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Abstract 
This study examines the contracting problem in continuous time with ambiguous information. A 
problem of this nature arises, for example, in an employment relationship where there is limited 
knowledge, or ambiguity, about the technology that governs the performance. To address this 
problem, we connect the models of contracting problem in continuous time with the models of 
decision making under ambiguity in continuous time. The connection uses the continuous-time 
techniques and preserves the tractability in analysis. By means of computed examples we show that 
the consideration of ambiguity results in compensation schemes that are less sensitive to performance 
relative to the classical case. This answers to a criticism leveled at the extant theories of contracts that 
predicted compensation schemes that are unrealistically too sensitive to performance. Our work 
provides one possible rationale for simpler contracts through ambiguity. 
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1. Introduction

In contractual relationships parties often do not have precise information about
the economic environment. The classic approach formulates the contracting prob-
lem between a principal and an agent under the assumption that parties have
good understanding of the productive process. In particular, unobservable effort
by the agent is assumed to impact the distribution over outcomes in a precise
and commonly known fashion. This framework has been applied to many eco-
nomic problems including managerial compensation schemes, financial contracts,
insurance contracts, and mortgage design. In many cases, especially with new
technologies and newly formed interactions, the relationship mapping effort into
outcomes is imprecisely known. This raises the question how ambiguity affects
contractual relationships.

We address this problem in the context of a continuous-time contracting model
where a principal and an agent engage in a contractual relationship over unobserv-
able effort that generates output with ambiguity. In contrast to the classical case
in Sannikov [36] we consider a model in which efforts maps to sets of probability
distributions over outputs. In particular, technology for output is characterized
by a diffusion process and its drift belongs to a set instead of a point as in the
classical case associated with each effort level. This assumption reflects the dis-
tinction made by Knight [29] between risk and uncertainty (or ambiguity). Risk
as in the classical case refers to the situation where there is a known probability
distribution associated with each action. Ambiguity, on the other hand, as in our
case, refers to the situation where the information is too imprecise to summarize
likelihoods into a single probability distribution and instead there is a set of prob-
ability distributions associated with each action. The consideration of ambiguity
as representing a richer description of informational possibilities poses challenges
for the formulation and the analysis of a contracting problem and offers a broader
set of economic interpretations.

The aim of this paper is to examine the design of optimal contracts with unob-
servable effort and ambiguity in a dynamic environment. To analyze this problem,
we connect the models of contracting problem in continuous time in Sannikov [36]
with the models of decision making under ambiguity in continuous time in Chen
and Epstein [9]. We construct this connection using the continuous-time frame-
work while preserving the tractability in analysis. More specifically, our model is
based on Sannikov. It is flexible to allow us to incorporate ambiguity for several
reasons. First, using the Girsanov Theorem in analogous way as in Chen and
Epstein we represent ambiguity as the set of drift terms on the diffusion process
for productivity for a given effort level.1 Second, using this representation for
ambiguity, and the related recursive representation for ambiguity averse prefer-
ences as a solution to backward stochastic differential equations (BSDE), we can
extend the martingale formulation to the dynamic contracting problem.2 Third,
the contracting problem reduces to solving ordinary differential equations (ODEs)

1See, for example, Karatzas and Shreve [28].
2See El Karoui et al. [21] for the role of BSDEs in finance.
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as in Sannikov, which can be numerically solved. We then solve and characterize
the optimal contract with ambiguous information.

In our formulation of the contracting problem, we make several important mod-
eling choices. We assume that both the principal and the agent have common
ambiguous beliefs about output distribution. Besides that we do not place restric-
tions on the nature of ambiguity. This assumption allows us to conduct analysis in
a tractable fashion and gain economic insights in a setting that provides a building
block for contracting problems with a more general ambiguity structure. In par-
ticular, parties do not have differential information about the technology. That
raises the question of updating with ambiguous beliefs. This modeling choice,
which abstracts from learning, is made due to a lack of analytical framework in
continuous-time literature that could formulate updating ambiguous beliefs. Our
work in progress attempts such a formulation incorporating adverse selection.

To model decision making under ambiguity we follow the approach formu-
lated by Chen and Epstein [9]. This approach formulates in continuous time the
maxmin expected utility model of Gilboa and Schmeidler [22]. This formula-
tion allows analyzing both the constraint on the set of priors and the incentive-
compatibility constraint separately which highlights the trade-off the considera-
tion of ambiguity introduces on incentives and on the optimal contract in clear
and simple terms.

In the contracting-problem, the principal faces ambiguity regarding an agent’s
productivity. The principal offers a contract that maximizes his expected dis-
counted utility according to his subjective worst-case scenario under the contract
while respecting the agent’s incentive compatibility and participation constraint.
The agent has the same ambiguous belief about the technology and chooses an
effort level that maximizes his expected utility under his subjective worst-case
scenario, which a priori can be different than that of the principal. Utility func-
tions are modeled as recursive ambiguity averse preferences proposed by Epstein
and Schmeidler [9]. In this approach, utility function is represented recursively
using continuation value as a state variable, similar to in the characterization
of dynamic contracts in discrete-time with imperfect public monitoring (Spear
and Srivastava [39]). Additionally, the concern for ambiguity is reflected in one
additional term added to the martingale representation in the classical case and
that term is determined by the worst case. Since the worst-case scenario depends
on the contract and unobserved effort choice by the agent, parties to the contract
can disagree on the worst case.

Our new results are two folds. First, we construct a tractable representation of
incentive compatibility constraint and use it to highlight the key trade-off with
ambiguity aversion. Second, we develop the characterization of optimal contract
under ambiguity. The former mainly follows from an application of Girsanov The-
orem which transforms a set of probability measures for output under one action
choice to another and enables the key comparison to verify incentive compatibil-
ity of the effort. More specifically, we construct an analogous set of probabilities
with a reference measure as in Chen and Epstein by letting the set and the refer-
ence measure vary with different effort processes and show that this construction
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preserves the regularity properties. This result does not depend on the particu-
lar structure of the contracting problem and hence can be applied independently
where there is a concern for trend change, for example, as in asset pricing models.
For the contracting problem of our main interest this representation of multiple
priors together with their time-consistency as in Chen and Epstein [9] then enables
us to write the agent’s utility under alternative deviations recursively and find
that ambiguity reduces the expected continuation utility by a term proportional
to the worst-case scenario. This added term highlights the effect of ambiguity on
incentives. In the standard case, to induce higher effort the compensation scheme
need vary with performance. Higher ambiguity penalizes the continuation value
more and therefore the agent prefers compensation scheme that varies less with
the performance. Therefore, ambiguity aversion acts like a effort cost. However,
unlike the latter the effect of ambiguity aversion is forward looking as it is jointly
determined by the worst-case scenario and the continuation value of the contract.

Our second contribution is the characterization of optimal contract with am-
biguity. This characterization mainly follows from the tractable incentive com-
patibility condition we have identified and the analogous stochastic analysis in
Sannikov [36]. We find that unlike the classic case in Sannikov concern for ambi-
guity introduces two terms in to the principals optimization problem. The first is
the penalty in output due to the worst case and the second is the cost of providing
incentives to the agent through variation in the continuation utility. The former
has a first-order direct effect on the profit and reduces it, while the latter has
an indirect effect through compensation to the agent for variability in payments.
We find that the direct effect dominates the indirect one and hence the principal
implements higher effort and lower variability in the continuation value. This
compensation scheme is not optimal in the classical case and the difference arises
from the fact that, with ambiguity, the principal is more tolerant in that the con-
tract is terminated at a lower continuation value. In sum, the consideration of
ambiguity results in compensation schemes that are less sensitive to performance
relative to the classical case of Sannikov and that the behavioral implications of
ambiguity aversion in this contracting problem differ from those of risk aversion.
Our results provide a possible resolution to a criticism leveled at the extant theo-
ries of contracts that predicted compensation schemes that are unrealistically too
sensitive to performance. Therefore, our work suggests that ambiguity aversion
provides one possible rationale for simpler contracts.

