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Abstract

In this paper, we analyse the properties of recursive trend adjusted unit root
tests. We show that OLS based recursive trend adjustment can produce unit root
tests which are not invariant when the data is generated from a random walk with
drift and investigate whether the power performance previously observed in the liter-
ature is maintained under invariant versions of the tests. A finite sample evaluation
of the size and power of the invariant procedures is presented.
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1 Introduction

Recently, an interesting and simple approach for bias reduction in autoregressive model
estimation was proposed by So and Shin (1999), Shin and So (2001) and Taylor (2002),
based on recursively adjusting the deterministic components. The motivation behind
this alternative way of accounting for the deterministic component of a process is due,
as indicated by So and Shin (1999), to the lack of efficiency of conventional mean and
trend adjustment procedures. Conventional mean and trend adjustment based on the full
sample of data, induces downward small sample bias, as a result of the imposed correlation
between the demeaned/detrended regressors and the error term.
Recursively adjusting for the deterministic terms, however, reduces this bias since at

time t only sample observations, yk, up to time t− 1 (k ≤ t− 1) are used, thus avoiding
correlation of the mean with residuals, εj, occurring in time periods j ≥ t. Also, according
to recent literature, this approach leads to considerable power improvements of unit root
tests (see So and Shin, 2001 and Taylor, 2002).
Recursive demeaning has been shown to avoid the spurious result observed by Ley-

bourne et al. (1998) for the DF test (see Cook, 2002), and recursively adjusting the
deterministics has also been used in panel data models (see Choi, Mark and Sul, 2004,
Chang, 2002, and Chang and Park, 2004) as well as in nonlinear instrumental variable
estimation of autoregressions (see Phillips, Park and Chang, 2004). Shin and So (2002)
demonstrate how well recursive demeaning performs in different nonstationary contexts
and Taylor (2002) provides powerful recursive demeaned and recursive detrended unit
root tests for nonseasonal and seasonal processes.
However, one problem which we highlight in this paper (see also Sul, Phillips and

Choi, 2003) is that recursive trend adjustment based on recursive ordinary least squares
(OLS) estimates may produce tests which are not invariant to trend parameters that may
exist in the data generation process (DGP).
This problem is here addressed as well as the size and power performance of invariant

versions of these tests under recursive detrending, by adopting similar transformations
considered in Chang (2002), Chang and Park (2004), Phillips, Park and Chang (2004)
and Taylor (2002).
This paper is organised as follows. The next section briefly introduces the recursive

trend-adjusted unit root test and the potential invariance results. Section 3 presents
invariant versions of the procedures and looks at efficiency gains and finite sample per-
formance. Finally, section 4 concludes the paper and an appendix provides details of the
results obtained.

2 Recursive Trend Adjustment

Consider the following data generating process (DGP),

yt = γ00 + γ01t+ xt, (2.1)

(1− αL)xt = εt, t = 1, ..., T (2.2)

[2]
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where x0 is an arbitrary Op(1) random variable, εt ∼ iid(0, σ2) and the null hypothesis of
interest is,

H0 : α = 1. (2.3)

The model of interest includes a constant and time trend, so that the vector of deter-
ministic variables considered is Zt = (1, t)

0, with corresponding vector of parameters to
be estimated, (γ0, γ1)

0.
In order to consider the recursive trend adjustment, we take an OLS-based approach

whereby the vector of estimators of the deterministic component at time t is given by,

eγrt =
Ã

tX
k=1

ZkZ
0
k

!−1 tX
k=1

Zkyk. (2.4)

Thus, once the T ×2 vector of parameters of the deterministic component is estimated
as in (2.4), following Shin and So (2001) the test regression is set up using the following
recusively adjusted variables,

eyt = yt − Z 0t−1eγrt−1, (2.5)eyt−1 = yt−1 − Z 0t−1eγrt−1. (2.6)

As mentioned earlier in (2.5) and (2.6), only the sample mean of the observations up to
time t− 1 is considered.
Hence, according to (2.5) and (2.6), we can obtain the test regression of interest,

∆eyt = (α− 1) eyt−1 + εt (2.7)

with the relevant test statistic given as, τ =
³
\α− 1

´
/se(\α− 1), where se(\α− 1) denotes

the standard error of (\α− 1).
Remark 2.1: In order to account for potential autocorrelation, model (2.7) can be
augmented with lags of the dependent variable as in the conventional augmented DF
(ADF) test; see, inter alia, Shin and So (2001) and Taylor (2002).

