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Abstract 
The boom-bust period of 1997-2003 is commonly viewed as an expectations-driven episode in which 
overly optimistic expectations about information and communications technology (ICT) were 
followed by their downward revision. Given that ICT is strongly related to technology in the broader 
producer and consumer durable goods sectors, this unique period can be used to identify news shocks 
about investment-specific technology (IST). Specifically, this paper proposes and implements novel 
identifying restrictions for identifying IST news shocks based on the notion that this period is arguably 
the most significant and apparent IST news-driven period in post-war data. In particular, I demonstrate 
via a variety of Vector Autoregression (VAR) models the robust result that the shock which i) has a 
long-run effect on the relative price of investment and ii) has its maximal sum of realizations, among 
all three-year period sums, in the 1997-1999 boom period followed by a negative sum in the bust 
period, is a shock that raises output, hours, investment, and consumption, and accounts for the 
majority of their business cycle variations. 
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1 Introduction

The 1997-2003 period was a significant boom-bust period in the U.S economy, which is com-

monly viewed as an episode driven by overly optimistic expectations about information and

communications technology (ICT) and the subsequent downward revision of these expecta-

tions (e.g., Jaimovich and Rebelo (2009) and Dupor and Mekhari (2011)).1 Figure 1 depicts

some data that are indicative of this special episode. The figure shows the monthly Shiller’s

cyclically adjusted price-earnings ratio (henceforth: CAPE), defined as the ratio of the real

S&P 500 and the trailing 10 year real S&P 500 earnings, for the period of 1881:M1-2012:M6.

It is apparent that the 1997-1999 boom period was a period of extremely high CAPE ratios.

The beginning of 1997 marked the outset of unprecedented CAPE ratio levels in post-World

War II era terms, surpassing the very high levels that prevailed during the period of 2004-

2007. The remarkable rise of the CAPE ratio in the boom period culminated with an all-time

high value of 44.2 in December of 1999, from which point it started its bust phase reaching

a trough of 21.1 in February 2003.

The strong connection between ICT and technology in the broader sectors of durable

goods allows to exploit this special boom-bust episode to identify investment-specific tech-

nology (IST) news shocks.2 Specifically, I propose a novel identification approach that ex-

ploits this information on the 1997-2003 boom-bust period to identify IST news shocks by

imposing on the identified news shock series to i) have a long-run effect on the the relative

price of investment (RPI) and ii) have its maximal three-year moving sum in the 1997-1999

period followed by a negative sum in the bust period, whose absolute value is at least 25%

of the boom period sum.3 The restriction on the 1997:Q1-1999:Q4 sub-series imposes on

1See Appendix A in Karnizova (2012) for a list of several extracts from academic and government publica-
tions that link the boom and the recession to a downward revision of overly optimistic expectations regarding
ICT.

2The vast IST literature, which began with the pioneering work by Greenwood et al. (1988), focuses on
technology in the equipment and software investment and consumer durable goods sectors, of which ICT is
an important component. In particular, nominal expenditures on information and communication equipment
has accounted for roughly one half of the overall investment in equipment and software since the late 1990s.

3Specifically, in the presence of news shocks, the standard long-run restriction (e.g., Fisher (2006) and
Canova et al. (2010)) that posits that IST is the sole driver of RPI in the long run implies that two shocks
drive the long-run variation in RPI, one being the traditional unanticipated IST shock and the other being
the IST news shock, where the news shock has no effect on current IST but rather portends future changes
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the sum of shock realizations in the period 1997-1999 to be larger than any other three-year

period sums and manifests the view that this period is plausibly the most apparent IST

news-driven episode in post-war data. Moreover, the restriction on the 2000:Q1-2003:Q1

sub-series implies that at least a 25% correction of expectations took place in the bust pe-

riod. This seems a reasonable threshold given that essentially all of the stock market gains

in the boom period were lost in the bust period.4

I apply the identification strategy to a VAR that contains RPI, the real aggregates,

inflation, and interest rates, and find that the identified IST news shock raises output,

hours, investment, and consumption, and accounts for the majority of their business cycle

variations. Moreover, this shock raises interest rates, lowers inflation, and accounts for the

bulk of the long-run variation in output and RPI. These benchmark findings are shown to

be robust to various alterations and extensions of the baseline model, e.g., different sample

periods, alternative RPI measures, and estimating a variety of larger VAR’s that include

additional important macroeconomic variables such as stock prices, credit spreads, and total

factor productivity (TFP).

Authors such as Beaudry and Portier (2004) and Karnizova (2012) have emphasized the

view that the news shocks that took place in the late 1990s embodied expectations about

the future expected economy-wide gains from using the new and improved ICT. According

to this view, the late 1990s news shocks portended a future increase in measured TFP via

the use of better capital goods resulting from improved ICT. To check the validity of this

view, I add to the benchmark VAR the utilization-adjusted TFP measure constructed in

Fernald (2012) and apply my identification method to this extended VAR. The results from

this exercise indicate that the identified IST news shocks have a small effect on TFP at all

horizons, casting doubt on the relevance of the TFP news view of the late 1990s-early 2000s

period. Moreover, it’s important to note that this outcome is not driven by the presumption

that the IST news view of this period is valid. In particular, I also ran an exercise in

in it. Hence, as will be explained in the next section, I allow for an additional shock to have a long-run
effect on RPI by imposing on the long-run variation of RPI to be driven by two economic shocks, i.e., the
boom-bust shock identified as the IST news shock and the additional shock identified as the unanticipated
IST shock.

4The results of this paper are insensitive to imposing different correction thresholds.
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which the identified shock complied with the boom-bust restriction but was restricted to

be a non-IST shock, i.e., it was imposed upon to not be one of the two shocks that drive

the long-run variation in RPI, and found that only 14 models out of one million potentially

admissible models comply with this type of assumption and that the non-IST boom-bust

shock is unrelated to TFP at all horizons. That is, the result that the TFP news-view is not

supported by the data is independent of whether or not the IST news view is presumed. An

additional implication of this exercise is that the very small number of admissible models

indicates that the IST news view of the boom-bust period is in fact plausible, consistent

with common perception.

