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Abstract

In testing for the cointegrating rank of a vector autoregressive (VAR) process it is important
to take into account level shifts that have occurred in the sample period. Therefore the
properties of estimators of the time period where a shift has taken place are investigated.
The possible structural break is modelled as a simple shift in the level of the process. Three
alternative estimators for the break date are considered and their asymptotic properties are
derived under various assumptions regarding the size of the shift. In particular, properties
of the shift date estimator are obtained under the assumption of an increasing or decreasing
size of the shift when the sample size grows. Moreover, the implications for testing the coin-
tegrating rank of the process are explored. A new rank test is proposed and its asymptotic
properties are derived. It is shown that its asymptotic null distribution is unaffected by the
level shift. The performance of the shift date estimators and the cointegration rank tests in
small samples is investigated by simulations.
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1 Introduction

From the unit root and cointegration testing literature it is well-known that structural shifts

in the time series of interest have a major impact on inference procedures. In particular, they

affect the small sample and asymptotic properties of unit root and cointegrating rank tests

(see, e.g., Perron (1989) for unit root testing and Lütkepohl, Saikkonen & Trenkler (2004) for

cointegration rank testing). In the latter article, henceforth abbreviated as LST, it is assumed

that a level shift has occurred in a system of time series variables at an unknown time. LST

propose to estimate the shift date in a first step and then apply a cointegrating rank test

as follows. First the parameters of the deterministic part of the data generation process

(DGP) are estimated by a feasible generalized least squares (GLS) procedure. Using these

estimators, the original series is adjusted for deterministic terms including the structural

shift and a cointegrating rank test of the Johansen likelihood ratio (LR) type is applied to

the adjusted series. They provide conditions under which the asymptotic null distribution of

the cointegrating rank tests in this procedure is unaffected by the level shift. They also show,

however, that in small samples the way the break date is estimated may have an impact on

the actual properties of the cointegrating rank test. In particular, the size of the level shift

is important for the small sample properties of the break date estimators and the tests.

Therefore, in this study we extend the results of LST in several directions. First of all we

consider a further possible break date estimator. Second, we derive asymptotic properties of

all the estimators accounting explicitly for the size of the level shift. More precisely, we make

the size of the level shift dependent on the sample size and provide asymptotic results both

for increasing and decreasing shift size when the sample size goes to infinity. These results

provide interesting new insights in the properties of the estimators and explain simulation

results of LST which are difficult to understand if a fixed shift size is considered. Under our

assumptions the null distribution of the cointegrating rank tests is still unaffected by the

shift or the shift size just as in the case of a fixed shift size. We also modify the cointegrating

rank tests considered by LST. In their approach estimators of all parameters associated with

the deterministic part of the model are estimated by the GLS procedure although the level

parameters are not fully identified. In this paper we propose to estimate the identified

parameters only and modify the cointegrating rank tests accordingly. Finally, we perform

a more detailed and more insightful investigation of the small sample properties of three
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different break date estimators and the resulting cointegrating rank tests by extending the

simulation design of LST.

Estimating the break date in a system of I(1) variables has also been considered by

Bai, Lumsdaine & Stock (1998). These authors consider the asymptotic distribution of a

pseudo maximum likelihood (ML) estimator of the break date. Although we use a similar

estimator, we do not derive the asymptotic distribution of the estimators but focus on

rates of convergence. Our results are important for investigating the properties of inference

procedures such as cointegration rank tests that are based on a VAR model with estimated

break date. Although Bai, Lumsdaine & Stock (1998) also discuss shift sizes that depend

on the sample size, our results go beyond their analysis because we consider decreasing as

well as increasing shift sizes.

The study is structured as follows. In Section 2, the modelling framework of LST is

summarized because that will be the basis for our investigation. Section 3 is devoted to a

discussion of the break date estimators and their asymptotic properties. The properties of

cointegrating rank tests based on a model with estimated break date are considered in Section

4 and small sample simulation results of the break date estimators and the cointegrating rank

tests are presented in Section 5. In Section 6, a summary and conclusions are given. The

proofs of several theorems stated in the main body of the paper are given in the Appendix.

The following general notation will be used. The differencing and lag operators are de-

noted by ∆ and L, respectively. The symbol I(d) denotes an integrated process of order

d, that is, the stochastic part of the process is stationary or asymptotically stationary af-

ter differencing d times while it is still nonstationary after differencing just d − 1 times.

Convergence in distribution is signified by
d→ and i.i.d. stands for independently, identically

distributed. The symbols for boundedness and convergence in probability are as usual Op(·)
and op(·), respectively. Moreover, ‖ · ‖ denotes the Euclidean norm. The trace, determinant

and rank of the matrix A are denoted by tr(A), det(A) and rk(A), respectively. If A is

an (n ×m) matrix of full column rank (n > m), we denote an orthogonal complement by

A⊥. The zero matrix is the orthogonal complement of a nonsingular square matrix and an

identity matrix of suitable dimension is the orthogonal complement of a zero matrix. An

(n × n) identity matrix is denoted by In. For matrices A1, . . . , As, diag[A1 : · · · : As] is

the block-diagonal matrix with A1, . . . , As on the diagonal. LS, GLS, RR and VECM are
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used to abbreviate least squares, generalized least squares, reduced rank and vector error

correction model, respectively. As usual, a sum is defined to be zero if the lower bound of

the summation index exceeds the upper bound.

2 The Data Generation Process

We use the general setup of LST. Hence, yt = (y1t, . . . , ynt)
′ (t = 1, . . . , T ) is assumed to be

generated by a process with constant, linear trend and level shift terms,

yt = µ0 + µ1t + δdtτ + xt, t = 1, 2, . . . . (2.1)

Here µi (i = 0, 1) and δ are unknown (n × 1) parameter vectors and dtτ is a shift dummy

variable representing a shift in period τ so that

dtτ = 0 for t < τ and 1 for t ≥ τ. (2.2)

We make the following assumption for the shift date τ .

Assumption 1. Let λ, λ and λ̄ be fixed real numbers such that 0 < λ ≤ λ ≤ λ̄ < 1. The

shift date τ satisfies

τ = [Tλ], (2.3)

where [·] denotes the integer part of the argument. 2

In other words, the shift is assumed to occur at a fixed fraction of the sample length.

The shift date may not be at the very beginning or at the very end of the sample, although

λ and λ̄ may be arbitrarily close to zero and one, respectively. The condition has also

been employed by Bai, Lumsdaine & Stock (1998) in models containing I(1) variables. It is

obviously not very restrictive.

The term µ1t may be dropped from (2.1), if µ1 = 0 is known to hold and, thus, the

DGP does not have a deterministic linear trend. The necessary adjustments in the following

analysis are straightforward and we will comment on this situation as we go along. Also

seasonal dummies may be added without major changes to our arguments. They are not

included in our basic model to avoid more complex notation.
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The process xt is assumed to be at most I(1) and have a VAR(p) representation. More

precisely, we make the following assumption.

Assumption 2. The process xt is integrated of order at most I(1) with cointegrating rank

r and

xt = A1xt−1 + · · ·+ Apxt−p + εt, t = 1, 2, . . . , (2.4)

where the Aj are (n×n) coefficient matrices. The initial values xt, t ≤ 0, are assumed to

be such that the cointegration relations and ∆xt are stationary. The εt are i.i.d.(0, Ω) with

positive definite covariance matrix Ω and existing moments of order b > 4. 2

Under Assumption 2, the process xt has the VECM form

∆xt = Πxt−1 +

p−1∑
j=1

Γj∆xt−j + εt, t = 1, 2, . . . , (2.5)

where Π = −(In−A1− · · · −Ap) and Γj = −(Aj+1 + · · ·+ Ap) (j = 1, . . . , p− 1) are (n×n)

matrices. Because the cointegrating rank is r, the matrix Π can be written as Π = αβ′,

where α and β are (n×r) matrices of full column rank. As is well-known, β′xt and ∆xt are

then zero mean I(0) processes. Defining Ψ = In − Γ1 − · · · − Γp−1 = In +
∑p−1

j=1 jAj+1 and

C = β⊥(α′⊥Ψβ⊥)−1α′⊥, we have

xt = C

t∑
j=1

εj + ξt, t = 1, 2, . . . , (2.6)

where ξt is a zero mean I(0) process.

Multiplying (2.1) by A(L) = In−A1L−· · ·−ApL
p = In∆−ΠL−Γ1∆L−· · ·−Γp−1∆Lp−1

yields

∆yt = ν + α(β′yt−1 − φ(t− 1)− θdt−1,τ ) +
p−1∑
j=1

Γj∆yt−j +
p−1∑
j=0

γ∗j ∆dt−j,τ + εt,

t = p + 1, p + 2, . . . ,

(2.7)

where ν = −Πµ0 + Ψµ1, φ = β′µ1, θ = β′δ, γ∗0 = δ and γ∗j = −Γjδ for j = 1, . . . , p− 1. The

quantity ∆dt−j,τ is an impulse dummy with value one in period t = τ + j and zero elsewhere.

For given values of the VAR order p and the shift date τ , Johansen type cointegration

tests can be performed in our model framework. In the next section we will discuss three

different estimators of the break date and then we will discuss cointegration tests based on

a model with estimated break date in Section 4.
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3 Shift Date Estimation

In the following we consider three different estimators of the shift date τ . The first one

is based on estimating an unrestricted VAR model in which the cointegrating rank as well

as the restrictions for the parameters related to the impulse dummies are not taken into

account. The latter restrictions are accounted for by the second estimator, whereas the

third estimator ignores the impulse dummies altogether. For all procedures we assume that

the VAR order p is given or has been chosen by some statistical procedure in a previous step.

For the time being it is assumed to be known.

3.1 Estimator Based on Unrestricted Model

Our first estimator of τ is based on the least restricted model with respect to the cointegrating

rank or

∆yt = ν0 + ν1t + δ1dtτ +

p−1∑
j=0

γj∆dt−j,τ + Πyt−1 +

p−1∑
j=1

Γj∆yt−j + εt, t = p + 1, . . . , T, (3.1)

which is obtained from (2.7) by imposing no rank restriction on Π and rearranging terms.

Here ν0 = ν + Πµ1, ν1 = −Πµ1, δ1 = −Πδ, γ0 = δ − δ1, γj = γ∗j (j = 1, . . . , p− 1) and T is

the sample size. The shift date is estimated as

τ̂ = arg min
τ∈T

det

(
T∑

t=p+1

ε̂tτ ε̂
′
tτ

)
, (3.2)

where the ε̂tτ are LS residuals from (3.1), and T ⊂ {1, . . . , T} is the set of all shift dates

considered. Notice that T cannot include all sample periods if Assumption 1 is made.

Moreover, there may be nonsample information regarding the possible shift dates which

makes it desirable to limit the search to a specific part of the sample period.

We will present asymptotic properties of the shift date estimators under the assumption

that the size of the shift depends on the sample size and may increase or decrease when the

sample size gets larger. More precisely, we make the following assumption for the parameter

δ.

6

Pentti Saikkonen, Helmut Lütkepohl and Carsten Trenkler

EUI WP ECO 2004/21



Assumption 3. For some fixed (n× 1) vector δ∗,

δ = δT = T aδ∗, a ≤ 1/2. (3.3)

2

Thus, we allow for a decreasing, constant or increasing shift size with growing sample

size, depending on a being smaller, equal to or greater than zero, respectively. In most cases

there will be no need to use the subscript T and so the notation δ will usually be used

instead of δT . The same convention applies to parameters depending on δ (e.g., δ1) and

their estimators. As mentioned earlier, break date estimation when the shift size decreases

with increasing sample size has also been discussed by other authors (Bai, Lumsdaine &

Stock (1998)). An increasing shift size is treated here for completeness and it turns out

that it provides interesting insights in the actual behaviour of our shift date estimators, as

will be seen in the simulations in Section 5. Moreover, letting the shift size increase with

the sample size may provide information on problems related to large shifts. In particular,

it is of interest to check whether large shifts may affect the asymptotic distribution of the

cointegrating rank tests discussed in Section 4. The upper bound a = 1/2 for the rate of

increase of the shift size is chosen for technical reasons because we need this bound in our

proofs. From a practical point of view such a bound should not be a problem because there

may not be a need to estimate the shift date by formal statistical methods if the shift size

is very large. We can now present asymptotic properties of our estimator τ̂ which generalize

results presented in LST.

Theorem 3.1. Suppose Assumptions 1 - 3 hold.

(i) Let 0 ≤ j0 ≤ p− 1 and suppose there exists an integer j0 such that γj0 6= 0 and, when

j0 < p− 1, γj = 0 for j = j0 + 1, . . . , p− 1. Then, if a > 0 and δ1 6= 0 or a > 1/b,

Pr{τ − p + 1 + j0 ≤ τ̂ ≤ τ} → 1.

In particular, τ̂
p→ τ if γp−1 6= 0. If γj = 0 for all j = 0, . . . , p− 1, the preceding convergence

result holds with j0 = −1.

(ii) If a ≤ 0 and δ1 6= 0, then

τ̂ − τ = Op(T
−2a/(1−2η)),
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where 1
b

< η < 1
4
. In particular, if a > η − 1/2,

λ̂− λ = op(1),

where λ̂ = τ̂ /T . 2

For δ1 6= 0 and a = 0, LST have shown that τ̂−τ = Op(1) which is obviously a special case

of our theorem. In fact, Theorem 3.1(i) shows that when the size of the break is sufficiently

large, that is, a > 1/b or a > 0 and δ1 6= 0, the break date can be estimated accurately.

More precisely, asymptotically the break date can then be located at the true break date or

just a few time points before the true break date. Estimating the break date larger than the

true one cannot occur in large samples. However, consistent estimation of the break date

is not possible without an additional assumption for the parameters related to the impulse

dummies in model (3.1). The required assumption γp−1 6= 0 can be seen as an identification

condition for the break date. Indeed, if γp−1 = 0 and γp−2 6= 0, Theorem 3.1(i) only tells us

that asymptotically the break date estimator will take a value which is either the true break

date or the preceding time point. The intuition for this is that one of the p − 1 impulse

dummies in (3.1) can be used to allow for such an incorrect estimation of the break date. In

particular, even if we choose a break date one smaller than the true one we can still obtain

a correct model specification with white noise errors. A similar situation occurs when more

than one of the parameters γi at the largest lags are zero. Notice also that γj = 0 for all

j = 0, . . . , p− 1 can only occur if δ1 6= 0 because δ 6= 0 and γ0 = δ − δ1.

The above discussion implies that an overspecification of the VAR order will always make

the break date estimation τ̂ inconsistent. This observation explains some of the small sample

results of LST. These authors fitted VAR(3) models to VAR(1) DGPs and found that τ̂ often

underestimated the true break date. In principle the same phenomenon can occur also in

other situations where γp−1 = 0. However, since γ0 is always nonzero when δ 6= 0 (and p ≥ 1)

a reasoning similar to that used above explains why the break date will asymptotically not

be estimated larger than the true one.

The second part of the Theorem 3.1 deals with the asymptotic behavior of the estimator

τ̂ when the size of the break is “small”. In this case we need to assume that δ1 6= 0 or

that there is actually a level shift in model (3.1) and not just some exceptional observations

which can be handled with impulse dummies. This assumption is not needed in the first
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part of the theorem where the size of the break is “large” (a > 1/b) because then even

the impulse dummies can be used to estimate the break date accurately. However, even

though consistent estimation of the break date is not possible in the case of Theorem 3.1(ii),

consistent estimation of the sample fraction λ is still possible provided the size of the break is

not “too small”. The result obtained in this context is weaker than its previous counterparts

in Bai (1994) which, instead of a > η − 1/2, only require a > −1/2 (see, e.g., Proposition

3 of Bai (1994)). Complications caused by the presence of impulse dummies in model (3.1)

are the reason for our weaker result. In any case, our assumption a > η − 1/2 is equivalent

to −2a/(1−2η) < 1 which is clearly not very restrictive because τ̂ − τ cannot be larger than

T and is hence necessarily Op(T ).

3.2 Constrained Estimation of τ

We shall now consider the constrained estimation of the break date in which the restrictions

between the autoregressive parameters and coefficients related to the dummies are taken into

account. Instead of (3.1) it is now convenient to start with the specification

∆yt = ν0 +ν1t+δ1dt−1,τ +

p−1∑
j=0

γ∗j ∆dt−j,τ +Πyt−1 +

p−1∑
j=1

Γj∆yt−j +εt, t = p+1, . . . , T, (3.4)

where δ1 = −Πδ, as before, and the γ∗j are as in (2.7). Thus, we can write (3.4) as

∆yt = ν0+ν1t+

(
In∆dt −

p−1∑
j=1

Γj∆dt−j − Πdt−1,τ

)
δ+Πyt−1+

p−1∑
j=1

Γj∆yt−j+εt, t = p+1, . . . , T.

(3.5)

Unlike the unrestricted model (3.1), the impulse dummies do not appear separately anymore

in the representation (3.5) but are included in the term which also involves the shift dummy.

Thus the restrictions imply that a single parameter vector δ is associated with all the dummy

variables. A consequence is that the break date can be estimated more precisely, as we will

see in the next theorem.

For any given value of the break date τ the parameters ν0, ν1, δ, Π and Γ1, . . . , Γp−1 can

be estimated from (3.5) by nonlinear LS. The estimator of the break date is then obtained

by minimizing an analog of (3.2) with ε̂tτ replaced by residuals from this nonlinear LS esti-

mation. The following theorem presents asymptotic properties of this break date estimator
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denoted by τ̂R.

Theorem 3.2. Let Assumptions 1 - 3 hold and suppose that δ 6= 0.

(i) If a > 0 and δ1 6= 0 or a > 1/b, then

τ̂R − τ = op(1)

(ii) If a ≤ 0 and δ1 6= 0, then

τ̂R − τ = Op(T
−2a/(1−2η)),

where 1
b

< η < 1
4
. 2

The first part of the theorem shows that taking the restrictions into account is benefi-

cial. Unlike in Theorem 3.1(i) consistency now obtains without any additional assumptions

about coefficients. The second part of the theorem, which deals with the case of a “small”

break size, is similar to its previous counterpart, however. The constrained estimator τ̂R is

computationally more demanding than its unconstrained counterpart τ̂ . One way to reduce

the amount of computation is to apply both estimates. First, one can use τ̂ to locate the

potential break date roughly and then apply τ̂R for restricted values of τ based on the value

of τ̂ (e.g., τ̂R can be computed such that |τ̂ − τ̂R| ≤ p or |τ̂ − τ̂R| ≤ 2p). Another possibility

to reduce the amount of computation is to use a two-step estimator. Specifically, one can

first estimate the parameters Π and Γ1, . . . , Γp−1 from (3.4) without constraints and use the

resulting estimators to replace their theoretical counterparts in the term in parentheses in

(3.5). Then LS can be applied to the resulting version of (3.5). These possibilities will be

explored further in the Monte Carlo study in Section 5.

3.3 Ignoring Dummies in Estimating τ

Our third break date estimator was also considered by LST. Because the impulse dummies

in (3.1) eliminate the observations where they assume a value of one, they may make it more

difficult to locate the true break date. Therefore, LST consider estimating the break date

from a VAR model without impulse dummy variables,

∆yt = ν0 + ν1t + δ1dtτ + Πyt−1 +

p−1∑
j=1

Γj∆yt−j + ε∗t , t = p + 1, . . . , T, (3.6)
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where ε∗t =
∑p−1

j=0 γj∆dt−j,τ + εt. We act as if ε∗t had the same white noise properties as εt

although this is not quite the case. Thus the estimator of the break date considered in this

context is defined as

τ̃ = arg min
τ∈T

det

(
T∑

t=p+1

ε̂∗tτ ε̂
∗′
tτ

)
, (3.7)

where the ε̂∗tτ are the LS residuals from (3.6). The following theorem again generalizes a

result of LST by allowing the shift size to depend on the sample size. It shows that the

estimator τ̃ works well, provided that δ1 6= 0 and a ≤ 1/2.

Theorem 3.3. Suppose Assumptions 1 - 3 hold and δ1 6= 0.

(i) If a > 0, then

τ̃ − τ = op(1).

(ii) If a ≤ 0, then

τ̃ − τ = Op(T
−2a/(1−2η)),

where η > 0. 2

Again this result is an obvious generalization of one obtained by LST who show that

for δ1 6= 0 and a = 0, τ̃ − τ = Op(1). Although τ̃ is based on a misspecified model, its

convergence rate is equally good as that of the other two estimators, provided δ1 6= 0 and

a ≤ 0. Clearly, δ1 = −αβ′δ = 0 may hold even if δ 6= 0. In fact, δ1 = 0 always holds if the

cointegrating rank is zero. If δ1 = 0, there is co-breaking and the process β′yt has no break.

For such processes, τ̃ can find the shift date only by chance, whereas τ̂ and τ̂R can still find

the true break date with some likelihood in large samples, if the shift size is large. Thus,

using only the estimator τ̃ may be problematic, unless the case δ1 = 0 can be ruled out.

As a final remark on our three break date estimators we mention that, if the DGP is

known to have no deterministic linear trend (τ1 = 0), the corresponding terms in (3.1),

(3.4) and (3.6) may be dropped without changing the convergence rates of our break date

estimators. In the next section we consider the consequences of using a model with estimated

break date for testing the cointegrating rank of a system of time series variables.
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4 Testing the Cointegrating Rank

For given VAR order p and some estimator of the shift date, the cointegrating rank of

the DGP can be tested as discussed by LST. They propose to use the tests suggested by

Saikkonen & Lütkepohl (2000). In their procedure, first stage estimators for the parameters

of the error process xt, that is, for α, β, Γj (j = 1, . . . , p− 1) and Ω are determined by RR

regression applied to (2.7). Using these estimators, LST apply a feasible GLS procedure to

(2.1) to estimate all the parameters of the deterministic part. The observations are then

adjusted for deterministic terms and cointegration tests are based on the adjusted series.

Because the levels parameter µ0 is not identified in the direction of β⊥ one may wish to

avoid its estimation. Therefore, in the following we shall consider an approach in which

only the parameters µ1 and δ in the deterministic part are estimated. The effect of the level

parameter will be taken into account when the test is performed. The estimators of the

parameters µ1 and δ and their asymptotic properties will be discussed first and then the

cointegration tests will be presented.

4.1 Estimating the Parameters of the Deterministic Part

We present the estimation procedure of the parameters µ1 and δ for a given VAR order p,

cointegration rank r and break date τ . First consider the estimation of the parameter µ1.

Recall the identity ν = −Πµ0 + Ψµ1 which can be written as

ν = −Πµ0 + Ψβ(β′β)−1β′µ1 + Ψβ⊥(β′⊥β⊥)−1β′⊥µ1

or, more briefly,

ν = −Πµ0 + Ψβφ + Ψβ⊥φ∗,

where φ = β′µ1, φ∗ = β′⊥µ1, Ψβ = Ψβ(β′β)−1 and Ψβ⊥ = Ψβ⊥(β′⊥β⊥)−1. Because α′⊥Π =

α′⊥αβ′ = 0, a multiplication of this identity from the left by α′⊥ yields α′⊥(ν − Ψβφ) =

α′⊥Ψβ⊥φ∗. The matrix α′⊥Ψβ⊥ is nonsingular and its inverse is (α′⊥Ψβ⊥)−1 = β′⊥β⊥(α′⊥Ψβ⊥)−1.

Thus, we can solve for φ∗ as follows:

φ∗ = β′⊥C(ν −Ψβφ),
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where C = β⊥(α′⊥Ψβ⊥)−1α′⊥ as before. Thus, if C̃ and Ψ̃β are sample analogs of C and Ψβ,

respectively, based on the RR estimation of (2.7), an estimator of φ∗ is given by

φ̃∗ = β̃
′
⊥C̃(ν̃ − Ψ̃βφ̃).

Here ν̃, φ̃ and β̃⊥ are also based on the RR estimation of (2.7). Using the estimators φ̃ and

φ̃∗ together we can form an estimator for µ1 as

µ̃1 = β̃(β̃′β̃)−1φ̃ + β̃⊥(β̃′⊥β̃⊥)−1φ̃∗.

The parameter δ can be estimated in a similar way. From the definitions we find that




γ∗0

γ∗1
...

γ∗p−1




=




In

−Γ1

...

−Γp−1




δ.

Multiplying this equation from the left by the matrix [α′⊥ : · · · : α′⊥] yields

α′⊥

p−1∑
j=0

γ∗j = α′⊥Ψδ = α′⊥Ψβθ + α′⊥Ψβ⊥θ∗,

where θ∗ = β′⊥δ and θ = β′δ as in (2.7). From the foregoing equation we can solve for θ∗ in

the same way as for φ∗ above. The result is

θ∗ = β′⊥C

(
p−1∑
j=0

γ∗j −Ψβθ

)

from which we form an estimator for θ∗ as

θ̃∗ = β̃′⊥C̃

(
p−1∑
j=0

γ̃∗j − Ψ̃β θ̃

)
.

Here γ̃∗j and θ̃ are again based on the RR estimation of (2.7). Thus, an estimator of δ is

obtained as

δ̃ = β̃(β̃′β̃)−1θ̃ + β̃⊥(β̃′⊥β̃⊥)−1θ̃∗.

We shall now consider asymptotic properties of the estimators µ̃1 and δ̃ by assuming that

the break date τ in (2.7) is replaced by any one of the estimators τ̂ , τ̂R or τ̃ introduced in

Section 3. For simplicity, other estimators based on the VECM (2.7) with τ replaced by
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an estimator will be denoted as before (e.g., β̃, α̃, . . . ), that is, the estimated τ will not be

explicitly indicated. The following result is shown in the Appendix.

Lemma 4.1. Consider the four cases (i) δ1 6= 0, a ≤ 1/2, (ii) δ1 = 0, a ≤ 1/b, (iii) δ = 0

and (iv) δ1 = 0, a > 1/b. If (i), (ii) or (iii) holds and the break date is estimated by τ̂ , τ̂R

or τ̃ or if (iv) holds and τ is estimated by τ̂ or τ̂R, then the estimators µ̃1 and δ̃ have the

following properties.

β′(µ̃1 − µ1) = Op(T
η−3/2) (4.1)

T 1/2β′⊥(µ̃1 − µ1)
d−→ N(0, β′⊥CΩC ′β⊥) (4.2)

β′(δ̃ − δ) = Op(T
η−1/2) (4.3)

β′⊥(δ̃ − δ) = op(T
η) (4.4)

where 1
b

< η < 1
4
. 2

The result of Lemma 4.1 is not the best possible in that improvements in the convergence

rates in (4.1), (4.3) and (4.4) can be obtained in some of the cases (i)-(iv). For ease of

exposition and because the given results suffice for our purposes we have preferred not to go

into details in this matter. Note that if τ̂ or τ̂R are used, the results of Lemma 4.1 hold for

all δ and a permitted by Assumption 3. On the other hand, for τ̃ we exclude the case where

δ1 = 0, δ 6= 0 and a > 1/b because the case δ1 = 0 is not considered in Theorem 3.3 and

for this case we do not have a proof of the properties of the estimators µ̃1 and δ̃ stated in

Lemma 4.1. It may be worth emphasizing, however, that if δ = 0 so that there is no break

(and, hence, δ1 = 0) the results of the lemma hold also for τ̃ because the lemma is valid for

all three break date estimators if (iii) holds. In other words, the results not only hold under

the assumptions of Theorems 3.1, 3.2 and 3.3 but also when δ = 0 so that there is no break.

