LIPSCHITZ CONTINUOUS POLICY FUNCTIONS
FOR STRONGLY CONCAVE OPTIMIZATION PROBLEMS

by

Luigi Montrucchio

This paper was presented at the Workshop in Mathematical Economics organized by the European University Institute in San Miniato, 8-19 September 1986. Financial support from the Scientific Affairs Division of NATO and the hospitality of the Cassa di Risparmio di San Miniato are gratefully acknowledged.
Lipschitz Continuous Policy Functions for Strongly Concave Optimization Problems

ABSTRACT

We prove that the policy function, obtained by optimizing a discounted infinite sum of stationary return functions, are Lipschitz continuous when the instantaneous function is strongly concave. Moreover, by using the notion of α-concavity, we provide an estimate of the Lipschitz constant which turns out to be a decreasing function of the discount factor.

**

This research was partially supported by a grant from the Italian "Ministero della Pubblica Istruzione". An early version of this paper was discussed at IMSSS (Stanford) in the Summer Seminars 1986. This version was presented at the "Workshop in Mathematical Economics", San Miniato. I wish to thank Professor Pierre Dehez for providing me this opportunity and all the participants for useful comments.
1. Introduction

Several dynamic economic problems can be stated in terms of optimization of a discounted sum of stationary functions subject to stationary constraints. A great deal of research has been directed to finding conditions for the dynamic stability of the optimal solutions of these models. Typically this requires a rather large discount factor (but see Araujo and Scheinkman(1977) for a notable exception).

It is well known that in these models the optimal paths are generated by a "policy function" τ_δ which maps the current state x_t into the next state $x_{t+1} = \tau_\delta(x_t)$. This policy function depends on the discount factor δ.

Recently it has been pointed out that a high discounting of the future utilities may destroy the regular dynamic behavior of the optimal paths and that the system may even reach a chaotic regime [see Montrucchio (1986), Deneckere and Pelikan(1986), Boldrin and Montrucchio(1986)]. In particular we proved in Boldrin and Montrucchio(1986) that any C^2 dynamical system $x_{t+1} = \theta(x_t)$ can represent a policy function τ_δ when δ is small enough.

On the other side turnpike results suggest that the policy function becomes simpler as the discount factor δ increases.

We propose the Lipschitz constant of the map τ_δ as a measure of its degree of "complexity", i.e. the smaller the Lipschitz constant the simpler are the dynamic paths produced by τ_δ. A good measure of the Lipschitz constant would be obtained by computing the norm of the derivative of τ_δ with respect to x. Unfortunately it is not clear whether $\tau_\delta(x)$ is differentiable or not, even in the case in which the one-period
return function is C^2. To be sure, only continuity of τ_δ has been proved to be true under standard conditions.

The main achievement of this paper is to prove that strongly concave return functions produce, under some qualifications, policy functions which are Lipschitz continuous and, furthermore, to give an estimate of the Lipschitz constant which turns out to be a decreasing function of the discount factor.

The paper is organized as follows.

In Section 2 we introduce a general discrete-time model of optimization over an infinite horizon.

In Section 3 we characterize the notion of strongly concave functions, by using the α-concavity theory of Rockafellar (1976).

In Section 4 we introduce the transform $U(x,y) \rightarrow \Psi(t)$ which associates a real function $\Psi(t)$ to any concave function $U(x,y)$.

The last section contains the central results. We prove that if the return function is strongly concave the value function is strongly concave as well. Moreover one can evaluate its degree of concavity by means of the $\Psi(t)$ function given in Section 4. Theorem 5.2 gives the above mentioned estimate of the Lipschitz constant of the policy function τ_δ. Some remarks on the implications of this result are contained in the conclusive section.
2. The Model

In this paper we will analyse the dynamic behavior of the solutions to the problem \(P(x_0, \delta) : \)

\[
W_\delta(x_0) = \max \sum_{t=1}^{\infty} V(x_{t-1}, x_t) \delta^{t-1}, \quad \text{subject to } (x_{t-1}, x_t) \in D, \quad t = 1, 2, \ldots \text{ and } x_0 \text{ fixed in } X.
\]

Under the following assumptions:

A.1) \(X \) is a compact and convex subset of \(\mathbb{R}^n \);
A.2) \(V : X \times X \to \mathbb{R} \) is a continuous and strictly concave function;
A.3) \(D \) is a closed and convex subset of \(X \times X \) and \(\text{pr}_1(D) = X \);
A.4) \(0 < \delta < 1 \) is the discount factor.

Under (A.1)-(A.4) problem \(P(x_0, \delta) \) has one and only one optimal solution \((x^*_t) \) for any given initial condition \(x_0 \) in \(X \). Moreover the "value function" \(W_\delta \) turns out to be strictly concave on \(X \) and to satisfy the Bellman equation:

\[
W_\delta(x) = \max_{y} \left\{ V(x, y) + \delta W_\delta(y) ; \text{s.t. } (x, y) \in D \right\}. \tag{2}
\]

In the theory of Dynamic Programming the optimal sequences \((x^*_t) \) is generated by the dynamical system:
\[x_t^* = \tau_\delta(x_{t-1}^*) , \quad x_0^* = x_0 \text{ given in } X , \quad (3) \]

where \(\tau_\delta : X \rightarrow X \) is a continuous map (the so-called optimal policy or policy function), which depends continuously on the discount parameter \(\delta \). (2) implies that \(\tau_\delta \) is obtained by maximizing \(V(x,y)+\delta W_\delta(y) \), that is to say:

\[
\max_y \left\{ V(x,y)+\delta W_\delta(y) \; ; \; \text{s.t. } (x,y) \in D \right\} = V(x,\tau_\delta(x))+\delta W_\delta(\tau_\delta(x)). \quad (4)
\]

It is also well known that the value function \(W_\delta \) turns out to be the unique fixed point of the functional equation \(U_\delta(f) = f \), where

\[
U_\delta(f)(x) = \max_y \left\{ V(x,y) + \delta f(y) \; ; \; \text{s.t. } (x,y) \in D \right\} \quad (5)
\]
maps the space \(C^0(X;\mathbb{R}) \) into itself. Here \(C^0(X;\mathbb{R}) \) is the space of all continuous functions endowed with the uniform topology. \(U_\delta \) is in fact a contraction operator:

\[\| U_\delta(f)-U_\delta(g) \| \leq \delta \| f - g \| , \]

for all \(f,g \in C^0(X;\mathbb{R}) \). Its unique fixed point is the value function \(W_\delta \), see (2).

