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Abstract 

This paper proposes a set of VaR models appropriate to capture the dynamics of energy prices and 

subsequently quantify energy price risk by calculating VaR and ES measures. Amongst the competing 

VaR methodologies evaluated in this paper, besides the commonly used benchmark models, a MC 

simulation approach and a Hybrid MC with Historical Simulation approach, both assuming various 

processes for the underlying spot prices, are also being employed. All VaR models are empirically 

tested on eight spot energy commodities that trade futures contracts on NYMEX and the Spot Energy 

Index. A two-stage evaluation and selection process is applied, combining statistical and economic 

measures, to choose amongst the competing VaR models. Finally, both long and short trading 

positions are considered as it is extremely important for energy traders and risk managers to be able to 

capture efficiently the characteristics of both tails of the distributions. 

Keywords 

Energy markets, Mean Reversion Jump Diffusion, Value-at-Risk, Hybrid Monte Carlo & Historical 

Simulation. 
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I. Introduction* 

The events and especially the aftershocks of the recent financial crisis have been unprecedented, at 

least in terms of the speed and magnitude of the shock, and the potential long-term impact on the 

global real economy. As Rogoff and Reinhart (2008) point out, most of the 18 major banking crises 

and a number of more minor crises that they recorded since World War II, with a major market event 

appearing at least every 10 years, were caused by excess liquidity in the economy along with a general 

misjudgement on the benefits of a certain type of innovation. The recent financial crisis of 2007 was 

no different. Financial innovation in the form of sophisticated securitized instruments contributed to a 

false sense of security around systemic risk reduction, while at the same time excess liquidity was 

pouring into the developed countries’ financial and housing markets, mostly by investments coming 

from the emerging markets.  

The latest economic recession and its subsequent shock waves significantly affected international 

trade, the commodity markets and most specifically the energy markets. Oil markets rallied upwards 

for almost a year after the crisis started, peaking at $145 per barrel, then suddenly collapsed to $31 per 

barrel within a few months, quickly then recovering some of the lost ground, trading above $60 per 

barrel until now. These recent energy markets’ dynamics can be attributed not only to the prevailing 

supply and demand conditions, but also to the growth of speculative investments by a more diverse 

and sophisticated body of market players, including investment banks, hedge funds, pension funds, 

Exchange Traded Funds (ETFs) and Exchange Traded Notes (ETNs) that follow the commodity 

markets. This increased sophistication and analytical skills that were brought in to the energy markets, 

made the use of forecasting models, hedging tools, and risk management techniques, and thus in 

extension the VaR applications, essential tools for quantifying energy price risk. In this newly created 

energy environment, precise monitoring and protection against market risk has become a necessity. 

Power utilities, refineries or any other energy market player can use valuable information derived from 

the VaR exercise applied in-house, to plan and implement their future risk management strategy. 

Following the amendment of the Basel Capital Accord by the Basel Committee on Banking 

Supervision in 1998, that obliged all member banks to calculate their capital reserve on the basis of 

VaR, the VaR measurement has become extremely popular both with practitioners as well as 

academics. As a result, numerous methods have been developed for calculating VaR, proposing 

techniques that have been significantly refined from the initially adopted Risk Metrics (JP Morgan, 

1996), with the goal of providing reliable estimates (Jorion, 2006). The aim of this paper is to 

investigate whether the widely used in the financial world Value-At-Risk (VAR) and Expected 

Shortfall (ES) methodologies, along with a new set of proposed models, can be successfully applied in 

the energy sector. VaR is used to identify the maximum potential loss over a chosen period of time, 

whereas the ES measures the difference between the actual and the expected loss when a VaR 

violation occurs.  

Although a large body of the empirical literature is focused on forecasting energy prices and their 

volatilities, according to Aloui and Mabrouk (2010) they are far from finding any consensus about the 

appropriate VaR model for energy price risk forecasting. This paper attempts to close this gap in the 

existing literature by proposing a set of models appropriate to capture the dynamics of energy prices 

and subsequently quantify energy price risk by calculating VaR and ES measures. The methodologies 

employed include standard VaR approaches like the Risk Metrics, GARCH and many other commonly 

used models, MC simulations, and a hybrid Monte Carlo with Historical Simulations introduced for 

the first time in this paper (to the best of the author’s knowledge). The model specifications for the 

MC simulations and the hybrid approach are the MR and MRJD models, modified to allow for 

                                                      
*
 We would like to thank the participants of the 1st Conference of the Financial Engineering and Banking Society 

(F.E.B.S.) in Athens, Greece for their helpful comments. 
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GARCH and EGARCH volatility, and for different speeds of mean reversion after a jump is identified, 

as described in paper three.  

Simulation models are widely used in VaR applications since they help in understanding any 

potential risks in an investment decision, and in preparing for the possibility of a catastrophic outcome 

even though it might have a small probability of occurring. There are a number of recently proposed 

simulation methods for generating reliable VaR estimates due to the flexibility they offer. Huang 

(2010) proposes a Monte Carlo Simulation VaR model that accommodates recent market conditions in 

a general manner. By applying the methodology on the S&P 500 returns he finds that the VaR 

estimation via the proposed optimization process is reliable and consistent, producing better back-

testing outcomes for all out-of-sample periods tested. By simulating the value of an asset under a 

variety of scenarios not only the possibility of falling below the desirable level can be identified, but 

there can also be measures taken to prevent this event from occurring in the future.  

This paper employs a two-stage evaluation and selection process, combining statistical and 

economic measures, to choose between numerous competing VaR models applied in a number of 

energy commodities and the Spot Energy Index. The proposed SEI can be closely monitored by the 

major players of the energy industry and used as the underlying asset to many derivatives products 

such as futures and forwards, options, swaps, and also as the underlying index of energy ETFs, ETNs, 

and hedge funds. Amongst the competing VaR methodologies evaluated in this paper, besides the 

commonly used benchmark models, a MC simulation approach and a Hybrid MC with Historical 

Simulation approach, both assuming various processes for the underlying spot prices, are also being 

proposed. 

In contrast to most existing studies on VaR modelling that consider only long positions, this paper 

examines both long and short trading positions. It is extremely important for energy traders and risk 

managers to know whether the models they are using can capture efficiently the characteristics of both 

tails of the distributions, as there are a lot of short players in the market alongside the long players. 

When taking short positions there is a risk of increasing prices, whereas when taking long positions 

the risk comes from falling prices. Thus, the focus should be on the left tail of the returns’ distribution 

for the latter case, and on the right tail for the former case. Within the energy markets, the results of 

this paper have important implications for the accurate management of energy risk and the 

development of the fast-growing energy derivatives and ETFs markets.  

Furthermore, although the proposed VaR model selection process reduces the numerous competing 

models to a smaller set, in some cases more than one model is identified as the most appropriate. It is 

in those cases that the modeller should view the selection process as being more valuable and useful 

than the actual VaR number obtained, and use in combination to the proposed evaluation process other 

real world considerations for his/ her final choice. As Poon and Granger (2003) argue in their paper, 

the most important aspect of any forecasting exercise is by itself the comparison process of competing 

forecasting models.  

The structure of this paper is as follows. Sections 2 and 3 describe the VaR methodologies and the 

back-testing procedure employed, respectively. Section 4 presents the data used. Section 5 offers the 

empirical results of the study and, finally, section 6 concludes the paper 

II. VAR Methodologies 

VaR is defined as the maximum expected loss in the value of an asset or a portfolio of assets over a 

target horizon, subject to a specified confidence level. Thus, VaR sums up the risk which an asset or a 

portfolio is exposed to in a single monetary (or expected return) figure. That makes the VaR approach 

directly applicable to the field of energy prices. Statistically speaking, the calculation of VaR requires 

the estimation of the quantiles of the distribution of returns and can be applied to both the left (long 
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positions) and the right (short positions) tails. Generally, the VaR of a long position can be expressed 

by the following formula: 

                                                                                                      (1) 

where, is the return of the asset or portfolio of assets over a time horizon (in this case one day) 

from t to t+1, α is the confidence level, and  is the information set at time t. The VaR for a short 

position is computed using the same definition, with the only difference of substituting α with 1-α. The 

ES for a long position, defined as the average loss over the VaR violations from the N out-of-sample 

violations, is also expressed mathematically as:  

                                                                                       (2) 

As far as the energy markets are concerned, there has been a recent increase in the relevant empirical 

literature on testing VaR models and assessing their performance. These papers include a wide range 

of models from the standard Variance Covariance, to Historical Simulation variations, Monte Carlo 

simulation, and a plethora of models of the ARCH-type, also including long memory variations, under 

different distributional assumptions for the returns’ innovation (see among others, Chiu et al., 2010; 

Aloui and Mabrouk, 2010; Huang et al., 2008; Sadeghi and Shavvalpour, 2006; Giot and Laurent, 

2003; Cabedo and Moya, 2003). Moreover, there have also been a few studies estimating VaR on the 

energy markets using an extreme value theory approach (see among others, Nomikos and Pouliasis, 

2011; Marimoutou et al., 2009; Krehbiel and Adkins, 2005). Results however, are contradictory in 

terms of the accuracy of the VaR models proposed, with plenty of discussions focusing on as to 

whether the simpler models can outperform the more complex/ flexible ones. Brooks and Persand 

(2003) find that simple models achieve comparably better VaR forecasts to the more complex ones, 

while Mittnik and Paolella (2000) show that more accurate VaR forecasts can be achieved with the 

more flexible models. In addition, Bams et al. (2005) find that amongst the models they examine, the 

simple models often lead to underestimation of the VaR, whereas the opposite holds for the more 

complex models that seem to lead to overestimation of the VaR.  

