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Abstract

We establish the equivalence between a commonly used out-of-sample test of equal pre-

dictive accuracy and the difference between two Wald statistics. This equivalence greatly

simplifies the computational burden of calculating recursive out-of-sample tests and evalu-

ating their critical values. Our results shed new light on many aspects of the test and es-

tablishes certain weaknesses associated with using out-of-sample forecast comparison tests

to conduct inference about nested regression models.

∗Valuable comments were received from Frank Diebold, Jim Stock, two anonymous referees and seminar
participants at University of Pennsylvania, the Triangle Econometrics Seminar, UC Riverside, University of
Cambridge, the UCSD conference in Honor of Halbert White, and the NBER/NSF Summer Institute 2011.



1 Introduction

Out-of-sample tests of predictive accuracy are used extensively throughout economics and fi-

nance and are regarded by many researchers as the “ultimate test of a forecasting model” (Stock

and Watson (2007, p. 571)). Such tests are frequently undertaken using the approach of West

(1996), McCracken (2007) and Clark and McCracken (2001, 2005) which accounts for the effect

of recursive updating in parameter estimates. This approach can be used to test the null of

equal predictive accuracy of two nested regression models evaluated at the probability limits

of the estimated parameters and gives rise to a test statistic whose limiting distribution (and,

hence, critical values) depends on integrals of Brownian motion. The test is burdensome to

compute and depends on nuisance parameters such as the relative size of the initial estimation

sample versus the out-of-sample evaluation period.

This paper shows that a recursively generated out-of-sample test of equal predictive accu-

racy is equivalent to the difference between two simple Wald tests based on the full sample and

the initial estimation sample, respectively. Our result has three important implications. First,

it greatly simplifies calculation of the critical values of the test statistic which has so far relied

on numerical approximation to integrals of Brownian motion but now reduces to simple convo-

lutions of chi-squared random variables. Second, our result simplifies computation of the test

statistic itself which no longer depends on a potentially very large set of recursively updated

parameter estimates. Third, our result provides a new interpretation of out-of-sample tests of

equal predictive accuracy which we show are equivalent to simple parametric hypotheses and

so could be tested with greater power using conventional test procedures.

2 Theory

Consider the predictive regression model for an h-period forecast horizon

yt+h = β′1X1t + β′2X2t + εt+h, t = 1, . . . , n (1)

where X1t ∈ R
k and X2t ∈ R

q.

To avoid “look-ahead” biases, out-of-sample forecasts generated by the regression model (1)

are commonly based on recursively estimated parameter values. This can be done by regressing

ys on (X
′
1,s−h, X

′
2,s−h)

′, for s = 1, . . . , t, resulting in the least squares estimate β̂t = (β̂′1t, β̂
′
2t)
′,

and using ŷt+h|t(β̂t) = β̂′1tXt+ β̂
′
2tX2t to forecast yt+h. The resulting forecast can be compared
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to that of a smaller (nested) regression model, yt+h = β′1X1t + ε̃t+h say, whose forecasts are

given by ỹt+h|t(β̃1t) = β̃′1tX1t, where β̃1t =
(

∑t
s=1X1,s−hX ′1,s−h

)−1
∑t

s=1X1,s−hys.

West (1996) proposed to judge the merits of a prediction model through its expected loss

evaluated at the population parameters. Under mean squared error (MSE) loss, this suggests

testing1

H0 : E[yt − ŷt|t−h(β)]2 = E[yt − ỹt|t−h(β1)]2. (2)

McCracken (2007) considered a test of this null based on the test statistic

Tn =

∑n
t=nρ+1(yt − ỹt|t−h)2 − (yt − ŷt|t−h)2

σ̂2ε
, (3)

where σ̂2ε is a consistent estimator of σ
2
ε = var(εt+h) and nρ is the number of observations set

aside for the initial estimation of β (taken to be a fraction ρ ∈ (0, 1) of the full sample, n, i.e.,

nρ = ⌊nρ⌋). Assuming homoskedastic forecast errors and h = 1, McCracken (2007) shows that

the asymptotic distribution of Tn is given as a convolution of q independent random variables,

each with a distribution of 2
´ 1
ρ u

−1B(u)dB(u) −
´ 1
ρ u

−2B(u)2du. Results for the case with

h > 1 and heteroskedastic errors are derived in Clark and McCracken (2005).

