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Abstract

Recent economic developments have shown the importance of spillover and con-
tagion effects in financial markets as well as in macroeconomic reality. Such effects
are not limited to relations between the levels of variables but also impact on the
volatility and the distributions. Granger causality in conditional means and condi-
tional variances of time series is investigated in the framework of several popular
multivariate econometric models. Bayesian inference is proposed as a method of
assessment of the hypotheses of Granger noncausality.

First, the family of ECCC-GARCH models is used in order to perform inference
about Granger-causal relations in second conditional moments. The restrictions for
second-order Granger noncausality between two vectors of variables are derived.

Further, in order to investigate Granger causality in conditional mean and con-
ditional variances of time series VARMA-GARCH models are employed. Paramet-
ric restrictions for the hypothesis of noncausality in conditional variances between
two groups of variables, when there are other variables in the system as well are
derived. These novel conditions are convenient for the analysis of potentially large
systems of economic variables.

Bayesian testing procedures applied to these two problems, Bayes factors and
a Lindley-type test, make the testing possible regardless of the form of the restric-
tions on the parameters of the model. This approach also enables the assumptions
about the existence of higher-order moments of the processes required by classical
tests to be relaxed.

Finally, a method of testing restrictions for Granger noncausality in mean, vari-
ance and distribution in the framework of Markov-switching VAR models is pro-

v
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posed. Due to the nonlinearity of the restrictions derived by Warne (2000), classical
tests have limited use. Bayesian inference consists of a novel Block Metropolis-
Hastings sampling algorithm for the estimation of the restricted models, and of
standard methods of computing posterior odds ratios. The analysis may be ap-
plied to financial and macroeconomic time series with changes of parameter values
over time and heteroskedasticity.

Keywords: Granger Causality, Second-Order Causality, Volatility Spillovers, Hy-
pothesis Testing, Bayesian Testing, Bayes Factors, Posterior Odds Ratio, Block
Metropolis-Hastings Sampling, GARCH Models, VARMA-GARCH Models, Markov-
switching Models

JEL classification: C11, C12, C32, C53, E32
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Chapter 1

Testing Causality Between Two
Vectors in Multivariate GARCH
Models

Abstract. Spillover and contagion effects have gained significant in-
terest in the recent years of financial crisis. Attention has not only
been directed to relations between returns of financial variables, but to
spillovers in risk as well. The family of Constant Conditional Correla-
tion GARCH models is used to model the risk associated with financial
time series and to make inferences about Granger causal relations be-
tween second conditional moments. The restrictions for second-order
Granger noncausality between two vectors of variables are derived, and
are assessed using posterior odds ratios. This Bayesian method consti-
tutes an alternative to classical tests and can be employed regardless
of the form of the restrictions on the parameters of the model. This
approach enables the assumptions about the existence of higher-order
moments of the processes required in classical tests to be relaxed. In
the empirical example, the pound-to-Euro exchange rate is found to
second-order cause the US dollar-to-Euro exchange rate, whereas the
causal relation in the other direction is not supported by the data, which
confirms the meteor shower hypothesis of Engle, Ito and Lin (1990).

This paper was presented at BMRC-QASS Conference in London in May 2010, FindEcon
Conference in Łódź in May 2010 under the title Bayesian testing of second-order causality. The author

1
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2 CHAPTER 1. NONCAUSALITY IN GARCH MODELS

1.1 Introduction

The concept of Granger causality was introduced in econometrics by Granger (1969)
and Sims (1972). One vector of variables does not Granger-cause the other vector
of variables if past information about the former cannot improve the forecast of
the latter. Thus, Granger causality or noncausality refers to the forecast of the
conditional mean process. The basic definition is set for a forecast of one period
ahead value. The conditions imposed on the parameters of the linear Vector
Autoregressive Moving Average model for Granger noncausality were derived
by Boudjellaba et al. (1992) and Boudjellaba et al. (1994). The forecast horizon
in the definition may, however, be generalized to h or up to h periods ahead,
and h may have its limit in infinity (see Lütkepohl, 1993; Dufour and Renault,
1998). Irrespective of the forecast horizon, the restrictions imposed on parameters
assuring noncausality may be nonlinear. This fact motivated the development
of nonstandard testing procedures that allow for the empirical verification of
hypotheses (see Boudjellaba et al., 1992; Lütkepohl and Burda, 1997; Dufour et al.,
2006).

The present paper examines the Granger causality for conditional variances.
Consequently, we refer to the concept of the second-order Granger causality, in-
troduced by Robins et al. (1986), and formally distinguished from the Granger
causality in variance by Comte and Lieberman (2000). One vector of variables does
not second-order Granger-cause the other vector of variables if past information
about the variability of the former cannot improve the forecast of conditional vari-
ances of the latter. The definition of the second-order noncausality assumes that
Granger causal relations might exist in the conditional mean process, however,
they should be modeled and filtered out. Otherwise, such relations may impact
on the parameters responsible for causal relations in conditional variances (see the
empirical illustration of the problem in Karolyi, 1995).

thanks Helmut Lütkepohl, Jacek Osiewalski, Helmut Herwartz, Massimiliano Marcellino, Vance
Martin and Timo Teräsvirta for useful comments and remarks on the study. Also, the author
thanks Michał Markun and colleagues from the EUI Time Series Econometrics Working Group for
multiple discussions and suggestions.
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1.1. INTRODUCTION 3

Restrictions already exist for the one-period-ahead second-order noncausality
for the family of BEKK-GARCH models, delivered by Comte and Lieberman
(2000); which take the form of several nonlinear functions of original parameters
of the model. However, no good test has been established for such restrictions. The
problem is that the matrix of the first partial derivatives of the restrictions, with
respect to the parameters of the model, may not be of full rank. This fact translates
to the unknown asymptotic properties of classical tests, even if the asymptotic
distribution of the estimator is normal. As a consequence, the testing strategy
developed by Comte and Lieberman (2000) and Hafner and Herwartz (2008b) is
to derive linear (zero) restrictions on the parameters, which would be a sufficient
condition for the original restrictions, and then to apply to them a Wald test.

The conditions for the one-period-ahead second-order noncausality for the
family of Extended Constant Correlation GARCH models of Jeantheau (1998) are
derived in this paper. In this setting, all the considered variables are split in two
vectors, between which we investigate causal relations in conditional variances.
Then, the conditions for the one-period-ahead second-order noncausality appear
to be the same as those for second-order noncausality in all future periods. When
compared with the work of Comte and Lieberman (2000), these conditions result
in a smaller number of restrictions. This has a practical meaning in computing
the restricted models and may also potentially have a significant impact on the
properties of tests applied to the problem.

In order to assess the credibility of the noncausality hypotheses, posterior odds
ratios are employed, a standard Bayesian procedure. In the context of Granger non-
causality hypothesis testing, Bayes factors and Posterior Odds Ratios were used
by Droumaguet and Woźniak (2012) for Markov-switching VAR models. In the
same context, Woźniak (2012) used a Lindley-type test for VARMA-GARCH mod-
els. Moreover, in order to assess the hypotheses of exogeneity, a concept related
to Granger noncausality, Pajor (2011) used Bayes factors for models with latent
variables and in particular to multivariate Stochastic Volatility models, whereas
Jarociński and Maćkowak (2011) used a Savage-Dickey Ratios for the VAR model.

Since the inference is performed using the posterior odds ratios, it is based on
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4 CHAPTER 1. NONCAUSALITY IN GARCH MODELS

the exact finite sample results. Therefore, referring to the asymptotic results be-
comes pointless. This finding enables a relaxing of the assumptions required in the
classical inference about the existence of the higher-order moments. For instance,
in order to test the second-order noncausality hypothesis, the existence of the
fourth order unconditional moments is required in Bayesian inference, whereas in
classical testing the currently existing solutions require the existence of sixth-order
moments (see Ling and McAleer, 2003). Notice that this assumption for testing
such a hypothesis cannot be further relaxed in the context of the causal inference
on second-conditional moments modeled with GARCH models. This finding is
justified by the fact that this assumption does not come from the properties of the
test, but from the derivation of the restrictions for the second-order noncausality.

The structure of the paper is as follows. Section 1.2 introduces the considered
model and the main theoretical finding of this work: namely, the restrictions
for the second-order Granger noncausality. The assumptions behind the causal
analysis are discussed. In Section 1.3, we present and discuss the existing classical
approaches to testing for Granger noncausality. Since they have limited use in the
considered context, we further present the posterior odds ratios as the solution. In
Section 1.4, the empirical illustration of the methodology for two main exchange
rates of the Eurozone is presented, and Section 1.5 concludes. The proofs are
presented in A.1, while A.2 and B.2 report figures and tables respectively.

1.2 Second-order noncausality for multivariate GARCH

models

Model First, the notation is set, following Boudjellaba et al. (1994). Let {yt : t ∈ Z}
be a N × 1 multivariate square integrable stochastic process on the integersZ. Let
y = (y1, . . . , yT)′ denote a time series of T observations. Write

yt = (y
′
1t, y

′
2t)
′
, (1.1)

Wozniak, Tomasz (2012), Granger-Causal analysis of conditional mean and volatility models 
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1.2. SECOND-ORDER NONCAUSALITY FOR GARCH MODELS 5

for all t = 1, . . . ,T, where yit is a Ni×1 vector such that y1t = (y1t, . . . , yN1.t)
′ and y2t =

(yN1+1.t, . . . , yN1+N2.t)
′ (N1,N2 ≥ 1 and N1 +N2 = N). y1 and y2 contain the variables

of interest between which we want to study causal relations. Further, let I(t) be the
Hilbert space generated by the components of yτ, for τ ≤ t, i.e. an information set
generated by the past realizations of yt. Then, εt+h = yt+h − P(yt+h|I(t)) is an error
component. Let I2(t) be the Hilbert space generated by the product of variables
εiτε jτ, 1 ≤ i, j ≤ N for τ ≤ t. I−1(t) is the closed subspace of I(t) generated by
the components of y′2τ and I2

−1(t) is the closed subspace of I2(t) generated by the
variables εiτε jτ, N1 + 1 ≤ i, j ≤ N for τ ≤ t. For any subspace It of I(t) and for
N1 + 1 ≤ i ≤ N1 +N2, we denote by P(yit+h|It) the affine projection of yit+h on It, i.e.
the best linear prediction of yit+h based on the variables in It and a constant term.

The model under consideration is the Vector Autoregressive process of Sims
(1980) for the conditional mean, and the Extended Constant Conditional Cor-
relation Generalized Autoregressive Conditional Heteroskedasticity process of
Jeantheau (1998) for conditional variances. The conditional mean part models lin-
ear relations between current and lagged observations of the considered variables:

yt = α0 + α(L)yt + εt (1.2a)

εt = Dtrt (1.2b)

rt ∼ i.i.StN (0,C, ν) , (1.2c)

for all t = 1, . . . ,T, where yt is a N × 1 vector of data at time t, α(L) =
∑p

i=1 αiLi is
a lag polynomial of order p, εt and rt are N × 1 vectors of residuals and standard-
ized residuals respectively, Dt = diag(

√
h1t, . . . ,

√
hNt) is a N × N diagonal matrix

with conditional standard deviations on the diagonal. The standardized residuals
follow a N-variate standardized Student t distribution with a vector of zeros as a
location parameter, a matrix C as a scale matrix and ν > 2 a degrees of freedom
parameter. The choice of the distribution is motivated, on the one hand, by its
ability to model potential outlying observations in the sample (for ν < 30). On the
other hand, it is a good approximation of the normal distribution when the value
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6 CHAPTER 1. NONCAUSALITY IN GARCH MODELS

of degrees of freedom parameter exceeds 30.

The conditional covariance matrix of the residual term εt is decomposed into:

Ht = DtCDt ∀t = 1, . . . ,T. (1.3)

For the matrix Ht to be a positive definite covariance matrix, ht must be positive
for all t and C positive definite (see Bollerslev, 1990). A N×1 vector of current con-
ditional variances is modeled with lagged squared residuals, ε(2)

t = (ε2
1t, . . . , ε

2
Nt)
′,

and lagged conditional variances:

ht = ω + A(L)ε(2)
t + B(L)ht, (1.4)

for all t = 1, . . . ,T, where ω is a N × 1 vector of constants, A(L) =
∑q

i=1 AiLi and
B(L) =

∑r
i=1 BiLi are lag polynomials of orders q and r of ARCH and GARCH effects

respectively. The vector of conditional variances is given by E[ε(2)
t+1|I2(t)] = ν

ν−2ht+1,
and the best linear predictor of ε(2)

t+1 in terms of a constant and ε(2)
t+1−i for i = 1, 2, . . .

is P(ε(2)
t+1|I2(t)) = ht+1. Equation (1.4) has a form respecting the partitioning of the

vector of data (1.1):

⎡⎢⎢⎢⎢⎣h1t

h2t

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣ω1

ω2

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣A11(L) A12(L)
A21(L) A22(L)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣ε

(2)
1t

ε(2)
2t

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣B11(L) B12(L)
B21(L) B22(L)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣h1t

h2t

⎤⎥⎥⎥⎥⎦ . (1.5)

Assumptions and properties Let θ ∈ Θ ⊂ Rk be a vector of size k, collecting
all the parameters of the model described with equations (1.2)–(1.4). Then the
likelihood function has the following form:

p(y|θ) =
T∏

t=1

Γ
(
ν+N

2

)
Γ
(
ν
2

) ((ν − 2)π)−
N
2 |Ht|− 1

2

(
1 +

1
ν − 2

ε′tH
−1
t εt

)− ν+N
2

. (1.6)

This model has its origins in the Constant Conditional Correlation GARCH (CCC-
GARCH) model proposed by Bollerslev (1990). That model consisted of N uni-
variate GARCH equations describing the vector of conditional variances, ht. The
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1.2. SECOND-ORDER NONCAUSALITY FOR GARCH MODELS 7

CCC-GARCH model is equivalent to equation (1.4) with diagonal matrices A(L)
and B(L). Its extended version, with non-diagonal matrices A(L) and B(L), was an-
alyzed by Jeantheau (1998). He and Teräsvirta (2004) call this model the Extended
CCC-GARCH (ECCC-GARCH). Such a formulation of the GARCH process al-
lows for the modeling of volatility spillovers, as matrices of the lag polynomials
A(L) and B(L) are not diagonal. Therefore, causality between variables in second-
conditional moments may be analyzed.

For the purpose of deriving the restrictions for second-order Granger non-
causality, four assumptions are imposed on the parameters of the conditional
variance process.

Assumption 1. Parametersω, A =
(
vec(A1)′, . . . ,vec(Aq)′

)′
and B = (vec(B1)′, . . . ,vec(Br)′)′

are such that the conditional variances, ht, are positive for all t (see Conrad and
Karanasos, 2010, for the detailed restrictions).

Assumption 2. All the roots of |IN − A(z) − B(z)| = 0 are outside the complex unit
circle.

Assumption 3. All the roots of |IN − B(z)| = 0 are outside the complex unit circle.

Assumption 4. The multivariate GARCH(r,s) model is minimal, in the sense of
Jeantheau (1998).

Define a process vt = ε
(2)
t − ht. Then ε(2)

t follows a VARMA process given by:

φ(L)ε(2)
t = ω + ψ(L)vt, (1.7)

where φ(L) = IN − A(L) − B(L) and ψ(L) = IN − B(L) are matrix polynomials of the
VARMA representation of the GARCH(q,r) process. Suppose that ε(2)

t and vt are
partitioned as yt in (1.1). Then (1.7) can be written in the following form:

⎡⎢⎢⎢⎢⎣φ11(L) φ12(L)
φ21(L) φ22(L)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣ε

(2)
1t

ε(2)
2t

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣ω1

ω2

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣ψ11(L) ψ12(L)
ψ21(L) ψ22(L)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣v1t

v2t

⎤⎥⎥⎥⎥⎦ . (1.8)
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8 CHAPTER 1. NONCAUSALITY IN GARCH MODELS

Given Assumption 3, the VARMA process (1.7) is invertible and can be written in
a VAR form:

Π(L)ε(2)
t − ω∗ = vt, (1.9)

whereΠ(L) = ψ(L)−1φ(L) = [IN −B(L)]−1[IN −A(L)−B(L)] is a matrix polynomial of
the VAR representation of the GARCH(q,r) process and ω∗ = ψ(L)−1ω is a constant
term. Again, partitioning the vectors, we can rewrite (1.9) in the form:

⎡⎢⎢⎢⎢⎣Π11(L) Π12(L)
Π21(L) Π22(L)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣ε

(2)
1t

ε(2)
2t

⎤⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎣ω
∗
1

ω∗2

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣v1t

v2t

⎤⎥⎥⎥⎥⎦ . (1.10)

Under Assumptions 2 and 3, processes (1.7) and (1.9) are both stationary. One
more assumption is required for the inference about second-order noncausality in
the GARCH model:

Assumption 5. The process vt is covariance stationary.

The GARCH model has well-established properties under Assumptions 1–
5. Under Assumption 1, conditional variances are positive. This result does
not require that all the parameters of the model are positive (see Conrad and
Karanasos, 2010). Further, Jeantheau (1998) proves that the GARCH(r,s) model,
as in (1.4), has a unique, ergodic, weakly and strictly stationary solution when
Assumption 2 holds. Under Assumptions 2–4 the GARCH(r,s) model is stationary
and identifiable. Jeantheau (1998) showed that the minimum contrast estimator
for the multivariate GARCH model is strongly consistent under conditions of,
among others, stationarity and identifiability. Ling and McAleer (2003) proved
strong consistency of the Quasi Maximum Likelihood Estimator (QMLE) for the
VARMA-GARCH model under Assumptions 2–4, and when all the parameters of
the GARCH process are positive. Moreover, they have set asymptotic normality of
QMLE, provided that E‖yt‖6 < ∞. The extension of the asymptotic results under
the conditions of (Conrad and Karanasos, 2010) has not yet been established.
Finally, He and Teräsvirta (2004) give sufficient conditions for the existence of the
fourth moments and derive complete fourth-moment structure.
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1.2. SECOND-ORDER NONCAUSALITY FOR GARCH MODELS 9

Estimation Classical estimation consists of maximizing the likelihood function
(1.6). This is possible, using one of the available numerical optimization algo-
rithms. Due to the complexity of the problem, the algorithms require derivatives
of the likelihood function. Hafner and Herwartz (2008a) give analytical solutions
for first and second partial derivatives of normal likelihood function, whereas
Fiorentini et al. (2003) derive numerically reliable analytical expressions for the
score, Hessian and information matrix for the models with conditional multivari-
ate Student t distribution. Bayesian estimation requires numerical methods in
order to simulate the posterior density of the parameters. Unfortunately, neither
the posterior distribution of the parameters nor full conditional distributions have
the form of some known distribution. The Metropolis-Hastings algorithm (see
Chib and Greenberg, 1995, and references therein) was proposed by Vrontos et al.
(2003) and used in Osiewalski and Pipień (2002, 2004).

The posterior distribution of the parameters of the model is proportional to the
product of the likelihood function (1.6) and the prior distribution of the parameters:

p(θ|y) ∝ p(y|θ)p(θ). (1.11)

For the unrestricted VAR-GARCH model, the following prior specification is as-
sumed. All the parameters of the VAR process are a priori normally distributed
with a vector of zeros as a mean and a diagonal covariance matrix with 100s
on the diagonal. A similar prior distribution is assumed for the constant terms
of the GARCH process, with the difference that for ω the distribution is trun-
cated to the constrained parameter space. The parameters modeling the dynamic
part of the GARCH process, collected in matrices A and B follow a truncated
normally-distributed prior with zero mean and diagonal covariance matrix with
hyper-parameter, s̄, on the diagonal. Each of the models in this study is estimated
twice with two different values of the hyper-parameter, s̄ ∈ {0.1, 100}. This way the
sensitivity of the hypotheses assessment to Bartlett’s paradox is investigated; see
Section 1.3 for more details. The truncation of the distribution to the parameter
space imposes Assumptions 1–5. All of the correlation parameters of the corre-
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10 CHAPTER 1. NONCAUSALITY IN GARCH MODELS

lation matrix C follow a uniform distribution on the interval [−1, 1]. Finally, for
the degrees of freedom parameter, the prior distribution proposed by Deschamps
(2006) is assumed. To summarize, the prior specification for the considered model
has a detailed form of:

p(θ) = p(α)p(ω,A,B)p(ν)
N(N−1)/2∏

i=1

p(ρi), (1.12)

where each of the prior distributions is assumed:

α ∼ NN+pN2
(
0, 100 · IN+pN2

)
ω ∼ NN+pN2

(
0, 100 · IN+pN2

)
I(θ ∈ Θ)

(A′,B′)′ ∼ NN+N2(q+r)
(
0, s̄ · IN+N2(q+r)

)
I(θ ∈ Θ)

ν ∼ .04 exp [−.04(ν − 2)]I(ν ≥ 2)

ρi ∼ U(−1, 1) for i = 1, . . . ,N(N − 1)/2,

where α = (α′0,vec(α1)′, . . . ,vec(αp)′)′ stacks all the parameters of the VAR process
in a vector of size N + pN2. In is an identity matrix of order n. I(.) is an indicator
function taking value equal to 1 if the condition in the brackets holds and 0
otherwise. Finally, ρi is the ith element of a vector stacking all the elements below
the diagonal of the correlation matrix, ρ = (vecl(C)).

Such prior assumptions, with only proper distributions, have serious conse-
quences. First, together with the bounded likelihood function, the proposed prior
distribution guarantees the existence of the posterior distribution (see Geweke,
1997). Also, the proper prior distribution for the degrees of freedom parameter of
the Student t sampling density of the observed series, the likelihood function, is
required for the posterior distribution to be integrable, as proven by Bauwens and
Lubrano (1998). However, note that prior distributions for all of the parameters,
except ν, do not in fact discriminate any of the values that these parameters may
take. The prior distribution of the degrees of freedom parameter gives more than
a 32 percent chance that its value will be higher than 30, values close to conditional
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1.2. SECOND-ORDER NONCAUSALITY FOR GARCH MODELS 11

normality (see e.g. Osiewalski and Pipień, 2002).

Second-Order Noncausality Conditions We focus on the question of the causal
relations between variables in conditional variances. Therefore, the proper concept
to refer to is second-order Granger noncausality:

Definition 1. y1 does not second-order Granger-cause h periods ahead y2 if:

P
[
ε(2)(y2t+h|I(t))

∣∣∣I2(t)
]
= P

[
ε(2)(y2t+h|I(t))

∣∣∣I2
−1(t)

]
, (1.13)

for all t ∈ Z, where ε2t+h = ε(y2t+h|I(t)) = y2t+h − P(y2t+h|I(t)) is an error component
and [.](2) means that we square each element of a vector and h ∈ Z.

A common part of both sides of (1.13) is that, in the first step, the potential
Granger causal relations in the conditional mean process are filtered out. This
is represented by a projection of the forecasted value, y2t+h, on the Hilbert space
generated by the full set of variables, P(y2t+h|I(t)). In the second stage, the square
of the error component, ε(2)(y2t+h|I(t)), is projected on the Hilbert space generated
by cross-products of the full vector of the error component, I2(t) (on the LHS),
and on the Hilbert space generated by the cross-products of a sub-vector of the
error component, I2

−1(t) (on the RHS). If the two projections are equivalent, it
means that ε(2)(y2t+h|I(t)) − P

[
ε(2)(y2t+h|I(t))

∣∣∣I2
−1(t)

]
is orthogonal to I2(t) for all t (see

Florens and Mouchart, 1985; Comte and Lieberman, 2000). Note also the difference
between this definition of second-order noncausality and the definition of Comte
and Lieberman (2000). In Definition 1 the Hilbert space I2(t) is generated by square
intergrable cross-products of the error components ετ, whereas in the definition
of Comte and Lieberman it is generated by the cross-products of the variables yiτ

and τ ≤ T.

The definition, in its original form, for one-period-ahead noncausality (h = 1),
was proposed by Robins et al. (1986) and distinguished from Granger noncausality in
variance by Comte and Lieberman (2000). The difference is that in the definition of
Granger noncausality in variance there is another assumption of Granger noncausality
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12 CHAPTER 1. NONCAUSALITY IN GARCH MODELS

in mean. On the contrary, in the definition of second-order noncausality there is
no such assumption. However, any existing causal relation in conditional means
needs to be modeled and filtered out before causality for the conditional variances
process is analyzed.

The main theoretical contribution of this study is the theorem stating the re-
strictions for second-order Granger noncausality for the ECCC-GARCH model.

Theorem 1. Let ε(2)
t follow a stationary vector autoregressive moving average process as

in (1.7) partitioned as in (1.8) that is identifiable and invertible (assumptions 1–5). Then
y1 does not second-order Granger-cause one period ahead y2 if and only if:

Γso
i j (z) = det

⎡⎢⎢⎢⎢⎣ φ
. j
11(z) ψ11(z)

ϕn1+i, j(z) ψi.
21(z)

⎤⎥⎥⎥⎥⎦ = 0 ∀z ∈ C (1.14)

for i = 1, ...,N2 and j = 1, ...,N1; where φ. jlk(z) is the jth column of φlk(z), ψi.
lk(z) is the ith

row of ψlk(z), and ϕn1+1, j(z) is the (i, j)-element of φ21(z).

Theorem 1 establishes the restrictions on parameters of the ECCC-GARCH
model for the second-order noncausality one period ahead between two vectors of
variables. Its proof, presented in A.1, is based of the theory introduced by Florens
and Mouchart (1985) and applied by Boudjellaba et al. (1992) to VARMA models
for the conditional mean. It is applicable to any specification of the GARCH(q,r)
process, irrespective of the order of the model, (q, r), and the size for the time series,
N.

Due to the setting proposed in this study, in which the vector of variables is
split into two parts, the establishment of one-period-ahead second-order Granger
noncausality is equivalent to establishing the noncausality relation at all horizons
up to infinity. This result is formalised in a corollary.

Corollary 1. Suppose that the vector of observations is partitioned as in (1.1), and that y1

does not second-order Granger-cause one period ahead y2, such that the condition (1.14)
holds. Then y1 does not second-order Granger-cause h periods ahead y2 for all h = 1, 2, . . . .
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1.2. SECOND-ORDER NONCAUSALITY FOR GARCH MODELS 13

Corollary 1 is a direct application of Corollary 2.2.1 of (Lütkepohl, 2005, p. 45) to
the GARCH process in the VAR form (1.10). For the proof of the restrictions for
second-order Granger noncausality for the GARCH process in the VAR form, the
reader is referred to A.1.

Corollary 1 shows the feature of the particular setting considered in this work,
i.e. the setting in which all the variables are split between two vectors. If one
is interested in the second-order causality relations at all the horizons at once,
then one may use just one set of restrictions. The restrictions, however, imply the
very strong result. If a more detailed analysis is required, then one must consider
deriving other solutions.

The theorem has equivalent for other models from the GARCH family, namely
the BEKK-GARCH models. The restrictions were introduced by Comte and Lieber-
man (2000). There are, however, serious differences between the approaches pre-
sented by Comte and Lieberman and by this study. First, in a bivariate model
for the hypothesis that one variable does not second-order cause the other, the
restrictions of Comte and Lieberman lead to six restrictions, whereas, in Example
1, we show that in order to test such a hypothesis, only two restrictions are re-
quired. The difference in the number of restrictions increases with the dimension
of the time series. Secondly, due to the formulation of the BEKK-GARCH model,
the noncausality conditions are much more complicated than the conditions for
the ECCC-GARCH model considered here. They are simply much more complex
functions of the original parameters of the model. Both these arguments have con-
sequences in testing that require estimation of the restricted model or employment
of the delta method. A high number of restrictions may have a strongly negative
impact on the size and power properties of tests. However, the ECCC-GARCH
model assumes that the correlations are time invariant, which is not the case for
the BEKK-GARCH model.

Nakatani and Teräsvirta (2009) propose the Lagrange Multiplier test for the
hypothesis of no volatility spillovers in a bivariate ECCC-GARCH model. The
restrictions they test are zero restrictions on the off-diagonal elements of matrix
polynomials A(L) and B(L) from the GARCH equation (1.5). Consequently, the
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14 CHAPTER 1. NONCAUSALITY IN GARCH MODELS

null hypothesis is represented by the CCC-GARCH model of Bollerslev (1990) and
the alternative hypothesis by ECCC-GARCH of Jeantheau (1998). Note, that if all
the parameters on the diagonal of the matrices of the lag polynomial A11(L) are
assumed to be strictly greater than zero (which can be tested and which in fact
is the case for numerous time series considered in applied studies), then the null
hypothesis of Nakatani and Teräsvirta (2009) is equivalent to the second-order
Granger noncausality condition, as in the Example 1. In a general case, for any
dimension of the time series, the zero restrictions on the off-diagonal elements of
matrix polynomials A(L) and B(L) represent a sufficient condition for the second-
order noncausality.

To conclude, the condition (1.14) leads to the finite number of nonlinear restric-
tions on the original parameters of the model. Several examples will clarify how
they are set.