We recall also that the successive iterates of \(U_\delta \), starting from the zero function : \(U_\delta(0) \), \(U_\delta(2)(0) \), \(U_\delta(3)(0) \), ..., yield the value functions of the problems with finite horizon. In other words:

\[
U_\delta^{(T)}(0) = W_\delta, T(x_0) = \max_{x_0} \sum_{t=1}^{m} V(x_{t-1},x_t) \delta^{t-1} , \text{subject to } (x_{t-1},x_t) \in D \text{ and } x_0 \text{ fixed in } X . \quad (6)
\]
As it was mentioned in the introduction, there is no conclusive evidence about the differentiability of τ_δ. However a heuristic way to understand the methods we are using is that of looking at the one-dimensional case, under the assumption that W_δ is twice differentiable. If τ_δ is interior, from (4) and the implicit function theorem, we have:

$$\frac{d \tau_\delta}{dx} = -V_{12}(x, \tau_\delta(x)) \left[V_{22}(x, \tau_\delta(x)) + \delta W''_\delta(\tau_\delta(x)) \right]^{-1}.$$

Therefore we get the estimate:

$$\left| \frac{d \tau_\delta}{dx} \right| \leq L (\alpha + \delta \tau_\delta)^{-1},$$

where $L = \max \left| V_{12}(x,y) \right|$,

$$\alpha = \min \left| V_{22}(x,y) \right| \quad \text{and} \quad \tau_\delta = \min \left| W''_\delta(x) \right|,$$

which in turn implies:

$$|\tau_\delta(x_1) - \tau_\delta(x_2)| \leq L (\alpha + \delta \tau_\delta)^{-1} |x_1 - x_2| \quad (7)$$

We shall make (7) rigorous (see Theorem 5.2) by giving an appropriate meaning to L, α, τ_δ. α and τ_δ will be related to a measure of "curvature" of $V(x,.)$ and $W_\delta(.)$ obtained from the notion of α-concavity.
3. \(\alpha \)-concavity

Although our applications involve finite dimensional spaces, Hilbert spaces are a natural setting for the theory we are developing. Therefore throughout this and the next section the functions \(f \) are defined on convex sets \(X \) of a Hilbert space \(H \). \(\| \cdot \| \) denotes the Hilbert norm in \(H \). Analogously functions \(U(x,y) \) will be defined on a set \(D \) that is a convex subset of \(H \times H^\bot \), where \(H, H^\bot \) are real Hilbert spaces.

Definition 3.1 \(f \) is said to be \(\alpha \)-concave on \(X \), if
\[
f(x) + (1/2) \alpha \| x \|^2
\]
is concave on \(X \), or, equivalently, if
\[
f(tx_1 + (1-t)x_2) \geq t f(x_1) + (1-t) f(x_2) + (1/2) \alpha (t-t) \| x_1 - x_2 \|^2
\]
holds for any \(x_1, x_2 \in X \) and all \(t \in [0, 1] \).

Definition 3.2 \(U(x,y) \) is said to be \(\alpha \)-concave on \(D \) if
\[
U(x,y) + (1/2) \alpha \| x \|^2
\]
is concave on \(D \), or, equivalently, if
\[
U(tx_1 + (1-t)x_2, ty_1 + (1-t)y_2) \geq tU(x_1, y_1) + (1-t)U(x_2, y_2) + (1/2) \alpha (t-t) \| x_1 - x_2 \|^2
\]
for all \((x_1, y_1), (x_2, y_2) \in D \) and \(t \in [0, 1] \).

Definition 3.3 We set
\[
\rho(f;X) = \sup \{ \alpha : f \text{ is } \alpha \text{-concave on } X \}
\]
\[
\rho_x(U;D) = \sup \{ \alpha : U \text{ is } \alpha \text{-concave on } D \}
\]

If \(f \) and \(U \) are concave : \(\rho(f;X) > 0 \), \(\rho_x(U;D) > 0 \) and they are termed the concavity parameter of \(f \) and \(U \). The assumptions
\(p(f;X) > 0 \) and \(p(U;D) > 0 \) will denote strong concavity.

We recall that in (10): \(\text{Sup} \{ \alpha \} = \text{Max} \{ \alpha \} < +\infty \) in both cases.

In the differentiable case, there are simple criteria to verify \(\alpha \)-concavity. For example: if \(f \) is twice differentiable over an open set containing \(X \), then \(f \) is \(\alpha \)-concave (\(\alpha \geq 0 \)) when

\[
|w' D^2 f(x) w| \geq \alpha \|w\|^2
\]

for all \(x \in X \) and \(w \in H \).

We need also a notion of directional derivative which replaces differentiability. If \(f \) is a finite concave function and \(x_0 \) a point in \(X \), then we can define the directional derivative of \(f \) at \(x_0 \) in the direction \(h \in H \), as the limit:

\[
f'(x_0; h) = \lim_{t \to 0^+} t^{-1} [f(x_0 + th) - f(x_0)].
\]

When \(h \) is feasible, i.e., \((x_0, x_0 + th) \cap X \neq \emptyset \) for some \(t > 0 \), the above limit \(f'(x_0; h) \) always exists (finite or infinite). In the same way \(U'_2(x,y;h) \) denotes the partial directional derivative at \((x,y) \) along \(h \in H_1 \). In other words:

\[
U'_2(x,y;h) = \lim_{t \to 0^+} t^{-1} [U(x,y+th) - U(x,y)].
\]

Theorem 3.1 Let \(U : X \times Y \to \mathbb{R} \) be a finite concave function, where \(X \subset H \) and \(Y \subset H_1 \) are closed and convex subsets of Hilbert spaces. Assume:

i) \(U(x,.) \) is upper-semicontinuous on \(Y \) for each \(x \) in \(X \);

ii) \(U(x,.) \) is \(\alpha \)-concave on \(Y \) for each \(x \) in \(X \);
iii) \(|U'_2(x_1, y; h) - U'_2(x_2, y; h)| \leq L \|x_1 - x_2\| \|h\| \) for any feasible direction \(h \in H \) and \(x_1, x_2 \in X \);

then we have:

a) there exists a unique map \(\theta : X \rightarrow Y \) such that

\[
\sup_{y \in Y} U(x, y) = U(x, \theta(x))
\]

b) \(\theta(x) \) is Lipschitz continuous on \(X \) and

\[
\|\theta(x_1) - \theta(x_2)\| \leq \frac{L}{\alpha} \|x_1 - x_2\|, \quad x_1, x_2 \in X.
\]

Remark 3.1 In Theorem 3.1 the feasible set \(D \) agrees with the whole domain \(X \times Y \). In the case in which \(D \) is a strict subset of \(X \times Y \), we have that if the map \(\theta \) such that \(\sup_y \{U(x, y) \mid (x, y) \in D\} = U(x, \theta(x)) \) is interior, then the conclusion (b) still holds. This is easily verified by looking at the proof of the theorem.