We will show that the test statistic, Tn, amounts to taking the difference between two Wald

statistics, both testing the same null H0 : β2 = 0, but based on the full sample versus the initial

estimation sample, respectively. To prove this result, define the vector of stacked variables

Vt = (yt, X
′
t−h)

′. We make the following assumption:

Assumption 1. Σvv = E(VtV
′
t ) is positive definite and does not depend on t. Moreover,

sup
u∈(0,1]

∣

∣

∣

∣

∣

∣

1

n

⌊un⌋
∑

t=1

VtV
′
t − uΣvv

∣

∣

∣

∣

∣

∣

= op(1). (4)

The first part of Assumption 1 ensures that the population predictive regression coefficients

do not depend on t. For convenience, we express the block structure of Σvv as follows

Σvv =





Σyy •

Σxy Σxx



 with Σxx =





Σ11 •

Σ21 Σ22



 ,

1Another approach is to consider E[yt − ŷt|t−h(β̂t−h)]
2 which typically depends on t, see, e.g., Giacomini and

White (2006).
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where the blocks in Σxx refer to X1t and X2t, respectively. Similarly, define

εt = yt − ΣyxΣ
−1
xxXt−h, Zt = X2t − Σ21Σ

−1
11 X1t,

as the “error” term from the large model and the auxiliary variables, respectively, so that Zt

is constructed to be the part of X2t that is orthogonal to X1t. Next, define the population

objects, σ2ε = Σyy − ΣyxΣ
−1
xxΣxy, Σzz = Σ22 − Σ21Σ

−1
11 Σ12, and (β′1, β

′
2)
′ = Σ−1xxΣxy. Then

σ2ε > 0 and Σzz is positive definite because Σvv is positive definite. Further, let Σ = σ2εΣzz and

Ω := plimn→∞
1
n

∑n
s,t=1 Zs−hεsεtZ ′t−h, where the latter is the long-run variance of Ω. We make

the following assumption about the partial sum of Zt−hεt:2

Assumption 2. Let Un(u) :=
1√
n

∑⌊un⌋
t=1 Zt−hεt, and assume that

Un(u)⇒ U(u) = Ω1/2B(u), on D
q
[0,1],

with detΩ > 0, where B(u) is a standard q-dimensional Brownian motion and D
q
[0,1] denotes

the space of cadlag mappings from the unit interval to R
q.

Finally, we make an assumption that imposes a type of unpredictability of the forecast

errors beyond the forecasting horizon, h, and simplifies the expression for ❲ because higher order

autocovariances are all zero. This assumption is easily tested by inspecting the autocorrelations

of Zt−hεt.

Assumption 3. cov(Zt−hεt, Zt−h−jεt−j) = 0 for |j| ≥ h.

The null hypothesis H0 in (2) is equivalent to H ′0 : β2 = 0 which can be tested with

conventional tests. To this end, consider the Wald statistic based on the first m observations,

Wm = mβ̂′2m
[

σ̂2ε Σ̂
−1
zz

]−1
β̂2m,

where σ̂2ε and Σ̂zz are consistent estimators of σ
2
ε and Σzz, respectively. This statistic is based

on a “homoskedastic” estimator of the asymptotic variance, which causes the eigenvalues of

σ−2ε Σ−1zz Ω, λ1, . . . , λq, to appear in the limit distribution. Specifically, Wm
d→

∑q
i=1 λiχ

2
(1)

under the null hypothesis, see e.g. White (1994).

2This assumption can be shown to hold under standard regularity conditions often used in the literature,
such as those in Hansen (1992) (mixing) or those in De Jong and Davidson (2000) (near-epoch).
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With the above assumptions and Assumption A.1 from the Appendix, we can now formulate

our main result.