Our paper is related to a growing literature on dynamic contracting problems
in continuous time.3 Our paper is most closely related to the seminal contri-
butions of Sannikov [36] and Chen and Epstein [9]. Our main contribution is

3Holmstrom and Milgrom [27], Schaettler and Sung [37], Ou-Yang [31], DeMarzo and San-
nikov [16], Biais et al. [6], Biais et al. [7], Sannikov [36], He [25], He [26], Williams [42], Zhang
[43], Piskorski and Tchistyi [33], Prat and Jovanovic [34], De Marzo et al. [15], Cvitanic and
Zhang [12], Zhu [44], and Szydlowski [40]. This literature complements and extends the vast lit-
erature on dynamics contracts in discrete-time including Spear and Srivastava [39], Thomas and
Worrall [41], Atkeson and Lucas [3], Albuquerque and Hopenhayn [1], Clementi and Hopenhayn
[10], Quadrini [35], DeMarzo and Fishman [14], and DeMarzo and Fishman [13].
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to extend the latter and introduce ambiguity into the former model and exam-
ine the optimal contract and compensation schemes. Our work is also related
to the microeconomic literature that studies contracting problems and mecha-
nism design in static settings (see Bergemann and Schlag [5], Bodoh-Creed [8],
Bergemann and Morris [4] and the references therein.) These work typically uses
static models with adverse selection rather than moral hazard. Miao and Rivera
[30] introduces robustness considerations into a dynamic contracting problem in
continuous time. They focus on the principal’s concern for robustness and their
modeling of ambiguity builds on a model of multiplier preferences proposed by
Anderson et al. [2] and Hansen et al. [24], while it differs from the model of
Chen and Epstein [9] we adopted. Szydlowski [40] examines dynamic contract-
ing problem in continuous time with ambiguity. His model assumes ambiguity
regarding the agent’s effort cost and can be interpreted as a behavioral approach
to ambiguity. His preference representation differs from the model of Chen and
Epstein.

The remainder of the paper proceeds as follows. Section 2 specifies the con-
tracting problem in continuous time with ambiguous information. Section 3 for-
malizes the ambiguous information. Sections 4 specifies utility values associated
with a contract. Section 5 derives the optimal contracts and characterizes its
properties through parametric examples. Section 6 concludes. Technical details
are relegated to appendices.

2. The contracting problem with ambiguous information

We present a model of a continuous-time principal/agent problem with am-
biguous information. The agent chooses effort at each instant of time at from a
compact set At. Following Sannikov [36] the choice of action process (at) deter-
mines the realization of output {Xt} over time in a stochastic manner. Formally,
we assume that the total output Xt produced up to time t evolves according to
a diffusion process

dXt = µt(at)dt+ σdBt, (1)

where B = {Bt,Ft; 0 ≤ t <∞} is a standard Brownian motion under a reference
measure P ; as in standard moral hazard problems, the agent’s choice of effort
level at is privately observed; and unlike the classical case productivity of actions
µ(at) are not perfectly known, rather both parties only know that it belongs to a
set µt(at) ∈ Θa

t . The latter is our main departure from the literature that studies
dynamic contracting problems and we refer to it as ambiguous information. It
formulates a more general information structure. Taking a singleton drift term
specializes to the contracting problem studied by Sannikov [36] : Θa

t = at for
all t. The problem we address here is the design of a contract by the principal
when there is ambiguous information, in the sense as defined here regarding the
contracting environment. Moreover, we assume that the agent and the principal
have the same knowledge of the technology.4 Our aim is to solve and characterize
the optimal contract problem in this environment.

4We discuss briefly the role of this modeling choice in the conclusion.
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In the rest of this section we formulate the optimal choice of the contract
by the principle as an optimization problem. First we represent the ambiguous
information as a set of probabilities. Then using this set we specify an criterion
for the evaluation of the contract by the parties.

Following Epstein and Chen [9] ambiguous information is equivalently formu-
lated as a set of priors. The key observation is that a drift process (θt) is a
density generator: it induces a probability measure Qθ under which θtdt + σdZt
is a Brownian motion. This probability measure Qθ is determined by its density
with respect to the reference measure P using Girsanov exponential as follows

dQθ

dP
|Ft = exp

{
−
∫ t

0

θsdBs −
1

2

∫ t

0

|θs|2ds
}

(2)

Each effort process (at) induces a set of density generators Θa and the corre-
sponding set of priors is

Pa = {Qθ : θ ∈ Θa and Qθ is defined by (2)} (3)

In other words, ambiguity concerns the drift of the diffusion process for output.
The principal offers a contract to the agent, which specifies a stream of con-

sumption (Ct) contingent on the realized output and an incentive-compatible ad-
vice of effort (at). Effort process induces output with ambiguity so that the set of
priors Pa determines output realizations in a stochastic manner. We assume that
both parties evaluate the contract using the worst-case criterion. Accordingly,
the principal contract offer maximizes his expected profit under his worst-case
criterion

E(F ) = min
Q∈Pa

EQ

[
r

∫ ∞
0

e−rtdXt − r
∫ ∞

0

e−rtCtdt

]
(4)

subject to delivering the agent a required initial value of at least Ŵ

E(V (C, a)) = min
Q∈Pa

EQ

[
r

∫ ∞
0

e−rt (u(Ct)− h(at)) dt

]
≥ Ŵ

The interest is in contracts that generate non-negative expected profits for the
principal. To gain tractability by exploiting the power of continuous-time formu-
lation the next section sets up keys features of the set of multiple priors.

3. The Set of Priors

The contracting problem as posed in a general form in (25) is difficult to solve.
It allows for arbitrary dependence of uncertainty on the history of actions and
outcomes. However, little is known about solution methods in this case. The
tractability of the analysis of relies on representing it in a recursive manner. This
in turn depends on the nature of multiple priors Pa induced by any effort process
a. Chen and Epstein [9] formalizes a notion of ambiguity for choice problems
that yield recursive representation. In particular, at each instant of time, the
increments in the diffusion process θt are independently drawn from a family Θt.
We follow this modeling for ambiguous information and generalize it to cases in
which ambiguity varies with action choices. The latter is important for incentive
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compatibility as, in general, different efforts induce different multiple priors. More
specifically, following Chen and Epstein, we model the sets of one-step-ahead
densities for any effort process (at) via a process (Θa

t ) of correspondences from Ω
into its range RA ⊂ R, that is, for each t

ΘA
t : Ω RA.

The set of all measures that can be constructed by some selection from these sets
of one-step-ahead densities is defined using the following set of density generators:

Θa = {(θt) : θt ∈ Θa
t (ω) dt⊗ dPa a.e.}. (5)

Fixing an effort process to a constant, say zero, for each time t and ω specializes
to the formulation in Chen and Epstein. The generalization to an arbitrary effort
process is due to the concern for the incentive compatibility of the effort process.
The related changes are in: the base-line measure Pa and the variable interval
size Θa

t . The main results of this section show, using mainly Girsanov’s theorem
for changes of measures, these generalizations are possible while preserving the
key properties of the set of priors, namely regularity that guarantees that the
contracting problem is well-defined, and “dynamic consistency” that enables re-
cursive representation. For its simplicity we first consider fixing base-line measure
P and changing the interval size. For the sake of easing the illustration we start
with a particular case in which the set of drift terms are time and state invariant,
is centered around zero, and depends on the effort: Θa

t (ω) = [−κa, κa] for each
t and ω. Following the terminology introduced by Chen and Epstein we denote
this case as κ− ignorance with variable interval.

