov sunspot equilibria such that the corresponding real balances stay within \(\varepsilon \) of the stationary state \(\bar{\mu} \), for \(\varepsilon \) small.

Assume that \(\chi'(\bar{\mu}) \neq 0 \), and choose \(\varepsilon \) small enough to ensure that \(\chi'(\mu) \) keeps the same sign on the interval \((\bar{\mu} - \varepsilon, \bar{\mu} + \varepsilon) \), as well as on its image by the map \(\chi \). If an \(\varepsilon \)-local sunspot equilibrium is to exist, then in view of (2.4), the offer curve must be decreasing on these intervals, and one may require \(m = 1 \), \(n = r \) in the previous characterization. It follows that if \(\varepsilon \) has been chosen in this way, an \(\varepsilon \)-local sunspot equilibrium is characterized by real balances that satisfy \(|\mu_i - \bar{\mu}| < \varepsilon \) and

\[
\chi^2(\mu_1) < \chi(\mu) < \mu_1 < \ldots < \mu < \chi(\mu) < \chi^2(\mu)
\]

in which \(\chi = \chi \circ \chi \) is the second iterate of the map \(\chi \).

Any such \(\varepsilon \)-local sunspot equilibrium can thus be generated through the following procedure. First one looks for \(\mu_i \) close to and on the left of \(\bar{\mu} \),
such that $x'(\mu) < \mu$. Since x is decreasing near μ, there is a unique μ' in $(\mu, x(\mu))$ such that $x(\mu') = \mu$. Then μ_r must be chosen in the interval $(\mu', x(\mu))$, see Fig. 3 (of course μ_r has to be also within ε of μ, which will be always verified if μ_1 itself is close enough to the stationary state).

Finally, the other values of μ_i, $i \neq 1, r$, can be distributed arbitrarily in the interval (μ, μ), while the corresponding transition probabilities can be generated (again, nonuniquely) through (2.5), (2.6), (2.7).

Fig. 3

3. LOCAL DETERMINATENESS AND SUNSPOTS

An immediate consequence of the preceding analysis is that, if we assume away the exceptional cases $x'(\mu) = 0$ and $x'(\mu) = -1$, there are ε-local sunspot equilibria for every $\varepsilon > 0$ if and only if the stationary state is deterministically locally indeterminate.

The notion of local determinateness pertains to the behavior of deterministic intertemporal equilibria near the stationary state μ. To be formal, we say that a deterministic intertemporal equilibrium is an ε-local equilibrium if μ_t stays within ε of μ, for all $t > 1$. The stationary state is then locally determinate if there exists $\varepsilon > 0$ such that there is no ε-local equilibrium other than the stationary state itself. It is locally indeterminate otherwise.

Local determinateness is governed by the behavior of the trajectories generated by the difference equation that is obtained by inverting locally the equation (2.1) (which is always possible when $x'(\mu) \neq 0$). Note that in view of (1.4),
so that \(x'(\bar{\mu}) \) is always less than 1. Intuitively, everything else being equal, \(x'(\bar{\mu}) \) decreases as the utility function \(V \) becomes more concave, i.e. as \(R(\bar{\mu}) \) gets larger. If \(x'(\bar{\mu}) > -1 \), intertemporal equilibria starting close enough to \(\bar{\mu} \) have to move away from it: the stationary state is \textit{locally determinate}, see Fig. 4.a. If \(x'(\bar{\mu}) < -1 \) and if \(\varepsilon \) is small enough, for every \(\mu^1 \) close enough to \(\bar{\mu} \), there exists an \(\varepsilon \)-local equilibrium \((\mu_t) \) with initial condition \(\mu^1 \).

Given \(\mu^1 \), such an intertemporal equilibrium is in fact unique, and it converges eventually to \(\bar{\mu} \): the stationary state is \textit{locally indeterminate}, see Fig. 4.b. Thus if we assume away the cases \(x'(\bar{\mu}) = 0 \), and \(x'(\bar{\mu}) = -1 \), the stationary state is locally indeterminate if and only if \(x'(\bar{\mu}) < -1 \).

