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Abstract

This thesis contains three papers which examine the role of networks and social

structure in different modes of socio-economic interactions.

The first chapter focuses on purely competitive strategic bilateral interactions -
contests. I analyse situations in which agents, embedded in a network, simultane-
ously play interrelated bilateral contest games with their neighbours. The network
structure uniquely determines the behaviour of agents in the equilibrium. I also
study the formation of such networks, finding that the complete k-partite network
is the unique stable network topology. This implies that agents will endogenously
sort themselves in partitions of friends, competing with members of other partitions.
The model provides a micro-foundation for the structural balance concept in social
psychology, and the main results go in line with theoretical and empirical findings

from other disciplines, including international relations, sociology and biology.

The second chapter is joint work with my supervisor Fernando Vega-Redondo.
We study a competitive equilibrium model on a production network of firms, iden-
tifying the measure of centrality in the network that determines the profit of a firm,
and network structures that maximize social welfare. The significant part of this
chapter focuses on how the network mediates the effects of revenue distortions on
profits of firms and social welfare. The results are that the effects of distortions
propagate both upstream and downstream through the network. The centrality of
the affected firm determines the magnitude of the downstream effect, and the up-
stream effect is determined by the intercentralities of suppliers of the affected firm.
Increasing the density of the network by adding links has a non-monotonic effect
on welfare. Adopting a more complex production technology can increase but also
decrease the profit of a firm, depending on the network structure; while finding a

new buyer will always increase the profit of a firm.

In the third paper I analyse the interaction between formal legal enforcement of

cooperation and the role of reputation in a heterogeneous population. By choosing



to cooperate, even when the quality of the formal institution is not high, an agent
signals that he has high work ethics, thereby earning reputation as a better match
for future interactions. When there is reputation benefit, the welfare-maximizing
quality of the enforcement institution is generally not the one that maximizes coop-
eration. Depending on the distribution of types in society, the effect of the increase
in quality of enforcement on cooperation can be crowded in or crowded out by rep-
utation concerns. When the institutional quality is determined endogenously, the
equilibrium quality of the institution will generically be higher than the optimal
quality.

vi
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Chapter 1

Rent Seeking and Power
Hierarchies: A Noncooperative
Model of Network Formation with

Antagonistic Links

There are a number of situations in which agents can increase the probability of
favourable outcome of an competitive interaction by means of certain costly actions.
For instance, in the case of armed conflict, this can be investment in weapons; or
in the case of litigation, the costly action can be interpreted as hiring lawyers or
bribing judges. We refer to this type of interaction as a contest. To be more precise,
a contest is an interaction in which players can exert costly effort in order to extract
resources from other players (transferable contest); or to receive a larger share of
a pie to be divided. An agent does not always compete with just one opponent,
but often with several different opponents simultaneously. Contests that an agent is
involved in at the same time are related (i.e. an agent spends same costly resources
for each contest) which creates (local) spillovers. Another type of spillovers (global)
comes from the fact that an agent’s opponent also can be involved in more than one
contest, as well as his opponents and so on. Since how much will the agent spend in
a particular contest depends on how much his opponents spend, this creates global

spillovers that propagate throughout the network.

This environment can be represented and explained more effectively in the lan-

guage of networks, letting G = G(N, L) be a network, in which link g;; € L between

1
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two agents 7,7 € N indicates the presence contest between ¢ and j. In the paper we
shall focus on the case where contests are transferable, and discuss the implications
of different choices of modelling contest game in Section 1.5 and Appendix B.

There are a number of situations that can be described in this way. An example
is the network of patent litigations and antitrust disputes discussed in (Sytch and
Tatarynowicz, 2013). These types of lawsuits are often very intense and have sig-
nificant consequences on the future of the company. They arise from the plaintiff’s
claims that an infringement has been made (patent litigation), or that a firm has
adopted unfair competitive practices, including attempts to monopolize the market.
The U.S. Federal District Courts registered about 10000 antitrust and 29000 patent
infringement cases from 2000 to 2010 (Sytch and Tatarynowicz, 2013). These types
of litigation have consequences for both conflicting parties. A plaintiff demands that
a defendant refrains from injurious acts and to be be compensated for the losses due
to patent infringement. On the other hand, the plaintiff risks being counter-sued
(which often happens), even losing property rights. The costs of litigation are very
high, reaching more that 5 millions USD per lawsuit, excluding damages and royal-
ties. The transfers to be paid reach sums which are considerably higher than this.
The firms can be, and usually are, involved in more than one litigation process at the
same time. For example, in 2003 Lucent Technologies (acquired by Alcatel in 2006)
filed suit against Gateway and Dell in U.S. District Court, San Diego, concerning
violation of patent rights. Microsoft joined the lawsuit later that year. After this
lawsuit was filed, Microsoft and Lucent have filed additional patent lawsuits against
each other. Finally, the court ruled that the amount of damages to be awarded is
in total 1.53 billion'. Apart from this, Microsoft has fought numerous legal battles
against other firms. These include litigation processes with Apple, Netscape, Intel,
Sun Microsystems, Stac Electronics and many others.

Mapping firms as nodes, and litigation processes as a links (indicating contests)
we can construct a contest network. Other examples of contest networks include
networks of international conflict, patent races, lobbying, Massive Multi-player Role
Playing Games (MMORPG), school violence etc.

In this paper we first study a model on a fixed network, providing results for
existence and uniqueness of the equilibrium. This is very important in order to
study a network formation model, which is the main focus of this paper. In a

formation model agents can form both positive links (friendship) and negative links

Details available in (McDougall, 2007)



(a) A, B, and C' are mutual friends: balanced. (b) A is friends with B and C, but they don’t get
along with each other: not balanced.

(¢) A and B are friends with C as a mutual en- (d) A, B, and C are mutual enemies: not bal-
emy: balanced. anced.

Fig. 1.1 Strong structural Balance, (Easley and Kleinberg, 2010)

(antagonism, contest, conflict). We focus on the negative links, and interpret positive
links as a self enforcing commitment of agents not to engage in a contest (the absence
of a negative link). A negative link indicates that agents play a bilateral contest
game. As the network changes, the effort that players exert in each particular contest
will in general change. Thus, in a dynamic model of network formation, we study

coupled evolution of network topology and play on the network.

The results of the formation model have important implications for the structural
balance theory from social psychology. The theory of (strong) structural balance,
originated in (Heider, 1946), applies to situations in which relations between agents
can be either negative (antagonistic) or positive (friendship). It states that in groups
of three agents, the only socially and psychologically stable structures are those in
which all three agents are friends (all links are positive) or two of them are friends
with the third being a common enemy (one positive and two negative links). In
other words, a friendship relation is transitive. Figure 1.1 graphically illustrates

Heider’s theory.

As defined in (Heider, 1946), the structural balance can be seen as a local prop-
erty of a network. A natural question then is: "What are the global properties of
networks that satisfy structural balance?’. That is, given a complete network, how

can we sign links (indicating positive and negative) such that all triads of nodes in

3
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the network are structurally balanced. The Cartwright-Harary Theorem (Cartwright
and Harary, 1956) provides the answer to this question. It states that there are two
network structures that satisfy structural balance property: (i) all agents are friends
(all links are positive) or (ii) agents are divided into two groups, and links within
groups are positive and links across groups are negative. With respect to positive
links, a network that satisfies structural balance will be the complete network or a
network with two components that are cliques. With respect to negative links, it

will be either the empty network or a complete bipartite network.

Extending on Heider’s work, it has been argued in (Davis, 1967) that in many
contexts we may witness a situation in which all links in a triad are negative. To
encompass this type of configuration, he proposed the concept of weak structural
balance. The implication for the global structure when allowing for this type of
triads is an emergence of the additional balanced network structure. With respect
to positive links this is a network with more than 2 components, and each component

is a clique. With respect to negative links it is a complete k-partite network.

There are number of empirical papers that support (weak) structural balance in
the real world networks. For example (Antal et al., 2006; Sytch and Tatarynowicz,
2013; Szell et al., 2010). On the theoretical side, there is no micro-founded model
that explains the emergence of balanced networks. The exception is (Hiller, 2011),
who provides a network formation model which results in balanced networks. How-
ever, the interaction between agents in his paper is modelled differently than in our
paper. In (Hiller, 2011) agents do not make a decision how much to invest in nega-
tive relations and thus the paper does not tell anything about intensities of contests.
Furthermore, the equilibrium concept used in (Hiller, 2011) is different than in this
paper. Given the differences it is very interesting to note that qualitative results
from (Hiller, 2011) are in line with qualitative results from this paper, which goes

in favour of the robustness of the results from both papers.

This paper provides a micro-founded model of network formation that results
with stable networks that are always weakly balanced(satisfy weak structural bal-
ance). The strong structural balance is satisfied in particular cases. It is important
to note that the structural balance is a concept concerned only with the sign of links,
but does not say anything about the intensities/weights assigned to links. Our model
results with signed and weighted networks, and thus provides implications that go

beyond the structural balance theory.



1.1 Literature Review

1.1 Literature Review

The paper is related to the several different streams of literature which we review

in separate subsections.

1.1.1 Games on a Fixed Network

The common issues that arise when studying games on networks are the multiplicity
of equilibria (even in very simple games), and intractability of analysis due to the
complexity of the interaction structure.

One way to deal with these problems is to try to characterize the equilibria
for specific classes of games. This is the approach used for example in (Ballester
et al., 2006), which considers a class of games with quadratic payoff function. An-
other approach is to assume that players have incomplete information about network
structure, which can sometimes simplify the analysis. This approach is, for example,
pursued in (Galeotti et al., 2010). In this paper we consider a game with complete
information, in which payoff function and best response functions of an agents are
non-linear. The closest paper to ours is (Franke and Oztiirk, 2009). Section 1.3 of
this paper is can be seen as a generalization of the analysis in (Franke and Oztiirk,
2009). However, they do not say anything about the network formation, which is

the central issue stressed in this paper.

1.1.2 Network Formation

The main interest of our paper is the model where agents not only decide how much
to invest in the bilateral contests but also with whom to play contest game. Thus, the
paper is related to network formation literature, of which prominent examples are
(Jackson and Wolinsky, 1996), hereafter JW and (Bala and Goyal, 2000), hereafter
BG.

How to model a process of the network formation depends strongly on the link
formation protocol which is adopted. In ’JW type models’, links are formed bilater-
ally and destroyed unilaterally. The 'BG type models’ assume unilateral formation
and destruction. The link formation protocol, of course, depends on the interpre-
tation of links. We propose a model in which the link formation protocol does not
coincide with any of the two mentioned above, since the nature of links is fundamen-

tally different. In our model links are formed unilaterally and destroyed bilaterally
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(only if both agents agree to do so). This is a natural link formation protocol given
that the links represent transferable contest game. For example, for starting a war
it is enough that one party declares it (or just attacks). To make a peace, both
parties must commit not to fight.

There is a strong connection between the model considered in this paper and
other network formation models, as we are interested in the same general questions
- stability and efficiency of network structures. However, this paper considers more
complex model since agents also make strategic decision on the investment in each
link that is created. This makes the paper close to the literature on the formation of
the weighted networks, but also to the literature that jointly considers the network
formation and playing game on a network. For example, (Bloch and Dutta, 2009)
consider a model of formation of communication network where agents derive posi-
tive benefits from the players they are connected to (both directly and indirectly).
In their model, homogeneous agents have some fixed endowment and they need to
decide how to allocate this endowment creating undirected links (with potentially
different capacities) with others. Links can be created and destroyed unilaterally.

This model is extended in (Deroian, 2009) to the case of directed networks.

1.1.3 Contest Games

Informally, a contest is a game in which players decide (simultaneously or sequen-
tially) on the level of effort in order to increase the probability of winning the
(endogenous or exogenous) prize. The Contest Success Function (CSF)is a function
that describes how the efforts determine the probability of winning the contest. An
example is lobbying, where the prize can represent the value of a certain public
policy that need to be adopted.

There are two prominent ways to model CSF. The first is to assume that the prob-
ability of winning is a function of ratios of efforts, which is introduced in (Buchanan
et al., 1980). This is the approach we use in this paper. The second way to model
CSF assumes that the probability of winning is a function of difference between
effort levels. This approach is introduced in (Hirshleifer, 1989).