Proof: See Appendix.

We end this section with a few comments.

1) Condition (iii) implies implicitly that \(U'_2(x, y; h) < +\infty \) for any \((x, y, h) \in X \times Y \times H \) with \(h \) feasible.

2) If \(U \) is \(C^2 \) then one can choose for \(L \) a number such that \(\|U_{12}(x, y)\| \leq L \), for all \((x, y) \in X \times Y \), whereas \(a \) can be taken such that \(w'U_{22}(x, y)w \geq a \|w\|^2 \), \(w \in H \) and \((x, y) \in X \times Y \). With these qualifications one obtains a theorem given in Fleming and Rischel (1975; pag. 170). Their assumptions are:

\(U \)
is C^2 and X, Y are finite dimensional spaces. Our extension is not fictitious because it is addressed to return functions of the type $U(x, y) = V(x, y) + \delta W_\delta(y)$ (see (2)). As it was already mentioned, even when V is C^2 it does not imply that W_δ is C^2 too.
4. The Ψ-transform

Proposition 4.1 Let $U : D \rightarrow \mathbb{R}$ be finite and bounded from above ($D \subset X \times Y \subset H \times H'$). If U is α-concave on D (see Definition 3.2), then

$$W(x) = \sup \{ U(x,y) ; \text{s.t.} \ (x,y) \in D \}$$

is α-concave on X.

Proof: Take two points x_1, x_2 in X and two numbers a, b such that $W(x_1) > a$ and $W(x_2) > b$. By assumptions there exist y', y'' in D such that $W(x_1) > U(x_1, y') > a$ and $W(x_2) > U(x_2, y'') > b$. It follows from (9) that:

$$W(t x_1 + (1-t) x_2) \geq t W(x_1) + (1-t) W(x_2) + \frac{1}{2} \alpha t (1-t) \|x_1 - x_2\|^2.$$

As a tend to $W(x_1)$ and b to $W(x_2)$ respectively, we obtain

$$W(t x_1 + (1-t) x_2) \geq t W(x_1) + (1-t) W(x_2) + \frac{1}{2} \alpha (1-t) \|x_1 - x_2\|^2.$$

and this completes the proof.

Definition 4.1 Let $U : D \rightarrow \mathbb{R}$ be a finite concave function. The Ψ-transform of U is the real function defined on $t \geq 0$:

$$\Psi(t;U,D) = \sup \{ \alpha \geq 0 ; U(x,y) + \frac{1}{2} \alpha \|x\|^2 - \frac{1}{2} \|y\|^2 \}$$

is concave on D.

In the sequel the notations $\Psi(t;D)$, or even $\Psi(t)$, instead of $\Psi(t;U,D)$ may be met.
Proposition 4.2 The \mathcal{F}-transform of any finite concave function $U: \mathcal{D} \to \mathbb{R}$ is a continuous, increasing and concave function on $t \geq 0$. Moreover it is bounded: $0 \leq \mathcal{F}(t) \leq \inf_{y} \rho(U(.,y))$.

Proof: As one can easily verify:

$$\rho_x(c_1U + c_2U_2) \geq c_1 \rho_x(U_1) + c_2 \rho_x(U_2)$$

(11)

for $c_1, c_2 > 0$ and U_1, U_2 concave on \mathcal{D}.

If $t > t_1$, we can write

$$U(x,y) = (1/2)t \|y\|^2 = [U(x,y) - (1/2)t_1 \|y\|^2] - (1/2) (t-t_1) \|y\|^2,$$

and from (11), we have $\mathcal{F}(t) \geq \mathcal{F}(t_1)$. Concavity of $\mathcal{F}(t)$ follows directly by (11). This implies, in turn, that $\mathcal{F}(t)$ is continuous on $(0, +\infty)$ and that $\mathcal{F}(0) \leq \lim \mathcal{F}(t)$ as $t \to 0^+$. On the other hand, it is easily verified that $\rho_x(.)$ is "upper semicontinuous". More precisely, if U_n is a sequence of concave functions which point-wise converges to U, then

$$\limsup_{n} \rho_x(U_n) \leq \rho_x(U).$$

This implies that

$$\limsup \mathcal{F}(t) \leq \mathcal{F}(0),$$

as $t \to 0^+$. Consequently $\lim \mathcal{F}(t) = \mathcal{F}(0)$, as $t \to 0^+$ and therefore $\mathcal{F}(t)$ is continuous at 0 too. The last part of the statement is obvious.

Remark: $\mathcal{F}(0) = \rho_x(U ; \mathcal{D})$. If U is strongly concave then $\mathcal{F}(0) > 0$.

Theorem 4.1 Let $U(x,y)$ and $f(y)$ be finite and bounded from above on $\mathcal{X} \times \mathcal{Y}$ and \mathcal{Y} respectively. If f is α-concave on \mathcal{Y}, then

$$W(x) = \sup_{y} \{U(x,y) + f(y) ; \text{s.t. } (x,y) \in \mathcal{D} \subset \mathcal{X} \times \mathcal{Y} \}$$

is $\mathcal{F}(\alpha ; U, \mathcal{D})$-concave on \mathcal{X}.

© The Author(s). European University Institute.

© The Author(s). European University Institute.
Proof: \(U(x,y) + f(y) \) can be written as \(\left[U(x,y) - (1/2)\alpha \| y \|^2 \right] + \left[f(y) + (1/2)\alpha \| y \|^2 \right] \). The first addendum is \(\Psi(\alpha;U)_x \)-concave, by definition, whereas the second one is \(\Omega \)-concave. Hence \(U + f \)
is surely \(\Psi(\alpha;U)_x \)-concave on \(D \) and the statement follows by Proposition 4.1.