The characterization of sunspot equilibria given in the previous section implies immediately that \(\varepsilon \)-local sunspot equilibria exist for all \(\varepsilon \) if and only if the stationary state is locally indeterminate, whenever \(x'(\bar{\mu}) \neq 0 \) and \(x'(\bar{\mu}) \neq -1 \). If \(x'(\bar{\mu}) \neq 0 \), we can apply the constructive characterization given in (2.8) and Fig. 3. Then there are \(\varepsilon \)-local sunspot equilibria for every \(\varepsilon \), if and only if there exists a sequence \(\mu^k \) that tends to \(\bar{\mu} \) such that \(\chi'(\mu^k) < \mu^k < \bar{\mu} \) for all \(k \). If one remarks next that \((\chi')'(\bar{\mu}) = (\chi'(\bar{\mu}))^2 \), and if one assumes away the case \(x'(\bar{\mu}) = -1 \), such a sequence exists if and only if \(x'(\bar{\mu}) < -1 \). This implies
Proposition 3.1. Assume $x'(\bar{p}) \neq 0$ and $x'(\bar{p}) \neq -1$. Then there exist ε-local sunspot equilibria for every $\varepsilon > 0$ if and only if $x'(\bar{p}) < -1$.

Remark: The above results can be refined in the cases where $x'(\bar{p}) = 0$ and $x'(\bar{p}) = -1$, by looking at higher order derivatives. The flavour of the results is the same.

4. LOCAL BIFURCATIONS AND SUNSPOTS

Asking for the existence of local sunspot equilibria in every, however small, neighborhood of the stationary state is very demanding. There may be cases where stationary sunspot equilibria do exist in the vicinity of \bar{p}, but not arbitrarily near it. To get information about the circumstances under which this may obtain, we look at what happens when there is a local bifurcation of the deterministic dynamics implied by (2.1). We may also hope to get in the process a better understanding of the relations that exist between deterministic and sunspot equilibria.

Deterministic bifurcations

We wish first to analyse the local behaviour of deterministic intertemporal equilibria when the stationary state changes stability in the dynamics implied by (2.1). To this effect, we index the characteristics of the economy by a real number λ in some open neighborhood U of 0, say (\bar{c}^*, V^*), and assume that the slope of the associated offer curves at the stationary state goes through -1 at $\lambda = 0$.

\[(4.a) \quad \frac{\partial^4 V^*}{\partial c^4} = 4 \left(\frac{\partial^2 V^*}{\partial c^2} \right)^2 > 0 \quad \text{for all } \lambda \in U. \]
Assumption (4.a) implies that the corresponding offer curves x_λ are 3-times continuously differentiable on $U \times (0, +\infty)$, and that for each λ in U, there is a unique monetary stationary state $\tilde{\mu}_\lambda > 0$. The next assumption states that the map x_λ undergoes a flip bifurcation at $\lambda = 0$.

(4.b) $x_0'(\mu_0) = -1$ and $\frac{d}{d\lambda}[x'(\mu_0)]_{\lambda=0} < 0$

The theory tells us that we should expect a cycle of period 2 to appear near $\tilde{\mu}_\lambda$ for λ small enough. Such a cycle can be identified with a positive fixed point of $x_\lambda^2 = x_0 x_\lambda$ that differs from the stationary state $\tilde{\mu}_\lambda$. For each λ, of course, $\tilde{\mu}_\lambda$ is a fixed point of x_λ^2. By differentiation, one gets immediately that $(x_\lambda^2)'(\tilde{\mu}_\lambda) = [x'(\tilde{\mu}_\lambda)]^2$, which implies in view of (4.b)

(4.1) $(x_0^2)'(\tilde{\mu}_0) = +1$ and $\frac{d}{d\lambda}[x_0^2'(\tilde{\mu}_0)]_{\lambda=0} > 0$

Further differentiation shows that the second derivative of x_0^2 at $\tilde{\mu}_0$ vanishes. The shape of x_0^2 near $\tilde{\mu}_0$ is thus governed by the sign of the third derivative of x_0^2.

We consider the "generic" case where $(x_0^2)'''(\tilde{\mu}_0) \neq 0$. It is easily seen that this expression is equal to $[2x_0'''(\tilde{\mu}_0) + 3(x_0''(\tilde{\mu}_0))^2]$, and that it is closely related to the value of the Schwarzian derivative of x_0 at $\tilde{\mu}_0$.

Indeed the Schwarzian derivative of a thrice continuously differentiable map f from the real line into itself is defined as

$$Sf(x) = \frac{f'''(x)}{f'(x)} - \frac{3}{2} \left[\frac{f''(x)}{f'(x)} \right]^2$$

whenever $f'(x) \neq 0$. Since $x'(\tilde{\mu}_0) = -1$, we have therefore

(4.2) $2Sx_0'(\tilde{\mu}_0) = (x_0^2)''''(\tilde{\mu}_0)$
We consider two cases

Case 1 : \(S x_0 (\bar{\mu}) < 0 \)