In the following we will use the estimators µ̃1 and δ̃ in constructing cointegrating rank tests.

4.2 Cointegration Tests

We wish to construct a test of the null hypothesis

H0(r0) : rk(Π) = r0 vs. H1(r0) : rk(Π) > r0.
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The test will be based on series which are adjusted for the deterministic trend and the shift

term.

Recall that yt = µ0 + µ1t + δdtτ + xt, where xt has a (possibly) cointegrated VAR(p)

representation (see (2.4)-(2.5)). Because estimators for τ , µ1 and δ are available for the

cointegrating rank r0 specified in the null hypothesis, we can form the series

ỹ
(0)
t = yt − µ̃1t− δ̃dtτ̂

= µ0 + xt − (µ̃1 − µ1)t− δ̃dtτ̂ + δdtτ .
(4.5)

Thus, apart from estimation errors we have ỹ
(0)
t ∼ µ0 + xt. This suggests that we can base

a test on this approximation or on the auxiliary model

∆ỹ
(0)
t = Π+ỹ

(+)
t−1 +

p−1∑
j=1

Γj∆ỹ
(0)
t−j + etτ̂ , (4.6)

where ỹ
(+)
t−1 = [ỹ

(0)′
t−1, 1]′ and Π+ is defined by adding an extra column to the matrix Π in (2.5).

This auxiliary model can be treated as a true model and a LR test statistic for a specified

cointegrating rank can be formed in the usual way by solving the related generalized eigen-

value problem (see Johansen (1995, Theorem 6.3) for the resulting test statistic). We will

denote the LR statistic for the null hypothesis rk(Π) = r0 by LR(r0) in the following. Its

limiting distribution differs from that given in Theorem 6.3 of Johansen (1995) for the corre-

sponding LR test statistic. We have the following result which is also proven in the Appendix.

Theorem 4.1. Suppose that the assumptions of Lemma 4.1 hold and moreover that in the

case a = 1/2 the employed break date estimator is consistent. Then, if H0(r0) is true,

LR(r0)
d−→ tr

{(∫ 1

0

B+(s)dB∗(s)′
)′ (∫ 1

0

B+(s)B+(s)′ds

)−1 (∫ 1

0

B+(s)dB∗(s)′
)}

,

where B∗(s) = B(s)−sB(1) is an (n−r0)-dimensional Brownian bridge, B+(s) = [B∗(s)′, 1]′

and dB∗(s) = dB(s) − dsB(1), that is,
∫ 1

0
B+(s)dB∗(s)′ abbreviates

∫ 1

0
B+(s)dB(s)′ −

∫ 1

0
B+(s)dsB(1)′. 2

Several remarks are worth making regarding this theorem. First, a similar result for

their break date estimator and cointegrating rank test was obtained by LST under more

restrictive assumptions regarding the break size. The limiting distribution in Theorem 4.1
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differs from its earlier counterpart in LST in that the process B+(s) appears in place of the

Brownian bridge B∗(s). The reason is of course that here an intercept term is included in

the auxiliary model on which the test is based. On the other hand, the limiting distribution

is formally similar to its counterpart in Theorem 6.3 of Johansen (1995) where a standard

Brownian motion appears in place of the Brownian bridge in Theorem 4.1. Notice that the

term
∫ 1

0
B+(s)dB∗(s)′ consists of two components. The first one is

∫ 1

0

B∗(s)dB∗(s)′ =
∫ 1

0

B(s)dB(s)′ −B(1)

∫ 1

0

sdB(s)′ −
∫ 1

0

B(s)dsB(1)′ +
1

2
B(1)B(1)′

and the second one is
∫ 1

0

1dB∗(s)′ =
∫ 1

0

dB(s)′ −
∫ 1

0

dsB(1)′ = 0.

Second, in the case when there is no trend in the model, that is, µ1 = 0 a priori and

hence µ̃1 = 0, the processes B+(s) and B∗(s) can be replaced by [B(s)′, 1]′ and B(s), respec-

tively. Then the limiting distribution of the test statistic LR(r0) is the same as the limiting

distribution of the LR test statistic in Theorem 6.3 of Johansen (1995). This result can be

seen by a careful examination of the proof of Theorem 4.1 in the Appendix and the proof of

the corresponding result in Saikkonen & Lütkepohl (2000).

Third, note that, although Theorem 4.1 applies to the break date estimator τ̂R irrespec-

tively of the value a in Assumption 3 and whether δ1 or δ is nonzero or not, this is not the

case for the estimators τ̂ and τ̃ . The reason is that by Theorem 3.1 τ̂ is not necessarily

consistent for a = 1/2. Moreover, the consistency of τ̃ does not follow from Theorem 3.3

if δ1 = 0. In the latter theorem we only give asymptotic results for the case δ1 6= 0 and,

therefore, Theorem 4.1 is not justified when τ̃ is used and δ1 = 0 while δ 6= 0.

Fourth, from the proof of Theorem 4.1 it is apparent that the same limiting distribution

is obtained if the shift date is assumed known or if it is known that there is no shift in the

process. In the latter case δ = 0 and only µ1 is estimated in the first step of the procedure.

Thus, in our framework, including a shift dummy in the model and estimating its coefficients

and the shift date as described in the foregoing has no effect on the limiting distribution of

the cointegration tests. The same result was obtained by LST for their cointegrating rank

tests in a more limited model framework. It may be worth emphasizing that such a result

will not be obtained if instead of our estimation procedure for the deterministic parameters,

the Johansen (1995) ML approach is applied to a model with estimated shift date (see also
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Johansen, Mosconi & Nielsen (2000) for a discussion of the case when the break date is

known).

Extensions of our results in different directions are conceivable. If the cointegrating rank

tests considered by LST are used instead of our new ones, we expect that the same results as

in LST can be obtained for the limiting distributions under the present or similar assumptions

for the break size. Moreover, it seems likely that our results can be extended by including

more than one shift dummy or other dummy variables in model (2.1). In fact, an additional

impulse dummy and seasonal dummies were considered by Saikkonen & Lütkepohl (2000).

The result in Theorem 4.1 remains valid with additional dummies if the corresponding shift

dates are known and the parameters of the additional deterministic terms are estimated in a

similar way as µ1 or δ. If the dates of further shifts are unknown, it may be more difficult to

construct suitable shift date estimators. This issue may be an interesting project for future

research.

To apply the cointegration rank tests we need critical values for the limiting distributions

in Theorem 4.1. They will be presented next.

4.3 Simulation of Percentiles

The limiting distribution given in Theorem 4.1 is simulated numerically by approximating

the standard Brownian motions with T -step random walks of the same dimension n − r0.

We use T = 1000 as the sample length. Then, discrete counterparts for the Brownian bridge

B∗(s) and the functions of B∗(s) can be formed using the random walks. The percentiles

in Table 1 are derived from 100,000 replications of the simulation experiment by means of a

program written in GAUSS V5.

The generated random walks are based on independent standard normal variates which

have been derived from the Monster-KISS random number generator. The Monster-KISS

algorithm was suggested by Marsaglia (2000) and is implemented in GAUSS V5. We use

independent realizations of the standard normal variates for each dimension n− r0.

In case of µ1 = 0 the limiting distribution of LR(r0) is the same as the distribution

of the LR test statistic in Theorem 6.3 of Johansen (1995). Therefore, one can apply the

corresponding percentiles given in Table 15.2 in Johansen (1995) for the setup of no linear

trend.
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Table 1: Percentiles of Limiting Distribution of LR(r0)

n− r0 50% 75% 80% 85% 90% 95% 97.5% 99%

1 3.578 5.356 5.893 6.576 7.509 9.046 10.589 12.645

2 11.694 14.658 15.498 16.508 17.855 20.010 22.073 24.623

3 23.712 27.857 28.972 30.316 32.125 34.897 37.431 40.447

4 39.569 44.895 46.320 47.955 50.121 53.612 56.690 60.570

5 59.341 65.776 67.457 69.473 72.080 76.015 79.667 84.117

6 83.090 90.760 92.704 95.025 98.069 102.705 106.916 112.106

7 110.856 119.613 121.884 124.552 128.014 133.253 137.840 143.404

8 142.276 152.287 154.833 157.881 161.719 167.556 172.820 179.112

9 177.780 188.799 191.638 194.971 199.236 205.784 211.621 218.775

10 217.039 229.419 232.616 236.300 241.029 248.043 254.424 262.249

11 260.208 273.643 277.038 281.156 286.353 294.106 300.790 309.092

12 307.017 321.719 325.492 329.900 335.460 343.999 351.124 359.944

13 358.218 373.905 377.893 382.515 388.495 397.416 405.240 414.683

14 412.647 429.672 433.969 438.982 445.361 454.694 462.861 472.893

15 471.304 489.298 493.765 499.239 506.088 516.412 525.570 536.449

In the next section we will discuss small sample properties of the break date estimators

and cointegration tests.

5 Monte Carlo Simulations

A small Monte Carlo experiment was performed to compare our break date estimators and

to explore the finite sample properties of the corresponding test procedures. Furthermore,

we compare the cointegration test suggested by LST with the test proposal in this paper.

The simulations are based on the following xt process from Toda (1994) which was also used

by a number of other authors for investigating the properties of cointegrating rank tests (see,
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e.g., Hubrich, Lütkepohl & Saikkonen (2001)):

xt = A1xt−1 + εt =


 ψ 0

0 In−r


 xt−1 + εt, εt ∼ i.i.d. N





 0

0


 ,


 Ir Θ

Θ′ In−r





 , (5.1)

where ψ = diag(ψ1, . . . , ψr) and Θ are (r × r) and (r × (n − r)) matrices, respectively. As

shown by Toda, this type of process is useful for investigating the properties of LR tests

for the cointegrating rank because other cointegrated VAR(1) processes of interest can be

obtained from (5.1) by linear transformations which leave such tests invariant. Obviously, if

|ψi| < 1 (i = 1, . . . , r) we have r stationary series and, thus, the cointegrating rank is equal

to r. Hence, Θ describes the contemporaneous error term correlation between the stationary

and nonstationary components. We have used three- and four-dimensional processes for

simulations and report some of the results in more detail here. For given VAR order p and

break date τ , the test results are invariant to the parameter values of the constant and

trend because we allow for a linear trend in our tests. Therefore we use µi = 0 (i = 0, 1)

as parameter values throughout without loss of generality. In other words, the intercept

and trend terms are actually zero although we take such terms into account and thereby we

pretend that this information is unknown to the analyst. Hence, yt = δdtτ + xt and we have

performed simulations with different δ vectors. Rewriting xt in VECM form (2.5) shows that

Π = −(In − A1) = diag(ψ − Ir : 0) and, thus, δ1 = −Πδ can only be nonzero if level shifts

occur in stationary components of the DGP.

Samples are simulated starting with initial values of zero. We have also used other initial

conditions for some simulations and obtained qualitatively the same results. Because the

tests used in LST may have a disadvantage for nonzero initial values and because we want

to perform a comparison with these tests we present only results for zero initial conditions

to simplify an overall comparison. We have considered a sample size of T = 100. The

number of replications is 1000. Thus, the standard error of an estimator of a true rejection

probability P is sP =
√

P (1− P )/1000, e.g., s0.05 = 0.007. Moreover, we use different VAR

orders p, although the true order is p = 1, in order to explore the impact of this quantity on

the estimation and testing results. In all simulations the search procedures are applied to

all possible break points τ from the 5th up to and including the 96th observation.

In Section 3 the break date estimators τ̂ , τ̂R, and τ̃ have been introduced. Only τ̂R

takes account of the nonlinear restrictions between the parameters in (3.5). The estimator
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τ̂ disregards these restrictions which involve the model parameters related to the dummy

variables and the autoregressive terms, and τ̃ ignores the dummy variables completely when

estimating the shift date. To compute τ̂R we use a nonlinear LS estimation method by

applying the Gauss-Newton algorithm in order to minimize the sum of squared residuals

corresponding to (3.5). The iterations of the algorithm stop if the change in Dτ̂R
= det[(T −

p)−1
∑T

t=p+1 ε̂R
tτ ε̂

R′
tτ ] from iteration i to i+1 is less than (T −p)−n, where ε̂R

tτ (t = p+1, . . . , T )

are the residual vectors from the nonlinear estimation of (3.5). Thus, the precision is about

10−6 for a three-dimensional process. In addition, the maximum number of iterations is set to

25. We have also worked with smaller values of our stopping criterion and higher maximum

numbers of iterations for a subset of our simulation experiments but did not obtain different

results. Of course, the application of the Gauss-Newton algorithm is computationally rather

demanding. Therefore, as suggested earlier, we use τ̂ first in order to locate the shift date

roughly. Then, we only apply τ̂R for restricted values of τ such that |τ̂R − τ̂ | ≤ 2p. The

resulting estimator will be abbreviated as τ̂R,p. By restricting the range of possible break

points the computation time is reduced to 15-25% of the time for the full range depending

on the order and the dimension of the process. Even more time can be saved if the two-step

estimator is used. Here, (3.4) is estimated first ignoring the nonlinear restrictions. Then,

the estimators for Π and Γ1, . . . , Γp−1 are used to replace their theoretical counterparts in

the expression given in parentheses in (3.5) and the resulting model corresponding to (3.5) is

reestimated by LS. This procedure is repeated for the whole range of possible break points.

The corresponding two-step break date estimator is denoted by τ̂
(2)
R . Within our simulation

study we analyze the effects of the different ways of computing the constrained estimator.

The interpretation of the simulation results is done in three steps. First, we analyze the

ability of the shift date estimators to locate the true break point. Secondly, we discuss the

small sample properties of the corresponding cointegration tests based on these estimators.

Finally, we compare the type of cointegration tests suggested by LST and the test proposed

in this paper.

As a basis for the comparison of the shift date estimators we start with a three-dimensional

DGP with r = 1 (ψ1 = 0.9), Θ = (0.4, 0.8) and τ = 50. Afterwards, we comment on the

importance of the value of τ and the innovation correlation. In a next step we turn to

a four-dimensional DGP with two cointegration relations in order to study the properties
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Figure 1: Relative frequency of true break point estimates (τ̂ , τ̂R, τ̃) or of estimates in interval

τ ± 2 (τ̂ (band), τ̂R (band), τ̃ (band)) for three-dimensional DGP with r = 1 (ψ1 = 0.9),

Θ = (0.4, 0.8), sample size T = 100, true break point τ = 50, nominal significance level 0.05,

δ(2) = δ(3) = 0.

of the procedures in case of more complicated processes. Finally, we examine situations

where δ1 = −Πδ = 0 and, hence, asymptotically consistent estimation of τ requires stronger

conditions or is even not possible in case of τ̃ .

The break date estimates with respect to our three-dimensional basis DGP with r = 1

and a VAR order p = 1 are reported in Table 2 and Panel A of Figure 1. We consider a

shift δ = (δ(1), δ(2), δ(3))
′ with δ(1) ranging from 1 to 10 and δ(2) = δ(3) = 0. Hence, the shift

occurs in the first component of the DGP which is stationary according to (5.1). Thus, as

discussed above, we have δ1 = Πδ = αβ′δ 6= 0 in (3.1) and, hence, θ = β′δ 6= 0 in (2.7).

It can be seen that τ̂R is clearly most successful in finding the correct break date for small
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Table 2: Break Date Estimates and Rejection Frequencies for Three-Dimensional DGP with
r = 1 (ψ1 = 0.9), p = 1, Θ = (0.4, 0.8), Sample Size T = 100, VAR order p = 1, True Break
Point τ = 50, Nominal Significance Level 0.05, δ(2) = δ(3) = 0.

δ(1) =1 δ(1) =2 δ(1) =3 δ(1) =5 δ(1) =7 δ(1) =10
τ̂ (Ignoring Nonlinear Restrictions)

< 48 0.423 0.200 0.022 0.000 0.000 0.000

= 48/49 0.038 0.023 0.005 0.000 0.000 0.000
Break date

= 50 0.104 0.586 0.964 1.000 1.000 1.000
estimates

= 51/52 0.016 0.002 0.000 0.000 0.000 0.000

> 52 0.419 0.189 0.009 0.000 0.000 0.000

r0 = 0 0.631 0.620 0.624 0.630 0.630 0.630
Rejection

r0 = 1 0.135 0.103 0.079 0.075 0.075 0.075
frequencies

r0 = 2 0.017 0.017 0.009 0.009 0.009 0.009

τ̂R (Considering Nonlinear Restrictions)

< 48 0.373 0.145 0.025 0.001 0.000 0.000

= 48/49 0.028 0.006 0.001 0.000 0.000 0.000
Break date

= 50 0.150 0.671 0.946 0.999 1.000 1.000
estimates

= 51/52 0.020 0.005 0.000 0.000 0.000 0.000

> 52 0.429 0.173 0.028 0.000 0.000 0.000

r0 = 0 0.699 0.649 0.633 0.630 0.630 0.630
Rejection

r0 = 1 0.118 0.094 0.080 0.076 0.075 0.075
frequencies

r0 = 2 0.015 0.015 0.009 0.009 0.009 0.009

τ̃ (Ignoring Impulse Dummies)

< 48 0.459 0.399 0.296 0.112 0.028 0.007

= 48/49 0.039 0.063 0.082 0.049 0.012 0.000
Break date

= 50 0.036 0.131 0.339 0.757 0.937 0.991
estimates

= 51/52 0.018 0.008 0.006 0.001 0.000 0.000

> 52 0.448 0.399 0.277 0.081 0.023 0.002

r0 = 0 0.643 0.614 0.547 0.558 0.602 0.625
Rejection

r0 = 1 0.126 0.122 0.106 0.080 0.076 0.075
frequencies

r0 = 2 0.024 0.018 0.019 0.012 0.009 0.009

shift magnitudes. Only if δ(1) = 3, τ̂ performs slightly better. For large values of δ(1) both

estimators perform identically. In fact, the case δ(1) = 3 is one of the few exceptions in all

our simulation experiments where τ̂ outperforms τ̂R. Clearly, τ̃ is inferior compared to the

other break date estimators. These observations also hold if one considers the small band

[τ − 2; τ + 2] instead of τ to evaluate the break date estimator. The number of estimates

in this band which are different from τ is rather small. Only with respect to the estimator
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Table 3: Break Date Estimates and Rejection Frequencies for Three-Dimensional DGP with
r = 1 (ψ1 = 0.9), p = 3, Θ = (0.4, 0.8), Sample Size T = 100, VAR order p = 3, True Break
Point τ = 50, Nominal Significance Level 0.05, δ(2) = δ(3) = 0.

δ(1) =1 δ(1) =2 δ(1) =3 δ(1) =5 δ(1) =7 δ(1) =10
τ̂ (Ignoring Nonlinear Restrictions)

< 48 0.412 0.215 0.039 0.001 0.000 0.000

= 48/49 0.091 0.343 0.580 0.616 0.617 0.622
Break date

= 50 0.044 0.229 0.358 0.383 0.383 0.378
estimates

= 51/52 0.016 0.004 0.000 0.000 0.000 0.000

> 52 0.437 0.209 0.023 0.000 0.000 0.000

r0 = 0 0.482 0.463 0.436 0.411 0.396 0.382
Rejection

r0 = 1 0.109 0.109 0.092 0.077 0.072 0.075
frequencies

r0 = 2 0.017 0.018 0.017 0.015 0.017 0.016

τ̂R (Considering Nonlinear Restrictions)

< 48 0.406 0.234 0.057 0.001 0.000 0.000

= 48/49 0.024 0.006 0.001 0.000 0.000 0.000
Break date

= 50 0.105 0.509 0.873 0.998 1.000 1.000
estimates

= 51/52 0.023 0.019 0.007 0.000 0.000 0.000

> 52 0.442 0.232 0.062 0.001 0.000 0.000

r0 = 0 0.533 0.496 0.440 0.423 0.422 0.422
Rejection

r0 = 1 0.114 0.109 0.093 0.086 0.085 0.085
frequencies

r0 = 2 0.015 0.013 0.010 0.011 0.011 0.011

τ̃ (Ignoring Impulse Dummies)

< 48 0.440 0.369 0.268 0.084 0.014 0.003

= 48/49 0.042 0.067 0.085 0.040 0.011 0.001
Break date

= 50 0.044 0.160 0.358 0.804 0.960 0.995
estimates

= 51/52 0.019 0.011 0.004 0.002 0.001 0.000

> 52 0.455 0.393 0.285 0.070 0.014 0.001

r0 = 0 0.531 0.502 0.466 0.429 0.428 0.422
Rejection

r0 = 1 0.129 0.113 0.108 0.088 0.083 0.085
frequencies

r0 = 2 0.023 0.020 0.013 0.013 0.012 0.011

τ̃ these estimates have some relevance for small values of δ(1) (see Panel A of Figure 1).

Obviously, the frequency of finding τ increases for larger shift magnitudes. This result is not

surprising given the asymptotic properties of the estimators and the fact that δ1 6= 0 in the

present situation. Because T is fixed, changing δ(1) from one to ten may be interpreted as

changing a or δ∗ in (3.3) accordingly.

Next, we have fitted a VAR(3) model although the true DGP has only an order p = 1.
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In this case j0 = 0 in Theorem 3.1(i) because γ1 = γ2 = 0. Thus, we obtain from Theorem

3.1(i), Pr{48 ≤ τ̂ ≤ 50} → 1 in the present context. In line with this result it is clear that τ̂

does not necessarily find τ = 50 with probability 1 for increasing δ(1)’s. In fact, we observe in

Table 3 and Panel B of Figure 1 that in about two thirds of the replications the break date is

located too early. However, the estimates converge to the stated range for τ̂ , in line with our

asymptotic results. Interestingly, with respect to the band [τ − 2; τ + 2], τ̂ is slightly more

successful than τ̂R for values of δ(1) between two and five. Otherwise, the general outcomes

regarding τ̂R and τ̃ do not change. The frequency of detecting τ = 50 reduces somewhat for

τ̂R, but increases slightly for τ̃ .

So far we have only considered the constrained estimator τ̂R based on the Gauss-Newton

algorithm. Figure 2 presents the results also for τ̂R,p and τ̂
(2)
R . It can be seen that τ̂R,p is

always outperformed by at least one of the other constrained estimators in the sense that

it never locates the true break date more often than both τ̂R and τ̂
(2)
R . The situations of

p = 3 with δ(1) = 3 and δ(1) = 5 belong to the rare cases where we observe that τ̂R,p is more

successful than one of its constrained competitors. The findings do not change if we evaluate

the estimators’ ability to locate the break point within the band [τ − 2, τ + 2]. Hence, τ̂R

and τ̂
(2)
R are in general superior although their advantage is often not very strong, as seen in

Figure 2. Nevertheless, it does not pay to use τ̂ first and apply constrained estimation only

to observations around the pre-estimated date. Therefore, we recommend to use either τ̂R

or τ̂
(2)
R if one wants to apply a constrained estimator.

These two estimators perform rather similarly for p = 1. In case of p = 3, τ̂
(2)
R is in

fact superior to τ̂R for values of δ(1) from one to five. We find a similar effect regarding

the VAR order p also for other processes. A reason for this finding could be that fitting

a VAR(3) model increases the number of parameters importantly compared to a VAR(1)

model. Within a three-dimensional framework 18 additional parameters have to be esti-

mated. This larger number may make it more difficult for the Gauss-Newton algorithm to

find the global minimum of Dτ̂R
when estimating (3.5). Indeed, we have examined some of

the simulation repetitions in more detail and could observe that the algorithm can get stuck

in a local minimum in situations where τ̂
(2)
R finds τ = 50 but τ̂R does not.

The relative outcomes for τ̂R, τ̂R,p, and τ̂
(2)
R also hold for the other DGPs considered.

Accordingly, we do not present detailed results for all constrained estimators in the following
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Figure 2: Relative frequency of true break point estimates (τ̂R, τ̂R,p, τ̂
(2)
R ) or of estimates

in interval τ ± 2 (τ̂R (band), τ̂R,p (band), τ̃
(2)
R (band)) of constrained estimators for three-

dimensional DGP with r = 1 (ψ1 = 0.9), Θ = (0.4, 0.8), sample size T = 100, true break

point τ = 50, nominal significance level 0.05, δ(2) = δ(3) = 0.

but only focus on τ̂
(2)
R .

Previously, we have only applied a true break point τ = 50. To analyze possible effects of

the location of τ we have also studied the break points τ = 10, τ = 25, τ = 75, and τ = 90

using the same three-dimensional DGP as before. In Figure 3 we present some findings for

δ(1) = 2 (Panels A and B) and δ(1) = 7 (Panels C and D) representing small and large shift

magnitudes. With respect to δ(1) = 2 we observe that it is only slightly more difficult to

detect the more extreme break points. In some situations it seems to be even easier for

the estimators to find the true break date. In case of large shift magnitudes (δ(1) = 7) the

location of the break date becomes even less important for the estimation results. These
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Figure 4: Relative frequency of true break point estimates (τ̂ , τ̂
(2)
R , τ̃) or of estimates in

interval τ ± 2 (τ̂ (band), τ̂
(2)
R (band), τ̃ (band)) for four-dimensional DGP with r = 2

(ψ1 = ψ2 = 0.7), Θ = ([0.4 : 0.4]′ : [0.4 : 0.4]′), sample size T = 100, true break point τ = 50,

nominal significance level 0.05, δ(2) = δ(3) = δ(4) = 0.

observations are made for both fitted VAR orders of p = 1 and p = 3 and also hold in case

of the constrained estimators τ̂R and τ̂R,p for which the results are not given here.

Next, we have studied the effect of the error term correlation between the stationary and

nonstationary components by considering a three-dimensional DGP as before but with Θ =

(0, 0) and comparing the outcomes with the previous findings. We do not present detailed

results but just summarize them. The absence of instantaneous error term correlation makes

it more difficult for all estimators to locate the true break point no matter whether the order

p = 1 or p = 3 is used. This outcome can be explained by the fact that we consider a

shift only in one of the three components so that a weaker link of the components owing
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to Θ = (0, 0) complicates the break date search. However, τ̂R and τ̂
(2)
R are now always the

most successful procedures and usually their advantage is even more pronounced than in

case of Θ = (0.4, 0.8). Otherwise the relative performance of the estimators is as before.

The estimators τ̃ and τ̂ are outperformed by the other procedures if p = 1 and p = 3,

respectively.

The break date estimates with respect to the more complicated four-dimensional DGP

with a cointegrating rank r = 2 (ψ1 = ψ2 = 0.7) and Θ = ([0.4 : 0.4]′ : [0.4 : 0.4]′) are

reported in Figure 4. In the present setup the shift vector has the form δ = (δ(1), δ(2), δ(3), δ(4))
′

with δ(1) ranging again from 1 to 10 and δ(2) = δ(3) = δ(4) = 0. Clearly, the performance of

the break date estimators deteriorates for the more complex four-dimensional DGP in case

of smaller level shifts. Although this inferior performance is especially marked for τ̂ and τ̂
(2)
R ,

the relative ranking of the estimation procedures does not change.