To make things more evident let us show two examples of \(\Psi \)-transforms. The computations are straightforward and, therefore, omitted.

Example 1: Quadratic case. Let \(X = Y = \mathbb{R}^n \), \(D = X \times Y \) and \(U(x,y) = (1/2) x'Ax + x'By + (1/2) y'Cy \) be concave (\(A \) and \(C \) are negative definite). The \(\Psi \)-transform of \(U \) is \(\Psi(t) = \) the least eignenvalue of \(\left[B \left(C - t I_n \right)^{-1} B' - A \right] \).

Example 2: The \(C^2 \) one-dimensional case. Let \(D \subset \mathbb{R} \times \mathbb{R} \) be an open and convex set. Assume \(U(x,y) \) to be a concave \(C^2 \) function on \(D \). We have:
\[
\Psi(t) = \inf_{(x,y) \in D} \left[\frac{U_{12}^2(x,y)}{U_{22}}(U_{22}(x,y)-t)^{-1} - U_{11}(x,y) \right].
\]
Here \(U_{ij} \) denote the second partial derivatives of \(U \).
5. Lipschitzian Policy Functions

In this section we apply the results of Section 3 and 4 to the problem $P(x_0, \delta)$ discussed in Section 2. The notation is the same of that section. $\rho_1(\delta) = \rho(W_\delta, X)$ will denote the concavity parameter of the value function of the truncated problem (see (6)). $\rho_\infty(\delta) = \rho(W_\delta, X)$ will denote the concavity parameter of the value function of problem $P(x_0, \delta)$.

Lemma 5.1 Let the return function $V(x, y)$ of $P(x_0, \delta)$ be strongly concave (i.e. $\rho_x(V; D) > 0$) and $\psi(t) = \psi(t; V, D)$ be the ψ-transform of V. We have:

i) The equation $\psi(\delta t) = t$ has one and only one positive solution t_δ for any δ fixed in $(0, 1)$. Moreover t_δ increases continuously as δ increases;

ii) the iterative system $t_n = \psi(t_{n-1})$ is increasingly convergent to t_δ for all initial condition $t_0 \in [0, t_\delta)$ and it is decreasingly convergent to t_δ for all $t_0 \in (t_\delta, +\infty)$.

Proof: i) Let us write $\psi_\delta(t) = \psi(\delta t)$. ψ_δ is again an increasing concave function for $t > 0$. Take $a(t) = \psi_\delta(t) - t$. Since $a(0) > 0$ and $a(+\infty) = -\infty$, it follows that at least a t_δ exists such that $\psi_\delta(t_\delta) = t_\delta$. It is unique. In fact, suppose not: $\psi_\delta(t_1) = t_1$ and $\psi_\delta(t_2) = t_2$, with $t_1 = \theta t_2$ and $0 < \theta < 1$.

But then $\psi_\delta(t_1) = \psi_\delta(\theta t_2 + (1-\theta) t_0) \geq \theta \psi_\delta(t_2) + (1-\theta) \psi_\delta(t_0)$, i.e.,

$t_1 \geq \theta t_2 + (1-\theta) \psi_\delta(t_0)$, that implies $\psi(0) < 0$ which contradicts our assumption ($\rho_x(V) > 0$ is equivalent to $\psi(0) > 0$).

In a same way it is easily seen that $\delta_1 \leq \delta_2$ implies $t_{\delta_1} \leq t_{\delta_2}$. The
continuous dependence on δ is then easily obtained by using topological degree methods.

ii) Consider now the iterative system $t_n = \psi_{\delta}(t_{n-1})$. For all $t_0 \in [0, t_0)$ one has $\psi_{\delta}(t_0) \in [0, t_0)$. In fact, $t_0 < t_0 + \psi_{\delta}(t_0) \leq \psi_{\delta}(t_0) + t_0$. By uniqueness it follows $\psi_{\delta}(t_0) < t_0$.

Moreover $\psi_{\delta}(t_0) > t_0$ holds. Indeed, suppose not: $\psi_{\delta}(t_0) \leq t_0$.

As $\psi_{\delta}(0) > 0$, there will exist another fixed point t' of ψ_{δ} belonging to $[0, t_0]$. But this contradicts part (a). Hence the sequence of iterates will be: $t_0 < t_1 < t_2 < \ldots < t_\delta$ and so $\lim n = t_\delta$ as $n \to \infty$.

One can deal with the case $t_0 \in (t_\delta, +\infty)$ by a similar method.

Theorem 5.1 Assume $\rho_x(V;D) > 0$ and t_δ be defined as in Lemma 5.1. We have:

i) $\rho_T(\delta) \geq \rho_x(V;D)$, $\rho_\infty(\delta) \geq \rho_x(V;D)$;

ii) there are two possibilities: either $\rho_T(\delta) < t_\delta$ for any T and then $\rho_T(\delta) < \rho_{T+1}(\delta)$ and $\lim \rho_T(\delta) = \rho_\infty(\delta)$ as $T \to \infty$;

or $\rho_{T_0}(\delta) \geq t_\delta$ for some T_0 and then $\rho_T(\delta) \geq t_\delta$ for all $T \geq T_0$;

iii) $\rho_\infty(\delta) \geq t_\delta$.

Proof: Let us use the iterative system described in Section 2 (see (5) and (6)):

$$W_{\delta,T}(x) = \max_y \left\{ V(x,y) + \delta W_{\delta,T-1}(y) : s.t. (x,y) \in D \right\},$$

$T = 1, 2, \ldots$ and $W_{\delta,0} = 0$.

From Theorem 4.1 we have:

\[p_T(\delta) \geq \Psi(\delta, p_{T-1}(\delta)) \] for \(T \geq 2 \) and \(p_1(\delta) = \Psi(0) = \rho_x(V) \).

Denote by \((t_n)\) the sequence generated by \(t_n = \Psi(\delta, t_{n-1})\) (see part (ii) of Lemma 5.1). One has \(p_T(\delta) \geq t_T \), \(\forall T \).

This implies \(p_T(\delta) \geq t_0 = \Psi(0) = \rho_x(V) \) by Lemma 5.1.

