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1. INTRODUCTION

In the theory of effective demand, the most established
concepts are those of Drdze-demand and Clower/Benassy-demand.
Both of them, however, possess an unsatisfactory feature. They
cannot be reconciled simultaneously with two basic requirements,
namely, that there be a difference between effective demand and
actual trade and that effective dgmand be derived from explicit
maximizing behaviour with respect to the resulting trade. This
inconvenience led to the development of the theory of effective
demand under stochastic rationing, which promised to yield a

I ) _
more sound representation of demand behaviour.

Contributions have been made for iInstance by Svensson [9],
Gale [5] and Green [7].- Svensson postulates a simple non-mani-
pulable stochastic rationing scheme, from which he derives inter"
esting properties of effective demand, but which he does not
integrate into a model of a whole economy. In particular he does

not ask the question of equilibrium.

Gale [5] on the other hand provides a general framework
for the study of a large economy, where trading possibilities
are uncertain. He describes the individual behaviour under
stochastic rationing and introduces an adequate notion of equi-
librium iIn this setting. His conditions for existence of an
equilibrium an in particular of a non-trivial one, however,
are rather technical, so that their economic meaning is not

easy to i1lluminate and their applicability to special cases of



rationing mechanisms remains questionable.

Green [7] concentrates on a special case of Gale®s model,
in which the stochastic rationing scheme"s distribution as per-
ceived by the individual agent depends only on his own action
and on the aggregate values of demand and supply. Under the
further assumption of anonymity, which means that any agent®s
expected trade depends only on his action and not on his name,
his result states that such a rationing mechanism must be mani-
pulable (in contradiction to Svenssons®s approach) and that the
expectation of such a rationing function is linear in any agent"s
own action, provided the individual®s influence on the aggregate
values 1is neglected and there are four or more agents 1iIn the

economy .1

As Green points out, a consequence of the manipulability
is that an agent"s expected utility function is not necessarily
quasiconcave, even if the underlying von Neumann-Morgenstern-
utility function is. This entails that an agent®s effective
demand correspondence is possibly not convex-valued. Hence fixed
point theorems cannot be applied to prove existence of equili-
bria. At this stage Green"s contribution stops, leaving the
question whether Gale"s existence theorems apply to the type

of rationing schemes Green deals with.

One possibility to solve the existence problem would be
to place further restrictions on the stochastic nature of the
~“reen claims that this hold for three or more agents. This is

contradicted by Weinrich [10], who also reestablishes the
linearity for four or more agents [11].



realization process in order to exclude non-concavities in the
expected utility function. Another way 1iIs to treat the problem
in the framework of a continuum economy, because then the non-
concavities do no longer prevent the application of fixed point

theorems.

A Turther reason for the continuum approach is that the
economy is thought of to be a large one, where each single
agent has vanishing influence on market aggregates. Likewise
already Gale assumes 1iIn his article that the space of agents
iS non-atomic. Thus, i1f one wants to check if Gale®"s existence
theorems apply to Green’s Schemes, one necessarily has to use

the continuum framework.

This 1is done 1in this paper. In section 2, we Ffirst discuss
the foundations of the stochastic rationing approach to the
concept of effective demand and its economic content. In section
3,then,Green”"s linearity result is extended to the case of a
continuum of economic agents. Furthermore it is shown that the
class of anonymous stochastic rationing schemes which depend on

the individual agent®"s action and on the aggregate values only



and which meet moreover the short-sided-rule, consists of

those random functions, the mean value function of which 1iIs the
uniform proportional rationing mechanism. In section 4, Green"s
rationing mechanism is combined with Gale"s framework of an
exchange economy with a continuum of agents and the existence
of equilibria 1is investigated. It turns out that Gale®"s theorem
concerning the existence of non-trivial equilibria cannot be
applied to Green"s schemes. We therefore give a different con-
dition, and we show that it is sufficient to assert existence

of non-trivial equilibria.

2. THE STOCHASTIC RATIONING APPROACH TO THE CONCEPT
OF EFFECTIVE DEMAND

The concept of effective demand plays a central role in the
attempt to construct a microeconomic foundation of macroeconomic equili-
brium under temporarily rigid prices. Rigid prices may lead to
restrictions in trade for someagents. Subjected to such con-
straints agents will modify their Walrasian demand, because the
Walrasian demand is no longer optimal. The modified demand is

calléd the effective demand.

Which properties should a concept of effective demand
possess? There are at least two basic requirements. First, effec-
tive demand should have a sound choice-theoretic foundation,
that 1is, it should be the explicit solution to a preference
maximization problem. Second, it should reflect the fact that

under trade restrictions there is dissatisfaction of some agents



in the economy, for signs of dissatisfaction such as the unem-
ployment rate are at the center of much macroeconomic analysis.
Consequently, the effective demand should typically differ from
actual trade. Moreover, the discrepancy between effective demand
and actual trade should not be of arbitrary size but 1t should
yield a reliable measure of dissatisfaction. This is particular-
ly important for a theory of price changes to be based on market

excess demands and supplies.

IT one examines the deterministic concepts of the Dreze-
and the Clower/Benassy-demand with respect to these two re-
quirements, one recognhizes that neither fTulfills both require-
ments simultaneously. While it is true that Drdze-demand
emerges as the solution of an optimization problem, it does
never exceed the given constraints. Thus, an unemployed worker
docs not offer to work. Clower/Benassy-demand on the other
hand does admit offers that exceed the trade restrictions. But
apart from the fact that these excesses do not provide a reli-
able measure of dissatisfaction, Clower/Benassy-demand 1is not
obtained as solution of an explicit maximization behaviour with

respect to the resulting trade.