Example 1. Suppose that yt follows a bivariate GARCH(1,1) process, (N = 2, and
p = q = 1). The VARMA process for ε(2)

t is as follows:

⎡⎢⎢⎢⎢⎣1 − (A11 + B11)L −(A12 + B12)L
−(A21 + B21)L 1 − (A22 + B22)L

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣ε

2
1t

ε2
2t

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣ω1

ω2

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣1 − B11L −B12L
−B21L 1 − B22L

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣ν1t

ν2t

⎤⎥⎥⎥⎥⎦ . (1.15)

From Theorem 1, we see, that y1 does not second-order Granger-cause y2 if and
only if:

det

⎡⎢⎢⎢⎢⎣1 − (A11 + B11)z 1 − B11z
−(A21 + B21)z −B21z

⎤⎥⎥⎥⎥⎦ ≡ 0, (1.16)

which leads to the following set of restrictions:

RI
1(θ) = A21 = 0, and RI

2(θ) = B21A11 = 0. (1.17)

Example 2. Let yt follow a trivariate GARCH(1,1) process (N = 3 and r = s = 1).
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1.2. SECOND-ORDER NONCAUSALITY FOR GARCH MODELS 15

The VARMA process for ε(2)
t is as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 − (A11 + B11)L −(A12 + B12)L −(A13 + B13)L
−(A21 + B21)L 1 − (A22 + B22)L −(A23 + B23)L
−(A31 + B31)L −(A32 + B32)L 1 − (A33 + B33)L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε2

1t

ε2
2t

ε2
3t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ω1

ω2

ω3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 − B11L −B12L −B13L
−B21L 1 − B22L −B23L
−B31L −B32L 1 − B33L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ν1t

ν2t

ν3t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (1.18)

From Theorem 1, we see, that y1 = y1 does not second-order Granger-cause y2 =

(y2, y3) if and only if:

det
[

1 − (A11 + B11)z 1 − B11z
−(Ai1 + Bi1)z −Bi1z

]
= 0 for i = 2, 3, (1.19)

which results in the following restrictions:

RII
1 (ψ) = A11B21 = 0 and RII

2 (ψ) = A21 = 0 (1.20a)

RII
3 (ψ) = A11B31 = 0 and RII

4 (ψ) = A31 = 0. (1.20b)

However, y1 = (y1, y2) does not second-order Granger-cause y2 = y3 if and only if:

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 − (A11 + B11)z 1 − B11z −B13z
−(A21 + B21)z −B21z −B23z
−(A31 + B31)z −B31z 1 − B33z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≡ 0, (1.21)

which leads to the following set of restrictions:

RIII
1 (ψ) = A11(B23B31 − B21B33) + A31(B13B21 − B11B23) = 0 (1.22a)

RIII
2 (ψ) = A11B21 + A31B23 = 0 (1.22b)

RIII
3 (ψ) = A21 = 0. (1.22c)
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16 CHAPTER 1. NONCAUSALITY IN GARCH MODELS

1.3 Bayesian hypotheses assessment

The restrictions derived in Section 1.2 can be tested. We propose to use the Bayesian
approach to assess the hypotheses of second-order noncausality represented by
the restrictions. Before the approach is presented, however, the classical tests
proposed so far and their limitations are discussed.

Classical testing Testing of second-order noncausality has been considered only
for the family of BEKK-GARCH and vec-GARCH models. Comte and Lieberman
(2000) did not propose any test because asymptotic normality of the maximum
likelihood estimator had not been established at that time. The asymptotic result
was presented in Comte and Lieberman (2003). This finding, however, does not
solve the problem of testing the nonlinear restrictions imposed on the parameters
of the model. In the easy case, when the restrictions are linear, the asymptotic
normality of the estimator implies that the Wald, Lagrange Multiplier and Like-
lihood Ratio test statistics have asymptotic χ2 distributions. Therefore, the Wald
test statistic for the linear restrictions (which are the only sufficient condition for
the original restrictions) proposed by Comte and Lieberman is χ2-distributed. A
similar procedure was presented in Hafner and Herwartz (2008b) for the Wald
test, and in Hafner and Herwartz (2006) for the LM test. For the ECCC-GARCH
model, Nakatani and Teräsvirta (2009) proposed the Lagrange Multiplier test for
the hypothesis of no volatility spillovers. The test statistic is shown to be asymp-
totically normally distributed. Again, Nakatani and Teräsvirta (2009) tested only
the linear zero restrictions.

In this study, the necessary and sufficient conditions for second-order non-
causality between variables are tested. The restrictions, contrary to the conditions
of Comte and Lieberman, Hafner and Herwartz and Nakatani and Teräsvirta, may
be nonlinear (see Example 2). In such a case, a matrix of the first partial derivatives
of the restrictions with respect to the parameters may not be of full rank. Thus,
the asymptotic distribution of the Wald test statistic is no longer normal. In fact,
for the time being it is unknown. Consequently, the Wald test statistic cannot be
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1.3. BAYESIAN HYPOTHESES ASSESSMENT 17

used to test the necessary and sufficient conditions for second-order noncausality
in multivariate GARCH models.

This problem is well known in the studies on the testing of parameter conditions
for Granger noncausality in multivariate models. Boudjellaba et al. (1992) derive
conditions for Granger noncausality for VARMA models that result in multiple
nonlinear restrictions on original parameters of the model. As a solution to the
problem of testing the restrictions, they propose a sequential testing procedure.
There are two main drawbacks in this method. First, despite being properly
performed, the test may still appear inconclusive, and second, the confidence
level is given in the form of inequalities. Dufour et al. (2006) propose solutions
based on the linear regression techniques that are applied for h-step ahead Granger
noncausality for VAR models. The proposed solutions, unfortunately, are only
applicable to linear models for first conditional moments. Lütkepohl and Burda
(1997) proposed a modified Wald test statistic as a solution to the problem of
testing the nonlinear restrictions for the h-step ahead Granger noncausality for
VAR models. This method could be applied to the problem of testing the nonlinear
restrictions for the second-order noncausality in GARCH models. More studies
are required, however, on the applicability and properties of this test.

Asymptotic results for the models and tests discussed here are established
under the following moment conditions. For the BEKK-GARCH models, the
Wald tests proposed by Hafner and Herwartz (2008b) and Comte and Lieberman
(2000) require asymptotic normality of the Quasi Maximum Likelihood Estimator.
This result is derived under the existence of bounded moments of order 8 by
Comte and Lieberman (2003). For the ECCC-GARCH model considered in this
study, the asymptotic normality of the Quasi Maximum Likelihood Estimator is
derived in Ling and McAleer (2003) under the existence of moments of order 6.
This assumption is, however, relaxed for the purpose of testing the existence of
volatility spillovers by Nakatani and Teräsvirta (2009). Their Lagrange Multiplier
test statistic requires the existence of fourth-order moments. The Bayesian test
presented below further relaxes this assumptions.
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18 CHAPTER 1. NONCAUSALITY IN GARCH MODELS

Bayesian hypotheses assessment In order to compare the models restricted ac-
cording to the noncausality restrictions derived in Theorem 1 Bayes factors are
used. Whereas, in order to assess hypotheses of noncausality, posterior odds
ratios of the hypotheses are employed.

Bayes factors are a well-known method for comparing econometric models
(see Kass and Raftery, 1995; Geweke, 1995). Denote byMi, for i = 1, . . . ,m, the m
models representing competing hypotheses. Let

p(y|Mi) =
∫
θ∈Θ

p(y|θ,Mi)p(θ|Mi)dθ (1.23)

be marginal distributions of data corresponding to each of the model, for i =
1, . . . ,m. p(y|θ,Mi) and p(θ|Mi) are the likelihood function (1.6) and the prior
distribution (1.12) respectively. The extended notation respecting conditioning
on one of the models is used here. The marginal density of data is a constant
normalizing kernel of the posterior distribution (1.11).

A Bayes factor is a ratio of the marginal densities of data for the two selected
models:

Bi j =
p(y|Mi)
p(y|M j)

, (1.24)

where i, j = 1, . . . ,m and i � j. The Bayes factor takes positive values, and its
value above 1 is interpreted as evidence for model Mi, whereas its value below
1 is evidence for model M j. For further interpretation of the value of the Bayes
factor, the reader is referred to the paper of Kass and Raftery (1995).

The posterior probability of ith model is computed using the Bayes formula:

Pr
(Mi|y) = p

(
y|Mi

)
Pr (Mi)∑m

j=1 p
(
y|M j

)
Pr

(
M j

) , (1.25)

where Pr(M j) is a probability a priori of model j.
Hypotheses of interest, Hi, for i denoting the particular hypothesis, may be

assessed using posterior probabilities of hypotheses, Pr(Hi|y). They are computed
summing the posterior probabilities of the non-nested models representing hy-
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1.3. BAYESIAN HYPOTHESES ASSESSMENT 19

pothesis i:
Pr

(Hi|y) =∑
j∈Hi

Pr
(
M j|y

)
. (1.26)

This approach to assessment of hypotheses requires the estimation of all the models
representing considered hypotheses, as well as the estimation of the corresponding
to the models marginal densities of data (1.23).

Bartlett’s paradox Using Bayes factors for the comparison of the models is not
uncontroversial. It appears that Bayes factors are sensitive to the specification of
the prior distributions for the parameters being tested. The more diffuse a prior
distribution the more informative it is about the the parameter tested with a Bayes
factor. This phenomenon is called Bartlett’s paradox (see Bartlett, 1957) and is a
version of the Lindley paradox. Moreover, Strachan and van Dijk (2011) show
that assuming a diffuse prior distribution for the parameters of the model, results
in wrongly defined Bayes factors. As a solution to this problem Strachan and
van Dijk recommend using a prior distribution belonging to a class of shrinkage
distributions.

The sensitivity of the model assessment with respect to the specification of
the prior distribution is checked by assuming for each of the estimated model
two different prior distributions for the matrices of parameters A and B. The
distributions, defined in Section 1.2, differ in the variances of the distributions.
One of the variances is equal to 0.1, representing a shrinkage prior distribution,
and the other is equal to 100, representing a diffuse prior distribution.

Estimation of models The form of the posterior distribution (1.11) for all of the
parameters, θ, for the GARCH models, even with the prior distribution set to a
proper distribution function, as in (1.12), is not in a form of any known distribution
function. Moreover, none of the full conditional densities for any sub-group of
the parameter vector has a form corresponding to a standard distribution. Still,
the posterior distribution, although it is known only up to a normalizing constant,
exists; this is ensured by the bounded likelihood function and the proper prior
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20 CHAPTER 1. NONCAUSALITY IN GARCH MODELS

distribution. Therefore, the posterior distribution may be simulated with a Monte
Carlo Markov Chain (MCMC) algorithm. Due to the above mentioned problems
with the form of the posterior and full conditional densities, a proper algorithm to
sample the posterior distribution (1.11) is, e.g. the Metropolis-Hastings algorithm
(see Chib and Greenberg, 1995, and references therein). The algorithm was adapted
for multivariate GARCH models by Vrontos et al. (2003).

Suppose the starting point of the Markov Chain is some value θ0 ∈ Θ. Let
q(θ(s), θ′|y,Mi) denote the proposal density (candidate-generating density) for the
transition from the current state of the Markov chain θ(s) to a candidate draw
θ′. The candidate density for model Mi depends on the data y. In this study,
a multivariate Student t distribution is used, with the location vector set to the
current state of the Markov chain, θ(s), the scale matrix Ωq and the degrees of
freedom parameter set to five. The scale matrix, Ωq, should be determined by
preliminary runs of the MCMC algorithm, such that it is close to the covariance
matrix of the posterior distribution. Such a candidate-generating density should
enable the algorithm to draw relatively efficiently from the posterior density. A
new candidate θ′ is accepted with the probability:

α(θ(s), θ′|y,Mi) = min
[
1,

p(y|θ′,Mi)p(θ′|Mi)
p(y|θ(s),Mi)p(θ(s)|Mi)

]
,

and if it is rejected, then θ(s+1) = θ(s). The sample drawn from the posterior
distribution with the Metropolis-Hastings algorithm, {θ(s)}Ss=1, should be diagnosed
to ensure that it is a good sample from the stationary posterior distribution (see
e.g. Geweke, 1999; Plummer et al., 2006).

Estimation of the marginal distribution of data Having estimated the models,
the marginal densities of the data may be computed using one of the available
methods. Since the estimation of the models is performed using the Metropolis-
Hastings algorithm, a suitable estimator of the marginal density of data is pre-
sented by Geweke (1997). However, any estimator of the marginal density of data
applicable to the problem might be used (see Miazhynskaia and Dorffner, 2006,
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1.3. BAYESIAN HYPOTHESES ASSESSMENT 21

who review the estimators of marginal density of data for univariate GARCH mod-
els). The Bayesian comparison of bivariate GARCH models using Bayes factors
was presented by Osiewalski and Pipień (2004).

The Modified Harmonic Mean estimator of the marginal density of data pro-
posed by Geweke (1997) is:

p̂(y|Mi) =

⎡⎢⎢⎢⎢⎢⎣S−1
S∑

s=1

f (θ(s))
p(y|θ(s),Mi)p(θ(s)|Mi)

⎤⎥⎥⎥⎥⎥⎦
−1

, (1.27)

where f (θ(s)) is a multivariate truncated normal distribution, with the mean vector
equal to the posterior mean and covariance matrix set to the posterior covariance
matrix. The truncation is chosen such that f (θ(s)) have thinner tails than the
posterior distribution.

In comparison to the Harmonic Mean estimator of Newton and Raftery (1994),
given the assumptions regarding the prior distribution, the Modified Harmonic
Mean Estimator has that advantage that it is bounded as explained by Frühwirth-
Schnatter (2004).

Discussion The proposed approach to testing the second-order noncausality
hypothesis for GARCH models has several appealing features. First of all, the
proposed Bayesian testing procedure makes testing of the parameter conditions
possible. It avoids the singularities that may appear in classical tests, in which the
restrictions imposed on the parameters are nonlinear.

Secondly, since the competing hypotheses are compared with Bayes factors,
they are treated symmetrically. Thanks to the interpretation of the Bayes factors
coming from the Posterior Odds Ratio, the outcome of the test is a positive ar-
gument in favour of the most likely a posteriori hypothesis. Moreover, contrary
to classical testing, a choice is being made between all the competing hypotheses
at once, not only between the unrestricted and one of the restricted models (see
Hoogerheide et al., 2009, for a discussion of the argument).

Further, as the testing outcome is based on the posterior analysis, the inference
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22 CHAPTER 1. NONCAUSALITY IN GARCH MODELS

has an exact finite sample justification, making it unnecessary to refer to asymptotic
theory. In consequence, Assumptions required to test the restrictions may now be
relaxed. In order to test the second-order noncausality hypothesis, Assumptions 1–
5 must hold. This requires the existence of the fourth-order unconditional moment
that is ensured by the restrictions derived by He and Teräsvirta (2004). No classical
test of the restrictions has been proposed so far for the ECCC-GARCH model. Note
that the Bayesian testing in the proposed form may be applied to BEKK-GARCH
and vec-GARCH models without any complications, and while preserving all the
advantages. Then, the assumption of existence of moments of order four is a
significant improvement, in comparison with the result of Comte and Lieberman
(2003). There, the asymptotic distribution of the QMLE is established under the
existence of the eighth-order moments.

For the testing of volatility spillovers in the ECCC-GARCH model, the assump-
tion may be further relaxed. Here, the strict assumption for the linear theory for
noncausality of Florens and Mouchart (1985) need not hold. In fact, for testing
the zero restrictions for the no volatility spillovers hypothesis, the only required
assumption about the moments of the process is that the conditional variances
must exist and be bounded. Not even the existence of the second unconditional
moments of the process is required. Again, this result is an improvement, in
comparison with the test of Nakatani and Teräsvirta (2009), which required the
existence of fourth-order moments for the Lagrange Multiplier test statistic to be
asymptotically χ2-distributed.

The improvements in moment conditions are, therefore, established for both
kinds of hypothesis. This fact may be crucial for the testing of the hypotheses on
the financial time series. In multiple applied studies, such data are shown to have
the distribution of the residual term, with thicker tails than those of the normal
distribution. Then, distributions modeling this property, such as the Student
t distribution function, are employed. We follow this methodological finding,
assuming exactly this distribution function.

The main costs of the proposed approach is the necessity to estimate all the
unrestricted and restricted models. This simply requires some time-consuming
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Table 1.1: Summary statistics of the exchange rate logarithmic rates of return
expressed in percentage points

GBP/EUR USD/EUR

Mean 0.012 -0.006
Median 0.011 0.016
Standard Deviation 0.707 0.819
Correlation . 0.368
Minimum -2.657 -4.735
Maximum 3.461 4.038
Excess kurtosis 2.430 2.683
Excess kurtosis (robust) 0.060 0.085
Skewness 0.344 -0.091
Skewness (robust) 0.010 -0.016
LJB test 206.525 234.063
LJB p-value 0.000 0.000
T 777.0 777.0

Note: The excess kurtosis (robust) and the skewness (robust) coefficients are outlier-robust versions
of the excess kurtosis and the skewness coefficients, as described in Kim and White (2004). LJB test
and LJB p-values describe the test of normality by Lomnicki (1961) and Jarque and Bera (1980).

computations. While bivariate GARCH models may (depending on the order of
the process, and thus on the number of the parameters) be estimated reasonably
quickly, trivariate models require significant amounts of time and computational
power.

1.4 Granger causal analysis of exchange rates

The restrictions derived in Section 1.2 for second-order noncausality for GARCH
models, along with the Bayesian testing procedure described in Section 1.3, are
now used in an analysis of the bivariate system of two exchange rates.
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Data The system under consideration consists of daily exchange rates of the
British pound (GBP/EUR) and the US dollar (USD/EUR), both denominated in
Euro. Logarithmic rates of return expressed in percentage points are analyzed,
yit = 100(ln xit − ln xit−1) for i = 1, 2, where xit are levels of the assets. The data
spans the period from 16 September 2008 to 22 September 2011, which gives
T = 777 prices, and was downloaded from the European Central Bank website
(http://sdw.ecb.int/browse.do?node=2018794). The analyzed period starts the
day after Lehman Brothers filed for Chapter 11 bankruptcy protection.

The data set contains the two most liquid exchange rates in the Eurozone. The
chosen period of analysis starts just after an event that had a very strong impact on
the turmoil in the financial markets; the bankruptcy of Lehman Brothers Holding
Inc. The proposed analysis of the second-order causality between the series may,
therefore, be useful for financial institutions as well as public institutions located in
the Eurozone whose performance depends on the forecast of exchange rates. Such
institutions include the governments of the countries belonging to the Eurozone
that keep their debts in currencies, mutual funds and banks, and all the participants
of the exchange rates market.

Figure A.1 from A.2 plots the time series. It clearly shows the first period of
length – of nearly a year – which may be characterized by the high level of volatility
of the exchange rates. The subsequent period is characterized by a slightly lower
volatility for both series. The evident heteroskedasticity, as well as the volatility
clustering, seem to provide a strong argument in favor of specifyng the GARCH
models that are capable of modeling such features in the data.

Table 2.1 reports summary statistics of the two considered series. Both of the
returns series have sample means and medians close to zero. The US dollar has
a slightly larger sample standard deviation than the British pound. Both series
are leptokurtic, which is evidenced by the excess kurtosis coefficient of around
2.5. The pound is slightly positively and the dollar slightly negatively skewed.
Neither series can be well described with a normal distribution.
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Testing strategy and estimation results For the bivariate time series of exchange
rates the Vector autoregression of order 1 with the Extended CCC GARCH(1,1)
conditional variance process is fitted with two different assumptions regarding the
prior distribution. The first prior distribution, referred to as a diffuse prior, is as
specified in Section 1.2 and equation (1.12) with the value of the hyper-parameter
s̄ set to 100. The second assumed prior distribution, referred to as shrinkage
distribution, has the value oh this hyper-parameter set to 0.1. The models that
are estimated are as follows. The unrestricted model defined by equations (1.2),
(1.3) and (1.4) allows for second-order causality in both directions: from GBP/EUR
to USD/EUR and conversely. Restricted models represent different hypotheses of
noncausality, and are restricted according to the conditions stated in Theorem 1.
All the models, the unrestricted and restricted, are estimated twice with the two
different prior distributions.

Three hypotheses of second-order noncausality are investigated. The restric-
tions resulting from Theorem 1 for the hypothesis of second-order noncausality
from the British pound to the US dollar, denoted by GBP/EUR so

� USD/EUR, are
presented in Example 1, and are given by two restrictions:

A21 = 0 and B21A11 = 0.

Whereas the restrictions for the hypothesis of second-order noncausality from
dollar to pound, denoted by USD/EUR so

� GBP/EUR, are:

A12 = 0 and B12A22 = 0.

The third hypothesis of second-order noncausality in both of the directions results
in the restrictions being a logical conjunction of the two restrictions presented
above.

The strategy for the assessment of the hypotheses is the following. For each of
the hypotheses, a full set of sufficient conditions of the restrictions representing the
hypothesis is derived. The sufficient conditions are in the form of zero restrictions
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Table 1.2: Summary of the estimation of the unrestricted VAR(1)-ECCC-
GARCH(1,1) models

Panel A: Estimation results for modelM0 with diffuse prior distribution

VAR(1) GARCH(1,1) ν
α0 α1 ω A B ρ12

GBP/EUR 0.010 0.083 -0.021 0.011 0.049 0.020 0.525 0.263 11.904
(0.021) (0.040) (0.033) (0.011) (0.025) (0.016) (0.281) (0.184) (3.697)

USD/EUR 0.009 0.067 -0.006 0.033 0.078 0.044 0.730 0.342 0.409
(0.026) (0.048) (0.041) (0.033) (0.046) (0.030) (0.324) (0.248) (0.033)

Panel B: Estimation results for modelM0 with shrinkage prior distribution

VAR(1) GARCH(1,1) ν
α0 α1 ω A B ρ12

GBP/EUR 0.011 0.083 -0.022 0.012 0.052 0.020 0.508 0.271 11.535
(0.021) (0.041) (0.033) (0.013) (0.028) (0.014) (0.282) (0.186) (3.326)

USD/EUR 0.009 0.066 -0.007 0.036 0.078 0.045 0.715 0.349 0.410
(0.026) (0.049) (0.041) (0.038) (0.046) (0.030) (0.330) (0.252) (0.033)

Note: The table summarizes the estimation of the VAR(1)-ECCC-GARCH(1,1) model described by
the equations (1.2), (1.3), (1.4) and the likelihood function (1.6). The prior distributions are specified
as in equation (1.12). The posterior means and the posterior standard deviations (in brackets) of
the parameters are reported. A summary of the characteristics of the simulations of the posterior
densities of the parameters for all the models are reported in B.2, in Tables A.1 and A.2.

imposed on single parameters. All of the restricted models are estimated and the
respective marginal distributions of data are computed. Posterior probabilities of
the models and of the hypotheses are computed. The hypotheses are compared
using Posterior Odds Ratios. Table 1.3 presents all the hypotheses and the models
representing them with restrictions being a sufficient condition of the conditions
resulting from Theorem 1 for each of the hypotheses.

We start the analysis of the results with several comments on the parameters of
the unrestricted models. Table 1.2 reports the posterior means and the posterior
standard deviations of the parameters of these models estimated with the two
different prior assumptions. Note that there are no significant differences in the
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1.4. GRANGER CAUSAL ANALYSIS OF EXCHANGE RATES 27

Figure 1.1: Marginal posterior densities of parameter B21
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Note: Marginal posterior densities for both of the prior specifications represent the marginal
posterior densities of B21, for the models that do not restrict B21 to zero, weighted by the posterior
probabilities of the models:

p(B12|y) =
∑

i

Pr(Mi|y)p(B21|y,Mi),

for i such that in modelMi parameter B21 is not restricted to zero.

parameters’ values between these two models. All the following comments, thus,
concern both of the specifications. Among the parameters of the vector autore-
gressive part, only parameter α1.11 can be considered statistically different from
zero. This finding proves that the two exchange rates do not Granger cause each
other in conditional means.

All of the parameters of the GARCH(1,1) part are assumed to be nonnegative.
However, for most of parameters of matrices ω, A and B, a significant part of
the posterior probability mass is concentrated around zero. Only one parameter,
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28 CHAPTER 1. NONCAUSALITY IN GARCH MODELS

namely B21, has its posterior probability mass not concentrated around zero for
both of the specifications, with diffuse and shrinkage prior distribution. Figure
1.1 plots the marginal posterior densities for both assumed prior densities. This
parameter is responsible for the volatility transmission from the lagged value of
the conditional variance of the GBP/EUR exchange rate on the current conditional
variance of variable USD/EUR. Regardless of the prior density specification, this
is the only parameter significantly different from zero. These findings, especially
regarding the parameters of the matrices A and B, are reflected in the results of the
assessment of the hypotheses of second-order noncausality.

Hypotheses assessment The credibility of the hypotheses of second-order non-
causality between the exchange rates of the British pound and the US dollar to
Euro is evaluated. All together four different hypotheses are formed and assessed
within the framework of the VAR-GARCH model. Due to the adopted strategy –
testing the full set of sufficient conditions for the original restrictions – some of the
hypotheses are represented by several models. Table 1.3 summarizes the hypothe-
ses, the models representing them, as well as the restrictions on the parameters
according to which the models are restricted. Moreover, the table reports natural
logarithms of the marginal densities of data for each of the models and for both
assumed prior distributions.

According to Table 1.3 the model best supported by the data for both of the prior
distributions is modelM6. Both of the models: with diffuse and shrinkage prior
distributions, have the highest value of the logarithm of the marginal data density.
Moreover, five out of six of the models that represent the second hypothesis, of
second-order noncausality from dollar to pound, have the values of logarithms
of the marginal data densities higher than any other estimated model. In effect,
this hypothesis is expected to have the highest posterior probability of all the
considered hypotheses. Table 1.4, providing Posterior Odds Ratios of hypotheses
one, two and three to the null hypothesis, confirms this claim. HypothesisH2 has
the highest value of the posterior odds ratio relative to the null hypothesis, and
thus, it attracts the biggest part of the posterior probability mass of the hypotheses.
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Table 1.3: Marginal densities of data for models

M j Restrictions ln p(y|M j)
diffuse prior shrinkage prior

H0: Unrestricted model
M0 - -1649.034 -1649.100

H1: GBP/EUR so
� USD/EUR

M1 A21 = B21 = 0 -1652.868 -1658.230
M2 A11 = A21 = 0 -1653.773 -1654.851
M3 A11 = A21 = B21 = 0 -1653.170 -1655.024

H2: USD/EUR so
� GBP/EUR

M4 A12 = B12 = 0 -1646.750 -1652.790
M5 A12 = A22 = 0 -1646.377 -1646.501
M6 A12 = A22 = B12 = 0 -1645.714 -1645.737

H3: GBP/EUR so
� USD/EUR and USD/EUR so

� GBP/EUR
M7 A12 = A21 = B12 = B21 = 0 -1650.702 -1658.387
M8 A12 = A21 = A22 = B21 = 0 -1676.102 -1676.266
M9 A12 = A21 = A22 = B12 = B21 = 0 -1672.589 -1672.623
M10 A12 = A21 = A11 = B12 = 0 -1680.278 -1680.443
M11 A12 = A21 = A11 = A22 = 0 -1685.885 -1685.335
M12 A12 = A21 = A11 = A22 = B12 = 0 -1681.618 -1681.671
M13 A12 = A21 = A11 = B12 = B21 = 0 -1681.372 -1681.238
M14 A12 = A21 = A11 = A22 = B21 = 0 -1687.385 -1687.276
M15 A12 = A21 = A11 = A22 = B12 = B21 = 0 -1693.491 -1695.578

Note: An estimator of the marginal densities of data is the Modified Harmonic Mean estimator by
Geweke (1997), defined by equation (3.26). A summary of the characteristics of the simulations of
the posterior densities of the parameters of the models are reported in B.2, in Tables A.1 and A.2.

Other hypotheses gained a negligible part of the posterior probability mass.
Also the rank of the credibility of the hypotheses is not entirely robust to the
specification of the prior distributions for the parameters of the model. Note,
however, that the unrestricted model is rejected by the data. Also the hypotheses
that include the restrictions of second-order noncausality from pound to dollar
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are rejected. Most of the models representing these two hypotheses restrict the
parameter B21 to zero. Therefore, if the posterior probability mass for this param-
eter is far from zero, the restriction cannot hold. In effect, such hypotheses are not
supported by the data.

The most important finding of the empirical analysis is that the exchange rate
of the USD/EUR does not second-order cause the exchange rate of the GBP/EUR.
This means that past information of the variability of dollar’s exchange rate is
dispensable for the forecast of the conditional variance of pound’s exchange rate
constructed within the bivariate VAR-GARCH model. This finding is robust to
the specification of the prior distribution for the parameters of the model. How to
explain this somewhat surprising result?

This phenomenon is in line with the meteor shower hypothesis of Engle et al.
(1990) that links the hours of trading activity to the structure of the forecasting
model of volatility. Despite the fact that the exchange rate market is open 24 hours
a day, traders on different continents are active mainly during their working hours.
Over one day, first agents in Australia and Asia are active, then agents in Europe
(and Africa) start being active; and finally, traders in both Americas start working.
Therefore, coming back to our example, on a particular day, first agents in Europe
trade between Euro zone and United Kingdom and only after that, when working
hours in the United States commence, agents start trading between Euro zone and
the USA. Such a pattern is captured by the models representing the hypothesis of
second-order noncausality from pound to dollar. Note that the triangular GARCH
model of Engle et al. (1990), representing the meteor shower hypothesis, is just one
of the models, namelyM4, representing hypothesisH2.