3.1. kappa-ignorance with variable interval. On the standard Wiener space
(Ω,F , P ) the process (Xt) governing the agent’s output is a Brownian motion.
The agent’s technology is described by the set of drifts induced by his choices. In a
particular case examined by Chen and Epstein [9], the technology is characterized
by κ−ignorance. In particular, the base-line measure is augmented by a family of
measures using a process θ = (θt) that determines the size of the interval which in
the present sense captures (interpreted as) ambiguity associated with each choice
of action. This is the simplest case that generalizes Chen and Epstein [9] while
connecting with Sannikov [36]’s contracting problem. Consider first a base-line
ambiguity with base-line action of no effort. That is, under P the process dXt =
σdWt is a Brownian motion. Uncertainty is modeled as a family of Brownian
motions following analogous ideas in Chen and Epstein [9]. In particular, drift
terms belong in a time-invariant set and are represented by a process θ = (θt)
with θt ∈ [−κ, κ] = µ(0) + [−κ,+κ]. Incentive-compatibility consideration of a
contract requires a comparison in a one-stage deviation sense and accordingly
we consider a more specialized set for the drift terms that: Θ0 := (Θt) with
Θτ = [−κ,+κ] for τ ≤ t and Θτ = [−κ̃,+κ̃] for τ < t ≤ T . That is, up to a fixed
time τ drift term is in set [−κ,+κ] and after then in [−κ̃, κ̃]. This interpretation
is based on the following characterization. Taking the supermartingale Zt =

exp
(
−
∫ t

0
θsdWs

)
and noticing that

∫ T
0
||θt||2dt < ∞ and that E [ZT ] = 1 < ∞
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so that the supermartingale is actually a martingale (under the measure P ), by
Girsanov’s the change of variable [23] give that

W̃t = Wt −
∫ t

0

θsds, Ft, 0 ≤ t ≤ T

is a Brownian motion that possibly has different drift after τ .

The set of probability measures PΘ0 := {P̃ θ : θ ∈ Θ0} is equivalent to the
base-line measure P , that is absolutely continuous with respect to it. Conversely,
adapting arguments in Duffie (1996, pg. 289) any set of equivalent probabilities
can be constructed in this fashion. The interest is in showing that the set of
probability measures PΘ0 satisfies rectangularity or “time-consistency.” More
formally, let Θt : Ω  Rt,A,Ã be the progressively measurable correspondence

that maps paths to the drift terms where Rt,A,Ã = Θτ (Ω) = [−κ,+κ] for τ < t

and Rt,A,Ã = Θ(Ω) = [−κ̃,+κ̃] and take Θ to be the collection of all progressively

measurable selections from Θt 0 ≤ t ≤ T , that is, Θ = {(θt) : θt(ω) ∈ Rt,A, Ã dt⊗
dPA w.p.1}. The set PΘ therefore contains all the probability measures equivalent
to P constructed using (2) for all θ ∈ Θ0.

When the base-line measure is fixed, Girsanov’s theorem therefore shows that
the change of actions transforms the set probability measures equivalent (in the
sense of absolute continuity) to a base-line measure into another set of measures
equivalent to the same base-line measure. Since the set of all measures are con-
structed by some selection from the set Θ0 of one-step-ahead densities, adopting
the terminology from Chen and Epstein this establishes the rectangularity of
multiple priors

Lemma 1. The set PΘ0 of probability measures, under which the progressive
measurable processes Xt = θdt + σdBt for θ ∈ [−κ,+κ] are Brownian Motions
with drift θ, is rectangular.

This property ensures that the probability measures on the sample paths in-
duced by any change in action process at a later date is recognized from the
current period’s perspective. Its significance lies in representation of utility func-
tions recursively and thereby making the analysis tractable without having to
impose any restrictions as to which probabilistic models are more relevant for the
decision maker. In the latter sense, it corresponds to a situation where the agents
have learned “everything” relevant for the contractual relationship.

Next, we address a normalization assumed by Chen and Epstein [9], which in
our formalization of multiple priors corresponds to a particular choice of effort
process at = 0 for all t and ω. We show that the normalization can be replaced
by an arbitrary alternative probability measure while preserving time consistency
of the multiple priors.

3.2. kappa-ignorance with variable base measure. An important aspect of
the contracting problem is that different choices of effort by the agent not only
affect the set of drifts through the change in the size of interval but also through
a change in the base measure. The main result of this section in Proposition 1
shows that the normalization used by Chen and Epstein to a base measure P
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with respect to which the output process is a Brownian motion without a drift

and can be made to an arbitrary base measure P̃ .
To fully formalize the structure of the set of multiple priors as the base mea-

sure varies, first consider the case that different actions induce different base-line
measures but they have the same interval. Formally, let us assume that changing

the effort process from (At) to (Ãt) changes the family of probability measures
that gives Brownian motions (At + θt)dt + σdBt with drift in θt + [−κ,+κ] un-
der each of P θ

A measures corresponding to Zθ
A to the family that gives Brownian

Motions (Ãt + θt)dt+σdBt with drift in θt + [−κ,+κ] under each of P θ
Ã

measures

corresponding to Zθ
Ã

by transforming A to Ã through Girsanov theorem. Thus
the family obtained has measures each equivalent to PA. The family hereby is
rectangular set of probability measures. The rest of the section fills in the formal
details.

Take Girsanov exponential

Zθ
t = exp

(
−
∫ t

0

θsdB
A
s −

1

2

∫ t

0

||θs||2ds
)

(6)

and denote ΘA as the set of Girsanov exponentials Zθ
t associated with the pro-

cesses (θt): θτ ∈ [−κ,+κ] for 0 ≤ τ ≤ t and θτ ∈ (Ãt − At) + [−κ,+κ]. The
corresponding set of probability measures PΘA contains all possible measures that
can be generated using the probability densities. As in the case with variable in-
terval in kappa-ignorance Sect. 3.1, since the set of all measures are constructed
by some selection from the set Θ0 of one-step-ahead densities, we establish:

Lemma 2. The set of probability measures PΘA is a rectangular set of probability
distributions with a base-line probability measure PA.

Nothing in the previous line of reasoning depends on the processes (θt) except
that it satisfies weak regularity conditions in applying Girsanov and that it has

a bounded second moment, namely that EP (
∫ T

0
||θt||2dt) < ∞ P − a.e. By

construction, these conditions hold in the form of the ambiguity the contracting
problem deals with. In particular, taking a function for the drift term µ, which
is measurable and has a bounded second moment, in the role of θ the previous
analysis goes through and therefore:

Proposition 1. The set of probability measures PΘA,Ã,κ is a rectangular set of
probability distributions with a base-line probability measure PA.

Notice that in this case the base-line measure PA is the one that makes the
process dXt = µ(At)dt + σdBt Brownian motion. Note also that the base-line
probability measure PA is the center of the ambiguous set of probability distribu-
tions associated with the action A. It captures the notion of ambiguity formalized
by Dumav and Stinchcombe [20] and Siniscalchi [38] in which a set of multiple
priors is represented as the sum of its center and a set centered at zero.

In summary, the analysis in this section verifies that various sets of probability
distributions Pa that correspond to the set of drift terms Θa 5 and hence arise
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in formulating the contracting problems in continuous time satisfy time consis-
tency. This property will play an important role in the recursive representation
of the contracting problem below. Before this, we turn to examine the regularity
properties of the multiple priors.

3.3. Regularity Properties of the Set of Priors. The sets of priors that arise
in the contracting problem are ones that vary in base-line measures and in the
interval around the base-line by different choices of effort process. We examine
in this section whether these extensions preserve regularity properties (defined
below) so that the contracting problem is well-posed and admits a solution. We
show that the contracting problems with ambiguity satisfy required regularity
properties.

Chen and Epstein [9]’s formulation for decision problems uses 0 ∈ Θt(ω) dt ⊗
dP a.e. In our case, this corresponds to taking κAt = 0 and setting base-line mea-
sure to P : for each t ∈ (0, T ] so that µ(At) ∈ Θt(ω) dt⊗ dPA a.e. Intuitively, the
agents consider the base-line measure to be the one that corresponds to the center
of the interval for the values of drift. Our main departure is to allow dependence of
the drift on the effort process. By Girsanov’s theorem [23] for changes of measures,
our base-line measure is equivalent to the base-line. Therefore, this difference is
but in looking at the processes equivalently. Second, the measurability follows
from from the fact that the correspondence (t, ω) 7→ Θt(ω) which defines the set
of priors through (3) when restricted to [0, s] × Ω is B([0, s]) ⊗ Fs−measurable
for any 0 < s ≤ T . The remaining regularity properties of the set are its com-
pactness and convexity, and follow from standard arguments. We collect these in
the following result and its proof fills in the remaining details.