The results of this paper pose a challenge for future DSGE model builders to try to

construct models in which IST news shocks are not only capable of generating business

cycles but are also the main driver behind business cycle fluctuations. While the former

feature has been already obtained by papers such as Jaimovich and Rebelo (2009) and

Dupor and Mekhari (2011), the latter feature is much harder to generate in DSGE models.

In particular, in the estimated DSGE models of Khan and Tsoukalas (2011) and Schmitt-

Grohé and Uribe (2012) IST news have a very limited role. Moreover, the results of this

paper indicate that IST news shocks imply a significant long-run increase in IST which

drives a significant permanent increase in the non-stationary real aggregates, i.e., output,

investment, and consumption. This result is consistent with the view taken in Greenwood

et al. (1997) that IST is an important driver of long-run growth. The novelty of this paper’s

results is that it is the news shock component of IST which is driving long-run growth, rather

than the unanticipated shock.

There are two main streams of literature to which my paper is linked. First, from a

methodological standpoint, the identification method I use in this paper is based on the

sign restrictions Structural VAR (SVAR) literature which identifies shocks of interest by

employing set identification whereby theory-consistent restrictions are imposed to generate

a set of theory-consistent models. This literature has mainly focused on imposing restric-

tions on the sign of impulse responses (Uhlig (2005), Dedola and Neri (2007), Mountford

and Uhlig (2009), Peersman and Straub (2009), and Kilian and Murphy (2012)) as well
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as the sign of the cross correlation function in response to shocks (Canova and De Nicolo

(2002)). My method is new with regard to the sign restrictions literature in two important

respects. First, it does not impose restrictions on the effects of the shocks but rather on the

shock realizations themselves. Second, it imposes restrictions on the long-run forecast error

variance decomposition of RPI. The long-run restriction ensures that only two shocks drive

the long-run variation in RPI, whereas the boom-bust restriction enables one to distinguish

between unanticipated and news shocks and to identify both shocks. The long-run restric-

tion can be considered a robust model-based restriction as, in most IST-driven models, the

long-run variation in RPI is entirely driven by IST. The boom-bust restriction, while not

being rooted in any macroeconomic model, is based on a real macroeconomic event and its

plausible interpretation, which is shared by various economists.

Second, my paper is related to the literature on IST news shocks. While Khan and

Tsoukalas (2012) and Schmitt-Grohé and Uribe (2012)) identified these shocks via an esti-

mated DSGE model and found a negligible role for them in the business cycle, Ben Zeev and

Khan (2012) obtained results that are fairly similar to those found in this paper by applying

a very different identification approach based on the Barsky and Sims (2011) maximum fore-

cast error variance (MFEV) identification approach to news shocks. In particular, Ben Zeev

and Khan (2012) identified the IST news shock as the shock orthogonal to RPI and which

maximally explains future short-run and medium-run movements in RPI. While the Barsky

and Sims (2011) MFEV method requires observing the fundamental to which the news shock

pertains, exploiting the IST news-driven episode of the late 1990s and early 2000s enables

me to identify IST news shocks without assuming that IST is fully reflected by RPI and is

thus observable, as is the case in Ben Zeev and Khan (2012).5

The remainder of the paper is organized as follows. In the next section, the details of the

empirical strategy are laid out. Section 3 begins with a description of the data, after which

it presents the main empirical evidence followed by a sensitivity analysis section. Section

5The median correlation between this paper’s identified shocks and the Ben Zeev and Khan (2012) shock
series is 58%, a significant correlation though clearly one that manifests a noticeable wedge between the two
identified shock series. This wedge is to be expected given the fundamental difference between the types of
identification restrictions imposed in the two identification strategies.
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5 discusses the issue of how to interpret the identified news shocks on the basis of real-life

news events. The final section concludes.

2 Identification Method

Prior to presenting the identification method in detail, I will first explain the underlying

theoretical framework upon which the empirical analysis is based.

2.1 Underlying Framework

The general relation between RPI and IST can be illustrated by considering a two sector

model along the lines outlined in Justiniano et al. (2011) with separate imperfectly compet-

itive investment and consumption sectors. Both sectors are influenced by a common total

factor productivity (TFP) shock and, in addition, the investment sector is affected by an IST

shock. In this set up one can derive the following equilibrium equation linking IST progress

with the relative price of investment

ISTt =

(
ac
aI

)(
mcC,t

mcI,t

)(
KC,t

LC,t

)−(1−aC) (
KI,t

LI,t

)(1−aI) (PI,t

PC,t

)−1
(1)

where aj stands for the capital share in sector j = C, I, mcj,t is real marginal cost (or

the inverse of the equilibrium markup) in sector j = C, I, Kj,t/Lj,t represents the capital-

labor ratio in sector j = C, I, and Υt corresponds to investment-specific technology. Many

one sector DSGE models (e.g., Smets and Wouters (2007)) can be viewed as equivalent

representations of a two sector model that admits identical production functions across the

two sectors, free sectoral factor reallocation, and perfectly competitive sectors. However,

recent research (i.e., Basu et al. (2010) and Justiniano et al. (2011)) has argued that the

assumption of equality between RPI and IST which is based on the latter three conditions

is too strong. It is clear from Equation (1) that if one of these three conditions is not met

there will be a wedge between RPI and IST. Hence, I only make the weak assumption that

IST is the sole source of the long-run variation in RPI.6 This is the underlying identifying

6For IST to be the sole source of the unit root in RPI there would need to be equal capital shares across
the investment and consumption sectors, free sectoral factor reallocation in the long run, and stationarity of
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assumption made by papers that aimed to identify unanticipated IST shocks (e.g., Fisher

(2006) and Canova et al. (2010)) whereby they conjectured that the only shock that has

a long-run effect on RPI is the unanticipated IST shock. Nevertheless, as opposed to just

assuming that one shock drives IST, I allow for the possibility that part of the variation in

IST is anticipated in advance.