Furthermore, following the emerging concept in the literature of combining VaR forecasts, Chiu at 

al. (2010) propose a composite VaR model to increase forecast effectiveness. In the same lines, Hibon 

and Evgeniou (2005) suggest that by combining forecasts instead of selecting an individual forecasting 

model, modelling risk is reduced. Choosing the most suitable VaR model for each commodity and for 

the SEI is of outmost importance for all energy market players, traders, hedgers, regulators, and 

policy-makers as modelling risk is reduced, and thus avoiding faulty risk management caused by the 

selected model’s inefficiencies.  

In principle, there are three general approaches to compute VaR, each one with numerous 

variations. The first one is to assume the return distributions for the market risks. The second one is to 

use the variances and co-variances across the market risks, and the third one is to run hypothetical 

portfolios through historical data or by using Monte Carlo simulations. Within these three general 

approaches to VaR, there are many different methodologies available, supported mostly by the internal 

model’s approach that gives banks and investment houses the freedom to choose or develop their own 

methodology.  

This paper describes various models originating from all three approaches, and compares their 

performance for accurately calculating VaR for the energy commodity markets. Considering that the 

proposed MC simulation models jointly take into account two sources of uncertainty, jumps and high 

volatility with both having some predictable component, the VaR estimates from the proposed 

specifications are compared to those obtained with more established methods, like the RiskMetrics or 

Historical Simulation methods. In addition, a Hybrid approach for calculating VaR is developed based 

on a combination of both the MC Simulations and the Historical Simulation methodologies. Table 1 

(panels A to D) summarizes all the VaR models compared in this paper, in total twenty two. All the 

models listed under panels A and B are variance forecasting models with their sole focus on 
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forecasting tomorrow’s volatility. Panels C and D list all the proposed Monte Carlo simulation and 

Hybrid Monte Carlo – Historical Simulation models. Thus, the major difference between all 

aforementioned models lies with the methodology used to calculate volatility. The methodology, the 

main properties and the underlying distribution used in each model, both the more established and the 

proposed ones are all explained in more detail in the subsequent sections.  

Variance-Covariance Model 

The Variance-Covariance (V&C) method is a widely used method of computing VaR due to its 

simplicity and computational efficiency. However, it has a major drawback as it assumes that returns 

are normally distributed; a rather unrealistic assumption for the energy markets that are characterised 

by fat-tailed return distributions. Within the family of V&C methods there are several methodologies 

that can be used to calculate the VaR, based on the way the forecasted variance is calculated. For the 

purposes of this paper the equally weighted Moving Average (MA) methodology is used, which 

assumes that future variance can be estimated from a pre-specified window of historical data, 

weighing equally all the historical observations used. The equally weighted MA model is expressed 

as:  

 

1
21

1

t

t s

s t k

r
k




 





                                                                                                                    (3) 

where, t is the estimation date of the standard deviation of returns over a time window from date t-k to 

t-1.  

RiskMetrics 

RiskMetrics (RM) is an Exponentially Weighted Moving Average (EWMA) VaR measure assuming 

that the standardised returns (returns over the forecasted standard deviation) are normally distributed 

(JP Morgan, 1996). The RM methodology focuses on the size of the returns but only relative to their 

standard deviation. A large return, irrespective of the direction, during a period of high volatility could 

lead to a low standardised return, whereas during a low volatility period it could result to an 

abnormally high standardised return. This standardization process leads to a more accurate VaR 

computation as large outliers are considered more frequent than would be expected with a normal 

distribution. The unconditional standard deviation of the RM model is expressed as: 

   2 2

1 11 ; 0,1t t tr       
                                                                                            (4) 

where λ is the decay factor, reflecting how the impact of past observations decays while forecasting 

one-day ahead volatilities. The more recent the observation the largest the impact, with an exponential 

decay effect as observations move more into the past. The highest (lowest) the value for λ is, the 

longer (shorter) the memory of past observations is. The value of 0.94 is assigned for λ which is 

widely used in the literature.  

ARCH Models 

ARCH (autoregressive conditional heteroscedasticity) models of volatility, initially proposed by Engle 

(1982), are commonly used by researchers and practitioners to calculate the VaR of their portfolios. 

Amongst the most popular ARCH formulations used are the GARCH (Bollersev, 1986) and EGARCH 

(Nelson, 1991) volatility models, because of their ability to capture many of the typical stylised facts 

of both financial and commodity time series, such as time-varying volatility, persistence, and volatility 

clustering. According to Engle (2001), models that explicitly allow for the standard deviation to 

change over time, thus allowing for heteroskedasticity, perform better in forecasting the variance, and 

thus by extension, in measuring the VaR. Giot and Laurent (2003) and Kuester et al. (2006) conclude 

that VaR can be captured more accurately using GARCH-type models instead of using non-parametric 

ones. A key advantage of the GARCH and EGARCH models in terms of calculating VaR is that, 

according to Christoffersen (2003), the one-day forecast of the variance , is given directly from 
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the model as , which is the conditional volatility following respectively a GARCH or an 

EGARCH process. A more detailed explanation is given in the following sections.  

A. GARCH & Filtered GARCH 

Under the GARCH volatility specification the return series is assumed to be conditionally normally 

distributed, with the VaR measures being calculated by multiplying the conditional standard deviation 

by the appropriate percentile point on the normal distribution, following Sarma et al. (2003). The 

conditional volatility following a GARCH(1,1) process is expressed as:  

                                                                                                      (5) 

where, 0 1 2, ,  and   
 are positive constants, with 1 2 1  

expressing the “non-explosivity” 

condition, 
2

1t   representing the previous periods’ return innovations, and 
2

1t   being the last period’s 

forecast variance (GARCH term). Once t  is forecasted, the VaR estimates are obtained using the 

relevant percentile points on the normal distribution for the 99% and 95% VaR, under both long and 

short positions. Daily volatility forecasts are computed using a rolling estimation window of 1827 

daily observations each. The process is then rolled forward until all the data is exhausted
1
. 

Next, the VaR based on the Filtered GARCH (F-GARCH) process is also calculated. The term 

filtered refers to the fact that instead of using directly the forecasted variance from the GARCH model, 

a set of shocks  is used, as explained below, which are returns filtered by the forecasted variance . 

The VaR is estimated from the empirical percentile, which is based on observed information, using the 

following mathematical expression:  

 

                (6) 

where  are the standardised residuals and  is the forecasted GARCH 

volatility using an estimation sample window of width  days.  

B. EGARCH & Filtered EGARCH 

To cope with the skewness commonly observed in commodities markets, and to capture the potential 

presence of an “inverse leverage” effect
2
, the more flexible model of persistence, the Exponential 

GARCH (EGARCH) model is used, which is expressed as:  

 1 21
0 1 2 3 1

1 1

ln
t t

t
t t

t e

 
    

 
 


 

     


                                                                                                  (7) 

where, 0 denotes the mean of the volatility equation. The coefficients 1 and 2 measure the 

response of conditional volatility to the magnitude and the sign of the lagged standardised return 

innovations, respectively; as such, these coefficients measure the asymmetric response of the 

conditional variance to the lagged return innovations. When 2 0 
, there is no asymmetric effect of 

the past shocks on the current variance, while when 2 0 
 asymmetric effects are present in response 

to a shock; for instance, 2 0 
 indicates the presence of an “inverse leverage” effect. Finally, 3  

measures the degree of volatility persistence. 

                                                      
1
 The starting coefficients for the GARCH models are obtained from the Yule-Walker equations, and the log-likelihood 

function is maximized using the Marquardt optimization algorithm.  
2
 Financial markets tend to exhibit a negative correlation between volatility and price, an effect known as “leverage”, with 

negative shocks having a greater impact on volatility compared to positive ones. 
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As in the case with the GARCH model, the Filtered EGARCH (F-EGARCH) process is also 

calculated. Again, the term filtered refers to the fact that a set of returns filtered by the forecasted 

EGARCH variance is used. The VaR is estimated using the following mathematical expression: 

 

                               (8) 
 

where  are the standardised residuals and  is the forecasted EGARCH 

volatility using as estimation sample window of width  days.  