1.5 Conclusions

In this work the conditions for analyzing Granger noncausality for the second
conditional moments of a GARCH process are derived. The presented restrictions
for one period ahead second-order noncausality, due to the specific setting of the
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Table 1.4: Summary of the hypotheses testing

Hi Hypothesis Models
Pr(Hi|y)
Pr(H0|y)

diffuse prior shrinkage prior

H0 Unrestricted model M0 1 1
H1 GBP/EUR so

� USD/EUR M1–M3 0.0463 0.006
H2 USD/EUR so

� GBP/EUR M4–M6 51.7058 42.338
H3 GBP/EUR so

� USD/EUR and
USD/EUR so

� GBP/EUR
M7–M15 0.1885 0.0001

Note: Posterior Probabilities of the hypotheses were computed using a formula of equation (1.26)
that uses posterior probabilities of models, (1.25), and assuming flat prior distributions of the
models: Pr(Mi) = m−1 for i = 1, . . . ,m.

system, in which all the considered variables belong to one of the two vectors, ap-
pear to be the restrictions for the second-order noncausality at all future horizons.
These conditions may result in several nonlinear restrictions on the parameters of
the model, which results in the fact that the available classical tests have limited
uses.

Therefore, in order to test these restrictions, the basic Bayesian procedure is
applied, which consists of the estimation of the models representing the hypothe-
ses of second-order causality and noncausality, and then of the comparison of the
models and hypotheses with posterior odds ratios. This well-known procedure
overcomes the difficulties that the classical tests applied so far to this problem have
met. The Bayesian inference about the second-order causality between variables
is based on the finite-sample analysis. Moreover, although the analysis does not
refer to the asymptotic results, the strict assumptions about the existence of the
higher-order moments of the series that are required in the asymptotic analysis
may be relaxed in the Bayesian inference. In effect, the existence of fourth uncon-
ditional moments is assumed for the second-order noncausality analysis, and of
second conditional moments for the volatility spillovers analysis.

Several remarks regarding the proposed approach are, however, in place. These
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come from the fact that all of the variables in the system are divided into only two
vectors, between which the causality inference is performed. Within such a setting,
not all the hypotheses of interest may be formulated in the system that contains
more than two variables (see Example 2). Another limitation is the fact that the
presented restrictions serve as the restrictions for the second-order noncausality
at all future horizons at once. This feature is caused by the particular setting
considered in this work.

This critique is a motivation for further research on the topic of Granger causal-
ity in second conditional moments. First, one might consider the setting in which
the causality between two variables is analyzed, when there are also other vari-
ables in the system that might be used for the purpose of modeling and forecasting.
This may be particularly necessary for the analysis of the robustness of the causal
or noncausal relations found, as the values of the parameters in the GARCH
models are exposed to the omitted variables problem. Second, the second-order
noncausality could be analyzed separately at each of the future horizons. Such a
decomposition could provide further insights into causal relations between eco-
nomic relations. However, the setting considered in this work does not allow for
such an analysis.

32
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Appendix A

A.1 Proof

Proof of Theorem 1 The first part of the proof sets the second-order noncausality
restrictions for the GARCH process in the VAR form (1.9). Let ε(2)

t follow a station-
ary VAR process as in (1.9), partitioned as in (1.10), that is identifiable. Then, y1

does not second-order Granger-cause y2 if and only if:

Π21(z) ≡ 0 ∀z ∈ C. (A.1)

Condition (A.1) may be proven by the application of Proposition 1 of Boud-
jellaba et al. (1992). Several changes are, however, required to adjust the proof of
that Proposition for the vector autoregressive process to the setting considered in
Theorem 1 for the GARCH models. Here, one projects the squared elements of the
residual term, ε(2)(y2t+1|I(t)) = [

y2t+1 − P(y2t+1|I(t))](2), on the Hilbert spaces I2(t) or
I2
−1(t), both defined in Section 1.2.

The proven condition still leads to infinite number of restrictions on parameters.
This property excludes the possibility of testing these restrictions. In order to
obtain the simplified condition (1.14), apply to (A.1) the matrix transformations,
first of Theorem 1 and then of Theorem 2 of Boudjellaba et al. (1994).

33
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A.2 Data

Figure A.1: Data plot: (GBP/EUR,USD/EUR)
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The graph presents the daily logarithmic rates of return, expressed in percentage points yit =

100(ln xit − ln xit−1) for i = 1, 2, where xit denotes the level of an asset of two exchange rates: the
British pound and the US dollar, all denominated in Euro. The data spans the period from 16
September 2008 to 22 September 2011, which gives T = 777 observations. It was downloaded from
the European Central Bank website (http://sdw.ecb.int/browse.do?node=2018794).
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A.3 Summary of the simulation
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36 APPENDIX A. APPENDIX
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Chapter 2

Granger-causal analysis of
VARMA-GARCH models

Abstract. Recent economic developments have shown the importance
of spillover and contagion effects in financial markets. Such effects
are not limited to relations between the levels of financial variables
but also impact on their volatility. Granger causality in conditional
mean and conditional variances of time series is investigated. For this
purpose a VARMA-GARCH model is used. Parametric restrictions for
the hypothesis of noncausality in conditional variances between two
groups of variables, when there are other variables in the system as well
are derived. These novel conditions are convenient for the analysis of
potentially large systems of economic variables. Such systems should
be considered in order to avoid the problem of omitted variable bias.
Further, in order to evaluate hypotheses of noncausality, a Bayesian
testing procedure is proposed. It avoids the singularity problem that
may appear in the Wald test. This approach also enables the assumption
of the existence of higher-order moments of the residuals required for
the derivation of asymptotic results for classical tests to be relaxed. In
the empirical example, the dollar-to-Euro exchange rate is found not to
second-order cause the pound-to-Euro exchange rate, in the system of
variables containing also the Swiss frank-to-Euro exchange rate, which
confirms the meteor shower hypothesis of Engle, Ito and Lin (1990).

The author thanks Professors Helmut Lütkepohl, Jacek Osiewalski, William Griffiths, Timo
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44 CHAPTER 2. NONCAUSALITY IN VARMA-GARCH MODELS

2.1 Introduction

The well-known concept of Granger causality (see Granger, 1969; Sims, 1972) de-
scribes relations between time series in the forecasting context. One variable does
not Granger-cause the other, if adding past observations of the former to the infor-
mation set with which we forecast the latter does not improve this forecast. This
study investigates the Granger noncausality concept for conditional variances of
the time series. For this purpose two concepts of second-order Granger noncausality
and Granger noncausality in variance are discussed (see also Comte and Lieberman,
2000; Robins et al., 1986). If one variable does not second-order Granger-cause
the other, then past information about the variability of the former is dispensable
for conditional variance the forecasting of the conditional variances of the latter.
We investigate Granger causality in conditional mean and conditional variances
of time series. Granger noncausality in variance is established when both Granger
noncausality and second-order noncausality hold.

The necessity of the joint analysis is justified for two reasons. Firstly, as Karolyi
(1995) argues, in order to have a good picture of transmissions in mean between
financial variables, transmissions in volatility need to be taken into account. Sec-
ondly, transmissions in volatility may be affected by transmissions in mean that
have not been modeled and filtered out before, a point made by Hong (2001). The
conclusion is that the combined modeling of the conditional mean and conditional
variance processes increases the reliability of the inference about the transmis-
sions. The exposition of the phenomenon in this paper is done entirely with a
vector autoregressive moving average (VARMA) conditional mean process, with
a generalized autoregressive conditional heteroskedasticity (GARCH) process for

Teräsvirta, Massimiliano Marcellino, Giampiero Gallo, Michael Smith, Mateusz Pipień, Russell
Cooper and Jérôme Adda for useful comments and remarks on the study. The author is grateful
to the participants of the seminars at the Cracow University of Economics, Monash University,
the University of Queensland, the University of Melbourne and Università di Pisa. The paper
was presented at the SMYE 2011 Conference at the University of Groningen, the ISBA 2012 World
Meeting, Kyoto, Japan, and at Bayes on the Beach 2012 Conference. Also, the author thanks thank
Michał Markun and Norbert Metiu and his colleagues from the EUI Time Series Econometrics
Working Group, Pierre Guérin, Matthieu Droumaguet and Stelios Bekiros, for multiple discussions
and suggestions.
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2.1. INTRODUCTION 45

conditional variances and constant conditional correlations (CCC).

Why is information about Granger-causal relations between time series im-
portant? First of all, it gives an understanding of the structure of the financial
markets. More specifically, we learn about integration of the financial markets
(assets) not only in returns, but also in risk, defined as time-varying volatility.
Therefore, modeling transmissions in volatility may have a significant impact on
volatility forecasting. If there are Granger-causal relations in conditional variances,
then such modeling is potentially important in all applications based on volatility
forecasting such as portfolio selection, Value at Risk estimation and option pricing.

Granger-causality relations established in conditional variances of exchange
rates are in line with some economic theories. Taylor (1995) shows that they
are consistent with failures of the exchange rates market efficiency. The arrival
of news, in clusters and potentially with a lag, modeled with GARCH models
explains the inefficiency of the market. It is also in line with a market dynamics that
exhibits volatility persistence due to private information or heterogeneous beliefs
(see Hong, 2001, and references therein). Finally, the meteor showers hypothesis
for intra-daily exchange rates returns, which reflects cooperative or competitive
monetary policies (see Engle et al., 1990), can be presented as a Granger second-
order noncausality hypothesis.

The term transmissions usually represents an intuitive interpretation of the pa-
rameters, reflecting the impact of one variable on the other in dynamic systems.
Karolyi (1995) and Lin et al. (1994) use the term to describe international transmis-
sions between stock returns and their volatilities. Further, Nakatani and Teräsvirta
(2009) and Koutmos and Booth (1995) use it to describe the interactions between
volatilities in multivariate GARCH models. Another term, volatility spillovers, has
been used in a similar context (see e.g. Conrad and Karanasos, 2009), as well as
in others. However, parameters referred to in this way do not determine Granger
causality or noncausality themselves. This study presents parameter conditions
for the precisely defined Granger noncausality concept for conditional variances.
In particular, the framework of the linear Granger noncausality of Florens and
Mouchart (1985) is referred to, and which defined the noncausality relationship in
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terms of the orthogonality in the Hilbert space of square integrable variables.

The contribution of this study is twofold. Firstly, conditions for second-order
Granger noncausality for a family of GARCH models are derived. The conditions
are applicable when the system of time series consists of a potentially large number
of variables. Their novelty is that the second-order noncausality between two
groups of variables is analyzed when there are other variables in the system as well.
So far, such conditions have been derived when all the variables in the system were
divided in two groups (e.g. Comte and Lieberman, 2000; Hafner and Herwartz,
2008; Woźniak, 2012). The introduced conditions reduce the dimensionality of the
problem. They also allow the formation and testing of some hypotheses that could
not be tested in the previous settings.

Secondly, a Bayesian testing procedure of the conditions for Granger non-
causality in conditional mean and noncausality in conditional variance processes
is proposed. It is easily applicable and solves some of the drawbacks of the classi-
cal testing. In comparison with the Wald test of Boudjellaba et al. (1992), adapted
to testing noncausality relations in the VARMA-GARCH model, the Bayesian test
does not have the problem of singularities. In the Wald test considered so far the
singularities appear due to the construction of the asymptotic covariance matrix
of the nonlinear parametric restrictions. In Bayesian analysis, on the contrary, the
posterior distribution of the restrictions is available; thus, a well defined covari-
ance matrix is available as well. Additionally, in this study the existence only
of fourth-order moments of time series is assumed, which is an improvement in
comparison with the assumptions of available classical tests.

The reminder of this paper is organized as follows: the notation and the pa-
rameter restrictions for Granger noncausality in VARMA models are presented in
Section 2.2. The GARCH model used in the analysis is set in Section 2.3. Also
this section presents the main theoretical findings of the paper, deriving the con-
ditions for Granger noncausality in the conditional variance process. Section 2.4
discusses classical testing for noncausality in the VARMA-GARCH models, and
then proposes Bayesian testing with appealing properties. Section 2.5 presents
an empirical illustration, with the example of daily exchange rates of the Swiss

Wozniak, Tomasz (2012), Granger-Causal analysis of conditional mean and volatility models 
European University Institute

 
DOI: 10.2870/63858



2.2. GRANGER NONCAUSALITY IN VARMA MODELS 47

franc, the British pound and the US dollar all denominated in Euro. Section 2.6
concludes.

2.2 Granger noncausality in VARMA models

First, we set the notation following Boudjellaba et al. (1994). Let {yt : t ∈ Z} be a
N × 1 multivariate square integrable stochastic process on the integers Z. Write:

yt = (y
′
1t, y

′
2t, y

′
3t)
′
, (2.1)

where yit is a Ni × 1 vector such that y1t = (y1t, . . . , yN1.t)
′ , y2t = (yN1+1.t, . . . , yN1+N2.t)

′

and y3t = (yN1+N2+1.t, . . . , yN1+N2+N3.t)
′ (N1,N2 ≥ 1,N3 ≥ 0 and N1 + N2 + N3 = N).

Variables of interest are contained in vectors y1 and y2, between which we want
to study causal relations. Vector y3 (which for N3 = 0 is empty) contains auxiliary
variables that are also used for forecasting and modeling purposes. Further,
let I(t) be the Hilbert space generated by the components of yτ, for τ ≤ t, i.e.
an information set generated by the past realizations of yt. Then, εt+h = yt+h −
P(yt+h|I(t)) is an error component.

Let I2
y(t) be the Hilbert space generated by product of variables, yiτyjτ, and I2

ε(t)
generated by products of error components, εiτε jτ, where 1 ≤ i, j ≤ N and for τ ≤ t.
I−1(t) is the closed subspace of I(t) generated by the components of (y′2τ, y

′
3τ)
′. Iy.−1

is the closed subspace of I2
y(t) generated by variables yiτyjτ and I2

ε.−1(t) is the closed
subspace of I2(t) generated by the variables εiτε jτ, where N1 + 1 ≤ i, j ≤ N and for
τ ≤ t. For any subspace It of I(t) and for N1 + 1 ≤ i ≤ N1 +N2, P(yit+1|It) denotes the
affine projection of yit+1 on It, i.e. the best linear prediction of yit+1, based on the
variables in It and a constant term.

For the Granger causal analysis of stochastic processes the modeling framework
of the VARMA-GARCH processes is considered. This approach is practical for
empirical work. Florens and Mouchart (1985) treated the problem of causality
at the high level of generality, without any particular process assumed. Granger
noncausality in mean from y1 to y2 is defined as follows.
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Definition 2. y1 does not Granger-cause y2 in mean, given y3, denoted by y1
G
�

y2|y3, if each component of the error vector, y2t+1 − P(y2t+1|I−1(t)), is orthogonal to
I(t) for all t ∈ Z.

Definition 2, proposed by Boudjellaba et al. (1992), states simply that the fore-
cast of y2 cannot be improved by adding to the information set past realizations of
y1.

Suppose that yt follows a N-dimensional VARMA(p,q) process:

α(L)yt = β(L)εt, (2.2)

for all t = 1, . . . ,T, where L is a lag operator such that Liyt = yt−i, α(z) = IN − α1z −
· · ·−αpzp, β(z) = IN+β1z+ · · ·+βqzq are matrix polynomials. IN denotes the identity
matrix of order N, and {εt : t ∈ Z} is a white noise process with nonsingular
unconditional covariance matrix V. Comte and Lieberman (2000) mention that all
the results in this section hold also if E[εtε

′
t|I2(t − 1)] = Ht, i.e. if the conditional

covariance matrix of εt is time-varying, provided that unconditional covariance
matrix, E[Ht] = V, is constant and nonsingular. Without the loss of generality, it is
assumed in (2.2) that E[yt] = 0, however any deterministic terms, such as a vector
of constants, a time trend or seasonal dummies may be considered for modeling.
Further assumptions for the process (2.2) are:

Assumption 6. All the roots of |α(z)| = 0 and all the roots of |β(z)| = 0 are outside
the complex unit circle.

Assumption 7. The terms α(z) and β(z) are left coprime and satisfy other identifi-
ability conditions given in Lütkepohl (2005).

These assumptions guarantee that the VARMA(p,q) process is stationary, in-
vertible and identified. Let the vector yt be partitioned, as in (3.13), then we can
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write (2.2) as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
α11(L) α12(L) α13(L)
α21(L) α22(L) α23(L)
α31(L) α32(L) α33(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1t

y2t

y3t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
β11(L) β12(L) β13(L)
β21(L) β22(L) β23(L)
β31(L) β32(L) β33(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε1t

ε2t

ε3t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2.3)

Given Assumptions 6–7 and the VARMA(p,q) process in the form as in (2.3),
Theorem 4 of Boudjellaba et al. (1994) states the conditions for Granger noncausal-
ity. Therefore, y1 does not Granger-cause y2 given y3 (y1

G
� y2|y3) if and only

if:

Γi j(z) = det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
α. j11(z) β11(z) β13(z)
α̃N1+i, j(z) βi.

21(z) βi.
23(z)

α. j31(z) β31(z) β33(z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 ∀z ∈ C, (2.4)

for i = 1, ...,N2 and j = 1, ...,N1; where α. jlk(z) is the jth column of αlk(z), βi.
lk(z) is the

ith row of βlk(z), and α̃N1+1, j(z) is the (i, j)-element of α21(z).

In general, condition (2.4) leads to N1N2 determinant conditions. Each of them
can be represented in the form of a polynomial in z of degree p+q(N1+N3): Γi j(z) =∑p+q(N1+N3)

i=1 aizi, where ai are nonlinear functions of parameters of the VARMA
process. Notice that Γi j = 0 ⇒ ai = 0 for i = 1, . . . , p + q(N1 + N3), which gives
restrictions for Granger noncausality.

Example 3. Let yt be N = 3 dimensional VARMA(1,0) process, N1 = N2 = N3 = 1
and let one be interested in whether y1 Granger-causes y2. The restriction for such
a case is:

RI(θ) = α21 = 0, (2.5)

where θ is a vector containing all the parameters of the model, θ ∈ Θ ⊂ Rk, and k
denotes the dimension of θ.

Example 4. Let yt be the VARMA(1,1) process of the same dimension and partition-
ing as before. Determinant condition (2.4) leads to the following set of restrictions:
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RII
1 (θ) = α11(β23β31 − β21β33) + β21(β11β33 − β13β31) + α31(β13β21 − β11β23) = 0 (2.6a)

RII
2 (θ) = β21(α11 − 2β33 − β11) + β23(α31 − β31) = 0 (2.6b)

RII
3 (θ) = α21 − β21 = 0, (2.6c)

and let RII(θ) = (RII
1 (θ),RII

2 (θ),RII
3 (θ))′ be a vector collecting the values of the

restrictions on the LHS.

The problem of testing restrictions (2.5) and (2.6) is dealt with in Section 2.4.

2.3 Parameter restrictions for second-order Granger

noncausality in GARCH models

This section consists of two parts. The first presents a multivariate GARCH model
with constant conditional correlations. For this model such topics as conditions for
stationarity, asymptotic properties, classical and Bayesian estimation and how it
was used to model and test volatility transmissions are discussed. The second part
of this section presents VARMA and VAR representations of the GARCH process
in order to derive parametric conditions for second-order Granger noncausality.

GARCH(r,s) model and its properties The conditional mean part of the model
is described with the VARMA process (2.2) and a residual term εt following a
conditional variance process:

εt = Dtrt, (2.7a)

rt ∼ i.i.d.(0,C), (2.7b)

for all t = 1, . . . ,T, where Dii.t = [
√

hi.t] for i = 1, . . . ,N is a N × N diagonal matrix
with conditional standard deviations on the diagonal, rt is a vector of standardized
residuals that follows i.i.d. with zero mean and a correlation matrix C.
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Conditional variances of εt follow the multivariate GARCH(r,s) process of
Jeantheau (1998):

ht = ω + A(L)ε(2)
t + B(L)ht, (2.8)

for all t = 1, . . . ,T, where ht is a N × 1 vector of conditional variances of εt, ω is a
N × 1 vector of constant terms, ε(2)

t = (ε2
1t, . . . , ε

2
Nt)
′ is a vector of squared residuals,

A(L) =
∑r

i=1 AiLi and B(L) =
∑s

i=1 BiLi are matrix polynomials of ARCH and GARCH
effects, respectively. All the matrices in A(L) and B(L) are of dimension N ×N and
allow for volatility transmissions from one series to another. C is a positive definite
constant conditional correlation matrix with ones on the diagonal.

The conditional covariance matrix of the residual term εt is decomposed into
E[εtε′t|I2

y(t − 1)] = Ht = DtCDt. For the matrix Ht to be a well defined positive
definite covariance matrix, ht must be positive for all t, and C positive definite (see
Bollerslev, 1990). Given the normality of rt, the vector of conditional variances is
E[ε(2)

t |I2
y(t − 1)] = ht. When rt follows a t distribution with ν degrees of freedom,

the conditional variances are E[ε(2)
t |I2(t − 1)] = ν

ν−2ht. In both cases the best linear
predictor of ε(2)

t is ht = P(ε(2)
t |I2

y(t − 1)).

The VARMA(p,q)-GARCH(r,s) model described by (2.2), (2.7) and (2.8), which
is object of the analysis in this study, has its origins in the constant conditional
correlation GARCH (CCC-GARCH) model proposed by Bollerslev (1990). That
model consists of N univariate GARCH equations describing the vector of con-
ditional variances ht. The CCC-GARCH model is equivalent to equations (2.7)
and (2.8) with diagonal matrices A(L) and B(L). Its extended version, with non-
diagonal matrices A(L) and B(L), was used in Karolyi (1995) and analyzed by
Jeantheau (1998). He and Teräsvirta (2004) called this model extended CCC-
GARCH (ECCC-GARCH).

Jeantheau (1998) proves that the GARCH(r,s) model, as in (2.8), has a unique,
ergodic, weakly and strictly stationary solution when det[IN − A(z) − B(z)] = 0
has its unit roots outside the complex unit circle. He and Teräsvirta (2004) give
sufficient conditions for the existence of the fourth moments and derive complete
structure of fourth moments. For instance, they give the conditions for existence
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and analytical form of E[ε(2)
t ε

(2)′
t ], as well as for the nth order autocorrelation matrix

of ε(2)
t , RN(n) = D−1

N ΓN(n)D−1
N , where ΓN(n) = [γi j(n)] = E[(ε(2)

t − σ2)(ε(2)
t−n − σ2)′] and

Dii.N = [
√
σ2

i ] for i = 1, . . . ,N.

The VARMA-ECCC-GARCH model has well established asymptotic proper-
ties. They can be set under the following assumptions:

Assumption 8. 1. All the roots of |IN − A(z) − B(z)| = 0 are outside the complex
unit circle. 2. All the roots of |IN − B(z)| = 0 are outside the unit circle.

Assumption 9. The multivariate GARCH(r,s) model is minimal, in the sense of
Jeantheau (1998).

Under Assumptions 8.1 and 9, the GARCH(r,s) model is stationary and iden-
tifiable. Jeantheau (1998) showed that the minimum contrast estimator for the
multivariate GARCH model is strongly consistent under, among others, station-
arity and identifiability conditions. Ling and McAleer (2003) proved the strong
consistency of the QMLE for the VARMA-GARCH model under Assumptions
6–9. Moreover, they have set the asymptotic normality of QMLE, provided that
E‖yt‖6 < ∞.

It was already mentioned that for positive definiteness of conditional covari-
ance matrix, Ht, ht has to be positive for all t. Usual parameter conditions for
ht to be positive are ω > 0 and [Ai] jk, [Bl] jk ≥ 0 for i = 1, . . . , r, l = 1, . . . , s and
j, k = 1, . . . ,N. Conrad and Karanasos (2009) derived conditions such that some
elements of Ai, Bl (i = 1, . . . , r; l = 1, . . . , s) and even ω are allowed to be nega-
tive. Still, it is not known whether asymptotic results hold under these conditions.
However, their empirical usefulness has been proven, as Conrad and Karanasos
(2009) have found that some parameters of the model responsible for volatility
transmissions are negative.

Classical estimation with the maximum likelihood method has been presented
in Bollerslev (1990). The maximum likelihood estimator is the argument maxi-
mizing the likelihood function, θ̂ = arg max

θ∈Θ
L(θ; y). The likelihood functions for
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Normal and t-distributed εs are, respectively:

LN(θ; y) = (2π)−TN/2
T∏

t=1

|Ht|−1/2 exp
(
ε′tH

−1
t εt

)−1/2
, and (2.9a)

LSt(θ; y) =
T∏

t=1

Γ
(
ν+N

2

)
Γ
(
ν
2

) ((ν − 2)π)−
N
2 |Ht|− 1

2

(
1 +

1
ν − 2

ε′tH
−1
t εt

)− ν+N
2

, (2.9b)

where εt is defined in equations (2.2) and (2.7). Γ(.) is Euler’s gamma and |.| a matrix
determinant. Algorithms maximizing the likelihood function, such as the BHHH
algorithm (see Berndt et al., 1974), use analytical derivatives. Fiorentini et al. (2003)
provide analytical expressions for the score, Hessian, and information matrix of
multivariate GARCH models with t conditional distributions of residuals. In the
Bayesian estimation of the GARCH models, numerical integration methods are
used. Vrontos et al. (2003) propose Metropolis-Hastings algorithm (see Chib and
Greenberg, 1995, and references therein) for the estimation of the model.

A broad family of GARCH models has already been used in the volatility
spillovers literature. More specifically, the empirical works of Worthington and
Higgs (2004) and Caporale et al. (2006) use the BEKK-GARCH model of Engle and
Kroner (1995) to prove volatility transmissions between stock exchange indices.
The issue of causality in variance or second-order causality (both defined in the
next paragraph) has been treated by Comte and Lieberman (2000), who derived
the conditions on parameters of the model for second-order noncausality between
two vectors of variables. No testing procedure, however, was available due to the
lack of asymptotic results. Comte and Lieberman (2003) filled in the gap, deriving
asymptotic normal distribution for QMLE under the assumption of bounded mo-
ments of order eight for εt. Hafner and Herwartz (2008) use the results of these two
papers and propose a Wald statistics for sufficient conditions for noncausality in
variance hypothesis. As a consequence of using asymptotic derivations of Comte
and Lieberman (2003), the test also requires finiteness of eighth-order moments of
the error term. Hafner (2009) presents the conditions under which temporal aggre-
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gation in GARCH models does not influence testing of the causality in conditional
variances.

Karolyi (1995) uses the VARMA-ECCC-GARCH model to show the necessity of
modeling the volatility spillovers for the inference about transmissions in returns
of stock exchange indexes. The assumption of constant conditional correlation
may be too strong for such data. The ECCC-GARCH model, however, proved
its usefulness in modeling the volatility of the exchange rates. In a recent study,
Omrane and Hafner (2009) use the trivariate model for volatility spillovers be-
tween exchange rates. Conrad and Karanasos (2009) and Nakatani and Teräsvirta
(2008) show the important case that volatility transmissions may be negative, the
former for the system containing inflation rate and output growth, and the lat-
ter for Japanese stock returns. A formal test for the volatility transmissions has
been proposed by Nakatani and Teräsvirta (2009). Their Lagrange multiplier test
statistics for the hypothesis of no volatility transmissions (A(L) and B(L) diagonal)
versus volatility transmissions (A(L) and B(L) non-diagonal) assumes the existence
of sixth-order moments of the residual term, E|ε6

t | < ∞. Woźniak (2012) introduces
the notion of Granger second-order causality and causality in variance for ECCC-
GARCH models for the setting similar to that of Comte and Lieberman (2000),
in which the vector of variables is partitioned in two parts. The current paper
extends the analysis such that an inference about causality between two (vectors
of) variables is performed when there are also other variables in the system used
for forecasting.

Before the notion of Granger noncausality for conditional variances is pre-
sented, the GARCH(r,s) model, (2.8), is rewritten into its VARMA and VAR rep-
resentations. Define a process νt = ε

(2)
t − ht. Then ε(2)

t follows a VARMA process
given by:

φ(L)ε(2)
t = ω + ψ(L)νt, (2.10)

for all t = 1, . . . ,T, where φ(L) = IN − A(L) − B(L) and ψ(L) = IN − B(L) are matrix
polynomials of the VARMA representation of the GARCH(r,s) process. Suppose
ε(2)

t and νt are partitioned analogously as yt in (3.13). Then (2.10) can be written in
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the form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
φ11(L) φ12(L) φ13(L)
φ21(L) φ22(L) φ23(L)
φ31(L) φ32(L) φ33(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε(2)

1t

ε(2)
2t

ε(2)
3t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ω1t

ω2t

ω3t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ψ11(L) ψ12(L) ψ13(L)
ψ21(L) ψ22(L) ψ23(L)
ψ31(L) ψ32(L) ψ33(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ν1t

ν2t

ν3t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2.11)

Given Assumption 8.2, the VARMA process (2.10) is invertible and can be written
in the VAR form:

Π(L)ε(2)
t − ω∗ = νt, (2.12)

for all t = 1, . . . ,T, where Π(L) = ψ(L)−1φ(L) = [IN − B(L)]−1[IN − A(L) − B(L)] is a
matrix polynomial of potentially infinite order of the VAR representation of the
GARCH(r,s) process and ω∗ = ψ(1)−1ω is a constant term. Again, partitioning the
vectors, rewrite (2.12) in the form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Π11(L) Π12(L) Π13(L)
Π21(L) Π22(L) Π23(L)
Π31(L) Π32(L) Π33(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε(2)

1t

ε(2)
2t

ε(2)
3t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ω∗1t

ω∗2t

ω∗3t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ν1t

ν2t

ν3t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2.13)

Under Assumption 8, both processes (2.10) and (2.12) are stationary.