A nice, albeit dated, overview of literature on contests can be found in (Corchén,
2007). In this paper we consider transferable contests as introduced in (Hillman and
Riley, 1989) using the variant of Tullock’s specification introduced in (Nti, 1997).

An alternative model, which is offered in Appendix B, gives a model formulation as



1.2 Bilateral Contest Game

a colonel Blotto game with Tullock CSF. There is a vast literature on Blotto games

and we shall not review it here.

1.2 Bilateral Contest Game

In this section we introduce the bilateral contest game which will serve as a building
block of the model. There are two players, ¢ and 7 competing over a prize with
exogenous size R. In order to increase the probability of wining, players choose a
non-negative action (effort, investment). The strategy space is thus given with the
set of non-negative real numbers Ry := [0, +00). The effort is transformed into the
contest specific resource by means of technology function ¢. One can think of this
function as an analogue to production function in a classic market setting. Here we
assume that the technology function ¢ : Rj — R{ is the function that satisfies the

following properties:
Assumption 1.1. Technology function ¢ : R — R is:
(i) Continuous and twice differentiable
(ii) increasing and (weakly) concave (¢' >0, ¢" <0)
(i) 6(0) =0

The first two assumptions are standard, while the third one states that zero
effort implies zero contest input. The actions determine the probabilities of wining
the prize trough the contest success function. We choose the Tullock ratio form
specification of CSF suggested in (Nti, 1997), assuming that the probability that

player ¢, when taking action s;;, will win the contest against player j is:

- (i)
Y b(si) + dlspi) +r

In (1.1) r € R{ determines the probability of a draw (no player wins the prize). In

(1.1)

the paper we shall maintain the assumption that r is small.
Following (Hillman and Riley, 1989) we consider transferable contest game, that
is a game in which the prize is transfer from loser to winner. Assuming a fixed prize,

the payoff function of player i is given with

Tij = Dij R — pji R — c(s45)

7
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where R is a transfer from loser to winner. We assume that the transfer from ¢ to j
is the same as the transfer from j to ¢, although of course in general this does not
have to be the case. The cost function ¢ : Rf — R{ is assumed to be continuously
differentiable, increasing and convex.

The bilateral contest game has the unique and symmetric NE in pure strategies,
which is interior for r low enough. In this case, the equilibrium strategy of player ¢

is defined with the following implicit function:

¢/(3;kj)R = (r+ 2¢(5:j))c,(3:j>

1.3 Game on a Fixed Network

Let G = (N, L) be an undirected and unweighed network with set of nodes N and set
of links L. The nodes represent players, and link g;; € L indicates contest relation
between players (when g;; = 1 ). Let us also denote the set of agent i as N;, and let
d; = | N;| denote the degree of node i. Strategy space of player i is the set S; = R7 @
A (pure) strategy of player i is d;-tuple of levels investments s; = (s, ..., Sij, ) € Si.
We assume that the size of the transfer R is independent of the network structure
and the same for every contest g;;. 2, We normalize R = 1.

This paper focuses on the negative links. The absence of negative links can be
interpreted as a commitment not to initiate contest and thus a positive (friendly)

link.
The payoft of player 7 is given with:

mi(si s Q) = Y o(s1y) 0(s51)

jEN; <¢(Sij) +o(si)+1 d(sy) + olsji) + 7“) —c(4) (L2

In 1.2, A; = >3;s; is the total effort of player 4, and s_; denotes strategies
of players other than 7. Such specification of cost function generates externalities
between the contest that agent ¢ is involved in, making it more interesting to study
this model on a network.

It is clear that the payoff function m; is twice differentiable on its domain. Fur-

thermore, the payoff function of player ¢ is concave in s;. To see this, note that

2We use 9i; when we talk about link g;; € L but also when referring to contest between players
1 and j
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0%mi _ (r+26(s51) (0" (s33)(r + ¢(si5) + G(s5i)) — 2¢'(545)*)
Dsij” (r + &(si) + ¢(s51))°

0*r; B

8Sij88ik n

~(A) <0 (1.3)
C//(Ai) <0 VJ, k € Nz

The inequality in 1.3 holds due to THE properties of function ¢ stated in As-
sumption 1.1, and the strict convexity of function c. Thus, the Hessian H; of function
m; with respect to s; is the sum of diagonal matrix H;; with diagonal elements equal

v (r 4 2¢(s5)) (0" (5i) (r + D(s45) + D(s5:)) — 2¢/(5:5)*)
(r+ d(sij) + o(s5i))?

and matrix H;; which has all the elements equal to —c”(A4;) < 0. Matrix H;; is

<0

negative definite and matrix H;s is negative semidefinite, thus Hessian H; = H;;+H;o
is negative definite. To be able to study network formation, we need to know if the
equilibrium strategies on a fixed network are uniquely determined. In this section
we prove the uniqueness of the equilibrium on a fixed network.

We shall prove two propositions. The first states that the equilibrium of the con-
sidered game is unique. The second will give conditions for the interior equilibrium.
The first proposition relies on the results from (Rosen, 1965). For the sake of the

presentation let us first introduce the following definition:

Definition 1.1. A game is n persons concave game if (i) Strategy space of game
S is the product of closed, convexr and bounded subsets of m dimensional Fuclidian
space, S = {S1 x Sy X ... x S,|S; € E™} 3 and (i) payoff function of every player

2, -, Sn), and concave in s; € S;, for each fized value s_; € S_;

Let us also introduce the function o : SxR§" — R assigned to n persons concave

n
game given with o(s,z) = Y z;m;(s). Then, as proved in (Rosen, 1965):
i=1
1. There exists a pure strategy equilibrium of n persons concave game

2. If function o is diagonally strictly concave for some z > 0 then the equilibrium

is unique

3 Rosen actually proved more general result when strategy space is 'coupled’, that is when
S CE™=FE" x E™ x .. x E"™ is closed, convex and bounded set. Here we consider special
case when strategy space is 'uncoupled’
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Proposition 1.1. There exists unique pure strateqy Nash equilibrium of contestgame

on a network.
Proof. See Appendix A n

When the probability of draw is very small, players will always exert a positive

level of effort in the equilibrium. The following proposition states exactly that

Proposition 1.2. The equilibrium is interior when r > 0 is small enough
Proof. See Appendix A m

In what follows, we will assume that r is chosen such that the interiority of
the equilibrium is guaranteed. Note also that the above results imply that the
equilibrium of the game on a fixed network is defined with FOC system of equations.

Consider now any two connected players ¢ and j. The first order conditions that

characterize their behaviour in a contest g;; in the equilibrium are given with:

( (r +2¢(s;i)) ¢ (si5) (A = 0) A ( (r+ 2¢(Sz’j))¢'(5ﬂ)2 _d(4) = 0)

(1 + d(sij) + ¢(s5i))? (r+ ¢(si) + B(s5i))
(1.4)
From (1.4) we get:
(r 4 2p(s50))¢ (si;) ¢ (Ay)
(¥ 20(5))0 (5) @A) (15)

As ¢’ > 0and ¢” < 0and ¢’ > 0 we have: AZ->A]-(:)§:§23 >1®%@

s;ji > s;; where the last equivalence is due to the fact that ¢ is increasing and ¢’ is

a decreasing function.

This means that in the equilibrium a player with lower total spending will win
a contest with the higher probability. This observation reflects the fact that the
more ‘exhausted’ player (one who spends more resources in the equilibrium) has
the worst performance in a particular contest. It is because the additional unit of
resources is more costly for him (his marginal costs are higher). Note that this does
not necessarily mean that a player involved in more contests will have a higher total
spending in the equilibrium, although the total spending is increasing with the num-
ber of opponents (keeping everything else fixed). Rather, the player with the worst

performance will be a player who has higher number of contests and the contests

10
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that he is involved in are more intensive. Which contest will be more intensive,
depends on the global position of the players in the network. The identification of
the characteristic of a node in the network that would determine the total spending
of that node in the equilibrium proved to be a very challenging task. A property of a
node that would determine his total spending in the equilibrium is a nonlinear mea-
sure of (global)centrality of node in a network. Finding such a measure, although
interesting, is a very complex task.

The equation (1.5) gives us an another interesting insight. Each link g¢;; has
two actions assigned to it: s;; and sj;. We can interpret these actions as a weights

assigned to the directed links ¢« — j and j — 7, respectively.

1.4 Network Formation

The fact that a player with higher total spending in the equilibrium, loses in ex-
pectation from a player with lower equilibrium spending (given that they play the
game), gives some hints on how agents behave when contests are determined endoge-
nously. But one must note that the results from the previous section are ex-post,
and cannot be directly used in a network formation model. This is because the fact
that A7 < A7 in the equilibrium on network G does not imply that we will still have
A; < Aj in the equilibrium on network G + g;; (where + denotes addition of the
link g;; to the network). When link g,; is created, players ¢ and j will, in general,
change their efforts in all other contests that they are involved in. This will, fur-
thermore, result in changes in the equilibrium actions of all opponents of ¢ and j in
all of their contests; all according to the system of nonlinear equations defined with
(1.4). Given the general structure of the network, one can see why the effects of
a link creation, which is a 'fundamental” action of network formation game, are in
general case very hard to completely characterize. An example of the global effects
that adding a link causes in a very simple network is given in Appendix C.
Because of the complex spillover effects, we shall assume that agents are not
able to fully take into account these effects when making the decision to create or
sever a link. Informally, we assume that when deciding on creating or destroying
a link, agents do not take into the account the complex adjustment in actions that
will occur in all other contests, due to the change of the network topology. Instead,
they assume that all other actions in the network will remain constant when making

this decision. If the action is to create a link, the assumption is that equilibrium
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efforts of that particular contest game will be according to the NE of the bilateral
contest game discussed in section 1.2, keeping all other actions in the network fixed.
We believe that the bounded rationality assumption here is justified due to the very
complex nature of the spillovers.

In what follows we assume that r is sufficiently small, so that the equilibrium
of the game on a fixed network is always interior. We shall also for simplicity
assume that ¢ is identity mapping. However, all results hold when ¢ has a general
specification from the previous section.

We consider two coupled dynamics processes. The first, which happens on the
'slow’ scale, governs the evolution of network topology. The second, on a much faster
scale, is what we call the action adjustment process. It is the process that describes
how actions of players adjust to the new NE when network changes. The reason for
the second process is to be consistent with the assumption of bounded rationality
that we made in the network formation process.

Let us now be more precise. Time is indexed with ¢ € NU {0}. In period t =0
an arbitrary contest network G(N, L) is given®.

We say that network G is in the actions equilibrium when all players play the

equilibrium strategy of a contest game on a fixed network described in Section 1.3.

Definition 1.2 (Actions equilibrium). A network G(N, L) is in actions equilibrium
if all actions s;; and s;; assigned to every link g;; € L are part of equilibrium of a

game on a fived network.

Given the definition we can describe the dynamics process that we consider:

For every period ¢:

(i) At the beginning of period ¢ the network from ¢—1 is in the actions equilibrium

(ii) Random player i is chosen and updates her links according to the link forma-

tion protocol, resulting with network Gy,

(iii) The second dynamic process (on the fast scale) starts, in which all agents up-
date their strategies according to the process formally described in Subsection

1.4.1 (better reply dynamics), until the actions equilibrium is reached

“Due to the 'zero sum like’ nature of the game, the empty network will always be stable in our
model. In order to describe the dynamic process that leads to the non-empty stable networks we
assume that, because of some non modelled mutation or a tremble, the initial conditions are given
with the non-empty arbitrary network

12



1.4 Network Formation

Steps (ii) and (iii) deserve some further explanation. First let us define the link

formation protocol.

Definition 1.3 (Link formation protocol). A link g;; will be formed if player i or j
decide to form it. A link g;; will be destroyed if both i and j agree to destroy it.

This means that the link formation is unilateral and the link destruction is a
bilateral action. It is natural to define a link formation protocol for the antagonistic
(purely competitive) relations in this fashion. A decision to start a contest (i.e. war,
litigation) is unilateral by nature, and the ’attacked’ player, whether she decides to
fight back or not, cannot change that. To end a contest, it is necessary that both
parties agree to do it. To our knowledge, this is the first paper that considers such
a link formation protocol.