C. Monte Carlo Simulation 

Another popular method for estimating VaR is Monte Carlo simulation which is based on the 

assumption that prices follow a certain stochastic process (GBM, JD, MR-JD etc.), and thus by 

simulating these processes one can yield the distribution of the asset’s value for the predetermined 

period. By simulating jointly the behaviour of all relevant market variables to generate possible future 

values, the MC simulations method allows for the incorporation of future events affecting the market 

as well as the additions of jumps or extreme events, thus accurately modelling the market’s behaviour. 

In VaR applications, the required quantile for both the left and the right tails can be obtained directly 

from the random paths. MC simulation is a powerful tool for energy risk management that owes its 

increased popularity to its flexibility. It can incorporate in the modelling procedure all the important 

characteristics of the energy markets’ behaviour such as seasonality, fat tails, skewness and kurtosis, 

and is also able to capture both local and non-local price movements. It is mostly due to this flexibility 

that Duffie and Pan (1997), and So et al. (2008) conclude that the MC approach is probably the best 

VaR methodology. The only troubling issue with the MC approach is the fact that it is relative 

complex to implement, and that it can be computationally demanding.  

With the MC simulations method the VaR of an asset or a portfolio is quantified as the maximum 

loss in the random variables distribution, associated with the appropriate percentile. In order to 

calculate the VaR, first the dynamics of the underlying processes i.e. prices, volatilities etc. need to be 

specified. Second, N sample paths need to be generated by sampling changes in the value of the asset 

or individual assets that comprise a portfolio (risk factors), over the desired holding period. Third, all 

information enclosed in the probability distribution needs to be incorporated. Fourth, using the N 

sample paths the value of each underlying risk factor needs to be determined, given the assumed 

process for each one. Finally, the individual values need to be used to determine the value of the asset/ 

portfolio at the end of the holding period.  

The following seven specifications are used for modelling the spot prices of the energy markets 

examined: 

Geometric Brownian Motion (GBM) 

Mean Reversion with Ordinary Least Squares (constant) volatility (MR-OLS) 

Mean Reversion with GARCH(1,1) volatility (MR-GARCH(1,1)) 

Mean Reversion with EGARCH(1,1) volatility (MR-EGARCH(1,1)) 

Mean Reversion with Jump Diffusion and OLS volatility (MRJD-OLS) 

Mean Reversion with Jump Diffusion and GARCH(1,1) volatility (MRJD-GARCH(1,1)) 

Mean Reversion with Jump Diffusion and EGARCH(1,1) volatility (MRJD-EGARCH(1,1)) 

As with other VaR methodologies, any modifications to the MC simulations approach focus mostly on 

using various techniques to reduce computational burden. For example, Jamshidan and Zhu (1997) use 
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principal component analysis to narrow down the number of factors used into the simulation process, a 

procedure they name scenario simulations. Glasserman et al. (2000), guide the MC simulations 

sampling process using approximations from the V&C approach, resulting in time and resources 

savings without the loss of precision. The MC simulation along with the hybrid MC-HS 

methodologies proposed in this paper for estimating the VaR of energy commodities and the SEI are a 

significant improvement of existing ones due to their flexibility. They allow for any stochastic process 

to be used for describing the distribution of returns, and at the same time allow for the incorporation in 

the model of all major features that define the behaviour of energy prices. Such features include 

seasonality, time varying volatility, volatility clustering, mean reversion, jumps, and most importantly 

a different speed of mean reversion after a jump occurs.  

For estimating all inputs for the MC simulations 1,827 daily observations from the in-sample 

period are used. Using each time the relevant underlying process 100,000 simulations are run, 

forecasting the spot prices 623 days ahead. Then, using the average simulated path the daily VaR for 

each one of the 623 forecasted returns is estimated. The mathematical expression for calculating the 

VaR using the MC Simulation models is the following: 

 

                                                                                                          (9) 

where  is the total number of simulated returns at time t.  

The Mean Reversion Jump Diffusion Model 

The more complex Mean Reversion Jump Diffusion model specification is defined as follows. It is 

assumed that log-prices can be expressed as the sum of a predictable and a stochastic component as 

follows: 

 ln t tS f t Y 
                                                                                                                      (10) 

with the spot price represented as: 

  tY

tS F t e
                                                                                                                           (11) 

where 
   f t

F t e
 is the predictable component of the spot price St that takes into account the 

deterministic regularities in the evolution of prices, namely seasonality and trend. Also, tY
 is a 

stochastic process whose dynamics are given by the following equation: 

 t i t t t tdY a Y dt dZ kdq    
                                                                                      (12) 

where ia
 is the mean reversion rate, μ is the long-term average value of 

ln tS
in the absence of jumps, 

t  is the volatility of the series, tdZ
is a Wiener process, k is the proportional jump size and tdq

is a 

Poisson process. It is assumed that the Wiener and the Poisson processes are independent and thus not 

correlated, which further implies that the jump process is independent of the mean-reverting process. 

Using equations (10) and (11), the modelling procedure by Dixit and Pindyck (1994) is followed 

and after applying Ito’s Lemma, the proposed model can be discretised in the following logarithmic 

form: 
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where, 
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                                                 (13.4) 

 

where ln S is the long-term mean (μ),  is the average number of jumps per day (daily jump 

frequency), J is the mean jump size, σJ is the jump volatility, 1 and 2  are two independent 

standard normal random variables, and u is a uniform [0, 1] random variable. The term  tu t


is an 

indicator function which takes the value of 1 if the condition is true, and 0 otherwise. This condition 

leads to the generation of random direction jumps at the correct average frequency. When the 

randomly generated number is below or equal to the historical average jump frequency, the model 

simulates a jump with a random direction; no jump is generated when the number is above that 

frequency. When a jump occurs its size is the mean size of the historical jump returns plus a normally 

distributed random amount with standard deviation σJ. Notice as well that the proposed modelling 

approach allows for the possibility of both positive and negative jumps to occur
3
. 

In addition, the model takes into account the fact that most energy prices exhibit a seasonal 

behaviour that follows an annual cycle. Various methods have been used in the literature for the 

deterministic seasonal component, from a simple sinusoidal (Pilipovic, 1998) or a constant piece-wise 

function (Pindyck, 1999; Knittel and Roberts, 2005), to a hybrid of both functions (Lucia and 

Schwartz, 2002; Bierbrauer et al., 2007). This periodic behaviour is accounted for by fitting a 

sinusoidal function with a linear trend to the actual prices, as described by tf . The estimation is done 

using Maximum Likelihood (ML), with the sine term capturing the main annual cycle, and the time 

trend capturing the long-run growth in prices
4
. Moreover, the possibility for the returns to have a 

different mean reversion rate after a jump occurs is incorporated into the model. This approach is in 

                                                      
3
 Merton (1976) in his original jump diffusion model assumes that the jump size distribution is lognormal, and so jumps 

can occur in only one direction (positive jumps). 
4
 The approach used in Pilipovic (1998) is followed to calculate the seasonal component in the data, because this method is 

more flexible than using dummy variables. According to Lucia and Schwartz (2002) the use of dummy variables does not 

provide a smooth function for the seasonal component observed in the data, which can cause discontinuities when pricing 

forward and futures contracts.  
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line with Nomikos and Soldatos (2008) who use two different coefficients of mean reversion, one for 

the normal small shocks and another, larger, for the spikes to capture the fast decay rate of jumps 

observed in the energy markets. Geman and Roncoroni (2006) also analyse the existence of different 

speeds of mean reversion in the context of mean-reverting jump-diffusion models, by introducing a 

class of discontinuous processes exhibiting a “jump-reversion” component to represent the sharp 

upward moves that are shortly followed by drops of the same magnitude. The proposed approach is 

flexible enough to accommodate the fact that the abnormal events that cause the jumps have different 

effect in each market and hence, prices tend to remain at the level to which they jump for a longer or 

shorter period of time, depending on the energy market under investigation. Therefore, prices 

following a jump are adjusted by using in equation (13) a different mean reversion rate, noted as JDa
, 

for a period of time equal to the half-life of jump returns for each energy market; when another jump 

occurs within the duration of the half-life period used, then JDa
 is used again for the same number of 

days, counting from the day following the last jump [see equation (13.1)]. If no other jump occurs 

within that period, then a2 is used until a new jump occurs. The proposed model, by incorporating this 

half-life measure, allows for the model to better adapt to the duration of both short- and long-term 

shocks of a wide magnitude range, exhibited in energy prices. The latter allows for a higher flexibility 

compared to the model proposed by Nomikos and Soldatos (2008) which fits best mainly the highly 

volatile electricity markets, as the speed of mean reversion estimated after a spike shock is 

significantly higher than the normal mean reversion rate. In addition, the model proposed in this paper 

incorporates in its specification GARCH and EGARCH volatility, to account for volatility clustering 

and any asymmetries that are usually present in energy prices. 