Proposition 2. The set of priors PΘ̃ satisfies:

(a) PA ∈ PΘ̃.

(b) PΘ̃ is absolutely continuous with respect to P and each measure in PΘ is
equivalent to P .

(c) PΘ̃ is convex.

(d) PΘ̃ ⊂ ca1
+(Ω,FT ) is compact in the weak topology.

(e) For every ξ ∈ L2(Ω,FT , P ), there exists Q∗ ∈ PΘ̃ such that

EQ∗ [ξ|Ft] = min
Q∈PΘ̃

EQ[ξ|Ft], 0 ≤ t ≤ T

Parts (a)-(c) are self-explanatory. By (d), min exists for any ξ ∈ L1(Ω,FT , P ),
a fortiori in L2(Ω,FT , P ). Part (e) extends the existence of a minimum to the
process of conditional expectations.

Proof. (b) The process dWA = µ(At)dt + σdBt is a Brownian motion under the
base-line measure QA = ZAP .

Fix B ∈ Ft and Qθ
A ∈ PΘ

A . By Girsanov’s Theorem, Qθ
A(B|Ft) = yt, where

(yt, σt) is the unique solution to

dyt = σt (µ(At)dBt) , yT = 1B

9



By the bounding inequality in El Karoui, Peng, and Quenez [21] and Uniform
Boundedness, there exits k > 0 such that

(Qθ
A(B))2 ≤ kEQA(1B) = kQA(B),

where k is independent of θ. This delivers uniform absolute continuity. Equiva-
lence obtains because Zθ

T > 0 for each θ.
(c) Follows from replacing P with Qθ=0

A in the proof by CE. For i = 1, 2, let
Qi be the measure corresponding to θi ∈ ΘA and the martingale Zθi

A as in (6).
Define θ = (θt) by

θt =
(θ1
t + θ2

t )

z1
t + z2

t

It thus follows that θ ∈ ΘA and d (z1
t + z2

t ) = − (z1
t + z2

t ) θt · dWA
t , which implies

that (z1
T + z2

T ) /2 is the density for (Q1 +Q2) /2. This shows that the latter
measure lies in PΘ

A .
(d) By the analogous arguments in Cuoco and Cvitanic [11], using the weak

compactness of ΘA by Lemma 3, ZΘ =
{
zθT : θ ∈ ΘA

}
is norm closed in L1(Ω,FT , P ).

Moreover, because Z is convex, it is also weakly closed. Since EA
(
|zθT |
)

= 1 for
all θ, Z is norm-bounded. Therefore, by the Alaoglu Theorem, Z is weakly com-
pact. Finally, ZΘ is homeomorphic to PΘ when weak topologies are used in both
cases.

(e) follows from the properties of Θ established in Lemma 4. �
Having established rectangularity and regularity of the set of multiple priors

that arise we next move to give a recursive representation of the contracting
problem.

4. Recursive utility in the contracting problem

The tractability of analysis in contracting problems in continuous time relies on
recursive representation of values to the contracting parties. This section shows
that the recursive utility formulation of Chen and Epstein [9] for decision problem
under ambiguity generalizes to the contracting problem. The key observation that
allows for the generalization is that the contract variables consumption and effort
processes takes an analogous role of consumption processes in the analysis of Chen
and Epstein. The main difference is that the effort choice made in the current
period is imperfectly observed. The latter concern is not present in Chen and
Epstein. Insights from Sannikov’s [36] formulation relevant for the contracting
problem further our analysis in this case and we represent the utility from each
consumption and effort process specified in a recursive manner.

The main elements in our analysis builds on Chen and Epstein’s recursive for-
mulation which in turn uses recursive utility formulation in Duffie and Epstein
[18, 19]. Duffie and Epstein showed that, under suitable Lipschitz conditions
on contemporaneous utility function f , the recursive utility solves a Backward
Stochastic Differential Equation (BSDE) and satisfies the usual properties of
standard utilities (e.g., concavity with respect to consumption if the BSDE is
concave). Their analysis makes powerful use of the Martingale Representation
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theorem and Girsanov’s theorem for change of measures. Our construction of
recursive formulation rests on these ideas.

The main result of this section shows that the value processes in the con-
tracting problem (25) under the minmax criterion has an equivalent recursive
representation. As a preliminary step that specializes to Duffie and Epstein [19]’s
formulation, fix a contract (ct), take at = 0 and assume no ambiguity. In this
case the consumption process is measurable only with respect to the standard
Brownian motion under the reference measure P . Following Duffie and Epstein
[19] the expected utility process of any given consumption process (ct) is then
defined by

V P
t = EP

[∫ T

t

f(cs, V
P
s )ds|Ft

]
. (7)

where f is an aggregator function that in general allows for non-separability over
temporal composition of utility flow. In the special case of our main interest we
assume the standard expected discounted utility f(c, a, v) = u(c)−h(a)−βv. In
this case, the value process is given by

V P
t = EP

[∫ T

t

e−β(s−t) (u(cs)− h(as)) ds|Ft
]
.

Under ambiguity given any action process a = (at) there is a set of priors PΘa

associated with set of Girsanov exponentials Θa induced by the action process
and the minmax criterion implies the following value to the agent

V a
t = min

θ∈Θa
EQθ

[∫ T

t

e−β(s−t)u(cs)− h(as)ds|Ft
]
. (8)

Our goal is to represent this value process recursively in a tractable manner. To
develop the analysis consider first with Duffie and Epstein [19] that the process
in the standard expected utility specification is rewritten in a simpler recursive
form:

V P
t +

∫ t

0

f(cs, V
P
s )ds = EP

[∫ T

0

f(cs, V
P
s )ds|Ft

]
which is a martingale under P . The recursive formulation of value in this case
follows from the martingale representation theorem:

dV P
t = −f(ct, at, V

P
t )dt+ σPt · dBt, V P

T = 0 (9)

with the unique solution for the value process
(
V P
t

)
and the volatility process(

σPt
)
, where the dependence on the reference measure is noted by superscript

P . Using the fact that
∫ t

0
σPs dWs is a martingale and reversing the arguments

establish that the solution to the BSDE (9) for
(
V P
t

)
is the expected utility

process for (ct) in (7).
Using Girsanov Theorem one can change the measure from P to Qθ for each

θ and hence obtains the analogous representation of the utility process. By the
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representation in Chen and Epstein [9] the value process solves the following
BSDE

dV θ
t =

[
−f(ct, V

θ
t ) + θt · σθt

]
dt+ σθt · dBt, V θ

T = 0 (10)

The additional additive term in drift relative to that in (9) accounts for the
change in measure.5 In the contracting problem by Sannikov [36], there is no
ambiguity and a contract induces a costly effort process (at) that generates an
outcome process with a drift µ(at) = at. Taking the latter in the role of (θt)
in (10) and using the standard aggregator, f(c, a, V ) = u(c) − h(a) + βV , gives
the recursive representation for the agent’s utility process in Sannikov [36] as a
(weakly) unique solution to the following BSDE

dV a
t = [−f(ct, at, V

a
t ) + µ(at) · σat ] dt+ σat · dBt, V a

T = 0 (11)

Building on this representation we introduce the notion of ambiguity (IID and
symmetric) for any effort process (at) which gives rise to a set of drift terms
µ(at) + Θa. Our main representation result is that under the minmax criterion
the expected utility process can similarly be represented as a diffusion process
by generalizing the representation of recursive utility in Chen and Epstein [9] to
allow for a family of drift terms that depends on the action process:

Proposition 3. Fix a contract (ct, at) ∈ D and let Θa be the corresponding set
of measures. Then:

(a) There exists unique processes (V a
t ) and (σat ) solving the BSDE

dV a
t =

[
−f(ct, at, V

a
t ) + µ(at) · σat − min

θ∈Θa
θt · σat

]
dt+ σat · dBt, V a

T = 0.