IT one tries to remove these shortcomings, one realizes
that with a deterministic rationing mechanism this is not pos-
sible. To see this, consider a state of equilibrium under quan-
tity rationing, where agent a is rationed in his transaction of

good h. Denote his effective demand for good h by z and his



actual transaction by xgh. Then a discrepancy between ZQH and
nop Cannot provide a reliable measure of dissatisfaction, be-
cause Tirst, the perceived rationing function €a” : zajlw"xajl that
associates demands with trades (and which is assumed to be
non-decreasing), must be constant beyond z ,, for otherwise

the rationed agent would have expressed a higher demand:

Hence, any demand greater than z” 1is optimal for the agent,
too. Thus the discrepancy between Z3n and Xgp is rather arbi-

trary.

Second, i1f the agent would have wished to trade just the
amount Xah’ also iIn this case it would have been optimal for
him to demand the quantity z ~ . Therefore, if a positive dif-
ference between za”™ and x&” would have been taken as an indi-

cation of dissatisfaction, this would have been misleading,

since the agent would have actually been satisfied.



In contrast to the deterministic case, under stochastic
rationing the agent is not sure which actual trade will be
associated with his offer. Yet he has some information, which
can be modelled by assigning a probability distribution over
transactions to his offer. This distribution will depend on
his own action, but also on the actions of the other agents,

that is on the disequilibrium situation iIn the economy:

IT one requires that the support of such a distribution extends
from the demanded quantity z t o zero (or to any magnitude
smaller than z it is clear that the expected realization
will be less than zg”~. Therefore, if agent a desires a trade of
Exa”™, say, he has an incentive to overstate. On the other hand
this overstatement will not become unbounded, because 1t is
always possible that the agent realizes his whole demand. As

he must meet his budget constraint under all possible states of



the world, this will restrict his offer. Maximizing expected

utility under the budget constraint

Max EuaSZaf TN
(Zal ?zaf
£
s.t. I PAx ~ - 0 with prob. 1
h=1
will therefore lead to effective demands E 0)

that possess the two properties required above, that is, they
result from an optimization problem and they may exceed the
actual transactions. Whether these excesses provide a reliable

measure of dissatisfaction, remains to be seen.

So far, the justification for employing a stochastic ra-
tioning mechanism was rather a technical one. More iImportant
perhaps 1is an argument that explains which intrinsic motivation
leads an agent to assume a stochastic rationing mechanism in
calculating his effective demand. In general, the trading pos-
sibilities of agent a depend on the actions of all the other

agents, that 1is,the transaction is a function

xah Nah”Nzhn NahM““ah’~ahn?

where z» :A = R is a list of effective demands on market h of
all agents a £ A and z = zh(@) , Z& AN {a} + R Zah0") =zh (@”).
IT agent a would know the other agent®s actions, he could exactly
determine the outcome X,p @ a function of his own action Zom -
However, in a large economy it is not plausible that an agent

has this full information. It is more likely that he receives



some market information such as the unemployment rate, aggregate
demand and aggregate supply or the ratio of aggregate demand
and aggregate supply. However, knowing only these is not suffi-
cient to determine accurately the transaction resulting from a
certain offer. Instead suppose the agent substitutes the un-

known variables by some random variable w. Then the rationing

function becomes a random variable, too:

ah Yahv ah” h” }

where r”~ is a vector of statistics or market signals that result

from the whole vector of demands for good h,

rh = Th(zhJ

and whose dimension 1is Tfinite and smaller than the number of
agents. Thus r~ conveys less information than the whole list z»
would do. Therefore, even it the true rationing mechanism 1is
deterministic, TfTor the individual agent it appears stochastic.
But this is all that matters, if one seeks to model an agent®s

behaviour, that is, his effective demand.

An equilibrium of the economy in this context is then a
list of effective demand vectors z :A = |R®, that reproduces the

signals r = (r.jJ,-..,r ), that is

Za € Ea\gr}] for all a £ A

and

rh = 3h (zh) for all h-
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The special case that Green [7] has considered and which

we will investigate in what follows 1is that r~ de-

notés the mean values of demand and supply on market h,
that is
rho* W fmax (zal,0} ,min { h,0J1v (da)

(where v is a probability measure on the space of agents (A,A))
This 1s clearly a very simple form of the function 3%, but it
seems appropriate to begin with such a simple case before

one proceeds to assume more complex Tfunctional relations.

3. THE RATIONING MECHANISM

Let (A,A,v) be a probability space of agents which 1iIs as-
sumed to be either atomless or such that A contains a finite
number of agents only, 1, say, which then all have the same
measure v(a) = a € A. The effective demands and sup-
plies of agents on a certain market are described by an element

of the linear space Z = (z :A + R ]z is integrable}l.

Define z+ :A = Rby z+ = max {z,0} and z :A = R by
z = min (z,0). Then, for any z € Z, mean effective demand and
supply are given by Z+=/z+dv and Z = /z dv. A stochastic ra-
tioning mechanism is a function 4 :ZxQ ® z, where (&}, X,P) Iis
a certain probability space. More precisely, the rationing
scheme dealt with here is assumed to be a function as fTollows.

lintegrability presumes implicitly measurability. R is always
assumed to be equipped with the Borel-a-Algebra B.



AC0) For any z £ H, © € ft, the integrable function

06(z,w) A = R is of the form
<frz,»)@ = 4@ @) ,Z2+,2",u) a€A.