Regarding the mean-reverting part of equation 13, an exact discretization is used for the 

simulations since the presence of jumps complicates the use of a large t . This is because the drift of 

the mean-reverting process is a function of the current value of a random variable and in order to 

simulate the jumps correctly the time step t must be small relative to the jump frequency. Because 

the rare large jumps are of biggest interest, if the time interval t  is sufficiently small, the probability 

of two jumps occurring is negligible
  2

t t  
. That makes it valid to assume that there can be 

only one jump for each time interval; in this case one every day since t is equal to one day. 

Especially when t  is increased to one week or one month, as it is usually the case with real option 

applications that involve pricing medium- and long-term options, it is more important to use an exact 

discretization for the simulation process, because the overall error from the first-order Euler and the 

Milstein approximations will be much higher 
5
. The random number generation of the Monte Carlo 

(MC) simulations already introduces an error in the results, therefore using these approximations that 

need a very small t and thus also introduce a discretization error, would lead to higher computational 

cost into the simulations. 

As for the two time-varying volatility model specifications of equation (13.2), in the case of the 

GARCH process,
2

1t   represents the previous periods’ return innovations and 
2

1t   is the last period’s 

forecast variance (GARCH term). As for the EGARCH process, 0 denotes the mean of the volatility 

equation. The coefficients 1 and 2 measure the response of conditional volatility to the magnitude 

and the sign of the lagged standardised return innovations, respectively; as such, these coefficients 

measure the asymmetric response of the conditional variance to the lagged return innovations. 

When 2 0 
, there is no asymmetric effect of the past shocks on the current variance, while 

when 2 0 
 asymmetric effects are present in response to a shock; for instance, 2 0 

 indicates the 

                                                      
5
 Clewlow and Strickland (2000) use the first-order Euler’s approximation in order to get the discrete time version of the 

Arithmetic Ornstein-Uhlenbeck:
1 1( )t t t tx x a x x t t            where the discretization is only correct in the limit of 

the time step tends to zero.  
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presence of an “inverse leverage” effect. Finally, 3  measures the degree of volatility persistence. 

Knittel and Roberts (2005) suggest that a positive shock in electricity prices represents an unexpected 

demand shock which has a greater impact on prices relative to a negative shock of the same size, as a 

result of convex marginal costs and the competitive nature of the market. Moreover, Kanamura (2009) 

suggests that this inverse leverage effect, i.e. positive correlation between prices and volatility, is a 

phenomenon often observed in energy markets, whereas evidence from the stock markets suggests that 

the opposite relationship exists between volatility and prices, namely the “leverage” effect
6
. Hence, 

intuitively, the asymmetry parameter is expected to be positive and significant for most energy 

markets, implying that positive shocks have greater effect on the variance of the log-returns compared 

to negative shocks, consistent with the presence of an “inverse leverage” effect.  

D. Historical Simulation & Filtered Historical Simulation 

The historical simulation (HS) method is amongst the simplest ones for estimating the VaR for various 

assets and portfolios. HS uses the past history of returns to generate the distribution of possible future 

returns; in contrast to MC simulation which follows a certain stochastic process. In addition, the time 

series data used to run the HS are not used to estimate future variances and covariances, as is the case 

in the V&C approach; the assets returns over the time period examined provide all necessary 

information for computing the VaR. As with other methodologies for calculating VaR, there are 

various modifications of the HS method suggested, such as weighing the recent past more (Boudoukh 

et al., 1998), combining the HS with various time series models (Cabedo and Moya, 2003), and 

updating historical data for shifts in volatility (Hull and White, 1998).  

Under the HS methodology, the VaR with coverage rate, a, is then calculated as the relevant 

percentile of the sequence of past returns, obtained non-parametrically from the data. The 

mathematical expression of the one-day-ahead VaR using the HS method is the following: 

  1 , ;  1827 days
t

t i i t T
VaR Percentile r a T  

 
                                                                   (14) 

where T is the window width of past observations used. The window width of historical data used in 

the estimations plays a crucial role in the efficiency of the HS methodology. Having sufficient history 

of the relevant returns makes the HS method very attractive to use, mostly due to its simplicity, 

intuitive and straight forward implementation, and also its wide applicability to all instruments and 

market risk types. The HS method takes into account fat tails and skewness as it is based on past 

historical data. One of the method’s drawbacks is that it is computationally demanding, and also the 

fact that the assumed returns distribution is based on the historical distribution over the time period 

selected, which can lead to significant variations in the VaR estimate when different time periods are 

used. This becomes even more important for the energy markets where risks are volatile and of big 

magnitude, and structural shifts occur at regular intervals.  

Following, the VaR based on the Filtered Historical Simulation (FHS) is also calculated, using the 

following mathematical expression: 

  1 , ;  1827 days
t

t i i i t T
VaR Percentile z a T  

 
                                                               (15) 

where 
/i i iz r 

are the standardised residuals and i is the volatility of the 1827 historical 

observation window. The term filtered refers to the fact that the raw returns are not used to simulate, 

                                                      
6
 The “leverage effect” terminology is first used by Black (1976) who suggests that negative shocks on stock prices 

increase volatility more than positive ones. The intuition behind it is that a lower stock price reduces the value of equity 

relative to debt, thereby increasing the leverage of the firm and thus making it a more risky investment.  
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but instead a set of return shocks , which are the returns filtered by the historical volatility of a 

window width T, are used. Thus, the FHS is a combination of the non-parametric HS and a parametric 

model. This combination is more likely to improve the HS VaR estimates as it continues to 

accommodate the dynamics of the empirical distribution, such as skewness, fat tails and volatility 

clustering. Also, the FHS method has the advantage that no assumptions need to be made for the 

distribution of the return shocks, and offers the flexibility of allowing the computation of any risk 

measure and for any investment horizon. Finally, one of the disadvantages that both the HS and FHS 

methods share is that each observation in the time series used for the simulation carries an equal 

weight for measuring VaR, which can be a problem when there is a trend identified in the series. 

E. Hybrid Monte Carlo – Historical Simulation 

The Hybrid MC-HS approach developed in this paper can be the most appropriate methodology for 

calculating the VaR in the energy markets as it combines all the advantages of using two of the most 

popular and efficient existing methods, the MC simulations and the Historical Simulation. The HS 

methodology and all the proposed variations in the literature are mostly designed to capture any shifts 

in the recent past that are usually underweighted by the conventional approach. All of these proposed 

variations fail to bring in the risks that are not already included in the sampled historical period or to 

capture any structural shifts in the economy and the specific market examined. In contrast, the Hybrid 

MC-HS approach gives an accurate picture of the asset’s risk as it allows for the incorporation of 

jumps and fat-tails in the returns’ distribution, due to the flexibility provided by the MC simulations. 

Both, the MC simulations and the Historical Simulation approaches are very popular amongst 

practitioners for calculating the VaR of their portfolios because of their flexibility, ease of use, and 

estimation performance. Perignon and Smith (2010) find that amongst the banks in their global sample 

that disclose their VaR methodology, 73% use the HS methodology or any of its variations, whereas 

the MC simulations methodology is the second most frequently applied VaR method, used by 22% of 

the banks. As mentioned previously, there have been many variations proposed in the literature for the 

MC simulations and the HS approaches, but only looking at each approach separately. However, to the 

best of our knowledge, is the first time that the MC simulation approach is combined with the HS in 

order to produce a Hybrid approach for calculating the VaR of energy assets.  