Theorem 1. Given Assumptions 1-3 and A.1, the out-of-sample test statistic in equation (3)

can be written as Tn =Wn −Wnρ + κ log ρ+ op(1), where κ =
∑q

i=1 λi.

It is surprising that the complex out-of-sample test statistic for equal predictive accuracy,

Tn, which depends on sequences of recursive estimates, is equivalent to the difference between

two Wald statistics, one using the full sample, the other using the subsample t = 1, . . . , nρ.

For the general case with h ≥ 1 and heteroskedastic prediction errors, the limit distribution

for Tn (under the null hypothesis) was derived in Clark and McCracken (2005).
3 It involves a

q × q matrix of nuisance parameters, but was simplified by Stock and Watson (2003) to

q
∑

i=1

λi

[

2

ˆ 1

ρ
u−1Bi(u)dBi(u)−

ˆ 1

ρ
u−2Bi(u)Bi(u)du

]

, (5)

where B = (B1, . . . , Bq)
′ is a standard q-dimensional Brownian motion. Theorem 1 implies

that this expression can be greatly simplified:

Corollary 1. The distribution in equation (5) is identical to that of

q
∑

i=1

λi
[

B2
i (1)− ρ−1B2

i (ρ) + log ρ
]

.

Next, we show that the limit distribution can be expressed in terms of differences between

two independent χ2-distributed random variables (as opposed to the dependent ones B2
i (1) and

ρ−1B2
i (ρ)).

Theorem 2. The distribution of 2
´ 1
ρ u

−1BdB−
´ 1
ρ u

−2B2du is identical to that of
√
1− ρ(Z2

1−

Z2
2 ) + log ρ, where Zi ∼ iidN(0, 1).

Because the distribution is expressed in terms of two independent χ2-distributed random

variables, in the homoskedastic case where λ1 = · · · = λq = 1, it is possible to obtain relatively

simple closed form expressions for the limit distribution of Tn:

Theorem 3. The density of
∑q

j=1

[

2
´ 1
ρ u

−1Bj(u)dBj(u)−
´ 1
ρ u

−2Bj(u)
2du

]

is given by

f1(x) =
1

2π
√
1−ρK0(

|x−log ρ|
2
√
1−ρ ),

3The standard Brownian motion, B, that appears in (5) need not be identical to that used in Assumption 2.
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for q = 1, where K0(x) =
´∞
0

cos(xt)√
1+t2

dt is the modified Bessel function of the second kind. For

q = 2 we have

f2(x) =
1

4
√
1−ρ exp

(

− |x−2 log ρ|
2
√
1−ρ

)

,

which is the non-central Laplace distribution.

The densities for q = 3, 4, 5, . . . can be obtained by convolution of those stated in the

Corollary. Fortunately, K0(x) is implemented in standard software and is easy to compute.

3 Conclusion

We show that a test statistic, which is widely used for out-of-sample forecast comparisons of

nested regression models, is equal in probability to the difference between two Wald statistics of

the same null - one using the full sample and one using a subsample. This equivalence greatly

simplifies both the computation of the test statistic and the expression for its limit distribution.

Our result raises serious questions about testing the stated null hypothesis out-of-sample

in this manner. Subtracting a subsample Wald statistic from the full sample Wald statistic

dilutes the power of the test, and does not lead to any obvious advantages, such as robustness

to outliers, etc. Moreover, the conventional full sample Wald test can easily be adapted to the

heteroskedastic case by using a robust estimator for the asymptotic variance of β2.