Finally, we examine two DGPs for which δ1 = Πδ = 0. For this situation, Theorems 3.1

and 3.2 state that compared to the case δ1 6= 0 “larger” shift magnitudes are needed to ensure

that τ̂ and τ̂R can estimate the break date consistently. For the estimator τ̃ this situation

is not covered in Theorem 3.3. First, we consider a three-dimensional process as in the base

case but with δ(3) ranging from one to ten and δ(1) = δ(2) = 0. Since the shift occurs in

the third component which is nonstationary the level shift is orthogonal to the cointegration

space in line with our DGP design (5.1). Thus, we simulate a case of co-breaking. Second,

we use a three-dimensional process with ψ1 = 1 so that the cointegrating rank is r = 0. In

case of r = 0, all components of the DGP are nonstationary and therefore no error term

correlation is present because Θ vanishes.

The results for the shift date estimators are depicted in Figures 5 and 6. Clearly, it is

now more difficult for all procedures to locate τ . In line with the asymptotic results the

difficulties are especially pronounced for τ̃ . Nevertheless, for very large shift magnitudes this

estimator is able to find τ with a relatively high frequency. However, τ̃ is outperformed by

all other procedures except in case of p = 3, for which τ̂ is still not very successful in locating

the correct break date. But even for p = 3, τ̂ is superior to τ̃ if small shift magnitudes are

considered. We see that the situation of no cointegration is much more difficult to deal with

than co-breaking. When r = 0, τ̂
(2)
R and τ̂ always locate τ correctly (or within the band

[τ−2, τ +2]) only if δ(1) = 10. With respect to co-breaking, by contrast, this outcome already
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Figure 5: Relative frequency of true break point estimates (τ̂ , τ̂
(2)
R , τ̃) or of estimates in

interval τ ± 2 (τ̂ (band), τ̂
(2)
R (band), τ̃ (band)) for three-dimensional DGP with r = 1

(ψ1 = 0.9), Θ = (0.4, 0.8), sample size T = 100, true break point τ = 50, nominal significance

level 0.05, δ(1) = δ(2) = 0.

occurs for shift magnitudes of five or seven. In any case, the relatively poor performance

of these procedures for small shift sizes relative to DGPs with δ1 6= 0 is in accordance with

the finding in Section 3 that precise estimation in the presence of δ1 = 0 requires large shift

magnitudes.

Hence, we can summarize our results as follows. The constrained estimators τ̂R and τ̂
(2)
R

are usually superior to all other procedures. Apart from a few exceptions no other estimator

performs better than these procedures in terms of locating the true shift date. In general the

performance of τ̂R and τ̂
(2)
R is similar, but the simple two-step estimator τ̂

(2)
R may have some

more pronounced advantages if we consider VAR models with higher orders, i.e. models with
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Figure 6: Relative frequency of true break point estimates (τ̂ , τ̂
(2)
R , τ̃) or of estimates in

interval τ ± 2 (τ̂ (band), τ̂
(2)
R (band), τ̃ (band)) for three-dimensional DGP with r = 0

(ψ1 = 1), Θ = (0, 0) , sample size T = 100, true break point τ = 50, nominal significance

level 0.05, δ(2) = δ(3) = 0.

many parameters to be estimated. In this case the Gauss-Newton algorithm can fail to detect

the global minimum of the respective determinant of the residual covariance matrix so that a

wrong break point is detected. Given the fact that τ̂
(2)
R is much faster in terms of computation

time one may have a preference for this estimator. Applying nonlinear LS to a subset of

observations around a pre-break date estimate only does not pay, as the performance of

τ̂R,p has shown. The estimator τ̂ which does not take the nonlinear restrictions involving the

model’s impulse dummy variables into account is outperformed by all other procedures when

fitting a VAR order p = 3. The small sample results for τ̂ are in line with our asymptotic

derivations which say that this procedure can estimate the break date too early when the
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VAR model is overspecified. However, if the frequency of estimates within a small band

around the true shift date is considered, τ̂ may outperform the constrained estimators in

case of p = 3.

So far we have just analyzed the small sample properties of the break date estimators

in terms of their ability to locate the true shift date. If one is primarily interested in the

cointegrating rank of the system the focus should be on the small sample properties of the

cointegration tests based on these different estimators. Our main conclusion is that the

tests’ small sample size and power generally differ less than the results of the break date

estimators. Therefore, we only discuss the outcomes for our three-dimensional base DGP

and the processes with δ1 = Πδ = 0.

The results with respect to the three-dimensional DGP with r = 1 (ψ1 = 0.9), δ(2) =

δ(3) = 0 and δ(1) ranging from one to ten are also given in the Tables 2 and 3. To be precise,

we present the rejection frequencies for the null hypothesis H0 : r = r0 when the test is

applied to a process with estimated shift date. The size and power values for the case of

a known break date can be read from the situations where the procedures find the correct

shift date τ = 50 in all simulation repetitions (100%). The rejection frequencies for the

case r0 = 1 should give an indication of the tests’ sizes in small samples. Therefore we

use the term size in the following when we refer to this case. In Table 2 we see that the

tests’ sizes are clearly higher in cases of small shift magnitudes for which we obtain many

incorrect break date locations. However, for increasing shift magnitudes the sizes approach

the values for a known shift date in line with the greater success of the estimators to locate

τ . Regarding the small sample power we observe an increase for small values of δ(1) in case

of τ̂R and a stronger drop for δ(1) = 3 and δ(1) = 5 if τ̃ is used. However, the increase in

power is relatively minor compared to the increase in size. Recall that the tests are based on

asymptotic critical values and no adjustment for the larger actual size is made. The power

of the test based on τ̂ is unaffected by the estimation of the shift date.

However, the situation is a bit different with respect to τ̂ when a VAR(3) model is fitted

(compare Table 3). Here, the sizes and powers of the corresponding cointegration tests fall

below the values for a known shift date when δ(1) is equal to seven or ten. Obviously, the

effect of the wrong locations on the small sample properties becomes important if the shift

magnitude is large. As in the case of a VAR(1) model, the sizes and the powers of the tests
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Figure 7: Relative rejection frequencies of cointegration rank tests based on constrained

estimators for three-dimensional DGP with r = 1 (ψ1 = 0.9), Θ = (0.4, 0.8), p = 1, sample

size T = 100, true break point τ = 50, nominal significance level 0.05, δ(2) = δ(3) = 0.

based on τ̂R are higher for small values of δ(1) whereas we do not observe a fall in the power

for τ̃ . Note, that the tests’ small sample powers are clearly lower when fitting a VAR(3)

instead of a VAR(1) model even if the true shift date is known.

Furthermore, we have found that there are no important differences between the small

sample properties of the cointegration tests referring to the three constrained estimators τ̂R,

τ̂R,p, and τ̂
(2)
R for both VAR orders used. As an example the results for p = 1 are shown in

Figure 7. The rejection frequencies for the null hypotheses r = 0 and r = 1 represent the

small sample powers and sizes, respectively. The lines regarding τ show the outcomes for

the situation of a known shift date. Thus, the differences with respect to the location of the

break point do not carry over to the cointegration tests. Therefore, we do not present more
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Figure 9: Relative rejection frequencies of cointegration rank tests with respect to r0 = 0 for

three-dimensional DGP with r = 0 (ψ1 = 1), Θ = (0, 0), sample size T = 100, true break

point τ = 50, nominal significance level 0.05, δ(2) = δ(3) = 0.

detailed results. Instead, we focus on the cointegration tests based on τ̂
(2)
R in the following

as we have done when evaluating the ability of the estimators to locate the true shift date.

We now consider some small sample properties of the cointegration tests for the processes

with δ1 = Πδ = 0. Figure 8 contains the results for the three-dimensional DGP with r = 1

and different values of δ(3) with respect to the orders p = 1 and p = 3. We see that the

cointegration test based on τ̃ suffers from power losses in small samples in case of p = 1.

However, the loss is relatively small compared to the poor performance of the estimator τ̃ for

the current setup (compare Figure 5, Panels A and B). In case of p = 3 the power reduction

for large shift magnitudes can be neglected. The size in small samples tends to be higher

for all estimators than the size in case of the correct shift date if we consider small values of
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δ(3). The size increase seems to be most important with respect to τ̃ .

Figure 9 presents the rejection frequencies of the cointegration tests for the three-dimensional

DGP with r = 0. All tests have a higher size in small samples for small shift magnitudes

compared to a cointegration test using the true shift date and reject the null hypothesis too

often given the significance level of 5%. Obviously, the size increase is stronger for p = 3.

The test based on τ̂
(2)
R has the largest size for small values of δ(1) but its size is closer to the

values for a known shift date in case of larger shift magnitudes. But again, the overall small

sample properties of the different cointegration procedures do not differ much. This was also

observed for the three-dimensional DGP with r = 1 and no innovation correlation and the

four-dimensional process we have studied.

Thus, we have seen that the differences with respect to the cointegration tests are less

marked than concerning the location of the break point. However, we observe some reduc-

tion in power in case of overspecified VAR models if τ̂ is used. Hence, if one runs the risk

of overspecifying the model it is not recommended to apply this break date estimator. Fur-

thermore, τ̃ can also induce power losses in some situations. Therefore, we suggest to use

the constrained estimators τ̂R, τ̂
(2)
R , and τ̂R,p if the primary interest is the determination of

the cointegrating rank. Since τ̂R and τ̂
(2)
R are in addition the most successful procedures to

find the true shift date we have a clear preference for these estimators. Hence, we conclude

that taking account of the nonlinear restrictions is beneficial to both the location of the shift

date and the testing for the cointegrating rank. In fact, estimating the shift date does not

worsen the small sample properties of the cointegration tests much relative to the case of a

known break point if an appropriate shift date estimator is used.

As mentioned in Section 4, LST have suggested a cointegration rank test based on GLS

estimation of all the deterministic terms including µ0 and adjusting yt accordingly. In con-

trast, the level term is considered in the second stage only when setting up the LR tests

treated so far. Now we compare the small sample properties of these two cointegration test

variants for known and unknown break date. In the latter case we use all three break date

estimators τ̂ , τ̂
(2)
R , and τ̃ . In LST theoretical results are only given for fixed shift size and

τ̂R is not considered explicitly. Because τ̂R satisfies the conditions of Theorem 4.1 of LST

for the case a = 0, using this estimator here as well is justified, however. The results for our

basic three-dimensional DGP with fitted VAR orders p = 1 and p = 3 are summarized in
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Table 4: Relative Rejection Frequencies of Cointegration Rank Tests for Three-Dimensional
DGP with r = 1 (ψ1 = 0.9), p = 1, Θ = (0.4, 0.8), Sample Size T = 100, VAR Order p = 1,
True Break Point τ = 50, Nominal Significance Level 0.05, δ(2) = δ(3) = 0.

Known
break
date δ(1) = 1 δ(1) = 2 δ(1) = 3 δ(1) = 5 δ(1) = 7 δ(1) =10

New cointegration rank test based on τ̂

r0 = 0 0.630 0.631 0.620 0.624 0.630 0.630 0.630
Rejection

r0 = 1 0.075 0.135 0.103 0.079 0.075 0.075 0.075
frequencies

r0 = 2 0.009 0.017 0.017 0.009 0.009 0.009 0.009

LST cointegration rank test based on τ̂

r0 = 0 0.594 0.593 0.592 0.591 0.594 0.594 0.594
Rejection

r0 = 1 0.040 0.066 0.053 0.045 0.040 0.040 0.040
frequencies

r0 = 2 0.008 0.008 0.008 0.008 0.008 0.008 0.008

New cointegration rank test based on τ̂
(2)
R

r0 = 0 0.630 0.696 0.653 0.635 0.630 0.630 0.630
Rejection

r0 = 1 0.075 0.123 0.103 0.080 0.075 0.075 0.075
frequencies

r0 = 2 0.009 0.015 0.016 0.010 0.009 0.009 0.009

LST cointegration rank test based on τ̂
(2)
R

r0 = 0 0.594 0.649 0.618 0.600 0.594 0.594 0.594
Rejection

r0 = 1 0.040 0.064 0.060 0.044 0.040 0.040 0.040
frequencies

r0 = 2 0.008 0.009 0.009 0.007 0.008 0.008 0.008

New cointegration rank test based on τ̃

r0 = 0 0.630 0.643 0.614 0.547 0.558 0.602 0.625
Rejection

r0 = 1 0.075 0.126 0.122 0.106 0.080 0.076 0.075
frequencies

r0 = 2 0.009 0.024 0.018 0.019 0.012 0.009 0.009

LST cointegration rank test based on τ̃

r0 = 0 0.594 0.590 0.545 0.506 0.531 0.562 0.588
Rejection

r0 = 1 0.040 0.060 0.059 0.058 0.047 0.044 0.041
frequencies

r0 = 2 0.008 0.013 0.011 0.007 0.007 0.007 0.008

Tables 4 and 5, respectively.

The rejection frequencies for the case of a known break date are given in the first column of

the Tables 4 and 5. Obviously, the new tests reject somewhat too often if the null hypothesis

is true (r = 1). These higher rejection frequencies were also found for other DGPs. This

may lead to a substantial size distortion in some situations. Thus, it may be worth exploring

small sample corrections for the new tests in future work.

Let us now turn to the case of an unknown break date where we use the estimators τ̂ ,
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Table 5: Relative Rejection Frequencies of Cointegration Rank Tests for Three-Dimensional
DGP with r = 1 (ψ1 = 0.9), p = 1, Θ = (0.4, 0.8), Sample Size T = 100, VAR Order p = 3,
True Break Point τ = 50, Nominal Significance Level 0.05, δ(2) = δ(3) = 0.

Known
break
date δ(1) = 1 δ(1) = 2 δ(1) = 3 δ(1) = 5 δ(1) = 7 δ(1) =10

New cointegration rank test based on τ̂

r0 = 0 0.422 0.482 0.463 0.436 0.411 0.396 0.382
Rejection

r0 = 1 0.085 0.109 0.109 0.092 0.077 0.072 0.075
frequencies

r0 = 2 0.011 0.017 0.018 0.017 0.015 0.017 0.016

LST cointegration rank test based on τ̂

r0 = 0 0.392 0.406 0.382 0.350 0.289 0.246 0.221
Rejection

r0 = 1 0.046 0.050 0.043 0.044 0.045 0.035 0.034
frequencies

r0 = 2 0.008 0.010 0.008 0.006 0.004 0.004 0.002

New cointegration rank test based on τ̂
(2)
R

r0 = 0 0.422 0.557 0.491 0.435 0.422 0.422 0.422
Rejection

r0 = 1 0.085 0.124 0.118 0.090 0.085 0.085 0.085
frequencies

r0 = 2 0.011 0.018 0.018 0.012 0.011 0.011 0.011

LST cointegration rank test based on τ̂
(2)
R

r0 = 0 0.392 0.474 0.425 0.396 0.392 0.392 0.392
Rejection

r0 = 1 0.046 0.073 0.054 0.048 0.046 0.046 0.046
frequencies

r0 = 2 0.008 0.011 0.011 0.008 0.008 0.008 0.008

New cointegration rank test based on τ̃

r0 = 0 0.422 0.531 0.502 0.466 0.429 0.428 0.422
Rejection

r0 = 1 0.085 0.129 0.113 0.108 0.088 0.083 0.085
frequencies

r0 = 2 0.011 0.023 0.020 0.013 0.013 0.012 0.011

LST cointegration rank test based on τ̃

r0 = 0 0.392 0.424 0.407 0.388 0.370 0.384 0.390
Rejection

r0 = 1 0.046 0.064 0.057 0.050 0.045 0.047 0.046
frequencies

r0 = 2 0.008 0.010 0.012 0.012 0.006 0.008 0.008

τ̂
(2)
R , and τ̃ . Interestingly, the relative performance of the old and new tests based on these

estimators is in general similar with respect to an increasing shift magnitude. An exception

is the case of a fitted VAR order p = 3 when τ̂ is used. For increasing shift sizes, the small

sample power of the LST test falls clearly below the power in case of a known break date.

We also observe a drop in small sample power for the new test procedure when the shift

magnitude is large but the drop is relatively smaller. Obviously, our new test proposal is

less affected by the incorrect break date estimates.
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6 Conclusions

We have analyzed the asymptotic properties of three estimators for the shift date in a

cointegrated VAR process with level shift. The shift is modelled by a simple shift dummy

variable. The first estimator is based on an unrestricted VAR model, the second one is

obtained by taking into account the relation between the parameters of the stochastic and

deterministic parts of the model and, finally, the third estimator is based on a misspecified

model, ignoring impulse dummy variables that are present in our model setup. Asymptotic

properties of all three estimators are given under the assumption that the shift may depend

on the sample size. Both, a growing and a declining shift size when the sample size tends

to infinity are considered. These results extend previous results of LST who consider two

of the three shift date estimators assuming a fixed shift size. Our results shed new light on

previously unexplained small sample phenomena. We have also considered the implications

of using models with estimated instead of true shift dates in testing for the cointegrating

rank and we have proposed new variants of cointegration rank tests. These tests differ from

those considered by LST in that they avoid estimating the nonidentified part of the levels

parameter and proceed otherwise in a similar manner. More precisely, the trend and shift

parameters are estimated in a first step and then rank tests of the LR type are applied to

adjusted series. The asymptotic distribution of the new tests is derived.

In addition to providing asymptotic results, we have also investigated the small sample

properties of the procedures using a Monte Carlo simulation experiment. It is found that

the estimator that takes the restrictions into account is overall the most successful one

in locating the true shift date. A computationally efficient variant that does not require

computer intensive iterative optimization algorithms is shown to work as well as an estimator

based on a full optimization of the nonlinear objective function. Although a superior break

date estimator tends to improve the small sample properties of subsequent cointegration

tests, such improvements are relatively small because the differences between the break date

estimators are small when the shift size is large and, hence, the shift is important. Generally

it pays to account for a shift in testing for the cointegrating rank of a system of variables

when such a shift is actually present.

A comparison of the tests considered by LST and the new tests of the present paper

shows, however, that the latter tend to reject a true null hypothesis more often than the
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LST tests. Generally the new tests tend to reject true null hypotheses too often and, hence,

in future research it may be of interest to develop small sample corrections to ensure a test

size close to the nominal level.

Appendix A. Proofs

Some parts of the proofs are similar to those of the corresponding results stated in LST

under more restrictive conditions. Because these authors provide brief sketches of the proofs

only, we also present more detailed and more complete versions of the similar parts here.

The following notational conventions are used in addition to the notation defined earlier.

Right hand side and left hand side will be abbreviated by r.h.s. and l.h.s., respectively. The

smallest and largest eigenvalues of a matrix are denoted by λmin(·) and λmax(·), respectively.

The complement of a set B is signified by Bc. The dependence of quantities on the sample size

T is not indicated. The symbol ⇒ signifies weak convergence in a product space of D([λ, λ̄])

or D([0, 1]). The former is relevant for random functions depending on the parameter λ,

whereas the latter is used when the weak limit is a Brownian motion. Unless otherwise

stated, all limits assume that T → ∞. When obtaining weak convergences in a product

space of D([λ, λ̄]) we frequently make use of results given in Appendix A.1 of Gregory &

Hansen (1996). It is straightforward to check that these results are applicable despite the

differences in assumptions.

In the proofs we assume the model and conditions described in Sections 2 and 3, where

the parameters µ0, µ1, δ∗ ∈ Rn and the true α, β, Π and Γj (j = 1, . . . , p − 1) satisfy

the restrictions which ensure that the observed variables are at most I(1) whereas these

restrictions are not imposed in the estimation.

The true DGP is one specific process from our model class. It is occasionally helpful to

be more explicit about its particular parameter values. In these cases they will be indicated

with a subscript ‘o’ (e.g., µ0o, µ1o, τo etc.). We begin by proving Theorem 3.1.

A.1 Proof of Theorem 3.1

Instead of the series yt it will be convenient to use the mean adjusted series

xt = yt − µ0o − µ1ot− δodtτo , t = 1, 2, . . .
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Solving the above equation for yt and inserting the result into (3.1) yields

∆xt = ν
(0)
0 +ν

(0)
1 t+δ1dtτ+γdtτ−δ

(0)
1 dtτo−γ(0)dtτo

+Πxt−1+

p−1∑
j=1

Γj∆xt−j+εt, t = p+1, p+2, . . .

(A.1)

Here

ν
(0)
0 = ν0 + Πµ0o −Ψµ1o − Πµ1o

ν
(0)
1 = ν1 + Πµ1o

γ = [γ0 : · · · : γp−1]

dtτ = [∆dtτ : · · · : ∆dt−p+1,τ ]
′

δ
(0)
1 = −Πδo

and

γ(0) = [γ
(0)
0 : · · · : γ

(0)
p−1] with γ

(0)
j =





δo − δ
(0)
1 , j = 0

−Γjδo, j = 1, . . . , p− 1.

Note that the true values of ν
(0)
0 and ν

(0)
1 are zero.

It will also be convenient to use the transformation Πxt = α(0)u
(0)
t−1 + ρ(0)v

(0)
t−1, where

u
(0)
t−1 = β′oxt−1, v

(0)
t−1 = β′o⊥xt−1, α(0) = αβ′βo(β

′
oβo)

−1 and ρ(0) = αβ′βo⊥(β′o⊥βo⊥)−1. Clearly,

the true values of α(0) and ρ(0) are αo and zero, respectively. With this transformation the

preceding error correction form can be expressed as

∆xt = ν
(0)
0 + ν

(0)
1 t + δ1dtτ + γdtτ − δ

(0)
1 dtτo − γ(0)dtτo

+ α(0)u
(0)
t−1 + ρ(0)v

(0)
t−1 +

p−1∑
j=1

Γj∆xt−j + εt,

t = p + 1, p + 2, . . . (A.2)

Denote qtτ = [dtτ : d′tτ ]
′ and

w
(0)
t =

[
1 :

t

T
: T−1/2v

(0)
t−1

′
: u

(0)
t−1

′
: ∆x′t−1 : · · · : ∆x′t−p+1

]′
.

With this notation (A.2) becomes

∆xt = Φw
(0)
t + Ξqtτ − Ξ(0)qtτo + εt, t = p + 1, p + 2, . . . , (A.3)

where Φ = [ν
(0)
0 : Tν

(0)
1 : T 1/2ρ(0) : α(0) : Γ1 : · · · : Γp−1], Ξ = [δ1 : γ] and Ξ(0) = [δ

(0)
1 : γ(0)].
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Let Θ = [Φ : Ξ] contain the freely varying parameters in (A.3) or (A.2). (Ξ(0) is not a

freely varying parameter because it is determined by α(0), ρ(0) and Γ1, . . . , Γp−1.) Set

εtτ (Θ) = ∆xt − Φw
(0)
t − Ξqtτ + Ξ(0)qtτo .

Then

lT (Θ, τ, Ω) = (T − p) log det Ω + tr

(
Ω−1

T∑
t=p+1

εtτ (Θ)εtτ (Θ)′
)

is −2 times the (conditional) Gaussian log-likelihood function of the parameters in (A.3).

Minimizing this function yields Gaussian ML estimators of the parameters Θ, τ and Ω. It

is not difficult to see that the resulting estimators of Θ and τ can alternatively be obtained

by minimizing the concentrated counterpart of lT (Θ, τ, Ω), that is,

l
(c)
T (Θ, τ) = (T − p) log det

(
T∑

t=p+1

εtτ (Θ)εtτ (Θ)′
)

.

The definition of εtτ (Θ) (and the fact that Ξ(0) is not a freely varying parameter) makes it

clear that the value of τ that minimizes the function l
(c)
T (Θ, τ) is identical to τ̂ defined by

(3.2). Thus, (asymptotic) properties of τ̂ can be studied by using the Gaussian ML estimator

of τ discussed above. Before turning to this issue we note that the above discussion also

makes clear that a minimizer of lT (Θ, τ, Ω) exists (for every T larger than some constant).

The proof of Theorem 3.1 consists of several steps. In the first one we consider a subset

of the parameter space of (Θ, Ω) defined by

0 < ω ≤ λmin(Ω) ≤ λmax(Ω) ≤ ω̄ < ∞ (A.4)

and

‖Φ‖2 + ‖δ1 − δ
(0)
1 ‖2 ≤ M̄ < ∞. (A.5)

Note that here M̄ does not depend on T although Φ and δ
(0)
1 do. We now prove

Lemma A.1. Let B1 = B1(M̄, ω, ω̄) be the part of the parameter space of (Θ, τ, Ω) in which

conditions (A.4) and (A.5) hold. Then there exist choices of M̄ , ω and ω̄ such that

inf
(Θ,τ,Ω)∈Bc

1

lT (Θ, τ, Ω)− lT (Θo, τo, Ωo) > 0

with probability approaching one.
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Proof: First note that

T−1lT (Θo, τo, Ωo) =
(
1− p

T

)
log det Ωo + tr

(
Ω−1

o T−1

T∑
t=p+1

εtεt
′
)

= Op(1), (A.6)

where the latter equality is justified by the weak law of large numbers.

Next, since [Tλ] ≤ τ, τo ≤ [T λ̄], we find from the definitions that

εtτ (Θ) = ∆xt − Φw
(0)
t , t = p + 1, . . . , [Tλ]− 1,

and

εtτ (Θ) = ∆xt − Φw
(0)
t − (δ1 − δ

(0)
1 ), t = [T λ̄] + p, . . . , T.

Hence,

T−1lT (Θ, τ, Ω) ≥ (
1− p

T

)
log det Ω

+tr
(
Ω−1T−1

∑[Tλ]−1
t=p+1 [∆xt − Φw

(0)
t ][∆xt − Φw

(0)
t ]′

)

+tr
(
Ω−1T−1

∑T
t=[Tλ]+p[∆xt − Φ(0)w

(0)
t ][∆xt − Φ(0)w

(0)
t ]′

)
,

(A.7)

where Φ(0) = Φ + [δ1 − δ
(0)
1 : 0]. Here

λmin


T−1

[Tλ]−1∑
t=p+1


 ∆xt

w
(0)
t




[
∆x′t : w

(0)
t

′]′

 ≥ ε∗ (A.8)

where ε∗ > 0 is a suitable real number and the inequality holds with probability approaching

one. This fact can be justified in the same way as Lemma A.4 of Saikkonen (2001). A

similar result is also obtained by changing the range of summation on the l.h.s. of (A.8) to

t = [T λ̄] + p, . . . , T . When these two eigenvalue conditions are assumed arguments entirely

similar to those in Saikkonen (2001, pp. 320-321) show that, with suitable choices of M̄ , ω

and ω̄, the r.h.s of (A.7) can be made arbitrarily large whenever (Θ, τ, Ω) 6∈ B1(M̄, ω, ω̄).