Noncausality restrictions This paragraph presents the main theoretical findings
of the paper, that is the derivation of the conditions for second-order Granger
noncausality for the ECCC-GARCH model. Two concepts are defined: Granger
noncausality in variance and second-order Granger noncausality. Further, the
parametric conditions in Theorems 2 and 3 are derived and their novelty is dis-
cussed.

Robins et al. (1986) introduced the concept of Granger causality for conditional
variances. Comte and Lieberman (2000) call this concept second-order Granger
causality and distinguish it from Granger causality in variance. These noncausalities
are defined slightly differently than Comte and Lieberman (2000) do. In the
definition for second-order noncausality below, the Hilbert space I2

ε(t) is used,
whereas Comte and Lieberman use I2

y(t). The definitions are in the following
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forms:

Definition 3. y1 does not second-order Granger-cause y2 given y3, denoted by
y1

so
� y2|y3, if:

P
(
[y2t+1 − P(y2t+1|I(t))](2)|I2

ε(t)
)
= P

(
[y2t+1 − P(y2t+1|I(t))](2)|I2

ε.−1(t)
)
∀t ∈ Z.

Definition 4. y1 does not Granger-cause y2 in variance given y3, denoted by y1
v
�

y2|y3, if:

P
(
[y2t+1 − P(y2t+1|I(t))](2)|I2

y(t)
)
= P

(
[y2t+1 − P(y2t+1|I−1(t))](2)|I2

y.−1(t)
)
∀t ∈ Z, (2.14)

where [.](2) means that we square every element of a vector. Another difference
between the two definitions is in the Hilbert spaces on which y2t+1 is projected.
On the right-hand side of Definition 3 we take the affine projection of y2t+1 on I(t),
whereas on the right-hand side of Definition 4 we take the affine projection of y2t+1

on I−1(t). In other words, before considering whether there is second-order Granger
noncausality, one first needs to model and to filter out the Granger causality in
mean. Further, an implicit assumption in the definition of Granger noncausality in
variance is that y1 does not Granger-cause in mean y2, y1

G
� y2|y3. The relation

between Granger noncausality in mean, noncausality in variance and second-
order noncausality have been established by Comte and Lieberman (2000) and are
as follows:

y1
v
� y2|y3 ⇔ (y1

G
� y2|y3 and y1

so
� y2|y3). (2.15)

One implication of this statement is that Definitions 3 and 4 are equivalent when
y1 does not Granger-cause y2. And conversely, if y1 Granger-causes y2, then the
Granger noncausality in variance is excluded, but still y1 may not second-order
cause y2.

Under Assumptions 6–9, the VARMA-ECCC-GARCH model is stationary,
identifiable and invertible in both of its parts: VARMA processes for yt and for
ε(2)

t . One more assumption is needed in order to state noncausality relations in the
conditional variances process:
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Assumption 10. The process νt is covariance stationary with covariance matrix
Vν.

A theorem introduces second-order Granger noncausality relations:

Theorem 2. Let ε(2)
t follow a stationary vector autoregressive process, as in (2.12), parti-

tioned, as in (2.13), that is identifiable (Assumptions 8–10). Then, y1 does not second-order
Granger-cause y2 given y3 (denoted by y1

so
� y2|y3) if and only if:

Π21(z) ≡ 0 ∀z ∈ C. (2.16)

Proof. Theorem 2 may be proved by applying Proposition 1 of Boudjellaba et al.
(1992). However, since that proof is derived for the VAR models, several modifica-
tions are required to make it applicable to the GARCH model of Jeantheau (1998)
in the VAR form, as in (2.12) and (2.13). Here the squared elements of the residual
term, ε(2)(y2t+1|I(t)), are projected on the Hilbert spaces I2

ε(t) or I2
ε.−1(t), both defined

in Section 2.2. �

Theorem 2 is an adaptation of Proposition 1 of Boudjellaba et al. (1992) to the
ECCC-GARCH model in the VAR representation for ε(2)

t . It sets the conditions
for the second-order noncausality between two vectors of variables when in the
system there are other auxiliary variables collected in vector y3t.The parametric
condition (2.16), however, is unfit for the practical use. This is due to the fact
that Π21(L) is highly nonlinear function of parameters of the original GARCH(r,s)
process (2.8). Moreover, it is a polynomial of infinite order, when s > 0. Therefore,
evaluation of the matrix polynomial Π(z) is further presented in Theorem 3.

Theorem 3. Let ε(2)
t follow a stationary vector autoregressive moving average process,

as in (2.10), partitioned, as in (2.11), which is identifiable and invertible (Assumptions
8–10). Then y1 does not second-order Granger-cause y2 given y3 (denoted by y1

so
� y2|y3),
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if and only if:

Γso
i j (z) = det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
φ. j11(z) ψ11(z) ψ13(z)
ϕn1+i, j(z) ψi.

21(z) ψi.
23(z)

φ. j31(z) ψ31(z) ψ33(z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 ∀z ∈ C, (2.17)

for i = 1, ...,N2 and j = 1, ...,N1; where φ. jlk(z) is the jth column of φlk(z), ψi.
lk(z) is the ith

row of ψlk(z), and ϕn1+1, j(z) is the (i, j)-element of φ21(z).

Proof. In order to prove the simplified conditions for second-order Granger non-
causality, (2.17), apply to equation (2.16) from Theorem 2 the matrix transforma-
tions of Theorem 3 and then of Theorem 4 of Boudjellaba et al. (1994). �

As was the case for restriction (2.4), condition (2.17) leads to N1N2 determinant
conditions. Each of them can be represented in a form of polynomial in z of
degree max(r, s) + (N1 + N3)s: Γso

i j (z) =
∑max(r,s)+(N1+N3)s

i=1 bizi, where bi are nonlinear
functions of parameters of the GARCH process. We obtain parameter restrictions
for the hypothesis of second-order Granger noncausality by setting bi = 0 for
i = 1, . . . ,max(r, s) + (N1 +N3)s. Such restrictions are ready to be tested.

The innovation of condition (2.17) is that the second-order noncausality from
y1t to y2t is analyzed when there are other variables in the system collected in
the vector y3t. Such a setting has not been considered so far in the problem of
testing the second-order noncausality. The restrictions can even be used for large
systems of variables. In the Granger-causality analysis, it is particularly important
to consider a sufficiently large set of variables. Sims (1980), on the example of
the vector moving average model, shows that the Granger causal relation may
appear in the model due to the omitted variables problem. Further, Lütkepohl
(1982) shows that because of the omitted variables problem a noncausality relation
may arrive. The conclusions of these two papers are maintained for the second-
order causality analysis in multivariate GARCH models: one should consider a
sufficiently large set of relevant variables in order to avoid the omitted variables
bias problem.
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Condition (2.17) generalizes results from other studies. Comte and Lieberman
(2000) derive similar restriction for the BEKK-GARCH model, with the difference
that vector yt is partitioned only into two sub-vectors y∗1t and y∗2t. Woźniak (2012)
does the same for the ECCC-GARCH model. The fact that the vector of variables
is partitioned in three and not only two sub-vectors has serious implications for
testing Granger-causality relations in conditional variances. Notice that, under
such conditions, the formulation of some hypotheses is not even possible. This is
because, in general, the fact that y∗1t

so
� y∗2t (which can be written as y1t

so
� (y2t, y3t))

does not imply that y1t
so
� y2t|y3t or that y1t

so
� y3t|y2t. Moreover, the results of

Woźniak (2012) are nested in condition (2.17) by setting N3 = 0.
Two examples illustrate the derivation of the parameter restrictions for several

processes that are often used in empirical works.

Example 5. Let yt be a trivariate GARCH(1,1) process (N = 3 and r = s = 1). Then,
the VARMA process for ε(2)

t is as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 − (A11 + B11)L −(A12 + B12)L −(A13 + B13)L
−(A21 + B21)L 1 − (A22 + B22)L −(A23 + B23)L
−(A31 + B31)L −(A32 + B32)L 1 − (A33 + B33)L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε2

1t

ε2
2t

ε2
3t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ω1

ω2

ω3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 − B11L −B12L −B13L
−B21L 1 − B22L −B23L
−B31L −B32L 1 − B33L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ν1t

ν2t

ν3t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (2.18)

If one is interested in testing the hypothesis y1
so
� y2|y3, then by applying Theorem

3 one obtains the following set of restrictions:

RIII
1 (θ) = A11(B23B31 − B21B33) + A31(B13B21 − B11B23) = 0, (2.19a)

RIII
2 (θ) = A11B21 + A31B23 = 0, (2.19b)

RIII
3 (θ) = A21 = 0. (2.19c)

If one is interested in testing the hypothesis y1
so
� (y2, y3), then from Theorem 3 the
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conditions are given by:

det
[

1 − (A11 + B11)z 1 − B11z
−(Ai1 + Bi1)z −Bi1z

]
= 0 for i = 2, 3,

which results in the restrictions:

RIV
1 (θ) = A11B21 = 0 and RIV

2 (θ) = A21 = 0, (2.20a)

RIV
3 (θ) = A11B31 = 0 and RIV

4 (θ) = A31 = 0. (2.20b)

Example 6. Let ε(2)
t follow a N = 3 dimensional ARCH(r) process, and let one be

interested whether y1 second-order Granger-causes y2 (given y3). The restrictions
for this case are:

RV(θ) = Ai.21 = 0 for i = 1, . . . , r. (2.21)

2.4 Bayesian testing of noncausality in VARMA-GARCH

models

In the following section, the problem of testing restrictions imposed on the origi-
nal parameters of the VARMA-GARCH model is considered. Apart from deriving
separate tests for the Granger causality and second-order Granger causality hy-
potheses, a joint test of the parametric restrictions from conditions (2.4) and (2.17)
is proposed. Thus, not only is the role of joint modeling of the transmissions in
conditional mean and conditional variance processes emphasized, but also a com-
plete set of tools for the underlying analysis is presented. Moreover, a Bayesian
testing procedure is proposed as a solution for some of the drawbacks of classical
tests.

The Wald test Consider the classical Wald test of Boudjellaba et al. (1992) for
the parameter restrictions for Granger noncausality in the VARMA process. The
Wald test has the desirable feature that it requires the estimation of only the
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most general model. What is not required is the estimation of restricted models.
Thus, estimating just one model one can do both: perform the testing procedure,
and analyze the parameters responsible for the transmissions. Before a test can
be performed, one should first estimate the VARMA model and derive a set of
parametric restrictions from condition (2.4). The Wald statistic is given by:

W(θ̂m) = TR(θ̂m)
′
[T(θ̂m)

′
V(θ̂m)T(θ̂m)]−1R(θ̂m), (2.22)

where θm is a sub-vector of θ, containing the parameters used in lm × 1 vector
of parametric restrictions R(θm), V(θ̂m) is the asymptotic covariance matrix of√

T(θ̂m − θm), and T(θ̂m) is a m × lm matrix of partial derivatives of the restrictions
with respect to the parameters collected in θm:

T(θ̂m) =
∂R(θm)
∂θm

∣∣∣∣
θm=θ̂m

. (2.23)

Under the null hypothesis of Granger noncausality W(θ̂m) has asymptoticχ2(lm)
distribution. However, in equation (2.22) T(θm) must be of full rank. Otherwise,
the asymptotic covariance matrix is singular and the asymptotic distribution is
no longer χ2(lm). Boudjellaba et al. (1992), testing the nonlinear restrictions, as in
Example (4), show that there are cases when T(θm) is not of full rank under the
null hypothesis. Several works coping with this problem have appeared (Dufour,
1989; Boudjellaba et al., 1992; Lütkepohl and Burda, 1997; Dufour et al., 2006), in
the context of testing Granger noncausality for conditional mean processes.

Suppose that a ln × 1 vector θn contains the parameters that appear in the
restrictions for second-order Granger noncausality for the multivariate GARCH
model derived from condition (2.17). In order to test such restrictions the Wald test
can also be used with test statistics W(θn). Given that

√
T(θ̂n − θn) has asymptotic

normal distribution, the test statistic has asymptotic χ2(ln) distribution with ln

degrees of freedom. However, the determinant condition (2.17) results in several
nonlinear restrictions on the parameters. The testing of the nonlinear restrictions
leads in the problem with the asymptotic distribution of the Wald statistic. The
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matrix of partial derivatives of the restrictions with respect to the parameters of
the model, (2.23), may not be of full rank, and thus the asymptotic covariance
matrix of the parametric restrictions under the null hypothesis may be singular.
The asymptotic distribution of the test statistics in this case is unknown.

In fact, the Wald test was applied to test the restrictions for the second-order
noncausality in the BEKK-GARCH models by Comte and Lieberman (2000) and
Hafner and Herwartz (2008). The Wald statistics, proposed by Comte and Lieber-
man and Hafner and Herwartz, is χ2-distributed, given the asymptotic normality
of the QMLE of the parameters of the BEKK-GARCH model – the result estab-
lished by Comte and Lieberman (2003). The asymptotic distribution of the test
statistic, however, could only be obtained due to the simplifying approach taken.
The strategy of Comte and Lieberman (2000) and Hafner and Herwartz (2008) is to
derive linear zero restrictions on the original parameters of the model, which are
a sufficient condition for the restrictions obtained from the determinant condition
(corresponding to determinant condition (2.17) but for the BEKK-GARCH models
and with N3 = 0). Among the classical solutions proposed for the problem of
testing the Granger noncausality in conditional means, only the modified Wald
test of Lütkepohl and Burda (1997) seems applicable for testing second-order non-
causality in the GARCH models. Nevertheless, further research of this topic is
required.

For the VARMA-ECCC-GARCH models, Ling and McAleer (2003) proved that√
T(θ̂n − θn) has asymptotic normal distribution. For this model, the application

of the Wald test meets the same obstacles as for the BEKK-GARCH model, if
one is interested in the testing of the original restrictions for the second-order
noncausality and not only those representing the sufficient condition.

Moreover, the asymptotic normality of the QMLE of the parameters for the
VARMA-ECCC-GARCH models was derived by Ling and McAleer (2003), under
the assumption of the existence of sixth-order moments of yt. Similar result was
obtained by Comte and Lieberman (2003) for the BEKK-GARCH models, under
the assumption of the existence of eighth-order moments. For many financial time
series analyzed with multivariate GARCH models, these assumptions may not
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hold, as such data are often leptokurtic and the existence of higher-order moments
is uncertain.

Finally, the joint test of Granger noncausality and second-order Granger non-
causality is a simple generalization of the two separate tests. Suppose that θm+n

stacks the parameters from restrictions derived from conditions (2.4) and (2.17).
The Wald test statistics for such a hypothesis is simply W(θm+n) and is asymptot-
ically χ2(lm + ln) distributed, given that matrix T(θ) is of full rank. It also inherits
the properties and limitations of both of the separate tests.

Bayesian testing In this study an alternative approach to testing is undertaken
following the Lindley type test proposed by Osiewalski and Pipień (2002) and
Marzec and Osiewalski (2008). First of all, we propose the method of testing
the original restrictions on the parameters for the Granger noncausality and
the second-order noncausality presented in Sections 2.2 and 2.3. Secondly, the
Bayesian procedure presented in the subsequent part overcomes the limitations of
the Wald test. More specifically, singularities of the asymptotic covariance matrix
of restrictions are excluded by construction, and the assumptions of the existence
of higher-order moments of time series are relaxed.

In the context of Granger causality testing in time series models, Bayesian
methods have been used in several works. Woźniak (2012) uses Bayes factors and
Posteriors Odds Ratios to infer second-order noncausality between two vectors
in GARCH models. Droumaguet and Woźniak (2012) use these tools to make
an inference about Granger noncausality in mean and the independence of the
hidden Markov process in Markov-switching VARs. Bayesian methods have also
been used also in the context of testing exogeneity, a concept related to Granger
noncausality . Jarociński and Maćkowiak (2011) use Savage-Dickey Ratios to test
block-exogeneity in Bayesian VARs. Finally, Pajor (2011) uses Bayes factors to infer
exogeneity in models with latent variables, in particular, in multivariate Stochastic
Volatility models.

Consider the following set of hypotheses. The null hypothesis,H0, states that
the l×1 vector of possibly nonlinear functions of parameters, R(θ), is set to a vector
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of zeros. The alternative hypothesis,H1, states that it is different from a vector of
zeros. The considered set of hypotheses is represented by:

H0 :R(θ) = 0,

H1 :R(θ) � 0.

In the context of Granger-causality, the null hypothesis states that y1 does not cause
y2 (given that there are also other variables in the system collected in y3). Then the
alternative hypothesis states that y1 causes y2. The formulation of the hypotheses
is general and encompasses Granger noncausality, second-order noncausality and
noncausality in variance. In the following part a Bayesian procedure of evaluation
of the credibility of the null hypothesis is described.

In the Bayesian approach, a complete model is specified by a prior distribution
of the parameters and a likelihood function. The prior distribution, p(θ), formalizes
the knowledge about the parameters that one has before seeing the data, y. The
prior beliefs are updated with information from the data that is represented by
the likelihood function, L(θ; y). As a result of the update of the prior beliefs, a
posterior distribution of the parameters of the model is obtained. The posterior
distribution is proportional to the product of the likelihood function and the prior
distribution:

p(θ|y) ∝ L(θ; y)p(θ). (2.24)

Given the posterior distribution of the parameters, the posterior distribution
of the function R(θ) is available, p(R(θ)|y). Moreover, every characteristic of
this distribution is available as well. For instance, the posterior mean of R(θ) is
calculated by definition of the expected value by integrating the product of the
function and its posterior distribution over the whole parameter space:

E[R(θ)|y] =
∫
θ∈Θ

R(θ)p(θ|y)dθ.

In order to compute such an integral, numerical methods need to be employed for
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the VARMA-GARCH models, as analytical forms are not known.

Let {θ(i))}S1
i=1 be a sample of S1 draws from the posterior distribution p(θ|y). Then,

{R(θ(i))}S1
i=1 appears a sample drawn from the posterior distribution p(R(θ)|y). The

posterior mean and the posterior covariance matrix of the restrictions are estimated
with:

Ê[R(θ)|y] = S−1
1

S1∑
i=1

R(θ(i)), (2.25)

V̂[R(θ)|y] = S−1
1

S1∑
i=1

[
R(θ(i)) − Ê[R(θ)|y]

][
R(θ(i)) − Ê[R(θ)|y]

]′
. (2.26)

Define a scalar function κ : Rl → R+ by:

κ(R) =
[
R − E[R(θ)|y]

]′
V[R(θ)|y]−1

[
R − E[R(θ)|y]

]
, (2.27)

where R is the argument of the function. In order to distinguish the argument of
the function R = R(θ), the simplified notation is used, neglecting the dependence
on the vector of parameters. In place of the expected value and the covariance
matrix of the vector of restrictions, E[R(θ)|y] and V[R(θ)|y], one should use their
estimators, defined in equations (2.25) and (2.26).

The function κ is a positive semidefinite quadratic form of a real-valued vector.
It gives a measure of the deviation of the value of the vector of restrictions from
its posterior mean, R − E[R(θ)|y], rescaled by the positive definite posterior co-
variance matrix, V[R(θ)|y]. Notice that the positive definite covariance matrix is a
characteristic of the posterior distribution and, by construction, cannot be singular,
as long as the restrictions are linearly independent. Drawing an analogy to a Wald
test, the main problem of the singularity of the asymptotic covariance matrix of the
restrictions is resolved by using the posterior covariance matrix. It does not need
to be constructed with the delta method and, thus, avoids the potential singularity
of the asymptotic covariance matrix. Notice, however, that the function κ is not
a test statistic, but a scalar function that summarizes multiple restrictions on the
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parameters of the model.

Moreover, if R follows a normal density function, then κ(R) would have a χ2(l)
distribution with l degrees of freedom (see e.g. Proposition B.3 (2) of Lütkepohl,
2005, pp. 678). Consider testing only the Granger noncausality in mean in the
VAR model, when the covariance matrix of the innovations is assumed to be
constant over time and known. Then, assuming a normal likelihood function and
a normal conjugate prior distribution leads to a normal posterior distribution of
the parameters. This finding still does not guarantee the χ2-distributed κ function,
as the restrictions on the parameters of the model might be nonlinear and contain
sums of products of the parameters. Further, in the general setting of this study,
in which the VARMA-GARCH models with Student’s t likelihood function are
analyzed, the posterior distribution of the parameters of neither the VARMA nor
GARCH parts are in the form of some known distributions (see Bauwens and
Lubrano, 1998). Therefore, the exact form of the distribution of κ(R) is not known
either. It is known up to a normalizing constant, as in equation (2.24). Luckily,
using the Monte Carlo Markov Chain methods, the posterior distributions of the
parameters of the model, θ, of the restrictions imposed on them, R, as well as
of the function κ(R), may be easily simulated. The posterior distribution of the
function κ is used in order to evaluate the hypothesis of noncausality.

Let κ(0) be the value of function κ, evaluated at the vector of zeros, representing
the null hypothesis. Then, a negligible part of the posterior probability mass of
κ(R) attached to the values greater than κ(0) is an argument against the null
hypothesis. Therefore, the credibility of the null hypothesis can be assessed by
computing the posterior probability of the condition κ(R) > κ(0):

p0 = Pr
(
κ(R) > κ(0)|y) =

∫ ∞

κ(0)
p(κ(R)|y)dκ(R). (2.28)

Estimation of the probability, p0, has to be performed using numerical integra-
tion methods. Let {R(i)}S2

i=S1+1 be a sample of S2 draws from the stationary posterior
distribution p(R(θ)|y), where R(i) = R(θ(i)). Using the transformation κ of the
restrictions R, one obtains a sample of S2 draws, {κ(R(i))}S2

i=1, from the posterior
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distribution, p(κ(R)|y). Then the probability, p0, is simply estimated by the frac-
tion of the draws from the posterior distribution of κ(R), for which the inequality
κ(R) > κ(0) holds:

p̂0 =
#{κ(R(i)) > κ(0)}

S2
. (2.29)

The probability, p0, should be compared to a probability, π0, that represents a
confidence level of the test. The usual values used in many statistical works are
0.05 or 0.1.

The procedure is summarized in five steps:

Step 1 Draw {θ(i)}S1
i=1 from the posterior distribution p(θ|y).

Step 2 Compute {R(θ(i))}S1
i=1, as well as the estimators of the posterior mean, Ê[R(θ)|y],

and the posterior covariance matrix, V̂[R(θ)|y], for the vector of restrictions
on the parameters.

Step 3 Draw {θ(i)}S2
i=S1+1 from the posterior distribution p(θ|y), and compute {κ(R(i))}S2

i=S1+1

using the estimated posterior mean and covariance matrix from Step 2 to
compute κ(.).

Step 4 Compute κ(0) and p̂0.

Step 5 If p̂0 < π0, then reject the null hypothesis,H0. Otherwise, do not reject the
null hypothesis.

Osiewalski and Pipień (2002) and Marzec and Osiewalski (2008) use the quadratic
form as in (2.27) in order to assess the restrictions imposed on parameters of the
analyzed models. Osiewalski and Pipień (2002) proposed the Lindley-type Bayesian
counterpart of the usual F test to compare a bivariate BEKK-GARCH specification
with the vech-GARCH formulation in which BEKK-GARCH is nested. They tested
zero restrictions imposed on nonlinear functions of parameters. In order to assess
the null hypothesis they use the fact that the posterior distribution of the param-
eters is approximately asymptotically normal, and therefore the quadratic form
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is approximately χ2-distributed. Therefore the null hypothesis is rejected if the
probability:

Pr(χ2 ≤ κ(0))

is greater than 1−α, a confidence level of the classical test, where χ2 is a chi-square
random variable with appropriate degrees of freedom parameter. Marzec and
Osiewalski (2008) test zero restrictions imposed on the parameters of a stochastic
frontier model in order to compare different specifications of the cost function and
the distributions for inefficiency effects nested in the estimated general formulation
of the model. The null hypothesis is assessed by checking the probability content
of the shorthest Highest Posterior Density interval that includes value κ(0). This
procedure practically corresponds to the the one used in the current study.

Discussion The proposed Bayesian procedure allows testing of the noncausal-
ity restrictions resulting directly from the determinant condition (2.16). There
is no need to derive the simplified zero restrictions on the parameters of the
model in order to test the noncausality hypothesis, as proposed by Comte and
Lieberman (2000) and Hafner and Herwartz (2008). Second, the procedure re-
quires the estimation of only one unrestricted model for the purpose of testing
the noncausality hypotheses. Given the time required to estimate the multivariate
VARMA-GARCH models, this is a significant gain in comparison to the procedure
proposed by Woźniak (2012). He used Bayes factors to test the second-order non-
causality hypotheses between two vectors of variables in ECCC-GARCH models.
Consequently, his method requires the estimation of multiple models: the unre-
stricted and the restricted models representing the hypotheses of interest.

Note, however, that only the inference based on Bayes factors attaches posterior
probabilities to hypotheses, and therefore constitutes formal Bayesian assessment
of the hypotheses. Lindley type inference based on Highest Posterior Density
regions provides an informal summary of the Bayesian evidence for or against
hypotheses. Note also that probability p0 is the probability of the event that
the condition κ(R) > κ(0) holds, and it can be helpful in the decision-making
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process. Therefore, the two procedures, Bayes factors and Lindley type tests, are
not substitutes, but are rather complimentary. The choice to use the Lindley type
test in this study is practical and motivated with the reasons stated above*.

Further, the posterior distribution of function κ is a finite sample distribution.
Therefore, the test is also based on the exact finite sample distribution. On the
contrary, in the classical inference on VARMA-GARCH models only the asymptotic
distribution of the QML estimator of the parameters is available. Since there is no
need to refer to asymptotic theory in this study, there is also no need to keep its
strict assumptions. As a result, the Bayesian test relaxes the assumptions of the
existence of higher-order moments. Only the existence of fourth-order moments
is assumed (see Assumption 10), in comparison to the assumption of the existence
of sixth-order moments in a classical derivation of the asymptotic distribution of
the QMLE (see Ling and McAleer, 2003). Moreover, this testing procedure could
be employed for the restrictions of Comte and Lieberman (2000) for testing the
noncausality in variance in the BEKK-GARCH models. The asymptotic normality
of the QMLE established by Comte and Lieberman (2003) requires the existence
of the eighth-order moments, an assumption that can now be relaxed.

These improvements are particularly important in the context of the analysis
of financial high-frequency data. Many empirical studies have proved that the
empirical distribution of such data is leptokurtic, and that the existence of higher-
order moments is questionable. Therefore, the relaxed assumptions may give
an advantage on the applicability of the proposed testing procedure over the
applicability of classical tests.

2.5 Granger causal analysis of exchange rates

Data In order to illustrate the use of the methods presented in previous sections
three time series of daily exchange rates are chosen. The series, all denominated in
Euro, are the Swiss franc (CHF/EUR), the British pound (GBP/EUR) and the United

* The author thanks Professor Jacek Osiewalski for pointing the difference between inferences
based on Bayes factors and Lindley type tests.
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Table 2.1: Data: summary statistics

CHF/EUR GBP/EUR USD/EUR

Mean -0.034 0.012 -0.006
Median -0.033 0.011 0.016
Standard Deviation 0.704 0.707 0.819
Minimum -3.250 -2.657 -4.735
Maximum 7.997 3.461 4.038
Excess kurtosis 25.557 2.430 2.683
Excess kurtosis (robust) 0.785 0.060 0.085
Skewness 2.220 0.344 -0.091
Skewness (robust) -0.038 0.010 -0.016
LJB test 21784.921 206.525 234.063
LJB p-value 0.000 0.000 0.000
T 777.0 777.0 777.0
Correlations . . .
GBP/EUR 0.079 . .
USD/EUR 0.301 0.368 .

Note: The excess kurtosis (robust) and the skewness (robust) coefficients are outlier-robust versions
of the excess kurtosis and the skewness coefficients as described in Kim and White (2004). LJB test
and LJB p-values describe the test of normality by Lomnicki (1961) and Jarque and Bera (1980).

States dollar (USD/EUR). Logarithmic rates of return expressed in percentage
points are used, yit = 100(ln xit − ln xit−1) for i = 1, 2, 3, where xit are levels of the
assets. The data spans the period from September 16, 2008 to September 22, 2011,
which gives T = 777 prices. It was downloaded from the European Central Bank
website (http://sdw.ecb.int/browse.do?node=2018794). The analyzed period
starts the day after Lehman Brothers filed for Chapter 11 bankruptcy protection.

The motivation behind this choice of variables and the period of analysis is
its usefulness for the institutions for which the forecast of the exchange rates is a
crucial element of financial planning. For instance, suppose that the government
of a country participating in the Eurozone is indebted in currencies, and therefore
its future public debt depends on the exchange rates. Or, suppose that a financial
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institution settled in the Eurozone keeps assets bought on the New York or London
stock exchanges, or simply keeps currencies. In these and many other examples,
the performance of an institution depends on the forecast of the returns, but even
more important is the forecast of the future volatility of exchange rates. The
knowledge that the past information about one exchange rate has an impact on
the forecast of the variability of some other exchange rate may be crucial for the
analysis of the risk of a portfolio of assets. The two exchange rates, GBP/EUR and
USD/EUR, were analyzed for the same period in Woźniak (2012).