The corresponding graph of \(x_0^2 \) near \(\bar{\mu} \) is pictured in Fig. 5.b. Remark that the assumption implies that \(\bar{\mu} \) is asymptotically stable in the b.p.f. dynamics (2.1), although \(\chi'(\bar{\mu}) = -1 \). The graphs of \(x_0^2 \) near \(\bar{\mu} \) are represented in Fig. 5.a and 5.c for \(\lambda \) small, negative and positive. If \(\lambda < 0 \), there is a no cycle of period 2 near \(\bar{\mu} \), and no intertemporal equilibrium other than \(\mu_t = \bar{\mu} \) for all \(t > 1 \), that stays near the stationary state (Fig. 5.a, 5.b). If \(\lambda > 0 \), there is a unique cycle of period 2, \(\bar{\mu}_{1\lambda}, \bar{\mu}_{2\lambda} \), near the stationary state. Moreover, there exists an intertemporal equilibrium corresponding to the initial condition \(\mu_1 \), that stays near \(\bar{\mu} \) for all \(t > 1 \), if and only if \(\mu_1 \) lies in \([\bar{\mu}_{1\lambda}, \bar{\mu}_{2\lambda}] \). Given such a \(\mu_1 \), the associated intertemporal equilibrium is unique, is contained in \([\bar{\mu}_{1\lambda}, \bar{\mu}_{2\lambda}] \), and converges to \(\bar{\mu} \) whenever \(\mu_1 \) does not belong to the period 2 orbit.

Fig. 5

Case 2 : \(S x_0 (\bar{\mu}) > 0 \).

The corresponding graphs of \(x_0^2 \) near the stationary state, for small \(\lambda \), are represented in Fig. 6. There, the unique cycle \(\bar{\mu}_{1\lambda}, \bar{\mu}_{2\lambda} \), appears for \(\lambda \) negative (Fig. 6.a). In all cases, for any initial condition \(\mu_1 \) near \(\bar{\mu} \), there is a unique intertemporal equilibrium that stays near \(\bar{\mu} \). If \(\lambda > 0 \), all such intertemporal equilibria converge to the stationary state. When \(\lambda < 0 \), they converge to the cycle of period 2, provided that \(\mu_1 \) differs from \(\bar{\mu} \).

Fig. 6
(Arrows indicate intermediate equilibrium, every two periods)

Case 1: γ_0 (0) > 0
The following formal result summarizes the preceding discussion. Given λ in U, and ε > 0, we say that the intertemporal equilibrium \((\mu_t)_{t \geq 1}\) is an ε-local equilibrium if \(\mu_t\) stays within ε of the stationary state \(\bar{\mu}_\lambda\) for all \(t \geq 1\).

Theorem 4.1: Consider a one parameter family of economies satisfying (4.a), (4.b).

1) Let \(S_0(\bar{\mu}_\lambda) < 0\). Then there exist \(\lambda_1 < 0\), \(\lambda_2 > 0\) and \(\varepsilon > 0\) such that

1.a) If \(\lambda_1 < \lambda < 0\), there is no ε-local equilibrium other than the stationary state \(\bar{\mu}_\lambda\).

1.b) If \(0 < \lambda < \lambda_2\), there is a unique cycle of period 2, i.e., \(\bar{\mu}_{1\lambda}, \bar{\mu}_{2\lambda}\), within ε of the stationary state, and all ε-local equilibria lie in \([\bar{\mu}_{1\lambda}, \bar{\mu}_{2\lambda}]\). Given \(\mu_1\) in that interval, there is a unique ε-local equilibrium with initial condition \(\mu_1\). It is contained in \([\bar{\mu}_{1\lambda}, \bar{\mu}_{2\lambda}]\), and converges to the stationary state when \(\mu_1 \neq \bar{\mu}_{1\lambda}, \bar{\mu}_{2\lambda}\).

2) Let \(S_0(\bar{\mu}_\lambda) > 0\). There exist \(\lambda_1 < 0\), \(\lambda_2 > 0\) and \(\varepsilon > 0\) such that for any \(\lambda\) in \((\lambda_1, \lambda_2)\) and any \(\mu_1\) within ε of the stationary state \(\bar{\mu}_\lambda\), there is a unique ε-local equilibrium with initial condition \(\mu_1\). Moreover,

2.a) If \(\lambda_1 < \lambda < 0\), there is a unique cycle of period 2, i.e., \(\bar{\mu}_{1\lambda}, \bar{\mu}_{2\lambda}\) within ε of the stationary state. Any ε-local equilibrium other than the stationary state converges to the period 2 orbit.

2.b) If \(0 < \lambda < \lambda_2\), all ε-local equilibria converge to the stationary state \(\bar{\mu}_\lambda\).
Proof. The existence of cycles and their asymptotic stability are a local version of Whitley (1983, Proposition 1.2), by applying it to the family of offer curves χ and reversing time, or more directly to the family of local inverses χ^{-1} near the stationary states $\tilde{\mu}_\lambda$. The statements concerning ε-local equilibria are then straightforward consequences of these stability properties. Q.E.D.