The assertion of the lemma follows from this and (A.6). 2

Lemma A.1 implies that a minimizer of lT (Θ, τ, Ω) will asymptotically satisfy inequality

restrictions of the form (A.4) and (A.5). In what follows, the set B1 is always assumed to

be defined in such a way that the conclusion of Lemma A.1 holds. We shall now proceed in

the same way as in Saikkonen (2001) and express the function lT (Θ, τ, Ω) as a sum of two

components. To this end, define

w
(0)
1t =

[
1 :

t

T
: T−1/2v

(0)
t−1

′
]′
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and

w
(0)
2t =

[
u

(0)
t−1

′
: ∆x′t−1 : · · · : ∆x′t−p+1

]′
.

Then w
(0)
t = [w

(0)
1t

′
: w

(0)
2t

′
]′ and we also partition the parameter matrix Φ conformably as

Φ = [Φ1 : Φ2] where Φ1 = [ν
(0)
0 : Tν

(0)
1 : T 1/2ρ(0)] and Φ2 = [α(0) : Γ1 : · · · : Γp−1]. With these

definitions,

εtτ (Θ) = ε1tτ (Θ) + ε2t(Φ2),

where ε1tτ (Θ) = −Φ1w
(0)
1t −Ξqtτ +Ξ(0)qtτo and ε2t(Φ2) = ∆xt−Φ2w

(0)
2t . Clearly, ε1tτo(Θo) = 0

and

lT (Θ, τ, Ω) = l1T (Θ, τ, Ω) + l2T (Φ2, Ω),

where

l1T (Θ, τ, Ω) = tr

(
Ω−1

T∑
t=p+1

ε1tτ (Θ)ε1tτ (Θ)′
)

+ 2tr

(
Ω−1

T∑
t=p+1

ε1tτ (Θ)ε2t(Φ2)
′
)

and

l2T (Φ2, Ω) = (T − p) log det Ω + tr

(
Ω−1

T∑
t=p+1

ε2t(Φ2)ε2t(Φ2)
′
)

.

For l2T (Φ2, Ω) we have the following result.

Lemma A.2.

inf
(Φ2,Ω)

l2T (Φ2, Ω)− l2T (Φ2o, Ωo) = Op(1),

where the infimum is over unrestricted values of Φ2 and Ω > 0.

Proof: Because we can treat ∆xt as a zero mean stationary process and because l2T (Φ2, Ω)

can be interpreted as −2 times the logarithm of the Gaussian likelihood function associated

with the regression model ∆xt = Φ2w
(0)
2t + εt, the stated result follows from standard regres-

sion theory (cf. Saikkonen (2001, p. 321)). 2

Next consider the function l1T (Θ, τ, Ω). Our treatment will be divided into several steps in

which the time index t is suitably restricted. This means considering the function l1T (Θ, τ, Ω)

with the sample size T replaced by appropriate quantities smaller than T . Most of the

subsequent results will explicitly be formulated for τ ≤ τo and only briefly discussed in the

case τ ≥ τo. Due to the occurrence of impulse dummies the situation is in this respect
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somewhat more complicated than in previous cases where the break date parameter is not

affected by impulse dummies (e.g., Bai, Lumsdaine & Stock (1998)).

In the following results about the function l1T (Θ, τ, Ω), c1, c2, . . . denote positive con-

stants and a1T , a2T , . . . are nonnegative random variables which depend on the sample size

but not on the parameters Θ, τ or Ω. First we prove

Lemma A.3. There exists a constant c1 > 0 such that, with probability approaching one

and uniformly in [Tλ] ≤ τ ≤ τo and (Θ, τ, Ω) ∈ B1,

l1,τ−1(Θ, τ, Ω) ≥ c1‖T 1/2Φ1‖2 − a1T‖T 1/2Φ1‖,

where a1T ≥ 0 and a1T = Op(1).

Proof: For t ≤ τ − 1, ε1tτ (Θ) = −Φ1w
(0)
1t and, consequently,

l1,τ−1(Θ, τ, Ω) = tr

(
Ω−1Φ1

τ−1∑
t=p+1

w
(0)
1t w

(0)
1t

′
Φ′

1

)
− 2tr

(
Ω−1Φ1

τ−1∑
t=p+1

w
(0)
1t ε2t(Φ2)

′
)

def
= L1 + L2.

For L1 we have

L1 ≥ λmin(Ω
−1)tr

(
Φ1

τ−1∑
t=p+1

w
(0)
1t w

(0)
1t

′
Φ1

′
)
≥ λmin(Ω

−1)λmin

(
T−1

τ−1∑
t=p+1

w
(0)
1t w

(0)
1t

′
)
‖T 1/2Φ1‖2.

For (Θ, τ, Ω) ∈ B1, the first eigenvalue in the last expression is bounded away from zero.

That the same holds with probability approaching one and uniformly in [Tλ] ≤ τ ≤ τo for

the second eigenvalue, can be seen by using an analog of (A.3) of Gregory & Hansen (1996,

p. 118). Thus, we have shown that L1 ≥ c1‖Φ1‖2, c1 ≥ 0, with probability approaching one.

It remains to show that L2 ≥ −a1T‖T 1/2Φ1‖ with a1T having the properties stated in the

lemma. To demonstrate this, notice that

|L2| ≤ 2‖Ω−1‖
∥∥∥∥∥Φ1

τ−1∑
t=p+1

w
(0)
1t [∆xt − Φ2w

(0)
2t ]′

∥∥∥∥∥

≤ 2‖Ω−1‖
∥∥∥∥∥T−1/2

τ−1∑
t=p+1

w
(0)
1t [∆xt − Φ2w

(0)
2t ]′

∥∥∥∥∥ ‖T
1/2Φ1‖.

Here we have used the definition of ε2t(Φ2), the Cauchy-Schwarz inequality and the norm in-

equality. By an analog of (A.4) of Gregory & Hansen (1996, p. 118), the norm in the middle

of the last expression is of order Op(1) uniformly in [Tλ] ≤ τ ≤ τ0 and for any fixed value of
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Φ2. Thus, because the parameters Φ2 and Ω belong to bounded sets when (Θ, τ, Ω) ∈ B1, it

can similarly be shown that the last expression as a whole has an upper bound a1T‖T 1/2Φ1‖
with a1T as required. This completes the proof. 2

Our next result deals with the contribution of l1,τo−1(Θ, τ, Ω)−l1,τ−1(Θ, τ, Ω) to l1T (Θ, τ, Ω).

Here the relevant expression of ε1tτ (Θ) is

ε1tτ (Θ) = −Ψ1w
(0)
1t − γdtτ , t = τ, . . . , τo − 1,

where Ψ1 = Φ1 + [δ1 : 0].

Lemma A.4. Let ε be any real number with the property 0 < ε < λo − λ. Then, for

λ ≤ λ ≤ λo − ε there exists a constant c2 > 0 such that, with probability approaching one

and uniformly in [Tλ] ≤ τ ≤ [T (λo − ε)] and (Θ, τ, Ω) ∈ B1,

l1,τ0−1(Θ, τ, Ω)− l1,τ−1(Θ, τ, Ω) ≥ c2‖T 1/2Ψ1‖2 + c2‖γ‖2 − a2T‖T 1/2Ψ1‖ − a3T‖γ‖,

where aiT ≥ 0 (i = 2, 3), a2T = Op(1) and a3T = op(T
η) with 1

b
< η < 1

4
.

Proof: By the definitions,

l1,τo−1(Θ, τ, Ω)− l1,τ−1(Θ, τ, Ω)

= tr
(
Ω−1

∑τo−1
t=τ ε1tτ (Θ)ε1tτ (Θ)′

)
+ 2tr

(
Ω−1

∑τo−1
t=τ ε1tτ (Θ)ε2t(Φ2)

′) def
= L3 + L4.

First consider L3 and for simplicity denote Ψ1 = [Ψ1 : γ] and z
(0)
1tτ = [w

(0)
1t

′
: dtτ

′]′. Then

L3 = tr

(
Ω−1Ψ1

τo−1∑
t=τ

z
(0)
1tτz

(0)
1tτ

′
Ψ′

1

)
≥ λmin(Ω

−1)tr

(
Ψ1D1T

(
D−1

1T

τo−1∑
t=τ

z
(0)
1tτz

(0)
1tτ

′
D−1

1T

)
D1T Ψ′

1

)
,

(A.9)

where D1T = diag[T−1/2In−r+2 : Ip].

Next note that

T−1/2

τo−1∑
t=τ

w
(0)
1t ∆dt−i,τ = Op(T

−1/2), i = 0, . . . , p− 1, (A.9a)

uniformly in [Tλ] ≤ τ < τo. Because w
(0)
1t = [1 : t

T
: T−1/2v

(0)
t−1

′
]′ this is obvious for the

first and second components of w
(0)
1t . For the third component the same is true because
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T−1/2 max1≤t≤τo ‖v(0)
t−1‖ ≤ T−1/2 max1≤t≤T ‖β′o⊥xt−1‖ = Op(1), where the equality follows

form the fact that T−1/2β′o⊥x[Ts] obeys an invariance principle. Thus, we can conclude that

D−1
1T

τo−1∑
t=τ

z
(0)
1tτz

(0)
1tτ

′
D−1

1T = diag

[
T−1

τo−1∑
t=τ

w
(0)
1t w

(0)
1t

′
: Ip

]
+ op(1) (A.10)

uniformly in [Tλ] ≤ τ < τo.

The next step is to observe that

T−1

[Tλo]−1∑

t=[Tλ]

w
(0)
1t w

(0)
1t

′ ⇒ M11(λo)−M11(λ), λ ≤ λ < λo,

where M11(λ) is the weak limit of T−1
∑[Tλ]−1

t=p+1 w
(0)
1t w

(0)
1t

′
(cf. (A.3) of Gregory & Hansen

(1996, p. 118)). It is straightforward to check that the difference M11(λo) − M11(λ) is

positive definite and its smallest eigenvalue is bounded from below by a positive constant

when λ ≤ λ ≤ λo − ε.

The above discussion implies that, with probability approaching one, the smallest eigen-

value of the matrix on the l.h.s. of (A.10) is bounded away from zero uniformly in [Tλ] ≤
τ ≤ [T (λo − ε)]. Thus, it follows from (A.9) that, for (Θ, τ, Ω) ∈ B1 and with probability

approaching one,

L3 ≥ c2tr(Ψ1D1T D1T Ψ′
1) = c2‖T 1/2Ψ1‖2 + c2‖γ‖2,

where c2 > 0 is a (small) constant. This implies that it only remains to show that L4 ≥
−a2T‖T 1/2Ψ1‖ − a3T‖γ‖ with a2T and a3T stated in the lemma.

To show the above mentioned inequality about L4, conclude from the definitions that

L4 = −2tr

(
Ω−1Ψ1

τo−1∑
t=τ

w
(0)
1t ε2t(Φ2)

′
)
− 2tr

(
Ω−1γ

τ0−1∑
t=τ

dtτε2t(Φ2)
′
)

def
= L41 + L42.

Arguments similar to those already used in the proof of Lemma A.3 show that

|L41| ≤ 2‖Ω−1‖‖T 1/2Ψ1‖
∥∥∥∥∥T−1/2

τo−1∑
t=τ

w
(0)
1t [∆xt − Φ2w

(0)
2t ]′

∥∥∥∥∥ ≤ a2T‖T 1/2Ψ1‖,

where a2T = Op(1) in the required uniform sense.

Regarding L42, one similarly obtains

|L42| ≤ 2‖Ω−1‖‖γ‖
∥∥∥∥∥

τo−1∑
t=τ

dtτ [∆xt − Φ2w
(0)
2t ]′

∥∥∥∥∥ ≤ a3T‖γ‖,
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where a3T = op(T
η), 1

b
< η < 1

4
, in the required uniform sense. The latter inequality fol-

lows if the last norm in the preceding expression can be replaced by op(T
η). To justify

this, recall that ∆xt and w
(0)
2t are stationary processes with finite moments of order b > 4

and that Φ2 can be assumed to belong to a bounded set. Thus, it suffices to show that

max1≤t≤T ‖∆xt‖ = op(T
η) and similarly with ∆xt replaced by w

(0)
2t . This, however, can be

done by using an argument entirely similar to that in (A.14) of Saikkonen & Lütkepohl

(2002). The inequalities obtained for |L41| and |L42| above show that L2 has the required

lower bound and the proof is complete. 2

Our next result describes the contribution of l1,τo+p−1(Θ, τ, Ω)−l1,τo−1(Θ, τ, Ω) to l1T (Θ, τ, Ω).

We introduce the notation

ζ
(0)
tτ = (dtτ − dtτo)δ

(0)
1 + γdtτ − γ(0)dtτo

.

In the following lemma the relevant values of ε1tτ (Θ) can then be written as

ε1tτ (Θ) = −Ψ2w
(0)
1t − ζ

(0)
tτ , t = τo, . . . , τo + p− 1,

where Ψ2 = Φ1 +[δ1− δ
(0)
1 : 0]. Note that here the first term in the definition of ζ

(0)
tτ vanishes

but the general definition is convenient in later derivations. Now we can formulate

Lemma A.5. There exists a constant c3 > 0 such that, with probability approaching one

and uniformly in [Tλ] ≤ τ ≤ τo and (Θ, τ, Ω) ∈ B1,

l1,τo+p−1(Θ, τ, Ω)− l1,τo−1(Θ, τ, Ω) ≥ c3

τo+p−1∑
t=τo

‖ζ(0)
tτ ‖2 − a4T

(
τo+p−1∑

t=τo

‖ζ(0)
tτ ‖2

)1/2

− a5T ,

where aiT ≥ 0 and aiT = Op(1) (i = 4, 5).

Proof: By the definitions,

l1,τo+p−1(Θ, τ, Ω)− l1,τo−1(Θ, τ, Ω)

= tr
(
Ω−1

∑τo+p−1
t=τo

ε1tτ (Θ)ε1tτ (Θ)′
)

+ 2tr
(
Ω−1

∑τo+p−1
t=τo

ε1tτ (Θ)ε2t(Φ2)
′) def

= L5 + L6.

Assuming (Θ, τ, Ω) ∈ B1 we find that

L5 ≥ λmin(Ω
−1)

τo+p−1∑
t=τo

‖ε1tτ (Θ)‖2

≥ ω̄−1

τo+p−1∑
t=τo

‖Ψ2w
(0)
1t ‖2 + ω̄−1

τo+p−1∑
t=τo

‖ζ(0)
tτ ‖2 + 2ω̄−1

τo+p−1∑
t=τo

ζ
(0)
tτ

′
Ψ2w

(0)
1t .
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Because we can here assume that Ψ2 is bounded (see (A.5)), an application of the triangle

inequality and the Cauchy-Schwarz inequality shows that the absolute value of the third

term in the last expression can be bounded from above by

const.×
(

τo+p−1∑
t=τo

‖ζ(0)
tτ ‖2

)1/2 (
τo+p−1∑

t=τo

‖w(0)
1t ‖2

)1/2

.

Here the latter square root is of order Op(1) (see the argument leading to (A.10)). Hence,

we can conclude that

L5 ≥ c3

τo+p−1∑
t=τo

‖ζ(0)
tτ ‖2 − a41T

(
τo+p−1∑

t=τo

‖ζ(0)
tτ ‖2

)1/2

, (A.11)

where c3 = ω̄−1 > 0 and a41T = Op(1) in the required uniform sense.

Now consider L6. Arguments similar to those used in previous derivations combined with

the present definition of ε1tτ (Θ) yield

|L6| ≤ 2‖Ω−1‖
∥∥∥∥∥Ψ2

τo+p−1∑
t=τo

w
(0)
1t ε2t(Φ2)

′
∥∥∥∥∥ + 2‖Ω−1‖

∥∥∥∥∥
τo+p−1∑

t=τo

ζ
(0)
tτ ε2t(Φ2)

′
∥∥∥∥∥ .

It is easy to see that the first term on the r.h.s. can be used to define the term a5T in the

lemma. The arguments needed are similar to those used to obtain (A.11) and they can also

be applied to the second term so that we can write

|L6| ≤ a5T + a42T

(
τo+p−1∑

t=τo

‖ζ(0)
tτ ‖2

)1/2

, (A.12)

where also a42T = Op(1) in the required uniform sense. The result of the lemma now follows

from (A.11) and (A.12) be defining a4T = a41T + a42T . 2

The next lemma is concerned with the contribution of l1T (Θ, τ, Ω)− l1,τo+p−1(Θ, τ, Ω) to

l1T (Θ, τ, Ω). Here ε1tτ (Θ) is given by

ε1tτ (Θ) = −Ψ2w
(0)
1t , t = τo + p, . . . , T .

Lemma A.6. There exists a constant c4 > 0 such that, with probability approaching one

and uniformly in [Tλ] ≤ τ ≤ τo and (Θ, τ, Ω) ∈ B1,

l1T (Θ, τ, Ω)− l1,τo+p−1(Θ, τ, Ω) ≥ c4‖T 1/2Ψ2‖2 − a6T‖T 1/2Ψ2‖,
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where a6T ≥ 0 and a6T = Op(1).

Proof: The proof is similar to that of Lemma A.3 except for being simpler because the

considered quantities are independent of τ and uniformity over this parameter is therefore

of no concern. Details are omitted. 2

Our next lemma is used as an alternative to Lemma A.4 in some of the subsequent deriva-

tions. The formulation of this lemma makes use of the notation ζ
(0)
tτ employed in Lemma A.5.

Lemma A.7. There exists a constant c5 > 0 such that with probability approaching one

and uniformly in [Tλ] ≤ τ ≤ τo − 1 and (Θ, τ, Ω) ∈ B1,

l1,τo−1(Θ, τ, Ω)− l1,τ−1(Θ, τ, Ω)

≥ c5

∑τo−1
t=τ ‖ζ(0)

tτ ‖2 −
(
a7T (τo − τ)η + a8T

(
τo−τ

T

)1/2 ‖T 1/2Ψ2‖
)(∑τo−1

t=τ ‖ζ(0)
tτ ‖2

)1/2

−a9T‖T 1/2Ψ2‖,

where 1
b

< η < 1
4
, aiT ≥ 0 and aiT = Op(1) (i = 7, 8, 9).

Proof: By the definitions,

l1,τo−1(Θ, τ, Ω)− l1,τ−1(Θ, τ, Ω)

= tr
(
Ω−1

∑τo−1
t=τ ε1tτ (Θ)ε1tτ (Θ)′

)
+ 2tr

(
Ω−1

∑τo−1
t=τ ε1tτ (Θ)ε2t(Φ2)

′) def
= L7 + L8.

Recall that Ψ1 = Φ1 + [δ1 : 0] and Ψ2 = Φ1 + [δ1 − δ
(0)
1 : 0]. For t = τ, . . . , τo − 1, we thus

have ε1tτ (Θ) = −Ψ1w
(0)
1t − γdtτ = −Ψ2w

(0)
1t − ζ

(0)
tτ . Hence,

L7 = tr
(
Ω−1Ψ2

∑τo−1
t=τ w

(0)
1t w

(0)
1t

′
Ψ′

2

)
+ tr

(
Ω−1

∑τo−1
t=τ ζ

(0)
tτ ζ

(0)
tτ

′)

+2tr
(
Ω−1

∑τo−1
t=τ ζ

(0)
tτ w

(0)
1t

′
Ψ′

2

)
def
= L71 + L72 + L73.

Assume that (Θ, τ, Ω) ∈ B1. An application of the Cauchy-Schwarz inequality, the norm

inequality and the triangle inequality yields

|L73| ≤ 2‖Ω−1‖‖T 1/2Ψ2‖
∥∥∥∥∥T−1/2

τo−1∑
t=τ

ζ
(0)
tτ w

(0)
1t

′
∥∥∥∥∥

≤ 2‖Ω−1‖
(

τo − τ

T

)1/2

‖T 1/2Ψ2‖
(

(τo − τ)−1

τo−1∑
t=τ

‖w(0)
1t ‖2

)1/2 (
τ0−1∑
t=τ

‖ζ(0)
tτ ‖2

)1/2

.
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Because max1≤t≤T ‖w(0)
1t ‖ = Op(1) (see the arguments leading to (A.10)), the second square

root in the last expression is of order Op(1) uniformly in [Tλ] ≤ τ < τo. Hence,

|L73| ≤ a8T

(
τo − τ

T

)1/2

‖T 1/2Ψ2‖
(

τo−1∑
t=τ

‖ζ(0)
tτ ‖2

)1/2

, (A.13)

where a8T = Op(1) in the required uniform sense.

Next note that L71 ≥ 0 and λmin(Ω
−1) ≥ ω̄−1 for (Θ, τ, Ω) ∈ B1. Consequently,

L71 + L72 ≥ ω̄−1

τo−1∑
t=τ

‖ζ(0)
tτ ‖2. (A.14)

Now consider L8 for which we have

L8 = −2tr

(
Ω−1Ψ2

τo−1∑
t=τ

w
(0)
1t ε2t(Φ2)

′
)
− 2tr

(
Ω−1

τo−1∑
t=τ

ζ
(0)
tτ ε2t(Φ2)

′
)

def
= L81 + L82.

Arguments similar to those used for L73 show that

|L81| ≤ 2‖Ω−1‖‖T 1/2Ψ2‖
∥∥∥∥∥T−1/2

τo−1∑
t=τ

w
(0)
1t ε2t(Φ2)

′
∥∥∥∥∥ ≤ a9T‖T 1/2Ψ2‖, (A.15)

where a9T = Op(1) in the required uniform sense. The latter inequality is obtained because,

for (Θ, τ, Ω) ∈ B1, the last norm in the second expression can be replaced by Op(1) by an

analog of (A.4) of Gregory & Hansen (1996, p. 118).

As for L82, assume first that τ < τo−p and use the Cauchy-Schwarz inequality to conclude

that

|L82| ≤ 2‖Ω−1‖
∥∥∥∥∥

τo−1∑
t=τ

ζ
(0)
tτ ε2t(Φ2)

′
∥∥∥∥∥

≤ 2‖Ω−1‖
∥∥∥∥∥

τ+p−1∑
t=τ

(δ
(0)
1 + γdtτ )ε2t(Φ2)

′
∥∥∥∥∥ + 2‖Ω−1‖

∥∥∥∥∥δ
(0)
1

τ0−1∑
t=τ+p

ε2t(Φ2)
′
∥∥∥∥∥

≤ 2‖Ω−1‖
(

τ+p−1∑
t=τ

‖δ(0)
1 + γdtτ‖2

)1/2 (
τ+p−1∑

t=τ

‖ε2t(Φ2)‖2

)1/2

+2‖Ω−1‖‖δ(0)
1 ‖

∥∥∥∥∥
τo−1∑

t=τ+p

ε2t(Φ2)

∥∥∥∥∥ .

Here the second inequality is based on the definitions and the triangle inequality whereas

the third one also makes use of the Cauchy-Schwarz inequality and the norm inequality.

In the last expression

(τo − τ − p)−2η

τ+p−1∑
t=τ

‖ε2t(Φ2)‖2 = Op(1),
1

b
< η <

1

4
,
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and

(τo − τ − p)−1/2

∥∥∥∥∥
τo−1∑

t=τ+p

ε2t(Φ2)

∥∥∥∥∥ = Op(1)

uniformly in [Tλ] ≤ τ < τo − p and (Θ, τ, Ω) ∈ B1. Here the latter result can be concluded

from the Hájek-Rényi inequality given in Proposition 1 of Bai (1994). The former can be

obtained by an argument similar to that used to prove (A.14) of Saikkonen & Lütkepohl

(2002).

Combining the above discussion on L82 shows that

|L82| ≤ a71T




(
τ+p−1∑

t=τ

‖δ(0)
1 + γdtτ )‖2

)1/2

+ (τo − τ − p)1/2‖δ(0)
1 ‖




= a71T




(
τ+p−1∑

t=τ

‖ζ(0)
tτ ‖2

)1/2

+

(
τo−1∑

t=τ+p

‖ζ(0)
tτ ‖2

)1/2

 ,

where a71T = Op((τo − τ)η) in the required uniform sense and the equality follows from

definitions. Since for any real numbers a ≥ 0 and b ≥ 0 we have a + b ≤ √
2(a2 + b2)1/2 it

follows that

|L82| ≤
√

2a71T

(
τo−1∑
t=τ

‖ζ(0)
tτ ‖2

)1/2

. (A.16)

In the proof of this result it was assumed that τ < τo−p but it also holds for τo−p ≤ τ < τo.

In that case arguments similar to those used for L73 give

|L82| ≤ 2‖Ω−1‖
(

τo−1∑
t=τ

‖ζ(0)
tτ ‖2

)1/2 (
τo−1∑
t=τ

‖ε2t(Φ2)‖2

)1/2

and (A.16) holds with a71T = Op(1). The result of the lemma is obtained from the definitions

of L7 and L8 in conjunction with (A.13)−(A.16) by defining c5 = ω̄−1, a7T =
√

2a71T /(τo−τ)η

and a8T and a9T as done in (A.13) and (A.15), respectively. 2

In the proof of the next lemma as well as in subsequent proofs, frequent use will be made

of the elementary inequality

a2x
2 − a1x− a0 ≥ − a2

1

4a2

− a0, x ≥ 0, (A.17)

which holds for a0, a1 ≥ 0 and a2 > 0.
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Lemma A.8. Let ε > 0 and B2 = {(Θ, τ, Ω) : ‖T 1/2−ηΦ1‖2 + ‖T 1/2−ηΨ2‖2 ≤ ε2}, where

1
b

< η < 1
4

is the same as in Lemma A.7. Then,

inf
(Θ,τ,Ω)∈Bc

2

lT (Θ, τ, Ω)− lT (Θo, τo, Ωo) > 0

with probability approaching one and uniformly in [Tλ] ≤ τ ≤ τo.

Proof: By the definitions and Lemma A.2,

lT (Θ, τ, Ω)− lT (Θo, τo, Ωo) = l1T (Θ, τ, Ω) + l2T (Φ2, Ω)− l2T (Φ2o, Ωo)

≥ l1T (Θ, τ, Ω) + inf(Φ2,Ω) l2T (Φ2, Ω)− l2T (Φ2o, Ωo)

= l1T (Θ, τ, Ω) + Op(1)

(A.18)

Thus, it suffices to show that, for some ε∗ > 0,

inf
(Θ,τ,Ω)∈Bc

2

T−2ηl1T (Θ, τ, Ω) ≥ ε∗ (A.19)

with probability approaching one and uniformly in [Tλ] ≤ τ ≤ τo.

From Lemma A.1 it follows that we only need to prove (A.19) with the set Bc
2 replaced

by B1 ∩Bc
2. Let 0 < ε1 ≤ λo − λ and define the sets

B21 = B1 ∩Bc
2 ∩ {(Θ, τ, Ω) : [Tλ] ≤ τ ≤ [T (λo − ε1)]}

and

B22 = B1 ∩Bc
2 ∩ {(Θ, τ, Ω) : [T (λo − ε1)] < τ ≤ τo}.

According to what was said above, it suffices to establish (A.19) separately with Bc
2 replaced

by B21 and B22. Here we are free to choose the value of ε1. Whatever our choice, Lemma

A.4 can be applied on the set B21 on which we shall first concentrate.