Figure B.1 from B.1 plots the three time series. The clustering of the volatility
of the data is evident. Two of the exchange rates, GBP/EUR and USD/EUR, during
the first year of the sample period were characterized by higher volatility than in
the subsequent years. The Swiss franc is characterized by more periods of different
volatility. The first year of high variability was followed by nearly a year of low
volatility. After that period, again there was a period of high volatility. As the
volatility clustering seems to be present in the data, the GARCH models that are
capable of modeling this feature are chosen for the subsequent analysis.

Table 2.1 presents the summary statistics of the time series. While the sample
means are very similar to one another and close to zero, the variability measured
with the sample standard deviation seems to be a bit higher for the US dollar than
for other currencies. All the series are leptokurtic, as the kurtosis coefficients are
high. This is especially the case for the Swiss franc. The Swiss franc and the British
pound are positively skewed. None of the variables follows a normal distribution,
as shown by the results of the Lomnicki-Jarque-Bera test.

Estimation of the model The Bayesian estimation of the VARMA-GARCH mod-
els consists of the numerical simulation of the posterior distribution of the param-
eters, which is proportional to the product of the likelihood function and the prior
distribution of the parameters of the model, as in equation (2.24).

The parameters of the VAR-GARCH model follow the subsequent prior spec-
ification. For the parameters of the vector autoregressive process of order one
and of the GARCH(1,1) model, the prior distribution proportional to a constant
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and constrained to a parameter space bounded according to Assumptions 6–10
is assumed. Each of the parameters of the correlation matrix, C, collected in a
N(N − 1)/2 × 1 vector ρ = vecl(C), follows a uniform distribution on the inter-
val [−1, 1], where a vecl operator stacks lower-diagonal elements of a matrix in a
vector. Finally, the degrees of freedom parameter follows the prior distribution
proposed by Deschamps (2006). Such a prior specification, with diffuse distribu-
tions for all the parameters but the degrees of freedom parameter ν, guarantees the
existence of the posterior distribution understood as integrability of the product
of the likelihood function and the prior distribution (see Bauwens and Lubrano,
1998). It does not discriminate any of the values of the parameters from within the
parameter space. The prior distribution for the parameter ν is a proper density
function, and it gives as much as a 32 percent chance that its value is greater than
30. For such values of this parameter, the likelihood function given by equation
(2.9b), is a close approximation of the normal likelihood function.

Summarizing, the prior specification for the considered model has the detailed
form of:

p (θ) = p
(
α′0,vec(α1)

)
p (ω′,vec(A)′,vec(B)′) p (ν)

N(N−1)/2∏
i=1

p
(
ρi
)
, (2.30)

where each prior distribution is specified by:

p
(
α′0,vec(α1)′

)′ ∝ I(θ ∈ Θ)

p (ω′,vec(A)′,vec(B)′)′ ∝ I(θ ∈ Θ)

ν ∼ .04 exp [−.04(ν − 2)]I(ν ≥ 2)

ρi ∼ U(−1, 1) for i = 1, . . . ,N(N − 1)/2,

where I(.) is an indictor function, taking a value equal to 1 if the condition in
brackets holds and 0 otherwise.

The kernel of the posterior distribution of the parameters of the model, given
by equation (2.24), is a complicated function of the parameters. It is not given
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by the kernel of any known distribution function. In consequence, the analytical
forms are known neither for the posterior distribution nor for full conditional
distributions. Therefore, numerical methods need to be employed in order to
simulate the posterior distribution. The Metropolis-Hastings algorithm adapted
for the GARCH models by Vrontos et al. (2003) and used in Osiewalski and Pipień
(2002, 2004) is used also in this study. At each sth step of the algorithm, a candidate
draw, θ∗, is made from the candidate density. The candidate generating density is
a multivariate t distribution with the location parameter set to the previous state of
the Markov chain, θ(s−1), the scale matrix cΩ and the degrees of freedom parameter
set to five. The scale matrix, Ω, should be a close approximation of the posterior
covariance matrix of the parameters, and a constant c is set in order to obtain the
desirable acceptance rate of the candidate draws. A new candidate draw, θ∗, is
accepted with the probability:

α
(
θ(s−1), θ∗|y

)
= min

[
1,

L(θ∗; y)p(θ∗)
L(θ(s−1); y)p(θ(s−1))

]
.

Every 100th state of the Markov Chain is kept in the final sample of draws from
the posterior distribution of the parameters. The rationale behind this strategy
is that, at the cost of decreasing the length of the MCMC, the chain of desirable
properties according to several criteria (see Geweke, 1989, 1992; Plummer et al.,
2006) is obtained. The summary of the properties of the final sample of draws
from the posterior distribution is presented in Table B.1 in B.2.

Estimation results Table 2.2 presents the results of the posterior estimation of the
VAR(1)- ECCC-GARCH(1,1) model chosen for the analysis of causality relations
in the system of three exchange rates: CHF/EUR, GBP/EUR and USD/EUR. Plots
of marginal posterior densities of the parameters are presented in B.2.

Considering posterior means and standard deviations of the parameters of the
VAR(1) process, one sees that none of the parameters but α1.13 is significantly dif-
ferent from zero. The graphs, however, show that the 90 percent highest posterior
density regions of parametersα0.1, α1.11, α1.22 andα1.13 do not contain the value zero.
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Table 2.2: Summary of the estimation of the VAR(1)-ECCC-GARCH(1,1) model

VAR(1)
α0 α1

CHF/EUR -0.022 -0.068 0.003 0.041
(0.011) (0.037) (0.019) (0.018)

GBP/EUR 0.014 -0.016 0.077 -0.019
(0.021) (0.030) (0.040) (0.033)

USD/EUR 0.027 -0.027 0.050 0.006
(0.025) (0.041) (0.045) (0.041)

GARCH(1,1)
ω A B

CHF/EUR 0.001 0.117 0.002 0.002 0.873 0.001 0.001
(0.001) (0.029) (0.002) (0.002) (0.030) (0.001) (0.001)

GBP/EUR 0.011 0.002 0.062 0.017 0.002 0.808 0.063
(0.009) (0.002) (0.024) (0.011) (0.003) (0.158) (0.098)

USD/EUR 0.086 0.018 0.117 0.051 0.031 0.787 0.164
(0.059) (0.018) (0.062) (0.034) (0.028) (0.215) (0.147)

Degrees of freedom and correlations
ν ρ12 ρ13 ρ23

6.267 0.145 0.356 0.400
(0.743) (0.038) (0.035) (0.034)

The table summarises the estimation of the VAR(1)-ECCC-GARCH(1,1) model described by the
equations (2.2), (2.7), (2.8) and the likelihood function (2.9b). The prior distributions are specified
in equation (2.30). The posterior means and the posterior standard deviations (in brackets) are
reported. For graphs of the marginal posterior distributions of the parameters, as well as for the
summary of characteristics of the MCMC simulation of the posterior distribution, refer to B.2.

The parameter α1.13 is responsible for the interaction of the lagged value for US
dollar on the current value of the Swiss frank. This finding has its consequences
in testing the Granger causality in mean hypothesis.

All the parameters of the GARCH(1,1) process are constrained to be non-
negative. However, a significant part of the posterior probability mass concen-
trated at the bound given by zero is an argument for a lack of the statistical
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significance of the parameter. For most of the parameters of the GARCH process
reported in Table 2.2, this is the case (see also graphs in B.2). The posterior prob-
ability mass of several of the parameters, however, is distant from zero. All the
diagonal parameters of matrices A and Bm, beside parameters A33 and B33, are
different from zero. This finding is common for multivariate GARCH models and
reflects the persistence of volatility.

Nevertheless, it is the value of the posterior mean of parameter B32 equal to
0.787 that is interesting in this model. This parameter models the impact of the
lagged conditional variance of British pound on the current conditional variance
of the US dollar. This effect is significant. Moreover, estimates of the parameters
for the system of variables that would include only GBP/EUR and USD/EUR are
very similar to the values of the parameters of the bivariate VAR-ECCC-GARCH
model estimated by Woźniak (2012) for the same period. To conclude, the estimate
of this parameter in particular may be considered robust to including an additional
variable to the model, namely the CHF/EUR, as well as to the prior distribution
specification. Woźniak (2012) estimates two models with truncated-normal priors
with two different variance parameters: 100 and 0.1.

Finally, Figure B.7 proves that the parameter of the degrees of freedom, ν, of
the t-distributed residuals cannot be considered greater than 6. This value lies in
the high posterior probability mass of this parameter. Therefore, the existence of
moments of order 6 and higher of the error term is questionable. In effect, classical
testing of the VARMA-ECCC-GARCH model has limited use in this case. This
statement is justified by the requirement of the existence of sixth-order moments
for the asymptotic normality of the QML estimator (see Ling and McAleer, 2003).

Granger-causality testing results Table 2.3 presents the results of the Granger
noncausality in mean testing. The values of κ(0) and of the estimate of the prob-
ability p0 are reported. B.3 presents plots of the posterior distribution of κ(R) for
each of the hypotheses.

Only a few of the hypotheses of noncausality in mean are rejected at the confi-
dence levels 0.05 or 0.1. All the rejected hypotheses relate to two of the exchange
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Table 2.3: Results of testing: Granger causality hypothesis

H0 : κ(0) p̂0 Figure Ref.

y1
G
� y2|y3 0.294 0.586 B.9.1

y1
G
� y3|y2 0.427 0.522 B.9.2

y2
G
� y1|y3 0.022 0.883 B.9.3

y2
G
� y3|y1 1.226 0.270 B.9.4

y3
G
� y1|y2 5.013 0.023 B.9.5

y3
G
� y2|y1 0.336 0.561 B.9.6

(y1, y2) G
� y3 1.580 0.455 B.10.1

(y1, y3) G
� y2 0.884 0.642 B.10.2

(y2, y3) G
� y1 5.520 0.063 B.10.3

y1
G
� (y2, y3) 0.530 0.765 B.10.4

y2
G
� (y1, y3) 1.252 0.543 B.10.5

y3
G
� (y1, y2) 5.776 0.059 B.10.6

y1
G
� y2|y3 & y2

G
� y1|y3 0.315 0.858 B.11.1

y1
G
� y3|y2 & y3

G
� y1|y2 5.249 0.072 B.11.2

y2
G
� y3|y1 & y3

G
� y2|y1 1.402 0.490 B.11.3

Note: The table presents the considered null hypotheses, H0, of Granger noncausality, as in
Definition 2. The values of function κ associated with the null hypotheses, κ(0), are reported in the
second column. p̂0 is the posterior probability of the condition for not rejecting the null hypothesis,
as defined in (2.28). For a graphical presentation of the posterior densities of κ(R) and the values
κ(0), see the figure references given in the last column. The figures may be found in B.3.
Description of the variables: y1 = CHF/EUR, y2 = GBP/EUR, y3 = USD/EUR.

rates: CHF/EUR and USD/EUR. First, the US dollar has a significant effect on the
Swiss frank, a result established at the level of confidence equal to 0.05. These
two exchange rates impact on each other as well. Further, the US dollar has a
significant effect on the Swiss frank and the British pound taken jointly. Finally,
the frank is significantly affected by both the pound and the dollar, taken jointly.
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Table 2.4: Results of testing: second-order Granger causality hypothesis

H0 : κ(0) p̂0 Figure Ref.

y1
so
� y2|y3 1.521 0.279 B.12.1

y1
so
� y3|y2 3.120 0.221 B.12.2

y2
so
� y1|y3 2.550 0.247 B.12.3

y2
so
� y3|y1 9.811 0.039 B.12.4

y3
so
� y1|y2 2.379 0.231 B.12.5

y3
so
� y2|y1 2.354 0.193 B.12.6

(y1, y2) so
� y3 11.539 0.113 B.13.1

(y1, y3) so
� y2 2.733 0.372 B.13.2

(y2, y3) so
� y1 3.926 0.386 B.13.3

y1
so
� (y2, y3) 3.491 0.246 B.13.4

y2
so
� (y1, y3) 10.714 0.061 B.13.5

y3
so
� (y1, y2) 4.084 0.227 B.13.6

y1
so
� y2|y3 & y2

so
� y1|y3 3.481 0.386 B.14.1

y1
so
� y3|y2 & y3

so
� y1|y2 4.741 0.324 B.14.2

y2
so
� y3|y1 & y3

so
� y2|y1 11.633 0.099 B.14.3

Note: The table presents the considered null hypotheses of second-order Granger causality, as in
Definition 3. For a description of the notation, see the note to Table 2.3.
Description of the variables: y1 = CHF/EUR, y2 = GBP/EUR, y3 = USD/EUR.

All the three last results are established at the level of confidence 0.1.

Consideration of the results of testing the second-order noncausality hypothe-
ses, reported in Table 2.4, brings new findings. The pattern of connections between
the exchange rates is different for second-order causality than for causality in mean.
The rejected hypotheses of second-order noncausality relate to the British pound
and the US dollar. Information about the history of volatility of GBP/EUR has
a significant effect on the current conditional variance of variable USD/EUR at
the level of confidence equal to 0.05. It has also a significant effect on CHF/EUR
and USD/EUR, taken jointly at the level of confidence equal to 0.1. The same
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Table 2.5: Results of testing: Granger causality in variance hypothesis

H0 : κ(0) p̂0 Figure Ref.

y1
V
� y2|y3 1.755 0.502 B.15.1

y1
V
� y3|y2 3.791 0.297 B.15.2

y2
V
� y1|y3 2.591 0.430 B.15.3

y2
V
� y3|y1 11.177 0.040 B.15.4

y3
V
� y1|y2 8.007 0.095 B.15.5

y3
V
� y2|y1 2.795 0.324 B.15.6

(y1, y2) V
� y3 13.412 0.128 B.16.1

(y1, y3) V
� y2 3.728 0.545 B.16.2

(y2, y3) V
� y1 10.350 0.205 B.16.3

y1
V
� (y2, y3) 4.229 0.440 B.16.4

y2
V
� (y1, y3) 12.098 0.083 B.16.5

y3
V
� (y1, y2) 10.599 0.118 B.16.6

y1
V
� y2|y3 & y2

V
� y1|y3 3.826 0.629 B.17.1

y1
V
� y3|y2 & y3

V
� y1|y2 10.900 0.184 B.17.2

y2
V
� y3|y1 & y3

V
� y2|y1 13.310 0.119 B.17.3

Note: The table presents the considered null hypotheses of Granger causality in variance, as in
Definition 4. For a description of the notation, see the note to Table 2.3.
Description of the variables: y1 = CHF/EUR, y2 = GBP/EUR, y3 = USD/EUR.

conclusions are found in Woźniak (2012). This finding is particularly interesting,
as Woźniak uses Bayes factors and Posterior probabilities in order to assess the
hypotheses. These conclusions are, therefore, robust to the choice of the testing
procedure.

The following interpretation of the testing results of second-order noncausality
hypothesis is proposed. The Swiss frank does not have any significant effect on
the volatility of the British pound or the US dollar, which proves its minor role in
modeling volatility in comparison to the other two exchange rates. The impact of
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the pound-to-Euro exchange rate on the volatility of the dollar-to-Euro exchange
rate, is most probably related to the the meteor showers hypothesis of Engle et al.
(1990). The proper conclusion seems to be that the spillovers in volatility are due
to the activity of traders on the exchange rates market. Although the market is
open 24 hours a day, there exist periods of higher activity of trading of particular
currencies. Therefore, the behavior of traders in Europe, reflected in the exchange
rate prices and their volatility, affects the decisions of traders in North America.
Such a pattern can be captured by the dataset and the model considered in this
study.

One more hypothesis is rejected at the confidence level equal to 0.1: the pound is
found to second-order cause the dollar, and the dollar second-order causes pound,
which is mainly driven by parameter B32.

Finally, the results of testing hypotheses of noncausality in variance are re-
ported in Table 2.5. These results are not just a simple intersection of the results for
Granger-causality in mean and second-order noncausality testing, as one could
deduce from equation (2.15). The parameters of the VAR process are not indepen-
dent of the parameters of the GARCH process. The posterior covariance matrix
is not block-diagonal. Therefore, the results of noncausality in variance should
be discussed separately. One of the hypotheses is rejected at the confidence level
equal to 0.05: the hypothesis of noncausality in variance from the British pound to
the US dollar. The other three hypotheses are rejected at the confidence level equal
to 0.1. The following relations are found: the dollar causes the frank in variance;
and the pound causes the frank and the dollar in variance, taken jointly.

2.6 Conclusions

This study first of all proposes the parameter restrictions for second-order non-
causality between two vectors of variables, when there are also other variables
in the considered system used for modeling and forecasting. The derivations are
made within the framework of the popular VARMA-GARCH model. The novelty
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of these conditions is that, contrary to the developments of Comte and Lieberman
(2000) and Woźniak (2012), they allow the finding of restrictions for a hypothesis
of noncausality between chosen variables from the system. The two cited works
use a setting in which all the variables are split into two vectors, which imposes a
kind of a rigidity in forming hypotheses.

The conditions may result in several nonlinear restrictions on the parameters
of the model, which results in a conclusion that the available classical tests have
limited use. As a solution to this testing problem, the Bayesian procedure based on
the posterior distribution of a function summarizing all the restrictions is proposed.
This procedure allows for testing of the hypotheses of Granger noncausality in
mean and second-order noncausality jointly, forming a hypothesis of noncausality
in variance as well as separately. The procedure requires the estimation of only
one model, the unrestricted. Note that the procedure proposed by Woźniak (2012),
based on Bayes factors, required the estimation of several models representing
different hypotheses. Further, the restrictions of the existence of the higher-order
moments of the processes required in the classical tests are relaxed. Similarly to
the test of Woźniak (2012), the existence of fourth-order moments is required in
the proposed analysis, whereas the asymptotic derivations of Ling and McAleer
(2003) require the existence of the sixth-order moments for the VARMA-GARCH
models.

The main limitation of the noncausality analysis in this work, is that the con-
ditions only for one-period-ahead noncausality are presented. In the works of
Comte and Lieberman (2000) and Woźniak (2012), due to the specific setting of the
vectors of variables from the system, these conditions imply noncausality at all
the future horizons. In this work, however, when the third vector of variables, y3,
is non-empty, then the conditions from Theorem 3 are useful only for the analysis
one period ahead.

This limitation forms a motivation for future research that would aim at deriva-
tion of the restrictions for h-period-ahead noncausality within the flexible frame-
work of splitting the variables into three vectors, and where h = 1, 2, 3, . . . . Such
conditions would be informative of the non-direct causality that is, a situation in
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which, despite the fact that one variable does not Granger-cause the other one
period ahead, it may still be causal several periods ahead through the channel of
the third variable (see Dufour et al., 2006).

Another direction of possible research is a derivation of the conditions for
second-order noncausality for GARCH models, when the data have specific fea-
tures. Some financial data are proven to have persistent volatility that is modeled
with integrated GARCH processes. Such processes are defined by the fact that the
polynomial |IN − A(z) − B(z)| = 0 has a unit root. This case is excluded from the
analysis in this study. Further, the analysis of some financial time series conducted
by Diebold and Yilmaz (2009), has proved that the values of financial assets as well
as their volatility spillover at different rates in different periods. This finding might
result in the parameters of the GARCH process changing values over time. Such
nonlinearities may be modeled, e.g. with the GARCH processes with a regime
change, or when the parameters change their values according to a latent hidden
Markov process, as in the Markov-switching models. For such data, the analysis
of Granger causality is of interest as well.
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Appendix B
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B.1 Data

Figure B.1: Data plot: (CHF/EUR, GBP/EUR, USD/EUR)
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The graph presents daily logarithmic rates of return expressed in percentage points: yit = 100(ln xit−
ln xit−1), for i = 1, 2, 3, where xit denotes the level of an asset of three exchange rates: the Swiss
franc, the British pound and the US dollar, all denominated in Euro. The data spans the period
from September 16, 2008 to September 22, 2011, which gives T = 777 observations. The data was
downloaded from the European Central Bank website (http://sdw.ecb.int/browse.do?node=
2018794).
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B.2 Summary of the posterior density simulation

Note: Figures B.2–B.8 present the marginal posterior distribution of the parameters with the

95% and 90% highest posterior density regions represented by light-grey and dark-grey areas

respectively.

Figure B.2: Summary of the posterior distribution: α0
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Figure B.3: Summary of the posterior distribution: α1
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Figure B.4: Summary of the posterior distribution: ω
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Figure B.5: Summary of the posterior distribution: A
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Figure B.6: Summary of the posterior distribution: B
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Figure B.7: Summary of the posterior distribution: ν
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Figure B.8: Summary of the posterior distribution: ρ
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Table B.1: Summary of the posterior distribution simulation

Autocorrelations at

Mean SD lag 1 lag 50 RNE Geweke’s z

Vector Autoregression

α0

α0.1 -0.022 0.011 0.316 -0.012 0.554 -0.475
α0.2 0.014 0.021 0.341 -0.017 0.436 -0.089
α0.3 0.027 0.025 0.335 -0.024 0.355 1.701

α1

α1.11 -0.068 0.037 0.338 0.001 0.429 0.568
α1.21 -0.016 0.030 0.403 0.015 0.303 0.143
α1.31 -0.027 0.041 0.378 -0.007 0.315 -0.658
α1.12 0.003 0.019 0.290 0.002 0.322 1.350
α1.22 0.077 0.040 0.330 -0.012 0.435 0.166
α1.32 0.050 0.045 0.233 0.022 0.511 -0.982
α1.13 0.041 0.018 0.338 -0.008 0.415 -0.467
α1.23 -0.019 0.033 0.371 -0.020 0.284 -2.032
α1.33 0.006 0.041 0.347 0.013 0.404 0.471

GARCH(1,1)

ω
ω1 0.001 0.001 0.677 0.032 0.108 -0.773
ω2 0.011 0.009 0.600 0.023 0.082 -1.154
ω3 0.086 0.059 0.392 0.058 0.145 1.818

A

A11 0.117 0.029 0.460 -0.019 0.186 0.176
A21 0.002 0.002 0.639 0.066 0.058 -1.143
A31 0.018 0.018 0.581 0.042 0.109 0.987
A12 0.002 0.002 0.630 -0.055 0.085 -0.364
A22 0.062 0.024 0.575 0.005 0.134 0.606
A32 0.117 0.062 0.258 -0.001 0.468 -0.074
A13 0.002 0.002 0.533 -0.054 0.173 0.609
A23 0.017 0.011 0.483 0.058 0.121 -1.442
A33 0.051 0.034 0.425 -0.004 0.226 1.117

B

B11 0.873 0.030 0.480 -0.023 0.171 -0.021
B21 0.002 0.003 0.878 0.317 0.020 -0.731
B31 0.031 0.028 0.207 0.031 0.141 1.718
B12 0.001 0.001 0.619 -0.039 0.171 -0.354
B22 0.808 0.158 0.956 0.569 0.015 2.401
B32 0.787 0.215 0.518 -0.006 0.122 -0.438
B13 0.001 0.001 0.575 -0.034 0.277 2.530
B23 0.063 0.098 0.968 0.585 0.015 -2.357
B33 0.164 0.147 0.659 0.056 0.064 -0.885

Degrees of freedom and correlations
ν 6.267 0.743 0.415 0.017 0.447 0.123

C
ρ12 0.145 0.038 0.335 0.036 0.481 1.444
ρ13 0.356 0.035 0.359 -0.021 0.481 2.820
ρ23 0.400 0.034 0.328 -0.006 0.501 0.048

Note: The table reports posterior means and posterior standard deviations of the parameters of the model. Also, autocor-

relations at lag 1 and 50 are given. The relative numerical efficiency coefficient (RNE) was introduced by Geweke (1989).

Geweke’s z scores test the stationarity of the draws from the posterior distribution, comparing the mean of the first 50% of

the draws to the mean of the last 35% of the draws. z scores follow the standard normal distribution (see Geweke, 1992).

The numbers presented in this table were computed using the package coda by Plummer et al. (2006).
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B.3 Graphs summarising testing of the noncausality

hypotheses

Graphs B.9–B.17 present simulated posterior distributions of function κ for different hypotheses.

The shaded areas denote the 95% and 90% highest posterior density regions of the distributions.

For more detailed results, refer to Tables 2.3–2.5. Description of the variables: y1 = CHF/EUR, y2 =

GBP/EUR, y3 = USD/EUR.
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Figure B.9: Results of testing: Granger causality hypotheses I
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Visual representation of results from Table 2.3.
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Figure B.10: Results of testing: Granger causality hypotheses II
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Visual representation of results from Table 2.3.
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Figure B.11: Results of testing: Granger causality hypotheses III

1. H0 : y1
G
� y2|y3 and y2

G
� y1|y3

0 5 10 15

0.
0

0.
1

0.
2

0.
3

2. H0 : y1
G
� y3|y2 and y3

G
� y1|y2

0 5 10 15

0.
0

0.
1

0.
2

0.
3

3. H0 : y2
G
� y3|y1 and y3

G
� y2|y1

0 5 10 15

0.
0

0.
1

0.
2

0.
3

Visual representation of results from Table 2.3.
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Figure B.12: Results of testing: second-order Granger causality hypotheses I
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Visual representation of results from Table 2.4.
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Figure B.13: Results of testing: second-order Granger causality hypotheses II
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Visual representation of results from Table 2.4.

97

Wozniak, Tomasz (2012), Granger-Causal analysis of conditional mean and volatility models 
European University Institute

 
DOI: 10.2870/63858



Figure B.14: Results of testing: second-order Granger causality hypotheses III
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Visual representation of results from Table 2.4.
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Figure B.15: Results of testing: Granger causality in variance hypotheses I
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Visual representation of results from Table 2.5.
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Figure B.16: Results of testing: Granger causality in variance hypotheses II
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Visual representation of results from Table 2.5.
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B.3. GRAPHS SUMMARISING TESTING OF THE NONCAUSALITY HYPOTHESES101

Figure B.17: Results of testing: Granger causality in variance hypotheses III
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Chapter 3

Bayesian Testing of Granger
Causality in Markov Switching VARs

with Matthieu Droumaguet

Abstract. Recent economic developments have shown the importance
of spillover and contagion effects in financial markets as well as in
macroeconomic reality. Such effects are not limited to relations be-
tween the levels of variables but also impact on the volatility and the
distributions. We propose a method of testing restrictions for Granger
noncausality on all these levels in the framework of Markov-switching
Vector Autoregressive Models. The conditions for Granger noncausal-
ity for these models were derived by Warne (2000). Due to the nonlin-
earity of the restrictions, classical tests have limited use. We, therefore,
choose a Bayesian approach to testing. The computational tools for
posterior inference consists of a novel Block Metropolis-Hastings sam-
pling algorithm for estimation of the restricted models, and of standard
methods of computing the Posterior Odds Ratio. The analysis may be
applied to financial and macroeconomic time series with complicated
properties, such as changes of parameter values over time and het-
eroskedasticity.
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110 CHAPTER 3. TESTING NONCAUSALITY IN MS-VAR MODELS

3.1 Introduction

The concept of Granger causality was introduced by Granger (1969) and Sims
(1972). One variable does not Granger-cause some other variable, if past and cur-
rent information about the former cannot improve the forecast of the latter. Note
that this concept refers to the forecasting of variables, in contrast to the causality
concept based on ceteris paribus effects attributed to Rubin (1974) (for the compari-
son of the two concepts used in econometrics, see e.g. Lechner, 2011). Knowledge
of Granger causal relations allows a researcher to formulate an appropriate model
and obtain a good forecast of values of interest. But what is even more important,
a Granger-causal relation, once established, informs us that past observations of
one variable have a significant effect on the forecast value of the other, delivering
crucial information about the relations between economic variables.

The original Granger causality concept refers to forecasts of conditional means.
There are, however, extensions referring to the forecasts of higher-order condi-
tional moments or to distributions. We present and discuss these in Section 3.3.
Again, information that they deliver not only helps in performing good forecasts
of the variables, but is crucial for decision-making in economic and financial ap-
plications as well.

Among the time series models that have been analyzed for Granger causal-
ity of different types are: a family of Vector Autoregressive Moving Average
(VARMA) models (see Boudjellaba et al., 1994, and references therein), the Logis-
tic Smooth Transition Vector Autoregressive (LST-VAR) model (Christopoulos and
León-Ledesma, 2008), some models from the family of Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) models (Comte and Lieberman, 2000;
Woźniak, 2012; Woźniak, 2012). Finally, Warne (2000) derived conditions for dif-
ferent types of Granger noncausality for the Markov-switching VAR models on

and at the 22nd EC2 Conference: Econometrics for Policy Analysis: after the Crisis and Beyond in
Florence in December 2011, as well as during seminars at the Australian National University, the
National Bank of Poland and Deutsche Bundesbank. The authors thank Anders Warne, Joshua
Chan, Peter R. Hansen, Andrzej Kocięcki, Helmut Lütkepohl, Massimiliano Marcellino, Mateusz
Pipień, John Stachurski, Rodney Strachan for their useful comments on the paper.
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which we focus in this study. We present the model and its estimation in Section
3.2, while in Section 3.3 the definitions for different types of noncausality and
restrictions on parameters are given. Note that all these works analyzed one pe-
riod ahead Granger noncausality (see Lütkepohl, 1993; Lütkepohl and Burda, 1997;
Dufour et al., 2006, for h periods ahead inference in VAR models).