Fig. 7 below translates the preceding result into a qualitative picture, in the plane (λ, μ), within a band of $\pm \varepsilon$ on each side of the stationary state $\tilde{\mu}_\lambda$. Shaded areas describe the regions filled by deterministic ε-local equilibria. Arrows show where they converge, as $t \to +\infty$, for each λ.

Fig. 7

Local sunspots

We investigate now the relationships between ε-local sunspot equilibria and cycles in the above bifurcating family. The principle of the approach is straightforward: We assume that λ_1, λ_2 and ε in Proposition 4.1 have been chosen small enough to enable us to apply the constructive characterization given in (2.8) and Fig. 3.

It is clear that in Case 1, i.e. $S_{\chi_0}^0(\tilde{\mu}) < 0$, as described in Fig. 5, no local sunspot equilibrium exists for $\lambda < 0$, since $\chi_{\lambda}(\mu) > \mu$ for all μ close to but less than $\tilde{\mu}_\lambda$. By contrast, for $\lambda > 0$, there are infinitely many ε-local sunspot equilibria. Each of them can be generated from an arbitrary μ_1 in the interval $(\tilde{\mu}_{\lambda_1}, \tilde{\mu}_{\lambda_2})$. The support (μ_1, \ldots, μ_r) of every ε-local sunspot equilibrium is contained in the interval $(\tilde{\mu}_{1\lambda}, \tilde{\mu}_{2\lambda})$ determined by the orbit of period 2, and the union of these supports is the whole interval.
In this case, ε-local sunspot equilibria exist only for $\lambda > 0$, and there are then infinitely many of them in every neighborhood of the stationary state. The qualitative picture is much different in the second case, i.e. when $S\chi_0(\bar{\mu}) > 0$ (Fig. 6). There, stationary local sunspot equilibria exist in the vicinity of the stationary state for all values of the parameter λ, and the union of the supports $<\mu_1,\ldots,\mu_r>$ of local sunspot equilibria fills the whole neighborhood of the stationary state. For $\lambda > 0$, (Fig. 7.b, 7.c), stationary local sunspot equilibria exist in every neighborhood of $\bar{\mu}$. But for $\lambda < 0$ (Fig. 7.a), there are no stationary sunspot equilibria that lie arbitrarily near the stationary state: for every $\lambda < 0$, the closure of the support $<\mu_1,\ldots,\mu_r>$ of every ε-local sunspot equilibrium contains in its interior the interval determined by the period two cycle $[\bar{\mu}_1,\bar{\mu}_2]$.

One notices a fact that may be of potential generality, namely that in each of the above two cases, the union of the supports $<\mu_1,\ldots,\mu_r>$ of ε-local sunspot equilibria coincides with the union of deterministic ε-local intertemporal equilibria. Thus the shaded areas in the bifurcation diagram of Fig. represent also the regions filled by the supports $<\mu_1,\ldots,\mu_r>$ of stationary local sunspot equilibria in each type of bifurcation.

The following formal result summarizes the preceding discussion.

Theorem 4.2: Consider a one parameter family of economies satisfying (4.a), (4.b), and let the parameters $\lambda_1\ ,\lambda_2\ ,\varepsilon$ appearing in Theorem 4.1 be small enough.

1) Let $S\chi_0(\bar{\mu}) < 0$. Then if $\lambda_1 < \lambda < 0$, there is no ε-local sunspot equilibrium. If $0 < \lambda < \lambda_2$, there are infinitely many ε-local sunspot equilibria in every neighborhood of the stationary state, and the union of the
supports \(\mu^r, \ldots, \mu^r \) of these sunspot equilibria is \((\mu^r_1, \mu^r_2) \).

2) Let \(S_\lambda (\mu^r_0) > 0 \). Then, for each \(\lambda \), the union of the supports \(\mu^r, \ldots, \mu^r \) of \(\varepsilon \)-local sunspot equilibria is the whole interval \((\mu^r_1 - \varepsilon, \mu^r_1 + \varepsilon) \). If \(\lambda_1 < \lambda < 0 \), for every \(\varepsilon \)-local sunspot equilibrium one has \(\mu_1 < \mu^r_0 < \mu^r_1 < \mu \). If \(0 < \lambda < \lambda^r_2 \), there are infinitely many stationary local sunspot equilibria in every neighborhood of \(\mu^r_\lambda \).