From Lemmas A.4, A.5 and (A.17) we first find that, uniformly in B21,

T−2ηl1,τo−1(Θ, τ, Ω)− T−2ηl1,τ−1(Θ, τ, Ω) ≥ −(a2
2T + a2

3T )/4c2T
2η = op(1)

and

T−2ηl1,τo+p−1(Θ, τ, Ω)− l1,τo−1(Θ, τ, Ω) ≥ − a2
4T

4c3T 2η
− a5T

T 2η
= op(1).
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Combining these inequalities with those obtained from Lemmas A.3 and A.6 shows that,

uniformly in B21,

T−2ηl1T (Θ, τ, Ω) ≥ c1‖T 1/2−ηΦ1‖2 − T−ηa1T‖T 1/2−ηΦ1‖
+c4‖T 1/2−ηΨ2‖2 − T−ηa6T‖T 1/2−ηΨ2‖+ op(1).

(A.20)

Denote c∗ = min(c1, c4) and a∗T =
√

2 max(a1T , a6T ). Then the preceding inequality implies

that, uniformly in B21,

T−2ηl1T (Θ, τ, Ω) ≥ c∗(‖T 1/2−ηΦ1‖2 + ‖T 1/2−ηΨ2‖2)

− 1√
2
T−ηa∗T (‖T 1/2−ηΦ1‖+ ‖T 1/2−ηΨ2‖) + op(1).

For simplicity, denote ϕ2
T = ‖T 1/2−ηΦ1‖2 + ‖T 1/2−ηΨ2‖2 and note that the sum of the two

norms in the last expression above is at most
√

2ϕT . Thus, uniformly in B21,

T−2ηl1T (Θ, τ, Ω) ≥ c∗ϕ2
T − T−ηa∗T ϕT + op(1) = c∗ϕ2

T

(
1− a∗T

c∗T ηϕT

)
+ op(1). (A.21)

Because ϕT > ε on B21 and a∗T = Op(1) uniformly in B21, this shows that (A.19) holds with

Bc
2 replaced by B21.

Now consider proving (A.19) with Bc
2 replaced by B22. Here we can use Lemmas A.3,

A.5, A.6 and A.7 to conclude that, with probability approaching one and uniformly in B22,

T−2ηl1,T (Θ, τ, Ω) ≥ c1‖T 1/2−ηΦ1‖2 − T−ηa1T‖T 1/2−ηΦ1‖
+c4‖T 1/2−ηΨ2‖2 − T−η(a6T + a9T )‖T 1/2−ηΨ2‖
+c3T

−2η
∑τo+p+1

t=τo
‖ζ(0)

tτ ‖2 − T−ηa4T

(
T−2η

∑τo+p+1
t=τo

‖ζ(0)
tτ ‖2

)1/2

− T−2ηa5T

+c5T
−2η

∑τo−1
t=τ ‖ζ(0)

tτ ‖2

−
[
a7T

(
τo−τ

T

)η
+ a8T

(
τo−τ

T

)1/2 ‖T 1/2−ηΨ2‖
] (

T−2η
∑τo−1

t=τ ‖ζ(0)
tτ ‖2

)1/2

.

(A.22)

Here it is understood that a9T and the last two terms on the r.h.s. are deleted if τ = τo

because then Lemma A.7 becomes redundant. By (A.17) the sum of the fifth, sixth and

seventh terms on the r.h.s. is of order op(1) uniformly in B22 and the sum of the last two

terms can be bounded from below by − 1
4c5

[
a7T

(
τo−τ

T

)η
+ a8T

(
τo−τ

T

)1/2 ‖T 1/2−ηΨ2‖
]2

. Thus,

expanding the square and inserting the result to the r.h.s. of the preceding inequality yields,

uniformly in B22,

T−2ηl1T (Θ, τ, Ω) ≥ c1‖T 1/2−ηΦ1‖2 − T−ηa1T‖T 1/2−ηΦ1‖
+c4T (τ)‖T 1/2−ηΨ2‖2 − a10T (τ)‖T 1/2−ηΨ2‖ − a11T (τ) + op(1),

(A.23)
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where

c4T (τ) = c4 − a2
8T

4c5

(
τ0 − τ

T

)
,

a10T (τ) = T−ηa6T + T−ηa9T +
a7T a8T

2c5

(
τo − τ

T

)1/2+η

and

a11T (τ) =
a2

7T

4c5

(
τo − τ

T

)2η

.

Note that here a6T , . . . , a9T are of order Op(1) uniformly in B22 and that, on B22, (τo−τ)/T ≤
2ε1, say. Since we are here free to choose the value of ε1 we can choose it so small that the

following two conditions hold with probability approaching one and uniformly in B22: (i)

c4T (τ) ≥ c4/2 and (ii) a10T (τ) and a11T (τ) become smaller than any preassigned positive

number. Taking these facts into account and comparing the inequality (A.23) with (A.20)

shows that there are only two points which make the previous proof based on inequality

(A.20) directly inapplicable in the present context. These points are that instead of the

terms T−ηa6T = op(1) and op(1) we have in (A.23) a10T (τ) and a11T (τ) + op(1), respectively,

which are not of order op(1) but can only be replaced by an arbitrarily small positive number

independent of parameters. However, this is sufficient for the application of essentially the

same proof as previously. Indeed, we can conclude that, uniformly in B22, an analog of

(A.21) holds except that in the last expression T η is replaced by a fixed positive number

which can be assumed as large as we wish and op(1) is replaced by a fixed negative number

which, in absolute value, can be assumed as small as we wish. In particular, we can assume

that T η and op(1) in (A.21) are replaced by M/ε and −ε/M , respectively, where M can be

chosen arbitrarily large. This shows that we can make the r.h.s. of the present version of

(A.21) larger than some ε∗ > 0 with probability approaching one. Thus, there is a choice of

ε1 such that (A.19) holds with Bc
2 replaced by B21 and B22. This completes the proof. 2

The next lemma is similar to Lemma A.8 except that it deals with the short-run param-

eter Φ2.

Lemma A.9. Let ε > 0 and B3 = {(Θ, τ, Ω) : ‖T 1/2−η(Φ2 −Φ2o)‖ ≤ ε}, where 1
b

< η < 1
4

is
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the same as in Lemma A.7. Then,

inf
(Θ,τ,Ω)∈Bc

3

lT (Θ, τ, Ω)− lT (Θo, τo, Ωo) > 0

with probability approaching one and uniformly in [Tλ] ≤ τ ≤ τo.

Proof: By Lemma A.1 it suffices to prove the result with Bc
3 replaced by B1 ∩ Bc

3. First

consider the break dates [Tλ] ≤ τ ≤ [T (λo−ε1)] and note that the derivation of the inequality

in (A.21) is valid for these break dates and for all (Θ, τ, Ω) ∈ B1 ∩ Bc
3. It is also valid for

every ε1 > 0. Thus, an application of (A.17) shows that in this part of the parameter space

T−2ηl1T (Θ, τ, Ω) ≥ op(1) holds uniformly. Next note that the inequality (A.23) is valid for

[T (λo − ε)] < τ ≤ τo and for all (Θ, τ, Ω) ∈ B1 ∩ Bc
3. Moreover, as the discussion after that

inequality reveals, we can, with a suitable (small) choice of ε1, use (A.17) to obtain an analog

of (A.21) from which we conclude that, with probability approaching one and uniformly in

the considered part of the parameter space, T−2ηl1T (Θ, τ, Ω) ≥ −ε2, where ε2 > 0 can be

chosen arbitrarily small. From the above discussion and the first equality in (A.18) it thus

follows that we need to show that, for some ε∗ > 0,

inf
(Θ,τ,Ω)∈Bc

3

T−2ηl2T (Φ2, Ω)− T−2ηl2T (Φ2, Ω) ≥ ε∗

with probability approaching one. Arguments needed to show this are similar to those used

in previous proofs and also very similar to those used to prove the consistency of the LS

estimators of the parameters Φ2 and Ω in the standard regression model ∆xt = Φ2w
(0)
t + εt.

Details are straightforward and are omitted. 2

The next lemma again makes use of the notation ζ
(0)
tτ introduced for Lemma A.5.

Lemma A.10. Let B4 = {(Θ, τ, Ω) : (τo − τ)−2η
∑τo+p−1

t=τ ‖ζ(0)
tτ ‖2 ≤ M2}, where τ < τo and

1
b

< η < 1
4

is the same as in Lemma A.7. Then, there exists a real number M0 > 0 such

that, for all M ≥ M0,

inf
(Θ,τ,Ω)∈Bc

4

lT (Θ, τ, Ω)− lT (Θo, τo, Ωo) > 0

with probability approaching one and uniformly in [Tλ] ≤ τ ≤ τo − 1. If the quantity

(τo − τ)−2η in the definition of the set B4 is replaced by T−2η the same conclusion holds.
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Proof: From (A.18) it follows that it suffices to show that there exists a real number M0 > 0

such that, for all M ≥ M0 and any M1 > 0,

inf
(Θ,τ,Ω)∈Bc

4

l1T (Θ, τ, Ω) > M1 (A.24)

with probability approaching one and uniformly in [Tλ] ≤ τ ≤ τo − 1. From Lemmas A.1,

A.8 and A.9 it further follows that here the set Bc
4 can be replaced by B1 ∩ B2 ∩ B3 ∩ Bc

4.

From (A.19) it can be seen that the value of ε in the definition of B2 can be chosen arbitrarily

small.

We wish to apply Lemmas A.3, A.5, A.6 and A.7 to obtain a lower bound for l1T (Θ, τ, Ω).

This lower bound can be obtained by multiplying both sides of the inequality (A.22) by T 2η.

By (A.17) the contribution of the first four terms to the r.h.s. of the resulting inequality can

be replaced by Op(1). This is also the case for the seventh term. Hence, we can write

l1T (Θ, τ, Ω) ≥ c3

τo+p−1∑
t=τo

‖ζ(0)
tτ ‖2 − a4T

(
τo+p−1∑

t=τo

‖ζ(0)
tτ ‖2

)1/2

+ c5

τo−1∑
t=τ

‖ζ(0)
tτ ‖2

− (
a7T (τo − τ)η + a8T (τo − τ)1/2‖Ψ2‖

)
(

τo−1∑
t=τ

‖ζ(0)
tτ ‖2

)1/2

+ Op(1).

This holds uniformly in B1 ∩ B2 ∩ B3 ∩ Bc
4 and [Tλ] ≤ τ ≤ τo − 1. In this part of the

parameter space we also have

(τo − τ)1/2‖Ψ2‖ = (τo − τ)η

(
τo − τ

T

)1/2−η

‖T 1/2−ηΨ2‖ ≤ ε(τo − τ)η

and a4T ≤ a4T (τo−τ)η (see Lemma A.8). Denote c∗ = min(c3, c5), a∗T = max(a4T , a7T +εa8T )

and for simplicity, ξ2
τ =

∑τo+p−1
t=τ ‖ζ(0)

tτ ‖2. From the lower bound obtained for l1T (Θ, τ, Ω)

above we can then further obtain

l1T (Θ, τ, Ω) ≥ c∗ξ2
τ − a∗T (τo − τ)ηξτ + Op(1) = c∗ξ2

τ

(
1− a∗T (τo − τ)η

c∗ξτ

)
+ Op(1). (A.25)

Again, this holds uniformly in B1 ∩ B2 ∩ B3 ∩ Bc
4 and [Tλ] ≤ τ ≤ τo − 1. Now, on Bc

4,

ξτ > M(τo − τ)η so that, for all M large enough and with probability approaching one, we

can make the r.h.s. of (A.25) larger than any preassigned number M1 > 0. Thus, we have

established (A.24) and thereby the first assertion of the lemma. The second assertion is

obvious by (A.25) and the discussion thereafter. 2
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Before proceeding to new proofs we discuss how Lemmas A.3-A.10 are formulated when

τ ≥ τo.

The counterpart of Lemma A.3 is concerned with the time points t = p + 1, . . . , τo − 1

and break dates τo ≤ τ ≤ [T λ̄] but is otherwise similar to Lemma A.3 and its proof is similar

to the proof of Lemma A.6 in that uniformity in τ is of no concern.

The next time points of interest are now t = τo, . . . , τo +p−1 so that we need to consider

a counterpart of Lemma A.5. Here we write

ε1tτ (Θ) = −Φ1w
(0)
1t − dtτo(δ1 − δ

(0)
1 )− (dtτ − dtτo)δ1 − γdtτ + γ(0)dtτo

= −Ψ2w
(0)
1t − ζtτ , t = τo, . . . , τo + p− 1,

where Ψ2 = Φ1 + [δ1 − δ
(0)
1 : 0] as before and ζtτ = (dtτ − dtτo)δ1 + γdtτ − γ(0)dtτo

. In other

words, in place of ζ
(0)
tτ we now use an analogous variable defined by using the parameter δ1

instead of δ
(0)
1 . However, replacing ζ

(0)
tτ in Lemma A.5 by ζtτ is clearly possible, as can be

seen from the given proof.

Instead of the time points t = τo + p, . . . , τ − 1 it is next reasonable to consider the time

points t = τo + p, . . . , τ + p− 1. Then the number of time points is the same as in Lemmas

A.4 and A.7. Changes in parameters have to be made, though. Now

ε1tτ (Θ) = −Φ1w
(0)
1t +dtτoδ

(0)
1 −dtτδ1−γdtτ = −Ψ

(0)
1 w

(0)
1t −(dtτδ1+γdtτ ), t = τo+p, . . . , τ+p−1,

where Ψ
(0)
1 = Φ1− [δ

(0)
1 : 0]. Thus, we now have the matrix Ψ

(0)
1 in place of Ψ1 used in Lemma

A.4 and, as above, the former is defined by using δ
(0)
1 instead of δ1 in Ψ1. The parameter γ

used in Lemma A.4 is also changed by adding δ1 to its columns. With these replacements

the counterpart of Lemma A.4 applies with [T (λo + ε)] ≤ τ ≤ [T λ̄].

Next consider the counterpart of Lemma A.7 which is also concerned with time points

t = τo + p, . . . , τo + p− 1. Here the preceding expression of ε1tτ (Θ) is modified to the form

ε1tτ (Θ) = −Φ2w
(0)
1t − ζtτ , t = τo + p, . . . , τ + p− 1.

In the counterpart of Lemma A.7 we then have ζtτ in place of ζ
(0)
tτ and τo + 1 ≤ τ ≤ [T λ̄].

The proof can again be basically obtained by following the previous proof.

The counterpart of Lemma A.6 is straightforward. The relevant time points are t =

τ, . . . , T and the obtained lower bound is as before except for the obvious change in the
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values of τ which become τo ≤ τ ≤ [T λ̄]. The proof is also changed and becomes similar to

the proof of Lemma A.3.

It is not difficult to check that the modified versions of Lemmas A.3 - A.7 can be used

to show that the results of Lemmas A.8 and A.9 also apply for τo ≤ τ ≤ [T λ̄]. Regarding

Lemma A.10, when τo + 1 ≤ τ ≤ [T λ̄], the set B4 is defined as

B4 =

{
(Θ, τ, Ω) : (τo − τ)−2η

τ+p−1∑
t=τo

‖ζtτ‖2 ≤ M2

}

but otherwise the same result obtains.

Now we can turn to our next lemma which is central in studying asymptotic properties

of the break date estimator. Recall that δ1o = −Πoδo = −αoβ
′
oδo, where δo = T aδ∗. Thus,

δ1o 6= 0 if and only if βo
′δo 6= 0. Note also that we shall use the convention that the infimum

over an empty set is ∞.

Lemma A.11. Let M > 0. Assume that δ1o 6= 0 and define B5 = {(Θ, τ, Ω) : (|τo − τ | −
p)‖δ1o‖2/(1−2η) ≤ M}, where 1

b
< η < 1

4
is the same as in Lemma A.7 or its counterpart when

τ > τo. Then there exists a real number M0 > 0 such that, for all M ≥ M0,

inf
(Θ,τ,Ω)∈Bc

5

lT (Θ, τ, Ω)− lT (Θo, τo, Ωo) > 0

with probability approaching one. If δ1o = 0 the same result holds with the set B5 replaced

by B50 = {(Θ, τ, Ω) : T−2η
∑T

t=p+1 ‖γdtτ − γ
o
dtτo

‖2 ≤ M}.

Proof: Assume first that τ < τo− p and δ1o 6= 0. From Lemmas A.1, A.8 and A.9 it follows

that we can replace the set Bc
5 by B1 ∩B2 ∩B3 ∩Bc

5.

By the definitions, δ
(0)
1 = −Πδo = −α(0)β′oδo − ρ(0)β′o⊥δo, where β′oδo 6= 0. On B3,

‖α(0) − αo‖ ≤ εT η−1/2 and, on B2, ‖ρ(0)‖ ≤ εT η−1 (see Lemmas A.8 and A.9). Thus, since

δ1o = −αoβ
′
oδo and δo = T aδ∗,

‖δ(0)
1 − δ1o‖ ≤ ‖α(0) − αo‖‖β′oδo‖+ ‖ρ(0)‖‖β′o⊥δo‖

≤ T a‖δ∗‖ε(‖βo‖T η−1/2 + ‖βo⊥‖T η−1)

≤ cT η+a−1/2ε

for some positive and finite constant c. Hence, because ζ
(0)
tτ = (dtτ − dtτo)δ

(0)
1 = δ

(0)
1 for
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t = τ + p, . . . , τo − 1, we have on B1 ∩B2 ∩B3 ∩Bc
5,

(
(τo − τ)−2η

∑τo+p−1
t=τ ‖ζ(0)

tτ ‖2
)1/2

≥
(
(τo − τ)−2η

∑τo−1
t=τ+p ‖ζ(0)

tτ ‖2
)1/2

= (τo − τ)−η(τo − τ − p)1/2‖δ(0)
1 ‖

=
(
1− p

τo−τ

)η

(τo − τ − p)1/2−η‖δ(0)
1 ‖

≥
(

1
p+1

)η (
(τo − τ − p)‖δ1o‖2/(1−2η)

)1/2−η
(

1− ‖δ(0)
1 −δ1o‖
‖δ1o‖

)

≥ M1/2−η

(p+1)η

(
1− cεT η−1/2

‖αoβ′oδ∗‖

)
.

(A.26)

Here the fourth relation makes use of the triangle inequality. For all T and M large enough

the last expression can be made larger than the real number M0 in Lemma A.10. Thus, the

stated result follows from Lemma A.10.

Now consider the case τ > τo + p but maintain the assumption δ1o 6= 0. Then, using

the counterparts of Lemmas A.8 and A.9 we can proceed in the same way as in the case

τ < τo − p until the relations (A.26) which start now as

(
(τ − τo)

−2η

τ+p−1∑
t=τo

‖ζtτ‖2

)1/2

≥
(

(τ − τo)
−2η

τ−1∑
t=τo+p

‖ζtτ‖2

)1/2

= (τ−τo)
−η(τ−τo−p)1/2‖δ1‖.

Thus, in place of δ
(0)
1 we have now δ1. However, from the counterpart of Lemma A.8 we find

that, on B2, ‖δ1 − δ
(0)
1 ‖ ≤ εT η−1/2 and a straightforward modification of the arguments in

the latter part of (A.26) combined with the present version of Lemma A.10 give the desired

result.

Next assume that δ1o = 0 and τ ≤ τo. In this case we use the inequality

T−2η

τo+p−1∑
t=τ

‖ζ(0)
tτ ‖2 ≥ T−2η

∗∑τo+p−1

t=τ
‖ζ(0)

tτ ‖2, (A.27)

where the summation on the r.h.s. is over the values of t for which ∆dtτo 6= 0 or ∆dtτ 6= 0.

Clearly the number of such time points is at most 2p.

From the definitions it follows that

ζ
(0)
tτ = (dtτ − dtτo)δ

(0)
1 + ∆dtτoδ

(0)
1 +

p−1∑
j=1

∆dt−j,τo(Γj − Γjo)δo

+

p−1∑
j=0

∆dt−j,τγj −∆dtτoδo +

p−1∑
j=1

∆dt−j,τoΓjoδo.

Notice that here Γjoδo = −γjo (j = 1, . . . , p− 1) and, since now δ1o = 0, δo = γ0o. Thus, the

sum of the last three terms equals γdtτ − γ
o
dtτo

and we wish to show that the contribution
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of the first three terms to the r.h.s. of (A.27) can be ignored. To this end, note that now

δ
(0)
1 = −ρ(0)β′o⊥δo so that, on B2, ‖δ(0)

1 ‖ ≤ cεT η+a−1 for some 0 ≤ c < ∞ (see Lemma A.8).

Furthermore, on B3, ‖(Γj−Γjo)δo‖ ≤ ‖Γj−Γjo‖‖δo‖ ≤ εT η+a−1/2‖δ∗‖ (j = 1, . . . , p−1) (see

Lemma A.9). Using these facts and the triangle inequality we find that
(

T−2η

∗∑τo+p−1

t=τ
‖ζ(0)

tτ ‖2

)1/2

≥
(

T−2η

∗∑τo+p−1

t=τ
‖γdtτ − γ

o
dtτo

‖2

)1/2

− const× T a−1/2ε.

On the r.h.s. the summation can be extended to all t = p + 1, . . . , T . This means that on

B1 ∩ B2 ∩ B3 ∩ Bc
50 the last expression becomes larger than the real number M0 in Lemma

A.10 for all T and M large enough. Thus, the stated result follows from the latter part of

Lemma A.10.

Finally, assume that δ1o = 0 and τ > τo. In place of (A.27) we then have a similar

inequality with t = τo, . . . , τ + p − 1 and ζ
(0)
tτ replaced by ζtτ . However, using the fact that

‖δ1 − δ
(0)
1 ‖ ≤ εT 1/2−η on B2 it is straightforward to show that the proof can be reduced to a

form entirely similar to that in the case τ ≤ τo. This completes the proof of the lemma. 2

Now we can prove Theorem 3.1. As discussed earlier, the estimator τ̂ can also be obtained

by minimizing −2 times the Gaussian log-likelihood function lT (Θ, τ, Ω). First consider the

case a > 0 and δ1o 6= 0. By Lemma A.11 we can then concentrate on the break dates

τo−p ≤ τ ≤ τo +p. First consider the case τo−p ≤ τ ≤ τo. If γjo = 0 for all j = 0, . . . , p−1,

Lemma A.11 shows that, asymptotically, τo − p ≤ τ̂ ≤ τo, as required. Next suppose that

γj0,o 6= 0 and consider the break dates τo− p ≤ τ ≤ τo− p + j0. For any of these break dates

we have

ζ
(0)
tτ = −

p−1∑
j=j0

γ
(0)
j ∆dt−j,τo , t = τo + j0, . . . , τo + p− 1.

Suppose first that j0 > 0. Then, since γ
(0)
j0
− γj0,o = −(Γj0 − Γj0,o)δo, we have for (Θ, τ, Ω) ∈

B3,
(

(τo − τ)−2η

τo−p+1∑
t=τ

‖ζ(0)
tτ ‖2

)1/2

≥ (τo − τ)−η‖γ(0)
j0
‖

≥ ‖γj0,o‖ − εT η−1/2‖δo‖
= T a(‖Γj0,oδ∗‖ − εT η−1/2‖δ∗‖).

Because γj0,o = −T aΓj0,oδ∗ 6= 0, the last quantity tends to infinity as T → ∞. Hence, we

can conclude from Lemmas A.9 and A.10 that asymptotically the function lT (Θ, τ, Ω) is not
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minimized for τ ≤ τo − p + j0. Now consider the case j0 = 0. From the definitions it follows

that γ
(0)
o − γ0o = δ1o− δ

(0)
1 , where ‖δ1o− δ

(0)
1 ‖ ≤ cT η+a−1/2ε on B2 ∩B3 (see the beginning of

the proof of Lemma A.11). Hence, since γ0o = T a(δ∗ + αoβ
′
oδ∗) 6= 0, the proof given in the

case j0 > 0 applies with obvious changes and shows that asymptotically τ̂ ≤ τo − p cannot

occur.

To complete the proof of the first assertion, consider the case τo + 1 ≤ τ ≤ τo + p.

By the definitions we then have ζτoτ = −δ1 − γ
(0)
0 = −δo + (δ

(0)
1 − δ1), where δo 6= 0 and

‖δ(0)
1 − δ1‖ ≤ εT η−1/2 for (Θ, τ, Ω, ) ∈ B2∩B3 (see Lemma A.8 and the definition of Ψ2 given

before Lemma A.5). In the same way as in the preceding case we can thus conclude from

Lemmas A.8, A.9 and A.10 that asymptotically τ̂ > τo cannot occur. This completes the

proof of the first assertion in the case a > 0 and δ1o 6= 0.

Next assume that a > η > 1/b and δ1o = 0. Then, if τ ≤ τo − p + j0 and j0 > 0,

T−2η

T∑
t=p+1

‖γdtτ − γ
o
dtτo

‖2 ≥ T−2η‖γj0,o‖2 = T 2a−2η‖Γj0,oδ∗‖2. (A.28)

Because the last quantity tends to infinity as T → ∞ it follows from the latter part of

Lemma A.11 that asymptotically τ̂ ≤ τo − p + j0 cannot occur. If j0 = 0, we have γ0o =

δo − δ1o = δo 6= 0 and (A.28) holds with Γj0,oδ∗ replaced by δ∗. Hence the same conclusion

also obtains for j0 = 0.

If τ > τo the l.h.s. of (A.28) can be bounded from below by T−2η‖γ0o‖2 = T−2η‖δo‖2 =

T 2a−2η‖δ∗‖2, and the situation is similar to the case j0 = 0 above.

Finally, the second part of the theorem follows directly from the first part of Lemma

A.11. This completes the proof of Theorem 3.1.

A.2 Proof of Theorem 3.2

The break date estimator τ̂R can also be obtained by minimizing the objective function

lT (Θ, τ, Ω) over the relevant restricted part of the parameter space. Compared to the previous

unrestricted estimation the parameters δ1 and γ in (A.2) are no more freely varying but

(smooth) functions of the parameters δ, ρ(0), α(0) and Γ1, . . . , Γp−1. Specifically, δ1 = −Πδ =

−α(0)β′oδ − ρ(0)β′o⊥δ, γ0 = δ − δ1 and γj = −Γjδ (j = 1, . . . , p − 1). Unlike with the

unconstrained estimation it is not quite obvious that these restricted estimators exist. This

fact will therefore be justified first. After that the proof follows straightforwardly from the

61

Break Date Estimation and Cointegration Testing in VAR Processes with Level Shift 

EUI WP ECO 2004/21



results used to prove Theorem 3.1.

For τ ∈ T , define

y
(τ)
t = xt − (dtτ − dtτo)δo. (A.29)

Using y
(τ)
t in place of xt we can obtain an analog of (A.2) in which dtτo and dtτo

are replaced

by dtτ and dtτ , respectively, and u
(0)
t−1 and v

(0)
t−1 are replaced by analogs defined in terms

of y
(τ)
t instead of xt. In other words, in place of u

(0)
t−1 and v

(0)
t−1 we use u

(τ)
t−1 = β′oy

(τ)
t−1 and

v
(τ)
t−1 = β′o⊥y

(τ)
t−1, respectively. In place of (A.3) we then have

∆y
(τ)
t = Φw

(τ)
t + (Ξ− Ξ(0))qtτ + εt, t = p + 1, p + 2, . . . ,

where w
(τ)
t is an obvious modification of w

(0)
t .