(12)

(b) For each Qa ∈ PΘa , let (V Qa
t ) be the unique solution to (11). Then V a

t

defined in (a) is the unique solution to (8) and there exists Q∗ ∈ PΘa such
that

V a
t = V Q∗

t , 0 ≤ t ≤ T. (13)

(c) The process (V a
t ) is the unique solution to V a

T = 0 and

V a
t = min

Q∈PΘa
EQ

[∫ τ

t

f(cs, as, Vs)ds+ Vτ |Ft
]
, 0 ≤ t < τ ≤ T. (14)

The formulation of the recursive utility is related to Chen and Epstein [9]
due to ambiguity and to Sannikov [36] due to the contracting problem. The main
difference from the former is in generalizing the recursive utility formulation given
by Chen and Epstein to a family of drift terms that varies with the effort process
chosen by the agent motivated by Sannikov. The generalization follows from using
Girsanov’s Theorem that allows the changes of measures. and specializes to the
case examined by Sannikov by choosing Θa

t (ω) = µ(at) for each t and ω. We have
shown earlier in Proposition 2 that the notion of ambiguity that is modeled as

5For details on the use of the Martingale representation theorem and Girsanov thereom, see
the manuscript Duffie [17].
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IID and symmetric between the principal and agent gives rise to the set of priors
which satisfies time-consistency and regularity conditions as defined in Chen and
Epstein. Accordingly, the regularity ensures that various value processes that
arise in contracting problem are well-defined and the rectangularity of the set of
priors allows us to replace the agent’s optimization under the entire contract with
a sequence of temporal optimization problems. This, together with two powerful
results from stochastic analysis, namely the martingale representation theorem
and Girsanov’s theorem for changes of measures, yield a recursive formulation for
the agent’s expected utility in a similar manner as in Sannikov. The interpretation
with maxmin criterion is that the agent evaluates a given contract under the
worst-case scenario which corresponds to the lowest drift induced by her effort
choice.

The last piece among the analytical results represents the primitive set (Θt)
in an equivalent functional form, using its support functions and this form is
more convenient in the theoretical development. Because each correspondence
Θt is convex-valued, its structure, by Hanh-Banach theorem in its supporting
functions form, can be represented by its support functions defined by

et(x)(ω) = max
y∈Θat (ω)

y · x, x ∈ Rd. (15)

The difference from Chen and Epstein [9] is the renormalization to the base-line
drift to µ(at) under the action process (at). Under this renormalization, the
support function is still Lipschitz continuous, convex and linear; and the joint
measurability holds: the map (t, ω) → et(x)(ω) is B([0, s]) × Fs−measurable on
[0, s] × Ω on (0, T ] × Rd. However, unlike in Chen and Epstein it need not be
non-negative as the normalization is not the origin for each effort choice but a
principal does not implement such an effort as an outside option that yields non-
negative value is always feasible. With these elements in place the proposition
follows from the following observations.

Proof. (of Proposition 3)

(a) Since the support function e and the utility function are Lipschitz con-
tinuous and satisfy progressive measurability, the unique existence of the
solution to (11) and (12) follows from Pardaoux and Peng [32, Theorem
4.1.]

(b) With the renormalization, the set of density generators Θa to the base-line
measure µ(at) under the action process (at), as we show in Propositions
1 and 2, satisfy dynamic consistency and regularity defined in Chen and
Epstein. Furthermore, the Comparison Theorem applies the same way as
it does not depend on the structure of the set of density generators. It
therefore follows from analogous arguments as in Chen and Epstein [9,
Theorem 2.2 (b)].

(c) The analogous arguments from Chen and Epstein go through as they
do not depend on the particular choice of the normalization used as we
established in Propositions 1 and 2.

�
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The analysis thus far has used a fixed terminal time T . This is mainly done
to bring forth the key elements in the analysis in a simple way. The contracting
problem, however, does not necessarily have a relationship for a predetermined
period of time. In particular, the continuation of a contract depends on the perfor-
mance within the relationship and there can be termination following sufficiently
many observations of poor performance or retirement when the continuation of
a contract becomes costly after good performances. The extension of the results
to allowing a stopping-time instead of a deterministic time horizon follows from
virtually the same way as it is done in Duffie and Epstein [18] for stochastic
differential utility.

Having established the recursive representation of value induced by any effort
process (at) we move to derive a tractable incentive-compatibility condition and
using it characterize the optimal contract. In the next section we formulate a
“one-shot deviation” principle from discrete-time dynamic games to verify incen-
tive compatibility of effort process given a contract.

5. Incentive compatibility under ambiguity

An effort process (at) is implementable if there is a contract that specifies
transfers (ct) to the agent given observable output realizations and that (at) is
compatible with the agent’s incentives, that is he chooses effort (at). We use this
standard definition for implementability of effort to determine the feasible set of
implementable contracts for the principal. We specialize the implementability to
the ambiguity regarding the drift term. Assume that for each effort process (At)
the associated multiple set of priors PA is equivalently characterized by the set of
drift terms ΘA using the formulation in (2) and (3). A useful characterization for
implementability follows below from representing agent’s value from a contract
as a diffusion process.

Proposition 4. (Representation of the agent’s value as a diffusion pro-
cess) For any contract (Ct) and any effort process (At) with its associated set of
drift terms ΘA there exists a progressively measurable process (Zt) such that

Wt = W0+

∫ t

0

r

(
Ws − u(Cs) + h(As)+ min

θt∈ΘAt

θs|Zs|
)
ds+

∫ t

0

rZt(dXs−µ(As)ds)

(16)

for every t ∈ [0,∞).

Proof. For a given pair of processes (Ct) and (At) for transfers to the agent and
effort, respectively, define the valuation process V by

Vt = r

∫ t

0

e−rs(u(cs)− h(As))ds+ e−rtWt(C,A) (17)

where Wt(C,A) is the continuation value defined by

Wt = min
Q∈PΘA

EQ

[∫ ∞
t

e−rs (u(Cs)− h(As)) ds | Ft
]
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By rectangularity of the multiple-priors, the valuation process (Vt) is a g−martingale.
Using the g−martingale representation theorem in Chen and Epstein [9], there
exits a measurable process Zt such that

−dVt = −κ∗t re−rt|Zt|dt− σre−rtZtdBA
t (18)

where Bt is a Brownian motion under the reference measure P ; κ∗t minθt∈ΘAt
θt|Zt|

is the worst-case drift; and the factor re−rtσ is a convenient rescaling. On the
other hand, differentiating (17) with respect to t one finds that

dVt = re−rt(u(Ct)− h(At))dt− re−rtWtdt+ e−rtdWt (19)

Together (18) and (19) imply that

re−rt(u(Ct)−h(At))dt−re−rtWtdt+e
−rtdWt = κ∗t re

−rtκ|Zt|dt+σre−rtZtdBA
t

=⇒ dWt = rκ∗t |Zt|dt+ σrZtdB
A
t − r(u(Ct)− h(At))dt+ rWtdt

This further implies

Wt = W0 +

∫ t

0

r

(
Ws − u(Cs) + h(As)+ min

θs∈ΘAs

θs|Zs|
)
ds+

∫ t

0

rZtdB
A
s

�

The analysis here is closely related to Sannikov’s representation. Compared
to the formulation in Sannikov [36] the analysis with ambiguous information
introduces a term κ∗As|Zs| which is interpreted as capturing the effect introduced
by ambiguity. The agent uses the worst case to evaluate a contract. Here the
worst case corresponds to the drift terms that yield the minimum value to the
agent. Using this observation we next present a tractable incentive compatibility
condition that characterizes the agent’s effort choice for a given contract in an
environment with ambiguity.