We assume that in each period ¢ a random player can update his linking strategy
according to the link formation protocol defined above. Given this, we define the

stability concept as follows:

Definition 1.4 (myopically stable network). A network G = G(N, L) is a myopi-
cally stable network if for any player i and any two (possibly empty) sets of nodes
ACN and BC N.

mi(G +1{3ijtjea —{9ij}jen) > mi(G) = (3 € B) : mj(G — gij) < m;(G)

Ti(G + {9ij }jea) < m(G)

This definition assumes that no player wishes to change linking strategy - to
destroy or create links. The possibility of replacing link is essential for the results.
However it does not matter if a player can only replace one or more of his links or
destroy/create one or more links at the same time. The results will (qualitatively)
hold if we would consider a process in which an agent in a single period can only
create a link, destroy a link or replace a link. That is if we would consider the

following definition of stability:

Definition 1.5 (myopically stable network - alternative). A network G = G(N, L)
is Myopically stable network if the following conditions hold:

WZ(G — gi]‘) > Wl(G) = Wj(G — gij) < Wj(G) (VZ,] < N)
(G + gi — 9i3) > mi(G) = (G — gi5) < 7;(G) (Vi, ),k € N)

13
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7T1(G + gij) < WZ(G) (Vl < N)

Let us now clarify what we mean exactly when we say that agents update the
connections myopically. When deciding on his connections agent ¢ knows the total
spending of all players in the existing network. The effort levels (s;;, s;;)° assigned
to newly formed link are determined as the solution of a bilateral contest game,

keeping all other actions in the network fixed. For example, in case of quadratic

=1
2

sj; are determined as the equilibrium actions of a bilateral contest game between

cost function ¢(x) z?. When link g,; is created the corresponding actions s;;and

players ¢ and j keeping the spending of these two players fixed in all other contest.

2Sji —T
(Sij + sz' + 7‘)2

281']‘ —T
(Sij + sz' + 7‘)2

= (Az + Sij) A

= (4; + 55)

The solution of this system is given with:

o - 2+ AL (AL + A — A+ (4] + A4)?) . 15)
2\/4 + (Al + A2

and symmetric for s;;. Here A, = A; —r/2. Player ¢ will wish to form g;; link when:

(SUSZ—T-S]@S{:-T) + Alz — (AZ + Sij>2 >0 (17)
and (s;;, s;;) are determined with (1.6), and analogously for player j.

On the other hand, existing link g;; will be destroyed if both players agree to
destroy it, that is when 7,(s;, s_;, G — ¢;;) > mi(si,s_;, G) and 7;(s;,s_;, G — ¢;5)) >
mi(sj,8_;,G)). This will be the case when:
5ii 5

A2 (A — 5 ) — — 20T S A A2 (A — ) — S
( Sij) = ] (Aj — sji) (57 + 855 4 7) =

' (sij + 85 +7)

A decision to destroy a link is, again, made assuming that all other actions

in the network will remain fixed. The creation and the destruction of more links
simultaneously is defined analogously. We also assume that a player will create a
link only if it is strictly beneficial to do so. If a player is indifferent to keeping or
destroying link, the link will be destroyed. So, a player prefers to have a smaller

number of links incident to him. This could be justified by saying that there is some

5We omit time index t
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infinitesimal fixed cost associated to maintaining a ink, which can be easily included
in the model. The tie-breaking rule does not affect the results.

If after some period t* no player wishes to destroy or create link we say that the
process has reached the steady state. Thus, a network is stable when no player can
myopically improve his payoff by changing his linking strategy.

Let us consider a network GG which is in the actions equilibrium. We can sort the
nodes in increasing order with respect to their total spending (4; < Ay < ... < Ag),
K <n where K is the number of different total spending levels in a network. Note
that we use A; to denote both the total spending of player ¢ and the 7 — th smallest
level of total spending in the network. From context it will be always clear what A;
stands for. Recall also that the equation (1.5) implies that in any bilateral contest,
a node that has a larger overall spending loses in expectation.

Denote with A; the class of nodes that have total spending A;. Let K < n denote
the number of classes in network G. When a player ¢« € N has the total spending
A; we denote that as i € A;. We say that player ¢ has control over link g;; if it is
beneficial for player j to destroy link g;;. Thus, when player ¢ is in control over a
link it is completely up to him if the link will be destroyed.

If A; > A; in the actions equilibrium we will say that player j is stronger than
player i or that player ¢ is weaker than player j. We shall refer to A; as a strength
of player i (higher A; implies weaker player ¢). It is clear that when ¢ is stronger
than j then ¢ controls link g;;. Furthermore, both players 7 and j shall have control
over link g;; if this link is not beneficial for both of them. A link g,; is said to be
beneficial for player i if the creation of this link (if it does not exist) makes player i
better off and if a destruction of this link (if it does exist) makes player ¢ worse off.

In what follows we provide a characterization of stable networks. We proceed by
stating and proving a series of propositions and lemmas. Abusing the notation, let
(83, Gij) = % — ¢(Af) denote the equilibrium payoff of player a from link

Jap in actions equilibrium. Then the following holds:

Proposition 1.3. Let a € A;, b € A;, c € Ay andi < j < k. Then s, > s;,

sy, > stand furthermore w4 (8%, gap) < Ta(S%., Gac)
Proof. See Appendix A O

The previous proposition implies that the contest between two players who are
more equal in strength is more costly to win. A strong player spends less when

competing with weaker player and has higher payoff from that contest. The results
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of this proposition illustrates the incentive that a strong player has to compete with
weak players, given that the transfer for every contest is the same. This effect is
self-reinforcing in the sense that it further weakens the weak player making him a
more likely target for other strong players.

For the sake of the exposition, let us state the following definition.

Definition 1.6. Player a € A; is an attacker (winner) if he has all of his links with
players from family of classes A; = {A;|j > i}. Player a € A; is mized type if there
exist players b and ¢ such that gup, e € G and Ay, > A, > A.. Player a € A; is
victim (loser) if he has all of his links with players from classes A; = {A;|j < i}

It is clear that every player ¢ must be one of these types. Note also that in
a stable network all attackers must have a positive payoff. If this is not true for
some attacker ¢ then, since he controls all of his links, he could deviate destroying
his links and this deviation would be profitable. Furthermore, there cannot be a
node in a stable network that isn’t stronger than all opponents of some attacker, as
an attacker always has an incentive to attack the weakest players. Lemma 1.1 and

Corollary 1.1 explain why.

Lemma 1.1. Leta € A and A is the class of attackers. Let b and ¢ be two nodes in
the network such that A; < A%, g € G and go. ¢ G. Then the deviation of player

a in which he replaces contest gu, with gue s payoff improving.
Proof. See Appendix A n
From Lemma 1.1 we have:

Corollary 1.1. If in a stable network player a € A; has a link with player b € A,
then she has a link with every player c€ Ajyp k=1,2,. K —j

Proof. See Appendix A m

Lemma 1.1 implies that if there is a player k in the network which is not stronger
than at least one opponent j of player ¢, and if player ¢ has control over g;; link he will
have an incentive to replace link g;, with g;;. Thus, there is always an incentive for
a player to create a link (attack) a weaker player than one of his current opponents,
if such player exists in the network. This furthermore implies that there cannot be
more than one component in a stable non-empty network. Indeed, by Corollary 1.1

all nodes that have at least one link in the stable network must have a link towards
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the weakest player (except that player, of course) - as he is the most attractive player
to extract resources from. This will result with connected network - in the simplest

case with the star network. The following lemma formalizes this intuition.
Lemma 1.2. A stable network must be connected if not empty
Proof. See Appendix A n

From now on, we always talk about connected network. The previous lemmas
stressed implications of the attractiveness of the weakest player as a victim. Let us
focus now on the attackers. By definition, an attacker has a control over all of his
links, that is up to him to destroy any of his links. Thus it is possible for an attacker
to mimic a strategy of another attacker. Building on this observation we can state

and prove the following:

Lemma 1.3. If in a stable network two players belong to the same class of attackers

A than they have the same neighbourhood
Proof. See Appendix A n

Since all attackers in the same class have the same neighbourhood it must be that
they have the same payoff in a stable network. Suppose that there is more than one
class of attackers and that members of different classes have different payoffs. Since
attackers have a control over their links, then members of the class with lower payoff
have an incentive to update their linking strategy to match the strategy of members
of the class with higher payoff. This process will eventually lead to the situation
when all attackers in the network have the same payoff. Furthermore, the incentive
to attack weaker players will push all attackers to have the same neighbourhood,
and thus to become members of the unique class of attackers. The next Lemma

states exactly that.
Lemma 1.4. There is only one class of attackers in a stable network
Proof. See Appendix A O

Note that Lemma 1.4 and Corollary 1.1 imply that the members of the unique
class of attackers are connected to all other nodes in the network. This is due to the
fact that class Ay must be a class of mixed types or losers. In either case, Lemma
1.4, together with the fact that two players from the same class cannot be connected

in a stable network, implies that all members of A; and A, are connected. Then
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Corollary 1.1 implies that attackers are connected to all other nodes in the network
which don’t belong to A;.

Let us now say something about mixed types in a stable network. Following the
same reasoning as in the case of the attackers, we can conclude that all members
of a mixed class must have the same neighbours with respect to players that are
weaker than they are. The same thing will hold with respect to the neighbours that

are stronger than they are. We prove this and formulate the result in Lemma 1.5.

Lemma 1.5. In a stable network all members of all existing mized type classes A

are connected to all other nodes in the network except nodes belonging to their class.
Proof. See Appendix A n
It is now immediate:

Corollary 1.2. There is only one class of victims and all victims have same neigh-
borhood

Let us say something about the size of partitions in a stable network. Results
from Lemma 1.1, Lemma 1.5 and the previous corollary imply that players will be
connected to all players in the network except members of own class. In this case,
one could expect that a player who belongs to larger class (has more friend) has a
higher payoff in the equilibrium. This intuition is correct, and the following Lemma
holds.

Lemma 1.6. Let |Ay| denote the number of nodes that belong to class Ax. Then
‘Ak| > ‘Ak+1‘ VEk € {1, ,K}

Proof. See Appendix A n

It is clear that |Ag| > |Ax+1| is not a sufficient condition for the stability of the
network. The difference |Ag| > | Ax41| must be large enough so that members of the
stronger class do not find it payoff improving to delete links with members of the
weaker class. Previous Lemmas imply the following proposition, which is the main

result of this section.

Proposition 1.4. A stable network is either an empty network or a complete k-
partite network with partitions of different sizes. The payoff of members of a par-
tition is increasing with the size of the partition and a total spending per node is

decreasing with the size of a partition.
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Recall that the complete k-partite network is the only network topology that
satisfies weak structural balance property, as discussed before. When the cost func-
tion is too steep, or the transfer size is too small, the only stable network would be
a complete bipartite network. The complete bipartite network (with respect to neg-

ative links) is the only network topology that satisfies the strong structural balance
property.

Not all complete k-partite networks will be stable. In order for them to be stable,
no player must have an incentive to create or destroy a link. As only links that can
be created are between players from the same partition, no player will wish to create
a link. This is because link g;; between players ¢ and j such that A; = A; = A cannot
be profitable (they will exert the same effort in the equilibrium and thus win and
lose contest with the same probability, and since the effort is costly, have a negative
net payoff from contest g;;). No player will wish to destroy a link if all links bring
a positive payoff to the winner. Combining equilibrium conditions for players ¢ and

j we get that in equilibrium ©

2¢(4;)
(c/(Ai) +c(A;))?

d(A; 25
(Sij = ( ])Sji A J )2 = C/(Al)> = Sij = (18)
Using (1.8) we can express the sufficient conditions for stability of a network in terms
of the total spending in the eqilibrium, that is we have that a complete k-partite

network will be stable when for any contest g;; we have:

d(4A;) = d(A)
d(Aj) + ' (A)

2

>c(Ai)—c< 27(4;) )

(¢(Ai) + c(4;))

Let us consider a particular example of the complete bipartite network. Note
that in this case (due to symmetry) agents that belong to the same partition will
play the same strategy in every contest g;; they are involved in. Then all contests
g;; will result with a positive payoff for winners iff members of the larger partition
have a (total) positive payoff in equilibrium. Denote the two partitions with X and
Y, and sizes of partitions with x and y respectively, and let > y. Then total efforts
of members of two partitions can be written as Ay = ysx and Ay = xsy, where

si, 1 € {X,Y} is the equilibrium effort level in each particular contest of members

6To simplify calculations we consider the case r — 0
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of partition i. Using (1.8) we get that:

'(Ay) — ' (Ax) '(Ay) _ut c(Ax)

c c
>0« —c(Ax)>0& 1.9
) 20 VGG T T 0 ) ey ¢
With cost function ¢(z) = 122, sx = [—L
2 Vi(vVa+ )
The payoff of an agent from partition X is then:
Sx — Sy 2 x(x—y—\,azy)
7 =p=—"2 (b = 1.10
Wx(SX Sy) 5x + 5y ( SX) \/E—i-\/@ ( )
and from here Y
3 5
Wx(Sx,Sy) >0<:>w>y< +2 > (111)

Thus, we have proved the following proposition:

Proposition 1.5. For ¢(x) = %xQ and ¢(x) = = a complete bipartite network will

be stable when x >y (3+T\/g) where x and y are sizes of partitions.