The testing of the restrictions meets multiple problems. The most important
limitation in the classical approach is that neither the asymptotic nor finite-sample
distribution of the estimator has been derived so far. Consequently, the asymptotic
distributions of the Wald, Likelihood Ratio and Lagrange Multiplier tests are not
known. Further, the restrictions on the parameters derived by Warne (2000) may
result in several sets of restrictions associated with one hypothesis. Therefore,
a hypothesis of noncausality may be represented by several restricted models.
Finally, some of the restrictions are nonlinear functions of parameters. All these
features of the Granger noncausality analysis for Markov-switching VARs makes
classical testing of hypotheses difficult, if possible at all.

The contribution of this work is a Bayesian testing procedure that allows the
testing of all the restrictions derived by Warne (2000) for different kinds of Granger
noncausality, as well as for the inference on the hidden Markov process. None of
the existing classical solutions to the problem of testing nonlinear restrictions on
parameters that we describe in Section 3.4 is easily applicable to Markov-switching
VAR models. The proposed approach consists of a Bayesian estimation of the
unrestricted model, allowing for Granger causality, and of the restricted models,
where the restrictions represent hypotheses of noncausality. For this purpose, we
construct a novel Block Metropolis-Hastings sampling algorithm that allows for
restricting the models. The algorithm is discussed in Section 3.4 and presented
in Section 3.5. Having estimated the models, we compare competing hypotheses,
represented by the unrestricted and the restricted models, with standard Bayesian
methods using Posterior Odds Ratios and Bayes factors.

The main advantage of our approach is that we can test the nonlinear re-
strictions. The restrictions of all the considered types of noncausality may be
tested. Thus, the analysis of causal relations between variables is profound and
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112 CHAPTER 3. TESTING NONCAUSALITY IN MS-VAR MODELS

potentially informative. Other advantages include an effect of adopting Bayesian
inference. First, the Posterior Odds Ratio method gives arguments in favour of
the hypotheses, as posterior probabilities of the competing hypotheses are com-
pared. In consequence, all the hypotheses are treated symmetrically. Finally, our
estimation procedure combines and improves the existing algorithms restricting
the models, but it also preserves the possibility of using different methods for
computing the marginal density of data necessary to compute the Posterior Odds
Ratio. We discuss further the benefits and costs of our approach at the end of
Section 3.4.

As potential applications of the testing procedure, we indicate macroeconomic
as well as financial time series. In particular, recent financial turmoil and the
following global recession are interesting periods for analysis. There exist many
applied studies presenting evidence that these events have the nature of switching
the regime. Taylor and Williams (2009), on the example of Libor-OIS and Libor-
Repo spreads, being an approximation for counterpart risk, present how different
the perception of the risk by agents on the financial market was, first, starting from
August 2007 and then, even more, from October 2008. Further, Diebold and Yilmaz
(2009) show how different behaviors characterize return spillovers and volatility
spillovers for stock exchange markets. These two studies clearly indicate that the
financial data should be analyzed in terms of Granger causality with a model that
allows for changes in regimes, such as a Markov-switching model.

For macroeconomic time series, the motivation for using Markov-switching
models comes mainly from the business cycle analysis, as in Hamilton (1989). It
is important to know whether variables have different impacts on other variables
during the expansion and recession periods. Still, allowing for higher number of
states than two may allow a more detailed analysis of the interactions between
variables within the cycles. For example, Psaradakis et al. (2005) used the Markov-
switching VAR models to analyze, the so called temporary Granger causality
within the Money-Output system. They condition their causality analysis on
realizations of the Hidden-Markov process. They proposed a restricted MS-VAR
specification that assumed four states of the economy: 1. both variables cause

Wozniak, Tomasz (2012), Granger-Causal analysis of conditional mean and volatility models 
European University Institute

 
DOI: 10.2870/63858



3.2. MS-VAR MODEL 113

each other; 2. money does not cause output; 3. output does not cause money;
4. none of the variables causes another. Our approach consists of choosing a
Markov-switching VAR model specification which is best supported by the data,
and then restricting it according to the restrictions derived by Warne (2000). This
approach takes into account the two sources of relations between the variables:
first, having a source in linear relations modeled with the VAR model, and second,
taking into consideration the fact that all of the variables are used to forecast the
future probabilities of the states. In the setting analyzed by Warne (2000) Granger
noncausality is not conditioned on the past realizations of the hidden Markov
process.

The remaining part of the paper is organized as follows. In Section 3.2 we
present the model and the Bayesian estimation of the unrestricted model. The
definitions for Granger noncausality, noncausality in variance and noncausality in
distribution are presented in Section 3.3, together with parameter restrictions rep-
resenting them. Section 3.4 presents discussion and critique of classical methods
of testing restrictions for Granger noncausality in different multivariate models.
The discussion is followed by a proposal of solution of the testing problem. First,
the computation of the Posterior Odds Ratio is shown, and then the algorithm for
estimating the restricted models is discussed. It is described in detail in Section
3.5. Section 3.6 gives empirical illustration of the methodology, using the example
of the money-income system of variables in the USA. The data support the hy-
pothesis of Granger noncausality (in mean) from money to income, as well as the
hypotheses of causality in variance and distribution. Section 3.7 concludes.

3.2 A Markov-Switching Vector Autoregressive Model

Model Let y = (y1, . . . , yT)′ denote a time series of T observations, where each yt is
a N-variate vector for t ∈ {1, . . . ,T}, taking values in a sampling space Y ⊂ RN. y is
a realization of a stochastic process {Yt}Tt=1. We consider a class of parametric finite
Markov mixture distribution models in which the stochastic process Yt depends
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on the realizations, st, of a hidden discrete stochastic process St with finite state
space {1, . . . ,M}. Such a class of models has been introduced in time series analysis
by Hamilton (1989). Conditioned on the state, st, and realizations of y up to time
t − 1, yt−1, yt follows an independent identical normal distribution. A conditional
mean process is a Vector Autoregression (VAR) model in which an intercept, μst ,
as well as lag polynomial matrices, A(i)

st , for i = 1, . . . , p, and covariance matrices,
Σst , depend on the state st = 1, . . . ,M.

yt = μst +

p∑
i=1

A(i)
st yt−i + εt, (3.1)

εt ∼ i.i.N(0,Σst), (3.2)

for t = 1, . . . ,T. We set the vector of initial values y0 = (yp−1, . . . , y0)′ to the first p
observations of the available data.

St is assumed to be an irreducible aperiodic Markov chain starting from its
ergodic distribution π = (π1, . . . , πM), such that Pr(S0 = i|P) = πi. Its properties are
sufficiently described by the (M ×M) transition probabilities matrix:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 . . . p1M

p21 p22 . . . p2M
...

...
. . .

...

pM1 pM2 . . . pMM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

in which an element, pij, denotes the probability of transition from state i to state
j, pij = Pr(st+1 = j|st = i). All the transition probabilities are positive, pij > 0, for all
i, j ∈ {1, . . . ,M}, and the elements of each row of matrix P sum to one,

∑M
j=1 pij = 1.

Such a formulation of the model is called, according to the taxonomy of Krolzig
(1997), MSIAH-VAR(p). Conditioned on the state st, it models a current vector of
observations, yt, with an intercept, μst , and a linear function of its lagged values
up to p periods backwards. The linear relation is captured by matrices of the
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lag polynomial A(i)
st , for i = 1, . . . , p. The parameters of the VAR process, as well

as the covariance matrix Σst , change with time, t, according to discrete valued
hidden Markov process, st. These changes in parameter values introduce nonlinear
relationships between variables. Consequently, the inference about interactions
between variables must consider the linear and nonlinear relations; this is the
subject of the analysis in Section 3.3.

Complete-data likelihood function Let θ ∈ Θ ⊂ Rk be a vector of size k, collect-
ing parameters of the transition probabilities matrix P and all the state-dependent
parameters of the VAR process, θst : μst , A(i)

st , Σst , for st = 1, . . . ,M and i = 1, . . . , p.
As stated by Frühwirth-Schnatter (2006), the complete-data likelihood function is
equal to the joint sampling distribution p(S,y|θ) for the complete data (S, y) given
θ, where S = (s1, . . . , sT)′. This distribution is now considered to be a function of
θ for the purpose of estimating the unknown parameter vector θ. It is further
decomposed into a product of a conditional distribution of y given S and θ, and a
conditional distribution of S given θ:

p(S, y|θ) = p(y|S, θ)p(S|θ). (3.3)

The former is assumed to be a conditional normal distribution function of εt, for
t = 1, . . . ,T, given the states, st, with the mean equal to a vector of zeros and Σst as
the covariance matrix:

p(y|S, θ) =
T∏

t=1

p(yt|S, yt−1, θ) =
T∏

t=1

(2π)−K/2|Σst |−1/2 exp
{
−1

2
ε
′
tΣ
−1
st
εt

}
. (3.4)

The form of the latter comes from the assumptions about the Markov process and
is given by:

p(S|θ) = p(s0|P)
M∏

i=1

M∏
j=1

pNij(S)
i j , (3.5)
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where Nij(S) = #{st−1 = j, st = i} is a number of transitions from state i to state j,
∀i, j ∈ {1, . . . ,M}.

A convenient form of the complete-data likelihood function (3.3) results from
representing it as a product of M + 1 factors. The first M factors depend on the
state-specific parameters, θst , and the remaining one depends on the transition
probabilities matrix, P:

p(y,S|θ) =
M∏

i=1

⎛⎜⎜⎜⎜⎜⎝
∏
t:st=i

p(yt|yt−1, θi)

⎞⎟⎟⎟⎟⎟⎠
M∏

i=1

M∏
j=1

pNij(S)
i j p(s0|P). (3.6)

Classical estimation of the model consists of the maximization of the likelihood
function with e.g. the EM algorithm (see Krolzig, 1997; Kim and Nelson, 1999b).
For the purpose of testing Granger-causal relations between variables, we propose,
however, the Bayesian inference, which is based on the posterior distribution of the
model parameters θ. (For details of a standard Bayesian estimation and inference
on Markov-switching models, the reader is referred to Frühwirth-Schnatter, 2006).
The complete-data posterior distribution is proportional to the product of the
complete-data likelihood function (3.6) and the prior distribution:

p(θ|y,S) ∝ p(y,S|θ)p(θ). (3.7)

Prior distribution The convenient factorization of the likelihood function (3.6)
is maintained by the choice of the prior distribution in the following form:

p(θ) =
M∏

i=1

p(θi)p(Pi·). (3.8)

The independence of the prior distribution of the state-specific parameters for
each state and the transition probabilities matrix is assumed. This allows the
possibility to incorporate prior knowledge of the researcher about the state-specific
parameters of the model, θst , separately for each state.

For the unrestricted MSIAH-VAR(p) model, we assume the following prior
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specification. Each row of the transition probabilities matrix, P, a priori follows
an M variate Dirichlet distribution, with parameters set to 1 for all the transition
probabilities except the diagonal elements Pii, for i = 1, . . . ,M, for which it is set to
10. Therefore, we assume that the states of an economy are persistent over time (see
e.g. Kim and Nelson, 1999a). Further, the state-dependent parameters of the VAR
process are collected in vectors βst = (μ′st

,vec(A(1)
st )′, . . . ,vec(A(p)

st )′)′, for st = 1, . . . ,M.
These parameters follow a (N+pN2)-variate Normal distribution, with mean equal
to a vector of zeros and a diagonal covariance matrix with 100s on the diagonal.
Note that the means of the prior distribution for the off-diagonal elements of
matrices Ast are set to zero. If we condition our analysis on the states, this would
mean that we assume a priori the Granger noncausality hypothesis. However,
in Section 3.3 we show that, when the states are unknown, the inference about
Granger noncausality involves many other parameters of the model. Moreover,
huge values of the variances of the prior distribution are assumed. Consequently,
no values from the interior of the parameters space are, in fact, discriminated a
priori.

We model the state-dependent covariance matrices of the MSIAH-VAR process,
decomposing each to a N × 1 vector of standard deviations, σst , and a N × N
correlation matrix, Rst , according to the decomposition:

Σst = diag(σst)Rstdiag(σst).

Modeling covariance matrices using such a decomposition was proposed in Bayesian
inference by Barnard et al. (2000). We adapt this approach to Markov-switching
models, since the algorithm easily enables the imposing of restrictions on the
covariance matrix (see the details of the Gibbs sampling algorithm for the un-
restricted and the restricted models in Section 3.5). We model the unrestricted
model in the same manner, because we want to keep the prior distributions for the
unrestricted and the restricted models comparable. Thus, each standard deviation
σst. j for st = 1, . . . ,M and j = 1, . . . ,N, follows a log-Normal distribution, with a
mean parameter equal to 0 and the standard deviation parameter set to 2.
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Finally, we assume that the prior distributions of each of correlation coefficient
Rst. jk is uniformly-distributed at interval (a, b). The bounds a and b are set such that
sampling individual correlations one by one results in positive definite correlation
matrix, Rst . For the implications of such a prior specification for the matrix of
correlations and for the algorithm for setting values a and b the reader is referred
to the original paper of Barnard et al. (2000).

To summarize, the prior specification (3.8) now takes the detailed form of:

p(θ) =
M∏

i=1

p(Pi)p(βi)p(Ri)

⎛⎜⎜⎜⎜⎜⎜⎝
N∏

j=1

p(σi. j)

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.9)

where each of the prior distributions is as assumed:

Pi· ∼ DM(ı′M + 9IM.i·)

βi ∼ N(0, 100IN+pN2)

σi. j ∼ logN(0, 2)

Ri. jk ∼ U (a, b)

for i = 1, . . . ,M and j, k = 1, . . . ,N, where ıM is a M × 1 vector of ones and IM.i· is ith

row of an identity matrix IM.

Posterior distribution The structure of the likelihood function (3.6) and the prior
distribution (3.9) have an effect on the form of the posterior distribution that
is proportional to the product of the two densities. The form of the posterior
distribution (3.7), resulting from the assumed specification, is as follows:

p(θ|y,S) ∝
M∏

i=1

p(θi|y,S)p(P|y,S). (3.10)

Wozniak, Tomasz (2012), Granger-Causal analysis of conditional mean and volatility models 
European University Institute

 
DOI: 10.2870/63858
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It is now easily decomposed into a posterior density of the transition probabilities
matrix:

p(P|S) ∝ p(s0|P)
M∏

i=1

M∏
j=1

pNij(S)
i j p(P), (3.11)

and the posterior density of the state-dependent parameters:

p(θi|y,S) ∝
∏
t:St=i

p(yt|θi, yt−1, )p(θi). (3.12)

Since the form of the posterior density for all the parameters is not standard,
the commonly used strategy is to simulate the posterior distribution with nu-
merical methods. A Monte Carlo Markov Chain (MCMC) algorithm, the Gibbs
sampler (see Casella and George, 1992, and references therein), enables us to
simulate the joint posterior distribution of all the parameters of the model by
sampling from the full conditional distributions. Such an algorithm has also been
adapted to Markov-switching models by Albert and Chib (1993) and McCulloch
and Tsay (1994). However, the model specification considered in this study results
in full conditional distributions that are not in a form of any standard distribution
functions. Therefore, the algorithm that samples from such full conditional distri-
butions belongs to a broader class of Block Metropolis-Hastings algorithms. The
algorithm is presented in detail in Section 3.5.

3.3 Granger Causality - Following Warne (2000)

Notation Let {yt : t ∈ Z} be a N × 1 multivariate square integrable stochastic
process on the integers Z. Write:

yt = (y
′
1t, y

′
2t, y

′
3t, y

′
4t)
′
, (3.13)

for t = 1, . . . ,T, where yit is a Ni × 1 vector such that y1t = (y1t, . . . , yN1.t)
′ , y2t =

(yN1+1.t, . . . , yN1+N2.t)
′ , y3t = (yN1+N2+1.t, . . . , yN1+N2+N3.t)

′ , and y4t = (yN1+N2+N3+1.t, . . . , yN1+N2+N3+N4.t)
′

(N1,N4 ≥ 1,N2,N3 ≥ 0 and N1 + N2 + N3 + N4 = N). Variables of interest are con-
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tained in vectors y1 and y4, between which we want to study causal relations.
Vectors y2 and y3 (that for N2 = 0 and N3 = 0 are empty) contain auxiliary vari-
ables that are also used for forecasting and modeling purposes. Finally, define
two vectors: first (N1 + N2)-dimensional, v1t = (y′1t, y

′
2t)
′, and second (N3 + N4)-

dimensional, v2t = (y′3t, y
′
4t)
′, such that:

yt =

⎡⎢⎢⎢⎢⎣v1t

v2t

⎤⎥⎥⎥⎥⎦ .

Suppose that there exists a proper probability density function ft(yt+1|yt;θ) for
each t ∈ {1, 2, . . . ,T}. Suppose that the conditional mean E[yt+1|yt] is finite and that
the conditional covariance matrix:

E
[
(yt+1 − E[yt+1|yt])(yt+1 − E[yt+1|yt])′|yt

]

positive definite for all finite t. Further, let ut+1 denote 1-step ahead forecast
error for yt+1, conditional on yt when the predictor is given by the conditional
expectations, i.e.:

ut+1 = yt+1 − E[yt+1|yt]. (3.14)

By construction, ut+1 has conditional mean zero and positive-definite conditional
covariance matrix. And let ũt+1 = yt+1 − E[yt+1|v1t, y3t] be 1-step ahead forecast
error for yt+1, conditional on v1t and y3t with analogous properties.

Definitions We focus on the Granger-causal relations between variables y1 and
y4. The first definition of Granger causality, originally given by Granger (1969),
states simply that y4 is not causal for y1 when the past and current information
about, y4.t cannot improve mean square forecast error of y1.t+1.

Definition 5. y4 does not Granger-cause y1, denoted by y4
G
� y1, if and only if:

E
[
u2

t+1

]
= E

[
ũ2

t+1

]
< ∞ ∀t = 1, . . . ,T. (3.15)
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This definition refers to the conditional mean process, and holds if and only
if the two means conditioned on the full set of variables, yt, and on the restricted
set, (v1t, y3t), are the same (see Boudjellaba et al., 1992). It is argued, however,
that this definition cannot give a full insight into relations between variables
under changing economic circumstances: if the series is heteroskedastic, then it
is useful to refer to a different concept of causality, namely Granger causality in
variance, introduced by Robins et al. (1986). It states the noncausality condition for
conditional second-order moments of the series. Note that this definition states
noncausality in conditional covariance as well as in conditional mean processes.
Therefore, this condition is stricter than (3.15).

Definition 6. y4 does not Granger-cause in variance y1, denoted by y4
V
� y1, if and

only if:
E
[
u2

t+1|yt

]
= E

[
ũ2

t+1|v1t, y3t

]
< ∞ ∀t. (3.16)

Finally, we define the third concept of Granger noncausality, Granger noncausal-
ity in distribution.

Definition 7. y4 does not Granger-cause in distribution y1, denoted by y4
D
� y1, if

and only if:
gt+1

(
u2

t+1|yt, θ
)
= ht+1

(
ũ2

t+1|v1t, y3t, θ
)
∀t, (3.17)

where gt+1 and ht+1 are probability distribution functions with properties as for
ft+1.

All the definitions are given in the form following Warne (2000). Note that the
definition of Granger noncausality in variance (3.16) is stricter than the definition
of Granger noncausality (3.15); Granger noncausality in variance implies Granger
noncausality. The definition of Granger noncausality in distribution (3.17) is de-
fined for conditional distributions. It applies also to these distributions that have
their moments undefined. All three definitions are, however, identical in linear
Gaussian models.

Comte and Lieberman (2000) introduce a new definition of second-order Granger
noncausality and distinguish it from Granger noncausality in variance of Robins et al.
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(1986). For the second-order noncausality, if there exists Granger causality (in
mean), then it needs to be modeled and filtered out; only then may the causal
relations in conditional second moments be established. The definition of non-
causality in variance assumes Granger noncausality (in mean) and second-order
noncausality, and therefore is stricter than second-order noncausality. In effect,
once Granger noncausality is established, the two definitions, noncausality in vari-
ance and second-order noncausality, are equivalent. The consequences of testing
these different concepts are presented in Woźniak (2012).

MSIAH-VARs for Granger causality testing We now present the parameter
restrictions for different definitions of Granger noncausality for Markov-switching
vector autoregressions. Before that, however, we introduce the more convenient
formulation of the model specified in Section 3.2. Firstly, we use the decomposition
of the vector of observations into two sub-vectors, yt = (v′1t, v

′
2t)
′, and appropriate

decomposition of the parameter matrices, μst , A(l)
st , and vector of residuals, εt,

which has covariance matrix specified in (3.19). Also, the hidden Markov process
is decomposed for the purpose of setting the Granger causality relations into
two sub-processes, st = (s1t, s2t). The sub-processes have M1 and M2 states that
are characterized by transition probability matrices, P(1) and P(2) (and ergodic
probabilities, π(1) and π(2)) respectively, such that M =M1 ·M2. The construction of
the transition probabilities matrix, P, is not specified for the moment and will be
the subject of further analysis. Parameters of the equation for v1t change in time
with the Markov process s1t, whereas the parameters of the equation for v2t change
with process s2t:

⎡⎢⎢⎢⎢⎣v1t

v2t

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣μ1.s1t

μ2.s2t

⎤⎥⎥⎥⎥⎦ +
p∑

i=1

⎡⎢⎢⎢⎢⎣A
(i)
11.s1t

A(i)
12.s1t

A(i)
21.s2t

A(i)
22.s2t

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣v1t−i

v2t−i

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣ε1t

ε2t

⎤⎥⎥⎥⎥⎦ . (3.18)
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The residual term in (3.18) has zero conditional mean and conditional covariance
matrix decomposed into sub-matrices as on the left-hand side of (3.19):

Var

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣ε1t

ε2t

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎣Σ11.s1t Σ
′
21.st

Σ21.st Σ22.s2t

⎤⎥⎥⎥⎥⎦ , Var

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1t

ε2t

ε3t

ε4t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11.s1t Ω
′
21.st

Ω′31.st
Ω′41.st

Ω21.st Ω22.s1t Ω
′
32.st

Ω′42.st

Ω31.st Ω32.st Ω33.s2t Ω
′
43.st

Ω41.st Ω42.st Ω43.st Ω44.s2t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.19)
where covariance matrices may be decomposed respectively into:

Σi j.st = diag(σi.st)Ri j.stdiag(σ j.st), Ωi j.st = diag(ωi.st)Rij.stdiag(ω j.st). (3.20)

We further decompose vectors of observations, v1t = (y′1t, y
′
2t)
′ and v2t = (y′3t, y

′
4t)
′ ,

matrices of model parameters with the covariance matrix of the residual term
specified on the right-hand side of (3.19). The decomposition of the Markov
process is maintained, as in (3.18):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1t

y2t

y3t

y4t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1.s1t

m2.s1t

m3.s2t

m4.s2t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

p∑
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(i)
11.s1t

a(i)
12.s1t

a(i)
13.s1t

a(i)
14.s1t

a(i)
21.s1t

a(i)
22.s1t

a(i)
23.s1t

a(i)
24.s1t

a(i)
31.s2t

a(i)
32.s2t

a(i)
33.s2t

a(i)
34.s2t

a(i)
41.s2t

a(i)
42.s2t

a(i)
43.s2t

a(i)
44.s2t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1t−i

y2t−i

y3t−i

y4t−i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1t

ε2t

ε3t

ε4t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.21)

Parameter restrictions The parameter restrictions for Markov-switching vector
autoregressions for the three definitions of Granger noncausality presented in this
section have been derived by Warne (2000). Firstly, we present the restrictions that
are specific for the Markov-switching models. The Restriction 1 states the relations
between the two Markov processes , s1t and s2t.

Restriction 1. The regime forecast of s1.t+1 is independent, and there is no infor-
mation in v2t for predicting s1.t+1, i.e.:

Pr
[
(s1.t+1, s2.t+1) = ( j1, j2)|yt, θ

]
= Pr

[
s1.t+1 = j1|v1t, θ

] · Pr
[
s2.t+1 = j2|v2t, θ

]
,
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for all j1 = 1, . . . ,M1 with M1 ≥ 2, j2 = 1, . . . ,M2 and t = 1, . . . ,T, if and only if
either:

(A1): (i) P = (P(1) ⊗ P(2)),

(ii) μi.st = μi.si.t ,

(iii) A(k)
i j.st
= A(k)

i j.si.t
,

(iv) Σii.st = Σii.si.t and

(v) Σ12.st = 0

for all i, j ∈ {1, 2}, k ∈ {1, . . . , p} and s1.t ∈ {1, . . . , q1}, and

(vi) A(k)
12.s1.t
= 0 for all k ∈ {1, . . . , p} and s1.t ∈ {1, . . . , q1}; or

(A2): P = (ıM1π
(1)′ ⊗ P(2)),

is satisfied.

Note that if we change the restriction (A1)(vi) into A(k)
21.s1.t

= 0, then there is no
information in v1t for predicting s2.t+1.

Restriction (A1)(i) gives the condition for independence of the transition prob-
abilities. Restrictions (A1)(ii)-(A1)(iv) state simply that the parameters of the
equation for v1t change only according to the process s1t, and the parameters of the
equation for v2t change only according to the process s2t. Consequently, the de-
composition of the hidden Markov process st into two independent subprocesses
(s1t, s2t) is fully respected. Further, restriction (A1)(v) states the instantaneous
noncausality between the two vectors of variables, v1t and v2t, defined as zero
correlation condition. Finally, restriction (A1)(vi) states the Granger noncausal-
ity condition for the VAR process. According to condition (A2), all the states of
process s1t have the same probability of appearance for all t equal to the ergodic
probability, π(1), which is a condition for s1t to be an independent hidden Markov
chain.

Before we go on to the conditions for different types of Granger noncausality,
we define the conditional expected values of the parameters of the VAR process
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for one period ahead forecast:

m̄1t ≡ E
[
m1.st+1 |yt, θ

]
, (3.22a)

ā(k)
1rt ≡ E

[
a(k)

1r.st+1
|yt, θ

]
, (3.22b)

for all r = 1, . . . ,N and k = 1, . . . , p. These parameters are used for forecasting
of variable y1.t+1 (see equation (16) of Warne, 2000), as well as for the purpose of
setting noncausality conditions. Restriction 2 states the conditions for Granger
noncausality.

Restriction 2. y4 does not Granger-cause y1 if and only if either:

(A1) or

(A3): (i)
∑M

j=1 m1. jpij = m̄1,

(ii)
∑M

j=1 a(k)
1r. jpij = ā(k)

1r , and

(iii) ā(k)
14 = 0

for all i ∈ {1, . . . ,M}, r ∈ {1, . . . ,N}, and k ∈ {1, . . . , p},
is satisfied.

Contrary to conditions (A1) and (A2), the condition (A3) is not linear in param-
eters. Still, conditions (A3)(i) and (A3)(ii) have equivalent form,

∑M
j=1 m1, j(pij−pkj) =

0 for i, k = 1, . . . ,M and i � k, which for some special cases may give restrictions
linear in parameters. The condition (A3)(iii) does not have such a form and thus
stays nonlinear. Further, in Section 3.4 we discuss consequences of the nonlinear-
ity of the restrictions for testing them. Restriction 3 for noncausality in variance
contains highly nonlinear conditions as well.

Restriction 3. y4 does not Granger-cause in variance y1 if and only if either:

(A1) or

(A4): (i) (A2),
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(ii)
∑M

j=1

[
(m1. j − m̄1) ⊗ (m1. j − m̄1)

]
pij = ςm,

(iii)
∑M

j=1

[
(a(k)

1r. j − ā(k)
1r ) ⊗ (a(l)

1s. j − ā(l)
1s)

]
pij = ς

(k.l)
r.s ,

(iv)
∑M

j=1

[
(m1. j − m̄1) ⊗ (a(k)

1r. j − ā(k)
1r )

]
pi. j = ς

(k)
μ.r,

(v)
∑M

j=1 σ1. jpij = ςσ, and

(vi) a(k)
14. j = 0 ,

for all i, j ∈ {1, . . . ,M}, r, s ∈ {1, 2, 3}, and k, l ∈ {1, . . . , p},

is satisfied.

In condition (A4), ςm, ς(k.l)
r.s , ς(k)

μ.r and ςσ, are time-invariant covariance matrices
of the conditional expected value of the one period ahead forecast of the state-
dependent parameters (see Warne, 2000, for the exact definition). Some of these
restrictions may be simplified using the algebraically equivalent form:

∑M
j=1(m1. j ⊗

m1. j)pij = ςm + (m̄1 ⊗ m̄1).

Finally, we present Restriction 4, which states the conditions for noncausality
in distribution.

Restriction 4. y4 does not Granger-cause in distribution y1 if and only if either:

(A1) or

(A5): (i) (A2)

(ii) m1. j = m1. j1 ,

(iii) a(k)
1r. j = a(k)

1r. j1
,

(iv) a(k)
14. j = 0, and

(v) σ1. j = σ1. j1

for all j ∈ {1, . . . ,M}, r ∈ {1, 2, 3}, and k ∈ {1, . . . , p}

is satisfied.
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All the Restrictions 4 are linear in parameters and can be easily tested. Con-
ditions (A5)(ii)–(A5)(v) state simply that the parameters of the equation for y1t

cannot vary in time according to process s1t , but should instead be s1t-invariant.
Warne (2000) sets additional and simplified forms of restrictions (A3)–(A5),

given the condition (A2) and that rank(P(2)) =M2. We present these in C.1.