Remarks 4.1. In Case 1 (resp. Case 2), the family \(\chi^r_\lambda \) undergoes a so-called supercritical (resp. subcritical) bifurcation. Had we considered instead the local inverses \(\chi^{-1}_\lambda \), the family \(\chi^{-1}_\lambda \) would have undergone a subcritical flip bifurcation in Case 1, a supercritical one in Case 2. Fig. 7 can be interpreted as the "bifurcation diagram" of \(\chi^{-1}_\lambda \).

4.2. In view of (3.1), the sort of bifurcation discussed here will occur if one increases the concavity of the utility function \(V \). It follows from Footnote 1 and Grandmont (1985a, Lemma 4.6), that with the specification
\[
V(a) = a^{1-\alpha_1}/(1-\alpha_1) \quad \text{and} \quad V(c) = (\ell^*_2 + c) / (1-\alpha_2),
\]
the map \(\chi \) has a negative Schwarzian derivative whenever \(\alpha_1 < 1, \alpha_2 > 2 \), at all \(\mu > 0 \) such that
\[
\lambda^r_1 = \lambda^r_2 = \ell^*_2 > 0,
\]
and also at \(\mu = 0 \) if \(\ell^*_2 > 0 \).
FOOTNOTES

* This work was supported by National Science Foundation Grant SES-83-20669 at the Institute for Mathematical Studies in the Social Sciences, Stanford University, Stanford, California.

** CNRS and CEPREMAP, 142, rue du Chevaleret, 75013 PARIS.

(1) The specification of the households' sector is taken from Reichlin (1986), Woodford (1986). See also Benhabib and Laroque (1986). The specification used in Grandmont (1985a) is isomorphic to the case considered here, up to a reinterpretation of the variables, when \(V_2(c) = V(\ell^* + c) \) with \(\ell^* > 0 \). This corresponds to Fig. 1.a.

(2) The result was proved in a similar model in Grandmont (1986). For related results, see Azariadis and Guesnerie (1986), Guesnerie (1986), Woodford (1984, 1986), Laitner (1986).
REFERENCES

<table>
<thead>
<tr>
<th>Working Papers</th>
<th>Title and Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>85/155:</td>
<td>François DUCHENE - Beyond the First C.A.P.</td>
</tr>
<tr>
<td>85/156:</td>
<td>Domenico Mario NUTI - Political and Economic Fluctuations in the Socialist System</td>
</tr>
<tr>
<td>85/157:</td>
<td>Christophe DEISSENBERG - On the Determination of Macroeconomic Policies with Robust Outcome</td>
</tr>
<tr>
<td>85/161:</td>
<td>Domenico Mario NUTI - A Critique of Orwell's Oligarchic Collectivism as an Economic System</td>
</tr>
<tr>
<td>85/162:</td>
<td>Will BARTLETT - Optimal Employment and Investment Policies in Self-Financed Producer Cooperatives</td>
</tr>
<tr>
<td>85/169:</td>
<td>Jean JASKOLD GABSZEWICZ, Paolo GARELLA - Asymmetric International Trade</td>
</tr>
<tr>
<td>85/170:</td>
<td>Jean JASKOLD GABSZEWICZ, Paolo GARELLA - Subjective Price Search and Price Competition</td>
</tr>
<tr>
<td>85/173:</td>
<td>Berc RUSTEM, Kumaraswamy VELUPILLAI - On Rationalizing Expectations</td>
</tr>
<tr>
<td>85/178:</td>
<td>Dwight M. JAFFEE - Term Structure Intermediation by Depository Institutions</td>
</tr>
<tr>
<td>85/179:</td>
<td>Gerd WEINRICH - Price and Wage Dynamics in a Simple Macroeconomic Model with Stochastic Rationing</td>
</tr>
<tr>
<td>85/180:</td>
<td>Domenico Mario NUTI - Economic Planning in Market Economies: Scope, Instruments, Institutions</td>
</tr>
<tr>
<td>85/181:</td>
<td>Will BARTLETT - Enterprise Investment and Public Consumption in a Self-Managed Economy</td>
</tr>
<tr>
<td>85/187:</td>
<td>Jesper JESPERSEN - Some Reflexions on the Longer Term Consequences of a Mounting Public Debt</td>
</tr>
<tr>
<td>85/188:</td>
<td>Jean JASKOLD GABSZEWICZ, Paolo GARELLA - Scattered Sellers and Ill-Informed Buyers: A Model of Price Dispersion</td>
</tr>
<tr>
<td>85/194:</td>
<td>Domenico Mario NUTI - The Share Economy: Plausibility and Viability of Weitzman's Model</td>
</tr>
<tr>
<td>85/195:</td>
<td>Pierre DEHEZ, Jean-Paul FITOUSSI - Wage Indexation and Macroeconomic Fluctuations</td>
</tr>
<tr>
<td>Volume</td>
<td>Author(s)</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>85/196</td>
<td>Werner HILDENBRAND</td>
</tr>
<tr>
<td>85/198</td>
<td>Will BARTLETT, Milica UVALIC</td>
</tr>
<tr>
<td>85/200</td>
<td>Domenico Mario NUTI</td>
</tr>
<tr>
<td>85/201</td>
<td>Ernesto SCREPANTI</td>
</tr>
<tr>
<td>86/206</td>
<td>Volker DEVILLE</td>
</tr>
<tr>
<td>86/212</td>
<td>Emil CLAASSEN, Melvyn KRAUSS</td>
</tr>
<tr>
<td>86/214</td>
<td>Alberto CHILOSI</td>
</tr>
<tr>
<td>86/218</td>
<td>Emil CLAASSEN</td>
</tr>
<tr>
<td>86/222</td>
<td>Edmund S. PHELPS</td>
</tr>
<tr>
<td>86/223</td>
<td>Giuliano FERRARI BRAVO</td>
</tr>
<tr>
<td>86/224</td>
<td>Jean-Michel GRANDMONT</td>
</tr>
<tr>
<td>86/225</td>
<td>Donald A.R. GEORGE</td>
</tr>
<tr>
<td>86/227</td>
<td>Domenico Mario NUTI</td>
</tr>
<tr>
<td>86/228</td>
<td>Domenico Mario NUTI</td>
</tr>
<tr>
<td>86/229</td>
<td>Marcello DE CECCO</td>
</tr>
<tr>
<td>86/230</td>
<td>Rosemarie FEITHEN</td>
</tr>
<tr>
<td>86/232</td>
<td>Saul ESTRIN, Derek C. JONES</td>
</tr>
</tbody>
</table>
Labour Managed Firms, Employee Participation and Profit Sharing - Theoretical Perspectives and European Experience.