The payoff of players in the larger partition will be increasing with the size of the
larger partition, and increasing in the number of players in the smaller partition for

h<b (14 + /1475 + 8V/AT + /1475 — 8Y/41 ) ~ 6.07b, and decreasing otherwise.

There are two effects on payoff of members of larger partition when increasing the

number of players in the smaller partition. The first one is that the contests become
more costly, as the members of smaller partition become ’stronger’. The second
effect is that there are more opportunities to extract rents. Depending on which
effect dominates, payoff of an agent from a larger partition will increase or decease

with the size of partition.

1.4.1 Actions Adjustment Process

As we have discussed in the beginning of Section 1.4, after network structure is
changed, players update their strategies in a myopic way until the actions equilibrium
on the new networks is reached. In this subsection we describe this process and prove
that it is globally asymptotically stable. The actions adjustment process is defined
as follows:

ds;

= aVmi(s), a >0, i=1,..,n (1.12)
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where m;(s) = m;(s1, 82, ..., Si, ...8p) and V,m;(s) = (g:l g:l 82’:;

) is gradient
of the payoff function with respect to s;. It is clear that Nash equilibrium is a
steady state of this dynamics. We prove in what follows that NE is the globally
asymptotically stable state of this dynamic system. Let us define a function J :
[1,[0, M]% — TT,[0, M]% with:

V17T1 (S)
J(s) = vf“.’(s) (1.13)
Vo (s)

Denoting with G the Jacobian of J with respect to s, we can write system (1.13)

in a more compact form

5= aJ(s) (1.14)

To prove global stability we need to show that rate of change of ||J|| = JJ' is

always negative (and equal to 0 in equilibrium). So let us check 4%||.J||. We get:

jtJJ’ = (G8)'J+JGs = (JG'IT+JGI)=J (G +G)J
As proved in (Goodman, 1980) the conditions (i)-(iii) discussed in the proof of
Proposition 1 imply that (G’ 4+ G) is a negative definite matrix. This implies that
%J J" < 0 which is what we need to prove.

Thus, if every player adjusts his action according adjustment process in (1.14),
the action adjustment process converges, irrespectively of the initial conditions. The
process (1.13) can be made discrete without losing the convergence properties. The

discussion from above proves the following proposition:

Proposition 1.6. The action adjustment process is globally asymptotically stable

1.4.2 Efficiency

It is easy to show that the unique network that maximize the total utility of society
is the empty network. This is a direct consequence of the transferable nature of
contest game as the rent seeking effort is wasteful. Indeed, the total payoff that

society obtains from network GG can be expressed as:
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U(G) = Zﬂ'i(si, s-i;G)

_ d(s45) B d(s5:) o
) z’:%:\f <¢(Sij) +o(si) 0 sig) + dlsji) +7 (Al)>
=2 (1.15)

From (1.15) we have:

Proposition 1.7. The efficient network is an empty network

1.5 Final Remarks

The model in some sense leads to a self-referential characterization of power in an-
tagonistic relationships i.e. a player will be stronger in the equilibrium if his enemies
are weaker (recall that we refer to the total spending of a node in the equilibrium as
the strength of a player). The previous sentence illustrates the recursive nature of a
node’s strength in the network emphasised in this model. This is a common feature
of global centrality /prestige measures in networks (i.e. Katz centrality, Bonacich
centrality, PageRank).

There are two distinctive features of node strength in this model. The first is the
negative relation between the strength of a node and its neighbours. That is, strong
odd order neighbours (can be reached in path of odd length) will make an agent
weaker, while the opposite is true for even order neighbours. The second feature
is that strength is nonlinear measure of a centrality - the strength of a node is a
nonlinear function of strength of its neighbours. If it were linear, the strength of
a node would be a global linear centrality measure (like Katz-Bonacich centrality)
but with negative decay factor §. In this model, although the logic is similar, the
strength of a node is a non-linear centrality of a node defined with the FOC system
of equations.

Replacing transferable contest with the ’classic’ contest (i.e. one in which players
compete to get a larger share of a pie) would not change the existence and uniqueness
results from Section 1.3. However, as two types of contest have different interpreta-
tions, the link formation protocol in the formation model needs to be adjusted. In

this case it is not clear why link destruction should be a bilateral decision, if the pie
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exists independently of the contest. Innovation contest/patent race is a situation
which more natural to model in this way (Baye and Hoppe, 2003).This approach
could be naturally extended to hypergraphs. For example, consider a situation in
which there are n firms and m markets (possible contests) in which firms can in-
novate. Then a linking strategy of a firm would be to decide in which of these m
contests to participate, creating a hyperlink to other participants in these contests.
The results for existence and uniqueness for a fixed hypernetwork will hold if we

specify a contest success function for market k as:

¢(3ikz)
D je(N) o(sjk)

Dik =

where N* is set of players competing in contest k, p;;, is the probability with which
¢ wins the contest k and the rest of the notation is analogue to what we have from
before. Ans finally, preliminary results indicate that when modelling positive links
explicitly so that positive link gi'; has an effect of reducing the marginal costs of

effort in the contest, the qualitative results of the paper will not change.
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1.6 Appendix A: Proofs

Proof of Proposition 1.1: As discussed Section 1.3, the payoff function of every player
¢ is continuous and concave in s;. The strategy space is in general unbounded, but
since the transfer R is finite, and the cost function c is strictly increasing, there will
exits a point M € R such that ¢(M) > R. No player will ever wish to exert an
effort larger than M. Therefore we can bound the strategy space from above. Thus
there exist the pure strategy equilibrium of the game on a network as defined in
the beginning of Section 1.3, as the game is n players concave game. To prove the
uniqueness we will use the following specification of diagonally strictly concave func-
tion proposed in (Goodman, 1980). The function o(s,z) will be diagonally strictly
concave if the payoff functions are such that for every player : (i) m;(s) is strictly
concave in s;, (ii) m;(s) is convex in s_; and (iii) o(s,z) is concave in s for some
z > 0.

For the game that we are considering we have already shown above that m; has

a negative definite Hessian with respect to s;. We also have that:

0%mi _ (r+20(si5)) (2¢/(si)* — ¢"(s50) (r + @(s35) + ¢(s5)))

= >0
ds%; (r+ &(sij) + ¢(s5i))?
when there is link g;;. Furthermore, (Vg € L : k # 1), % =0 and % = 0 for

any other combination of players, 7, k,[ and ¢. Thus, the Hessian of 7; with respect
to s_; is a diagonal matrix with all entries positive or zero and therefore positive
semi-definite.

To prove the concavity of o(s,z) in s we choose z = 1. Then:

B o (si5) _ (s;i) AN ) = — ST (A,
oD =2 2 <¢(5ij> +o(sji) 1 Olsy) + d(s) +r (Al)> 2.4

i JEN;

¢(s45)
B(sij)+d(sji)+r
with a positive sign (as a part of payoff function ;) and exactly once with a negative

This equality holds since the every summand appears exactly once

sign (as a part of function ;). Function — 3 ¢(A;) is strictly concave due to the
i

strict convexity of function c. n

Proof of Proposition 1.2: Consider two arbitrary connected players ¢ and j. Let us

first prove that in the equilibrium it cannot be s;; = s;; = 0 Vr > 07. Assume

“We omit * with equilibrium actions in the rest of the proof, but it is clear when s;; denotes
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otherwise. Then the payoff for both players in contest g;; will be 0. Consider the
deviation of player ¢ from s;; = 0 to s;; = r. Now the probability of wining for
player ¢ becomes p;; = Qﬁ; ir = a > 0 and the probability of losing is still 0. This
deviation will be profitable as long as ¢(A4;) — ¢(A;) < o, where A; = A;+7r. As cis

continuous, we can always find such r so that |c(A;) — ¢(4;)| < o when |A; — 4;| < r
Therefore, in this case we can always find such r so that the deviation from s;; = 0
to s;; = a is profitable. Thus, it cannot be that s;; = s;; = 0 in the equilibrium.
Let us now prove that for two arbitrary connected players ¢ and j it cannot be
that s;; # 0 As;; = 0 Vr > 0. Again, suppose this is the case. Then the necessary

conditions imply that in the equilibrium we have

omi
851-3»

(r +2¢(0))¢' (s:5)

B AN = r¢'(sij) (AN =
0 " T o) o0 =0 o)

(r + ¢(si5))?

We can always find r small enough such that (1.16) cannot hold for any value
sij > 0 and A; > 0. Indeed, since the reward is finite and the number of nodes in
the network is finite, then A; must be finite for any node 7 in the network. For any
cost function ¢ € C? satisfying assumptions for cost function stated in Section 1.2,
we can find U > 0 such that ¢/(A4;) < U for every A;. We can always choose r > 0
small enough such that (mﬁ (si;) 7 > U Vs;; € [0, M], since &])2 — 0o when

+é(si; (r+¢(si5))
r — 0 for any fixed s;;. n

Proof of Proposition 1.3: Recall that FOC for any a, b contest are given as:

2s* 2s;
S T aryand ——t T g (1.17)
(Sab + Sha + T) (Sab + Sha + 71)
Expressing s}, and s;, from (1.17) we get that, in equilibrium:
20 (A 20 (A
e | T 0.7 AN (BT

((43) +c(A)* 2 ((43) + (A7) 2

The function f(x,y) = Mjﬁ% — 5 Is strictly decreasing in z as long as z > y
and strictly increasing when x < y. f is always strictly decreasing in y

of  Ad(w)(y)
and — = —
=IOy T T e+ ew)

of _2(=d(x)+d(y) (=) when = =
o (d(x)+ ()’ =0

action in equilibrium

25



Rent Seeking and Power Hierarchies: A Noncooperative Model of
Network Formation with Antagonistic Links

This, together with (1.18) and A} < A; < A} implies that s, > sk, and s, > s¥,.
To prove that 7,(s%,, gan) < Ta(Sk., gac) We use (1.18) and (after some algebra)get:

T (8* g b) _ S:b — SZ& 1 _ 26/("4@)
IR (st sha 1) ¢(Aa) + ¢ (Ap)

It is clear that m, is strictly increasing in A, due to strict convexity of function c.
Thus7 AZ > Az > AZ = 71'C‘L(szkzca.gac) > 7Ta(sz'z(bagab) u

Proof of Lemmma 1.1: From (1.18) we have that s,. in case of the deviation is given
with:

2] (AL + s%,) r
(A = st she) H (AL s)) 2

and we can write:
2] (A} — s, + st,) r
( (A — 8o+ smp) T (Af — 85, +83,))F 2

Because of the interiority of the equilibrium, A} + s?, > A? > A} > Ay — s;,. Since

*

Sab =

Al + 5. > Ap the Proposition 1.3 implies that this deviation is profitable. n

Proof of Corollary 1.1: Let us assume otherwise. If link g, is not profitable for
player a then, as noted before, it is not profitable for player . Then link g,, cannot
be part of a stable network. So it must be that link g, is profitable for player a.
Let ¢ € Aj; be a node such that link g,. does not exist. Then, from the Lemmal.1
the deviation of player a in which she destroys link g,, and creates link g,. will be
profitable. n

Proof of Lemma 1.2: Again, we use a proof by contradiction. So assume not °.
Then there are at least two components. Choose two arbitrary components from the
network and denote them with C; and Cs. Let us denote two players with the highest
total spending in these components with h; € A, and hy € A.,. Assume, without
the loss of generality, that A., > A.,. Then, for any player in that attacks player
hy (and there must be at least one) it is profitable to attack player h; instead. [

Proof of Lemma 1.3: Consider two nodes a,b € A. Let us first prove that they must
have an equal degree. Suppose that this is not true. So suppose that the network
is stable and W.L.O.G., that d, > d, where d; denotes degree of a node i. Let N;

8We omit *, but it is clear from context that we are considering the equilibrium strategies
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denote the neighbourhood of player 7. It cannot be that N, C N, because then
the total spending of a and b could not be equal (they would not belong to the
same class). If N, = N, the proof is completed. If no,t there must be some node
h € N,\N, and some node k € N\ N,. Suppose, W.L.O.G., that Ay > Aj,. Than it
would be better for player a to replace link g,, with link g,; according to the Lemma
1.1. This is a profitable deviation which is a contradiction to the assumption that
the network is stable. So it must be d, = d,.