Proposition 5. (The Agent’s incentives) For a given strategy A = (At), let
(Zt) be the volatility process from Proposition 4. Then A is optimal if and only
if

∀a ∈ A Ztµ(At)−h(At)+ min
θt∈ΘA

θt|Zt| ≥ Ztµ(at)−h(at)+ min
θt∈Θa

θt|Zt| dt⊗dQA a.e.

(20)

Remark: Since the QA is equivalent to P by Girsanov’s Theorem, and hence has
the same zero-sets, without any loss in generality dt⊗dP a.e. replaces dt⊗dQA a.e.
in Sannikov [36].

The characterization uses analogous ideas from Sannikov, generalizes to am-
biguous information using the representation we develop earlier and finally ap-
plies a version of the Comparison Theorem that has been helpful in establishing
principle of optimality in stochastic analysis. The following fills in the details.

Proof. Consider an arbitrary alternative strategy A′ that follows possibly different
actions A′τ up to t and afterwards continues with At. The effort process A′ induces
a set of densities ΘA satisfying the regularity conditions as specified earlier. The
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corresponding set of multiple priors PQ′A is rectangular. The agent’s expected
payoff from this action process is well defined by

V ′t = min
Q∈PΘA′

V Q
t ,

where V Q
t is unique solution (ensured by Duffie and Epstein [19]) to BSDE

V Q
t = EQ

[∫ ∞
t

f(Cs, A
′
s, V

Q
s )

]
,

where in our formulation we use the standard aggregator, i.e., f = u(C)−h(A)−
βV . By [9, Theorem 2.2], V ′ is equivalently uniquely characterized as follows:

dV ′t =

[
−f(Ct, A

′
t, V

′
t ) + max

θ∈ΘA′
θtZ

′
t

]
dt+ Z ′tdB

′
t

for a unique volatility process Z ′.
More generally, V ′ and Z ′ uniquely solves a BSDE of the following form

dVt = g′(Vt, Zt, ω, t)dt+ ZtdB
′
t, (21)

with terminal condition ξ. In the special case relevant for our analysis, we have

g′(V, Z, ω, t) = −f(Ct(ω), A′t(ω), V ) + max
θ∈ΘA′

θ(ω)Z (22)

Under the action process At the value process Vt and volatility Zt solve (21) for
A and g(·).

Suppose that the condition (20) holds. Since the terminal conditions are the
same under A and A′, by the Comparison Theorem [21, Theorem 2.2]

g(V, Z, ω, t) ≤ g′(V, Z, ω, t) dt⊗ dP a.e. (23)

or equivalently the condition (20) in our model

µ(At)Zt−h(At)−max
θ∈ΘA

θ(ω)Zt ≥ µ(A′t)Zt−h(A′t)−max
θ∈ΘA′

θ(ω)Zt dt⊗dP a.e.

implies that V ≥ V ′ for almost every t.
Suppose now that the condition (20) fails on a set of positive measures, choose

A′ that maximizes µ(A′)Zt − h(A′) − maxθ∈ΘA′ θ(ω)Z for all t ≥ 0. Then
g(V, Z, ω, t) ≤ g′(V, Z, ω, t) dt ⊗ dP a.e.. Since A′ specifies the same action as
A after t, by the Comparison theorem V ′ > V . Therefore, A is suboptimal. �

If the volatility process is written as −Zt the minimum replaces the maximum
in (23). Notice that the Proposition 5 is formulated for any generating process ΘA.
To illustrate the intuition that the presence of ambiguity introduces into contract
design we specialize the formulation to a simpler case. Taking ΘA := {(θ)t :
µ(At) + |θt| ≤ κ(At)} in the set up of Proposition 4, Proposition 5 specializes the
result to κ-ignorance model (that features symmetry around the base-line drift)
and the corresponding necessary and sufficient incentive compatibility condition
is given by
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Lemma 3. For a given strategy A, let (Zt) be the volatility process from Propo-
sition 4 for κA-ignorance. Then A is optimal if and only if

∀a ∈ A Ztµ(At)−κ(At)|Zt|−h(At) ≥ Ztµ(at)−κ(at)|Zt|−h(at) dt⊗dP a.e.

(24)

Notice that setting κ ≡ 0 removes ambiguity and specializes the condition
to the incentive compatibility condition in the classical case formulated in San-
nikov [36] without ambiguity. Compared to this case the presence of ambiguity
introduces added additive terms in the middle of both sides of the incentive com-
patibility comparison. These additional terms have negative signs and discounts
for the worst case using the minimum drift relative to the continuation value.

In particular, since the process (Zt) reflects from (16) how the agent values
the variation in the continuation value, we see that higher values of κ, which is
interpreted as higher ambiguity, reduces the value of process more drastically.
In the standard contracting problem, high level of effort is incentivized through
variation in the continuation value that is sensitive to output realizations. This
effect is still present in the first terms as (Zt) measures the utility consequence
to the agent of this variation. However, the incentive effect of variation in the
continuation value is now tempered by the presence of ambiguity, which acts as
a cost and penalizes high variations in the continuation value. The extent of this
effect is directly reflected by the additional terms in the incentive-compatibility
condition. Therefore, everything else being equal, the presence of ambiguity
limits the incentive effects of variation in the continuation value through output
realizations. Note also that, as in the classic contracting problem, the variation
(Zt) in continuation value is an endogenous object and depends on the contract
offered. Therefore, in the contract design the principal optimally resolves the
trade-off between high effort and high variation. Using the tractable incentive
compatibility condition presented in this section, the next section formulates the
optimal contracting problem and analyzes it.

6. The Optimal Contract

Trading off the benefit of higher effort against its effort cost and ambiguity
aversion the principal designs the optimal contract. The principal offers a con-
tract to the agent that specifies a stream of consumption (Ct) contingent on the
realized output and an incentive-compatible advice of effort (At) that maximizes
the principal’s expected profit under minmax criterion

E(F ) = min
Q∈PΘA

EQ

[
r

∫ ∞
0

e−rtdXt − r
∫ ∞

0

e−rtCtdt

]
(25)

subject to delivering the agent a required initial value of at least Ŵ

E(V (C,A)) = min
Q∈PΘA

EQ

[
r

∫ ∞
0

e−rt (u(Ct)− h(At)) dt

]
≥ Ŵ
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Implicit in this formulation are the termination and retirement clauses of a con-
tract. These events are explicitly characterized below within the set of consump-
tion streams. To illustrate briefly, termination is captured as follows. After a
sufficiently long period of low enough output realizations consumption a contract
is terminated and the consumption stream is set to a low level. The interest is in
contracts that generate non-negative expected profits for the principal. Derivation
of the optimal contract uses the techniques of Sannikov [36] in a continuous-time
moral hazard problem while introducing ambiguity similar to Chen and Epstein
[9].

One possible option for the principal is to retire the agent with any value
W ∈ [0, u(∞), where u(∞) = limc→∞ u(c). To retire the agent with value u(c),
the principal offers him constant consumption c and allows him to choose zero
effort. Denote the principal’s profit from retiring the agent by

F0(u(c)) = −c.

Since the agent can always guarantee himself non-negative utility by taking effort
0, the principal cannot deliver any value less than 0. The only way to deliver
value 0 is through retirement. To see this, notice that the future payments to the
agent are not always 0, the agent can guarantee himself a strictly positive value
by putting effort 0. We call F0 the principal’s retirement profit.