Since \(W_{\delta, T} \) converges (uniformly) to \(W_\delta \) and \(\rho_x(.) \) is upper semicontinuous, then \(\rho_\infty(\delta) = \rho(W_\delta) = \limsup_n \rho_n(\delta) \geq \lim t_n = t_\delta \) and hence (iii) is true.

Part (ii) is easily proved by Lemma 5.1. In fact, suppose \(\rho_n(\delta) \in (0, t_\delta) \) for all \(n \). Then \(\rho_{n+1}(\delta) = \Psi(\delta, \rho_n(\delta)) > \rho_n(\delta) \) and thus \(\rho_1 < \rho_2(\delta) < \rho_3(\delta) < \ldots < t_\delta \). This implies that \(\rho_n(\delta) \to t_\delta \).

The other case is \(p_T(\delta) \geq t_\delta \). But the set \((t_\delta, +\infty)\) is invariant under \(\Psi_\delta \) by Lemma 5.1 and \(p_T(\delta) \geq t_\delta \), \(T \geq T_0 \), follows.

Theorem 5.2 Assume:

i) \(|v_2(x_1, y; h) - v_2(x_2, y; h)| \leq L \|x_1 - x_2\| + \|h\| \), for any \(x_1, x_2, y \in X \) and any feasible \(h \in R^n \);

ii) either \(D = X \times X \) or \((x, \tau_\delta(x))\) is interior to \(D \) for any \(x \in X \);

iii) \(\rho_x(V; D) > 0 \);

iv) \(\rho(V(x, .)) \geq \alpha > 0 \) for any \(x \in X \).

The policy function \(\tau_\delta \) of problem \(P(x_0, \delta) \) is Lipschitz continuous and
for any \(x_1, x_2 \in X \) and where \(t_\delta \) is defined as in Lemma 5.1.

Proof: Take \(U(x,y) = V(x,y) + \delta W_\delta(y) \). Suppose at the moment that \(D = X \times X \). Because \(\max_y U(x,y) = U(x, \tau_\delta(x)) \) (see (2)), we are in position to apply Theorem 3.1. From assumption (iii) and by Theorem 5.1 we have \(\rho(\delta W_\delta) \geq \delta t_\delta \). Hence \(\rho(U(x,\cdot)) \geq \alpha + \delta t_\delta \). Let us suppose \(W_\delta(y;h) < +\infty \). Then

\[
U_2(x,y;h) = V_2(x,y;h) + \delta W_\delta(y;h)
\]

and thus we have:

\[
||U_2(x_1,y;h) - U_2(x_2,y;h)|| \leq L ||x_1 - x_2|| ||h||.
\]

All the assumptions of Theorem 3.1 are fulfilled and we can conclude the given estimate for \(\tau_\delta \).

Remark: The assumption \(W_\delta(y;h) < +\infty \) is not essential. In fact, replace the initial problem with \(\max_y \{ U(x,y) \ ; \text{s.t.} \ y \in X^\varepsilon \} \), where \(X^\varepsilon \subset X \) is an \(\varepsilon \)-contraction of \(X \), i.e., \(X^\varepsilon = f^\varepsilon(X) \) and \(f^\varepsilon: X \rightarrow X \) is defined as \(f^\varepsilon(x) = (1-\varepsilon)x + \varepsilon x_0 \), \(x_0 \) is a point in the relative interior of \(X \) and \(\varepsilon \) is a small positive number.

Consequently we have:

\[
\max \{ U(x,y) \ ; \text{s.t.} \ y \in X^\varepsilon \} = U(x, \tau^\varepsilon(x)) \quad \text{and} \quad \tau^\varepsilon(x)
\]
satisfies

\[
||\tau^\varepsilon(x_1) - \tau^\varepsilon(x_2)|| \leq L (\alpha + t_\delta)^{-1} ||x_1 - x_2|| \quad \text{because} \quad W^\varepsilon(y;h) < \infty
\]

for all \(x \in \text{rel int} \ X \).

On the other hand \(\tau^\varepsilon(x) + \tau_\delta(x) \) as \(\varepsilon \rightarrow 0 \), by the Maximum Principle, and therefore we get again the desired estimate.

By Remark 3.1 we get the same estimate in the case in which \(D \) is a strict subset of \(X \times X \) and \(\tau_\delta \) is interior.
It is not difficult to understand the use of Theorem 5.2 to obtain stability conditions. In fact, \(L(\alpha t_\delta) < 1 \) suffices, by Banach fixed point theorem, to assure that all the trajectories of \(P(x_0, \delta) \) converge to a unique stationary trajectory \(x \) (i.e. to the unique fixed point of \(\tau_\delta \)).

We conclude this paper by giving an example of this fact.

Example. Take the problem \(P(x_0, \delta) \) with the return function:

\[
V : \mathbb{R} \times \mathbb{R} \to \mathbb{R}
\]

given by

\[
V(x, y) = -4x^2y + 4xy - (1/2)y^2 - (R/2)x^2, \quad R > 16 \quad \text{and} \quad D = \mathbb{R} \times \mathbb{R}.
\]

It was shown in Montrucchio (1986) that \(V \) is concave on \(\mathbb{R} \times \mathbb{R} \) and that the policy \(\tau_\delta \) is chaotic for small \(\delta \). Let us find out which value of \(\delta \) eliminates such a behavior. According to example 2 of Section 4, the \(\Psi \)-transform of \(V \) is \(\Psi(t) = R - 16(1 - t) \) and

\[
\tau_\delta = \left(\delta R - 1 + (1 + \delta^2 R^2 - 64 \delta^2 - 2 \delta R) \right)^{1/2} / 2\delta.
\]

In addition, we have \(L = 4 \) and \(\alpha = 1 \). By a straightforward computation we get:

\[
L(\alpha + \delta t_\delta)^{-1} < 1 \iff \delta > 3(R - 4)^{-1}
\]

which is the desired "turnpike" condition. Notice that \(3(R - 4)^{-1} < 1/4 \) for all \(R > 16 \).
6. Concluding Remarks

As the example of the last section shows, the estimate (12) provides a powerful tool to compute stability conditions for the discounted Ramsey models. Note the case \(L/\alpha < 1 \). Because \(L/\alpha \geq L/(\alpha + \delta t_\delta) \), we can deduce global stability of the model, independently of the discount factor.