IST is assumed to be well-characterized as following a stochastic process driven by two

shocks. The first is the traditional unanticipated IST shock, which impacts the level of

technology in the same period in which agents observe it. The second is the news shock,

which is differentiated from the first shock in that agents observe the news shock in advance

and it portends future changes in technology. The following is an example process that

incorporates both unanticipated and IST news shocks:7

εt = εt−1 + gt−j + ηt (2)

gt = κgt−1 + et (3)

Here IST, denoted by εt, follows a unit root process where the drift term itself gt−j follows

an AR(1) process with j ≥ 1. j represents the anticipation lag, i.e., the delay between the

announcement of news and the period in which the future technological change is expected to

occur. Parameter 0 ≤ κ < 1 describes the persistence of the drift term. η is the conventional

unanticipated technology shock. Given the timing assumption, et has no immediate impact

on the level of IST but portends future changes in it. Hence, it can be defined as an IST

news shock.

sectoral mark-ups. The latter is implied by macroeconomic theory as standard sectoral phillips curves imply
that mark-ups are roughly the difference between expected inflation rates and current ones (e.g., Justiniano
et al. (2011)). Moreover, Basu et al. (2010) find that the capital share for the services and non-durables
sector is 0.36 whereas that of equipment and software investment and consumer durables is 0.31. Given that
the two shares are relatively close, and that it is reasonable to assume that in the long run factor inputs can
freely reallocate, it seems sensible to assume that the the long-run variation in RPI is driven by unanticipated
IST shocks and IST news shocks.

7A similar process was used by Leeper and Walker (2011), Leeper et al. (2012), and Barsky and Sims
(2011, 2012). The stochastic drift term gt is introduced so as to generate a smooth news process whereby
following the news shock technology will start to rise j periods into the future after which it will continue to
gradually and persistently increase until reaching some new higher steady state. If κ were to equal zero there
be would no gradual rise but rather a jump in technology j periods into the future after which technology
will remain at that higher level permanently.
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Given the above underlying theoretical framework, I will only consider models that are

consistent with Equation (1). In particular, I will impose the restriction that at least 90%

of the long-run variation in RPI is driven by two shocks. Ideally, one would want to require

that 100% of the long-run variation in RPI is driven by two shocks but given that there

could be measurement errors present in my empirical analysis and that the capital shares

in the consumption and investment sectors seem to be close but not entirely identical, the

90% restriction seems a reasonable compromise. I will now turn to explaining the empirical

strategy employed in the paper.

2.2 Generating the Set of Admissible Models

My methodology is a set identification VAR-based method which generates the set of models

that comply with a defined set of restrictions, to be described below in detail. The method

is a set identification one because the imposed restrictions admit a system of inequalities

that in general will have either no solutions or a set of solutions. As will be explained below,

this set of solutions will constitutes the set of models that satisfy my imposed restrictions.

I employ Bayesian estimation and inference and therefore the set of admissible models will

also account for parameter uncertainty. My benchmark empirical VAR consists of the real

aggregates, RPI, inflation, and interest rates.

Specifically, Let yt be a kx1 vector of observables of length T and let the VAR in the

observables be given as

yt = B1yt−1 +B2yt−2 + ...+Bpyt−p +Bc + ut (4)

where Bi are matrices of size kxk, p denotes the number of lags, Bc is a kx1 vector of

constants, and ut ∼ i.i.d. N(0,Σ) is the kx1 vector of reduced-form innovations where Σ is

the variance-covariance matrix of reduced-form innovations. Without loss of generalization,

it is assumed that technology constitutes the first variable in system. For future reference,

let the (kp + 1)xk B = [B1, ..., Bp, Bc]
′ matrix represent the reduced form VAR coefficient

matrix. Hence, the reduced form VAR parameters can be summarized by the coefficient

matrix B and variance covariance matrix Σ.
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It is assumed that there exists a linear mapping between the reduced-form innovations

and economic shocks, et, given as

ut = Aet (5)

The impact matrix A must satisfy AA′ = Σ. There are, however, an infinite number of

impact matrices that solve the system. In particular, for some arbitrary orthogonalization,

C (e.g the cholesky factor of Σ), the entire space of permissible impact matrices can be

written as CD, where D is a k x k orthonormal matrix (D′ = D−1 and DD′ = I, where I is

the identity matrix).8

Given an estimated reduced form VAR, standard SVAR methods would try to deliver

point identification of at least one of the columns of A whereas set identification methods

would generate the set of admissible models. In the set identification approach the aim is

to draw a large number of random orthonormal matrices D in order to generate a large

set of models from which the set of admissible models can be obtained by checking which

models comply with the imposed restrictions. I follow the conventional Bayesian approach

to estimation and inference taken by the sign restrictions literature (e.g., Uhlig (2005),

Mountford and Uhlig (2009), Peersman and Straub (2009), and Kilian and Murphy (2012))

by jointly drawing from the posterior distribution of the reduced form VAR parameters,

summarized by matrices B and Σ, and identification matrices D under the assumption of a

normal-inverse Wishart prior distribution for the reduced-form VAR parameters and a Haar

distribution for the identification matrix. As shown by Uhlig (1994), the normal-inverse

Wishart prior coupled with the assumption of a Gaussian likelihood for the data sample

imply a posterior density of the reduced-form VAR parameters that is also distributed as a

normal-inverse Wishart.9 The procedure for randomly drawing models can be described as

follows:

8 In consistence with the SVAR literature, I assume here that the number of economic shocks is equal to
the number of observables. The results are not changed if a larger number of shocks is assumed. Nevertheless,
computational time is reduced significantly with a smaller number of shocks and thus this assumption is
maintained.

9Specifically, I assume a standard diffuse prior on the VAR reduced form parameters B and Σ. Moreover,
note that because D does not appear in the likelihood function its prior and posterior distributions are the
same, both being represented by the Haar distribution.
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1. Randomly draw a kxk matrix P of NID(0,1) random variables. Derive the QR decom-

position of P such that P = QR and QQ′ = I and let D=Q.

2. Randomly draw from the posterior distribution of reduced form VAR parameters

p(B,Σ | data). Compute the cholesky factor of the drawn Σ and denote it by C.