Zikovic and Filer (2009) introduce a hybrid approach based on a combination of nonparametric 

bootstrapping and parametric GARCH volatility forecasting. They test the model using daily returns 

from sixteen market indexes, half from developed and the other half from emerging markets. The 

authors find that only the proposed hybrid model and the EVT-based VaR models can provide 

adequate protection in both developed and emerging markets. Lambadiaris et al. (2003) calculate the 

VaR in the Greek bond and stock markets using separately the HS and MC simulations approaches, 

and they find that for the linear stock portfolios the MC simulations approach performed better, as the 

HS approach overstated the VaR, whereas in the case of the non-linear bond portfolios the results are 

mixed. Vlaar (2000) investigates the Dutch interest rates term structure and applies the historical 

simulation, variance-covariance, and Monte Carlo simulation methods for estimating the accuracy of 

the VaR. He finds that the best results are obtained for a combined variance-covariance MC method 

that uses a term structure model with a normal distribution and a GARCH specification. Moreover, 

Hendricks (1996) compares the VaR estimates from the V&C and HS approaches, applied on foreign 

exchange portfolios, and concludes that both approaches have difficulties in capturing extreme 

outcomes and shifts in the underlying risks. Thus, it can be argued that in case of computing the VaR 

for non-linear assets over long time periods, where data are more volatile, with the non-stationarity 

and the normality assumptions being debatable, the MC simulations approach performs better than the 

HS approach.  
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Using each time the relevant underlying process 100,000 simulations are run, forecasting the spot 

prices 623 days ahead
7
. Then, using the average simulated path, the daily VaR is estimated using a 1 

day ahead rolling window method as it is the case with the HS method. The estimation window is the 

first 1,827 daily forecasts, rolled one step forward for the next 623 days. The mathematical expression 

for calculating the VaR using the Hybrid model is the following: 

  1 , ;  1827 days
t

t i i t T
VaR Percentile r a T  

 
                                                                   (16) 

where 

,

1

sn
ts

t

r
r

n






 is the average per time-step simulated return at time t, rt, is the return of the 

simulated spot price of path  at time t, n  is the number of MC simulations, and T is the estimation 

window of 1827 observations. 

III. VaR Back-testing procedure 

Having presented previously the various risk management techniques, this section sets forth a model 

selection process including all aforementioned models despite the major drawbacks and obvious 

limitations that some may have. This is done because it is expected that the tests of VaR models used, 

and the selection process proposed, will effectively reject the weakest models, knowing that some of 

them are widely used in practice. That makes the results of this paper even more important as useful 

feedback will be provided about the models’ quality and efficiency. 

To select the best model in terms of its VaR forecasting power, a two stage evaluation framework 

is implemented. In the first stage, three statistical criteria are used to test for unconditional coverage, 

independence, and conditional coverage, as proposed by Christoffersen (1998). A VaR model 

successfully passes the first stage evaluation only when it can satisfy all three statistical tests, at the 

5% or higher significance level. In the second stage, a loss function is constructed in line with Lopez 

(1999) and Sarma et al. (2003) to test the economic accuracy of the VaR models that have passed the 

first evaluation stage. Then, the model that delivers that lowest loss function value is compared pair-

wise with all remaining models that have passed the first evaluation stage, using the modified Diebold-

Mariano (MDM) test as proposed by Harvey et al. (1997). Thus, the benchmark model is tested 

against the remaining models to choose the VaR calculation methodology which generates the least 

loss for each energy market. In general, it is worth noting that when choosing between VaR models 

the modeller should view the selection process as being more valuable and useful than the actual VaR 

number obtained. 

To perform the proposed back-testing procedure a long period of historical data needs to be used. 

According to Alexander (2008), about 10 years of daily frequency data are needed for the results to be 

more powerful and to be able to reject any inaccurate VaR models. In this paper, 2,450 daily 

observations are used, representing almost 10 years of history of which 1,827 are used as the in-

sample (estimation sample) and 623 as the out-of-sample period. Then, using the rolling window 

approach, the estimation sample is rolled over the entire data period, for a fixed length of 1 day as the 

risk horizon.  

A. Statistical evaluation 

Statistical tests are used to back-test risk management models and access how well they can capture 

the frequency, independence, and magnitude of exceptions, defined as losses (gains) that exceed the 

                                                      
7
 For estimating the inputs for the MC simulations all 2,450 daily observations from the sample are used. 
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VaR estimates. Most of these tests rely on the assumption that the daily returns are generated by an 

i.i.d. Bernoulli process. Thus, the “hit sequence” or “failure process” of VaR violations is defined 

using an indicator function  as: 

                                                                (17) 

where rt+1 is the realised daily return from time t, when the VaR estimate is made, to time t+1. The hit 

sequence returns a 1 on a day t+1 if the loss on that day is larger than the VaR number forecasted. If 

there is no violation then the hit sequence returns a 0. In order to statistically back-test the VaR 

models, a sequence of  across T needs to be constructed, indicating the past violations. In a 

sample with n observations, if the “hit” series  follows an i.i.d. Bernoulli process, an accurate VaR 

model should return a number of “hits” equal to .  

Then, based on this hit sequence the VaR evaluation framework, as developed by Christoffersen 

(1998), is applied. Three tests for unconditional coverage, independence, and conditional coverage 

(which combines the unconditional coverage and independence into one test) are applied on the hit 

sequence, using in all cases a likelihood ratio statistic. Also, the P-values associated with the test 

statistic are calculated, using a 5% significance level. The two types of errors associated with the 

significance level chosen when testing a certain hypothesis in statistics, are the Type I (rejecting a 

correct model) and Type II (failing to reject an incorrect model) errors. The higher the significance 

level is, the larger the possibility for a Type I error. Thus, in line with common practice in risk 

management applications, and because Type II errors can be quite costly, a high enough threshold 

should be imposed for accepting the validity on any VaR model, and as such a 5% significance level is 

chosen in this paper
8
. 

First, the unconditional coverage test, introduced by Kupiec (1995) is applied, to test whether the 

indicator function has a constant success probability equal to the VaR significance level, a. The null 

hypothesis tested with  is that the average number of VaR violations forecasted is correct. 

Therefore, a VaR model is rejected in either case that underestimates or overestimates the actual VaR. 

The likelihood ratio statistic  is given by: 

                                                                                (18) 

where T is the out-of-sample days,  are the number of 0s and 1s in the sample, and χ2 is the 

chi-squared distribution with one degree of freedom.  

Second, the independence test is applied, to control for any clustering in the hit sequence which 

would indicate that the VaR model is not adequate in responding promptly to changing market 

conditions. The null hypothesis tested with  is that the VaR violations forecasted are 

independent. To this end, the test should be able to reject a VaR model with clustered violations. The 

likelihood ratio statistic  is given by: 

 

           (19) 

                                                      
8
 The smaller the significance level for the VaR estimates, the fewer the number of violations will be. Therefore, by 

choosing a 5% significance level more VaR violations can be observed than using a 1% level, leading to a better test for 

the accuracy of the VaR model. 
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where  is the number of observations with a j following an i. Also,  and  are given 

by the following equations: 

                                                                                                                            (20) 

                                                                                                                            (21) 

Third, the conditional coverage test is applied, to simultaneously test whether the VaR violations are 

independent and that the average number of those violations is equal to n*a. The null hypothesis tested 

with  is that both the average number of VaR violations forecasted is correct, and that the VaR 

violations are independent. It is important to test for conditional coverage because many financial and 

commodity time series exhibit volatility clustering. So, VaR estimates should be narrow (wide) in 

times of low (high) volatility, so that VaR violations are not clustered but spread-out over the sample 

period. The joint test of conditional coverage can be calculated as the sum of the two individual tests, 

so the likelihood ratio statistic  is given by: 

                                                                                                      (22) 

B. Economic evaluation 

In the second stage of the VaR models evaluation procedure the risk manager can work with fewer 

models, only those that pass all three statistical tests. However, because usually more than one model 

pass the first evaluation stage and the risk manager cannot choose a single VaR model as the most 

effective, an economic evaluation framework is needed to rank the models. Lopez (1999) and Sarma et 

al. (2003) set-forth such an evaluation approach by creating a loss function that measures the 

economic accuracy of the VaR models that pass the statistical tests. In this paper the approach 

introduced in Lopez (1999) and Sarma et al. (2003) is used, developing a loss function based on the 

notion of Expected Shortfall (ES), also termed Conditional VaR (CVaR), which measures the 

difference between the actual and the expected losses when actually a VaR violation occurs. A similar 

approach is also followed by Angelidis and Skiadopoulos (2008). Using this loss function the 

statistically accurate models are ranked and an economic utility function able to accommodate the risk 

manager’s needs is specified as follows: 

 

                                                                                                       (23) 

 

                                                                   (24) 

where the ith ES is defined as the average loss over the VaR violations from the N out-of-sample 

violations that occurred for the ith VaR model, under the following conditions: 

 

  (25) 

The proposed LF uses the ES and not the VaR measures to compare with the actual returns, as the 

VaR returns do not give an indication about the size of the expected loss when a violation occurs. The 

model that minimizes the total loss, hence returns the lowest LF value, is preferred relative to the 

remaining models. Evidence in the literature shows that the ES is a more coherent risk measure than 
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the VaR (Acerbi, 2002; Inui and Kijima, 2005). In addition, Yamai and Yoshiba (2005) argue that 

VaR is not as reliable as the ES measure, especially during market turmoil, and that it can be 

misleading for risk managers. However, the authors also suggest that the two measures should be 

combined for better results, as the ES estimations need to be very accurate in order to increase 

efficiency in the risk management process. 