A partial answer to a conjecture formulated by some authors about the role played by the discount factor is another issue of Theorem 5.2. It seems to be reasonably true that the complexity of the optimal paths decreases as the rate of impatience decreases. This fact can be formulated more precisely by using the topological entropy \(h(f) \) as an indicator of the dynamical complexity of a map \(f \). From (12) it is not difficult to give the estimate

\[
\log^+(u) = \max(0, \log u).
\]

A last comment to be made concerns with the differentiability of the policy function. By the classical Rademacher's theorem, it follows that the policy functions are almost everywhere differentiable on \(X \).
Appendix

Lemma A.1 Let f be a real function defined on X. f is α-concave on X iff
\[f(y) - f(x) \leq f'(x; y-x) - (1/2)\alpha \|y-x\|^2 \] (13)
for every $x, y \in X$.

Proof: (13) follows trivially by concavity of $f(x) + (1/2)\alpha \|x\|^2$.

Lemma A.2 If f is α-concave on X, then
\[\alpha \|y - x\|^2 \leq f'(y; x-y) + f'(x; y-x) \] (14)
holds for every $x, y \in X$.

Proof: Exchanging x and y in (13), we have
\[f(x) - f(y) \leq f'(y; x-y) - (1/2)\alpha \|y - x\|^2 \] (15)
Summing up (13) and (15), we get (14).

Lemma A.3 Let $f : X \to \mathbb{R}$ be an upper semicontinuous and α-concave function on a closed and convex set $X \subset H$, $\alpha > 0$. f has a unique point $x^* \in X$ that maximizes f on X and, furthermore:
\[\alpha \|x - x^*\|^2 \leq f'(x; x^*-x) \quad \forall x \in X \] (16)

Proof: The sections $S_\lambda = \{ x \in X ; f(x) \geq \lambda \}$ are closed because f is upper semicontinuous. We prove now that S_λ are relatively compact for the weak topology. In fact, f is superdifferentiable in some point $x_0 \in X$ (actually it is superdifferentiable over a dense subset of X). Let now $u \in \partial f(x_0) \neq \emptyset$ be, where $\partial f(x_0)$ is the set of the superdifferential of f at x_0. Let $A = \{ x \in X ; f(x) \leq f(x_0) \}$. We have $f(x) \leq f(x_0) + \langle u, x-x_0 \rangle - (1/2)\alpha \|x-x_0\|^2 \leq f(x) + \langle u, x-x_0 \rangle - (1/2)\alpha \|x-x_0\|^2$.\[\]
Thus \((1/2) \alpha \| x - x_0 \|^2 \leq \langle u, x-x_0 \rangle \leq \| u \| \| x-x_0 \| \), that implies
\[
\| x - x_0 \| \leq (2/\alpha) \| u \| , \quad \forall \ x \in A .
\]

This suffices to infer the existence of a maximal point \(x^* \) in \(X \) (see for example Ekeland and Teman (1976)). The maximal point is then unique by the strong concavity of \(f \).

Put now \(y = x^* \) in (14). We have \(\alpha \| x - x \|^2 \leq f'(x^*;x-x^*)+f'(x;x^*-x) \).

On the other hand \(f'(x^*;x-x^*) \leq 0 \) for any \(x \in X \), because \(x^* \) maximizes \(f \), and thus we get (16).

Proof of Theorem 3.1: (a) follows immediately from Lemma A.3.

Let now \(x_1, x_2 \in X \) be . Take (16) with \(f = U(x_1,.) \). We have :
\[
\alpha \| y - \theta(x_1) \|^2 \leq U_2'(x_1,y;\theta(x_1)-y) \quad \text{for all } y \in Y . \tag{17}
\]

Putting \(y = \theta(x_2) \) in (17), one obtain
\[
\alpha \| \theta(x_2) - \theta(x_1) \|^2 \leq U_2'(x_1,\theta(x_2); \theta(x_1)-\theta(x_2)).
\]

On the other hand \(U_2'(x_2,\theta(x_2); \theta(x_1)-\theta(x_2)) \leq 0 \) holds because \(\theta(x_2) \) maximizes \(U(x_2,.) \). We can write
\[
\alpha \| \theta(x_2)-\theta(x_1) \|^2 \leq U_2'(x_1,\theta(x_2); \theta(x_1)-\theta(x_2)) - U_2'(x_2,\theta(x_2); \theta(x_1)-\theta(x_2)) \tag{18}
\]

From assumption (iii), the right side of (18) is smaller that
\[
L \| x_1 - x_2 \| \| \theta(x_1) - \theta(x_2) \|. \quad \text{Hence :}
\]
\[
\alpha \| \theta(x_1) - \theta(x_2) \|^2 \leq L \| x_1 - x_2 \| \| \theta(x_2) - \theta(x_1) \| \quad , \text{i.e.,}
\]
\[
\| \theta(x_1) - \theta(x_2) \| \leq (L/\alpha) \| x_1 - x_2 \| \quad \text{and this completes the proof of (b)}.
\]
References