3. Use orthonormal matrix D, cholesky factor matrix C, and coefficient matrix B to

compute impulse responses and economic shocks via the orthogonalization A = CD.

4. Repeat steps 1-3 1,000,000 times.

Steps 1 and 2 are needed to draw the identification matrix D and reduced form VAR param-

eters B and Σ, respectively. Appendix A describes the details of how the posterior simulator

for the reduced form VAR parameters is implemented. As discussed by Rubio-Ramirez et al.

(2010), Step 1 constitutes an efficient method for generating orthonormal matrices. Step 3

involves using the drawn matrices from the previous three steps and the orthogonalization

A = CD for the computation of the impulse responses and economic shocks, computed as

et = A−1ut,. Steps 1-3 essentially deliver a matrix triplet (B,Σ,D) which represents a model

as this matrix triplet is all that is needed for knowing the corresponding model in terms of

impulse responses, forecast error variance decomposition, and series of economic shocks. I

generate 1,000,000 such matrix triplets, or models, in accordance with Steps 1-3 from which

only the admissible models will be chosen so as to constitute the desired set of models that

are compliant with my restrictions. In practice, it is checked if the resulting models comply

with the following restrictions:

1. One shock, belonging to the vector of economic shocks et, has its maximal three-year

moving sum in the 1997-1999 period followed by a negative sum in the bust period of

2000:Q1-2003:Q1, whose absolute value is at least 25% of the boom period sum.10

10To be clear, the maximum is computed with respect to all of the three-year sub-series within the same
shock series. Hence, this restriction implies that the sum of realizations in the 1997-1999 period is larger
than the sum of realizations in all other three-year periods present in the shock series. Given a shock series
of size T-p, where T is the sample size for the observed variables and p is the number of lags in the VAR,
this maximum restriction essentially implies a total of T − p− 11 inequality restrictions on the shock series.
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2. At least 90% of the long-run variation in RPI is driven by the shock from the first

restriction and an additional arbitrary shock belonging to et.
11

The chosen boom and bust periods are generally consistent with the boom and bust behavior

of both the stock market as well as the real economy. The boom restriction essentially

requires that the largest realizations of IST news shocks take place in the boom period, in

accordance with the common view that the boom period is the most apparent IST news-

driven period in post-war data. Note that the choice of the starting and ending periods of

the boom period is consistent with the fact that in the beginning of this period the stock

market, as measured by Shiller’s CAPE ratio, started to reach unprecedented levels in post-

war era terms after which it rose continuously until peaking at the end of the period. The

bust restriction requires that at least a 25% correction of the overly optimistic expectations

of the late 1990s takes place in the early 2000’s. This seems a reasonable threshold given

that essentially all of the stock market gains in the boom period were lost in the bust period.

3 Empirical Evidence

In this section the main results of the paper are presented. For the benchmark results I es-

timate a VAR with seven variables: RPI, output, hours, consumption, investment, inflation,

and interest rates. Before proceeding, a brief discussion of the data is given. Then, the main

empirical results are presented in detail.

3.1 Data

RPI is measured in the standard way as a quality adjusted investment deflator divided by

a consumption deflator (e.g., Greenwood et al. (1997, 2000), Fisher (2006), Canova et al.

(2010), Beaudry and Lucke (2010), and Liu et al. (2011)). The consumption deflator corre-

sponds to nondurable and service consumption, derived directly from the National Income

11To ensure that the identified shock is not a measurement error or some other economic shock that also
experienced large realization in the boom period (e.g., noise shocks), I also imposed on the identified shock
to explain at least 5% of the long-run variation in RPI. Nevertheless, this had a negligible effect on the
results as in only one percent of the admissible models did the identified shock explain less than 5% of the
long-run variation in RPI.
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and Product Accounts (NIPA). The quality adjusted investment deflator corresponds to

equipment and software investment and durable consumption and is based on the Gordon

(1990) price series for producer durable equipment (henceforth the GCV deflator), as later

updated by Cummins and Violante (2002), so as to better account for quality changes. More

recently, Liu et al. (2011) used an updated GCV series constructed by Patrick Higgins at the

Atlanta Fed that spans the period 1959:Q1:2012:Q1. I use this updated series as a measure

for IST.12

The nominal series for output, consumption, and investment, data are taken from the

Bureau of Economic Analysis (BEA). Output is measured as GDP in the non-farm busi-

ness sector, consumption as the sum of non-durables and services, and investment is the

sum of personal consumption expenditures on durables and gross private domestic invest-

ment. The nominal series are converted to per capita terms by dividing by the civilian non-

institutionalized population aged sixteen and over. I use the corresponding chain-weighted

deflators to obtain the real series. The hours series is log of total hours worked in the

non-farm business sector. Inflation is measured as the percentage change in the CPI for all

urban consumers, and interest rate, the nominal interest rate is the three month Treasury

Bill rate.13 My benchmark data series span the period 1959:Q1-2012:Q1.

3.2 Impulse Responses and Forecast Error Variance Decomposi-
tion

I apply my identification method on a VAR that includes seven variables: RPI, output,

investment and durables, non-durables and services consumption, the log of total hours

worked, CPI inflation, and interest rates. Apart from hours, inflation, and interest rates,

which are assumed to be stationary and enter the system in levels, all other variables enter the

system in their first differences. The Akaike information criterion favors three lags whereas

12I thank Patrick Higgins at the Atlanta Fed for providing me with this series. The reader is referred to
the appendix in Liu et al. (2011) for a description of the methods used to construct the series. In the next
section which deals with robustness analysis, I confirm that the results are robust to using an RPI measure
obtained directly from NIPA investment deflators.

13To convert monthly population, inflation, and interest rate series to quarterly series, I use the last
monthly observation from each quarter.
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the Schwartz and Hannan-Quinn information criteria favor one and two lags, respectively.

As a benchmark, I choose to estimate a VAR with three lags. The results are robust to using

a different number of lags. 1,000,000 models are generated via the procedure described by

Steps 1-4. I then check whether the identifying assumption holds for each model and keep

only the admissible models. The set of admissible models consists of 1635 models.