Clearly, we can express the vector εtτ (Θ) as

εtτ (Θ) = ∆y
(τ)
t − Φw

(τ)
t − (Ξ− Ξ(0))qtτ

and use this expression in the previous definition of lT (Θ, τ, Ω). To demonstrate the existence

of a minimizer of the objective function lT (Θ, τ, Ω) it also appears convenient to use the

reparameterization Θ → Θ(0) = [Φ : Ξ − Ξ(0)]. Thus, if for simplicity we denote z
(τ)
t =

[∆y
(τ)′
t : w

(τ)′
t : q′tτ ]

′ and R(Θ(0)) = [In : −Φ : Ξ − Ξ(0)] we can write the relevant objective

function as

lT (Θ(0), τ, Ω) = (T − p) log det Ω + tr

(
Ω−1R(Θ(0))

T∑
t=p+1

z
(τ)
t z

(τ)′
t R(Θ(0))′

)
. (A.30)

Note that in the present context the parameter Θ has the same meaning as before except that

it is treated as a (smooth) function of the parameters ν
(0)
0 , ν

(0)
1 , δ, ρ(0), α(0) and Γ1, . . . , Γp−1.

Because the parameter Ξ(0) is also a (smooth) function of (some of) these parameters the

same is true for the parameter Θ(0). All these parameter restrictions are taken into account

when the minimization of the objective function lT (Θ(0), τ, Ω) is considered. Notice that,

because the objective function is expressed as a function of the “reduced form” parameter

Θ(0), the role of the parameter restrictions is to define the permissible space of Θ(0). A similar

idea, of course, applies to the previous parameterization of the objective function, that is,

to lT (Θ, τ, Ω) (cf. Saikkonen (2001) and the references therein for a similar approach).

A useful consequence of the fact that we can still interpret the objective function lT (Θ, τ, Ω, )

as a function of the “reduced form” parameter Θ and only restrict its permissible space is
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that results obtained to prove Theorem 3.1 can be applied straightforwardly even here. In

particular, we wish to apply Lemma A.11 to conclude that, when the existence of a mini-

mizer of the objective function lT (Θ, τ, Ω) is studied in the present setup, values of the break

date parameter τ can be restricted as implied by this lemma. Of course, this conclusion also

holds when the objective function is parameterized as lT (Θ(0), τ, Ω).

To justify the application of Lemma A.11, we first discuss how Lemmas A.1 - A.10 have

to be modified to match the present setup. Notice that the existence of a minimizer of the

objective function lT (Θ, τ, Ω) is not needed to prove Lemmas A.1 - A.11 and the same is also

true for their modified versions to be discussed below.

First note that Lemma A.2 is still used in its previous form and, because it is concerned

with unrestricted values of Φ2 and Ω, it obviously applies in the present context. Lemma

A.1 is simply modified by replacing B1 by the intersection of the restricted parameter space

of (Θ, τ, Ω) and values for which the inequality constraints in (A.4) and (A.5) hold. This

restricted version of the parameter space B1 is then used to replace B1 in Lemmas A.3 - A.7.

It is straightforward to check that the previous proofs of these Lemmas apply in essence

despite the differences in parameter spaces.

Next consider Lemmas A.8 - A.10, where, in addition to B1, also the parameter spaces

B2, B3 and B4 are redefined to allow for the employed restrictions. Again, it is not difficult

to check that the previous proofs carry over. It is also easy to see that the modifications

needed for Lemmas A.3 - A.10 can be done in the case τ ≥ τo.

Because analogs of Lemmas A.1 - A.10 hold in the present context, it is further straight-

forward to show that the result of Lemma A.11 also holds with the parameter space B5 rede-

fined to account for the employed restrictions. Thus, we can conclude that when searching

for a minimizer of the objective function lT (Θ(0), τ, Ω), the value of the break date parameter

τ can be restricted as implied by Lemma A.11. Specifically, if δ1o 6= 0, Lemma A.11 directly

shows that τo − p ≤ τ ≤ τo + p can be assumed. If δ1o = 0 and a > b, we can even assume

τo−p+1 ≤ τ ≤ τo +p−1, as the argument used to prove the corresponding case of Theorem

3.1(i) readily shows.

We shall now show that the function lT (Θ(0), τ, Ω) and hence lT (Θ, τ, Ω) has a minimizer

with probability approaching one. In what follows, reference to Lemmas A.1 - A.11 will be

understood to mean the present restricted setup. We first show the following intermediate
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result, where the matrix DT = diag[T−1/2I : Ip] is used. Its dimension equals the dimension

of the vector z
(τ)
t .

Lemma A.12. There exists an ε∗ > 0 such that

λmin

(
D−1

T

T∑
t=p+1

z
(τ)
t z

(τ)′
t D−1

T

)
≥ ε∗ (A.31)

with probability approaching one and uniformly in τ , when the value of the break date pa-

rameter τ can be restricted as implied by Lemma A.11.

Proof: The values of τ can be restricted depending on the value of a and whether δ1o = 0

or not. Different cases will therefore be discussed separately.

Case (i): a > 0 and δ1o 6= 0 or a > η > 1/b

From Lemma A.11 we can then conclude that, if a minimizer of lT (Θ(0), τ, Ω) exists, in large

samples it must be such that the corresponding τ is in the interval [τo− p, τo + p]. If δ1o 6= 0

this follows directly from the first part of Lemma A.11. If δ1o = 0 (and a > η > 1/b) the

same conclusion can be drawn from the second part of the lemma by the argument used in

the proof of Theorem 3.1 to obtain (A.28).

To justify (A.31), assume first that a < 1
2
. Then the moment matrix in (A.31) behaves

asymptotically in the same way as in the proof of Theorem 3.1 in that the vectors ∆y
(τ)
t and

w
(τ)
t in the definition of z

(τ)
t can be replaced by analogs defined in terms of xt. This follows

by observing that, when |τo − τ | ≤ p, the latter term on the r.h.s. of (A.29) satisfies

∥∥∥∥∥T−1

T∑
t=p+1

(dtτ − dtτo)
2δoδ

′
o

∥∥∥∥∥ ≤ const× T 2a−1

T∑
t=p+1

|dtτ − dtτo | ≤ const× T 2a−1. (A.32)

When a < 1/2 the last quantity converges to zero and the desired conclusion is readily

obtained.

If a = 1
2

the latter term on the r.h.s. of (A.29) has an impact but (A.31) still obtains. To

see this, suppose first that δ1o 6= 0. Then, as |τ − τo| ≤ p, the latter term on the r.h.s. of

(A.29) behaves like an impulse dummy. Because now δo = T 1/2δ∗ this term affects the

asymptotic behavior of the moment matrix in (A.31) but, as can be readily seen, it only

affects the diagonal and off-diagonal elements related to u
(τ)
t−1 and ∆y

(τ)
t−j (j = 0, . . . , p − 1).
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Moreover, the impact is such that asymptotically the moment matrix in (A.31) only differs

from that obtained in the previous case by an additive positive semidefinite matrix. Thus,

from this fact and the result of the previous case one again obtains (A.31).

Next assume that δ1o = 0 and a = 1
2
. Here the situation is similar to the preceding case

except for being simpler because now u
(τ)
t−1 = β′oxt−1 = u

(0)
t−1. Thus, we again get (A.31) and,

thus, we have justified (A.31) in the case of the first part of the theorem. It remains to

consider the second part for which the following assumption is made.

Case (ii): a ≤ 0 and δ1o 6= 0

If a = 0 it follows from the first part of Lemma A.11 that we can assume |τ − τo| to be

bounded and arguments similar to those in the case 0 < a < 1/2 and δ1o 6= 0 show (A.31).

If a < 0 we cannot restrict the values of τ . However, from (A.32) it can be seen that the

vectors ∆y
(τ)
t and w

(τ)
t in the definition of z

(τ)
t can be replaced by analogs defined in terms of

xt. Arguments similar to those used in the proof of Theorem 3.1 then show that (A.31) also

holds in the present case. (In particular, analogs of (A.3) and (A.4) of Gregory & Hansen

(1996) and (A.14) of Saikkonen & Lütkepohl (2002) can be used to handle sums of cross

products between [∆x′t : w
(0)′
t ]′ and qtτ .) 2

We have now shown that when searching for a minimizer of the function lT (Θ(0), τ, Ω)

we can in both parts of Theorem 3.2 restrict the values of the break date τ in such way that

(A.31) holds with probability approaching one and uniformly in τ .

Using Lemma A.12 we can analyze the function lT (Θ(0), τ, Ω) in the same way as in

the proof of Proposition 3.1 of Saikkonen (2001, pp. 320-321) and conclude that it suffices

to search for a minimizer of lT (Θ(0), τ, Ω) in that part of the parameter space where, in

addition to the restrictions on τ , we also have 0 < ω ≤ λmin(Ω) ≤ λmax(Ω) ≤ ω̄ < ∞ and

‖Θ(0)‖ ≤ M̄ < ∞.

We shall demonstrate that the parameter space defined by all these restrictions is com-

pact. To this end, note first that the restrictions imposed on Θ(0) are of the form h(Θ(0)) = 0,

where h(·) is a continuous function. Thus, because the unrestricted parameter space of Θ(0)

is the whole Euclidean space, it follows that the restricted space is closed and its inter-

section with parameter values restricted by 0 < ω ≤ λmin(Ω) ≤ λmax(Ω) ≤ ω̄ < ∞ and
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‖Θ(0)‖ ≤ M̄ < ∞ is compact. The continuity of the function lT (·, τ, ·) therefore ensures

that, for every relevant value of τ , a minimizer exists with probability approaching one.

This proves the (asymptotic) existence of the nonlinear LS estimators of Θ(0), τ , Ω and

hence also that of Θ.

To prove part (i) of Theorem 3.2, first consider the case δ1o 6= 0 and assume that τ ≤ τo−1.

As noticed above, we can also assume that τo − p ≤ τ . Using the definitions we can express

the vector ζ
(0)
tτ as

ζ
(0)
tτ = δ

(0)
1 dtτ + δ∆dtτ − δ1∆dtτ −

p−1∑
j=1

Γjδ∆dt−j,τ − δ
(0)
1 dtτo − δo∆dtτo

+δ
(0)
1 ∆dtτo +

p−1∑
j=1

Γjδo∆dt−j,τo .

Taking the assumed restrictions into account we can write this further as

ζ
(0)
tτ = −(δ1 − δ

(0)
1 )dtτ +

(
∆dtτ −

∑p−1
j=1 Γj∆dt−j,τ − (α(0)β′o + ρ(0)β′o⊥)dt−1,τ

)
δ

−
(
∆dtτo −

∑p−1
j=1 Γj∆dt−j,τo − (α(0)β′o + ρ(0)β′o⊥)dt−1,τo

)
δo

(A.33)

Here we have also made use of the facts that δ1 = −Πδ and δ
(0)
1 = −Πδo with Π = α(0)β′o +

ρ(0)β′o⊥.

To show that asymptotically the function lT (Θ, τ, Ω) cannot be minimized for τo − p ≤
τ ≤ τo − 1, we consider two cases separately. In the first case it is assumed that δ ≥ T aε∗,

where ε∗ > 0 is arbitrary. The second case will then assume that δ < T aε∗.

Now consider parameter values for which τo− p ≤ τ ≤ τo− 1 and δ ≥ T aε∗ hold for some

ε∗ > 0. By Lemma A.8 we can also assume that ‖δ1 − δ
(0)
1 ‖ ≤ εT η−1/2. Using this, (A.33)

and the above mentioned parameter restrictions, we find that

(
(τo − τ)−2η

τo+p−1∑
t=τ

‖ζ(0)
tτ ‖2

)1/2

≥ p−η‖ζ(0)
ττ ‖

= p−η‖δ − (δ1 − δ
(0)
1 )‖

≥ p−η(‖δ‖ − ‖δ1 − δ
(0)
1 ‖)

≥ p−ηT a‖ε∗‖ − εp−ηT η−1/2.

Because the last quantity tends to infinity with T , it follows from Lemma A.10 that asymp-

totically τo − p ≤ τ̂R ≤ τo − 1 cannot occur.
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For parameter values τo − p ≤ τ ≤ τo − 1 and δ < T aε∗ we can also use (A.33) and

Lemma A.10. First note that, by Lemma A.8, the norm of the first term on the r.h.s. of

(A.33) can be bounded by εT η−1/2. Next, from Lemmas A.8 and A.9 it follows that the

term in front of δ in the second term on the r.h.s. of (A.33) can be assumed bounded and

so the norm of the whole term can be bounded by a quantity of the form c1ε∗T a, where

0 < c1 < ∞. Similar arguments can also be used to show that, at least for t = τo, the norm

of the third term on the r.h.s. of (A.33) can be bounded from below by a quantity of the form

c2‖δ∗‖T a, where 0 < c2 < ∞ and ‖δ∗‖ 6= 0. Thus, since ε∗ can be chosen arbitrarily small,

the asymptotic behavior of (τo − τ)−2η
∑τo+p−1

t=τ ‖ζ(0)
tτ ‖2 ≥ p−2η

∑τo+p−1
t=τ ‖ζ(0)

tτ ‖2 is dominated

by the third term on the r.h.s. of (A.33) and the preceding discussion implies that this sum

tends to infinity with T . From this and Lemma A.10 we can conclude that asymptotically

τo − p ≤ τ̂R ≤ τo − 1 cannot occur.

Thus, we have shown that, when δ1o 6= 0, asymptotically τ̂R < τ0 cannot occur. A similar

argument with ζ
(0)
tτ replaced by ζtτ and with Lemma A.10 replaced by its corresponding

counterpart shows that asymptotically τ̂R > τo cannot occur either.

Now suppose that δ1o = 0 and consider the break dates τo − p ≤ τ̂ ≤ τo − 1. Instead of

(A.33) we use a slightly different representation of ζ
(0)
tτ given by

ζ
(0)
tτ = −∆dtτ (δ1 − δ

(0)
1 )− dt−1,τoδ

(0)
1 + dt−1,τδ

(0)
1 +

∑p−1
j=1 ∆dt−j,τo(Γj − Γjo)δo

+
(
∆dtτ −

∑p−1
j=1 Γj∆dt−j,τ

)
δ −

(
∆dtτo −

∑p−1
j=1 Γjo∆dt−j,τo

)
δo.

(A.33a)

This representation can be obtained from the definitions (cf. the similar representation used

in the proof of Lemma A.11). As with the case δ1o 6= 0, our treatment will be divided into

two separate cases.

In the first one the parameter δ is restricted as δ ≥ T aε∗, where ε∗ > 0 is arbitrary and

a > η > 1/b. From the preceding representation of ζ
(0)
tτ it then follows that

(
T−2η

T∑
t=p+1

‖ζ(0)
tτ ‖2

)1/2

≥ T−η‖ζ(0)
ττ ‖

= T−η‖δ − (δ1 − δ
(0)
1 )‖

≥ T−η(‖δ‖ − ‖δ1 − δ
(0)
1 ‖)

≥ T a−η‖ε∗‖ − εT−1/2.

Here the last inequality makes use of the fact that ‖δ1 − δ
(0)
1 ‖ ≤ εT η−1/2 can be assumed by
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Lemma A.8. Because the last quantity tends to infinity with T , it follows from the latter

result of Lemma A.10 that asymptotically τo − p ≤ τ̂R ≤ τo − 1 cannot occur.

When δ < T aε∗ (a > η > 1/b) is assumed, (A.33a) and Lemma A.11 give the desired

result much in the same way as in the case δ1o 6= 0, where (A.33) was used instead of (A.33a).

First note that the norm of the first four terms on the r.h.s. of (A.33a) can be bounded by

a quantity of the form εcT η+a−1/2, where 0 < c < ∞. This follows from Lemma A.8 and

arguments used to prove Lemma A.11 for δ1o = 0. Next, in the same way as in the case

δ1o 6= 0 one can show that the term in front of δ in the fifth term on the r.h.s. of (A.33a) can

be assumed bounded and, hence, the norm of the whole term can be bounded by a quantity

of the form c1ε∗T a, where 0 < c1 < ∞. By similar arguments we finally find that, at least

for t = τo, the norm of the last term on the r.h.s. of (A.33a) can be bounded below by a

quantity of the form c2‖δ∗‖T a, where 0 < c2 < ∞ and ‖δ∗‖ 6= 0. Thus, since ε∗ can be

chosen arbitrarily small, the asymptotic behavior of
(
T−2η

∑T
t=p+1 ‖ζ(0)

tτ ‖2
)1/2

is dominated

by the last term on the r.h.s. of (A.33a) and it follows from the latter result of Lemma A.10

that asymptotically τo − p ≤ τ̂R ≤ τo − 1 cannot occur.

Thus, we have shown that, when δ1o = 0, we asymptotically cannot have τ̂R < τo. Again

a similar proof with ζ
(0)
tτ replaced by ζtτ and Lemma A.10 replaced by its corresponding

counterpart shows that asymptotically τ̂R > τo cannot occur either. This completes the

proof of part (i) of the theorem in the case δ1o = 0. Part (ii) is a consequence of the

(asymptotic) existence of τ̂R and Lemma A.11. This completes the proof of Theorem 3.2.

A.3 Proof of Theorem 3.3

The estimator τ̃ can be obtained by minimizing the Gaussian likelihood function lT (Θ, τ, Ω)

subject to the restriction γ = 0. Thus, we can consider minimizing the objective function

l∗T (Θ1, τ, Ω) = (T − p) log det Ω + tr

(
Ω−1

T∑
t=p+1

ε∗tτ (Θ1)ε
∗
tτ (Θ1)

′
)

,

where Θ1 = [Φ : δ1] and ε∗tτ (Θ1) = ∆xt − Φw
(0)
t − δ1dtτ + δ

(0)
1 dtτo + γ(0)dtτo

. We can express

ε∗tτ (Θ1) as

ε∗tτ (Θ1) = ε∗1tτ (Θ1) + ε2t(Φ2),
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where ε∗1tτ (Θ1) = −Φ1w
(0)
1t − δ1dtτ + δ

(0)
1 dtτo +γ(0)dtτo

and ε2t(Φ2) is as defined in Section A.1.

Analogously to lT (Θ, τ, Ω) we can decompose l∗T (Θ1, τ, Ω) as

l∗T (Θ1, τ, Ω) = l∗1T (Θ1, τ, Ω) + l2T (Φ2, Ω),

where

l∗1T (Θ1, τ, Ω) = tr

(
Ω−1

T∑
t=p+1

ε∗1tτ (Θ1)ε
∗
1tτ (Θ1)

′
)

+ 2tr

(
Ω−1

T∑
t=p+1

ε∗1tτ (Θ1)ε2t(Φ2)
′
)

and, as before,

l2T (Φ2, Ω) = (T − p) log det Ω + tr

(
Ω−1

T∑
t=p+1

ε2t(Φ2)ε2t(Φ2)
′
)

.

We shall now discuss modifications of Lemmas A.1 - A.10 based on the objective function

l∗T (Θ1, τ, Ω). Some of them are minor and are therefore only briefly mentioned. For Lemmas

A.5 and A.7 - A.10, new statements of the results will be provided which will be furnished

with a superscript ‘*’ to indicate the correspondence to the previous results. We will refer

to all the modified versions of the lemmas by attaching a superscript ‘*’ to the number even

if no explicit statement of the result is presented.

The result of Lemma A.1 holds with lT (Θ, τ, Ω) replaced by l∗T (Θ1, τ, Ω) and the set B1

redefined by replacing the parameter Θ by Θ1. In subsequent discussions this redefinition of

B1 will be denoted by B∗
1 . To see that this modification of Lemma A.1 holds, notice that from

the proof of that lemma it can be seen that we first need to show that T−1l∗T (Θ1o, τo, Ωo) =

Op(1). However, because T−1l∗T (Θ1o, τo, Ωo) differs from the expression in the middle of (A.6)

only in that εt is replaced by ε∗t = εt + γ
o
dtτo

, this follows by straightforward application of

the weak law of large numbers and the assumption γ
o

= O(T a), a ≤ 1/2. The proof can be

completed by repeating the latter part of the proof of Lemma A.1 because therein only time

points are involved for which εtτ (Θ) = ε∗tτ (Θ1) holds.

Because Lemma A.2 is concerned with l2T (Φ2, Ω), it can be used as before, whereas the

result of Lemma A.3 holds with l1,τ−1(Θ, τ, Ω) replaced by l∗1,τ−1(Θ1, τ, Ω) and the set B1

replaced by B∗
1 . This latter fact is obvious because l1,τ−1(Θ, τ, Ω) = l∗1,τ−1(Θ1, τ, Ω) when

τ ≤ τo.

The result of Lemma A.4 holds with the inequality replaced by

l∗1,τo−1(Θ1, τ, Ω)− l∗1,τ−1(Θ1, τ, Ω) ≥ c2‖T 1/2Ψ1‖2 − a2T‖T 1/2Ψ1‖
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and the set B1 replaced by B∗
1 . (Here c2 and a2T have the same properties as in Lemma A.4.)

A proof of this result is obtained by following the proof of Lemma A.4 with the restriction

γ = 0 imposed. Because this means that only the upper left hand corner of the matrix on

the l.h.s. of (A.10) needs to be analyzed and the term L42 can be ignored, the desired result

readily follows.

The result of Lemma A.6 applies with l1T (Θ, τ, Ω)−l1,τo+p−1(Θ, τ, Ω) replaced with l∗1T (Θ1, τ, Ω)−
l∗1,τo+p−1(Θ1, τ, Ω) and the set B1 replaced by B∗

1 . This is obvious because the two differences

have identical values.

Because more substantial modifications are required for the remaining lemmas, we for-

mulate new versions of them. For an analog of Lemma A.5 we introduce the notation

ζ
(∗)
tτ = (dtτ − dtτo)δ

(0)
1 − γ(0)dtτo

.

Because Ψ2 = Φ1 + [δ1 − δ
(0)
1 : 0], we have

ε∗1tτ (Θ1) = −Ψ2w
(0)
1t − ζ

(∗)
tτ , t = τo, . . . , τo + p− 1.

Lemma A.5∗. There exists a constant c3 > 0 such that, with probability approaching one

and uniformly in [Tλ] ≤ τ ≤ τo and (Θ1, τ, Ω) ∈ B∗
1 ,

l∗1,τo+p−1(Θ1, τ, Ω)− l∗1,τo−1(Θ1, τ, Ω) ≥ c3

τo+p−1∑
t=τo

‖ζ(∗)
tτ ‖2 − a4T

(
τo+p−1∑

t=τo

‖ζ(∗)
tτ ‖2

)1/2

− a5T ,

where a4T and a5T are as in Lemma A.5.

Proof: In the same way as in the proof of Lemma A.5 we can write

l∗1,τo+p−1(Θ1, τ, Ω)− l∗1,τo−1(Θ1, τ, Ω) = L∗5 + L∗6,

where L∗5 and L∗6 are as L5 and L6, respectively, except for being defined by using ε∗1tτ (Θ1)

instead of ε1tτ (Θ). The stated result follows because the analysis given for L5 and L6 in the

proof of Lemma A.5 applies also here with ζ
(0)
tτ replaced by ζ

(∗)
tτ . 2
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Lemma A.7∗. There exists a constant c5 > 0 such that, with probability approaching one

and uniformly in [Tλ] ≤ τ ≤ τo − 1 and (Θ1, τ, Ω) ∈ B∗
1 ,

l∗1,τo−1(Θ1, τ, Ω)− l∗1,τ−1(Θ1, τ, Ω)

≥ c5

∑τo−1
t=τ ‖ζ(∗)

tτ ‖2 −
(
a7T + a8T

(
τo−τ

T

)1/2 ‖T 1/2Ψ2‖
)(∑τo−1

t=τ ‖ζ(∗)
tτ ‖2

)1/2

−a9T‖T 1/2Ψ2‖,

where aiT ≥ 0 and aiT = Op(1) (i = 7, 8, 9).

Proof: In the same way as in the proof of Lemma A.7 we can write,

l∗1,τo−1(Θ1, τ, Ω)− l∗1,τ−1(Θ1, τ, Ω) = L∗7 + L∗8,

where L∗7 and L∗8 differ from L7 and L8, respectively, only in that ε∗1tτ (Θ1) is used in place

of ε1tτ (Θ). By the definitions we can also write ε∗1tτ (Θ1) = −Ψ2w
(0)
1t − ζ

(∗)
tτ , t = τ, . . . , τo − 1,

(cf. the corresponding representation of ε1tτ (Θ)). An inspection of the proof of Lemma A.7

reveals that the analysis given for L7 applies to L∗7 if only the quantity ζ
(0)
tτ is replaced by

ζ
(∗)
tτ . Thus, we can write L∗7 = L∗71 + L∗72 + L∗73, where |L∗73| and L∗71 + L∗72 satisfy inequality

(A.13) and (A.14), respectively, except that ζ
(0)
tτ on the r.h.s. is replaced by ζ

(∗)
tτ .

Regarding L∗8 we can write L∗8 = L81 + L∗82, where L81 satisfies (A.15). Thus, we can

conclude from the preceding discussion that it only remains to show that

|L∗82| ≤ a7T

(
τo−1∑
t=τ

‖ζ(∗)
tτ ‖2

)1/2

,

where a7T is as stated in Lemma A.7∗. To see this notice that ζ
(∗)
tτ = δ

(0)
1 , t = τ, . . . , τo − 1,

and therefore (cf. the analysis given for L82)

|L∗82| ≤ 2‖Ω−1‖
∥∥∥∥∥

τo−1∑
t=τ

ζ
(∗)
tτ ε2t(Φ2)

′
∥∥∥∥∥

≤ 2‖Ω−1‖‖δ(0)
1 ‖

∥∥∥∥∥
τo−1∑
t=τ

ε2t(Φ2)

∥∥∥∥∥

= 2‖Ω−1‖
(

τo−1∑
t=τ

‖ζ(∗)
tτ ‖2

)1/2 ∥∥∥∥∥(τo − τ)−1/2

τo−1∑
t=τ

ε2t(Φ2)

∥∥∥∥∥ .

This gives the desired result because the last norm is of order Op(1) uniformly in [Tλ] ≤ τ ≤
τo − 1, as discussed in the proof of Lemma A.7. 2
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Because the quantity η does not appear in the results of Lemmas A.4∗ and A.7∗, the

subsequent modifications of Lemmas A.8, A.9 and A.10 can be generalized accordingly.

Lemma A.8∗. Let ε > 0 and B∗
2 = {(Θ1, τ, Ω) : ‖T (1/2)−ηΦ1‖2 + ‖T (1/2)−ηΨ2‖2 ≤ ε2}, where

0 < η < 1
2
. Then,

inf
(Θ1,τ,Ω)∈B∗c

2

l∗T (Θ1, τ, Ω)− l∗T (Θ1o, τo, Ωo) > 0

with probability approaching one and uniformly in [Tλ] ≤ τ ≤ τo.