For any z £ Z, a € A, <pa—(z(a) ,LZ+,Z ,*) 1is a random

variable.1l

< i1s eventually subject to

A(N) For all z £ Z, v-almost all a 6 A,

I4a (z (@) ,Z+,72",0)) |< |z(a) | P-a.e.
Afiil) For all z £ Z, v-almost all a £ A,

z@Qp z(@),z+,Zz w) >0 P-a.e.

ACiin) For every z £ Z,

@ .Z+,Z W) v (da) =0 P-a.e.

ACiv) For all z £ Z and v-almost all aj,a2 G A:
z(al) = z(a2) implies Uuan,z+,Z2~) = Epa (@ ,Z+,Z2-)
A(v) For v-almost all a £ A, the distribution of

%(z(a),Z+,Z ,*) Is weakly continuous 1iIn 1its
+ -
arguments, whenever Z > 0 or Z <O.

~“hat is, a measurable function (R,B) -

2Excluding the points (z(a),0,0) from the continuity assumption
is necessary 1iIn order to allow for rationing functions of the

form 9 (z(a),Zz ,Z w) =% (z(@ -.,w) . The distribution of
a Z +

such functions cannot be continuous at Z =Z =0, since they
are homogeneous of degree zero iIn (Z+,Z-).
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A(vi) For all z £ Z and v-almost all a £ A:
z(a)(Z~ + Z+) < 0 implies B (z(a),zZ+,Z ) = z(a)

Conditions A(i) and A(ii) Tormalize the voluntariness of
trade. A(ii1i1) requires that the rationing mechanism be consistent.
A(iv) states that agents who offer the same transaction, can
expect the same realizations, regardless of their name. There-
fore, this property is called "anonymity”. Naturally it does
not mean that agents expressing the same demand will also real-
ize the same trades. While condition A(v) is a technical re-
quirement, A(vi) expresses the "short-sided-rule'™, which re-
quires that only one side of the market is rationed, namely
the "long" side. An example of a rationing mechanism satisfying

A(0) to A(vi) 1is provided by Gale [b, pp- 329-332].

THEOREM 1. Let 1 > 4. If Q is a stochastic rationing mechanism
as stated in A(0), then, under conditions A(i) to A(v),v-a.e.
the fTunctions t% can be written
0z()sa(z(a),z ,z ,w), if z(d >0
Pyt .2 ,Z W) = - P-a.e.
vzfa)sa@z @) ,Z ,Z .03, if z(@) <O
where, fTor each z £ Z, s*(z(a),Z+,Z ,*)» sa(z(a),Z+,Z ,=) are

random variables whose mean is independent of z(a).



Proof. The theorem is equivalent to the statement that v-a.e.
Efa (z(a),Z ,Z ) be linear iIn its first argument, over the posi-

tive and negative half-lines-, but perhaps with different slopes.

Without loss of generality, we concentrate on the case
z(a) > 0. Let Z+ > 0,1 Z < O be fixed and consider an in-
tegrable function z such that /z+dv = Z+, fz dv = Z .
Let A+ = {a € Alz(a) > 0} and define X~ to be the negative
of the mean expected realisation of supplies, that is,

X" = -/ B @@ ,Z+,Z*)v(da) .
AMA  a

Each z(a) > 0 can be written as z(a) = A(a)Z+, where A 1is
a nonnegative function on A+ such that /+A(a)v(da) = 1. From
A(iil) one has N

/ & (@) ,Z2+,Z-)v(da) = X'. If X' =0, = fz (@) ,Z2+,Z27) =
A+ 3 a

v-a.e. and linearity holds trivially. Thus, assume henceforth that
X- > 0 (which implies Z < 0). Then A(iv) and A(v) imply the
existence of a continuous function T: |R+ #a |R+ such that

Era@@)z+,2+,Z2 ) = F(A(@))X for v-almost all a € A+

f has the property that for all A such that /A(a) v (da) * 1,
A

/ (FOA) (@ v (d@ = 1. Because of A(i1) , F(©) = 0.

A

It is immediate that E<l'>cI is linear in z(a) (in the positive
half-line) if and only if T is the identity map. To see this,
let y = T/(Kfy = Then A4 yZ+dv = Z+. Therefore

/ & (yzZ+,Z+,Z2")dv = X" and E& (yZ+,Z+,Z ) = yX” by A(iv) v-a.e..
A a, a
Consider A(®@ = ay, a”0. Then, linearity of Ea implies that

|:<|> (ayz+,z+ Z~) Hayz+,Z2+,Z2)

1I1f Zz+ =0, z+(@) = 0 v-a.e., and the asserted identity holds
trivially. b
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The problem of whether Ema is linear is therefore equi-

valent to the question whether every continuous function

f: R #|R such that f(0) =0 and /7 (FOA) (@ Vv (da) = 1 if
A v
A:A+aR,/ A(@ Vv (d) = 1 and v (A+) <1, has to be the identi-
A+
ty map. (The case v (A+) =1 is excluded because of z7<0) . We

proceed to show the second of the equivalent assertions.

First, consider the case A+ = A~ +A.,,1 v (AD)=v (A2)= and

A@ = (P-X)IANE + (Y +x)1A2(@),

where y = VTAy)"* "A- *s indicator function on A™ and x any
element of the interval [-y.y]l-" Then /A(a) v (d@) = 1 and =
therefore 1:A/+f(A(a)) v (da) = —i— [f(yM— X) + F(y +x) ] which
yields

f(y-x) + f(y+x) = 2y for all x€[-y,vyl (€))

For x = 0, it follows that f(y) = y.

n 1 -

Next let A' = n> 3, V(AN = i=1,....n,

and n_2

A(@) = (y-XD1Ai (@ + 270 +x_ - xi+1)1A @ + (y+xn_1)I1Ar(a).