2.1 Non-Invariance of Recursively-Detrended Tests

Contrary to OLS-based recursive demeaning, some caution is required when recursive
detrending is necessary. In particular, if a constant and a time trend are considered as
necessary deterministic variables in a modelling exercise, from (2.5) and (2.6) we observe
that, eyt and eyt−1 will have the following expressions:
Proposition 1 Under the DGP considered in (2.1) and (2.2), with α = 1 and γ01 6= 0 we
can observed that, eyτt = St − Z 0t−1S

τ

t−1 + γ01 (2.8)

and eyτt−1 = St−1 − Z 0t−1S
τ

t−1 (2.9)

[3]
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where S
τ

t−1 =

Ã
t−1X
k=1

ZkZ
0
k

!−1 t−1X
k=1

ZkSk and Zt−1 = (1, t− 1)0.

From this proposition we can establish that eyτt is, among other things, a function of
the nuisance parameter γ01, and consequently ∆eyt = γ01 + εt. Hence, a test based on the
variables in (2.8) and (2.9) will therefore be affected by this nuisance parameter. For
closer observation, consider Table 2.1 where DF τ

r represents a t-statistics computed from
an auxiliary regression such as (2.7) based on (2.8) and (2.9).

Table 2.1: Rejection probability of the DF τ
r when the DGP is (2.1) and (2.2), with

α = 1, γ01 6= 0, εt ∼ nid(0, 1) and a 5% significance level is considered.

T=100 T=200
γ01 DF τ

r DF τ
r

0 .050 .050
0.25 .114 .182
0.50 .242 .328
0.75 .312 .373
1 .341 .391
5 .352 .404

Note: The results are based on 50000 Monte Carlo simulations and the critical values
are taken from Table 3.1 below.

Table 2.1 shows the sensitivity of the distribution of DF τ
r to γ01, suggesting, in line

with proposition 1, that simply using (2.5) and (2.6) is not an adequate approach for
recursively detrending.

3 Invariant Versions

In this section we consider invariant versions of recursively detrended procedures using
the following transformations:
Transformation 1

eyτ1,t = yt − y0 −
1

T

TX
t=1

∆yt −
t−1X
k=1

1

k
(yk − y0) (3.10)

eyτ1,t−1 = yt−1 − y0 −
t−1X
k=1

1

k
(yk − y0) ; (3.11)

[4]
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Transformation 2

eyτ2,t = yt +
2

t− 1

t−1X
k=1

yk −
1

T

TX
t=1

∆yt −
6

t(t− 1)

t−1X
k=1

kyk (3.12)

eyτ2,t−1 = yt−1 +
2

t− 1

t−1X
k=1

yk −
6

t(t− 1)

t−1X
k=1

kyk; (3.13)

see also Chang (2002), Chang and Park (2004), Phillips and Chang (2004);
A slightly different version of the invariant transformation 2 has been suggested by

Taylor (2002), who instead of subtracting the mean of∆yt from (3.12) recursively detrends
yt with data up to time t instead of t− 1 as used in (3.12). We will refer to this approach
as transformation 3.

Proposition 2 Under the DGP considered in (2.1) and (2.2), with α = 1 and γ01 6= 0 we
observe that for transformation 1,

eyτ1,t = St −
t−1X
k=1

1

k
Sk

eyτ1,t−1 = St−1 −
t−1X
k=1

1

k
Sk;

for transformation 2,

eyτ2,t = St + 2St−1 −
6

t(t− 1)

t−1X
k=1

kSk

eyτ2,t−1 = St−1 + 2St−1 −
6

t(t− 1)

t−1X
k=1

kSk;

and for transformation 3,

eyτ3,t = St + 2St −
6

t(t+ 1)

tX
k=1

kSk

eyτ3,t−1 = eyτ2,t−1
where Sk =

kX
i=1

εi and St−1 =
1

t−1

t−1X
k=j

kX
i=1

εi.