Figures 2a and 2b show the posterior distribution of impact impulse responses and con-

tribution to forecast error variance (FEV) of the variables of the IST news shock at the two

year horizon, respectively. Moreover, Figures 3a and 3b depict the median and 90th and 10th

percentiles of the posterior distributions of impulse responses and contribution to forecast

error variance at all horizons up to the 10 year one, respectively. In these figures, as well as

all of the next figures, it was ensured that the identified IST news shock is a favorable shock

by multiplying the impulse responses by -1 if the long-run effect of the shock on RPI was

positive.

It is apparent from these four figures that favorable IST news shocks raise the real

aggregates (output, hours, investment, and consumption) on impact and drive the bulk

of their business cycle variations.14 The median impact effects are 0.42%, 0.28%, 1.47%,

and 0.28%, respectively. All of the latter effects are economically significant and point to

the strong business cycle comovement that the IST news shock generates. The median

contributions of IST news shocks to output, hours, investment and consumption at the two

year horizon are 64%, 65%, 60%, and 60%, respectively, all indicating that IST news shocks

are the main force behind the business cycle. Moreover, the median contributions to the

long-run variation of output, consumption, and RPI are 52%, 50%, and 78%, respectively,

whereas that for investment is only 20%.15 These long-run contributions indicate that IST

14It should be noted that the unanticipated IST shock, identified as the other shock which drives the
long-run variation in RPI, has a positive median effect on output, hours, and investment, a negative effect
on inflation, and negligible effects on consumption and interest rates. Moreover, the shock has a small
contribution to the business cycle variation of the real aggregates with median contributions to the two year
variation in output, hours, investment, and consumption at 6%, 8%, 6%, and 4%, respectively. These results
are available upon request from the author.

15Note that these estimates are not shown in Figures 3a and 3b as the latter figures pertain to only the first
10 years following the shock whereas the long-run estimates are computed from the permanent responses of
the non-stationary variables.
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news shocks have more of a hump-shaped effect on investment compared to output and

consumption. Moreover, while IST news shocks don’t account for much of the business cycle

variation in RPI, they explain the bulk of the long-run variation in RPI.

3.3 Time Series of Identified Shocks

Figure 4 shows the median IST news shock series from the benchmark VAR. To make the

figure more readable, I show the one year trailing moving average of the median shock series

as opposed to the actual series.16 The shaded areas represent recession dates as defined by

the National Bureau of Economic Research (NBER). As the series starts in 1960:Q4, only

the two last quarters of the 1960:Q2-1961:Q1 recession are included in the figure.

In accordance with the boom-bust restriction, there are significant positive realizations in

the late 1990s followed by a series of negative realizations in the early 2000’s and in particular

in the 2001 recession. Moreover, significant negative IST news shocks are associated with

all other seven U.S recessions included in the sample period. The evidence from Figure 4 is

consistent with the results from the previous section which indicate that IST news shocks

are a major driver of U.S business cycles.

4 Robustness

This section addresses seven potentially important issues regarding the analysis undertaken

in the previous section. The first is the concern that there may not exist a perfect linear

mapping between VAR innovations and economic shocks. The second is the concern that over

the entire sample period VAR innovations may not be homoscedastic and VAR coefficients

may not be stable. The third issue pertains to the possibility that hours are not necessarily

stationary and thus should perhaps enter the system in first differences rather than in levels.

The fourth issue concerns the argument put forward recently by Justiniano et al. (2011) which

asserts that there may be a relation between IST and credit market disturbances. The fifth

issue concerns the notion that the news shocks that drove the boom-bust period portended

16The smooth shock series was derived by first computing the median of the 1635 identified IST news
shock series and then calculating the one year moving average series from the median shock series.
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a future increase in Total Factor Productivity (TFP) via the use of improved capital goods

(e.g., Beaudry and Portier (2004)). The sixth potential concern is the robustness of the

results to using alternative measures of RPI. Lastly, I also confirm that the results of this

paper are not driven by other structural disturbances identified in the literature.17

4.1 Addressing Potential Invertibility Issues

Leeper et al. (2012) and Sims (2012) have highlighted that the presence of news shocks about

future fundamentals can pose difficulties for an econometrician drawing inference based on

identified VARs. Specifically, news shocks also constitute unobserved state variables and can

therefore drive a wedge between VAR innovations and economic shocks if the observables

are not capable of perfectly forecasting them. From a practical standpoint, one approach to

addressing this is to improve the econometrician’s information set so that it is better aligned

with those of the private agents in the economy. Using Monte Carlo evidence, Sims (2012)

shows that this approach can either ameliorate or eliminate the invertibility problem. While

the benchmark VAR does include the main macroeconomic variables, both real and nominal,

it still may be the case that more information needs to be added in order to attain better

identification. Towards this end, I add a measure of stock prices (Beaudry and Portier (2006))

to the benchmark VAR as it is reasonable to assume that stock prices contain information

about future IST progress.18

Figures 5a and 5b correspond to Figures 3a and 3b with the only difference being that now

the benchmark VAR is replaced by a larger VAR that includes stock prices.19 The figures

are based on 1,000,000 randomly generated models from which a total of 181 admissible

models were collected. Similar to the benchmark case (Figures 3a and 3b), favorable IST

news shocks raise the real aggregates on impact and drive the bulk of their business cycle

17I have also confirmed the robustness of the results to different lag specifications in the VAR. These
results are available upon request from the author.

18The measure of stock prices used is the log of the real S&P 500 Index, obtained from Robert Shiller’s
website, in per capita terms. This series is converted to a quarterly frequency by taking the last monthly
observation from each quarter. The results remain unchanged if the stock prices are not in per capita terms.

19In the interest of space, the histograms figures that correspond to Figures 3a and 3b will not be presented
in the robustness section. These figures are available upon request from the author.
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variation. The news shocks also continue to raise interest rates and reduce inflation.