Proof: We can follow the proof of Lemma A.8. First note that in place of (A.18) we now

have

l∗T (Θ1, τ, Ω)− l∗T (Θ1o, τo, Ωo) = l∗1T (Θ1, τ, Ω)− l∗1T (Θ1o, τo, Ωo) + l2T (Φ2, Ω)− l2(Φ2o, Ωo)

≥ l∗1T (Θ1, τ, Ω)− l∗1T (Θ1o, τo, Ωo) + Op(1),

where the inequality is obtained from Lemma A.2 in the same way as in (A.18). Here

l∗1T (Θ1o, τo, Ωo) is not zero. By the definition of ε∗1tτo
(Θ1) we have ε∗1tτo

(Θ1o) = γ
o
dtτo

and,

hence,

l∗1T (Θ1o, τo, Ωo) = tr

(
Ω−1

o γ
o

τo+p−1∑
t=τo

dtτo
d′tτo

γ′
o

)
+ 2tr

(
Ω−1

o γ
o

τo+p−1∑
t=τo

ε′t

)

= tr
(
Ω−1

o γ
o
γ′

o

)
+ 2tr

(
Ω−1

o γ
o

τo+p−1∑
t=τo

ε′t

)

≥ ω̄−1‖γ
o
‖2 − a∗T‖γo

‖,

where ω̄−1 > 0 and a∗T = Op(1). Here the inequality can be justified by arguments similar

to those used to analyze L5 and L6 in the proof of Lemma A.5. By (A.17) the last quantity

can be bounded from below by −a2
∗T ω̄/4 = Op(1) and it follows that

l∗T (Θ1, τ, Ω)− l∗T (Θ1o, τo, Ωo) ≥ l∗1T (Θ1, τ, Ω) + Op(1).

Thus, we can conclude that it suffices to show that, for some ε∗ > 0,

inf
(Θ1,τ,Ω)∈B∗c

2

T−2ηl∗1T (Θ1, τ, Ω) ≥ ε∗ (A.34)

with probability approaching one and uniformly in [Tλ] ≤ τ ≤ τo. From Lemma A.1∗ it

then follows that (A.34) can be established with B∗c
2 replaced by B∗

1 ∩B∗c
2 . This in turn can
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be done separately for the sets B∗
21 and B∗

22 defined by modifying the definitions of B21 and

B22, respectively, in an obvious way.

Consider the l.h.s. of (A.34) with B∗c
2 replaced by B∗

21. From Lemmas A.3∗, A.4∗, A.5∗,

A.6∗ and the result in (A.17) we then find that T−2ηl∗1T (Θ1, τ, Ω) has a lower bound exactly

of the same form as obtained for T−2ηl1T (Θ, τ, Ω) in (A.20). Then an analog of (A.21) also

holds and we can proceed in the same way as in the proof of Lemma A.8 and show that

(A.34) holds when B∗c
2 is replaced by B∗

21.

Now consider proving (A.34) with B∗c
2 replaced by B∗

22. Here we can obtain an ana-

log of (A.22) by using Lemmas A.3∗, A.5∗, A.6∗ and A.7∗. This yields a lower bound for

T−2ηl∗1T (Θ1, τ, Ω) which differs from that obtained for T−2ηl1T (Θ, τ, Ω) in (A.22) only in that

(i) ζ
(0)
tτ is replaced by ζ

(∗)
tτ and (ii) a7T

(
τo−τ

T

)η
is replaced by a7T T−η. This implies that we

can proceed in the same way as after (A.22) and obtain the following analog of (A.23):

T−2ηl∗1T (Θ1, τ, Ω) ≥ c1‖T (1/2)−ηΦ1‖2 − T−ηa1T‖T (1/2)−ηΦ1‖
+c4T (τ)‖T (1/2)−ηΨ2‖2 − a∗10T (τ)‖T (1/2)−ηΨ2‖ − a∗11T + op(1),

where c4T (τ) is as in (A.23),

a∗10T (τ) = T−ηa6T + T−ηa9T + T−η a7T a8T

2c5

(
τo − τ

T

)1/2

and

a∗11T =
a2

7T

T−2η4c5

.

Thus, it follows that we have, with probability approaching one and uniformly in B∗
22,

c4T (τ) ≥ c4/2, a∗10T (τ) = op(1) and a∗11T = op(1), and the situation becomes exactly the

same as in the case of the set B∗
21. This completes the proof of Lemma A.8∗. 2

Lemma A.9∗. Let ε > 0 and B∗
3 = {(Θ1, τ, Ω) : ‖T (1/2)−η(Φ2 − Φ2o)‖ ≤ ε}, where η is the

same as in Lemma A.8∗. Then,

inf
(Θ1,τ,Ω)∈B∗c

3

l∗T (Θ1, τ, Ω)− l∗T (Θ1o, τo, Ωo) > 0

with probability approaching one and uniformly in [Tλ] ≤ τ ≤ τo.

Proof: The proof can be obtained in the same way as that of Lemma A.9. Instead of using

results obtained in the proof of Lemma A.8 we, of course, use corresponding results discussed
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in the proof of Lemma A.8∗. Details are omitted. 2

Lemma A.10∗. (i) Assume that 0 < a ≤ 1/2, let ε > 0 and B∗
4 = {(Θ1, τ, Ω) : (τo −

τ)(1/2)−η‖δ(0)
1 ‖ ≤ T aε}, where τ < τo and η is the same as in Lemma A.8∗. Then,

inf
(Θ1,τ,Ω)∈B∗c

4

l∗T (Θ1, τ, Ω)− l∗T (Θ1o, τo, Ωo) > 0

with probability approaching one and uniformly in [Tλ] ≤ τ ≤ τo − 1.

(ii) Assume that a ≤ 0 and let B∗
40 = {(Θ1, τ, Ω) : (τo − τ)‖δ1o‖2/(1−2η) ≤ M}, where τ < τo

and η is the same as in Lemma A.8∗. Then, there exists a real number M0 such that, for all

M ≥ M0,

inf
(Θ1,τ,Ω)∈B∗c

40

l∗T (Θ1, τ, Ω)− l∗T (Θ1o, τo, Ωo) > 0

with probability approaching one and uniformly in [Tλ] ≤ τ ≤ τo − 1.

Proof: (i) In the same way as in the proof of Lemma A.10 it can first be seen that it suffices

to show that l∗1T (Θ1, τ, Ω) satisfies an analog of (A.24) (instead of (A.18) we use its analog

discussed in the proof of Lemma A.8∗). This in turn can be done by using Lemmas A.3∗,

A.5∗, A.6∗ and A.7∗ to obtain a lower bound for l∗1T (Θ1, τ, Ω). This lower bound divided by

T 2η was discussed in the proof of Lemma A.8∗. From that discussion it can be concluded

that

l∗1T (Θ1, τ, Ω) ≥ c3

τo+p−1∑
t=τo

‖ζ(∗)
tτ ‖2 − a4T

(
τo+p−1∑

t=τo

‖ζ(∗)
tτ ‖2

)1/2

+ c5

τo−1∑
t=τ

‖ζ(∗)
tτ ‖2

− (
a7T + a8T (τo − τ)1/2‖Ψ2‖

)
(

τo−1∑
t=τ

‖ζ(∗)
tτ ‖2

)1/2

+ Op(1).

This holds uniformly in B∗
1 ∩B∗

2 ∩B∗
3 ∩B∗c

4 and [Tλ] ≤ τ ≤ τo − 1. By (A.17), the first two

terms on the r.h.s. can be bounded from below by −a2
4T /4c3 and in what follows they will

be absorbed in the term Op(1). The term (τo − τ)1/2‖Ψ2‖ can be bounded from above by

ε1(τo − τ)η, where ε1 > 0 (cf. the proof of Lemma A.10). Taking these facts into account

and observing that ζ
(∗)
tτ = δ

(0)
1 for t = τ, . . . , τo − 1, we can write the preceding inequality as

l∗1T (Θ1, τ, Ω) ≥ c5(τo − τ)‖δ(0)
1 ‖2 − a∗T (τo − τ)η+1/2‖δ(0)

1 ‖+ Op(1)

= (τo − τ)‖δ(0)
1 ‖2

(
1− a∗T (τo − τ)η−1/2

c5‖δ(0)
1 ‖

)
+ Op(1).

(A.35)

74

Pentti Saikkonen, Helmut Lütkepohl and Carsten Trenkler

EUI WP ECO 2004/21



Here a∗T = Op(1), which as well as the whole result, holds uniformly in B∗
1∩B∗

2∩B∗
3∩B∗c

4 (cf.

(A.25)). On B∗c
4 we have ‖δ(0)

1 ‖ > (τo− τ)η−1/2T aε. Thus, with probability approaching one,

the last expression in (A.35) exceeds any preassigned real number. This proves the desired

result.

(ii) Here the proof is obtained by following the previous proof of (A.35). The rest of the

proof is then similar to that of Lemma A.10. 2

The results of the adjusted Lemmas can be modified in a straightforward way to the case

τ ≥ τo. Using Lemma A.10∗ and its modification we can prove Theorem 3.3.

Suppose that 0 < a ≤ 1/2 and τ < τo. Then, in the same way as in (A.26), we find that

(τo − τ)(1/2)−η‖δ(0)
1 ‖ ≥ (τo − τ)(1/2)−η‖δ1o‖

(
1− ‖δ(0)

1 − δ1o‖
‖δ1o‖

)

≥ (τo − τ)(1/2)−ηT a‖αoβ
′
oδ∗‖

(
1− εcT η−1/2

‖αoβ′oδ∗‖
)

,

(A.36)

where 0 < c < ∞. As τo − τ ≥ 1 the last expression tends to infinity and Lemma A.10∗(i)

and the fact that τ̃ exists (for all T larger than some constant) implies that asymptotically

τ̃ < τo cannot occur. Because a similar analysis can be carried out in the case τ < τo the

proof of the first assertion of Theorem 3.3 is complete.

To prove the second assertion, write (τo−τ)(1/2)−η‖δ1o‖ in the second expression of (A.36)

as
(
(τo − τ)‖δ1o‖2/(1−2η)

)(1/2)−η
and proceed in the same way as in (A.26). The desired result

is then obtained from Lemma A.10∗(ii). 2

A.4 Proof of Lemma 4.1

Because we do not need values from T other than the estimated and the true value in the

following, we denote the latter by τ and hence drop the subscript ‘o’ for convenience. For

simplicity we will denote the break date estimator by τ̂ . This estimator can be any one of the

three estimators considered in Section 3 unless explicit distinctions are made. Moreover, we

will make reference to Saikkonen & Lütkepohl (2000) several times and therefore abbreviate

that article by S&L.
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Properties of RR estimators

We shall first show that the RR estimators of the parameters based on equation (2.7) with the

unknown break date τ replaced by the estimator τ̂ satisfy appropriate consistency properties.

This replacement changes the VECM (2.7) to

∆yt = ν + α(β′yt−1 − φ(t− 1)− θdt−1,τ̂ ) +

p−1∑
j=1

Γj∆yt−j +

p−1∑
j=0

γ∗j ∆dt−j,τ̂ + εtτ̂ , (A.37)

where

εtτ̂ = εt + αoβ
′
oδo(dt−1,τ̂ − dt−1,τ )−

p−1∑
j=0

γ∗jo(∆dt−j,τ̂ −∆dt−j,τ ). (A.38)

Write

yt = µ0o + µ1ot + δodtτ̂ + ytτ̂ , (A.39)

where ytτ̂ = xt− δo(dtτ̂ − dtτ ). Using the transformation yt → µ0o + µ1ot + δodtτ̂ + ytτ̂ we can

transform the preceding VECM to the form

∆ytτ̂ = ν(0)+α(β′yt−1,τ̂−φ(0)(t−1)−θ(0)dt−1,τ̂ )+

p−1∑
j=1

Γj∆yt−j,τ̂ +

p−1∑
j=0

γ
∗(0)
j ∆dt−j,τ̂ +εtτ̂ , (A.40)

where

ν(0) = ν + αβ′µ0o −Ψµ1o

φ(0) = φ− β′µ1o

θ(0) = θ − β′δo

γ
∗(0)
0 = δ − δo

and

γ
∗(0)
j = γ∗j + Γjδo (j = 1, . . . , p− 1).

Note that the true values of these parameters are zero. RR estimators of the parameters in

(A.40) are obtained by transforming the RR estimators based on (A.37) in the same way

as the corresponding parameters (e.g., φ̃(0) = φ̃ − β̃′µ1o). Asymptotic properties of these

transformed estimators are derived below. The needed derivations make use of the following

general results.
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Lemma A.13. Let JtT be a (possibly) random vector such that max1≤t≤T‖JtT‖ = Op(1)

and Jt a vector valued stochastic process satisfying supt E‖Jt‖2 < ∞. Then, if τ̂ − τ =

Op(T
−2a/(1−2η)), η − 1

2
≤ a ≤ 0 and 1

b
< η < 1

4
,

(i) T−η−1/2

T∑
t=p+1

JtT δ′o(dtτ̂ − dtτ ) = Op(T
a−η− 1

2
− 2a

(1−2η) ) = Op(1)

(ii) T−η−1/2

T∑
t=p+1

Jtδ
′
o(dtτ̂ − dtτ ) = Op(T

a−η−a/(1−2η)) = Op(1).

Proof: To prove (i), use the triangle inequality to conclude that the norm of the considered

sum is dominated by T−η−1/2 max1≤t≤T ‖JtT‖‖δo‖|τ̂ − τ |. The stated orders in probability

follow from this and the assumptions.

For (ii) we can use the triangle inequality and the Cauchy-Schwarz inequality to show

that the norm of the considered sum is dominated by

T−η‖δo‖
(

T−1

T∑
t=p+1

‖Jt‖2

)1/2 (
T∑

t=p+1

|dtτ̂ − dtτ |2
)1/2

= Op

(
T a−η

) |τ̂ − τ |1/2.

Here the equality is due to the assumptions which also readily show that the last expression

is of the stated order in probability. 2

Note that the assumption a ≥ η − 1/2 is equivalent to −2a/(1 − 2η) ≤ 1 and is not

restrictive because τ̂ − τ is necessarily Op(T ), as already mentioned in Section 3.

Now we can prove the asymptotic properties of the RR estimators discussed above. We

denote by α̃0 and β̃0 normalized versions of the estimators α̃ and β̃, respectively, such that

β̃0 = β̃((β′oβo)
−1β′oβ̃)−1.

Lemma A.14. Under the conditions of Lemma 4.1,

β̃0 − βo = Op(T
η−1) (A.41)

φ̃(0) = Op(T
η−3/2) (A.42)

θ̃(0) = Op(T
η−1/2) (A.43)

α̃0 − αo = Op(T
η−1/2) (A.44)
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Γ̃j − Γjo = Op(T
η−1/2) (A.45)

ν̃(0) = Op(T
η−1/2) (A.46)

γ̃
∗(0)
j = op(T

η), j = 0, . . . , p− 1 (A.47)

Ω̃− Ω = Op(T
η−1/2) (A.48)

where 1/b < η < 1/4.

Proof: We shall prove Lemma A.14 for the following different cases: (a) δ1o 6= 0 and a ≤ 0;

(b) δ1o = 0 and a ≤ 1/b; (c) all remaining cases. In Cases (a) and (b) all three break date

estimators τ̂ , τ̂R and τ̃ are relevant. In Case (c), also all three break date estimators are

relevant except when δ1o = 0 and a > 1/b. In the latter situation, τ̃ is not considered because

this case is not covered by Theorem 3.3. We start by introducing some notation.

Define xtτ̂ = [y′t−1,τ̂ : (t − 1) : dt−1,τ̂ ]
′ and p1tτ̂ = [1 : ∆y′t−1,τ̂ : · · · : ∆y′t−p+1,τ̂ ]

′. Then

equation (A.40) can be expressed as

∆ytτ̂ = αψ′xtτ̂ + Λptτ̂ + εtτ̂ , t = p + 1, p + 2, . . . , (A.49)

where ptτ̂ = [p′1tτ̂ : d′tτ̂ ]
′, ψ′ = [β′ : −φ(0) : −θ(0)] and Λ = [Λ1 : γ

∗(0)
0 , . . . , γ

∗(0)
p−1 ] with

Λ1 = [ν(0) : Γ1 : · · · : Γp−1]. Here dtτ̂ = [∆dtτ̂ , . . . , ∆dt−p+1,τ̂ ]
′. The RR estimators of α, ψ

and Ω can be obtained as follows. Define

S00τ̂ = T−1

T∑
t=p+1

∆ytτ̂∆y′tτ̂ − T−1

T∑
t=p+1

∆ytτ̂p
′
tτ̂

(
T∑

t=p+1

ptτ̂p
′
tτ̂

)−1 T∑
t=p+1

ptτ̂∆y′tτ̂ ,

S01τ̂ = S ′10τ̂ = T−1

T∑
t=p+1

∆ytτ̂x
′
tτ̂ − T−1

T∑
t=p+1

∆ytτ̂p
′
tτ̂

(
T∑

t=p+1

ptτ̂p
′
tτ̂

)−1 T∑
t=p+1

ptτ̂x
′
tτ̂

and

S11τ̂ = T−1

T∑
t=p+1

xtτ̂x
′
tτ̂ − T−1

T∑
t=p+1

xtτ̂p
′
tτ̂

(
T∑

t=p+1

ptτ̂p
′
tτ̂

)−1 T∑
t=p+1

ptτ̂x
′
tτ̂ .

As is well-known, the RR estimator of ψ is based on the eigenvectors corresponding to the

r largest eigenvalues of the determinantal equation

det(λS11τ̂ − S10τ̂S
−1
00τ̂S01τ̂ ) = 0. (A.50)

When the RR estimator of ψ is available, those of the other parameters can be obtained by

replacing ψ by its estimator in (A.49) and using usual LS formulas for the obtained auxiliary

regression model.
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Case(a): δ1o 6= 0 and a ≤ 0

We start by studying the RR estimator of ψ. In the same way as in S&L we follow the proof

of Lemma 13.1 of Johansen (1995) and transform equation (A.50) to

det(λA′
T S11τ̂AT − A′

T S10τ̂S
−1
00τ̂S01τ̂AT ) = 0, (A.51)

where

AT =




βo T−1/2βo⊥(β′o⊥βo⊥)−1 0 0

0 0 T−1 0

0 0 0 ( T
T−τ

)1/2




and, consequently,

A′
Txtτ̂ =




β′oyt−1,τ̂

T−1/2(β′o⊥βo⊥)−1β′o⊥yt−1,τ̂

T−1(t− 1)

( T
T−τ

)1/2dt−1,τ̂




.

Recall the definition w
(0)
t = [1 : t

T
: T−1/2v

(0)′
t−1 : u

(0)′
t−1 : ∆x′t−1 : · · · : ∆x′t−p+1]

′ (see (A.3)) and

note that for all a ≤ 1/2,

T−1/2

[T λ̄]−1∑
t=τ

w
(0)
t δ′o∆dt−i,τ = op

(
T η+a−1/2

)
, i = 0, . . . , p− 1, (A.52)

uniformly in [Tλ] ≤ τ < [T λ̄]. For the first component of w
(0)
t , that is, for w

(0)
1t , this is

essentially justified in the proof of Lemma A.4 because ‖δo‖ = T a‖δ∗‖ (see Equation (A.9a)).

Regarding w
(0)
2t , consider its first component u

(0)
t−1. Since u

(0)
t−1 = β′oxt−1 is stationary we can

use an argument similar to that for (A.14) of Saikkonen & Lütkepohl (2002) and conclude

that max1≤t≤T

∥∥∥u
(0)
t−1

∥∥∥ = op (T η), which gives the desired result. A similar reasoning applies

to the remaining components of w
(0)
2t , that is, to ∆xt−j (j = 1, . . . , p − 1), and, hence, we

have established (A.52).

Now, using (A.52) and Lemma A.13 in conjunction with the definition of ytτ̂ (see (A.39))

and the assumption a ≤ 0 we can show that

S00τ̂ = S00τ + op(1), (A.53)

S01τ̂AT = S01τAT + op(1) (A.54)
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and

A′
T S11τ̂AT = A′

T S11τAT + op(1). (A.55)

Details are straightforward but somewhat tedious and will be omitted.

From (A.53) − (A.55) and the proof of Lemma 2.1 of S&L we can conclude that the

estimators β̃0, φ̃(0) and θ̃(0) are consistent of orders op(T
−1/2), op(T

−1) and op(1), respectively.

After this, the consistency properties of the other estimators can be studied by using the LS

estimation of the auxiliary regression model

∆ytτ̂ = α(ψ̃′xtτ̂ ) + Λptτ̂ + error, (A.56)

where ψ̃ is the RR estimator of ψ and the error has the representation εtτ̂ − αo(ψ̃ − ψo)
′xtτ̂

(see (A.17) and (A.31)). Using the consistency results obtained for ψ̃ in conjunction with

Lemma A.13 and (A.52) it can be shown that the replacement of τ̂ by the true break date

in the appropriately standardized moment matrix of this LS estimation causes an error of

order op(1). Here the needed arguments are similar to those already used and the employed

standardization is by the matrix [T−1/2I : Ip] where the latter identity matrix is used for the

impulse dummies in ptτ̂ . It is further straightforward to see that this standardized moment

matrix is asymptotically positive definite and block diagonal between the impulse dummies

and other regressors. The consistency results obtained for ψ̃ and (A.52) also readily show

that the off diagonal blocks are of order op(T
η−1/2).

The next step is to study the sums of cross products between the regressors and errors

in (A.56). Here we can also use a standardization of the form [T−1/2I : Ip] and show that

these sums of cross products are of order [op(T
1/2) : op(T

η)], where the latter order is related

to the impulse dummies and the former to the other regressors. From this and what was

said about the asymptotic behavior of the standardized moment matrix we obtain (A.47)

and that T 1/2(α̃0 − αo) = op(T
1/2), T 1/2(Γ̃j − Γjo) = op(T

1/2) and T 1/2ν̃(0) = op(T
1/2) or

consistency of the estimators α̃0, Γ̃j (j = 1, . . . , p− 1) and ν̃(0). After this, consistency of Ω̃

is also straightforward to obtain by using the auxiliary regression model (A.56).

These results can be proved by using again the consistency results obtained for ψ̃ in

conjunction with Lemma A.13 and (A.52). Some of the involved details will be illustrated

later when orders of consistency are obtained. Here we only note that the order op(T
η)

for the sums of cross products between the impulse dummies and errors of the auxiliary
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regression model (A.56) results because the error term contains the component εtτ̂ which

in turn contains the component εt (see (A.38)). Hence, we have to find out the order of
∑T

t=p+1 ∆dt−j,τ̂εt and (A.52) gives the result op(T
η).

To obtain the orders of consistency stated in (A.41) − (A.43), we follow LST and note

that the first order conditions for ψ̃, the RR estimator of ψ, can be expressed as

0 = α̃′0Ω̃
−1

(
T−ηSε1τ̂BT − α̃0T

−ηU ′
T [T−1B′

T S11τ̂BT ]− T−η(α̃0 − αo)ψ
′
oS11τ̂BT

)
, (A.57)

where Sε1τ̂ = S01τ̂ − αoψ
′
oS11τ̂ ,

UT =




Tβ′o⊥β̃0

T 3/2φ̃(0)′

(T − τ)1/2θ̃(0)′




and

BT =




βo⊥(β′o⊥βo⊥)−1 0 0

0 T−1/2 0

0 0 T
(T−τ)1/2


 .

Now, notice that BT is formed by the last (n− r + 2) columns of T 1/2AT and that ψ′oxtτ̂ =

β′oyt−1,τ̂ . Using these facts, the definition of ytτ̂ (see (A.39)), (A.52), and Lemma A.13, it is

straightforward to proceed in the same way as in the above consistency proof and show that

in (A.57)

T−ηSε1τ̂BT = Op(1),

T−1B′
T S11τ̂BT = T−1B′

T S11τBT + op(1)

and

T−η(α̃0 − αo)ψ
′
oS11τ̂BT = op(1).

In the same way as in the proof of Lemma 2.1 of S&L we can then conclude from (A.57) that

T−ηUT = Op(1) and furthermore (A.41)− (A.43) hold. To illustrate the needed arguments,

we consider one detail and demonstrate that

T−1−η

T∑
t=p+1

β′oyt−1,τ̂y
′
t−1,τ̂βo⊥ = T−1−η

T∑
t=p+1

β′oxt−1x
′
t−1βo⊥ + Op(1) = Op(1).

The l.h.s. is contained in T−ηψ′oS11τ̂BT and hence also in T−ηSε1τ̂BT . Because the sum in

the second expression is of order Op(T
−η) by well-known properties of stationary and I(1)
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processes, this result follows from

T−1−η

T∑
t=p+1

β′oxt−1δ
′
o(dt−1,τ̂ − dt−1,τ ) = op(1),

T−1−η

T∑
t=p+1

β′o⊥xt−1δ
′
oβo(dt−1,τ̂ − dt−1,τ ) = Op(1)

and

T−1−η

T∑
t=p+1

β′oδoδ
′
oβo(dt−1,τ̂ − dt−1,τ ) = op(1).

Because β′oxt−1 is second order stationary the first of these results follows from Lemma

A.13(ii). The second one can be justified by Lemma A.13(i) because max1≤t≤T T−1/2‖xt‖ =

Op(1) by well-known properties of I(1) processes. The third result can also be obtained from

Lemma A.13(i) by choosing JtT = β′δo.

We still have to justify the orders of consistency for the estimators α̃0, Γ̃j (j = 1, . . . , p−1),

ν̃(0) and Ω̃. Here we can proceed in the same way as in the corresponding consistency

proof but use the improved consistency result obtained for the estimator ψ̃ to improve the

convergence rate of the sums of cross products between the regressors other than the impulse

dummies and the error in the auxiliary regression model (A.56). Specifically, we can show

that this improved convergence rate is Op(T
η−1/2) which combined with arguments used in

the consistency proof implies (A.44)− (A.46). After this, (A.48) can be proved by using the

auxiliary regression model (A.56) and orders of consistency obtained for other parameters.