Let us now prove that there must be N, = N,. Again, assume this is not the
case. Than we can find two nodes h € N,\N, k € Ny\N, such that, W.L.O.G.,
Ar > Aj,. But then it would be better for player a to replace link g, with link g.
according to the Lemma 1.1. Thus, network GG cannot be stable. The assumption
that N, # N, led us to a contradiction and thus must be rejected. O

Proof of Lemma 1.4: We again use the proof by contradiction. Suppose there are
two different classes of attackers and denote them with A; and A, and let A, > A;.
Since players in A; and Ay are attackers they have control over all of their links.
Since Lemma 1.3 implies that all members of the same class of attackers have the
same neighbourhood, we restrict our attention to the representative nodes a € A;
and b € A,. Let us first prove that it must be 7, = m,. Assume this is not the case.
Then it must be that N, # N,. Since Ay > A; there are two possible situations that
we need to consider.

(i) N, C N, then then if 7, > m, player b could mimic player a (as he is the
attacker), and if m, > 7, the opposite will hold.’

(ii) N, & Ny, = (Fk € N,\Ny A 3h € Ny\N,). But then, if Ay > A; Lemma
1.1 implies that b has a profitable deviation, and if not, same Lemma implies that
a has a profitable deviation.

We have proved that in a stable network it must be m, = m,. Since Ay > A; then
it must be that d, > d, or the distribution of total spending a’s and b's opponents is
different. We show that in both cases there exist a possible deviation which makes
one of the players better off.

Let us first consider the case when dj, > d,. If N, C N, we have (i) from above.
So there must exist nodes k € N,\N, and h € N,\N,. If A, > A, then player b
would be better off by replacing contest g,q with g.. If not, player a can make an

analogue profitable deviation.

9Recall that we assume that when a player is indifferent between two actions he prefers to have
less links.
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If d, = dp then, since Ay > A;, the strengths (total equilibrium spending) of a's
opponents are different than strengths of ¥'s opponents. Let ¢ be the strongest node
from (N, U Ny)\(N, N N,) # 0. If link g,, exists, then it is profitable for a to switch
from ¢ to any node in the set N,\N, . If g, exists, then the profitable deviation is

switching from ¢ to some node in N,\ Ny, and the proof is completed. O

Proof of Lemma 1.5. If there are only two classes of nodes in network A; and A,
then there are no mixed types. Suppose there are more than two classes in the
network. Consider first the strongest mixed type class (Az). A node m € A, must
be connected to all of the nodes in the class of winners A; This is because as a mixed
type m must be connected with at least one stronger player, which must be a winner
because of the choice of m. Lemma 77 implies then that m must be connected to all
players from the class A;. Let us now prove that all members of the class Ay have
the same neighborhood. Suppose not. Let {my, ms} C AsA Ny, # Np,. We have
(A1 C Npyy NA1 C Npy) = ((Nony /Niny) U (N /Ny )) N A = 0. Thus, if they
differ, neighborhoods of m; and my must differ only in the part where m; and ms
have control over their links. It cannot be N,,, C N,,, V N,,,, C N,,,, because then
it cannot be A,,, = A,,,. Consider two nodes, k € N,,,\Np, and | € Ny, \ Ny, -
Note that sets Ny, \Vm, and N,,,\ N, cannot be empty. If Ay > A; then my has
a profitable deviation switching from g,,,; t0 gm,k. If not, then m; has an analogue
profitable deviation.

Let A3 be the third strongest class in the network. If this is the weakest class
(if K = 3) then, by definition, all players from m € As must be connected to some
of the players of A3z, because otherwise they would not be mixed types. Note that
if player 7 € A3 is connected to some player from class Ay that he is connected to
all players from class Aj since we have shown that all members of class A have the
same neighborhood. If there exists some player j € Az who is not connected to a
player from As then he is connected only to players from A; but then it cannot be
A; = Aj, that is 7 and j cannot belong to the same class. Thus, if K = 3 the claim
holds.

If not, then Aj3 is a mixed type class. Corollary 1.1 implies that all members of A;
must be connected to all members of A3 since they are connected to all the members
of Ay and Ay < Ajs. Suppose that there does not exist link g;; such that ¢ € Ay and
j € Ajs. Since all players from A, have the same neighborhood there aren’t any links
between members of class Ay and A3. This means that players from A3 lose only

in contest with players from A;, so they have control over all of their links except
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those that connect them to players A;. Furthermore, Ay < A3 = N; # N,. As

before, we first consider the case when m; # ;.

(i) N; C N; then j can destroy links towards all players N;/N; and have same
the payoff as ¢ (if m; > 7;), or player i can create links to all players in N;/N; (if
T < T0;)

(ii) N; ¢ N; = (3k € N;\N; A3h € Nj\N;). But then, if A, > A;, Lemma
1.1 implies that 5 has a profitable deviation, and if not, same Lemma implies that

¢ has a profitable deviation.

If m; = mj since Ay > A; then it must be that d; > d; or that the distribution of
total spending of ¢'s and j's opponents is different. We show that in the both cases

there is possible deviation which makes one of the players better off.

Let us first consider the case when d; > d;. If N; C N; we have (i) from above.

If not we have analogue of (ii).

If d; = d; then, since Ay > A, the strengths (total equilibrium spending) of i's
opponents are different than the strength of j's opponents. Let ¢ be the strongest
node from (N, U N,)\(N, N N,) # 0. If link g, exists, then it is profitable for 4
to switch from ¢ to any node in the set N;\IV;. If gj, exists, then the profitable
deviation is switching from ¢ to some node in N;\N;. We have shown that it cannot
be that there are no links between A, and Ajz, thus every player from A, is connected

to every player from As.

Proceeding in the same way, we can show that all players from Ay must be
connected to all players from A 1. Since the number of nodes is finite, the number

of classes is finite and this procedure reaches Ay in a finite number of steps!®. [

Proof of Lemma 1.6: Suppose not. Note that FOC imply that sj; = sj, V{i,j,h} €
N A{j,h} € Ao If |Ax| < |Ags1] Lemmal.5 implies that Ay = > |Ailsg; and
i#k

A1 = X |Ailswi for any two nodes k € Ay and k' € Ay Recall that s is
ikl
strictly decreasing in A} which implies that s;; > s3,; Vj € {1,.., K}\{k,k'}. Also,

Ak < Ak+1 — Spw > Spr. But then ’Ak’ < |.Ak+1| — (Ak = ;J.Azlslﬂ >
7

A1 = X |Ailsw), contradiction! Tt must be |Ag| > |Agi1] O
k1

i

10Tf n is not finite the claim is easily proved using mathematical induction
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1.7 Appendix B: An Alternative Formulation

Suppose that, instead of a general convex cost function, we have a Blotto type game.
That is, each player is endowed with the equal amount of resources (time) and the
strategy is how to distribute the resources across different contests. Note that this
also defines the 'cost’ function to be convex, as resources are free up to some point

and then prohibitively costly.

So, suppose for simplicity >y, sij = 1 Vi, j. Keeping the same CSF the exis-
tence, uniqueness and interiority guaranteed by the results from (Rosen, 1965). Let
A; denote the Lagrange multiplier associated to the budget constraint for agent .

The first order conditions that characterize behaviour in a contest g;; are given with:

0+ 20(50)808)
(- o0s5) + o(sR
(r+20(5) (s
(r+ o05) + ols0f

Zsik:

keEN;

> Sik =

kGN]'
and from here, we get:

(r +20(s3:))¢'(s5;) _ N

(r+20(s;))9'(s3:) A

Thus, the role of ); is analogous to the role of Af. Higher A} implies a higher

(1.19)

marginal cost of additional unit of effort, and \; is the shadow price of the resource

for player ¢ in this formulation.

1.8 Appendix C: Numerical Example

Let us consider the following example to illustrate the complexity of global effects

in the network.
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3 5

Fig. 1.2 Actions equilibrium - initial network

Calculating the equilibrium actions, we get that the matrix of the equilibrium

efforts S is given with:

0 0.289 0.289 0.286 0 0
0292 0 0292 O 0 0.269
0.289 0.289 0 0 028 0
0.350 0O 0 0 0354 0

0 0 0350 035 0 0

0 0479 0 0 0 0

And the assigned payoffs are:

m = (—0.854,—-0.999, —0.854, —0.395, —0.395, 0.050)

Deleting link g3 we get a network with

Fig. 1.3 Actions equilibrium - resulting network
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and
0 0351 0 035 0 0
0290 0 0290 0 0 0.270
G- 0 0351 0 0 035 0
0.353 0 0 0 0353 0
0 0 0353 0353 0 0
0 0480 O 0 0 0
and payoffs

m = (—0.402,—1.193, —0.402, —0.501, —0.501, 0.048)
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Chapter 2
Production Networks

with Fernando Vega Redondo

2.1 Introduction

The network nature of interconnections between firms by means of buyer—supplier
relationships is receiving more attention in recent years in studying various kinds
of economic phenomena; including transmission of economic shocks, trade, spread
of innovation etc. Admitting the importance of the network structure, however,
is not a new idea in economics. Studying input-output linkages historically has a
long tradition, and it is usually associated with works of Wassily Leontief and A .O.
Hirschmann (Hirschman, 1958).

Recently, the importance of intermediate goods has been emphasised in literature
on economic fluctuations (Gabaix, 2011; Horvath, 1998). The main question in this
literature is if and how microeconomic shocks to firms or sectors can cause significant
macroeconomic fluctuations. The importance of the production network topology in
explaining when a sizeable aggregate volatility can result from sectoral idiosyncratic
technology shocks, in an environment similar to the baseline model in this paper,
has been studied in (Acemoglu et al., 2012).

Our work is also related to (Jones, 2011) who, building on (Long and Plosser,
1983), studies how misallocation on the sectoral level affects GDP.

This paper studies a general equilibrium model on the production network, build-
ing on (Long and Plosser, 1983). We are primarily interested in answering the fol-
lowing questions: (i) How does the position of a firm in the network affect the profit

of a firm? (4¢) What kind of networks maximize social welfare? (iéi) Which firms are
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the most important for the profits of other firms? (iv) How distortions propagate
through the network and affect the profit of firms and social welfare? (v) How do
changes in the network topology affect the distribution of profits across firms and

social welfare?

The role of the network in mediating the effects of distortions is very important
in the context of economic development. Promoting a firm or a sector has an in-
direct effect on other firms in the economy through backward and forward linkages
in the production network. The backward linkages are demand-driven stimuli by
which a sector generates demand (pull effect) that helps developing other sectors.
In contrast, the forward linkages are associated with the supply effect that a sector
may have in lowering the production costs of other sectors which rely on the former
for intermediate inputs (push effect). The backward and forward linkages have an
important role in determining the effects of a firm or a sector level shocks/policies
on the performance of the economy. A key insight of the unbalanced growth the-
ory as a strategy for economic development (propounded by A.O. Hirschmann in
(Hirschman, 1958) among others) is the need for policies that promote ’strategic
sectors’ of the economy instead of all the sectors simultaneously. The other sec-
tors would automatically develop themselves through the linkage effects. Different
kinds of policies favouring some sectors over others, will in general generate different
pull and push effects. Therefore, understanding the role of forward and backward
linkages is crucial when designing a policy to promote economic development. The
model in this paper provides a natural framework for the identification of ’strate-
gic sectors’ and for understanding the role of the production network in mediating

effects of different kinds of policies and shocks.

The interest in the distribution of profits comes from the fact that profit is
one of the most significant factors that influence a firm’s survival in the market
(Hopenhayn, 1992). Thus profits determine which firms will leave the market, and

therefore the network topology that will materialize in the long run.