3.4 Bayesian Testing

Restrictions 1–4 can be tested. We first consider classical tests and their limitations
and then present the Bayesian testing procedure as a solution. The obstacles in
using classical tests are threefold:

• The asymptotic distribution of the parameters of the MS-VAR is unknown;

• The conditions for noncausality may result in several sets of restrictions on
parameters. Consequently, one hypothesis may be represented by several
restricted models;

• Some of the restrictions are in the form of nonlinear functions of parameters
of the model.

The proposed solution consists of a new Block Metropolis-Hastings sampling
algorithm for the estimation of the restricted models, and of the application of a
standard Bayesian test to compare the restricted models to the unrestricted one.

Classical testing In the general case, all the mentioned problems with classical
testing are difficult to cope with. While, the lack of the asymptotic distribution
of the parameters could be solved using simulation methods, the problem of
testing a hypothesis represented by several restricted models seems unsolvable
with existing classical methods.

The problem of the nonlinearity of the restrictions, however, is well known in
the studies on testing parameter conditions for Granger noncausality in multivari-
ate models. In the general case, nonlinear restrictions on parameters of the model
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may result in the matrix of partial derivatives of the restrictions with respect to
the parameters not having a full rank. Consequently, the asymptotic distribution
of test statistic is not known.

This problem was met in several studies on Granger noncausality testing in time
series models. Boudjellaba et al. (1992) derive conditions for Granger noncausal-
ity for VARMA models that result in multiple nonlinear restrictions on original
parameters of the model. As a solution to the problem of testing the restrictions,
they propose a sequential testing procedure. There are two main drawbacks of this
method. First, despite properly performed procedure, the test may still appear
inconclusive, and second, the confidence level is given in the form of inequali-
ties. The problem of testing non-linear restrictions was examined for h-periods
ahead Granger causality for VAR models. Dufour et al. (2006) propose the solution
based on formulating a new model for each h, and obtain linear restrictions on
the parameters on the model. These restrictions can be easily tested with stan-
dard tests. In another work by Dufour (1989) the approach is based on the linear
regression theory; its solutions would require separate proofs in order to apply
it to Markov-switching VARs. Finally, Lütkepohl and Burda (1997) propose a so-
lution for testing nonlinear hypotheses based on a modification of the Wald test
statistic. Given the asymptotic normality of the estimator of the parameters, the
method uses a modification that, together with standard asymptotic derivations,
overcomes the singularity problem.

Finally, the problem of testing the nonlinear restrictions was faced by Warne
(2000), who derives the restrictions for Granger noncausality, noncausality in vari-
ance and noncausality in distribution for Markov-switching VAR models. Among
the solutions reviewed in this Section, only that proposed by Lütkepohl and Burda
(1997) seems applicable to this particular problem. This finding should, however,
be followed with further studies proving its applicability.

Bayesian testing In this study we propose a method of solving the problems of
testing the parameter restrictions based on Bayesian inference. This approach to
testing the noncausality conditions was used by Woźniak (2012, 2012). Both of the
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papers work on the Extended CCC-GARCH model of Jeantheau (1998). Two other
works use the Bayesian approach to make inference about a concept somehow
related to Granger noncausality, namely exogeneity. Jarociński and Maćkowak
(2011) use Savage-Dickey’s Ratio to test block-exonegeneity in the VAR model,
while Pajor (2011) uses Bayes factors to assess exogeneity conditions for models
with latent variables, and in particular in multivariate Stochastic Volatility models.

In order to compare the unrestricted model, denoted byMi, and the restricted
model,M j and = j � i, we use the Posterior Odds Ratio (POR), which is a ratio of
the posterior probabilities, Pr(M|y), attached to each of these models representing
the hypotheses:

POR =
Pr(Mi|y)
Pr(M j|y)

=
p(y|Mi)
p(y|M j)

Pr(Mi)
Pr(M j)

, (3.23)

where p(y|M) is the marginal density of data and Pr(M) is the prior probability
of a model. In order to compare two competing models, one might also consider
using Bayes factors, defined by:

Bi j =
p(y|Mi)
p(y|M j)

. (3.24)

Note that if one chooses not to discriminate any of the models a priori, setting
equal prior probabilities for both of the models (Pr(Mi)/Pr(M j) = 1), the Posterior
Odds Ratio is then equal to a Bayes factor. This method of testing does not have
any of the drawbacks of the Likelihood Ratio test, once samples of draws from
the posterior distributions of parameters for both the models are available (see
Geweke, 1995; Kass and Raftery, 1995).

In this work, in order to asses the credibility of the hypotheses, each of which is
represented by several sets of restrictions – and thus several models – we compute
Posterior Odds Ratios. The results of this analysis are reported in Table 3.6 in
Section 3.6. Suppose that a hypothesis is represented by several models. Let Hi

denote the set of indicators of the models that represent this hypothesis, Hi =

{ j : M j represents ith hypothesis}. For instance, in our example, the hypothesis
of Granger noncausality in mean is represented by four models, such that H2 =

Wozniak, Tomasz (2012), Granger-Causal analysis of conditional mean and volatility models 
European University Institute

 
DOI: 10.2870/63858



130 CHAPTER 3. TESTING NONCAUSALITY IN MS-VAR MODELS

{1, 2, 4, 5}. Further, suppose that one is interested in comparing the posterior
probability of this hypothesis to the hypothesisH0, represented by the unrestricted
modelM0. Then the credibility of the hypothesisHi compared to the hypothesis
H0 may be assessed with the Posterior Odds Ratio given by:

POR =
Pr(Hi|y)
Pr(H0|y)

=

∑
j∈Hi

Pr(y|M j)Pr(M j)

Pr(y|M0)Pr(M0)
. (3.25)

We set equal prior probabilities for all the models, which has the effect that none
of the models is preferred a priori.

Testing the noncausality restrictions in MS-VARs Taking into account the com-
plicated structure of the restrictions, we choose Posterior Odds Ratio (3.23) to
assess the hypotheses. The crucial element of this method the is computation of
marginal data densities, p(y|M), for the unrestricted and the restricted models.
There are several available methods of computing this value. In this study we
choose the Modified Harmonic Mean (MHM) method of Geweke (1999). For a
chosen model, given the sample of draws, {θ(i)}Si=1, from the posterior distribution
of the parameters, p(θ|y,M), the marginal density of data is computed using:

p(y|M) =

⎛⎜⎜⎜⎜⎜⎝S−1
S∑

i=1

h(θ(i))
L(y;θ(i),M)p(θ(i)|M)

⎞⎟⎟⎟⎟⎟⎠
−1

, (3.26)

where L(y;θ(i),M) is a likelihood function od model M. h(θ(i)), as specified in
Geweke (1999), is a k-variate truncated normal distribution with mean parameter
equal to the posterior mean and covariance matrix set to the posterior covariance
matrix of θ. The truncation must be such that h(θ) had thinner tails than the
posterior distribution.

Other methods of computing the marginal density of data may also be em-
ployed. Several estimators were derived, taking into account the characteris-
tics of Markov-switching models. The reader is referred to the original papers
by Frühwirth-Schnatter (2004), Sims et al. (2008) and Chib and Jeliazkov (2001).
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Moreover, Frühwirth-Schnatter (2004) rises the problem of the bias of the estima-
tors when the label permutation mechanism is missing in the algorithm sampling
from the posterior distribution of the parameters. The bias appears to be due to
the invariance of the likelihood function and the prior distribution of the param-
eters, with respect to permutations of the regimes’ labels. Then the model is not
globally identified. The identification can be insured by the ordering restrictions
on parameters, and can also be implemented within the Gibbs sampler. Simply,
it is sufficient that the values taken by one of the parameters of the model in
different regimes can be ordered, and that the ordering holds for all the draws
from the Gibbs algorithm to assure global identification (see Frühwirth-Schnatter,
2004). We assure that this is the case, i.e. that the MS-VAR models considered
for causality inference are globally identified by the ordering imposed on some
parameter.

Another element of the testing procedure is the estimation of the unrestricted
model and the restricted models representing hypotheses of interest. We present a
new Block Metropolis-Hastings sampling algorithm specially constructed for the
purpose of testing noncausality hypotheses in the MS-VAR models in Section 3.5.
It enables the imposing of restrictions on parameters resulting from conditions
(A1) - (A7), and in effect testing different hypotheses of Granger noncausality be-
tween variables. In the algorithm, the restrictions are imposed on different groups
of the parameters of the model. First, linear restrictions on the parameters of the
VAR process, β, are implemented according to Frühwirth-Schnatter (2006). Next,
parameters of the covariance matrices are decomposed into standard deviations,
σ, and correlation parameters, R. To these parameter groups we apply the Griddy-
Gibbs sampler of Ritter and Tanner (1992), as in Barnard et al. (2000). Such a form
of the sampling algorithm easily allows to restrict any of the parameters. Note
that the algorithm of Barnard et al. (2000) has not yet been applied to Markov-
switching models. Finally, we restrict the matrix of transition probabilities, P,
joining the approach of Sims et al. (2008) with the Metropolis-Hastings algorithm
of Frühwirth-Schnatter (2006). The Metropolis-Hastings step needs to be imple-
mented, as we require the hidden Markov process to be irreducible. Moreover,
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additional parts of the algorithm are constructed in order to impose nonlinear
restrictions on the parameters of the VAR process and the decomposed covariance
matrix.

To summarize, we propose the following procedure in order to test different
Granger noncausality hypotheses in Markov-switching VAR models.

Step 1: Specify the MS-VAR model. Choose the order of VAR process, p ∈ {0, 1, . . . , pmax},
and the number of states, M ∈ {1, . . . ,Mmax}, using marginal densities of data
(estimation of all the models is required).

Step 2: Set the restrictions. For the chosen model, derive restrictions on parame-
ters.

Step 3: Test restrictions (A1) and (A2). Estimate the restricted models and com-
pute for them marginal densities of data. Compare the restricted models to
the the unrestricted one using the Posterior Odds Ratio, e.g. according to the
scale proposed by Kass and Raftery (1995).

Step 4: Test hypotheses of noncausality. If the model restricted according to (A1)
is preferred to the unrestricted model, then noncausality of all kinds is estab-
lished. In the other case, if the model restricted according to (A2) is preferred
to the unrestricted model, in order to test different noncausality hypotheses
use conditions (A6)–(A7). In the opposite case use conditions (A3)–(A5). For
testing, use the Posterior Odds Ratio as in Step 3.

Advantages and costs of the proposed approach We start by naming the main
advantages of the proposed Bayesian approach to testing the restrictions for
Granger noncausality. First, using the Posterior Odds Ratio testing principle,
we avoid all the problems of testing nonlinear restrictions on the parameters of
the model that appear in classical tests. Secondly, in the context of the controver-
sies concerning the choice of number of states for Markov-switching models in
the classical approach (see Psaradakis and Spagnolo, 2003; Psaradakis and Sola,
1998), the Bayesian model selection proposed in Step 1 is a proper method free of
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such problems. Next, as emphasized in Hoogerheide et al. (2009), the Bayesian
Posterior Odds Ratio procedure gives arguments in favour of hypotheses. Accord-
ingly, the hypothesis preferred by the data is not only rejected or not rejected, but
is actually accepted with some probability. Finally, Bayesian estimation is a basic
estimation procedure proposed for the MS-VAR models and is broadly described
and used in many applied publications.

However, this approach has also its costs. First of all, in order to specify the
complete model, prior distributions for the parameters of the model and the prior
probabilities of models need to be specified. This necessity gives way to subjective
interpretation of the inference, on the one hand, but on the others it may ensure
economic interpretation of the model. The other cost of the implementation of
the Bayesian approach is the time required for simulation of all the models, first
in the model selection procedure, and second in testing the restrictions of the
parameters.

3.5 The Block Metropolis-Hastings sampler for restricted

MS-VAR models

This section scrutinizes the MCMC sampler set up for sampling from the full
conditional distributions. Each step describes the full conditional distribution
of one element of the partitioned parameter vector. The parameter vector is
broken up into five blocks: the vector of the latent states of the economy S, the
transition probabilities P, the regime-dependent covariance matrices (themselves
decomposed into standard deviations σ and correlations R), and finally the regime-
dependent vector of constants plus autoregressive parameters β. For each block
of parameters – conditionally on the parameter draws from the four other blocks
– we describe how we sample from the posterior distribution. The symbols, l and
l− 1, refer to the iteration of the MCMC sampler. For the first iteration of a MCMC
run, l = 1, initial parameter values come from an EM algorithm. The rest of this
section describes all the constituting blocks that form the MCMC sampler.
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3.5.1 Sampling the vector of the states of the economy

The first drawn parameter is the vector representing the states of the economy, S.
Being a latent variable, there are no priors nor restrictions on S. We first use a filter
(see Section 11.2 of Frühwirth-Schnatter, 2006, and references therein) and obtain
the probabilities Pr(st = i|y, θ(l−1)), for t = 1, . . . ,T and i = 1, . . . ,M, and then draw
S(l), for lth iteration of the algorithm. For the full description of the algorithm used
in this work the reader is referred to Droumaguet and Woźniak (2012).

3.5.2 Sampling the transition probabilities

In this step of the MCMC sampler, we draw from the posterior distribution of the
transition probabilities matrix, conditioning on the states drawn in the previous
step of the current iteration, P(l) ∼ p(P|S(l)). For the purpose of testing, we impose
restrictions of identical rows of P. Sims et al. (2008) provide a flexible analytical
framework for working with restricted transition probabilities, and the reader
is invited to consult Section 3 of that work for an exhaustive description of the
possibilities provided by the framework. We however limit the latitude given by
the reparametrization in order to ensure the stationarity of Markov chain S.

Reparametrization The transitions probabilities matrix P is modeled with Q
vectors wj, j = 1, · · · ,Q and each of size dj. Let all the elements of wj belong
to the (0, 1) interval and sum up to one, and stack all of them into the column
vector w = (w′

1, . . . ,w
′
Q)′ of dimension d =

∑Q
j=1 dj. Writing p = vec(P′) as a M2

dimensional column vector, and introducing the (M2 × d) matrix M, the transition
matrix is decomposed as:

p =Mw, (3.27)
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where the M matrix is composed of the Mij sub-matrices of dimension (M × dj),
where i = 1, . . . ,M, and j = 1, . . . ,Q:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M11 . . . M1Q
...

. . .

MM1 MMQ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

where each Mij satisfies the following conditions:

1. For each (i, j), all elements of Mij are non-negative.

2. ı′MMij = Λi jı
′
dj

, where Λi j is the sum of the elements in any column of Mij.

3. Each row of M has, at most, one non-zero element.

4. M is such that P is irreducible: for all j, dj ≥ 2.

The first three conditions are inherited from Sims et al. (2008), whereas the last
condition assures that P is irreducible, forbidding the presence of an absorbing
state that would render the Markov chain S non-stationary. The non-independence
of the rows of P is described in Frühwirth-Schnatter (2006, Section 11.5.5). Once
the initial state s0 is drawn from the ergodic distribution π of P, direct MCMC
sampling from the conditional posterior distribution becomes impossible. How-
ever, a Metropolis-Hastings algorithm can be set up to circumvent this issue, since
a kernel of joint posterior density of all rows is known: p(P|S) ∝ ∏Q

j=1Ddj(wj)π.
Hence, the proposal for transition probabilities is obtained by sampling each wj

from the convenient Dirichlet distribution. The priors for wj follow a Dirichlet
distribution, wj ∼ Ddj(b1, j, . . . , bdj, j). We then transform the column vector w into
our candidate matrix of transitions probabilities using equation (3.27). Finally, we
compute the acceptance rate before retaining or discarding the draw.

Algorithm 1. Metropolis-Hastings for the restricted transition matrix.

1. s0 ∼ π. The initial state is drawn from the ergodic distribution of P.
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2. wj ∼ Ddj(n1, j + b1, j, . . . ,ndj, j + bdj, j) for j = 1, . . . ,Q. ni, j corresponds to the
number of transitions from state i to state j, counted from S. The candidate
transition probabilities matrix – in the transformed notation – are sampled
from a Dirichlet distribution.

3. Pnew = Mw. The proposal for the transitions probabilities matrix is recon-
structed.

4. Accept Pnew if u ≤ πnew

πl−1 , where u ∼ U[0, 1]. πnew and πl−1 are the vectors of the
ergodic probabilities resulting from the draws of the transition probabilities
matrix Pnew and Pl−1 respectively.

3.5.3 Sampling a second and independent hidden Markov pro-

cess

Regime inference from proposition (A1) involves two independent Markov pro-
cesses. Equation (3.18) decomposes the vector of observations into two sub-
vectors. Equations contained within each sub-vector are subject to switches from
a different and independent Markov process. Sims et al. (2008, section 3.3.3) cover
a similar decomposition.

Adding a Markov process is trivial in the sense it involves repeating the steps
of Section 3.5.1 and algorithm 1 subsequently for a second process, yielding two
distinct transition probabilities matrices P(1) and P(2). The transition probabilities
matrix for the whole system is formed out of the transition probabilities matrices
of two independent hidden Markov processes, P = (P(1) ⊗ P(2)).

3.5.4 Sampling the covariance matrices

Adapting the approach proposed by Barnard et al. (2000) to Markov-switching
models, we sample from the full conditional distribution of non-restricted and
restricted covariance matrices. We thus decompose each covariance matrix of the
MSIAH-VAR process into a vector of standard deviations (σst) and a correlation
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matrix (Rst) using the equality:

Σst = diag(σst)Rstdiag(σst).

This decomposition – statistically motivated – enables the partition of the covari-
ance matrix parameters into two categories that are well suited for the restrictions
we want to impose on the matrices. In a standard covariance matrix, restricting a
variance parameter to some value has some impact on the depending covariances,
whereas here variances and covariances (correlations) are treated as separate en-
tities. The second and not the least advantage of the approach of Barnard et al.
(2000) lies in the employed estimation procedure, the griddy-Gibbs sampler. The
method introduced in Ritter and Tanner (1992) is well suited for sampling from
an unknown univariate density p(Xi|X j, i � j). This is done by approximating the
inverse conditional density function, which is done by evaluating p(Xi|X j, i � j)
thanks to a grid of points. Imposing the desired restrictions on the parameters,
and afterwards iterating a sampler for every standard deviation σi.st and every
correlation R j.st , we are able to simulate desired posteriors of the covariance matri-
ces. While adding to the overall computational burden, the griddy-Gibbs sampler
gives us full latitude to estimate restricted covariance matrices of the desired form.

Algorithm 2. Griddy-Gibbs for the standard deviations. The algorithm iterates on all
the standard deviation parameters σi.st for i = 1, . . . ,N and st = 1, . . . ,M. Similarly
to Barnard et al. (2000) we assume log-normal priors, log(σi.st) ∼ N(0, 2). The
grid is centered on the residuals’ sample standard deviation σ̂i.st and divides the
interval (σ̂i.st − 2σ̂σ̂i.st

, σ̂i.st + 2σ̂σ̂i.st
) into G grid points. σ̂σ̂i.st

is an estimator of the
standard error of the estimator of the sample standard deviation.

1. Regime-invariant standard deviations: Draw from the unknown univariate
density p(σi|y,S,P, β, σ−i,R). This is done by evaluating a kernel on a grid of
points, using the proportionality relation, with the likelihood function times
the prior: σi|y,S,P, β, σ−i,R ∝ p(y|S, θ) · p(σi). Reconstruct the c.d.f. from the
grid through deterministic integration and sample from it.
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2. Regime-varying standard deviations: For all regimes st = 1, . . . ,M, draw
from the univariate density p(σi.st |y,S,P, β, σ−i.st ,R), evaluating a kernel thanks
to the proportionality relation, with the likelihood function times the prior:
σi.st |y,S,P, β, σ−i.st ,R ∝ p(y|S, θ) · p(σi.st).

Algorithm 3. Griddy-Gibbs for the correlations The algorithm iterates on all the cor-
relation parameters Ri.st for i = 1, . . . , (N−1)N

2 and st = 1, . . . ,M. Similarly to Barnard
et al. (2000), we assume uniform distribution on the feasible set of correlations,
Ri.st ∼ U(a, b), with a and b being the bounds that keep the implied covariance
matrix positive definite; see the aforementioned reference for details of setting a
and b. The grid divides (a, b) into G grid points.

1. Depending on the restriction scheme, set correlations parameters to 0.

2. Regime-invariant correlations: Draw from the univariate density p(Ri|y,S,P, β, σ,R−i),
evaluating a kernel thanks to the proportionality relation, with the likelihood
function times the prior: Ri|y,S,P, β, σ,R−i ∝ p(y|S, θ) · p(Ri).

3. Regime-varying correlations: For all regimes st = 1, . . . ,M, draw from
the univariate density p(Ri.st |y,S,P, β, σ,R−i.st), evaluating a kernel thanks
to the proportionality relation, with the likelihood function times the prior:
Ri.st |y,S,P, β, σ,R−Ri.st

∝ p(y|S, θ) · p(Ri.st).

3.5.5 Sampling the vector autoregressive parameters

Finally, we draw the state-dependent autoregressive parameters, βst for st =

1, . . . ,M. The Bayesian parameter estimation of finite mixtures of regression
models when the realizations of states is known has been precisely covered in
Frühwirth-Schnatter (2006, Section 8.4.3). The procedure consists of estimating all
the regression coefficients simultaneously by stacking them into β = (β0, β1, . . . , βM),
where β0 is a common regression parameter for each regime, and hence is useful for
the imposing of restrictions of state invariance for the autoregressive parameters.
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The regression model becomes:

yt = Ztβ0 + ZtDi.1β1 + · · · + ZtDi.MβM + εt, (3.28)

εt ∼ i.i.N(0,Σst). (3.29)

We have here introduced the Di.st , which are M dummies taking the value 1
when the regime occurs and set to 0 otherwise. A transformation of the regressors
ZT also has to be performed in order to allow for different coefficients on the
dependent variables, for instance to impose zero restrictions on parameters. In
the context of VARs, Koop and Korobilis (2010, Section 2.2.3) detail a convenient
notation that stacks all the regression coefficients on a diagonal matrix for every
equation. We adapt this notation by stacking all the regression coefficients for all
the states on diagonal matrix. If zn.st.t corresponds to the row vector of 1 + Np
independent variables for equation n, state st (starting at 0 for regime-invariant
parameters), and at time t, the stacked regressor Zt will be of the following form:

Zt = diag(z1.0.t, . . . , zN.0.t, z1.1.t, . . . , zN.1.t, . . . , z1.M.t, . . . , zN.M.t).

This notation enables the restriction of each parameter, by simply setting zn.st.t to 0
where desired.

Algorithm 4. Sampling the autoregressive parameters. We assume normal prior for
β, i.e. β ∼ N(0,Vβ) .

1. For all Zts, impose restrictions by setting zn,st,t to zero accordingly.

2. β|y,S,P, σ,R ∼ N(β,Vβ). Sample β from the conditional normal posterior
distribution, with the following parameters:

Vβ =

⎛⎜⎜⎜⎜⎜⎝V−1
β +

T∑
t=1

Z
′
tΣ
−1
st

Zt

⎞⎟⎟⎟⎟⎟⎠
−1
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and

β = Vβ

⎛⎜⎜⎜⎜⎜⎝
T∑

t=1

Z
′
tΣ
−1
st

yt

⎞⎟⎟⎟⎟⎟⎠ .

3.5.6 Simulating restrictions in the form of functions of the pa-

rameters.

Some of the restrictions for Granger noncausality presented in Section 3.3 will be
in the form of complicated functions of parameters. Suppose some restriction is
in the form:

θi = g(θ−i),

where g(.) is a scalar function of all the parameters of the model but θi. The
restricted parameter, θi, in this study may be one of the parameters from the
autoregressive parameters, β, or standard deviations, σ. In such a case, β or σ are
no longer conditionally independent and need to be simulated with a Metropolis-
Hastings algorithm.

Restriction on the vector autoregressive parameters β In this case, the deter-
ministic function restricting parameter βi will be of the following form:

βi = g(β−i, σ,R,P).

We draw from the full conditional distribution of the vector autoregressive pa-
rameters, p(β|y,S,P, σ,R), using the Metropolis-Hastings algorithm:

Algorithm 5. Metropolis-Hastings for the restricted vector autoregressive parameters β.

1. Form a candidate draw, βnew, using Algorithm 6.

2. Compute the probability of acceptance of a draw:

α(βl−1, βnew) = min
[
p(y|S,P, βnew, σ,R)p(βnew)
p(y|S,P, βl−1, σ,R)p(βl−1)

, 1
]
. (3.30)
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3. Accept βnew if u ≤ α(βl−1, βnew), where u ∼ U[0, 1].

The algorithm has its justification in the block Metropolis-Hastings algorithm of
Greenberg and Chib (1995). The formula for computing the acceptance probability
from equation (3.30) is a consequence of the choice of the candidate generating
distributions. For the parameters β−i, it is a symmetric normal distribution, as in
step 2 of Algorithm 4, whereas βi is determined by a deterministic function.

Algorithm 6. Generating a candidate draw β.

1. Restrict parameterβi to zero. Draw all the parameters (β1, . . . , βi−1, 0, βi+1, . . . , βk)′

according to the algorithms described in Section 3.5.5.

2. Compute βi = g(β−i, σ,R,P).

3. Return the vector (β1, . . . , βi−1, g(β−i, σ,R,P), βi+1, . . . , βk)′

3.6 Granger causal analysis of US money-income data

In both studies focusing on Granger causality analysis within Markov-switching
vector autoregressive models, Warne (2000) and Psaradakis et al. (2005), the focus
of study is the causality relationship between U.S. money and income. At the
heart of this issue is the empirical analysis conducted in Friedman and Schwartz
(1971) asserting that money changes led income changes. The methodology was
rejected by Tobin (1970) as a post hoc ergo propter hoc fallacy, arguing that the timing
implications from money to income could be generated not only by monetarists’
macroeconomic models but also by Keynesian models. Sims (1972) initiated the
econometric analysis of the causal relationship from the Granger causality per-
spective. While a Granger causality study concentrates on forecasting outcomes,
macroeconomic theoretical modeling tries to remove the question mark over the

The total US economic activity is approached from two different perspectives in these papers:
Warne (2000) uses monthly income data, whereas Psaradakis et al. (2005) use quarterly output
data.
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neutrality of monetary policy for the business cycle. The causal relationship be-
tween money and income is, however, of particular interest to the econometric
debate, since over the past forty years researchers have not reached a consensus.

This historical debate between econometricians is well narrated by Psaradakis
et al. (2005), and the interested reader is advised to consult this paper for a depiction
of events. Without detailing the references of the aforementioned paper, there is a
problem in the instability of the empirical results found for the causality between
money and output. Depending on the samples considered (postwar onwards
data, 1970s onwards data, 1980s onwards, 1980s excluded, etc.), the existence
and intensity of the causal effect of money on output are subject to different
conclusions. Hence, the strategy of Psaradakis et al. (2005): to set up a Markov-
switching VAR model in which the parameters responsible for noncausality in
VAR models are subject to regime switches, with some regimes in which they are
set to zero (noncausality for VARs) and others in which they are allowed to be
different from zero. MS-VAR models are convenient tools because the switches in
regimes are endogenous and can occur as many times as the data impose.

As outlined in the introduction, with the approach of Warne (2000) which we
follow, the MS-VAR models are ’standard‘ ones, and we perform Bayesian model
selection through the comparison of their marginal densities of data, to determine
the number of states as well as the number of autoregressive lags. Moreover,
we perform an analysis with precisely stated definitions of Granger causality for
Markov-switching models. In this section, we use the Bayesian testing apparatus
to investigate this relationship once again.

Data The data are identical to those estimated by Warne (2000) and cover the
same time period as in the original paper. Two monthly series are included, the US
money stock M1 and the industrial production, both containing 434 observations
covering the period, from 1959:1 to 1995:2, and both were extracted from the
Citibase database. As in the original paper, the data are seasonally adjusted,
transformed into log levels, and multiplied by 1200. Warne (2000) performed
Johansen tests for cointegration, and – unlike for level series – trace statistics
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Figure 3.1: Log-differentiated series of money and income.

Table 3.1: Summary statistics

Variable Mean Median Standard Deviation Minimum Maximum

Δy 3.396 4.18 10.99 -51.73 73.72
Δm 5.851 5.24 5.79 -17.39 30.03
Data Source: Citibase.

indicated no cointegration for differentiated series. Similarly, we work with the
first difference of the series.

The summary statistics of both series are presented in Table 3.1. Income grows
yearly by 3% on average, with a standard deviation of 11%, which seems a lot,
but one has to note that we manipulate the monthly series for which the rates are
annualized. Money has a stronger growth rate of nearly 6% on average, with a
lower standard deviation than the income, below 6%.

Figure 3.1 plots the transformed series. Observation indicates that at least some
heteroskedasticity is present, as can be seen with the money series, where a period
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of higher volatility starts around 1980. Summary statistics and series observations
all seem to indicate the possibility of different states in the series, in which case
MS-VAR models can provide a useful framework for analysis. We, however, start
our analysis with Granger causality testing in the context of linear VAR models.