Interestingly, IST news shocks are also important drivers of the variation in stock prices,

confirming the view that the latter information variables contain valuable information about

the future value of IST. Specifically, the median contribution of IST news shocks to output,

hours, investment, and consumption are 56%, 52%, 51%, and 55%, respectively, while that

to the variation in stock prices is 36%. Moreover, all of the latter variables jump on impact

following the news shock. That the median impact effects of IST news on stock prices is so

significant at 4.3% is an indication that stock prices contain important information about

the future value of IST.

4.2 Results for a Post 1982 Sub Sample

One may be concerned that the VAR coefficients may not be stable over the entire sample

period. Moreover, the VAR innovations may not be homoskedastic. Hence, in this section

results from applying my methodology on a post 1982 sub-sample will be presented where it

will be demonstrated that the sub-sample results, which are much less likely to suffer from

potential heteroskedasticity and coefficient instability (e.g., Stock and Watson (2007)), are

essentially the same as the large sample results.

Figures 6a and 6b correspond to Figures 3a and 3b with the only difference being that

the former figures were based on a post 1982 sub sample (1983Q1-2012Q1). The figures are

based on 1,000,000 randomly generated models from which a total of 445 admissible models

were gathered. It is apparent the main results are unchanged for the sub sample period as

IST news shocks drive the bulk of the business cycle variations in the real aggregates as well

as the long-run variation in RPI. Moreover, IST news shocks continue to generate business

cycle comovement, raise interest rates, and lower inflation. The median contributions of

IST news shocks to output, hours, investment, and consumption at the two year horizon are

68%, 57%, 58%, and 64%, respectively. Moreover, the median contribution to the long-run

variation in RPI is 71% emphasizing the importance of IST news shocks as drivers of not

only the business cycle variation of the real aggregates but also the long-run movement in

RPI.
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4.3 Non-Stationarity of Hours

The results of the previous section were obtained from a VAR in which hours were assumed

to be stationary and thus entered the system in levels form. To test the robustness of the

results to this assumption, I implemented the same identification procedure on a VAR in

which hours are assumed to be non-stationary and thus enter the system in first difference

form.

Figures 7a and 7b correspond to Figures 3a and 3b with the only difference being that

the former are obtained from a VAR in which hours are assumed to be non-stationary and

thus enter the system in first difference form. The figures are based on 1,000,000 randomly

generated models from which a total of 291 admissible models were gathered. It is apparent

from the figures that the results of this paper are generally robust to the way that hours

enter the system. It is apparent that IST news shocks continue to generate business cycle

comovement as the real aggregates all rise significantly on impact in response to the news

shock. The positive response of interest rates as well as the negative response of inflation

are also maintained. Moreover, IST news shocks continue to drive a major share of the

business cycle variation in the real aggregates with a 52% median contribution to output

and consumption variation and a 43% contribution to investment and hours variation.

As Figure 7a illustrates, the response of hours to the IST news shock is permanent. While

the assumption that hours are non-stationarity cannot be entirely ruled out on theoretical

grounds, it is still hard to justify such a permanent response based on macroeconomic theory.

Hence, imposing a first difference form on hours may seem to be too restrictive. Nevertheless,

the results from this section show that in general the main features of the results remain

unchanged and are quite robust to the specification of hours in the VAR.

4.4 Relation between News Shocks and Credit Spreads

Recent work by Justiniano et al. (2011) has argued that there is a close relation between

shocks to IST and shocks to financial intermediation as financial intermediation can poten-

tially affect the production of capital goods. Justiniano et al. (2011) demonstrated that
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the IST shock estimated from their structural model has a strong correlation with credit

spreads.20 In order to try to asses the relation between my identified news shocks and credit

spreads, I applied the identification procedure on a VAR that includes the spread between

the expected return on medium-grade bonds and high-grade bonds (Moody’s seasoned Baa

corporate bond yield and Aaa corporate bond yield, respectively).

Figures 8a and 8b correspond to Figures 3a and 3b with the only difference being that the

former are obtained from a VAR in which the credit spread variable is included. The figures

are based on 1,000,000 randomly generated models from which a total of 789 admissible

models were gathered. It is apparent from the figures that the results remain unchanged

with respect to the benchmark results. IST news shocks continue to generate business cycle

comovement, raise interest rates, lower inflation, and to drive the majority of the business

cycle variations of the real aggregates (a median share of 59%, 62%, 53%, 55% of the two

year variation in output, hours, investment, and consumption, respectively).

As for the implications for the credit spread variable, it is apparent that a financial

accelerator mechanism is present following the news shock; the spread follows a hump shaped

response, barely moving on impact and then starting to decline while peaking after 5 quarters.

Moreover, the median contribution of the news shock to the two year variation in the spread

is 13% while it explains less than 3% of its impact variation. The negligible impact median

response of the spread is consistent with the very low median correlation of 9% between the

identified news shocks and the VAR innovation the spread. Given that the latter can be

viewed as a shocks to the functioning of credit markets, this low correlation can seen as an

indication that the results of this paper are not driven by credit supply disturbances.

4.5 Relation between News Shocks and TFP

Authors such as Beaudry and Portier (2004) and Karnizova (2012) view the news shocks

that took place in the late 1990s as being strongly related to the expectations about the

20Specifically, the estimated shock from Justiniano et al. (2011) represented a shock to the transformation
of investment goods to capital goods, rather than the transformation of consumption goods into capital
goods. While the latter usually represents IST shocks in DSGE models, the former can also be viewed as a
shock to the technology with which capital goods are produced and thus as a shock to IST.
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future expected gains from using the new and improved IT goods. This view implies that

the late 1990s news shocks portended a future increase in measured TFP and can therefore

be interpreted as TFP news shocks. To examine whether such an interpretation is plausible,

I applied my identification procedure on a VAR that includes a measure of TFP. 21

Figures 9a and 9b correspond to Figures 3a and 3b with the only difference being that

the former are obtained from a VAR in which TFP is included. The figures are based on

1,000,000 randomly generated models from which a total of 495 admissible models were

gathered. It is apparent from the figures that the results remain unchanged with respect to

the benchmark results and that the identified IST news shocks have a small and insignificant

median effect on TFP at all horizons. This result implies that the IST news shocks identified

in this paper are not related to TFP news shocks, thus suggesting that the TFP news-view

of this period is misguided.22

One potential concern that can still arise is that the TFP news view of the boom-bust

period is being rejected as a result of the presumption that the IST news view of this period

is correct. To address this issue, I imposed on the identified shock to be a non-IST shock, i.e.,

I only considered models in which the shock which complies with the boom-bust restriction

is not one of the two shocks that drive the long-run variation in RPI. The results from this

exercise are presented in Figures 10a and 10b, which present the impulse responses and

FEV contributions for the identified non-IST shock, respectively.23 The figures are based

on 1,000,000 randomly generated models from which a total of 14 admissible models were

collected.