Given the agent’s consumption c(W ) and recommended effort a(W ), the evo-
lution of the agent’s continuation value Wt can be written as

dWt = r (Wt − u(c(Wt)) + h(a(Wt)) + κ(a(Wt))|Z(Wt)|) dt+ rZ(Wt)σdYt

where σdYt := (dXt − µ(a(Wt))dt) and rZ(W ) is the sensitivity of the agent’s
continuation value to output and follows from the representation given in the
previous section. When the agent takes the recommended effort, the second term
dXt − µ(a(Wt))dt has mean 0, and so drift of the agent’s expected continuation
value is given by the first term r (Wt − u(c(Wt)) + h(a(Wt)) + κ(a(Wt))|Z(Wt)|).
To account for the value that the principal owes to the agent, Wt grows at the
interest rate r and falls due to the flow of repayments r (u(c(Wt))− h(a(Wt)))
and additionally due to aversion to ambiguity it is reduces by κ(a(Wt))|Z(Wt)| to
account for the worst case. The latter is the main effect that ambiguity aversion
introduces to the design of dynamic contracts.

The sensitivity rZ(Wt) of the agent’s value to output affects the agent’s incen-
tives. If the agent deviates to a different effort level, his actual effort affects only
the drift of Xt and his incentive compatible choice is characterized by (24).

The optimal contract offered by the principal describes the choice of payments
c(W ) and effort recommendations a(W ). Let F (W ) be the highest profit that
the principal can obtain when he delivers the agent value W . Function F (W )
together with the optimal choices of a(W ) and c(W ) satisfy the Hamiltonian-
Jacobi-Bellman (HJB) equation

rF (W ) = max
a>0,c

r[µ(a)−κ(a)−c]+F ′(W )r[W−u(c)+h(a)+κ(a)|Z(a)|]+F
′′(W )

2
r2σ2Z(a)2

(26)
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In this formulation, the principal is maximizing the expected current flow of profit
r (µ(a)− κ(a)− c) discounted according to the worst-case drift plus the expected
change of future profit due to the drift and volatility of the agent’s continuation
value that reflects the agent’s ambiguity aversion.

The equation (26) is rewritten in the following form suitable for computation

F ′′(W ) = min
(a>0,c)

F (W )− a+ c+ κ(a)− F ′(W ) (W − u(c) + h(a) + κ(a)|Z(a)|)
rσ2Z2(a)/2

(27)

The optimal contract is characterized as a solution to this differential equation
by setting

F (0) = 0 (28)

and choosing the largest slope F ′(0) ≥ F ′0(0) such that the solution F satisfies

F (Wgp) = F0(Wgp) and F ′(Wgp) = F ′0(Wgp) (29)

at some point Wgp ≥ 0, where F ′(Wgp) = F ′0(Wgp) is called the smooth-pasting
condition. Let functions c : (0,Wgp) → [0,∞) and a : (0,Wgp) → A be the
minimizers in equation (27). A typical form of the value function F (0) together
with a(W ), c(W ) and the drift of the agent’s continuation value is shown in
Figure 2.

Theorem 1, which is proved formally in the Appendix, characterizes the optimal
contracts.

Theorem 1. The unique concave function F ≥ F0 that satisfies (27), (28),
and (29) characterizes any optimal contract with positive profit to the principal.
For the agent’s starting value of W0 > Wgp, F (W0) < 0 is an upper bound on
the principal’s profit. If W0 ∈ [0,Wgp], then the optimal contract attains profit
F (W0). Such a contract is based on the agent’s continuation value as a state
variable, which starts at W0 and evolves according to

dWt = r (Wt − u(Ct) + h(At) + κ(At)|Z(At)|) dt+ rZ(Wt)σdYt (30)

where σdYt := dXt − (µ(At) − κ(At))dt under payments Ct = c(Wt) and effort
At = a(Wt), until the retirement time τ . Retirement occurs when Wτ hits 0 or
Wgp for the first time. After retirement the agent gets constant consumption of
−F0(Wτ ) and puts effort 0.

As in discrete time continuation-value Wt summarizes the past history in the
optimal contract. Replacing the continuation contract, while leaving the continu-
ation value the same, does not affect the incentives governing the choice of effort
in the current period. Therefore, to maximize the principal’s profit after any
history, the continuation contract must be optimal given Wt. It follows that the
agent’s continuation value Wt completely determines the continuation contract.
This logic does not necessarily follow when there are additional state variables,
for example, when hidden savings by the agent are allowed. We abstract from
the latter to focus on the implication of ambiguous information.
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Turning to the discussion of optimal effort and consumption using (26) notice
that the optimal effort maximizes

r(µ(a)− κ(a)) + r (h(a) + κ(a)|Z(a)|)F ′2(W )σ2Z(a)2F
′′(W )

2
(31)

where r(µ(a) − κ(a)) is the expected flow of output according to the worst-case
scenario, rF ′(W )(h(a) +κ(a)|Z(a)|) is the cost of compensating the agent for his

effort, and r2σ2 γ(a)2

2
F ′′(W ) is the cost of exposing the agent to income uncertainty

to provide incentives. The presence of ambiguity introduces a worst-case scenario
κa and changes the sensitivity of the continuation value Z(a) relative to the case
without ambiguity. These two costs typically work in opposite directions, creating
a complex effort profile (see Figure 2). While F ′(W ) decreases in W because F is
concave, F ′′(W ) increase over some ranges of W . It turns out that in the optimal
contract the introduction of ambiguity in the contracting problem reduces the
sensitivity of the optimal incentive scheme to output realizations.

Figure 1. The Classical contracting problem in Sannikov
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Figure 2. Kappa model of ambiguity in the classical contracting

The optimal choice of consumption maximizes

−c− F ′(W )u(c)

Thus the agent’s consumption is 0 when F ′(W ) ≥ −1/u′(0) in the probation-
ary interval [0,W ∗∗], and it is increasing in W according to F ′(W ) = −1/u′(c)
above W ∗∗. Intuitively, 1/u′(c) and −F ′(W ) are the marginal costs of giving the
agent value through current consumption and through his continuation payoff,
respectively. Those marginal costs must be equal under the optimal contract,
except in the probationary interval. There, consumption zero is optimal because
it maximizes the drift of Wt away from the inefficient low retirement point.

An important feature of the optimal contract regards the termination of the
contract. Similarly as in Sannikov low continuation values lead to termination of
the contract. With ambiguity continuation value at which contract is terminated
and at which the agent is retired remain the same but the sensitivity of continu-
ation value is lower with ambiguity. One implication of these observations is that
the contractual relationship on average lasts longer. Formally, this result follows
from the analysis of HJB equation as in Sannikov. In particular, the profit func-
tion with ambiguity satisfies F (W ) > F0(W ) for all W ∈ [0,∞) and lies below
the profit function without ambiguity, i.e, κ(·) = 0. Since the retirement value
F0 does not depend on the nature of ambiguity, F is tangent to F0 at Wgp as in
Sannikov. A longer contract makes the termination less likely and a longer stream
of payments to the agent and in effect yields back-loaded benefits to agent. One
interpretation is that the presence of ambiguity leads to more tolerance on the
part of the principal following low realization of output that is attributed to lower
values of drifts attributed to the worst case. The optimality of such delay also
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means longer contractual relations for the agent to receive flow payments and
this helps with incentives to provide higher effort levels as shown in Figure 2.

7. Concluding remarks

Contracting parties interact with imprecise information about the environment
they interact in. In this paper, we focused one a particular form of information
imprecision: both contracting parties have common ambiguity about the pro-
ductive technology. This assumption has allowed us to: (1) apply and extend
the decision-theoretic model of Chen and Epstein [9] to continuous-time setting
relevant for the dynamic contracting problem; and (2) tractably generalize the
principal-agent problem proposed by Sannikov [36] to incorporate richer uncer-
tainty. Pursuing the latter we have found that our model of ambiguity illustrates
a new trade-off between effort and variation of compensation and that the optimal
resolution of the trade-off favors simple contract structures.

For tractability we have abstracted our analysis from differential information
between the contracting parties on the technology. It is left to future research
to extend our model to incorporate the richer nature of ambiguous information
that, for instance, could allow for learning and experimenting in the design of
contracts.