Then
n-2
Ty - XJJ:e f(y ¢ XJ - Xi+1) ¢ f(y + Xn-1) = ny ()
for all x™,...»xn_~ such that y-x*>0, y+x*-x" >0,
i *1,...,n-2,and y+xn_"0. For n = 3, xX* = x2 =y» (@

results in f(O) + f(y) + f(2y) = 3y and hence f(2y) = 2y. For
nt3, x» =1y, 1 « 1,...,n-1, @ vyields (n- 1) @© = ny,
and therefore y )

f(ny) » ny for all n€ N ?)

iA+= +A2 means A = AN UAN and A h A2 =0



Thus T is the i1dentity on all points ny. It remains to show that
T has this property for all rational multiples of y too, from

which the assertion will TfTollow because of the continuity of T.

From (1), f(y +x.]-x2) = 2y-f(y-x~+x2), which together
with (@) vyields f(y-x1)+fy +x2) = y+Ffy-x"+ x2). Set

x2 = -x1 to receive f(y +x2)= Jy+ yf(y +2x2). Especially,

for x2 - (n-1+r)y, n > 1, r€ |+, one has

f(+Ny) =iy+i F(@n-1+2nN)y). ®
Now consider the special case where r = 2-, p,qG |N. Then,

2q
we claim that f((n +-2£4—)y) = (n+§%—)y for all n>1, p,q>0. The

proof 1is given by induction on g. For g = 0 the equality holds

because of (3). For q = 1 one has by (4 and 3
f((n +My) =-Jy+yf((2n-1+p)y) = (h+£)y.

Suppose the equality holds for q - 1. Then, using 4),
f((h *£)u) - jJwjfF(C2n-1 *~rr)M)

miu *1<2n-1 + c(h *" v-

Finally, consider the case n = 0, 0 5 p 5 29q. Then by (@),

FCE-y) =2y-F(Q + @ - -WY) = 2y -F(Q2 - -My) =2y- 2- B,
2q 2q 2q 2

which yields f (-*y) - -~-y.Thus, f((n + -E-)y) = (n + -E-)y for all
2q 2q 2q 2q
integers n,p,q > 0 and continuity of T yields f(A) = A for

every real A~ 0. 1

So far, the short sided trading rule A(vi) was not used
in the analysis. If It iIs imposed, then the theorem can be
strengthened to the following
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COROLLARY. If 1 > 4 and if the rationing mechanism ¢ satisfies

A(0) to A(vi), then v-a.e.

z(@ min {- ~0,1%} , z(@ >0
Eda(z (@) ,z\z") §+
z(@ min {- — ,1} , z() 50

Proof. Consider Z+>-Z7>0. A(vi) implies that

/B @ ,Z+,77) v (da) = -Z*. ByA(iv),

A
E» (yZ+,Z+,Z2-) = -yZ*“ v-a.e., where y = ——— _ For z(a) ayzZ ,
a v(A)

a > 0, i1t follows from the theorem that v-a.e.

BbyT2(a),2+,2%) = &, fyz+,2+,2) = ay(-Z") = z()(-

If Z+ 5 -z", then by A(vi) I-‘_<l>a fz(a),z+,2") = z(a) v-a.e. and

therefore B fz(a),Z ,Z ) = z(@) min {- v-a.e., 1If z(@) > O.
a Z
The proof in the case z(a) ™ 0 is analogous. ||

4. EQUILIBRIUM

The Hlinearity property of the functions Ja which iIs assert-
ed in Theorem 1, holds only, if a variation in the indivi-
dual agent®"s acton does not influence the value of the
means Z+ and Z-. This can be assumed to hold approxi-
mately in large economies, where each agent has negligible
influence on market aggregates. Hence an adequate Tformal
treatment is that of an atomless measure space of economic
agents. Moreover, this framework removes non-convexities

in the aggregate excess demand correspondence which can
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arise at the individual level and which would exclude the
application of fixed point theorems in demonstrating the
existence of equilibria. The latter has not yet been done

for the class of rationing schemes considered in this paper.
As fTar as Gale®s existence theorems are concerned ([5], Theorem 3,
p-333 and Theorem 4, p.335), they are very general in their
treatment of stochastic rationing rules and for Green "it
remains an open question as to whether his (Gale"s) conditions
can be satisfied by stochastic rationing schemes of the par-
ticular form studied in this paper™ ([7], p-352). As it seems
to us, Theorem 3 of Gale [5] applies (in the case of uncountably
many agents), 1T some minor additional restrictions on Green®s
scheme are imposed. However, as these restrictions are not ne-
cessary in order to demonstrate the existence of equilibria

for the type of rationing mechanisms considered by Green, we
prefer to do without them and give a separate proof, patterned

after that of Gale.

Before this can be done, some more elements of the model
have to be specified. As before, (A,A ,v) denotes the space
of agents, where now A is assumed to be a separable metric space,
A the Borel-a-field and v an atomless probability measure on A
bach agent a £ A has as endowment a non-negative vector
(e .,-..,e ) e Ip? of tradeble goods and a stock of money M >0.
Then, the set of feasible net trades of agent a Iis

i
X ={xFfFR |]px <M and x + e >0}

where p = (pi,-__,pi» £ |JRa J* a fTixed strictly positive price

vector. Clearly X3 is convex, compact, non-empty and contains
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the origin of |R™. 1

Agent a®"s preferences are represented by a von Neumann-Morgenstern
utility u:xX, ¥R X u ™ = UQWM -px,e +x) .The allocation
of goods to agents is thought of to be performed by a stochastic
rationing mechanism &= (P, -..,¥", where each @" is a function from
Z x ftto Z as described in A(O). Hence, for each agent a, with
any proposed action x £ R and any vector of mean aggregate

demands and supplies (Z»,z2», . . . = a™ ..., =r£Rc R ,where

R= (R x R)", there is associated adistribution over final net trades
Dda(x,r) ="GCEa-,,*=>rap)(X,r) mFor each r £ R , the assign-
ment a ge,% U ;9«% (*,r)) isassumed to be measuragle with
respect to some suitably constructed measurable space.