[5]
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3.1 Efficiency Gains

The advantage of recursively adjusting for deterministics is in the resulting bias reduction
and the consequent efficiency gains that prove useful for various of different applications.
Hence, in this section we analyse the magnitude of efficiency gains obtained from the
proposed invariant procedures. Table 3.1 shows the averages of the parameter estimates
computed from 50000 Monte Carlo simulations where the DGP is an AR(1) model such
as, yt = ρyt + εt, εt ∼ nid(0, 1), and the estimated model an AR(1) but adjusted for
a constant and time trend. The four approaches adopted in this context draw on the
procedures described earlier, i.e., bρOLS - represents the estimator based on conventional
OLS; bρr is obtained by recursive detrending employing the variables in (2.8) and (2.9);
and, bρ1r, bρ2r and bρ3r, are obtained based on transformations 1,2 and 3, respectively.
Table 3.1: Average parameter estimates obtained under conventional and recursive

trend adjustment
T=50 T=100 T=200

ρ bρOLS bρr bρ1r bρ2r bρ3r bρOLS bρr bρ1r bρ2r bρ3r bρOLS bρr bρ1r bρ2r bρ3r
1 .806 .960 .973 .960 .851 .901 .980 .987 .980 .919 .950 .990 .994 .990 .957

.97 .799 .954 .969 .952 .843 .888 .970 .982 .969 .905 .932 .975 .986 .974 .938

.95 .789 .945 .964 .942 .832 .874 .957 .975 .956 .891 .915 .960 .979 .959 .921

.90 .756 .912 .947 .910 .798 .833 .918 .956 .917 .849 .869 .917 .959 .917 .876

.80 .679 .831 .907 .831 .720 .743 .830 .913 .830 .761 .773 .823 .915 .823 .781

.70 .593 .739 .861 .741 .636 .648 .734 .866 .734 .669 .675 .725 .867 .725 .685

From Table 3.1 we observe that recursive detrending based on transformation 2 pro-
vides in essence the same efficiency gains as with recursive detrending based on the es-
timates from (2.4). Moreover, although transformation 1 is proving useful in terms of
making the procedure invariant to drift terms in the DGP, it proves to be inefficient, par-
ticularly when ρ ≤ 0.97 and as T increases, thus determining the procedure as inadequate.
Note also that the procedure suggested by Taylor (2002), in comparison to other recur-
sive trend adjustment methods (see the results for bρr and bρ2r) produces some efficiency
loss when ρ ≥ 0.9. Finally, accounting for the deterministics using the full sample as is
conventionally done also produces inefficient estimates (as is known in the literature); see
the results for bρOLS.
3.2 Finite Sample Performance

In this section we look at the finite sample performance of the procedures. The data
generation process considered in the simulations is a conventional random walk, such as,
yt = yt−1+ εt, with εt ∼ niid(0,1) and the test regression used was an AR(1) adjusted for
a constant and a time trend using the different approaches described in Section 2.

[6]
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3.2.1 Finite Sample Critical Values

Tables 3.2 - 3.5 provide the critical values for the three recursive-based trend adjustment
procedures. All critical values are based on 50000 Monte Carlo replications.

Table 3.2: Finite Sample Critical Values for the Unit Root Test Based on
recursive detrending using (2.8) and (2.9) (DF τ

r ) and γ01 = 0
T 0.010 0.025 0.050 0.100 0.500 0.900 0.950 0.975 0.990
100 -2.544 -2.149 -1.833 -1.473 -0.228 1.028 1.401 1.709 2.074
200 -2.504 -2.137 -1.810 -1.456 0.236 1.025 1.393 1.724 2.097
500 -2.504 -2.140 -1.827 -1.477 -0.235 1.014 1.367 1.688 2.047
1000 -2.507 -2.146 -1.843 -1.489 -0.246 1.010 1.368 1.690 2.070

Table 3.3: Finite sample critical values for the unit root test based on
transformation 1 (DF τ

1r)
T 0.010 0.025 0.050 0.100 0.500 0.900 0.950 0.975 0.990
100 -2.176 -1.804 -1.512 -1.187 -0.271 0.541 0.821 1.097 1.446
200 -2.135 -1.788 -1.493 -1.167 -0.247 0.561 0.846 1.102 1.423
500 -2.126 -1.751 -1.471 -1.146 -0.241 0.549 0.831 1.080 1.413
1000 -2.119 -1.751 -1.452 -1.138 -0.229 0.567 0.840 1.102 1.432