Information, Expectations and Economic Planning

Time, Jurisdiction and Sovereign Risk

Financial Innovations and Monetary Theory

Competitive Equilibria with Increasing Returns

Market Uncertainty: Correlated Equilibrium and Sunspot Equilibrium in Market Games

Profit-Sharing and Employment: Claims and Overclaims

Informal Pressures, Mobilization, and Campaigns in the Management of Centrally Planned Economies

Reforming or Perfecting the Economic Mechanism in Eastern Europe

Lipschitz Continuous Policy Functions for Strongly Concave Optimization Problems

Endogenous Fluctuations in a Two-Sector Overlapping Generations Economy

The Second Welfare Theorem in Nonconvex Economies

Recent Studies of Speculative Markets in the Controversy over Rational Expectations

Distributive Production Sets and Equilibria with Increasing Returns

The German Banking System: Legal Foundations and Recent Trends

Quantity Guided Price Setting

Can Joint Ventures in Hungary Serve as a "Bridge" to the CMEA Market?
<table>
<thead>
<tr>
<th>WPS No.</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>87/277:</td>
<td>Felix FITZROY</td>
<td>Efficiency Wage Contracts, Unemployment, and Worksharing</td>
</tr>
<tr>
<td>87/279:</td>
<td>Darrell DUFFIE, Wayne SHAFFER</td>
<td>Equilibrium and the Role of the Firm in Incomplete Markets</td>
</tr>
<tr>
<td>87/280:</td>
<td>Martin SHUBIK</td>
<td>A Game Theoretic Approach to the Theory of Money and Financial Institutions</td>
</tr>
<tr>
<td>87/283:</td>
<td>Leslie T. OXLEY, Donald A. R. GEORGE</td>
<td>Perfect Foresight, Non-Linearity and Hyperinflation</td>
</tr>
<tr>
<td>87/284:</td>
<td>Saul ESTRIN, Derek C. JONES</td>
<td>The Determinants of Workers' Participation and Productivity in Producer Cooperatives</td>
</tr>
<tr>
<td>87/285:</td>
<td>Domenico Mario NUTI</td>
<td>Financial Innovation under Market Socialism</td>
</tr>
<tr>
<td>87/286:</td>
<td>Felix FITZROY</td>
<td>Unemployment and the Share Economy: A Sceptical Note</td>
</tr>
<tr>
<td>87/287:</td>
<td>Paul HARE</td>
<td>Supply Multipliers in a Centrally Planned Economy with a Private Sector</td>
</tr>
<tr>
<td>87/288:</td>
<td>Roberto TAMBORINI</td>
<td>The Stock Approach to the Exchange Rate: An Exposition and a Critical Appraisal</td>
</tr>
<tr>
<td>87/289:</td>
<td>Corrado BENASSI</td>
<td>Asymmetric Information and Financial Markets: from Financial Intermediation to Credit Rationing</td>
</tr>
<tr>
<td>87/296:</td>
<td>Gianna GIANNELLI</td>
<td>On Labour Market Theories</td>
</tr>
<tr>
<td>87/297:</td>
<td>Domenica TROPEANO</td>
<td>The Riddle of Foreign Exchanges: A Swedish-German Debate (1917-1919)</td>
</tr>
<tr>
<td>87/306:</td>
<td>Paolo GARELLA</td>
<td>Adverse Selection and Intermediation</td>
</tr>
<tr>
<td>87/307:</td>
<td>Jean-Michel GRANDMONT</td>
<td>Local Bifurcations and Stationary Sunspots</td>
</tr>
<tr>
<td>87/308:</td>
<td>Birgit GRODAL, Werner HILDENBRAND</td>
<td>Income Distributions and the Axiom of Revealed Preference</td>
</tr>
<tr>
<td>87/309:</td>
<td>Eric PEREE, Alfred STEINHERR</td>
<td>Exchange Rate Uncertainty and Foreign Trade</td>
</tr>
</tbody>
</table>