To the rationing functions 4a”™ correspond via Theorem 1
random functionss*”~,s , . They might be subjected to

A(vii) For v-almost all a £ A,sa”,sa” are independent
across distinct markets h = 1 -

Next, for each h = 1,.. .,E, 1Imagine a function

. Y IRt <x R - CO0,1]2
LIEE e ©)

with YA(0 zh) = (Yh,0), Yh(@.0) = "O., «

AQvili) For any x, > 0, z* > 0,

h

©3-13.. 7n < 0 3
CO supp sah (xh ,zh ,z) =

OF »zn =0

Xadoes not necessarily contain the origin of |[R* in its interior.
To require this (as Gale does) would mean that the agent possesses
a positive amount of each good h = 1,...£,. This 1is an economi-
cally unpleasant condition that can be dispensed with in the
present context. However, this implies that Gale"s locally in-
terior-conditions ([5],Def.2.,p.-325 and [6],p-363) are not ful-
filled. This 1is one reason why Gale®s theorem cannot be applied.

One possible procedure is described in [5],pp-322 to 324.

3
co supp y denotes the convex hull of the support of a measure vy.
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for any x < 0,Zn < O,

[.1] ,z2>0
co supp 3D s"h (xh,z3,Zjj) =
{0y , Z* = 0;

Yh is continuous in (Z*,Zh) whenever Z* >0 or Z- <O0.

For an interpretation of these conditions, see Green [7, p-350].-
In his description, Yh = Y~ = 0 for all ZzZ™,Zj\ Our more general
version makes it possible that A(viii) can eventually be reconciled with
the short sided rule A(vi). If, for example, zZ» < -Z*, then
imposing A(vi) implies = 1.

i
By A(vii), 23"i(x,rl = @ ~ih h’rh™ v-a“e* In particular,
v-a.e h=
|
supp 5<ra(x,r) = n supp £4ahU h,rh) (6)
h=1
Let
1 if Zzh > 0 1 if Zzh < O
**  _
0O if zZzh =0 O ifF Zh =0

Because of A(viii) and Theorem 1, v-a.e.

I o
hyhxh 5hxhy 'F Xh 2

co supp £ <dah(xh>Zh>zZh) = @

i o
hxh hyhxh] T X =

Next define for each a G A the feasible set correspondence
BCI from R into |R* by

3a(r) = {x € | | supp £aCx,r) c Xa)

1 Although () and (7) imply that for all r such that z~0"zZ~
for all h =1 the convex hulls of supp D $ (xn,r) con-
verge to the convex hull of supp £ % (x,r) for all 1) - x,
the same does not necessarily hold for the supports themselves.
The latter is required in Gale"s treatment (t5],(6),p-323 and

[61.(17),p-363).
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Each agent is assumed to have rational expectations about the
vector r and to know the distribution of his rationing function.
So his problem is to maximize

va (X,r) = Juad/j<pra (X,r)
on 63 (r) . This defines the optimum s%t r%Iation £ from R to |R£,
5a(r) = x 6 Ba(r) | va(x,r) = sup CBa(r) .,N}.

A complete list of effective demands and supplies 1is given by
an element z of the set Z of all integrable functions A @R .
Each z £ Z£ results iIn a vector r of mean effective demands
and supplies according to

r = J(z*(a),z~(a),---,zE(@) ,z“ (@ )v(da)
A

For notational Tacilitation define F: R * R by

F:o:(l....xE)w (X*,Xx~, ..., x*,x~) and set J (2) = /F(z(a)v(da)
for each z € Z£. One more assumption is needed:
£
A(iIx) The function p : A @R, p(a) = sup{ E_ |x,h| Ix € X3}
v_d

is v-integrable.

For instance, 1if v-a.e. Ma < M and e < e for all h,, then
A(ix) holds. But A(ix) is weaker, for it allows the sets X
to become unboundedly large. Finally, z* € z% is called af

equilibrium if v-a.e. zZx@ £ £ (7 (z%)).

To show that such an equilibrium exists causes some dif-
ficulties because of the fact that the feasible set correspon-
dence B is not everywhere well behaved. It is true that it is
always non-empty, but if some components of the vector r are
zero, 83 (r) 1is neither continuous nor bounded at such an r.

a — £

1 Deviating from Gale, Z as defined here iIs not the set of
equivalence classes of v-almost everywhere identical integrable
functions. Compare [5],p-326.

2 Gale treats this problem in his more general framework by
introducing the concepts of responsiveness ([ >Def.3,p-325),
relative continuity and relative locally interiority ([6],
p-363). m the present context, we are free not to define
these notions, but the line of argument will be essentially
the same as Gale®s one.
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Therefore, 1in demonstrating existence of equilibria, an appro-
ximation argument will be used.