8. Appendix for the proofs

The analysis follows analogous steps as in Sannikov [36]. Using the HJB we
formulate a conjecture for an optimal contract. We show that the HJB satis-
fies appropriate regularity properties and that it has a unique solution. From
that solution we form a conjecture for an optimal contract and then verify its
optimality.

For regularity we consider a version of HJB

F ′′(W ) = min
(a,Z)∈Γ,c∈[0,C])

F (W )− a+ c+ κa − F ′(W )(W − u(c) + h(a) + κa|Z(a)|)
rσ2Z2(a)/2

(32)

where the sensitivity parameter Z is bounded from below by γ0, and consumption
is bounded from above by the level C such that u′(C) = γ0. The existence
and uniqueness of solutions to the HJB equation (27) satisfying the boundary
conditions (29) follows from analogous arguments made by Sannikov [36] since
the right-hand side of (27) is Lipschitz continuous in all of its arguments.

8.1. Conjecture of a contract. We conjecture an optimal contract from the
solution of equation HJB just constructed.

Proposition 6. Consider the unique solution F (W ) ≥ F0(W ) that satisfies
boundary conditions (29) for some Wgp ∈ [0,W ∗

gp]. Let a : [0,W ∗
gp] → A,

Y : [0,W ∗
gp]→ [γ0, γ1] and c : [0,W ∗

gp]→ [0, C] be the minimizers in (27). For any
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starting condition W0 ∈ [0,Wgp] there is a unique solution, in the sense of weak
probability law, to the following equation

dWt = r(Wt−u(c(Wt))+h(a(Wt))+κa(Wt)|Z(Wt)|)dt+rZ(Wt)(dXt−
[
a(Wt)−κa(Wt)

]
dt)

where the last term is a Brownian Motion: σdB
a(W )
t = dXt−a(Wt)Z(Wt)dt until

the time τ . The contract (C,A) defined by

Ct = c(Wt), and At = a(Wt), for t ∈ [0, τ ])

Ct = −F0(Wτ ), and At = 0, for t ≥ τ

is incentive-compatible, and it has a value W0 to the agent and profit F (W0) to
the principal.

Proof. From the representation of Wt(C,A) in Proposition 4, we have

d(Wt(C,A)−Wt) = r(Wt(C,A)−Wt)dt+r(Yt−Y (Wt))σdB
A
t +rκA(|Zt|−|Z(Wt)|)dt

where the changes of measures are conducted under the worst-case measures.
This implies that

Et[Wt+s(C,A)−Wt+s] = ers(Wt(C,A)−Wt) + ersEtκA(|Zt| − |Z(Wt)|)

Notice that the left hand side must remain bounded, because both W and
W (A,C) (since Ct is bounded) are bounded, and the processes Zt and Z(Wt)
are bounded by the representation theorem. It follows that Wt = Wt(C,A) for
all t ≥ 0, and in particular, the agent gets value W0 = W0(C,A) from the entire
contract. Also, the contract (C,A) is incentive compatible, since (At, Zt) ∈ Γ for
all t.

To see that the principal gets profit F (W0), consider

Gt = r

∫ t

0

e−rs(As − κAs − Cs)ds+ e−rtF (Wt).

By Ito’s lemma, the drift of Gt is

re−rt
(

(At − κAt − Ct − F (Wt)) + F ′(Wt)(Wt − u(Ct) + h(At) + κAt |Zt|) + rσ2Z2
t

F ′′(Wt)

2

)
.

The value of this expression is 0 before time τ by the HJB equation. Therefore, Gt

is a bounded martingale until τ and the principal’s profit from the entire contract
is

min
QA∈PA

EQA
[
r

∫ τ

0

e−rs(As − Cs)ds+ e−rτF0(Wτ )

]

= E

[
e

∫ τ

0

e−rs(As − κAs − Cs)ds+ e−rτF0(Wτ )

]
= E[Gτ ] = G0 = F (W0),

since F (Wτ ) = F0(Wτ ). �
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8.2. Verification. Our last step is to verify that the contract presented in Propo-
sition 6 is optimal. We start with a lemma that bounds from above the principal’s
profit from contracts that give the agent a value higher than W ∗

gp.

Lemma 4. The profit from any contract (C,A) with the agent’s value W0 ≥ W ∗
gp

is at most F0(W0)

Proof. Define c by u(c) = W0. Then W0 ≥ W ∗
gp implies that u′(c) ≤ γ0. We have

For any Q we have

EQ

[
r

∫ ∞
0

e−rt(u(Ct)− h(At))

]
≤ EQ

[
r

∫ ∞
0

e−rt(u(c) + (Ct − c)u′(c)− γ0At)dt

]
≤ u(c)− u′(c)

(
EQ

[
r

∫ ∞
0

e−rt(At − Ct)dt
]

+ c

)
,

In particular,

W0 = min
Q
EQ

[
r

∫ ∞
0

e−rt(u(Ct)− h(At))

]
≤ u(c)− u′(c)

(
E

[
r

∫ ∞
0

e−rt(At − κAt − Ct)dt
]

+ c

)
where u(c) = W0 and c = −F0(W ). It follows that the profit from this contract
is at most F0(W ). �

Next, note that function F from which the contract is constructed satisfies

min
W ′∈[0,∞)

F (W )−F0(W ′)−F ′(W )(W−W ′) = min
c∈[0,∞)

F (W )+c−F ′(W )(W+u(c)) ≥ 0

(33)

for all W ≥ 0. For any such solution, the optimizers in the HJB equation satisfy
a(W ) > 0 and c(W ) < C. If either of these conditions failed, (33) would imply
that F ′′(W ) ≥ 0. Also we have that Z(W ) = γ(a(W )).

Proposition 7. Consider a concave solution F to the HJB equation that sat-
isfies (33). Any incentive-compatible contract (C,A) achieves profit of at most
F (W0(C,A)).

Proof. Denote the agent’s continuation value by Wt = Wt(C,A), which is rep-
resented by (16) using the process Zt. By the Lemma, the profit is at most
F0(W0) ≤ F (W0) if W0 ≥ W ∗

gp. If W0 ∈ [0,W ∗
gp], define

Gt = r

∫ t

0

re−rs(As − κAt − Cs)ds+ e−rtF (Wt)

as in Proposition 3. By Ito’s lemma, the drift of Gt is

re−rt
(

(At − κAt − Ct − F (Wt)) + F ′(Wt)(Wt − u(Ct) + h(At) + κAt |Zt|) + rσ2Z2
t

F ′′(Wt)

2

)
which is computed under the worst-case scenario.

Let us show that the drift of Gt is always non-positive. If At > 0 then Propo-
sition 2 and the definition of γ imply that Yt ≥ γ(At). Then equation HJB and
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together with F ′′(Wt) ≤ 0 imply that the drift if G is non-positive. If At = 0,
then F ′′(W ) < 0 and (33) imply that the drift of Gt is non-positive.

It follows that Gt is a bounded supermartingale until the stopping time τ ′

(possibly ∞) when Wt reaches W ∗
gp. At time τ ′ the principal’s future profit is

less than or equal to F0(W ∗
gp) ≤ F (W ∗

gp) by Lemma 4. Therefore, the principal’s
expected profit at time 0 is less than or equal to

EA

[∫ τ ′

0

e−rt(dXt − Ctdt) + e−rτ
′
F (Wτ ′)

]
= EA[Gτ ′ ] ≤ G0 = F (W0).

�
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limited liability, and dynamic moral hazard. Econometrica, 78(1):73–118, 2010.

[8] Aaron L Bodoh-Creed. Ambiguous beliefs and mechanism design. Games and Economic
Behavior, 75(2):518–537, 2012.

[9] Zengjing Chen and Larry Epstein. Ambiguity, risk, and asset returns in continuous time.
Econometrica, 70(4):1403–1443, 2002.

[10] Gian Luca Clementi and Hugo A Hopenhayn. A theory of financing constraints and firm
dynamics. The Quarterly Journal of Economics, 121(1):229–265, 2006.
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