Granger causal analysis with VAR model The reason why we begin by study-
ing Granger causality with linear models is that we want to relate to the standard
methodology, and to illustrate whether a non-linear approach brings added value
to the analysis by comparing the results. Also, the Block Metropolis-Hastings
sampler of Section 3.5 can easily be simplified to a Block Metropolis-Hastings
sampler for VAR models. By doing so, estimating linear VAR models and com-
paring marginal densities, we will also compare whether or not these models are
preferred by the data to more complex MS-VAR ones.

We estimate the data with the VAR models for different lag lengths, p =
0, . . . , 17. Each of the Metropolis-Hastings algorithms is initiated by the OLS
estimates of the VAR coefficients. Then follows a 10,000-iteration burn-in and,
after convergence of the sampler, 5000 final draws are to constitute the posteriors.
The prior distributions are as follow:

βi ∼ N(0, 100IN+pN2)

σi. j ∼ logN(0, 2)

Ri j ∼ U (a, b)

for i = 1, . . . ,M and j = 1, . . . ,N.

Table 3.2 displays the marginal density of data for each model, computed with
the modified harmonic mean obtained by applying formula (3.26) to the posteriors
draws. As in Warne (2000), models with long lags are preferred. The VAR(12)
model, i.e. with 12 lags for the autoregressive coefficients, yields the highest
lnMHM and hence is the model we choose for the Granger causality analysis.
Table C.1 in C.2 displays, for each parameter of the model, the mean, standard
deviations, naive standard errors, autocorrelations of the Markov Chain at lag 1
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Table 3.2: Model selection for VAR(p) – determination of number of lags

Lags 0 1 2 3 4 5 6 7 8
lnMHM -3149.63 -2991.7 -2983.4 -2966.49 -2970.25 -2954.49 -2948.57 -2944 -2939.52

Lags 9 10 11 12 13 14 15 16 17
lnMHM -2936.67 -2941.2 -2917.97 -2916.77 -2917.87 -2926.21 -2923.23 -2930.82 -2936.96

and lag 10. Low autocorrelation at lag 10 indicates that the sampler has good
properties.

The set of restrictions to impose on the parameters for vector autoregressive
moving average models were covered in Sims (1972) and Boudjellaba et al. (1992).
Translated into the VAR representation, and in the case of a bivariate VAR(p)
model:

⎡⎢⎢⎢⎢⎣y1,t

y2,t

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣μ1

μ2

⎤⎥⎥⎥⎥⎦ +
p∑

i=1

⎡⎢⎢⎢⎢⎣A
(i)
11 A(i)

12

A(i)
21 A(i)

22

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣y1,t−i

y2,t−i

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣ε1,t

ε2,t

⎤⎥⎥⎥⎥⎦ ,
for t = 1, . . . ,T, the restrictions for money, y2,t, being Granger noncausal on income,
y1,t, read:

A(i)
12 = 0 for i = 1, . . . , p.

Note that these restrictions, with assumed normal residual terms, are simultane-
ously encompassing Granger noncausality in mean, variance, and distribution.

The estimation of the restricted VAR(12) model, with its upper-right autore-
gressive coefficients A(i)

12 set to 0 for all lags returns posteriors that yield a lnMHM of
-2901.63. Expressed in logarithms, the posterior odds ratio of the null hypothesis
of Granger causality from money to income is equal to 15.13. Table 3.3 summa-
rizes the results for VAR models. This is a very strong acceptance of the restricted
model M1 over the nonrestricted one M0, hence Bayesian testing provides evi-
dence in favor of Granger noncausality from money to income, within the VAR
framework. This result is in line with Christiano and Ljungqvist (1988), where
Granger noncausality from money to output is established for the VAR model
with log-differences with US data. The authors contest this result and argue for a
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146 CHAPTER 3. TESTING NONCAUSALITY IN MS-VAR MODELS

specification error for models with first differences. We continue our analysis with
nonlinear models that allow switches within their parameters.

Table 3.3: Noncausality and conditional regime independence in a VAR(12) model.
Numerical efficiency results for these models are presented in table C.3 of C.3.

M j Hypothesis Restrictions # restrictions ln p(y|M j) lnB j0

H0: Unrestricted model

M0 VAR(12) - 0 -2,916.77 0

H1: Granger noncausality from money to income

M1 (A1) A(i)
12 = 0 p -2,901.63 15.13

for i = 1, . . . , p.

Granger causal analysis with MS-VARs MS-VAR models capture the nonlinear-
ities of the data, such as heteroskedasticity. Endogeneity in the regime estimation
gives lots of latitude for the capture of a variety of nonlinear features of the data,
hence in a way reducing the risk of model misspecification. The legitimacy of
these models against VARs can easily be tested through the computation of the
marginal distribution of data for the respective models.

Moreover, the Markov-switching models, framework provides a more detailed
analysis of causality, as MS-VAR models produce different sets of restrictions for
different types of noncausality, i.e. noncausality in mean, variance, or distribution.
Therefore, we distinguish between more and less strict hypotheses, and make
inferences that are more informative by investigating causality in moments of
different order.

We estimate the data MSIAH(m)-VAR(p) models for different number of regimes
m = 2, 3, 4 and different lag lengths, p = 0, . . . , 6. Each of the Gibbs algorithm is
initiated by the estimates from the EM algorithm of the corresponding model.
Then follows a 10,000-iteration burn-in and, after convergence of the sampler, we
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Table 3.4: Model selection for MSIAH(2)-VAR(p) – determination of the lag order

Lags 0 1 2 3 4 5 6
lnMHM -3,002.64 -2,926.42 -2,903.89 -2,898.21 -2,895.22 -2,914.87 -2,913.49

sample 5000 final draws from the posteriors. The prior distributions are as defined
in Section 3.2.

Table 3.4 reports the lnMHMs for the estimated models with 2 regimes. Though
we also estimated models with 3 or 4 regimes, estimation encountered difficulties
of low occurrences of regimes. These phenomena indicate that the data does
not support MS-VAR models with 3 or more regimes, and explains why we only
present results with 2 regimes. The number of estimated lags for the autoregressive
coefficients is limited to 6 lags – less than the 12 lags for VAR models – also due to
insufficient state occurrences when the number of AR parameters increases. The
model preferred by the data is the MSIAH(2)-VAR(4), i.e. with 2 regimes and VAR
process of order 4. Table C.2 in C.2 displays, for each parameter of the model,
the mean, standard deviations, naive standard errors, and autocorrelations of the
Markov chains at lag 1 and lag 10. Decaying autocorrelation between draws
indicates that the sampler has desirable properties.

Figure 3.2 plots the regime probabilities from the selected model. In comparison
with the second regime, the first regime matches times of higher variance for both
variables. As well the constant for income growth, μ1,1, is negative during the
occurrences of the first regime. Hence, the first regime can be interpreted as the
bad state of the economy.

Note that comparing the best unrestricted MS-VAR model from Table 3.4 to the
best VAR model of Table 3.3 (that is to the restricted model) yields a logarithm of
the posterior odds ratio of 6.41 in favor of the MS-VAR model.

Similarly to Warne (2000), we proceed with the analysis of Granger noncausal-
ity for the selected MSIAH(2)-VAR(4) model. The Bayesian testing strategy we
employ renders the process straightforward: each type of causality implies differ-
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Figure 3.2: Estimated probabilities of regimes for a MSIAH(2)-VAR(4) model

ent restrictions on the model parameters; we impose them, estimate the models
and compute all marginal densities of data. Table 3.5 summarizes all the sets of
restrictions to impose when testing the noncausality from money to income, and
also logarithms of the marginal densities of data given the model, ln p(y|M j), and
logarithms of the Bayes factors, lnB j0 for j = 1, . . . , 7. A positive logarithm of
the Bayes factor is to be interpreted as evidence in favour of the restricted model.
In a symmetric way, negative logarithm of the Bayes factor indicates that the
non-restricted model is preferred by the data.

Analysis of Table 3.5 shows that only model M5 is more probable a posteri-
ori than the unrestricted model M0. This model represents one of the sets of
restrictions for Granger noncausality in mean. All other models, however, are
less probable than the unrestricted model, which is represented with the negative
values of the logarithms of the Bayes factors.

Table 3.6 presents a summary of the assessment of the considered hypotheses.
We found strong support for Granger noncausality in mean. This hypothesis has
much bigger posterior probability compared to all other hypotheses, including the
unrestricted model. Warne (2000) found a similar result, but holding only at the
10% level of significance. However, Bayesian testing establishes this strong result,
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Table 3.5: Noncausality and conditional regime independence in a MSIAH(2)-
VAR(4) model. Numerical efficiency results for these models are presented in
table C.3 of C.3.

M j Hypothesis Restrictions # restrictions ln p(y|M j) lnB j0

H0: Unrestricted model

M0 MS(2)-VAR(4) - 0 -2895.22 0

H1: History of money does not impact on the regime forecast of income

M1 (A1) M1 = 1,M2 = 2 μ1,st = μ1,A
(i)
11,st
= A(i)

11,A
(i)
12,st
= 0 3p+4 -2964.72 -69.50

Σ11,st = Σ11,Σ12,st = 0
M2 (A1) M1 = 2,M2 = 1 μ2,st = μ2,A

(i)
21,st
= A(i)

21,A
(i)
22,st
= A(k)

22 , 4p+4 -2921.54 -26.32
Σ22,st = Σ22,Σ12,st = 0,A(i)

12,st
= 0

(A2) M1 = 1,M2 = 2 Always holds, no restrictions - - -
M3 (A2) M1 = 2,M2 = 1 p11 = p21 1 -2907.39 -12.17

H2: Granger noncausality in mean

(A1) or - - - -

M4 (A6) M1 = 1,M2 = 2 μ1,st = μ1,A
(i)
11,st
= A(i)

11,A
(i)
12,st
= 0 3p+1 -2880.63 14.59

M5 (A6) M1 = 2,M2 = 1 p11 = p21,
∑2

j=1 A(i)
12, jπ j = 0 p+1 -2897.24 -2.02

H3: Granger noncausality in variance

(A1) or - - - -

M6 (A7) M1 = 1,M2 = 2 μ1,st = μ1,A
(i)
11,st
= A(i)

11,A
(i)
12,st
= 0 3p+2 -2953.15 -57.93

Σ11,st = Σ11

M7 (A7) M1 = 2,M2 = 1 p11 = p21,A
(i)
12,st
= 0 2p+1 -2900.58 -5.36

H4: Granger noncausality in distribution

(A1) or - - - -
(A7) - - - -

for i = 1, . . . , p.
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Table 3.6: Summary of the hypotheses testing

Hi Hypothesis Represented by models ln Pr(Hi|y)
Pr(H0|y)

H0 Unrestricted model M0 0
H1 History of money does not impact on

the regime forecast of income
M1,M2,M4 -12.17

H2 Granger noncausality in mean M1,M2,M4,M5 14.59
H3 Granger noncausality in variance M1,M2,M6,M7 -5.36
H4 Granger noncausality in distribution M1,M2,M6,M7 -5.36

and the conditional mean of income is invariant to the history of money. Table 3.6
provides strong evidence for Granger causal relations in variance and, in effect, in
distribution, as these two hypotheses for the considered model are represented by
the same set of models.

Summary The results of Bayesian testing for Granger causality from money to
input on the US monthly series covering the period 1959–1995 are in line with the
narration of Psaradakis et al. (2005), in the sense that the strongly established non-
causality in mean within VAR models (which is equivalent to the noncausality in
variance and in distribution) does not hold with MS-VAR models. Allowing non-
linearity in the models’ coefficients, here by a Markov chain permitting switches
between regimes of the economy, and testing for causality from money to income
yields a different result and the strong noncausal evidence is decomposed. We
found that the history of money helps to predict the regimes of income. We also
found that money causes income both in variance and in distribution. However,
we did find evidence for Granger noncausality in mean from money to income,
as did Warne (2000). Bayesian model estimation associated with Bayesian testing
provided tools with which to select the correct model specification, and also with
which to compare it to the VAR specifications, and the posterior odds ratio tests
allowed us to test for the three types of Granger noncausality.
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These findings have particular consequences for the forecasting of the income.
Despite the fact that past information about money does not change the forecast of
the conditional mean of income, it is still crucial for its modeling. Past observations
of money improves the forecast of the state of the economy when modeled with
a Markov-switching process. Therefore, if one is interested in forecasting regime
switches in the income equation, then one should add the money variable into
the considered system. The same conclusion applies to the forecasting of future
variability of income and, in particular, for its density forecast. The last finding is
especially relevant for the Bayesian Markov-switching vector autoregressions. We
justify this statement with two features of such a model. First, Markov-switching
vector autoregressions are designed to model and forecast a complicated distribu-
tion of the residuals with heteroskedastic variances and non-normal distribution.
Second, the Bayesian inference is particularly suitable for the density forecast with
MS-VARs, due to the fact that the predictive density is constructed by integrating
out the parameters of the models. In consequence, the forecast incorporates the
uncertainty with respect to the parameter values. Moreover, the integration re-
quired in order to construct the forecasts conditioned only on past observations
of the variables, and not conditioned on the unobserved states, as in classical
forecasting (see Hamilton, 1994), is straightforward.

A note Using Bayes factors for the comparison of the models is not uncontro-
versial. It appears that Bayes factors are sensitive to the specification of the prior
distributions for the parameters being tested. The more diffuse a prior distri-
bution the more informative it is about the the parameter tested with a Bayes
factor. This phenomenon is called Bartlett’s paradox (see Bartlett, 1957) and is a
version of the Lindley’s paradox. Moreover, Strachan and van Dijk (2011) show
that assuming a diffuse prior distribution for the parameters of the model, results
in wrongly defined Bayes factors. As a solution to this problem Strachan and
van Dijk recommend using a prior distribution belonging to a class of shrinkage
distributions.

In this study, normal prior densities with mean zero and variance equal to
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100 are assumed. This prior distribution for the VAR parameters belongs to
a class of diffuse prior distributions. Therefore, the critique of Bayes factors
applies. The problem is recognized and solved by employment of the shrinkage
prior distribution for these parameters in the newest version of this work (see
Droumaguet et al., 2012). However, I do not include this results in this work.

3.7 Conclusions

We proposed a method of testing the nonlinear restrictions for the hypotheses
of Granger noncausality in mean, in variance and in distribution for Markov-
switching Vector Autoregressions. The employed Bayes factors and Posterior
Odds Ratios overcome the limitations of the classical approach. It requires, how-
ever, an algorithm of estimation of the unrestricted model and of the restricted
models, representing hypotheses of interest. The algorithm we proposed, allows
for the restriction of all the groups of parameters of the model in an appropri-
ate way. It combines several existing algorithms and improves them in order to
maintain the desired properties of the model and the efficiency of estimation. The
estimation method allows us to use many of the existing methods of computing of
the marginal density of data that are required for both Bayes factors and Posterior
Odds Ratios.

The Bayesian approach to testing has also consequences for the way in which
the competing hypotheses are treated. Contrary to classical tests, the hypotheses
of Granger causality or noncausality of different types are, in our approach, treated
symmetrically. We obtain this effect by comparing the posterior probabilities of
the hypotheses (or models). In consequence, the output of our inference, in the
form of choosing the hypothesis of the highest posterior probability, reflects the
choice of the hypothesis supported in the biggest rate by the data. This applies,
of course, to cases in which the chosen prior probabilities and densities do not
discriminate a priori some of the hypotheses.

In the empirical illustration of the methodology, we have found that in the USA
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money does not cause income in mean. We have, however, found that the money
impacts on the forecast of the future state of the economy, as well as on the forecast
of the variability of the income and on its density forecast. If the empirical analysis
is to be something more than just an illustration of the methodology, and in effect
be conclusive, robustness checks are required. In particular, considering more
relevant variables in the system could impact on the conclusions of the analysis of
the Granger causality between money and income.

As the main limitation of the whole analysis of Granger causality for MS-
VAR models, we find that only one period ahead Granger causality is considered
in this study. The conditions for h periods ahead noncausality should be further
explored. We only mention that potentially establishing that one variable does not
improve the forecast of the hidden Markov process, taking into account the Markov
property, may imply the same for all periods in the future. Still, establishing
conditions for the noncausality h periods ahead for the autoregressive parameters,
including covariances, would potentially require tedious algebra. This statement
is motivated by the complexity of formulating forecasts with MS-VAR models.
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Appendix C

C.1 Alternative restrictions for Granger noncausality

The following restrictions were set by Warne (2000), and are all derived under the
condition (A2) and rank(P(2)) =M2.

Restriction 5. Suppose that P = (ıM1π
(1)′⊗P(2)) with rank(P(2)) =M2, then condition

(A3) is equivalent to:

(A6): (i)
∑M1

j1=1 m1.( j1, j2)π
(1)
j1
= m̄1,

(ii)
∑M1

j1=1 a(k)
1r.( j1, j2)π

(1)
j1
= ā(k)

1r , and

(iii) ā(k)
14 = 0

for all j2 ∈ {1, . . . ,M2}, r ∈ {1, 2, 3}, and k ∈ {1, . . . , p},
Restriction 6. Suppose that P = (ıM1π

(1)′⊗P(2)) with rank(P(2)) =M2, then condition
(A4) is equivalent to:

(A7): (i) (A3),

(ii)
∑M1

j1=1

[
(m1.( j1, j2) − m̄1) ⊗ (m1.( j1, j2) − m̄1)

]
π(1)

j1
= ςμ,

(iii)
∑M1

j1=1

[
(a(k)

1r.( j1, j2) − ā(k)
1r ) ⊗ (a(l)

1s.( j1, j2) − ā(l)
1s)

]
π(1)

j1
= ς(k.l)

r.s ,

(iv)
∑M1

j1=1

[
(m1.( j1, j2) − m̄1) ⊗ (a(k)

1r.( j1, j2) − ā(k)
1r )

]
π(1)

j1
= ς(k)

μ.r,

(v)
∑M1

j1=1 σ1.( j1, j2)π
(1)
j1
= ςω, and
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(vi) a(k)
14. j = 0

for all j ∈ {1, . . . ,M}, j2 ∈ {1, . . . ,M2}, r, s ∈ {1, 2, 3}, and k, l ∈ {1, . . . , p}
is satisfied.

Restriction 7. Suppose rank(P) ∈ {1,M}, then y4 does not Granger-cause in distri-
bution y1 if and only if it does not Granger-cause y1 in variance.
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C.2 Summary of the posterior densities simulations

Table C.1: VAR(12): posterior properties

Mean Std. dev. Naive Std. error Autocorr. lag 1 Autocorr. lag 10

Standard deviations

σ1 9.192 0.137 0.002 0.028 0.006
σ2 4.912 0.095 0.001 0.046 0.002

Correlations

ρ1 -0.025 0.058 0.001 0.060 -0.014

Intercepts

μ1 -0.004 0.300 0.004 0.001 -0.009
μ2 0.582 0.266 0.004 -0.011 0.006

Autoregressive coefficients

A(1)
11 0.284 0.049 0.001 -0.007 0.005

A(1)
12 0.138 0.088 0.001 -0.006 -0.028

A(1)
21 0.027 0.027 0.000 -0.024 -0.016

A(1)
22 0.361 0.049 0.001 0.020 0.027

A(2)
11 0.076 0.049 0.001 -0.009 0.014

A(2)
12 0.108 0.094 0.001 -0.034 -0.014

A(2)
21 -0.044 0.026 0.000 -0.001 0.012

A(2)
22 -0.005 0.052 0.001 0.007 -0.001

A(3)
11 0.068 0.049 0.001 0.002 0.011

A(3)
12 0.133 0.093 0.001 -0.035 0.009

A(3)
21 -0.054 0.026 0.000 -0.014 -0.009

A(3)
22 0.199 0.052 0.001 0.001 -0.001

A(4)
11 0.085 0.049 0.001 0.004 0.009

A(4)
12 -0.053 0.092 0.001 -0.014 -0.008

A(4)
21 -0.024 0.027 0.000 0.012 -0.011

A(4)
22 -0.106 0.051 0.001 -0.026 0.002

A(5)
11 -0.054 0.049 0.001 -0.003 -0.010
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Mean Std. dev. Naive Std. error Autocorr. lag 1 Autocorr. lag 10

A(5)
12 0.032 0.094 0.001 -0.019 -0.010

A(5)
21 0.007 0.026 0.000 0.008 -0.005

A(5)
22 0.228 0.051 0.001 0.004 0.008

A(6)
11 0.004 0.047 0.001 0.000 0.009

A(6)
12 0.106 0.095 0.001 0.009 0.019

A(6)
21 0.000 0.026 0.000 0.004 0.011

A(6)
22 0.067 0.052 0.001 0.008 -0.010

A(7)
11 0.035 0.048 0.001 -0.002 -0.007

A(7)
12 -0.100 0.095 0.001 -0.008 0.003

A(7)
21 0.001 0.025 0.000 0.017 -0.002

A(7)
22 -0.012 0.053 0.001 -0.025 -0.008

A(8)
11 0.031 0.048 0.001 0.035 -0.017

A(8)
12 0.056 0.094 0.001 0.005 -0.005

A(8)
21 0.052 0.025 0.000 -0.015 0.005

A(8)
22 0.104 0.051 0.001 0.011 0.010

A(9)
11 0.015 0.048 0.001 -0.016 0.019

A(9)
12 -0.054 0.093 0.001 0.006 0.004

A(9)
21 -0.043 0.025 0.000 0.016 -0.004

A(9)
22 0.181 0.052 0.001 0.023 -0.012

A(10)
11 0.020 0.047 0.001 0.023 0.020

A(10)
12 0.008 0.090 0.001 0.007 -0.022

A(10)
21 -0.008 0.026 0.000 -0.010 -0.005

A(10)
22 -0.077 0.052 0.001 0.018 -0.012

A(11)
11 0.008 0.048 0.001 -0.017 0.021

A(11)
12 -0.064 0.093 0.001 -0.014 0.001

A(11)
21 -0.036 0.026 0.000 0.007 -0.006

A(11)
22 -0.023 0.052 0.001 -0.022 0.001

A(12)
11 -0.069 0.044 0.001 0.008 0.003

A(12)
12 -0.042 0.087 0.001 -0.031 0.006

A(12)
21 0.061 0.024 0.000 0.010 -0.013

A(12)
22 -0.029 0.049 0.001 -0.004 -0.002
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Table C.2: MSIAH(2)-VAR(4): posterior properties

Mean Std. dev. Naive Std. error Autocorr. lag 1 Autocorr. lag 10

Transition probabilities

p1,1 0.734 0.066 0.001 0.557 -0.005
p2,1 0.059 0.018 0.000 0.624 0.088

Standard deviations

σ1,1 17.129 1.207 0.017 0.625 0.150
σ2,1 8.746 0.646 0.009 0.559 0.111
σ1,2 6.983 0.276 0.004 0.669 0.173
σ2,2 4.011 0.179 0.003 0.666 0.105

Correlations

ρ1,1 -0.173 0.127 0.002 0.203 0.008
ρ1,2 0.078 0.070 0.001 0.284 0.018

Intercepts regime 1

μ1,1 -0.213 0.949 0.013 0.014 0.032
μ2,1 1.107 0.885 0.013 0.101 0.011

Autoregressive coefficients regime 1

A(1)
11,1 0.497 0.147 0.002 0.128 0.016

A(1)
12,1 0.209 0.287 0.004 0.142 -0.018

A(1)
21,1 0.069 0.075 0.001 0.156 0.027

A(1)
22,1 0.419 0.156 0.002 0.222 -0.002

A(2)
11,1 -0.253 0.191 0.003 0.238 0.020

A(2)
12,1 -0.134 0.361 0.005 0.191 -0.005

A(2)
21,1 -0.018 0.094 0.001 0.131 0.025

A(2)
22,21 -0.092 0.202 0.003 0.237 0.002

A(3)
11,1 0.172 0.218 0.003 0.173 0.001

A(3)
12,1 -0.176 0.376 0.005 0.105 0.008

A(3)
21,1 -0.126 0.122 0.002 0.265 0.006

A(3)
22,1 0.112 0.217 0.003 0.191 0.004
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Mean Std. dev. Naive Std. error Autocorr. lag 1 Autocorr. lag 10

A(4)
11,1 -0.490 0.217 0.003 0.325 0.078

A(4)
12,1 0.409 0.343 0.005 0.164 0.019

A(4)
21,1 0.088 0.106 0.001 0.252 0.029

A(4)
22,1 0.098 0.205 0.003 0.281 0.031

Intercepts regime 2

μ1,2 0.295 0.634 0.009 0.163 -0.005
μ2,2 2.058 0.420 0.006 0.210 -0.012

Autoregressive coefficients regime 2

A(1)
11,2 0.237 0.059 0.001 0.391 0.041

A(1)
12,2 0.028 0.099 0.001 0.333 -0.002

A(1)
21,2 -0.026 0.031 0.000 0.259 0.025

A(1)
22,2 0.398 0.058 0.001 0.297 -0.024

A(2)
11,2 0.130 0.048 0.001 0.210 0.014

A(2)
12,2 0.165 0.088 0.001 0.195 0.013

A(2)
21,2 -0.032 0.028 0.000 0.194 0.005

A(2)
22,2 0.092 0.057 0.001 0.321 0.038

A(3)
11,2 0.099 0.053 0.001 0.377 0.057

A(3)
12,2 0.214 0.086 0.001 0.195 0.006

A(3)
21,2 -0.014 0.026 0.000 0.176 0.023

A(3)
22,2 0.285 0.053 0.001 0.284 0.007

A(4)
11,2 0.106 0.052 0.001 0.394 0.039

A(4)
12,2 -0.174 0.092 0.001 0.272 0.014

A(4)
21,2 -0.019 0.025 0.000 0.200 0.009

A(4)
22,2 -0.066 0.055 0.001 0.323 0.031
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C.3 Characterization of estimation efficiency

Table C.3: Characterization of the efficiency in the models’ estima-
tions

RNE Autocorr. lag 1 Autocorr. lag 10 Geweke z-score
M j Median Min Max Median Min Max Median Min Max Median Min Max

Vector autoregressive models

M0 1.00 0.85 1.19 0.00 -0.03 0.06 0.00 -0.03 0.03 -0.10 -2.37 2.38
M1 1.00 0.76 1.08 0.01 -0.03 0.07 0.00 -0.04 0.02 0.07 -2.57 2.43

Markov switching vector autoregressive models

M0 0.48 0.10 1.00 0.24 0.01 0.67 0.02 -0.02 0.17 -0.56 -2.14 3.27
M1 0.47 0.06 1.00 0.17 -0.02 0.78 0.01 -0.03 0.29 0.22 -1.98 2.58
M2 0.71 0.13 1.12 0.14 -0.02 0.71 0.01 -0.03 0.08 0.13 -2.10 1.59
M3 0.30 0.02 0.94 0.27 0.03 0.89 0.04 -0.01 0.56 -0.32 -2.43 1.94
M4 0.46 0.08 0.83 0.25 0.07 0.78 0.01 -0.03 0.23 -0.20 -1.57 1.56
M5 0.22 0.02 0.43 0.44 0.12 0.85 0.07 -0.01 0.50 -0.10 -2.39 2.16
M6 0.24 0.02 0.92 0.26 0.04 0.90 0.04 -0.02 0.58 -0.08 -1.43 1.91
M7 0.33 0.05 0.83 0.31 0.03 0.84 0.04 -0.01 0.39 -0.16 -2.34 1.67

Table C.3 reports statistics for assessing the efficiency of each estimated model. Three

types of statistics are presented: the relative numerical efficiency of Geweke (1989), auto-

correlations at different lags, and the convergence diagnostic of Geweke (1992). Statistics

should be presented separately for each parameter of each model, but to save space, we

summarize each model with a median, minimum, and maximum.

The relative numerical efficiency represents the ratio of the variance of a hypothetical

draw from the posterior density over the variance of the Gibbs sampler. Thus, it can be

interpreted as a measure of the computational efficiency of the algorithm. The columns

of Table C.3, unsurprisingly, tell us that the algorithm for VAR models is more efficient

than that for MS-VAR. The same observation can be made when comparing unrestricted

models with restricted ones. What is interesting for us is the magnitude of the RNE

statistics between unrestricted and restricted models. Those are comparable, which is
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162 APPENDIX C. APPENDIX

a good sign that the algorithm for constrained models are, computationally, reasonable

efficient.

The columns displaying the autocorrelations at lag 1 and lag 10 are here to ensure that

there is a decay over time. This is the case here, and the Gibbs samplers explore the entire

posterior distribution.

Geweke (1992) introduces the z scores test which tests the stationarity of the draws

from the posterior distribution simulation comparing the mean of the first 30% of the

draws with the last 40% of the draws. We compare the two means with a z-test. Typically,

values outside (−2, 2) indicate that the mean of the series is still drifting, and this occurs

for some parameters in each models, except M4 and M6 for MS-VARs. Increasing the

burn in period might improve the scores and stationarity of the MCMC chain.
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Woźniak, T. (2012). Testing Causality Between Two Vectors in Multivariate GARCH
Models. EUI Working Papers ECO 2012/20, European University Institute, Flo-
rence, Italy. Download at: http://cadmus.eui.eu/bitstream/handle/1814/
23337/ECO_2012_20.pdf.

167

Wozniak, Tomasz (2012), Granger-Causal analysis of conditional mean and volatility models 
European University Institute

 
DOI: 10.2870/63858