To this end, 3 (r) 1is investigated more closely.
+ a
Let R ¢ R be the set of all vectors the components of which

are all non-zero and set for each r 6 R

A(X, = n
h=1 if xA <0

Suppose r £ R+. Then, by (6) and (7), v-a.e. X £ 3, if and
only i1if fa~xn,...,a™") £ for all (a G A(X,r).
Therefore,

M
| E _pkYkea
6a(r) - n te_,. K ﬁ kYK alé] n X , for all r £ R ®)
h=1 an, Pi l
If r € R+, suppose for example that = 0 and all other com-

ponents of r are non-zero. Then, by () and (7)), v-a.e. X £ Ba(r)
if and only if

(alx1,...,ak_1xk_1,akmax (0,xk},ak+1xk+1,...,aEx£E) is an element
of Xa, for all (an,...,a") e A(X,r). That 1is, xk can become un-
boundedly small without implying that x does not belong to 6a(r).
To deal with this difficulty, define

£ Ma + E pkYkeak
h~, [-6heah”Sh————- N e 1 n Xa> for all r € R ~ (©))

LEMMA. Assume A(0) to A(v) and A(vii), A(viii). Then, v-a.e. for
all r £ R , to any x £ 3 (r) there exists x £ #a(r) such that
&\, = Bk, .

For instance, 1if Zk 0, then by A(viii) no negative value of

xk will be realized and xk = 0 would do as well.

Proof. If r £ R+,3a() = F (N1 If r £ R+, assume w.l.o.g. that
Zk = 0,Zk ,Zk ,zk * 0 for all h * k.
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By definition, 83 @)

M, + Z pppse.r M + Zp.Yee
n t-e ah - -1 x [oO,
h=1 - Ph Pk

M + Zpy.e -
! a j*h J ~ a3

X n [-e
h=k+1 ~ ahl Ph

1 n x.

= (X €IRR Jax £ Xa for all a £ A(x,r) and x~ > O}.

Now let x be an element of 8,,(r) "*# fr) , that is x, < 0 and
@ x™ ,.e_,a™_ XN j,0, ak+1xk+1»» ee’asxsP N "Na N @31 (anf...,aM)

£ A(X,r). Set x = (x1,...,xk_1,0,xk+1,...,x*). Clearly x € £a(r).

Let By ,B? be elements of the o-field 2 . Then, v-a.e.

I %
»*a(x,r)( mMbh) = H ®*ah(xh,rh)(Bh)
n=1 n=I1
Q i
—_ « * ? E]
h=1 a M r59_«IV
since x» = x~ for all h * k and, by (6),

supp<>dak (xk ,0,Zk) = {0} = supp ~ 4akCxk,0,ZK) -1
We are now ready to prove

THEOREM 2. Under conditions A(0) to A(v) and A(vii) to A(ix),

there exists an equilibrium.

Proof. There is a v-nullset Aq £ A such that the statements of

the conditions A(i) to A(v) , A(vii) , A(viii) hold for all a 6

Set CK,a ) = @AVAq .A"A" n A) and let Aj,A2,... be a sequence

of subsets of K such that An e A , v(An) > 0 for all n and vCAn) + O.
Define Z+ c Z7 by Z+ = 7 "R+) and Fix z £ Z» such that

4 ~
1. "z£ z for all n. For each (a,r) £ A x R define
ih

fa () if r £ R+

i

Ca0) =

N -

Xq if r ( R+
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and set for each n

F(Ca0)) if acC An
Ga(™
{F(zCa))} if atf An
and
n
< (N = 7 G*(nv(da)
r A
It has to be shown that the correspondence ~ :© R = R is well
defined. To begin with, i1t makes sense to take the integral over
A rather than over X, since both sets differ by a null-

set only. Next, if r £ R , it is clear from (8) that, for all a £ X,
&a (r) 1is compact and fa(r)is non-empty. As a consequence of the
measurability of the assignment a (ea»M ,ua, <Sa(.,r)),

K, M : (X, X)) = (FE, S(JR?I) has a measurable graph ([8],Prop-1,
p-59) .1 As the correspondence a » X clearly has a measurable
graph, for each r£ R, £.(r) has a measurable graph. Hence it has
a measurable selection g, say ([8], Theorem 1,p.54). As z is

measurable, the function gn = 1 g + 11 z is measurable, and as
n n

F is continuous, F ® gn is measurable,too. By A(ix), F ° g‘n is

integrable and hence ~n() 1is well defined for every n and every

r £ R . Furthermore, A(ix) imnlies that £n({) & K for all n and

all r £R for a suitably chosen compact Tconvex set K c TRZl

As v 1is non-atomic, [|In({) 1is convex ([8],Theorem 3,p-62)

Next, for any a £ X and any n £ [N, the correspondence
Ga: R = R is closed. To see this, consider a sequence
&x*,r™) > (X,r), where for each k, x» £ Gn(r™). Then there
exists a sequence (yk) such that F(yk) = )‘E(lk and yk £ £ (9]

if a | A’n and yk = z(a) if a £ An , For all k. In the 18tter case
X=X ZF@E@)) £ Ga(r). If a £ X~MAnand rfR+, then cE(r) =F(Xa),

1As each agent a can be identified with his characteristics
(ea>Ma ’ua’55”an~’ Nan can be written £a(r) = ~(ea,Ma’ua’”™ *("»r))
= S(£(a,r)) ,say, where p£: (a,n (eOI ,MOI Uy ,5>4>d (= ,r)) is mea-

surable, for any r £ IR® . The graph of £ can be shown to be
Borclian (see e.g- [5], Theorem 1, p.-326).
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and as x™ £ F(Xa) for all k and F(Xa) is clogsed, x e G;\(r) in
this case,too. Finally, if a £ A AA and r € R , assume w.l.o.g.
that rk £ RJr for all k. A?( yk £ Xanfor all k and X’é is compact,
there 1is a subsequence (y ) y £ X . Because of A(v) and (8),
£a is closed at r £ R' . As rk *r, this implies y £ Ea (r), and
by continuity of F, x £ Ga(r). Thus Ga(r) is closed at r for

any r £ R , any a £ Kand any n, and hence * is closed for

any n ([8],Prop.8,p-73).