The results of this exercise deliver a conclusive message: the non-IST boom-bust shock

has a small and insignificant effect on TFP at all horizons. This outcome emphasizes that

the improbability of the TFP news view of the boom-bust period is robust to the assumption

21For the TFP series, I employ the real-time, quarterly series on total factor productivity (TFP) for
the U.S. business sector, adjusted for variations in factor utilization (labor effort and capital’s workweek),
constructed by Fernald (2012).

22More generally, this result suggests that the identified IST news shocks are not related to any type of
TFP shock, be it anticipated or unanticipated TFP shocks.

23Note that I am not identifying a structural shock here, but rather am letting the data speak as to the
plausibility of a TFP news view of the boom-bust period. Specifically, if the non-IST shock is strongly
related to TFP in a delayed manner this would suggest that the TFP news view is supported by the data.
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that the IST news view of this period is valid. Moreover, that such a small number of models

complies with the assumption that the boom-bust shock is a non-IST shock is an indication

that the IST news view of the boom-bust period is indeed plausible, which is in accordance

with what common perception dictates.

4.6 Alternative RPI Measure

While the GCV investment deflators are usually preferred to NIPA investment deflators as

measures of RPI in the literature, it still seems worthwhile to check the robustness of my

results to using the NIPA investment deflators for the RPI measure.24 Figures 11a and 11b

correspond to Figures 3a and 3b with the only difference being that the former are obtained

from a VAR in which RPI is measured by the NIPA investment deflators rather than the

GCV deflators. The figures are based on 1,000,000 randomly generated models from which

a total of 891 admissible models were collected.

It is apparent from the figures that the results remain unchanged with respect to the

benchmark results. IST news shocks continue to generate business cycle comovement, raise

interest rates, lower inflation, and to drive the majority of the business cycle variations of

the real aggregates (a median share of 63%, 66%, 60%, and 56% of the two year variations

in output, hours, investment, and consumption, respectively. Moreover, the bulk of the

long-run variation in RPI is accounted for by the news shock with a median contribution of

73%.

4.7 Cross-Correlation with Other Structural Disturbances

An additional concern that may arise from the benchmark results is that the identified

IST news shock is correlated with other structural disturbances. To address this concern, I

computed the correlation between the identified IST news shock and up to four lags and leads

of the Romer and Romer (2004) monetary policy shock measure, Romer and Romer (2010)

tax shock measure, shock to the real price of oil, the Ramey (2011) government spending

24I also verified that the results are unchanged when the output deflator is used instead of the consumption
deflator.
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news shock measure, the TFP news shock from Barsky and Sims (2011), and the shock to

the uncertainty measure used in Bloom (2009) which is based on stock market volatility

and corresponds to Figure 1 in his paper. Apart from the Barsky and Sims (2011) TFP

news shock series which was used in its raw form, all other shocks were constructed as the

residuals of univariate regressions of each of the four variables on four lags.

The results are presented in Figure 12 where the median and 10th and 90th percentiles

of the correlation between the IST news shocks and up to four lags and leads of each of the

other five disturbances are shown. The results indicate that the cross-correlations are small,

with the median correlation never exceeding 17% in absolute value. Thus, it can be deduced

that the main results of the paper are not driven by other structural disturbances.

5 Discussion

A better understanding of business cycles naturally requires a better knowledge of their

sources. This paper has contributed to this understanding by providing robust evidence that

IST news shocks constitute the major source of business cycles. Nevertheless, a consumer

of these results might rightly argue that more information is needed on the nature of these

news shocks, and more specifically, what real-life events they represent and originate from.

This type of information can assist in improved understanding of economic fluctuations, e.g.,

by allowing us to detect the potential beginning of an expansionary cycle given some large

technological news event that is taking place.

In general, technology news shocks are unobserved and are thus hard to link to particular

corresponding news events. While Ramey (2011) and Mertens and Ravn (2012) were able to

use the narrative approach to construct series of defense spending and tax news shocks, re-

spectively, an analogues narrative approach to technology news shocks is very hard to apply

for three main reasons. First, it is difficult to quantify anticipated technological innovations

given the general lack of quantitative information on their expected gains. Second, determin-

ing the exact timing of the arrival of information into economic agents’ information sets is

very hard to do. Last, but not least, it is an intricate task to handle negative news shocks as
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these are likely to correspond to downward revisions of expectations that are probably hard

to attach to real-life news events. It is thus not surprising that the technology news shocks

literature has not applied the narrative approach to identifying news shocks. However, it is

still possible to shed some light on the nature of the news shocks identified in this paper by

focusing on the unique late 1990s period.

In particular, I focus on the semiconductor industry given its pivotal technological role

as a driver of ICT.25 According to Constable and Somerville (2003), two of the greatest

technological innovations in the field of electronics in the 20th century, out of twenty overall,

are the inventions of copper-based chip technology and plastic transistor technology, both

of which are related to semiconductor manufacturing techniques and were announced in the

late 1990s boom period.26 The former invention was announced by IBM in September 1997

whereas the latter one was announced in March 1998 by a team of Bell Labs researchers.

Both inventions experienced a delay between their introduction date and adoption date, as

copper-based chips were commercially available only in September 1998, a year after the

initial announcement, while plastic transistors began to be commercially available in April

2002, i.e., with a much longer delay of four years.