On a more constructive note, one could use the simplified expressions derived here to develop

a test that is robust to potential mining over the sample split. By strengthening the convergence

results in Assumption A.1 to be uniform in ρ over the range ρ ∈ [ρ, ρ̄], with 0 < ρ < ρ̄ < 1, one

achieves Tn(u)
d→ G(u) = B(1)′ΛB(1) − u−1B(u)′ΛB(u) + κ log u with Λ = diag(λ1, . . . , λq),

which can be used to derive a test whose test statistic is constructed from a range of sample

splits; see Rossi and Inoue (2012) and Hansen and Timmermann (2012).
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Appendix of Proofs

Assumption A.1. Let γj = E(εtZ
′
t−hΣ

−1
zz Zt−h−jεt−j). We assume that as n→∞

n
∑

t=nρ+1

(β̂2,t−h − β2)′(Σzz − Zt−hZ
′
t−h)(β̂2,t−h − β2)

p→ 0, (A.1)

1
n

n
∑

t=nρ+1

n
t (εtZ

′
t−hΣ

−1
zz Zt−h−jεt−j − γj)

p→ 0. (A.2)

Convergence in probability holds under suitable regularity conditions and is, in fact, uniform in ρ

for ρ ∈ (a, b) where 0 < a < b < 1, under suitable mixing conditions by applying Hansen (1992, theorem

3.3), see Hansen and Timmermann (2012). (A.2) implies that − 1
n

∑n
t=nρ+1

n
t εtZ

′
t−hΣ

−1
zz Zt−h−jεt−j =

γj
´ 1

ρ
u−1du+ op(1) = γj log ρ+ op(1).

Lemma A.1. Suppose Ut = Ut−1+ut ∈ R
q and let M be a symmetric q× q matrix. Then 2U ′t−1Mut =

U ′tMUt − U ′t−1MUt−1 − u′tMut.

Proof. U ′t−1Mut = (Ut − ut)′Mut = U ′tM(Ut − Ut−1)− u′tMut equals

U ′tMUt − (Ut−1 + ut)
′MUt−1 − u′tMut = U ′tMUt − U ′t−1MUt−1 − u′tMUt−1 − u′tMut.

Rearranging terms and using u′tMUt−1 = U ′t−1Mut yields the result.

Proof of Theorem 1. Without loss of generality we consider the case where k = 0, so that Zt = X2t.

The general case with k > 0 results in additional terms (involving cross products of X1,t−hZ
′
t−h) that all

vanish in probability in this analysis, see Hansen and Timmermann (2012, Lemma A.2). We decompose
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the loss differential
∑n

t=nρ+1(yt − ỹt|t−h)
2 − (yt − ŷt|t−h)

2 as follows:

A+B + C +D =
∑

t

β′2Zt−hZ
′
t−hβ2 + 2β′2

∑

t

Zt−hεt + 2
∑

t

(β̂2,t−h − β2)′Zt−hεt

−
∑

t

(β̂2,t−h − β2)′Zt−hZ
′
t−h(β̂2,t−h − β2).

Let Un,t = n−1/2
∑t

t=1 Zt−hεt and un,t = n−1/2Zt−hεt. By (A.1) D = 1
n

∑n
t=nρ+1(

n
t )

2U ′n,tΣ
−1
zz Un,t +

op(1) and

C =

n
∑

t=nρ+1

2n
t U

′
n,t−hΣ

−1
zz un,t + op(1)

=

n
∑

t=nρ+1

2n
t U

′
n,t−1Σ

−1
zz un,t − 2

n
∑

t=nρ+1

n
t

h−1
∑

i=1

u′n,t−iΣ
−1
zz un,t + op(1)

=
n
∑

t=nρ+1

2n
t U

′
n,t−1Σ

−1
zz un,t + ξ + op(1),

where ξ = 2(γ1 + · · ·+ γh−1) log ρ, using (A.2). Now apply Lemma A.1

C =
n
∑

t=nρ+1

n
t (U

′
n,tΣ

−1
zz Un,t − U ′n,t−1Σ

−1
zz Un,t−1 − u′n,tΣ−1

zz un,t) + ξ + op(1),

= U ′n,nΣ
−1
zz Un,n − n

nρ

U ′n,nρ
Σ−1

zz Un,nρ
+ 1

n

n
∑

t=nρ+1

(nt )
2U ′n,tΣ

−1
zz Un,t + σ2

εκ log ρ+ op(1), (A.3)

where we used that σ−2
ε κ = tr{Σ−1

zz Ω} =
∑h−1

j=−h+1 tr{Σ−1
zz E[Zt−h−jεt−jεtZ

′
t−h]} =

∑h−1
j=−h+1 γj under

Assumption 3. The penultimate term in (A.3) offsets the contributions from D, whereas A+B equals