To illustrate some of the details in the proof of the above mentioned improved convergence

rate between the regressors and errors of the auxiliary regression model, we consider the

regressors ψ̃′xtτ̂ . We need to consider

T−η−1/2
∑T

t=p+1 ψ̃′xtτ̂ (εtτ̂ − αo(ψ̃ − ψo)xtτ̂ )
′

= T−η−1/2
∑T

t=p+1 ψ̃′xtτ̂ε
′
t − T−η−1/2

∑T
t=p+1 ψ̃′xtτ̂x

′
tτ̂ (ψ̃ − ψo)α

′
o + op(1),

(A.58)

where the order term is straightforward to justify by using the definition of εtτ̂ (see (A.38)),

Lemma A.13 and (A.52). The vector ψ̃′xtτ̂ contains three components of which the first one

is β̃′0yt−1,τ̂ . In the first term on the r.h.s. of (A.58) we concentrate on this term and conclude

from the definition of ytτ̂ (see (A.39)) that

T−η−1/2

T∑
t=p+1

β̃′0yt−1,τ̂ε
′
t = T−η−1/2

T∑
t=p+1

β̃′0xt−1ε
′
t−T−η−1/2

T∑
t=p+1

β̃′0δo(dt−1,τ̂−dt−1,τ )ε
′
t = Op(1),
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where the latter equality follows from the consistency result obtained for β̃0, Lemma A.13(ii)

and well-known properties of stationary and I(1) processes. A similar result holds for the

two other components of ψ̃′xtτ̂ . Here the weaker orders of consistency β̃0 = βo + op(T
−1/2),

φ̃(0) = op(T
−1) and θ̃(0) = op(1) would actually suffice. However they do not suffice for

the second term on the r.h.s. of (A.58). To see this, note that here we, for instance, need

to consider the matrix T−η−1/2(β̃0 − βo)
′ ∑T

t=p+1 yt−1,τ̂y
′
t−1,τ̂ (β̃0 − βo) which explodes if only

β̃0 − βo = op(T
−1/2) holds. However, with the results given by (A.41) − (A.43) even the

second term on the r.h.s. of (A.58) can be handled and it follows that the l.h.s. of (A.58) is

of order Op(1). This completes the proof in the case δ1o 6= 0 and a ≤ 0.

Case (b): a ≤ 1/b and δ1o = 0

In this case nothing can be said about the asymptotic behavior of the break date estimator

so that τ̂ can take any value between [Tλ] and [T λ̄]. When a = 0 this case was considered

in LST and the arguments used therein can be modified for all a ≤ 1/b.

In this case we cannot use Lemma A.13 but we still have (A.52) and (A.53), as we shall

now demonstrate. The former is simple because by the definition of ytτ̂ (see (A.39)) and the

definition of ptτ̂ , the matrix S00τ̂ only depends on the impulse dummies ∆dt−j,τ̂ and ∆dt−j,τ

(j = 0, . . . , p − 1) but not on the corresponding step dummies. Thus, because (A.52) still

holds and a + η < 1/2, we can proceed in the same way as in the proof of Lemma 2.1 of

S&L and show first that replacing ptτ̂ in the definition of S00τ̂ first by p1tτ̂ and then further

by p1tτ causes an error of order op(1). The employed arguments are similar to those used in

the case δ1o 6= 0 and a ≤ 0. Because in S00τ the vector ptτ can similarly be replaced by p1tτ

(see S&L), (A.52) follows.

Now consider (A.54). Using (A.52) and the definition of ytτ̂ we can again readily show that

replacing ptτ̂ and ptτ in the definitions of S01τ̂AT and S01τAT by p1tτ̂ and p1tτ , respectively,

causes an error of order op(1) (cf. the justification of (A.61) below). Next, an application of

(A.52) and the definition of ytτ̂ gives

T−1

T∑
t=p+1

p1tτ̂p
′
1tτ̂ = T−1

T∑
t=p+1

p1tτp
′
1tτ + op(1) (A.59)

and

T−1

T∑
t=p+1

∆ytτ̂p
′
1tτ̂ = T−1

T∑
t=p+1

∆ytτp
′
1tτ + op(1). (A.60)
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In addition to these results, we have

T−1

T∑
t=p+1

∆yt−j,τ̂x
′
tτ̂AT = T−1

T∑
t=p+1

∆yt−j,τx
′
tτAT + op(1) (j = 0, . . . , p− 1). (A.61)

To justify this relation, notice that now β′oyt−1,τ̂ = β′oxt−1. Thus, an application of (A.52)

readily shows that (A.61) holds for the first r columns of the involved matrices. For the next

n− r columns the result is simple because the sums are divided by T 3/2. The same can be

said about the (n + 1)th column. That the stated result holds for the last column can be

seen from

T−1
∑T

t=p+1 ∆yt−j,τ̂dt−1,τ = T−1
∑T

t=τ+1 ∆xt−j + op(1)

= op(1) (j = 0, . . . , p− 1)
(A.62)

uniformly in [Tλ] ≤ τ ≤ [T λ̄]. Here the former equality is an immediate consequence of the

definition of ytτ̂ and the assumption a ≤ 1/b whereas the latter follows because an invariance

principle applies to partial sums of ∆xt.

In addition to (A.59) - (A.61), we also need to consider the matrix T−1
∑T

t=p+1 p1tτ̂x
′
tτ̂AT .

Arguments used above show that replacing τ̂ here by τ causes an error of order op(1) except

for the element in the first row and last column which is
(

T

T − τ

)1/2

T−1

T∑
t=p+1

dt−1,τ̂ = Op(1).

However, the contribution of this element to the matrix on the l.h.s. of (A.54) is of order

op(1). Because in the definitions of S01τ̂ and S01τ we can replace ptτ̂ and ptτ by p1tτ̂ and

p1tτ , respectively, this follows from the following two facts. (i) The first matrix on the r.h.s.

of (A.59) is asymptotically block diagonal with blocks defined after the first row and first

column. (ii) The first column of the first matrix on the r.h.s. of (A.60) is of order op(1).

Both of these results follow from the definition of ytτ̂ and the fact that ∆xt obeys a weak

law of large numbers. Taking these results together, we can thus conclude that (A.54) also

holds when δ1 = 0.

Since (A.53) and (A.54) hold we can write

A′
T S10τ̂S

−1
00τ̂S01τ̂AT = A′

T S10τS
−1
00τS01τAT + op(1) =


 Σβ0Σ

−1
00 Σ0β 0

0 0


 + op(1), (A.63)

where the latter equality is justified by (A.5) of S&L and the notation is as explained therein.

The partition is after the first r rows and columns.
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Now consider the matrix A′
T S11τ̂AT . In the present case we do not have (A.55) which,

given (A.63), would be sufficient for the consistency of the RR estimator of ψ. However,

(A.55) is not necessary. Write

A′
T S11τ̂AT =


 S̄11

11τ̂ S̄12
11τ̂

S̄21
11τ̂ S̄22

11τ̂


 ,

where the partition is after the first r rows and columns. Because β′oyt−1,τ̂ = β′oxt−1 by the

definition of ytτ̂ , we can show that S̄11
11τ̂ = Σββ + op(1) with Σββ as in S&L and S̄12

11τ̂ = op(1).

The required arguments are based on (A.52) and the definition of ytτ̂ in the same way as in

the case of (A.53), (A.54) and (A.62). Thus, because we also have S̄21
11τ̂ = op(1), the above

discussion and (A.63) show that equation (A.51) is to order op(1) identical to

det(λΣββ − Σβ0Σ
−1
00 Σ0β) det(λS̄22

11τ̂ ) = 0. (A.64)

This implies that the consistency proof given in Johansen (1995, pp. 180 - 181) applies if,

with probability approaching one, λmin(S̄
22
11τ̂ ) ≥ ε for some ε > 0. This, however, is the case

because arguments similar to those used below (A.10) show that S̄22
11[Tλ] converges weakly in

D([λ, λ̄]) to a (a.s.) positive definite limit. In fact, arguments used to arrive at (A.64) show

that S̄22
11[Tλ] is to order op(1) identical to a demeaned version of the matrix of second sample

moments formed from the last n− r + 2 components of A′
Txt[Tλ].

Thus, in the same way as in the case δ1 6= 0 we can conclude that the estimators β̃0,

φ̃(0) and θ̃(0) are consistent of orders op(T
−1/2), op(T

−1) and op(1), respectively. After this,

the asymptotic behavior of the other RR estimators can be studied by using the auxiliary

regression model (A.56) in the same way as in the case δ1o 6= 0 and a ≤ 0. In addition to the

obtained consistency properties of the estimators β̃0, φ̃(0) and θ̃(0), the employed arguments

make use of the facts that now ψ′oxtτ = β′oxt−1 and that in the error of the auxiliary regression

model (A.56) the component εtτ̂ only depends on εt and impulse dummies but not on step

dummies (see (A.38)). Thus, Lemma A.13 is not needed and it suffices to use (A.52).

Without going into details we note that the standardized moment matrix of the aux-

iliary regression model (A.56) is again asymptotically positive definite and block diagonal

between the impulse dummies and other regressors (the standardization is again by the ma-

trix [T−1/2I : Ip]). Moreover, it is not difficult to check that the off diagonal blocks are of

order op(T
η−1/2). This can be seen by using (A.52) and observing that here the vector δo is
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absent in most of the cases. As in the previous case δ1o 6= 0 and a ≤ 0, we can also here show

that the correspondingly standardized sums of cross products between the regressors and er-

ror in the auxiliary regression model (A.56) is of order [op(T
1/2) : op(T

η)] with the partition

as before. Thus, (A.47) and the consistency of the estimators α̃0, Γ̃j (j = 1, . . . , p− 1), ν̃(0)

and Ω̃ follows in the same way as in the previous case.

To obtain the orders of consistency, consider the estimator ψ̃ and the first order conditions

(A.57). Recall that now ψ′oxtτ̂ = β′oxt−1. Using this fact it can be seen that T−ηψ′oS11τ̂BT =

Op(1) and T−ηSε1τ̂BT = Op(1). The employed arguments are similar to those used in the

above consistency proof and in the proof of Theorem 3.1. To illustrate, note that in order

to prove T−ηψ′oS11τ̂BT = Op(1) we need to show that

T−η(T − τ)−1/2

T∑
t=p+1

β′oxt−1dt−1,τ̂ = T−η(T − τ)−1/2

T∑

t=τ̂+1

β′oxt−1 = Op(1),

and

T−1−η

T∑
t=p+1

β′oxt−1x
′
t−1βo⊥ − T−1−η

T∑
t=p+1

β′oxt−1(dtτ̂ − dtτ )δ
′
oβo⊥ = Op(1).

The former of these results follows from the Hájek-Rényi inequality given in Proposition 1 of

Bai (1994) and the order is actually op(1). Regarding the latter, the first term on the l.h.s.

is of order op(1) by well-known properties of stationary and I(1) processes. That the same

is true for the second term can be seen by using the fact that ‖δ′oβo⊥‖ = O(T a) = O(T η)

in conjunction with the argument used to show (A.62). Omitting other details we need to

note that λmin(T
−1BT S11τ̂BT ) = λmin(S̄

22
11τ̂ ), which is asymptotically bounded away from

zero, as noticed after (A.41). From (A.57) and what has been said above we now find that

T−ηUT = Op(1). In the same way as in the case δ1o 6= 0 this implies (A.41) - (A.43).

We still have to obtain the stated orders of consistency for the estimators α̃0, Γ̃j (j =

1, . . . , p−1), ν̃(0) and Ω̃. In the same way as in the case δ1o 6= 0 and a ≤ 0 it suffices to use the

improved consistency result obtained for the estimator ψ̃ to improve the earlier convergence

rate of sums of cross products between the regressors other than impulse dummies and the

error in the auxiliary regression model (A.56). We omit details, which are similar to those

used earlier, and only note that instead of op(T
1/2) the convergence rate obtained for the

above mentioned sums of cross products is now Op(T
η−1/2). Given this improvement, the

previous consistency results obtained for the estimators α̃0, Γ̃j (j = 1, . . . , p − 1), ν̃(0) and

Ω̃ can be improved to the stated form. This completes the proof in the case δ1o = 0 and
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a ≤ 1/b.

Case (c)

Because in the preceding proof the estimator τ̂ could take any values between [Tλ] and [T λ̄]

it is straightforward to use the same arguments and show that the results of Lemma A.14

also hold when δo = 0. This is actually fairly obvious because when δo = 0 the vectors εtτ̂

and ytτ̂ simplify to εt and xt, respectively, and the proof will be simplified in many places.

Details are omitted.

To prove the remaining cases we first note that the result of Lemma A.14 holds also when

the break date is assumed known. In this case we can even replace the quantity η by zero

except in (A.47) where Op(1) is obtained. A formal proof of this can be obtained from S&L

by observing that the omission of some impulse dummies from the model considered by S&L

is of no significance and that the same is true for the dependence of the parameters δ on the

sample size. The latter fact is clear because the results of Lemma A.14 are formulated for

the transformed parameters used in model (A.40) and the true values of these transformed

parameters are zero.

Because the result of Lemma A.14 holds when the break date is assumed known it also

holds when the break date can be consistently estimated, that is, when τ̂−τ = op(1). Indeed,

then all the analysis can be restricted to that part of the sample space where τ̂ = τ holds

and the probability of this can be made arbitrarily close to unity for all T large enough.

This means that we have established the results of the lemma for the constrained estimator

τ̂R when δ1o 6= 0 and a > 0 or δ1o = 0 and a > 1/b (Theorem 3.2(i)) and for the estimator τ̃

when δ1o 6= 0 and a > 0 (Theorem 3.3(i)).

If j0 = p − 1 in Theorem 3.1(i) the preceding argument also applies to the estimator τ̂

when δ1o 6= 0 and a > 0 or δ1o = 0 and a > 1/b. For other values of j0 further arguments

are needed. By Theorem 3.1(i) it suffices to consider any value of the break date such that

τo − p + 1 + j0 ≤ τ ≤ τo, where we have included the subscript ‘o’ to signify the true break

date. For simplicity, consider the case j0 = p − 2 and τ = τo − 1. It is easy to see that

even though the break date is misspecified by one we can still consider (2.7) as a correctly

specified model if we only redefine the parameters γ∗0 , . . . , γ
∗
p−1 as γ∗0 = αβ′δ, γ∗1 = δ, and

γ∗j = −Γj−1δ, j = 2, . . . , p − 1. By assumption we then have γ∗p−1 6= 0 and Γp−1δ = 0.
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With these new definitions the error term of model (2.7) is still εt and the analysis given

in the case of a known break date can be used. Because the other parameters of the model

are not affected by the redefinition of the parameters γ∗j (j = 0, . . . , p − 1) the obtained

consistency results will be the same as in the case where the true break date is known. The

same argument can clearly be extended to other values of j0. This completes the proof of

Lemma A.14. 2

Now we can prove Lemma 4.1 and we start with the results (4.1) and (4.2). Recall the

definitions ν = −αβ′µ0 + Ψµ1, ν(0) = ν + αβ′µ0o − Ψµ1o and φ(0) = φ − β′µ1o which imply

that

ν(0) = −αβ′(µ0 − µ0o) + Ψ(µ1 − µ1o) = −αβ′(µ0 − µ0o) + Ψβφ(0) + Ψβ⊥β′⊥(µ1 − µ1o).

Here the latter equality is obtained by arguments similar to those used to define the estimator

φ̃∗. These arguments further show that β′⊥(µ1 − µ1o) = β′⊥C(ν(0) − Ψβφ(0)) and the same

relation applies to estimators. Thus, we have

β̃′⊥(µ̃1 − µ1) = β̃′⊥C̃(ν̃(0) − Ψ̃βφ̃(0)).

Here and in what follows the subscripts ‘o’ and ‘0’ are omitted from true parameter values

and the estimators of α and β, respectively, to simplify notation. By Lemma A.14, one

obtains from the previous equality

β̃′⊥(µ̃1 − µ1) = β̃′⊥C̃ν̃(0) + op(T
−1/2).

Now recall that in the auxiliary regression model (A.56), Λ contains Λ1 = [ν(0) : Γ1 :

· · · : Γp−1] and that ν̃(0) can be viewed as the LS estimator of ν(0). Hence, β̃′⊥C̃ν̃(0) can be

obtained by LS from the auxiliary regression model

β̃′⊥C̃∆ytτ̂ = β̃′⊥C̃Λptτ̂ + error, (A.65)

where the error has the representation β̃′⊥C̃εtτ̂ − β̃′⊥C̃α(ψ̃−ψ)xtτ̂ and, by the definition of C

and Lemma A.14, β̃′⊥C̃α = Op(T
η−1/2). Using this fact, Lemma A.14 and arguments similar

to those used in its proof, it is straightforward to show that the asymptotic properties of the

LS estimator of the parameter Λ in the auxiliary regression model (A.65) can be obtained by

assuming that the error equals β̃′⊥C̃εtτ̂ . The same arguments and the definition of εtτ̂ (see
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(A.38)) further show that the error can be assumed to be β̃′⊥C̃εt or even β′⊥Cεt. Since it is also

straightforward to show that the estimation of the intercept term in (A.65) is asymptotically

independent of the estimation of the other regression coefficients we can conclude that

T 1/2β̃′⊥(µ̃1 − µ1) = β̃′⊥C̃T−1/2

T∑
t=p+1

εt + op(1)

= β′⊥CT−1/2

T∑
t=p+1

εt + op(1),

where the latter equality is again due to Lemma A.14. This and a standard central limit

theorem yield

T 1/2β̃′⊥(µ̃1 − µ1)
d−→ N(0, β′⊥CΩC ′β′⊥).

To obtain (4.2) we need to show that β̃⊥ on the l.h.s. can be replaced by β⊥. To see this,

write

(β̃⊥ − β⊥)′(µ̃1 − µ1) = (β̃⊥ − β⊥)′β̃(β̃′β̃)−1β̃′(µ̃1 − µ1) + (β̃⊥ − β⊥)′β̃⊥(β̃′⊥β̃)−1β̃′⊥(µ̃1 − µ1).

(A.66)

By the consistency of the estimator β̃ and the result just obtained the latter term on the

r.h.s. is of order op(T
−1/2) and the same is true for the former because β̃′(µ̃1 − µ1) = φ̃(0) =

Op(T
η−3/2) by Lemma A.14. From this last result one can obtain (4.1) because β̃ can be

replaced by β by an argument similar to that used in (A.66).

Now consider the estimator δ̃. From its derivation we get the identity
∑p−1

j=0 γ∗j − Ψδ =

Ψ(δ − δo). By the definitions, this is equivalent to

p−1∑
j=0

γ
∗(0)
j = Ψββ′(δ − δo) + Ψβ⊥β′⊥(δ − δo).

Because the same relation applies to estimators, arguments similar to those used to define

the estimator δ̃ yield

β̃′⊥(δ̃ − δ) = β̃′⊥C̃

p−1∑
j=0

γ̃
∗(0)
j − Ψ̃β θ̃(0).

Lemma A.14 implies that the r.h.s. of this equality is of order op(T
η). The same result

holds even if β̃⊥ on the l.h.s. is replaced by β⊥, as can be seen by proceeding in the

same way as in (A.66). Thus, we have established (4.4). To obtain (4.3), notice that

β̃′(δ̃ − δ) = θ̃(0) = Op(T
η−1/2) and the stated result follows by using an argument similar to

that in (A.66). This completes the proof of Lemma 4.1.
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A.5 Proof of Theorem 4.1

The structure of our proof of Theorem 4.1 is similar to that of Theorem 11.1 of Johansen

(1995). Therefore we just outline the arguments in the following.

First note that the limiting distribution of the test statistic can be derived by assuming

that the true value of the parameter µ0 is zero. Thus, we can write equation (4.5) as

ỹ
(0)
t = xt − (µ̃1 − µ1)t− (δ̃ − δ)dtτ − (δ̃ − δ)(dtτ̂ − dtτ )− δ(dtτ̂ − dtτ ). (A.67)

Using this representation and arguments similar to those used to derive the asymptotic

properties of the estimators µ̃1 and δ̃ (see the proof of Lemma 4.1) we can now mimic the

proof given in Johansen (1995, pp. 158-160) and see that all the quantities which therein

converge in probability to constants will here converge in probability to the same constants.

However, quantities which in Johansen (1995, pp. 158-160) converge weakly to functionals of

a Brownian motion will here converge weakly to different functionals of a Brownian motion.

Here these weak limits are determined by the weak limit of T−1/2β′⊥ỹ
(0)
[Ts]. We have

T−1/2β′⊥ỹ
(0)
[Ts] = T−1/2β′⊥x[Ts] − T−1/2β′⊥(µ̃1 − µ1)t + op(1)

d−→ β′⊥C(W (s)− sW (1))
def
= β′⊥CW+(s),

(A.68)

where W (s) is an (n − r0)- dimensional Brownian motion with covariance matrix Ω and

hence the limit is a linear transformation of the Brownian bridge W+(s) = W (s) − sW (1).

The error term in the equality is understood to hold in the Skorohod topology.

To justify (A.68), first consider the equality. Because β′⊥(δ̃− δ) = op(T
η) with 1/b < η <

1/4 by (4.4) of Lemma 4.1 it is clear that the contribution of the third and fourth terms

on the r.h.s. of (A.67) to T−1/2β′⊥ỹ
(0)
[Ts] is asymptotically negligible. The same argument

also applies to the fifth term on the r.h.s. of (A.67) when a < 1/2. For a = 1/2 we have

T−1/2δ = O(1) but λ̂− λ = op(1) which implies that the contribution of the fifth term is of

order op(1) (in the Skorohod topology) and the desired conclusion follows. As for the weak

convergence in (A.68), it can be justified by a standard functional central limit theorem and

(4.2) of Lemma 4.1 by observing that the limit of the second expression is determined by

the process εt (see Johansen (1995, Eq. (B.24))) and the proof of (4.2).

Note that to obtain (A.68) in the case a = 1/2, the assumption of consistent break

date estimation included in the formulation of the theorem is not needed. However, this is

not the case for some of the convergence statements referred to after (A.67). For instance,
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to mimic the proof in Johansen (1995, pp. 158-160) we have to consider the matrix (T −
p)−1

∑T
t=p+1 ∆ỹ

(0)
t ∆ỹ

(0)′
t which contains the additive component

δδ′(T − p)−1

T∑
t=p+1

(∆dtτ̂ −∆dtτ )
2 = δ∗δ′∗

T 2a

T − p

T∑
t=p+1

(∆dtτ̂ −∆dtτ )
2. (A.69)

Now consider the unconstrained estimator of Section 3.1 and suppose that a = 1/2 and

j0 < p− 1. From Theorem 3.1 we can only conclude that Pr{τ − p + 1 + j0 ≤ τ̂ ≤ τ} → 1

and it does not follow that the quantity in (A.69) is asymptotically negligible.

To continue the proof, so far we have demonstrated that the limiting distribution of the

test statistic LR(r0) can be derived by ignoring the last two terms on the r.h.s. of (A.67). As

for the first three terms on the r.h.s. of (A.67), their asymptotic behavior is not affected by

the fact that the size of the break is allowed to depend on the sample size (cf. Lemma 4.1).

This means that we have reduced the problem to that of a known break date studied by S&L.

From Lemma 4.1 and the proof of Theorem 3.1 of S&L it can be seen that, when µ0 = 0

is assumed, the test statistic in the theorem is asymptotically equivalent to a similar test

statistic based on an analog of (4.6) defined by replacing ỹ
(+)
t−1 by ỹ

(0)
t−1. It is straightforward to

show that the use of ỹ
(+)
t−1 instead of ỹ

(0)
t−1 changes the limiting distribution of the test statistic

as stated in the theorem. In other words, since the vector ỹ
(+)
t−1 is obtained from ỹ

(0)
t−1 by

augmenting with unity, the same augmentation results in one of the two Brownian bridges

in the limiting distribution obtained in Theorem 3.1 of S&L. Technical details, which are

similar to the corresponding two cases in Johansen (1995, Section 11.2) are straightforward

and will be omitted.

References

Bai, J. (1994), Least squares estimation of a shift in linear processes, Journal of Time Series

Analysis, 15, 453 - 472.

Bai, J., R.L. Lumsdaine & J.H. Stock (1998), Testing for and dating common breaks in

multivariate time series, Review of Economic Studies, 65, 395 - 432.

Davidson, J. (1994), Stochastic Limit Theory, Oxford: Oxford University Press.

91

Break Date Estimation and Cointegration Testing in VAR Processes with Level Shift 

EUI WP ECO 2004/21



Gregory, A.W. & B.E. Hansen (1996), Residual-based tests for cointegration in models with

regime shifts, Journal of Econometrics, 70, 99 - 126.

Hansen, B.E. (1992), Tests for parameter instability in regressions with I(1) processes,

Journal of Business & Economic Statistics, 10, 321 - 335.

Hubrich, K., H. Lütkepohl & P. Saikkonen (2001), A review of systems cointegration tests,

Econometric Reviews, 20, 247 - 318.

Inoue, A. (1999), Tests of cointegrating rank with a trend-break, Journal of Econometrics,

90, 215 - 237.

Johansen, S. (1995), Likelihood Based Inference in Cointegrated Vector Autoregressive Mod-

els, Oxford: Oxford University Press.

Johansen, S., R. Mosconi & B. Nielsen (2000), Cointegration analysis in the presence of

structural breaks in the deterministic trend, Econometrics Journal, 3, 216 - 249.

Johansen, S. & B. Nielsen (1993), Manual for the simulation program DisCo. Institute

of Mathematical Statistics, University of Copenhagen: http://math.ku.dk/˜sjo/disco/

disco.ps.

Lütkepohl, H. (1991), Introduction to Multiple Time Series Analysis, Berlin: Springer-

Verlag.

Lütkepohl, H. & P. Saikkonen (1999), Order selection in testing for the cointegrating rank

of a VAR process, in: R. F. Engle & H. White (eds.), Cointegration, Causality, and

Forecasting. A Festschrift in Honour of Clive W.J. Granger, Oxford University Press,

Oxford, pp. 168–199.

Lütkepohl, H., P. Saikkonen & C. Trenkler (2004), Testing for the cointegrating rank of a

VAR process with level shift at unknown time, Econometrica, 72, 647 - 662.

Marsaglia, G. (2000), The Monster, a Random Number Generator with Period over 102587

As Long As the Previously Touted Longest Period One, mimeo, Department of Statis-

tics, Florida State University.

92

Pentti Saikkonen, Helmut Lütkepohl and Carsten Trenkler

EUI WP ECO 2004/21



Perron, P. (1989), The great crash, the oil price shock and the unit root hypothesis, Econo-

metrica, 57, 1361 - 1401.

Saikkonen, P. (2001), Consistent estimation in cointegrated vector autoregressive models

with nonlinear time trends in cointegrating relations, Econometric Theory, 17, 296-326.

Saikkonen, P. & H. Lütkepohl (2000), Testing for the cointegrating rank of a VAR process

with structural shifts, Journal of Business & Economic Statistics, 18, 451 - 464.

Saikkonen, P. & H. Lütkepohl (2000b), Trend adjustment prior to testing for the cointe-

grating rank of a vector autoregressive process, Journal of Time Series Analysis, 21,

435 - 456.

Saikkonen, P. & H. Lütkepohl (2002), Testing for a unit root in a time series with a level

shift at unknown time, Econometric Theory, 18, 313 - 348.

Seo, B. (1998), Tests for structural change in cointegrated systems, Econometric Theory,

14, 222 - 259.

Toda, H.Y. (1994), Finite sample properties of likelihood ratio tests for cointegrating ranks

when linear trends are present, Review of Economics and Statistics, 76, 66 - 79.

Toda, H.Y. (1995), Finite sample performance of likelihood ratio tests for cointegration

ranks in vector autoregressions, Econometric Theory, 11, 1015-1032.

93

Break Date Estimation and Cointegration Testing in VAR Processes with Level Shift 

EUI WP ECO 2004/21