Hence, these two breakthrough innovations constitute prominent examples of technolog-

ical innovations that were anticipated in advance. By no means are they exceptional in

this regard: my historical reading of other semiconductor innovations indicates that quite

often these kinds of technological innovations are well anticipated in advance as information

on them usually arrives prior to their commercial adoption. Moreover, information on the

expected future time of commercial adoption is usually available. Interestingly, two of the

three largest median realizations of my identified IST news shocks series in the 1997-1999

period took place in the third quarter of 1997 and first quarter of 1998, with the former

25See, for example, Aizcorbe et al. (2007) and references therein.
26This book is based on a comprehensive study conducted by the National Academy of Engineering

(NAE), in collaboration with the American Association of Engineering Societies and National Engineers
Week, aimed at determining the greatest engineering achievements in the 20th century in twenty different
fields. The selection process was based on solicited nominations from members of 60 professional engineering
societies from which the final greatest innovations were selected by an NAE committee consisting of renowned
experts, where the chief criterion for nominations was the impact of the engineering achievement on quality
of life.
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being the largest realization reaching 1.6 standard deviations and the latter being the third

largest realization at 1.22 standard deviations. The correspondence between the large rel-

ative magnitude of the identified news shocks and the timing of the announcements of the

inventions is an indication that, at least to some extent, these large news shocks represent

the significant news events triggered by the two inventions.

6 Conclusion

This paper has provided robust evidence that IST news shocks are the main force behind

business cycle fluctuations, are deflationary, and raise nominal interest rates. To obtain

these results, I applied a novel identification approach that exploits the view that the late

1990s early 2000s boom-bust period can be characterized as an IST news-driven episode and

identified an IST news shock as the shock that i) has a long-run effect on RPI and ii) has its

maximal sum of realizations, among all three-year period sums, in the boom period followed

by a negative sum in the bust period.

The results of this paper on the business cycle implications of IST news shocks, at least

in terms of the ability of the latter shocks to generate business cycle comovement, can be

explained by modern macroeconomic theory. An IST news-driven DSGE model that con-

tains the Jaimovich and Rebelo (2009) preference structure, investment adjustment costs,

endogenous capital utilization can account for the empirical the impulse responses obtained

in the paper. Nevertheless, these impulse results are not robust to different parameteriza-

tions as employing the calibration used in Jaimovich and Rebelo (2009) generates business

cycle driving IST news shocks while using the estimated parameters obtained in Khan and

Tsoukalas (2011) does not deliver similar impulse responses.

Hence, it may be suitable to consider developing more robust models along the lines

of the recent paper by Dupor and Mekhari (2011) in which investment in the economy is

forward-compatible in the sense that it rises in response to IST news so that by the time the

technology arrives the complementary capital is already in place. This kind of mechanism is

appealing as it is consistent with what we observed during the late 1990s when investment
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surged in anticipation of ICT improvement. One prominent example of this mechanism, as

noted by Dupor and Mekhari (2011), is the considerable rise in investment in fiber optic

cables in the late 1990s in anticipation of future ICT improvements. This mechanism is also

in agreement with the results of this paper as identified favorable IST news shocks generate

a significant contemporaneous expansion in investment.
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Appendix A Posterior Distribution of Reduced Form

VAR Parameters

The VAR given by (4) can be written in matrix notation as follows:

Y = XB + U (6)

where Y = [y1, ..., yT ]′, X = [X1, ..., XT ]′, Xt = [yt−1, ..., yt−p, 1]′, B = [B1, ..., Bp, Bc]
′,

k and p are the number of variables and lags, respectively, and U = [u1, ..., uT ]′. B here

represents the reduced form VAR coefficient matrix and Σ is the variance-covariance matrix

of the reduced form VAR innovations. I follow the conventional approach of specifying a

normal-inverse Wishart prior distribution for the reduced-form VAR parameters:

vec(B) | Σ ∼ N(vec(B̄0),Σ⊗N−10 ) (7)

Σ ∼ IWk(v0S0, v0) (8)

where N0 is a kpxkp positive definite matrix, S0 is a kxk covariance matrix, and vo > 0. As

shown by Uhlig (1994), the latter prior implies the following posterior distribution:

vec(B) | Σ ∼ N(vec(B̄T ),Σ⊗N−1T ) (9)

Σ ∼ IWk(vTST , vT ) (10)

where vT = T + v0, NT = N0 +X ′X, B̄T = N−1T (N0B̄0 +X ′XB̂),

ST = v0
vT
S0 + T

vT
Σ̂ + 1

vT
(B̂ − B̄0)

′N0N
−1
T X ′X(B̂ − B̄0), B̂ = (X ′X)−1X ′Y ,

and Σ̂ = (Y −XB̂)′(Y −XB̂)/T .

I follow the sign restrictions literature and use a weak prior, i.e., v0 = 0, N0 = 0, and

arbitrary S0 and B̄0. This implies that the prior distribution is proportional to |Σ|−(k+1)/2

and that vT = T, ST = Σ̂, B̄T = B̂, and NT = X ′X. Thus, the posterior simulator for B

and Σ can be described as follows:

1. Draw Σ from an IWk(T Σ̂, T ) distribution.

2. Draw B from the conditional distribution MN(B̂,Σ⊗ (X ′X)−1).

3. Repeat steps 1 and 2 a large number of times and collect the drawn B’s and Σ’s.
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Figure 1: Shiller’s Cyclically Adjusted Price-Earnings Ratio.
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Figure 4: Identified IST news shock time series (smoothed) and U.S. recessions.
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Notes : The U.S. recessions are represented by the shaded areas. To render the figure more
readable, the plotted median identified shock series is smoothed using a one year moving
average. Specifically, it is calculated as εst = (εt−3 + εt−2 + εt−1 + εt)/4, where εt is the
median of the 1635 identified shock series. The plotted series begins in 1960:Q4 and ends in
2012:Q1.
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Figure 12: The Median and 90th and 10th Percentiles of the Cross-Correlation
between the IST News Shock and Lags/Leads of Other Shocks.
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Notes : The solid line is the median cross-correlation and the dashed lines are the 90th and
10th percentiles of the posterior distribution of cross-correlations.
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