<table>
<thead>
<tr>
<th>Working Paper Code</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>85/155</td>
<td>François Duchene</td>
<td>Beyond the First C.A.P.</td>
</tr>
<tr>
<td>85/156</td>
<td>Domenico Mario Nuti</td>
<td>Political and Economic Fluctuations in the Socialist System</td>
</tr>
<tr>
<td>85/157</td>
<td>Christophe Deissenberg</td>
<td>On the Determination of Macroeconomic Policies with Robust Outcome</td>
</tr>
<tr>
<td>85/161</td>
<td>Domenico Mario Nuti</td>
<td>A Critique of Orwell’s Oligarchic Collectivism as an Economic System</td>
</tr>
<tr>
<td>85/162</td>
<td>Will Bartlett</td>
<td>Optimal Employment and Investment Policies in Self-Financed Producer Cooperatives</td>
</tr>
<tr>
<td>85/169</td>
<td>Jean Jaskold Gabszewicz, Paolo Carella</td>
<td>Asymmetric International Trade</td>
</tr>
<tr>
<td>85/170</td>
<td>Jean Jaskold Gabszewicz, Paolo Carella</td>
<td>Subjective Price Search and Price Competition</td>
</tr>
<tr>
<td>85/173</td>
<td>Berc Rustem, Kumaraswamy Velupillai</td>
<td>On Rationalizing Expectations</td>
</tr>
<tr>
<td>85/178</td>
<td>Dwight M. Jaffee</td>
<td>Term Structure Intermediation by Depository Institutions</td>
</tr>
<tr>
<td>85/179</td>
<td>Gerd Weinrich</td>
<td>Price and Wage Dynamics in a Simple Macroeconomic Model with Stochastic Rationing</td>
</tr>
<tr>
<td>85/180</td>
<td>Domenico Mario Nuti</td>
<td>Economic Planning in Market Economies: Scope, Instruments, Institutions</td>
</tr>
<tr>
<td>85/181</td>
<td>Will Bartlett</td>
<td>Enterprise Investment and Public Consumption in a Self-Managed Economy</td>
</tr>
<tr>
<td>85/186</td>
<td>Will Bartlett, Gerd Weinrich</td>
<td>Instability and Indexation in a Labour-Managed Economy – A General Equilibrium Quantity Rationing Approach</td>
</tr>
<tr>
<td>85/187</td>
<td>Jesper Jespersen</td>
<td>Some Reflections on the Longer Term Consequences of a Mounting Public Debt</td>
</tr>
<tr>
<td>85/188</td>
<td>Jean Jaskold Gabszewicz, Paolo Carella</td>
<td>Scattered Sellers and Ill-Informed Buyers: A Model of Price Dispersion</td>
</tr>
<tr>
<td>85/194</td>
<td>Domenico Mario Nuti</td>
<td>The Share Economy: Plausibility and Viability of Weitzman’s Model</td>
</tr>
<tr>
<td>Volume</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>85/195</td>
<td>Pierre DEHEZ, Jean-Paul FITOUSSI</td>
<td>Wage Indexation and Macroeconomic Fluctuations</td>
</tr>
<tr>
<td>85/196</td>
<td>Werner HILDENBRAND</td>
<td>A Problem in Demand Aggregation: Per Capita Demand as a Function of Per Capita Expenditure</td>
</tr>
<tr>
<td>85/198</td>
<td>Will BARTLETT, Milica UVALIC</td>
<td>Bibliography on Labour-Managed Firms and Employee Participation</td>
</tr>
<tr>
<td>85/200</td>
<td>Domenico Mario NUTI</td>
<td>Hidden and Repressed Inflation in Soviet-Type Economies: Definitions, Measurements and Stabilisation</td>
</tr>
<tr>
<td>85/201</td>
<td>Ernesto SCREPANTI</td>
<td>A Model of the Political-Economic Cycle in Centrally Planned Economies</td>
</tr>
<tr>
<td>86/206</td>
<td>Volker DEVILLE</td>
<td>Bibliography on The European Monetary System and the European Currency Unit.</td>
</tr>
<tr>
<td>86/212</td>
<td>Emil CLAASSEN, Melvyn KRAUSS</td>
<td>Budget Deficits and the Exchange Rate</td>
</tr>
<tr>
<td>86/214</td>
<td>Alberto CHILOSI</td>
<td>The Right to Employment Principle and Self-Managed Market Socialism: A Historical Account and an Analytical Appraisal of some Old Ideas</td>
</tr>
<tr>
<td>86/218</td>
<td>Emil CLAASSEN</td>
<td>The Optimum Monetary Constitution: Monetary Integration and Monetary Stability</td>
</tr>
<tr>
<td>86/222</td>
<td>Edmund S. PHELPS</td>
<td>Economic Equilibrium and Other Economic Concepts: A "New Palgrave" Quartet</td>
</tr>
<tr>
<td>86/223</td>
<td>Giuliano FERRARI BRAVO</td>
<td>Economic Diplomacy. The Keynes–Cuno Affair</td>
</tr>
<tr>
<td>86/224</td>
<td>Jean-Michel GRANDMONT</td>
<td>Stabilizing Competitive Business Cycles</td>
</tr>
<tr>
<td>86/225</td>
<td>Donald A.R. GEORGE</td>
<td>Wage-earners' Investment Funds: theory, simulation and policy</td>
</tr>
<tr>
<td>86/227</td>
<td>Domenico Mario NUTI</td>
<td>Michal Kalecki's Contributions to the Theory and Practice of Socialist Planning</td>
</tr>
<tr>
<td>86/228</td>
<td>Domenico Mario NUTI</td>
<td>Codetermination, Profit-Sharing and Full Employment</td>
</tr>
<tr>
<td>86/229</td>
<td>Marcello DE CECCO</td>
<td>Currency, Coinage and the Gold Standard</td>
</tr>
</tbody>
</table>
Spare copies of these working papers and/or a complete list of all working papers that have appeared in the Economics Department series can be obtained from the Secretariat of the Economics Department.
EUI Working Papers are published and distributed by the European University Institute, Florence.

A complete list and copies of Working Papers can be obtained free of charge -- depending on the availability of stocks -- from:

The Publications Officer
European University Institute
Badia Fiesolana
I-50016 San Domenico di Fiesole (FI)
Italy

Please use order form overleaf.
TO

The Publications Officer
European University Institute
Badia Fiesolana
I-50016 San Domenico di Fiesole (FI)
Italy

FROM

Name ...
Address ...
...
...
...

Please send me: ☐ a complete list of EUI Working Papers
☐ the following EUI Working Paper(s):

No.: ...
Author, title: ...
...
...
...
...

Date: Signature:
The Ambiguity of the American Reference in the French and Italian Intellectual Renewal of the Late 1950's

86/217: Michela NACC1
Un'Immagine della modernità: L'America in Francia negli Anni Trenta

86/218: Emil-Maria CLAASSEN
The Optimum Monetary Constitution: Monetary Integration and Monetary Stability *

86/219: Stuart WOOLF
The Domestic Economy of the Poor of Florence in the Early Nineteenth Century

86/220: Raul MERZARIO
Il Capitalismo nelle Montagne: L'evoluzione delle strutture famigliari nel comasco durante la prima fase di industrializzazione (1746-1811)

86/221: Alain DROUARD
Relations et Reactions des Sciences Sociales "Françaises" Face Aux Sciences Sociales "Americaines"

86/222: Edmund PHELPS
Economic Equilibrium and Other Economic Concepts: A "New Palgrave" Quartet