IMe have shown that the correspondence ~ n, restricted to
the compact convex set K, satisfies the conditions of the
Kakutani Fixed Point Theorem and hence has a fixed point rli, say,
for every n.

As T £ / FX (rn)v(da) + J F(z(a)v(da), u(A ) >0
A’\An a An n

and 1, z £ Z+, i1t follows that r11 £ R+ for each n.
n

Hence %a(rll) = Ca\gr]l)- Therefore,for each n, there exists a
measurable selection z of £#(rn), such that

ri= / F(zn@)v({da) + 7/ F(@())v (da) (10
A"An An

As each rn is an element of the compact set K, there is a sub-
sequence, again denoted (rn), that converges to some r £ R
It remains to show that r £ /F(E (r))v(da) (whether r £ R

A

or not). a

Because of v(A ) - 0 and z€2V, / F(z(a))v(da) » O0.As rn r,
An
(10) and A(ix) iamply r = Llim /F(zn (a))v(da). Since mean conver-
n A

gence of a sequence implies the existence of a subsequence that

converges almost everywhere, we can (r1d), r and (zn) w.l.o.g.
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assume to meet, for every h =1
r~ = (0,0) implies zjj(@ "m0 v-a.e. (1))

By A(ix),

lim /F (zL1(a))v(da) £ /Ls ({F(zun(a))}p)v@a) 1 (I8], Theorem 6,p-68).
n A A

To show that Ls({F(z (@))}) o F(£ (r)) v-a.e.,we first assert
that Ls({z (@3} c £a(r), for v-almost aII a £ A. To see this, suppose
w.l.o.g. that zn(@) @ax £ |[R. If h is such that r» * (0,0), then

by A(viii) suppC 4ah(xh,rh) ¢ Ls (co supp © ahjj@ .rip)) -
1f rh = (0,0), then (11) implies supp™M4>ah @z @).dd)) {0}
= supp Q §ah (xh,rh) . Therefore by (6) supp A 4a (x,r)

c. Ls (co suppo(X> (zun(a),rn)) c X and hence x lies in B (r).

Suppose x $ E,a(r)- Then there is $ £ Ba_(r) such that
v, x,r) > v, (x,r). By the Lemma

there i1s x £ '83 () with the property that »D<})3Q x,r) = @t &, N,
hence v, x,r) = v, (%,r). By (8 and (9), there is a sequence
(xn) such that xn £ B,,(rn) for all n and xn = x. If r iIs such
that ¥ or B is non-zero for all h = 1,...,£, then A(v) implies

that v (xn,rn) &®v (x,r) as well as v (zn(a),rn) =v (X,r).

Therefore, for large n, v (zn(a),rn) < v (x?,rn), contradicting
zn(@) £ £a(r). |If there exist some h such that z» = z» = 0,

then v 1is not necessarily continuous at (Xx,rj. But, for these
components h, x» = 0 by (9 and we can set x» = 0 for all n, too.
Therefore, also iIn this case v (xXn,rn) v (X,r). Further, by (1)
r~ = (0,0) implies Ls suy@)<j>ah(zh(a)’rh) * {01= suppO4.ah(”,rh),
and as *ah (zjj@)-rm) = @h (xh,rh) for all h such that rh * (0,0),
again v (zn (a),rn) #@av (x,r), by A(vii). Therefore again, for
large n, v, (zn (a),rn) <V, (xn,rn). This proves

Ls({zn(@)}) £ (r) v-a.e.

~"sTB1D) denotes the topological Limes superior of the sequence
(Bnh). See [8], p- 15.
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Finally, to see that Ls ({F(z11(a))}) c F(£3(ﬁ)) v-a.e.,
let a € A, ye Ls({F(zL(@) )}) and assume w.l.o.g. that F(zn (a))
+ y. As 2" @ £ X(’j\, X3 compact, there is a subsequence (znﬂ @)
that converges to some x £ X . By construction, x is an element
of Ls({z (a@)}), hence of £a(r). Since F is continuous, y = F(X)
and so v £FE ().

As Ls{F(zn@ )} c F(£a(r)) for all a £ X, r £ RF (Ea ™ )v (da)

Therefore there exists a selection z* of £#() such that y (z¥) = r
and z* is the required equilibrium.

Theorem 2 guarantees that an equilibrium exists, but it
does not say whether such an equilibrium is non-trivial for
it is clear that z = 0 is always an equilibrium. On the other
hand, an equilibrium z is non-trivial if and only if 7 (2 * O.
Gale deals with this problem in his Theorem 4 ([5],p-335).
There, he states conditions under which a non-trivial equilibrium
is asserted to exist. It is easy to see that not all of these
conditions are fulfilled by the type of rationing mechanisms dealt
with in this paper. It suffices to look at Gale®s condition (iii).
Applied to our situation, It states that there exists a measur-
able non-null subset E of A, such that for each a £ E

C If r * 0, then supn $ (xX,r) = {0} implies x = O.

This is clearly a too strong assumption for consider the case
that z» > 0 and = 0 for some good h. Then r * 0, so the
premise of C) 1is met. But for x £ |R7 such that x* > 0 and X8, = 0
for k * h, v-a.e. supp 0> (x,r) = {0}, by A(viii) , though x * O,

Intuitively it is clear, that in order that a non-trivial
equilibrium is possible, there must be some agents who are
willing to trade with each other, that is, there must be at least
one good, Tfor which there are a non-null set of suppliers and a
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non-null set of demanders.l This is formalized in the following

assumption, where we employ the function introduced in (5).