C. Selection process: Modified Diebold Mariano & Bootstrap Reality Check 

Amongst all VaR models that passed the first evaluation stage, the model with the lowest LF, 

calculated during the second evaluation stage, is used as the benchmark model in order to examine 

whether it statistically performs better than the competing models. First, the pair-wise model 

comparison methodology employed is the modified Diebold Mariano (MDM) test proposed by Harvey 

et al. (1997). This approach overcomes the limitation of the Diebold-Mariano (1995) test of frequently 

rejecting the null when it is true. Then, the values of the modified DM test are compared with the 

critical value of the Student’s t-distribution with (T-1) degrees of freedom. 

The null hypothesis of the MDM test is that both the benchmark and the competing models are 

equally accurate in their VaR forecasts. That is, 

 with . The MDM statistic and the loss function used to evaluate 

the models under this framework are the following: 

                                                                                                          (26) 

                                                                                                                (27) 

 

where , and . 

Second, in addition to the MDM evaluation method, to minimise the possibility that the performance 

amongst the competing VaR methodologies could be due to data snooping bias, the bootstrap version 

of White’s (2000) Reality Check (RC) is implemented. According to Sullivan et al. (1999) and White 

(2000), data snooping occurs when a single data set is used for model selection and inference. While 

testing different models there is a probability of having a given set of results purely due to chance 

rather than these being truly based on the actual superior predictive ability of the competing models. In 

doing so, a relative performance measure is first constructed that can be defined as: 

 

, ,0 , ;   1,.., ;  n 1,..,623k n n n kf LF LF k l   
                                                                            (28) 

where model 0 is the benchmark and k represents the kth model, n denotes the out-of-sample testing 

period, and LF is the loss function of equation (23) chosen in the previous section. Next, for each 

value of k and LF, pair wise comparisons are made between each portfolio and the remaining ones. 

Mathematically the null hypothesis for the reality check can be formulated as: 

 

  0 : 0.k
k

H ma x E f 
                                                                                                           (29) 

The null hypothesis states that none of the models is better than the benchmark, i.e. there is no 

predictive superiority over the benchmark itself. Hence, whenever the null hypothesis is accepted it 

means that there is no competing model that performs better in terms of its VaR forecasting ability 

than the benchmark model. Following White (2000), the null hypothesis is tested by obtaining the test 

statistic of the reality check as 
 k

k

RC

n fnxamT 2/1
, where 

1

,1

n

k k tt
f n f


  and n is the number of 
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days of the out-of-sample period. To construct the test statistic, the stationary bootstrap technique of 

Politis and Romano (1994) is employed and B=1,000 random paths of VaR models’ Loss Functions 

are generated. A similar approach is used by Alizadeh and Nomikos (2007) who applied the stationary 

bootstrap to approximate the empirical distribution of Sharpe ratios and test different trading rules in 

the sale and purchase market for ships.  

The stationary bootstrap re-samples blocks of random length from the original data, to 

accommodate serial dependence, where the block length follows a geometric distribution and its mean 

value equals 1/ q . In this paper, similarly to Sullivan et al. (1999)
9
, 0.1q   which corresponds to a 

mean block length of 10; for 1q   the problem is reduced to the ordinary bootstrap which is suitable 

for series of negligible or no dependence. Finally, the bootstrap loss function and thus the performance 

measure, is constructed by using the simulated loss functions, whereas the Bootstrap RC p-value is 

obtained by comparing 
RC

nT
 directly with the quantiles of the empirical distribution of

*RC

nT
using the 

following expression: 

 

  kk
k

RC

n fbfnxamT  )(*2/1*

                                                                                               (30) 

where 
)(* bfk represents the sample mean of the relative performance measure calculated from the bth 

bootstrapped sample, with 1,...,b B .  

With the proposed back-testing procedure, VaR forecasts can be more accurate, reducing the 

probability of accepting flawed models, and thus satisfying the requirements of stringent risk 

management control procedures. In addition, using the proposed economic utility function, the risk 

manager is able to rank a range of candidate VaR models and select the best performing one amongst 

them. Finally, the market players can be better informed, and thus well prepared to withstand any 

future losses, should the market moves to the opposite direction, by forecasting the ES measure more 

accurately.  

IV. Data and the spot energy index 

This section describes the data used for the VaR models assessment. For each model, in total 2,450 

daily observations are collected from DataStream for the period 12/09/2000 to 1/02/2010. From the 

total sample, 1,827 observations are used in estimation to forecast the next day’s VaR. Using this 

“rolling window” method, for a fixed length of 1 day, the estimation sample is rolled over the entire 

data period generating 623 daily out-of-sample VaR forecasts. The spot prices collected are from eight 

energy markets that trade futures contracts on NYMEX, and the Spot Energy Index, as explained 

below: 

Heating Oil, New York Harbour No.2 Fuel Oil, quoted in US Dollar Cents/Gallon (US C/Gal); 

hereafter named as “HO”;  

Crude Oil, West Texas Intermediate (WTI) Spot Cushing, quoted in US Dollars/Barrel (US$/BBL); 

hereafter named as “WTI”; 

Gasoline, New York Harbour Reformulated Blendstock for Oxygen Blending (RBOB), quoted in US 

C/Gal; hereafter named as “Gasoline”; 

                                                      
9
 For more technical details on the implementation of the stationary bootstrap RC the reader is referred to Sullivan et al., 

1999; Appendix C, pp 1689-1690. 
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1-1 Crack Spread of Gasoline with WTI, quoted in US $/BBL; hereafter named as 

“CS_Gasoline_WTI”
10

; 

1-1 Crack Spread of Fuel Oil with WTI, quoted in US $/BBL; hereafter named as “CS_HO_WTI”; 

Natural Gas, Henry Hub, quoted in US Dollars/Milion British Thermal Units (US$/MMBTU); 

hereafter named as “NG”; 

Propane, Mont Belvieu Texas, quoted in US C/Gal; hereafter named as “Propane”; 

PJM, Interconnection Electricity Firm On Peak Price Index, quoted in US Dollars/Megawatt hour (US 

$/Mwh); hereafter named as “PJM”. 

Geometric average Spot Energy Index, quoted in index points and constituted by daily prices of WTI, 

HO, Gasoline, NG, Propane, and PJM; hereafter named as “SEI”. 

The Spot Energy Index (SEI) is constructed as an un-weighted geometric average of the individual 

commodity ratios of current prices to the base period prices, set at September 12, 2000. The index’s 

construction methodology is similar to that of the world-renowned CRB Spot Commodity Index. The 

SEI is designed to offer a timely and accurate representation of a long-only investment in energy 

commodities using a transparent and disciplined calculation. Geometric averaging provides a broad-

based exposure to the six energy commodities, since no single commodity dominates the index. Also, 

through geometric averaging the SEI is continuously rebalanced which means that the index 

constantly decreases (increases) its exposure to the commodity markets that gain (decline) in value, 

thus avoiding the domination of extreme price movements of individual commodities. Moreover, the 

risks that other types of indexes are subject to can be avoided, like potential errors in data sources for 

production, consumption, liquidity, or other errors that could affect the component weights of the 

index.  

The mathematical expression used to calculate the geometric average Spot Energy Index (SEI) is 

the following:  
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where, 
SEIt is the index for any given day, n represents each one of the six commodities comprising 

the index,
n

tS
is the price of each commodity for any given day, and 0

nS
is the average (geometric) 

price of each commodity in the base period. 

All the commodity prices and the Spot Energy Index chosen represent a barometer of the energy 

market trends worldwide. Figure 1 shows the evolution of the logarithmic price series and their 

returns, over the whole period examined from 12/09/2000 to 1/02/2010. It is observed that all series 

follow an upward sloping time trend until the end of June, 2008 (WTI reached $145/barrel), followed 

by a steep downward slope until the end of December of the same year (WTI fell to $31/barrel). Then, 

for the remainder of the sample a small recovery of the prices is witnessed with WTI prices recovering 

and staying at the range of $70 - $80/barrel. In general, from the figure it can be inferred that all spot 

energy prices are quite volatile, with the two crack spreads with WTI, the Natural Gas and the PJM 

markets exhibiting more distinct price jumps. Furthermore, all series vary with time as it can be 
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 The spot series of the two 1-1 crack spreads with the WTI have been constructed after converting the Fuel Oil and 

Gasoline spot prices that are quoted in US C/gallon into US $/Barrel, taking into account that there are 42 gallons in one 

barrel and 100 cents per dollar. Then, the two series are rebased to 100 so they can later be transformed to logarithmic 

prices and apply our modelling methodology.  
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observed by the log-price differences, also forming clusters, both signs that indicate the presence of 

time-varying volatility.  