This paper is organized as follows. In Section 2.2 we present the benchmark
model and basic results, including the relation between Bonacih centrality and the
profit of a firm in the equilibrium. We also identify the welfare maximizing network
topologies. In Section 2.3 we study how different kinds of distortions affect profit
distribution and welfare. Subsections 2.3.1 and 2.3.2 provide results regarding the
effects of revenue distortions on the distribution of profits across firms and the

welfare. In Subsection 2.3.3 we study effects of changing the network topology.
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Section 2.4 discusses the Hirschmann’s pull vs. push dichotomy, explaining the
channels through which different distortions propagate through the network. Section
2.5 contains the general formulation of the model, accommodating heterogeneity

across multiple dimensions.

2.2 The Model and Basic Results

In this paper we study economy as a network of production relationships among
competitive firms which in the end delivers some net flow of final goods to consumers.
The model builds on the model proposed in (Long and Plosser, 1983).

There are infinitely many consumers that can be represented with a represen-
tative consumer. Consumers are owners of firms and of the only primary resource,
which we simply identify with labour. Each firm produces single commodity that
can be consumed or used as an input (intermediate good) for the production of some
other good. Denote the set of commodities by N = {1,2,...,n} and let M C N be
the set of consumption goods. A good is the consumption good if it generates the
positive utility to the consumer. In general, we don’t require that all produced goods
are necessarily consumption goods.

The consumption side of economy is modelled through a representative consumer

who has a Cobb-Douglas utility function U : R® :— R given by:
Ule) = Adm) ] (2.1

In (2.1) m = |M]| is the number of the consumption goods, and ~; is the share
of good ¢ in the consumption basket. We shall normalize ",y = 1. For the
simplicity we shall often focus on the case v; = % Vi € M, that is the case when all
consumption goods are symmetric. The analysis goes through without the symmetry
assumption, and qualitatively the results remain the same. Note that the leisure
is not an argument in the utility function defined above, so the total amount of
labour will be supplied inelastically to the market. It might also be interesting to
include leisure into the arguments of function (2.1), since this would endogenize
the amount of the primary resource devoted to the production, as a function of the
effectiveness of the production system in addressing consumption preferences. In the
benchmark model however, we adopt the simplifying assumption of inelastic supply

of labour, and normalize the total amount of labour to be 1. A, = A.(m) captures
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how the scope of the market impinges on consumer preferences reflecting the 'taste
for variety’ of the representative consumer in a similar fashion as in (Benassy, 1996).
As discussed in (Benassy, 1996) the 'taste for variety’ parameter is the most often in
almost arbitrary manner identified with the degree of substitutability between goods
in CES utility function. In order to disentangle between the ’taste for variety’ as
a preference for having more consumption goods, and the degree of substitutability
between goods, (Benassy, 1996) introduces an analogue term to A.(m) in the utility
function. This way, the taste for variety can be analysed independently of the degree
of substitution between goods. The similar approach has been adopted in subsequent
works, for example in (Benassy, 1996) and (Acemoglu et al., 2007). Following these
papers we shall assume specific form A.(m) = m¢, where parameter £ > 0 captures
the extent of the taste for variety. Values £ > 1 imply that the consumer prefers to

have more consumption goods in the basket.

As noted above, we assume that there is a one-to-one correspondence between
firms and goods (thus, in particular, we rule out joint production). The production
of each good k takes place under decreasing returns to scale, and requires both labour
and intermediate produced goods as inputs. The set of intermediate inputs firm k&
uses in the production is denoted with N," and n;, = |N;|. Let [, be the amount
of labour and (zjk) N the amount of intermediate goods used for production of
good k. Firm k produces amount y; of good k using the production function fy :
R"™ x R — R which has the following Cobb-Douglas formulation:

«

vk = P () jens i be) = Adi | TT 250 (2.2)

e NT
JEN,

where we assume N} Gik = 1 and o + 3 < 1 1. The first assumption is just a

normalization, while the second implies decreasing returns to scale.

To capture the idea that more advanced (productive) technology involves a
greater range of intermediate inputs, and thus a higher degree of specialization, we
follow (Benassy, 1998) and set Ay = njt". With this formulation, parameter x cap-
tures the extent to which input diversity (or production complexity/sophistication)
enhances productivity. To see this heuristically, suppose that firm k has a total

amount of U euros to spend among n; intermediate inputs used in the production

Tn general we shall allow o and 3 to differ across firms, i.e. we shall allow for firm specific as
and [ and also for any other pattern of asymmetry across goods in Section 2.5
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of good k. Then, if the price of each input is equal, firm k splits U equally among
the ny inputs. Fixing the amount of labour used, this implies that production is
proportional to ny U« (n—lk)a = ngU®. Thus, k > 0 indicates that there are ben-
efits from sophistication, and parameter x captures this effect. A way capture the
idea that production complexity enhances productivity is to use the CES produc-
tion function f(x) = (X x”)%. However, in this representation p determines both
elasticity of substitution between inputs and the elasticity of output with respect to
the complexity of the production technology (number of inputs). To avoid this issue
authors often include a term analogous to A; defined here, in order discriminate
between these two (see for example Benassy (1998)).

The set N, of inputs used in the production of good k is represented as a set of
in-neighbours in a weighted adjacency matrix of the production network G(N, L) =
(9ij); jen- Each vertex in G corresponds to a firm (good) in the economy. A directed
edge (i,7) € L means that firm j uses a good i as an input. The weight of a link,
gij, represents the share of good 7 among intermediate goods that firm j uses for the
production?.

Given the matrix G prevailing at some point in time Walrasian equilibrium
[p,c,y, (2ij),1,w] is obtained. Here, p,c,z and 1 are vectors of prices, consumptions,
outputs and labour demands respectively. Matrix (2;;); jen is a demand matrix,
where z;; represents a demand for input ¢ by firm j. The wage is denoted with
w. Given this description of economy, there exists the unique equilibrium. The
uniqueness result is easily established as the vector of excess demand functions
satisfies the gross substitutability condition.

The formulation of the production function (2.2) has the implication that labour

2Conceptually, one can think of a good (a node in the network) as defining a sector having several
(possibly many) firms producing perfect substitutes, identical with respect to their production
technology. Then a firm’s production function can be written in form of:

gik\ ¢

Yo = i ((ij)jeN:;lk) =ad | IT {22 =

jeN;’ ’iESj

where S; is the set of firms (sector) producing the same good as firm j; and ¢ is a superscript
indicating firms in that sector. Then, given that every good is produced by many firms, the
competitive equilibrium is a natural equilibrium concept to be used. In the competitive equilibrium
all goods from sector S; will have the same price p;. The exact demands for goods produced by
firms in sector S; by firm k denoted with z;* are then undetermined in the equilibrium, but the
total demand for goods provided by that sector is uniquely determined. In this paper, for the
simplicity, we treat all the firms that produce the same good as a single firm and use the terms
good and firm interchangeably, keeping this note in mind.
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and at least one intermediate good are essential inputs for production. This implies
that no firm can be active (i.e. display a positive production in the equilibrium)
unless it relies on some other active firm. This imposes a natural ’systemic balance’
condition for an economic system to be viable at all. It also requires that, from an
originally empty technological structure, a viable 'innovation’ can materialize only
if there arise complementary (balancing) innovations in the production of some of
its inputs. Similar requirements can be found in the definition of auto-catalytic
sets used in evolutionary biology and chemistry, see for example (Jain and Krishna,
1998).

For the sake of the formal convenience, let us denote with G the adjacency matrix
of a graph created from the production network by adding a node ¢ representing
the consumer. The consumer node has an outlink to every node in graph, except to
itself, since the consumer supplies labour to every firm in the economy. On the other

hand, node ¢ has an inlink from every node that produces a consumption good.

Let dp(i, j) denote a directed path from i to j in the directed graph G. We define

the notion of a strongly connected component of graph G as follows:

Definition 2.1 (SCC). A set of nodes K C N s a strongly connected component
(SCC) in a directed graph T(N, L) if V(i€ KA j € K) 3dp(i, j)

We shall say that a firm is active if it produces a nonnegative output in the
equilibrium. Then from the definition of the production function the following result

is straightforward:

Lemma 2.1. A firm ¢ is active the corresponding node in network G satisfies 3(j €
SCC) = 3(dp(j, 1) Adp(i,c))

Proof. Follows directly from the fact that both labor and at least one intermediate

good from an active firm is essential for the production O]

Figure 2.1 illustrates active firms (red) non-active firms (yellow) and the con-

sumer node (grey node 11) in a simple network:
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Node 1

5,

Fig. 2.1 An illustration of Lemma 2.1

In what follows we will consider networks of active firms. That is, the condition
from Lemmma 2.1 is satisfied for every node in the network. If there are non-active
firms in equilibrium, they can be simply ignored together with incident links without
any consequence.

One of the first natural questions that arises in the environment described with
this model is if and how the position of a firm in a network determines the profit
of that firm. To answer this question, let us define the binary vector h to be an
indicator vector such that h; = 1 means that good ¢ is the consumption good,
and let m be the number of consumption goods. For simplicity we treat here all
consumption goods symmetrically, and the more general formulation is in Section
2.5. The following proposition provides a clear cut characterization of the profits of

each firm in the equilibrium:

Proposition 2.1. The vector of profits of the active firms in the economy is given

by: m=(1—a—p) w(:ni_ﬂa)(f—aG)_lh. If all goods are consumption goods (m =n)
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then 1= (I —aG)'h= (np”” )

" i=1PiY%i /=y

Proof. Aee Appendix A n

To discuss the intuition behind Proposition 2.1 we first introduce a notion of the
Bonacich centrality that we use in this paper. As the Bonacich centrality® is defined
in the literature in slightly different ways let us state here the definition that we

shall employ.

Definition 2.2. Consider a network with n xn adjacency matriz G, scalar o and n-
dimensional vector h. The vector of Bonacich centralities of graph G with discount

factor o, weight vector h and scaling parameter ¢ is given with b(G,«,(,h) =

¢(I —aG)'h

Let m;; denote the (i, j) element of matrix M (o, G) = (I — aG)™! = 32, G’
which is well defined for low values of a*. Then m;; = 332, akgl[?] which is (i, j)
element of matrix M («, G) counts all paths from i to j in graph G where paths of
length k are discounted with o*.

Then Bonacich centrality of node i, in notation b;(«, ¢, G, h) can be written as:
bi(a, ¢, G, h) = (> myjh; (2.3)
j=1

The centrality of node i, b;(cr,(,0G, h) is thus the number of paths from i to
every node in network G such that paths of length k are discounted with a*. The
total number of paths from ¢ to a node j is weighted by a corresponding coordinate
of the weight vector h;. If G is a weighted network, then the centrality will not
count the number of paths, but the weights of paths, where again weight of paths
of length k is discounted with a*. The role of h remains the same in the case of
weighted network. Thus, we can say that m,; measures the contribution of node j
to the centrality of node ¢ in network G.

In our model element g;; of matrix G is the share of intermediate good ¢ among
the intermediate goods used in the production of 7. In the network this means that
the direction of the commodity flows is ¢ — j and the direction of money flows is

J — 1. The sum of all elements of row i, (I — aG)™! is the total number of paths

3We shall use the term centrality throughout the paper when there is no danger of confusion.

4Values of a which are smaller than the absolute value of the inverse of the largest eigenvalue
of G.
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between node ¢ and all other nodes in the direction of flow of goods in the network
according to weighted matrix GG where paths of length k are discounted by o*.

Let us now focus on the vector h. We shall refer to it as consumption/taste
vector, or weight vector - depending on the context. In context of Proposition
2.1, vector h indicates which paths will be taken into account when calculating the
centrality®. If firm j does not produce a consumption good, then paths from i to
j will not contribute to the centrality of node i. Only the paths that end with a
firm that produces a consumption good will be taken into account. Thus we can say
informally:

The profit a firm i is determined by the number of paths that lead from node i to
every other node (including i itself) in the network where we count only paths that
end with a producer of a final good.

Proposition 2.1 thus describes the profit of a firm as a function of the firm’s
position in the network. It states that a firm’s profit is proportional to the number
of paths from that firm to firms that produce consumption good; discounting paths
of length k with o*. Thus, the centrality of firm k in a sense captures the size of
the market for a good k. Firms with a larger market make a higher profit in the
equilibrium.