β′2

n
∑

t=1

Zt−hZt−hβ2 − β′2
n
∑

t=nρ+1

Zt−hZt−hβ2 + 2n1/2β′2Un,n − 2n1/2β′2Un,nρ
.

With Wm = σ̂−2
ε β̂′2,m [

∑m
t=1 Zt−hZt−h] β̂2,m = σ̂−2

ε (β̂2,m − β2 + β2)
′ [
∑m

t=1 Zt−hZt−h] (β̂2,m − β2 + β2),

we have

σ̂2
ε(Wn −Wnρ

) = U ′n,nΣ
−1
zz Un,n −

n

nρ
U ′n,nρ

Σ−1
zz Un,nρ

+ op(1)

+β′2

nρ
∑

t=1

Zt−hZt−hβ2 + 2n1/2β′2(Un,n − Un,nρ
).

and the result now follows.�

Proof of Corollary 2. Let U = B(1)−B(ρ)√
1−ρ

and V = B(ρ)√
ρ , so that B(1) =

√
1− ρU +

√
ρV , and note

that U and V are independent standard Gaussian random variables. Expressing the distribution we
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seek as a quadratic form

(

√

1− ρU +
√
ρV

)2

− V 2 =





U

V





′



1− ρ
√

ρ(1− ρ)
√

ρ(1− ρ) ρ− 1









U

V



 ,

and decomposing the 2×2 symmetric matrix intoQ′ΛQ, whereQ′Q = I and Λ = diag(
√
1− ρ,−√1− ρ)

(the eigenvalues) the expression simplifies to
√
1− ρ(Z2

1 − Z2
2 ) where Z = Q(U, V )′ ∼ N2(0, I). �

Proof of Corollary 3. Let Z1i,Z2i, i = 1, . . . , q be i.i.d. N(0, 1), so that X =
∑q

i=1 Z
2
1,i and Y =

∑q
i=1 Z

2
2,i are both χ

2
q-distributed and independent. The distribution we seek is given by the convolution,

q
∑

i=1

[

√

1− ρ(Z2
1,i − Z2

2,i) + log ρ
]

=
√

1− ρ(X − Y ) + q log ρ,

so we seek the distribution of S = X − Y where X and Y are independent χ2
q-distributed random

variables. The density of a χ2
q is

ψ(u) = 1{u≥0}
1

2q/2Γ( q2 )
uq/2−1e−u/2,

and we are interested in the convolution of X and −Y

ˆ

1{u≥0}ψ(u)1{u−s≥0}ψ(u− s)du =
ˆ ∞

0∨s
ψ(u)ψ(u− s)du,

=

ˆ ∞

0∨s

1

2q/2Γ( q2 )
uq/2−1e−u/2 1

2q/2Γ( q2 )
(u− s)q/2−1e−(u−s)/2du

=
1

2qΓ( q2 )Γ(
q
2 )
es/2
ˆ ∞

0∨s
(u(u− s))q/2−1

e−udu.

For s < 0 the density is 2−qΓ( q2 )
−2es/2

´∞
0
(u(u− s))q/2−1

e−udu. By taking advantage of the symmetry

about zero, we obtain the expression

1

2qΓ( q2 )Γ(
q
2 )
e−|s|/2

ˆ ∞

0

(u(u+ |s|))q/2−1
e−udu.

When q = 1 this simplifies to f1(s) =
1
2πB0(

|s|
2 ) where Bk(x) denotes the modified Bessel function of

the second kind. For q = 2 we have the simpler expression f2(x) =
1
4e
− |s|

2 . �
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