Next, the descriptive statistics for the natural logarithm of the spot prices of all series are also 

estimated. To identify whether the series are mean reverting, a comparison procedure known as 

“confirmatory data analysis” is performed, where two tests for unit root non-stationarity, the 

Augmented Dickey-Fuller (ADF; Dickey and Fuller, 1979) and the Philips-Perron (PP; Phillips and 

Perron, 1988), and one test for stationarity, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS; 

Kwiatkowski et al., 1992), are employed. For the results to be robust, all three tests should give the 

same conclusion. Table 2 shows the descriptive statistics of the spot price series in logarithmic levels 

(Panel A) and their first differences (Panel B). As can be seen in panel B, the annualized volatility (as 

measured by the standard deviation of log-returns) of most energy markets ranges from 16% for the 

Heating Oil – WTI crack spread to 236% for PJM, which is significantly larger than the typical 

volatility observed in financial markets (e.g. the historical annualised volatility for the S&P500 is in 

the range of 20%-25%). As for the SEI, being an index, by construction its annualised volatility 

(48.5%) is in the same range as for the remaining fuel markets, WTI (41.9%), HO (42.4%), and 

Gasoline (50.5%), and significantly smaller than the highly volatile NG (75.4%). Overall, the two 

crack spreads have lower volatility than the outright series due to the high correlation between the 

prices of their constituent contracts.  

Looking at panel A of table 2, is observed that for all energy markets, with the exception of NG, 

Propane, and the SEI, the skewness is positive, indicating that extreme high values are more probable 

than low ones. Turning next to the log-price changes, the results regarding the coefficients of 

skewness are different since only the Heating Oil, Gasoline, and the crack spread of WTI with 

Gasoline are negatively skewed, whereas the rest of the energy markets are positively skewed (see 

panel B, table 2). Also looking again in Panel B of table 2, the coefficient of kurtosis which gives an 

indication of the probability of extreme values, is above three for all energy markets, implying that 

log-returns are leptokurtic; this suggests that the probability of extremely high or low returns is much 

higher than that assumed by the normal distribution. This effect is more obvious for the PJM, NG, the 

two crack spreads, and Propane in which case the high values of the coefficient of kurtosis (between 

12.07 and 34.53) is indicative of spikes in the price series. It is also found that normality is 

overwhelmingly rejected in the first difference series for all the energy markets and the SEI, on the 

basis of the Jarque-Bera (1980) test which is significant at the 1% level. It is obvious that non-

normality occurs mostly due to the large price movements and spikes in all logarithmic price series 

that eventually lead to fat tails. 

Moreover, from panel A in table 2 it is observed that the average logarithmic price for most energy 

markets is reduced when the filtered series is examined (i.e. when jumps are excluded) indicating that 

jumps have a positive impact on log-prices
11

. The only exceptions are the WTI and Gasoline markets 

where jumps have a negative impact on log-prices. It can also be inferred that the price-levels of most 

energy markets are not stationary, a conclusion confirmed by all three tests; the only exceptions are, as 

expected, the two crack-spreads and the PJM markets where price levels appear to be stationary on the 

basis of the ADF and PP tests. On the other hand, from Panel B of table 2 it can be seen that the first 

differences of the spot log-price series are strongly stationary for all energy markets, indicating the 

presence of mean reversion in the series. This conclusion, although it may not have been expected due 

to the presence of jumps in most of the energy series, can be justified by the fact that these jumps do 

not seem to affect the stationarity of the series because they are short-lived and price levels eventually 

revert to their mean after a jump has occurred. Panel B also reports the Ljung-Box (1978) Q(k)-

statistic and Engle’s (1982) ARCH test (Q2(k)-statistic) to test the significance of autocorrelation in 

the returns and squared returns for lags one and 20, respectively. From the reported values there is 

evidence of serial correlation for all the log-return series, and for both time lags, at conventional 
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 A detailed discussion on how the filtered series is estimated is given in the following section.  
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significance levels; the only exception is for the Gasoline market for 20 lags. Finally, based on Engle’s 

ARCH test significant serial correlation in the squared log-returns of all energy markets and the SEI is 

found, which indicates the presence of time-varying volatility in the return series. 

V. Empirical analysis 

To evaluate the efficiency of all available VaR models, out-of-sample 99%
12

 one-day VaR forecasts 

are generated for each one of the energy commodities examined and the SEI. The period used to 

estimate the parametric VaR models is the 12/09/2000 to 12/09/2007 consisting of 1827 observations, 

whereas the period used for the 623 out-of-sample forecasts is the 13/09/2007 to 1/02/2010. This 

research contributes to the relevant literature by testing all the VaR models for both long and short 

trading positions undertaken by the energy market players. As Angelidis and Degiannakis (2005) 

argue, it is imperative that a risk manager is able to forecast accurately the VaR for both long and short 

trading positions. In total, twenty two VaR models are implemented on the energy spot price series 

and the Spot Energy index, as described previously. 

The VaR results for all applied models and for all energy commodities and the SEI are shown in 

tables 3 to 11, for the 1% significance level. Each table reports, for both long and short positions, the 

average VaR or Expected Tail Loss in percentage points, the frequency of violations or number of hits 

in percentage points, alongside the p-values for Christoffersen’s three statistical tests for unconditional 

coverage, independence, and conditional coverage. The models that pass each test at the 5% 

significance level, and thus do not reject the null hypothesis, are indicated in bold. A 5% significance 

level is chosen in this paper as the acceptance threshold for the three tests, because the smaller the 

significance level the fewer the number of violations is, which leads to larger Type II errors that can 

be very costly for the risk manager. In addition, the results from the second evaluation stage, i.e. the 

Expected Shortfall, and the Loss Function that measures the economic accuracy of the models, are 

reported for both the short and long positions. The model that minimizes the total loss, hence returns 

the lowest LF value, is preferred relative to the remaining models. The numbers indicated in bold 

represent the models that have successfully passed all three statistical tests, whereas an asterisk 

indicates in each case the model that provides the smallest LF value and that is later used in the MDM 

pair-wise comparison as the benchmark model. The economic evaluation framework that uses the 

proposed LF can provide useful information for evaluating the VaR estimates for regulatory purposes. 

That is because by using the ES measure in the LF, the additional information on the magnitude of a 

loss that exceeds the estimated VaR is incorporated into the evaluation process. In addition, with the 

use of the proposed LF, the risk manager is able to rank all the candidate VaR models and distinguish 

the best performing one amongst them.  

From tables 3 to 11 it can be seen that for all commodities and the SEI there is always at least one 

model that passes all three statistical tests at the 1% significance level, for both long and short trading 

positions. In the majority of cases, it is the MC simulation and the proposed Hybrid MC-HS models 

that successfully pass the first evaluation stage, thus overall prevailing against the more traditional 

ARCH type and Historical Simulation methodologies. Even though in some cases the MC simulation 

models do not pass all three statistical tests, they tend to produce the lowest LF values, followed by the 

Hybrid MC-HS models. Due to the economic importance of the LF for the risk manager, it can be 

argued that even for those energy commodities that the simulation-type models do not pass the 

statistical tests, they can still be considered as good alternative methodologies for estimating VaR. 

When the frequency of hits is zero the respective models are unsuitable candidates for the application 

of both the statistical and the economic evaluation tests; these cases are indicated by a dash line in all 

tables. In addition, in those cases where the frequency of hits is too high, above 20%, the respective 
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 95% one-day VaR forecasts are also calculated but are not reported because results are very similar with the 99% 

forecasts that are reported in the tables.  
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models are unsuitable candidates for the application of the two statistical tests for unconditional and 

conditional coverage; in these cases a dash is also inserted. However, this does not mean that these 

models should be immediately rejected but it should be noted that consistently overestimate in the 

former case, and underestimate in the latter case, the actual VaR. For the entire fuels complex, 

including the WTI, HO, Gasoline, and the crack spreads with WTI, and for both long and short 

positions, the MC simulations methodology under the MRJD specifications, is the one that manages to 

pass all three statistical criteria from the first evaluation stage, and at the same time to deliver the 

lowest LF at the second evaluation stage. The only exceptions are the WTI and the CS-HO-WTI just 

for the long trading positions, with the F-EGARCH and F-GARCH methodologies delivering the 

lowest LFs respectively. As for the PJM and the SEI, and for both the long and the short trading 

positions, it is the Hybrid MC-HS specifications that successfully pass the first evaluation stage and 

deliver the lowest LF values at the second evaluation stage. Finally, the VaR for both the NG and the 

Propane series, for the long positions, is best estimated by the F-EGARCH methodology, whereas for 

the short positions is best estimated with the Hybrid MC-HS and the GARCH methodologies 

respectively. 