It is also important to note that, due to the normalization >-7_; g;; = 1, matrix G
is a column stochastic matrix. This implies that matrix 1_To‘hl’ +a( is also a column
stochastic. The vector of centralities s = I_Ta%(l — aG)7'h is, when all goods are
consumption goods, proportional to the stationary distribution of irreducible Markov
chain with transition matrix 1’7°‘h1’ + aG.

The utility of the consumer depends on the network structure. The following

expression gives the log utility of the representative consumer:

1
11—«

log U =(€ — 1) logn + log(1 — a)a™s +
((a +£)> vilogr; — (1 —a—B)Y wvilogv; + > vig;s loggﬂ) (2.4)

where v = gs and r; the number of intermediate goods firm ¢ uses in the produc-

5Vector h in Proposition 2.1 is created from consumption weights vector (v with i-th element
equal to ;) associated to the utility function (2.1). Since we assumed symmetry, -y; = % if good
1 is a consumption good, making v = %h
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tion, and for simplicity we have assumed for that all goods are consumption goods.
We can obtain the analogue expression for the case when all goods are not consump-
tion good, but the qualitative nature of the result will not change (see Appendix A
for details).

It is interesting to note that the utility increases with the entropy — Y, v; log v; of
the centrality vector and decreases with ’entropy’ of production matrix G weighted
by centralities of nodes (-3, >°; v;gjilog g;;). Thus, to maximize the utility, it is
better to have the production network in which all firms have the same profit, as
this maximizes — >, v; log v;. This will, for example, be the case for a subclass of the
class of regular networks. On the other hand it is welfare improving when goods are
not treated symmetrically in the production function, as this minimizes }-; g;; log g;;.
The term (a+k) Y, v; log r; captures benefits from technology sophistication - stating
that it is welfare improving when more central firms have more complex production
technology.

It is clear that, keeping the production network fixed, the utility of the con-
sumer is increasing in the number of consumption goods. What is not straight-
forward is which structure of the production network maximizes the utility of the
consumer. Assuming that every firm treats each input symmetrically, i.e. g;; =
i ¥ (( jAk)ENFANieN ), the following proposition characterizes the optimal

network structure:

Proposition 2.2. For the network G = G(N,L) and n = |N| the utility of the

consumer is given with:

logU =(€ — 1) logn + log(1 — a)at=
1
+ T a ((oz—I—n —1)> vilogr;— (1 -« —B)Zvilogvi>
-a i i
Furthermore, the complete network maximizes the utility for k > 1 — a. For k <

1 — « the ring network mazximizes the utility. For k = 1 — a any network with

v; = v; Y(i,j € N) mazimizes the consumer’s utility.
Proof. See Appendix A m

Note that any x > 0 implies benefits from production complexity, but only
k > 1—« implies that the welfare maximizing network will be the complete network

- network in which all firms use the most complex technology possible. This is due
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2.3 Distortions and the Role of Network

to the negative effect of the ’entropy’ term 3=, 3= v;g;i log g;; which in the symmetric
case considered in Proposition 2.2 has the form: — 37, v;logr;.

Proposition 2.2 states that when the benefits from production sophistication are
high enough, the utility maximizing network will be the complete network, in which
each firm has the most sophisticated technology possible. If this is not the case, then
the utility will be maximized by the minimal network that can support economic
activity in which all nodes have the same centrality (earn the same profit) - the ring
network. This is because the adverse ’entropy’ effect captured by >, >, vig;i log g;s
will be minimized in the case of ring (will be equal to 0). At the same time, the ring
will maximize the centrality entropy, — >, v; logv; as all nodes in the ring will have

the same centrality.

2.3 Distortions and the Role of Network

As we have shown in the previous section, the position of a firm in the production
network determines its profit. Furthermore, the network topology has an important
effect on social welfare. In this section we focus on how revenue distortions, hitting
the whole economy or a specific firm, affect the distribution of profits and social
welfare. One can think of these distortions as any kind of a policy or a shock in
the economy that might favour some firms over others (taxes, subsidy, regulations,
natural catastrophe). We put emphasis in this paper on the role of the network in
mediating these effects. A distortion affecting firm i, such as a tax or a subsidy, will
not only affect firm ¢, but will also have an indirect effect on all firms in the system.
How large this effect will be depends on the structure of the production network
and the share of intermediate goods in the production function, a. The analysis
of the effect on the distribution of profits is important because the profit of a firm
determines the probability of firm’s survival in economy. Changing the distribution
of profits will change these probabilities. This will in turn affect the topology of the
network in the future. Due to these long run effects, it is important to be able to
predict changes in the profit distribution after distortions.

In this section we shall not assume that the revenue decrease resulting from a
distortion is transferred to the consumer (as will be the in the case of taxes), or that
for financing a subsidy the social planner collects the resources by taxing consumer
or other firms. The reason is that we focus on short term effects of general revenue

distortions, which for example can be a natural catastrophe, or some other type of
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shock that affects the revenues of firms. In Appendix C we discuss the case when
the overall budget constraint must be satisfied. We argue that imposing the budget

balance constraint does not significantly change the analysis.

2.3.1 Common Revenue Distortions

In this subsection we consider a case when the distortion is common to all firms
in the economy. The distortion changes the revenue of all firms in the economy in
the same proportion 7. One can think of this type of distortion as an aggregate
shock which has the same effect on revenue of every firm. After the distortion 7 the

revenue of a firm 4 becomes:

«

ji
JEN;

Parameter 7 in (2.5) can take positive and negative values. A possible interpre-
tation in the first case is to think of it as a tax; and in the second, as a subsidy. In
what follows, we shall focus on the case 7 > 0. The case when 7 < 0 is completely
analogue.

The vector of centralities after common distortion 7 is defined (see Appendix A

for derivation):

s(r) = 15_mawh +(1 - 7)aGs(r) = s(r) = 1B_mo‘w(1 —(1-7)aG)'h (26

In this subsection we are interested in how the vector s(7) depends on 7.
Since function s : [0,1] — R™ is differentiable, our first step is to examine the
properties of % (the first derivative of vector s(7) with respect to 7). Taking the

derivative we get:

ds ds ds _1
i —aGs(1) + (1 — T)OJG% = = —a(l = (1 —71)aG)"Gs(T) (2.7)

It is clear from (2.7) that the profit of all firms will decrease when 7 > 0 increases.

The extent of it depends on the structure of the network.

1—
ﬁ, so the

total decrease of profit will not depend on the structure of the network, but only on

Note that for 7 > 0 we have, normalizing w = (3, that 1’s(7) =
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2.3 Distortions and the Role of Network

share of intermediate inputs in the production function, o and distortion 7. So, as
one could expect, the revenue distortion 7 > 0 will decrease the consumer’s income,
and the decrease will be equal to (7 €1[0,1—al.

To examine the effect of the common distortion on the distribution of profits (in
particular its diverse impact on different firms) it is more useful to do the following
exercise. We normalize w = %B =0 (1 + %) Assume also for simplicity
that all goods are consumption goods. This is without loss of generality for the
analysis below and it only simplifies notation. With this normalization, sum of
profits will remain constant (for any level of 7 will be equal to 1) and the effect on
relative profits will be more clear.

The following proposition holds.

Proposition 2.3. The marginal effect of a common revenue distortion on the cen-

trality of firm i

dSi
e Zm” — ns;(7)) (28)

is larger for firms that sell higher share of output (directly and indirectly) to firms

with high profits. Common distortion will have a non-monotonic effect on relative

profits

Proof. See Appendix A O

In Proposition 2.3 m;;(7) denotes (i, j)-th element of matrix (I — (1 — 7)aG) ™!
Recall that m;; measures the contribution of node j to the centrality of node i.

Due to the normalization we use, the sum of the centralities will always be 1.
The expression (2.8) in Proposition 2.3 is informative about the relative movements
of the centralities caused by distortion 7. First note that the derivative depends on
the global properties of the network. The sign of the derivative is ambiguous, and
it will be negative if the contribution of nodes with above average centrality® to the
centrality of node 7 is larger than the contribution of nodes with below than average
centrality. If the profit of firm k depends more on firms that make high profit, then
the decrease in demand for good k will be higher due to common revenue distortion,
decreasing profit of a firm ¢ more. If, however, the profit of a firm k& depends on the

firms that earn low profits - the effect of the revenue distortion on firm k’s profit

5Due to the normalization average centrality is %
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will not be so high. In other words, when the market for a good k is composed of
firms which earn high profits, then the effect of the common distortion will be larger
compared to the case when the market for a good k is composed of firms with below

average profits.

As the centrality of a node depends on the magnitude of distortion 7, the sign
of the derivative in (2.42) also depends on 7, which can make s;(7) non-monotonic.
This results in an interesting consequence illustrating the complex effect of the
network structure - under common distortion, the distribution of profits can signif-

icantly change. The following simple example illustrates this effect.

Example 2.1. Consider the production network in Figure 2.2 (it is assumed that
all firms produce a consumption good and the arrows indicate the direction of flow

of intermediate goods).

o;_ V?\
9 6 5 Q1
o4 i yO———— >0 »0= 0O
/
alt /
@ U
O

Fig. 2.2 Example common distortion - network

We calculate the centrality for every node for values T € [0, 1] which is graphically
represented on Figure 2.3. The graphic illustrates the changes of the relative ranking

of centralities when all firms are hit with the common revenue distortion:
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Centrality Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9

016

0.14

0121

0.10-

0.08

I I L L L— Digtortion t
02 04 0.6 08 1.0

Fig. 2.3 Example common distortion - centralities

It is also interesting to notice that the effect of a common distortion, keeping
everything else fixed, can be non-monotonic when focusing on a single firm. That is,
the relative profit of a firm can both increase and decrease with the size of common
distortion, depending on the size of the distortion. This is illustrated in Figure 2./,

depicting changes of the centrality of node 1 in the network in Figure 2.2.

Centraity of node 1

0.118 -

0.116 -

0.114 -

0.112

L . L L Distortion t
02 04 0.6 0.8 1.0

Fig. 2.4 Example common distortion - centrality of node 1
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2.3.1.1 Utility

The second question of interest is how welfare behaves with common distortion 7.
In Appendix A we derive the expression for the log utility of consumer with common

distortion 7, which is given with:

1
11—«

logU(1) = (£ — 1) logn + log(1 — a)aﬁ +

<(a +r—=1) v (0)logr; — (1 —a—8) > v;(0)logvi(7) + (o + 3) log(1 — 7'))

7 7

Where v = gs, that is v(7) = =%h + (1 — 7)aGv(7)

To see how the utility changes with distortion 7 we take the derivative with

respect to 7. Let us first simplify the expression for di’l—(:). From (2.7), substituting
aGu(T) from the definition of s(7) in we get:
dv(T) /1 -«
— (- (1— . h
dr ( (1=7)aG) (1 -7 (V(T> n )>
— L (= (1= 1a6) () - v(n)
1—7
1 -1
=—7— (1= =7)aG) " =1)v(r)
And for particular 7:
dv;(7) 1 -«
a2 (Z (e (r) — Zmij<r>) (2.9
j j
Note that d”;—f) < 0 as v;(1) > =2 by the definition of v(7). Finally we can
write:
dlogU(T) 1 vi(t)  a+p
~ —(l—a- (0) 2
dr 1—a< (I-a B)Xizv<)vi(7) 1—7

where v}(7) given with: (2.9).
It is interesting to note that there will be two opposing effects here. The
first one is positive, and comes from the fact that there will be a decrease in

the original ’entropy’ part of the utility function due to changes in centrality vec-
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tor, raising utility (see equation (2.4). This effect is captured with expression

—(l—-—a—-0)Y,; v,(())zigg The second effect is the direct negative effect of the

distortion captured with (o + $)log(l — 7). Numerical calculations indicate that

the total effect of distortion will always be negative. However, the magnitude of

the effect depends on the network structure. The importance of the network is cap-

tured with: — 3, vi(O)Z%E:), which can be interpreted as a measure of resilience of

the network to this type of distortions.

2.3.2 Firm Specific Distortions

In this section we consider firm-specific revenue distortions. We discuss the case
when the revenue of a particular firm ¢ is distorted, and again denote the distortion

with 7. In this case, the centrality equation becomes (see Appendix A)

1—
s(7) = (BS)w}lJrOz(GﬁLQ(T))S(T) (2.10)
Where:
—guT
0 —g1T 0 g.l
0 —(o; T .0
Q(7) = 9.2 = — 9T (0 1 0) = Te
0 —GniT 0
_gniT
(2.11)

We use T to denote the vector with element j equal to —g;;7. In the fully
symmetric model (all intermediate goods have an equal share in the production
function), g;; = 1/deg™(j) when link (7,7) exists. We shall proceed with general
entries g;;, assuming the normalization condition )_; g;; = 1. The symmetric case
will be discussed later. Note that the analysis can be done with the more general
formulation considered in section 2.5, as the only crucial part of the analysis is that
the distortion hits a single firm, so there is a rank 1 update of the matrix G.