Table 3.4: Finite sample critical values for the unit root test based on
transformation 2 (DF τ

2r)
T 0.010 0.025 0.050 0.100 0.500 0.900 0.950 0.975 0.990
100 -2.411 -2.039 -1.729 -1.371 -0.202 0.897 1.215 1.492 1.829
200 -2.387 -2.034 -1.699 -1.365 -0.215 0.895 1.205 1.499 1.833
500 -2.388 -2.016 -1.717 -1.373 -0.215 0.888 1.188 1.466 1.778
1000 -2.363 -2.026 -1.726 -1.383 -0.225 0.881 1.188 1.475 1.794

Table 3.5: Finite sample critical values for the unit root test based on
transformation 3 (DF τ

3r)
T 0.010 0.025 0.050 0.100 0.500 0.900 0.950 0.975 0.990
100 -3.684 -3.358 -3.071 -2.771 -1.795 -0.870 -0.560 -0.268 0.066
200 -3.671 -3.350 -3.084 -2.790 -1.847 -0.934 -0.633 -0.364 -0.036
500 -3.677 -3.375 -3.119 -2.829 -1.882 -0.991 -0.703 -0.434 -0.113
1000 -3.698 -3.398 -3.135 -2.849 -1.901 -1.010 -0.719 -0.463 -0.133

[7]
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3.2.2 Finite Sample Size and Power Analysis

Table 3.6: Size and power analysis under γ01 = 0
T=100 T=200

γ01 ρ DF τ DF τ
1,r DF τ

2,r DF τ
3,r DF τ DF τ

1,r DF τ
2,r DF τ

3,r

0 1 .049 .050 .049 .050 .051 .050 .051 .050
0.95 .087 .109 .097 .105 .195 .239 .247 .268
0.90 .197 .249 .237 .267 .640 .540 .731 .774
0.80 .657 .572 .734 .783 .999 .817 .999 1.00

From Table 3.5 we can observe that the loss of efficiency is translated into a loss of
power of the DF τ

1,r statistic. Note that this procedure performs well when ρ ≥ 0.95, how-
ever, it’s performance deteriorates considerably when ρ < 0.95. On the other hand, DF τ

2,r

and particularly DF τ
3,r have, as expected when compared with other results available in

the literature, a good power performance; see So and Shin (2001) and Taylor (2002). The
results show that the invariant transformation suggested by Taylor (2002), which sacri-
ficed some of the efficiency gains, produces tests which have the best power performance
(corresponding to DF τ

3,r).

4 Conclusion

In this paper we show how OLS-based recursive trend adjustment can pose some problems.
Moreover, invariant versions of recursively-detrended unit root tests are examined and
shown to provide a useful advantage in improving the power of unit root tests. Critical
values for the invariant procedures are presented as well as finite sample performance of
size and power which show the superior behaviour of these tests.
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Appendix A
Throughout this Appendix we consider that data is generated from (2.1)-(2.2) under

the null hypothesis that α = 1.

A.1 Non-Invariance of OLS-based Recursive Detrending
Assuming γ00 6= 0 and γ01 6= 0, (2.1) is,

yt = γ00 + γ01t+ xt (A.1)

or put more succinctly,
yt = Z0

0
t γ

0 + xt, (A.2)

where Z0t = (1, t)
0 and γ0 = (γ00, γ

0
1)
0.