Next, table 12 reports the p-values for the pair-wise modified Diebold-Mariano (MDM) test, 

between the model that delivers the smallest LF and all those models that pass the first evaluation 

stage, for the long and the short trading positions, respectively. The null hypothesis of the MDM test is 

that both the benchmark and the competing models are equally accurate in their VaR forecasts. The 

null hypothesis is rejected whenever the reported p-value is less than 1%
13

. An asterisk indicates that 

the competing models are statistically performing equally well for predicting VaR, whereas a double 

asterisk indicates that the VaR hit series for both competing models is identical and so there cannot be 

any differentiation between the two. In such cases the p-value is equal to 1 as the null is accepted with 

100% confidence. As far as the long trading positions are concerned, according to the reported p-

values and for α=1%, it is for the WTI and the Propane markets that the F-EGARCH is statistically 

superior as a stand-alone model relative to the competing models, and for the HO market that the 

MCS-MRJD-GARCH model stands out. For all remaining energy markets and the SEI, all the pair 

wise competing models perform statistically equally well with the model that delivered the lowest LF 

at the second evaluation stage. In some cases the two competing models are statistically identical, as is 

the case for example with PJM and the SEI where the benchmarks HMCS-MR-GARCH and HMCS-

MR-EGARCH when compared with the HS and the HMCS-MR-GARCH, respectively, seem to be 

delivering exactly the same statistical accuracy. As far as the short trading positions are concerned and 

for all energy commodities and the SEI, according to the respective p-values, the null hypothesis 

cannot be rejected for all competing pairs of models. Again, there are many cases that the two 

competing models behave statistically the same. For example in the case of the SEI and for the 

benchmark HMCS-MR-EGARCH model, the null that the two competing models are the same, is 

respectively accepted with 100% confidence for the comparisons with the F-HS, HS, HMCS-MR-

GARCH, and HMCS-MR-OLS models. 

In addition, table 13 reports the p-values for the White's (2000) Reality Check (RC) test, between 

the model that delivers the smallest LF (benchmark) and all those models that pass the first evaluation 

stage, for both long and short trading positions. The null hypothesis states that none of the models is 

better than the benchmark, i.e. there is no predictive superiority over the benchmark itself. Hence, 

whenever the null hypothesis is accepted it means that there is no competing model that performs 

better in terms of its VaR forecasting ability than the benchmark model. The null hypothesis is 

rejected whenever the reported p-value is less than the conventional level of significance of 1%. For 

the long positions, the null cannot be accepted for Gasoline, the crack spread of HO with WTI, PJM, 

and the SEI as there can be at least one model that performs equally well or better than the benchmark 

model. For the WTI, NG, Propane, the crack spread of Gasoline with WTI, and HO markets there is 
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 The relevant t-stats (MDM-statistics) are also calculated but are not reported in the table because in every case, the 

outcome is identical to that of the p-values.  
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strong evidence that the benchmark model is indeed the best in terms of its VaR performance across 

the competing models; the F-EGARCH for the former four markets and the MCS-MRJD-GARCH for 

the latter. As for the short positions, the null cannot be rejected in all cases but three. It is only for the 

WTI, HO and Gasoline that the benchmark model is not the best performing one according to the 

reported RC p-values. On the other hand, based on the reported RC p-values, for the two crack spreads 

of Gasoline and HO with WTI, the Propane, NG, PJM, and the SEI, the benchmark model is indeed 

the best performing one; that is the MCS-MRJD-EGARCH, MCS-MRJD-GARCH, GARCH, and 

HMCS-MR-EGARCH for the latter three markets respectively. The results from the RC test indicate 

that for the long trading positions there is mixed evidence as to which model performs better in terms 

of its VaR forecasting ability. However, for the short trading positions it is clearer from the results that 

the proposed MC Simulation and the Hybrid MC-HS methodologies produce a better VaR 

performance compared to the more traditional ARCH type and Historical Simulation methodologies.   

Finally, table 14 summarises the VaR models that have been shortlisted as being the best for 

predicting VaR for each energy market and the SEI, following the proposed back-testing 

methodology. Panels A and B show the results for the long and the short trading positions 

respectively. In both panels, the first two columns list all the models that have successfully passed all 

three statistical tests, i.e. the first evaluation stage. Next, the remaining columns in each panel report 

only those VaR models that deliver the lowest LF, alongside those models that the MDM test 

identifies that their hit series is identical. According to the implemented two stage back-testing 

procedure, at the 1% significance level and for the short positions, it is the MC simulation and the 

Hybrid MC-HS methods from which the preferred models for estimating the VaR are short-listed; this 

finding is consistent with all energy markets and the SEI. As for the long trading positions results are 

mixed. On the one hand, it is again the MC simulation and the Hybrid MC-HS methods that are the 

best choices for the HO, Gasoline, CS-Gasoline-WTI, PJM, and the SEI. On the other hand, it is the 

ARCH-type models, and more specific the F-GARCH and F-EGARCH models, that stand out as the 

best VaR modelling options for the WTI, CS-HO-WTI, NG, and Propane markets.   

Therefore, whenever a risk manager wants to choose a single approach for calculating the VaR for 

all energy commodities that he/ she holds, as it is usually the case in practice, the results show that the 

MC simulations and the Hybrid MC-HS approaches proposed in this paper are the most reasonable, 

efficient, and consistent candidates. The findings of this research have important implications for 

regulatory and policy-making purposes as the decision making bodies can reconsider the commonly 

used VaR models and establish an industry-wide methodological approach for calculating and back-

testing the VaR in the energy markets. The proposed MC simulation and the Hybrid MC-HS models, 

in combination with the proposed selection procedure, have the potential of becoming common 

practice in the energy industry.  

VI. Conclusion 

This paper proposes and compares a set of models for estimating the VaR of eight spot energy markets 

that trade futures contracts on NYMEX, and of the constructed Spot Energy Index, for both long and 

short trading positions, at the 1% significance level. The two proposed VaR methodologies are a MC 

simulation approach, and a Hybrid MC with Historical Simulation approach, both assuming various 

processes for the underlying spot prices. Next, a two-stage evaluation and selection process is applied, 

combining statistical and economic measures, to choose amongst the competing VaR models. The 

results show that, at the 1% significance level, for all commodities and the SEI there is at least one 

model that passes all three statistical tests with the ARCH type, the MC simulation, and the Hybrid 

MC-HS models prevailing more. For the entire fuels complex, including the WTI, HO, Gasoline, and 

the crack spreads with WTI, and for both long and short positions, the MC simulations methodology 

under the MRJD specifications, followed by the Hybrid MC-HS models pass all three statistical 

criteria from the first evaluation stage, and at the same time deliver the lowest LF at the second 

evaluation stage. The only exceptions are the WTI and the CS-HO-WTI just for the long trading 
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positions, with the ARCH-type methodologies delivering the lowest LFs respectively. Therefore, it is 

concluded that the two former approaches are the most reasonable, efficient, and consistent candidates 

for calculating the VaR of energy prices, for both long and short positions. 

The accurate calculation of VaR measures in the volatile energy markets is important for all market 

players and for a variety of reasons. First, the spot energy price risk is quantified taking into 

consideration the occurrence of extreme volatility events and thus at the same time allowing managers 

to develop efficient hedging strategies to protect their investments. Second, with the proposed VaR 

model selection process, modelling risk can be minimised as it satisfies strict risk management 

requirements and control procedures, by reducing the probability of accepting flawed models. Third, 

quantifying the risk profile of the energy markets, as expressed by the individual spot price series and 

the SEI, is vital for many hedge fund managers and alternative investors that have recently been 

following closely and started expanding their presence in the energy markets. Finally, the proposed 

VaR estimates can be used for setting the margin requirements in the growing energy derivatives 

market, and more importantly for the energy forwards, futures, and options that are widely used for 

both hedging and speculation purposes by many industrial players, commodity and investment houses.  

The latter can be achieved by adopting the proposed models for their derivative contracts’ 

valuations which are able to describe the energy markets better, exhibiting better explanatory power 

and goodness of fit. These models incorporate mean-reversion and spikes in the stochastic behaviour 

of the underlying asset, allowing for a different speed of mean reversion once a jump is identified, 

while at the same time allowing for time-varying volatility in their specification modelled as a 

GARCH or an EGARCH process. While risk management clearly did not fully prevent a downside in 

investment portfolios during the recent economic recession, according to Briand and Owyong (2009) 

those organisations that had invested in risk management practices prior to the crisis, and acted on 

their findings, performed significantly better than those that did not. 
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Appendix 

All tables and graphs can be provided by the authors upon request. 
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