Spare copies of these working papers and/or a complete list of all working papers that have appeared in the Economics Department series can be obtained from the Secretariat of the Economics Department.
EUI Working Papers are published and distributed by the European University Institute, Florence.

A complete list and copies of Working Papers can be obtained free of charge -- depending on the availability of stocks -- from:

The Publications Officer
European University Institute
Badia Fiesolana
I-50016 San Domenico di Fiesole (FI)
Italy

Please use order form overleaf
To The Publications Officer
European University Institute
Badia Fiesolana
I-50016 San Domenico di Fiesole (FI)
Italy

From Name...
Address...
...
...

Please send me: □ a complete list of EUI Working Papers
□ the following EUI Working Paper(s):

No.:........................
Author, title:..............................
...
...
...

Date:.................... Signature:
86/257: Luigi MONTRUCCHIO
Lipschitz Continuous Policy Functions for Strongly Concave Optimization Problems

86/258: Gunther TEUBNER
Unternehmenskorporatismus New Industrial Policy und das "Wesen" der juristischen Person

86/259: Stefan GRUCHMANN
Externalitätenmanagement durch Verbaende

86/260: Aurelio ALAIMO
City Government in the Nineteenth Century United States Studies and Research of the American Historiography

87/261: Odile QUINTIN
New Strategies in the EEC for Equal Opportunities in Employment for Men and Women.

87/262: Patrick KENIS
Public Ownership: Economizing Democracy or Democratizing Economy?

87/263: Bob JESSOP
The Economy, the State and the Law: Theories of Relative Autonomy and Autopoietic Closure

87/264: Pietro REICHLIN
Endogenous Fluctuations in a Two-Sector Overlapping Generations Economy

87/265: Bernard CORNET
The Second Welfare Theorem in Nonconvex Economies

87/266: Nadia URBINATI
Libertà e buon governo in John Stuart Mill e Pasquale Villari

87/267: Edmund PHELPS
Recent Studies of Speculative Markets in the Controversy over Rational Expectations

87/268: Pierre DEHEZ and Jacques DREZE
Distributive Productions Sets and Equilibria with Increasing Returns

87/269: Marcello CLARICH
The German Banking System; Legal Foundations and Recent Trends

87/270: Egbert DIERKER and Wilhelm NEUEFEIND
Quantity Guided Price Setting

* : Working Paper out of print
87/271: Winfried BOECKEN — Der verfassungsrechtliche Schutz von Altersrentenansprüchen und -anwartschaften in Italien und in der Bundesrepublik Deutschland sowie deren Schutz im Rahmen der Europäischen Menschenrechtskonvention

87/273: Gisela BOCK — Geschichte, Frauengeschichte, Geschlechtergeschichte

87/274: Jean BLONDEL — Ministerial Careers and the Nature of Parliamentary Government: The Cases of Austria and Belgium

87/275: Birgitta NEDELMANN — Individuals and Parties – Changes in Processes of Political Mobilization

87/276: Paul MARER — Can Joint Ventures in Hungary Serve as a "Bridge" to the CMEA Market?