A(X) There is a good h, 1 < h < i, such that

a zZh < -Zh - Yh(h’zh} > eh > 0

Zh - “zh  Yh(h’zh) - eh > 0

where £jJ*,£~ are Tixed numbers independent of and Z7;

b) there exist measurable non-null subsets E+,E of A
such that a € E+ (@ £ E , resp.) 1implies that there
is x*a) >0 (x™@) < 0, resp.) such that x(a) =
(O,---,O,xn(a),o,-..,O) € Sd(r) for all r € R and
u_ (A.I,x(a)) 2 u, (Az7x(a)) > u, (O whenever 0 < A—L < A!l < 4.

A(x)a) states that an agent who finds himself on the short side
of the market, can be sure to realize a positive fraction of his
intended trade, if not all of it. This Is In some sense a requirement
on the efficiency of the market rationing mechanism, for if for
example ¢ = 0 identically, then A(x)a) can clearly not be ful-
filled. On the other hand, i1f the short sided rule A(vi) pre-

vails, then = 1.

From this point of view, dale"s requirement of the existence of

a non-null set of agents with a 'positive trade point”™ ([5],p-334}
in order to ensure existence of non-trivial equilibria seems
questionable. For example, if all agents are identical, that is
all have the same endowments and the same tastes, then there 1is no
good that would be demanded as well as supplied,
although all agents might have a positive trade point. But then,
under rational expectations the trivial equilibrium is in fact
the only one.
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A(x)b) 1s illustrated in Fig. 3 where the agent is a de-

mander of good 2, who meets the requirement that u(0,*) be
monotonicly increasing between zero and x”. This situation

appears to be not too artificial but fulfilled for a wide class

of preference structures. For example, 1If the underlying utility
function UM - - P2*2%ei + x-\ve2 +x2» Cobb-Douglas,
then the indifference curves are of the shape indicated in

Fig.3. The requirement that on some market there appear de-
manders as well as suppliers means that there are differences
among agents concerning preferences or endowments.

THEOREM 5. Under conditions A(0) to A(v) and A(vii) to A(x),
there exists a non-trivial equilibrium.

Proof. We refer to the proof of Theorem 2. For each r € R ,

set v*(r) = sup va(@ (r),r) and let (tn) be the sequence con-
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verging to r in R that was constructed in the proof of Theorem
2. Consider some a £ E+ u E and suppose that lim™inf v*(rn)
:ua(O)- Then there is a subsequence, again denoted (r1D) , such

that v;‘(rn) —’hu3 @© . As r11 is an element of R+ for“each n,

there 1is agailn a subsequence (r gq) such that either 0 < Z7q
n - n + n -
< -Z~q or Z»q > -Z~q>0 for all g. W.l.o.g. assume the fTirst

case and a that a £ E+.
Then, by A(X)

nn nn
ve(r q) > va(x(a,r q)
& _ n
J uaCyi»eee»yd) x 9 Paktxk ¢ ,r gHd(y1l,...,y£))
IRE C k=1

J ua(O,...,0,yh,0, .. .0) ©4>ahCxhCa) ,r q) (dyh)

> ua(0,...,0,erxh(a), 0,...0) > ua@©)

for all g. This contradicts v’s"(r“) —’lu3 (©). Thus, £3 (rld 1is
boundedI away from the orjgin as well as F(£3(r)) and therefore,
as v(E ) > 0, also ~ (r) 1is bounded away from the origin.
Since rL £ “n(rn), r4 0, hence r * 0. Thus the equilibrium

z referring to r, which exists by Theorem 2, is such th3t

¥ (@ * 0 and hence non-trivial.
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5. CONCLUDING REMARKS

Among the assumptions A(0O) to A(vi) characterizing the
class of rationing mechanisms dealt with in this paper, A(1)
to ACiii) and A(v), A(vi) are standard in the literature.
Whereas A(iv) also appears to be natural in this kind of sto-
chastic model, A(0) expresses a special fTeature of the mecha-
nism, nanely that an agent®"s actual transaction depends on his
own action and on the aggregate values of demand and supply
only. We have justified A(0) as a Tirst step in investigating
mechanisms of the form xa” = daj(zaj,rj.<)> namely when
rh = (/zh dv, i zh dv) >which implies by Theorem 1 that <$ ™ must
be manipulable. This suggests that the result may be general-
ized by weakening A(0), that 1is, by allowing r™ to be defined
in ways differing from the one above. A logical connection be-
tween the dimension of r® and the requirement that be manip-
ulable, may possibly be revealed. This is particularly of iInterest
because practically all of the prevailing theories of equili-
brium under quantity rationing rely on the use of non-manip-
ulable rationing mechanisms. A clarification of the eventual
need of manipulable schemes for reasons of consistency could
therefore help to inquire into the validity of the disequili-

brium literature.

As shown iIn this paper, stochastic manipulable schemes
are compatible with the existence of non-trivial equilibria,
at least in the framework of a continuum economy, the latter

representing an idealization of a large finite economy. The



continuum framework might be further sustained by Tfirst stating
approximate equilibria for finite economies and then showing
that these approximate equilibria approach an equilibrium of
the continuum economy as the economy becomes large. In order
to demonstrate the existence of equilibria in finite economies,
one could impose as a further condition that the random func-
tions s /N introduced in Theorem 1 are independent of zajl* Then
the concavity of the expected utility function can be ensured
by the concavity of the underlying von Neumann-Morgenstern
utility function, and the proof of the existence theorem can

be adapted to the finite case.
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