Moreover, under the null hypothesis, α = 1, consider z0t = (0, t)
0 so that the DGP can

be written as,

yt = z0
0

t γ
0 + y0 +

tX
j=1

εj. (A.3)

Now, considering Zt = (1, t)
0 as the vector of deterministic variables which enters the

test regression, we can write the OLS recursively detrended variable based on (2.4) as,

eyt = yt − Z 0t−1eγrt−1 (A.4)

eyt−1 = yt−1 − Z 0t−1eγrt−1 (A.5)

where the elements of the T × 2 vector of recursive estimators of γ0 are computed as

eγrt =
Ã

tX
k=1

ZkZ
0
k

!−1 tX
k=1

Z 0kyk. (A.6)

Hence, since Zk = (1, k)
0, assuming γ01 6= 0, it follows that

eγrt−1 =

Ã
t−1X
k=1

ZkZ
0
k

!−1 t−1X
k=1

Zkyk

=

Ã
4t−2

(t−1)(t−2) − 6
(t−1)(t−2)

− 6
(t−1)(t−2)

12
t(t−1)(t−2)

! t−1X
k=1

yk

t−1X
k=1

kyk

=

⎛⎜⎜⎜⎜⎝
4t−2

(t−1)(t−2)

t−1X
k=1

yk − 6
(t−1)(t−2)

t−1X
k=1

kyk

− 6
(t−1)(t−2)

t−1X
k=1

yk +
12

t(t−1)(t−2)

t−1X
k=1

kyk

⎞⎟⎟⎟⎟⎠ (A.7)

[10]
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and therefore

eyτt = yt − Z 0t−1eγrt−1
= St + z0

0
t γ

0 + y0 − Z 0t−1eγrt−1
= St + γ01t+ y0 + 2yt−1 −

6

t(t− 1)

t−1X
k=1

kyk

= St +
2

t− 1

t−1X
k=1

Sk +
6

t(t− 1)

t−1X
k=1

kSk + γ01. (A.8)

Note that

yt−1 =
1

t− 1

t−1X
k=1

yk

=
1

t− 1

t−1X
k=1

Ã
z0

0
k γ

0 + y0 +
kX

j=1

εj

!

=
1

t− 1

t−1X
k=1

¡
kγ01 + y0 + Sk

¢
= γ01

t

2
+ y0 +

1

t− 1

t−1X
k=1

Sk (A.9)

and

t−1X
k=1

kyk =
t−1X
k=1

k

Ã
z0

0
k γ

0 + y0 +
kX

j=1

εj

!

=
t−1X
k=1

k
¡
kγ01 + y0 + Sk

¢
= γ01

(t− 1) t(2t− 1)
6

+ y0
(t− 1) t
2

+
t−1X
k=1

kSk (A.10)

As can be observed from (A.8), when γ01 6= 0, eyτt is a function γ01.

A.2 Invariant Tests
Consider the transformations used in Chang and Park (2004) and Chang (2002) in a

panel data context, i.e, Transformation 1,

eyτ1,t = yt − y0 −
1

T

TX
t=1

∆yt −
t−1X
k=1

1

k
(yk − y0) .

[11]
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Considering again the DGP under the null with γ01 6= 0 as,

yt = z00t γ
0 + y0 + St, (A.11)

we observe that,

tX
k=1

1

k
(yk − y0) =

tX
k=1

1

k

¡
z00t γ

0 + y0 + Sk − y0
¢

= γ01t+
tX

k=1

1

k
Sk.

Thus,

eyτ1,t = yt − y0 −
1

T

TX
t=1

∆yt −
t−1X
k=1

1

k
(yk − y0)

= γ01t+ Sk − γ01 −
1

T

TX
t=1

εt − γ01 (t− 1)−
t−1X
k=1

1

k
Sk

= Sk −
t−1X
k=1

1

k
Sk

and the result for eyτ1,t−1 follows a similar approach.
In terms of Transformation 2,

eyτ2,t = yt +
2

t− 1

t−1X
k=1

yk −
1

T

TX
t=1

∆yt −
6

t(t− 1)

t−1X
k=1

kyk

we observe from (A.9) and (A.10) that,

eyτ2,t = yt + γ1t+ 2y0 + 2St−1 − γ01 −
1

T

TX
t=1

εt − γ1(2t− 1)− 3y0 −
6

t(t− 1)

t−1X
k=1

kSk

= St + γ1(2t− 1) + 3y0 + 2St−1 − γ1(2t− 1)− 3y0 −
6

t(t− 1)

t−1X
k=1

kSk

= St + 2St−1 −
6

t(t− 1)

t−1X
k=1

kSk

where St−1 =
1

t−1

t−1X
k=1

Sk. The results for eyτ2,t−1 and for the transformation proposed by
Taylor (2002) follow a similar approach.
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