87/277: Felix FITZROY — Efficiency Wage Contracts, Unemployment and Worksharing

87/278: Bernd MARIN — Contracting Without Contracts Economic Policy Concertation by Autopoietic Regimes beyond Law

87/279: Darrell DUFFIE and Wayne SHAFER — Equilibrium and the Role of the Firm in Incomplete Markets

87/280: Martin SHUBIK — A Game Theoretic Approach to the Theory of Money and Financial Institutions

87/281: Goesta ESPING ANDERSEN — State and Market in the Formation of Social Security Regimes A Political Economy Approach

* : Working Paper out of print
<table>
<thead>
<tr>
<th>Number</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>87/283</td>
<td>Leslie Oxley and Donald George</td>
<td>Perfect Foresight, Non-Linearity and Hyperinflation</td>
</tr>
<tr>
<td>87/284</td>
<td>Saul Estrin and Derek Jones</td>
<td>The Determinants of Workers' Participation and Productivity in Producer Cooperatives</td>
</tr>
<tr>
<td>87/285</td>
<td>Domenico Mario Nuti</td>
<td>Financial Innovation under Market Socialism</td>
</tr>
<tr>
<td>87/286</td>
<td>Felix Fitzroy</td>
<td>Unemployment and the Share Economy: A Sceptical Note</td>
</tr>
<tr>
<td>87/287</td>
<td>Paul Hare</td>
<td>Supply Multipliers in a Centrally Planned Economy with a Private Sector</td>
</tr>
<tr>
<td>87/288</td>
<td>Roberto Tamborini</td>
<td>The Stock Approach to the Exchange Rate: an Exposition and a Critical Appraisal</td>
</tr>
<tr>
<td>87/289</td>
<td>Corrado Benassi</td>
<td>Asymmetric Information and Financial Markets: from Financial Intermediation to Credit Rationing</td>
</tr>
<tr>
<td>87/290</td>
<td>Johan Barnard</td>
<td>The European Parliament and Article 173 of the EEC Treaty</td>
</tr>
<tr>
<td>87/291</td>
<td>Gisela Bock</td>
<td>History, Women's History, Gender History</td>
</tr>
<tr>
<td>87/292</td>
<td>Frank Prochaska</td>
<td>A Mother's Country: Mothers' Meetings and Family Welfare in Britain, 1850 - 1950</td>
</tr>
<tr>
<td>87/293</td>
<td>Karen Offen</td>
<td>Women and the Politics of Motherhood in France, 1920 - 1940</td>
</tr>
<tr>
<td>87/294</td>
<td>Gunther Teubner</td>
<td>Enterprise Corporatism</td>
</tr>
<tr>
<td>87/295</td>
<td>Luciano Bardi</td>
<td>Preference Voting and Intra-Party Competition in Euro-Elections</td>
</tr>
<tr>
<td>87/296</td>
<td>Gianna Giannelli</td>
<td>On Labour Market Theories</td>
</tr>
<tr>
<td>87/297</td>
<td>Domenica Tropeano</td>
<td>The Riddle of Foreign Exchanges: A Swedish-German Debate</td>
</tr>
<tr>
<td>87/298</td>
<td>B. Thom, M. Blom, T. Van Den Berg, C. Sterk, C. Kaplan</td>
<td>Pathways to Drug Abuse Amongst Girls in Britain and Holland</td>
</tr>
</tbody>
</table>

* : Working Paper out of print
PUBLICATIONS OF THE EUROPEAN UNIVERSITY INSTITUTE

87/299: V. MAQUIEIRA, J.C. LAGREE, P. LEW FAI, M. De WAAL
Teenage Lifestyles and Criminality in Spain, France and Holland

87/300: A. ELZINGA, P. NABER, R. CIPPOLLINI, F. FACCIOLI, T. PITCH
Decision-Making About Girls by the Criminal Justice System in Holland and Italy

87/301: S. LEES, J. SHAW, K. REISBY
Aspects of School Culture and the Social Control of Girls

87/302: Eleanor MILLER, Rosa ANDRIEU-SANZ and Carmen VAZQUEZ ANTON
Becoming a Teenage Prostitute in Spain and the U.S.A.

87/303: Mary EATON and Lode WALGRAVE
A comparison of crime and its treatment amongst girls in Britain and Belgium

87/304: Annie HUDSON Edna OPPENHEIMER
Towards an effective policy for delinquent girls

87/305: Talman VAN DER LAN
Computing, Economic Equilibria

87/306: Paolo C. GARELLA
Adverse Selection and Intermediation

87/307: Jean-Michel GRANDMONT
Local Bifurcations and Stationary Sunspots

87/308: Birgit GRODAL/Werner HILDENBRAND
Income Distributions and the Axiom of Revealed Preference

87/309: Eric PEREE/Alfred STEINHERR
Exchange Rate Uncertainty and Foreign Trade

87/310: Giampaolo VALDEVIT
American Policy in the Mediterranean: The Operational Codes, 1945-1952

87/311: Federico ROMERO
United States Policy for Postwar European Reconstruction: The Role of American Trade Unions

*: Working Paper out of print