86/223: Giuliano FERRARI BRAVO
Economic Diplomacy: The Keynes-Cuno Affair

86/224: Jean-Michel GRANDMONT
Stabilising Competitive Business Cycles

86/225: Donald GEORGE
Wage-Earners' Investment Funds: Theory, Simulation and Policy

86/226: Jean-Pierre CAVAILLE
Le Politique Rêvoquée: Notes sur le statut du politique dans la philosophie de Descartes

86/227: Domenico Mario NUTI
Michal Kalecki's Contributions to the Theory and Practice of Socialist Planning

86/228: Domenico Mario NUTI
Codetermination, Profit-Sharing and Full Employment

*: Working Paper out of print
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>86/229</td>
<td>Currency, Coinage and the Gold Standard</td>
<td>Marcello DE CECCO</td>
</tr>
<tr>
<td>86/230</td>
<td>Determinants of Labour Migration in an Enlarged European Community</td>
<td>Rosemarie FLEITHE</td>
</tr>
<tr>
<td>86/231</td>
<td>Scholars' Wives, Textile Workers and Female Scholars' Work: Historical Perspectives on Working Women's Lives</td>
<td>Gisela BOCK</td>
</tr>
<tr>
<td>86/232</td>
<td>Are there life cycles in labor-managed firms? Evidence for France</td>
<td>Saul ESTRIN and Derek C. JONES</td>
</tr>
<tr>
<td>86/233</td>
<td>Parent and Subsidiary Corporations under U.S. Law - A Functional Analysis of Disregard Criteria</td>
<td>Andreas FABRITIUS</td>
</tr>
<tr>
<td>86/234</td>
<td>Closure and Openness: On Reality in the World of Law</td>
<td>Niklas LUHMANN</td>
</tr>
<tr>
<td>86/235</td>
<td>Delegalisation and Normalisation</td>
<td>Alain SUPIOT</td>
</tr>
<tr>
<td>86/236</td>
<td>Labour managed firms: Employee participation and profit-sharing - Theoretical Prospectives and European Experience</td>
<td>Will BARTLETT/ Milika UVALIC</td>
</tr>
<tr>
<td>86/237</td>
<td>The Debate on Nationalization of the Electrical Industry in Italy after the Second World War (1945–47)</td>
<td>Renato GIANNETTI</td>
</tr>
<tr>
<td>86/238</td>
<td>Paris capitale des pauvres: quelques réflexions sur le paupérisme parisien entre XVII et XVIII siècles</td>
<td>Daniel ROCHE</td>
</tr>
<tr>
<td>86/239</td>
<td>Les draps de laine, leur fabrication et leur transport en Haute-Provence; XVII – XIX siècle: univers familiaux, de l’ère pré-industrielle à la protoindustrialisation</td>
<td>Alain COLLOMP</td>
</tr>
<tr>
<td>86/240</td>
<td>Information, Expectations and Economic Planning</td>
<td>Domenico Mario NUTI</td>
</tr>
<tr>
<td>86/241</td>
<td>Time, Jurisdiction and Sovereign Risk</td>
<td>Donald D. HESTER</td>
</tr>
<tr>
<td>86/242</td>
<td>Financial Innovations and Monetary Theory</td>
<td>Marcello DE CECCO</td>
</tr>
</tbody>
</table>

* Working Paper out of print
<table>
<thead>
<tr>
<th>Number</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>86/243</td>
<td>Pierre DEHEZ and Jacques DREZE</td>
<td>Competitive Equilibria With Increasing Returns</td>
</tr>
<tr>
<td>86/244</td>
<td>James PECK and Karl SHELL</td>
<td>Market Uncertainty: Correlated Equilibrium and Sunspot Equilibrium in Market Games</td>
</tr>
<tr>
<td>86/245</td>
<td>Domenico Mario NUTI</td>
<td>Profit-Sharing and Employment: Claims and Overclaims</td>
</tr>
<tr>
<td>86/246</td>
<td>Karoly Attila SOOS</td>
<td>Informal Pressures, Mobilization and Campaigns in the Management of Centrally Planned Economies</td>
</tr>
<tr>
<td>86/247</td>
<td>Tamas BAUER</td>
<td>Reforming or Perfectioning the Economic Mechanism in Eastern Europe</td>
</tr>
<tr>
<td>86/248</td>
<td>Francesc MORATA</td>
<td>Autonomie Regionale et Integration Européenne: la participation des Régions espagnoles aux décisions communautaires</td>
</tr>
<tr>
<td>86/249</td>
<td>Giorgio VECCHIO</td>
<td>Movimenti Pacifisti ed Antiamericanismo in Italia (1948-1953)</td>
</tr>
<tr>
<td>86/251</td>
<td>Vibeke SORENSEN</td>
<td>Danish Economic Policy and the European Cooperation on Trade and Currencies, 1948-1950</td>
</tr>
<tr>
<td>86/252</td>
<td>Jan van der HARST</td>
<td>The Netherlands an the European Defence Community</td>
</tr>
<tr>
<td>86/253</td>
<td>Frances LYNCH</td>
<td>The Economic Effects of the Korean War in France, 1950-1952</td>
</tr>
<tr>
<td>86/254</td>
<td>Richard T. GRIFFITHS and Alan S. MILWARD</td>
<td>The European Agricultural Community, 1948-1954</td>
</tr>
<tr>
<td>86/255</td>
<td>Helge PHARO</td>
<td>The Third Force, Atlanticism and Norwegian Attitudes Towards European Integration</td>
</tr>
<tr>
<td>86/256</td>
<td>Scott NEWTON</td>
<td>Operation "Robot" and the Political Economy of Sterling Convertibility, 1951-1952</td>
</tr>
</tbody>
</table>

* Working Paper out of print
86/257: Luigi MONTRUCCHIO
Lipschitz Continuous Policy Functions for Strongly Concave Optimization Problems

86/258: Gunther TEUBNER
Unternehmenskorporatismus New Industrial Policy und das "Wesen" der juristischen Person

86/259: Stefan GRUCHMANN
Externalitätenmanagement durch Verbaende

86/260: Aurelio ALAIMO
City Government in the Nineteenth Century United States Studies and Research of the American Historiography

86/261: Odile QUINTIN
New Strategies in the EEC for Equal Opportunities in Employment for Men and Women.

86/262: Patrick KENIS
Public Ownership: Economizing Democracy or Democratizing Economy?

* : Working Paper out of print