Before we proceed, let us state a known result from Linear Algebra known as

the Sherman-Morrison (or sometimes Sherman-Morrison-Woodbury) formula:

Theorem 2.1 (Sherman-Morrison formula). Let A be a nonsingular n-dimensional
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matriz, and c, d two n-dimensional vectors such that 1 +d’A~tc # 0, then

A7led’ A7
nN—-1_ p—-1 __
(A+cd)"=A TTdAic
Proof. See (Sherman and Morrison, 1949) or (Hager, 1989) O

The following result holds:

Proposition 2.4. Let 7 be a revenue distortion of firm v in network G. The change

in the vector of centralities due to this distortion is:

(I — OzG)_lG[i]
1 + aTt Z?:l gjimij

As =s(0) — s(7) = ars;(0) (2.12)

and thus determined with intercentralites of the direct suppliers of affected firm.

Proof. See Appendix A O

The expression in the numerator of (2.13) captures the change of centralities of
other nodes in the network due to the decrease in the demand of firm ¢ for the pro-
duction inputs. The elements of the vector Gif; are the shares of intermediate inputs
in the production of good 7. How large the decrease in demand will be, depends on
the direct effect of the distortion 7 on the revenue of the firm i (7s;(0)), corrected
by the term in denominator (which captures the extent in which the suppliers of
firm ¢ contribute to the centrality of firm ¢ in the distorted network). If the cen-
trality (revenue) of firm i is more due to its direct suppliers than other nodes in the
network, then the effect of the change in the revenue of firm ¢ will have a smaller

effect on the centralities of the other nodes in the network.

The effect of the distortion propagates upstream through the network - it is
demand driven. This is captured by the expression in the numerator of (2.12)
([ — aG)_lG[i].

For a specific firm k, the expression (2.12) has a form:

n
j=1Y5ik;j

1 + aTt Z?:l gjimij

Asg = s;(0) — sx(1) = aTs;(0) (2.13)
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which in the symmetric case takes a form:

1
Z:]'ENZ-Jr 9jiTlk; deg™ (1) ZZJGNjL Mg
= ars;(0)

Asp = ats;(0
k ( )1+O‘szeNj G5iMj 1+0¢7‘deg+ deN+ mi;

ZjeN+ M

deg* (i) + at Z]GN+ My

= ats;(0)

Let us compare the effect of the distortion 7 hitting node ¢ on two arbitrary
nodes k and [. We get:

1
As, — As; = (0 S —my; 2.14
Sk s1 = atsi( )1 T ar ZjeN.* G (mkj ml]) ( )

The equation (2.14) states that the distortion of firm ¢ shall decrease the profit of
firm k£ more than the profit of firm [ if in-neighbours of firm ¢ (firms that supply

intermediate good to i) have a higher effect on the centrality of firm & than on firm

.

2.3.2.1 Utility

As shown in Appendix A, utility of the consumer after distortion of firm ¢ is given
with:

logU = (£ — 1) logn + log(1 — a)at e +

1 i - <(a +r—1)> v;(0) logrl-)

)

+1ia < (1—a-2 Zvl Ylogv; (1) + (o + 5)v;(0) 10@3(1_7'2‘))

The negative effect of the distortion will be the highest when firm with the
highest centrality is distorted, as captured with (a + 5)v;(0)log(1 — 7;) < 0. The
positive effect of the distortion is captured with —(1 —a — ) >=; v;(0) log v;(7) > 0.
Heuristically, this effect will be maximized when the distorted firm has a high effect
on the centralities of nodes with high centrality. Thus, the importance of the node,
in the sense of its effect on social welfare when distorted, is determined by its
centrality and intercentrality (how important this node is to centralities of nodes in

the network”).

"See the definition of intercentrality in Appendix B
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2.3.3 Link Updates

Updating weights of the existing links, which happens in the case when the produc-
tion technology of a firm changes so the shares of inputs in the production function
change, can be analysed using the same approach as in the previous subsection. The
results will be analogous to the results in Subsection 2.3.3. In this subsection we
consider a different type of a link updating - adding/deleting links between firms
and adding/deleting links toward the consumer. We characterize the effects of this

type of change in the network topology on the profit distribution and welfare.

2.3.3.1 Adding and Deleting Links Between Firms

Adding a link in the production network corresponds to a situation in which an
innovation causes the need for an additional input, and the new input is acquired.
Deleting an in-link corresponds to a situation when the production process changes
so the input in question is no more needed for the production. Let us focus on the
situation when a link is created. So, consider a situation when link j — i is created
with the weight g;;. Then, two effects will take place. First, firm j is now selling its
product to firm ¢ directly, and indirectly to all firms downstream from firm i. The
second effect is that firm ¢ will change its production technology by adding a new
input. This means that, in general, all weights gi;, k& € N;" will change. Therefore,
the demand for all other intermediate goods by firm ¢ will change. Let us denote
these new weights with g, k € N

Due to complex interaction it is not easy to see the effect of the addition of a link
to a centrality of a node incident to that link. The following proposition partially

answers this question:

Proposition 2.5. Let G be a production network, and G a matriz created from G
by adding link (j,1). Then the profit of firm j will not decrease, while the profit of

firm @ can either decrease or increase

Proof. A direct consequence of Theorem 2.4 in Appendix D n

Adding an outlink from firm j basically means increasing the market for good
j, and one might expect that in this case the profit of firm j will increase. Adding
an inlink to a firm ¢ means adding an additional input for the production of good

i, making it more complex. This might, but doesn’t necessarily, increase the profit
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of firm i. The following example illustrates a situation in which adopting a more

complex technology decreases the profit of a firm.

Example 2.2. Consider a change in the network as in Figure 2.5. It is assumed

that all nodes produce a consumption good.

Fig. 2.5 Example adding a link - centrality

The graph on the right hand side is created from the graph on the left hand side by
adding link 1 — 4. This change will decrease the centrality of node 4. The resulting

vectors of centralities are

0.1000 0.1790
0.3265 0.2863
Sr = S| = (2.15)
0.2960 0.2718
0.2775 0.2630

Let us now discuss the exact effect of adding a link on the vector of centralities.
When (j,1) link is added, in general all other weights g; will adjust. Let us denote
with G the adjacency matrix after the creation of link (7,1), and write G=G+Q
where () is defined as:

a1
q1 .
0O ... ¢@ ... 0 ’
Q(T>: .. .2 . N qi (O oo 1. 0) :qei’ (216)
0 . n 0
dn

We shall use § to denote the new vector of centralities after a link (j,7) is added,
and use s to denote the vector of centralities before the addition of (j,4) link. The

following result holds:
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Proposition 2.6. Adding entry (i,7) to adjacency matriz G creating matriz G =
G + Q where Q is given by equation (2.16) will cause change in the centrality of a

node k equal to:
2Nt Mkt + qiMmig

I+« ZteNj Mt + M

S — Sp = —Qs;

Proof. See Appendix A n

In the fully symmetric case (all goods enter the production function with an

equal share) g;; = ﬁ and therefore qi; = deg+1(i) o deg{r T =~ deT N dleg+ GEEY) for

E#iNgw >0, q; = m and gy; = 0 for k # j A g = 0. Here deg™ (i) is the

indegree of node 7 in network G. In this case (2.52) becomes:

1 1 .
" degt (i)2(degT (i)+1) EtGN;— Myt + deg+(i)+1mk1

S — Sp = —Qs;

1 1
| = e @ Zteny Mit + g i
= as; 2oteN+ (i) Tkt — deg™ (i)*mu;
Zdeg*(i)z(deg(i) +1) = a Xpen+) Mar + adeg™ (i)?my;

(2.17)

The expression in the denominator of (2.17) will always be positive, as o 32y y+ ;) M <
1 and deg™(i)?(deg(i) + 1) > 1. The expression in the numerator will be negative if
my; is high enough. This means that if the contribution of node j to the centrality
of node k is high in network (G, then adding link 7 — ¢ will increase the centrality
of node k. As we have seen before, adding link 7 — ¢ will increase the centrality
(profit) of firm j. This will, in turn, increase the centralities of all firms which cen-
trality depends on the centrality of firm j. Specifically for firm k£, this effect will be
proportional to deg™(i)*my;. However, the adjustment of links (¢,i) t € N;" (the
decrease in weight from gy to gu + qi;), will have a negative effect on the centrality
of firm k through direct suppliers of firm ¢, as captured by the term ;¢ n+ ;) Mk In
the numerator of (2.17). Depending on which effect dominates, the centrality will

increase or decrease.

Utility

The effect adding a link on utility is ambiguous. Although, one would intuitively
guess that adding a link increases utility, this is not the case. This will not be the
case even when there are benefits from the production complexity (k£ > 0). The

reason is that the effect decreasing the entropy — > ;cny v;logv; might dominate if
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the addition of a link makes distribution of centralities "less uniform’. The following

example illustrates this.

Example 2.3. The network on the right hand side is created from the network on
the left hand side by adding 5 — 3

/
/

£ 4 L / el
\/ 2P

Fig. 2.6 Example adding a link - utility

The consumer’s utility will decrease with this change even for k > (1 —«) (recall
that when k > 1 — « the complete network mazimizes social welfare, and k > 0

indicates that there are benefits from the production sophistication).

2.3.3.2 Adding Links Toward Consumer

Suppose now that firm ¢ starts selling its product to the consumer, so the number
of consumption goods increase from m to m + 1. This will result in a new centrality

vector § defined with:

. w(l—a) Al o) —
S_iﬁ(m—i—l)([ G) " (h+e)

m 1 w(l—a) N
I —aG) e
m+1s+m+1 o] (I—aG)"e

Where e; is vector with 1 on i-th position, and all other elements equal to O.
The new centrality vector § will be the convex combination of the old vector of

centralities, and the vector of the centrality increases due to introduction of the new

consumption good ¢. The second effect is captured with m%ﬂw(lﬁ_ @) (I —aG) te; and
thus, for some arbitrary firm k, proportional to the contribution of node i to the
centrality of node k.

Let v now be a general taste vector with elements 7; equal to exponents ~; in

utility function (2.1) the following result holds:

Proposition 2.7 (Linearity). Let (¥")icr be a family of taste vectors and (s');cr be
the corresponding family of centralities s* = W(I —aG)71yt. Then, the centrality
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induced by convex combination of preference vectors is just a convex combination of

corresponding centralities weighted by the same weights
Proof. Omitted O]

The immediate consequence is that if we calculate centrality for vectors e; i =
1...n then we have a basis to express centrality for any preference vector from R".
In the case when the consumption basket remains the same (no additional con-
sumption good is added), but preferences of consumer change as captured by change

of vector v to v + €e;, the change in centrality vector is given with:

w(l — «) w(l — «)
B 8

where elements of m; are my; k = 1,...n - contributions of node i to centralities of

As = (I —aG) lee; = emy (2.18)

nodes k =1, ...n.

2.4 Push vs. pull effect

A.O. Hirschman in (Hirschman, 1958) has conceptually stressed the importance of
backward and forward linkages in promoting development. Backward linkages are
demand-driven stimuli by which a firm (sector) generates demand that helps develop
other firms (sectors). In contrast, forward linkages are associated with the supply
effect that some firms may have in lowering the costs of production of other firms
which rely on the former for inputs. In this section we explore this idea in some
detail in the context of our model.

Before we discuss the push and the pull effects of the distortions considered in
this paper, let us consider two different types of shocks and the way they propagate
trough the network - technology shocks and taste shocks.

2.4.1 Technology Shocks

In this subsection we consider a situation in which firm ¢ is affected by a technology
shock which corresponds to a Hicks-neutral technical change. That is, we consider
a situation in which A; changes to A; + € for some firm ¢ in (2.2). We first argue
that the centrality vector s will not change as a consequence of this type of shock.

To show this, let us define matrix A as:

26
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A 0 0
a0 "
0 0 A,

and rewrite the centrality equation as:

1l -«

A~ =
S ﬁm

wh + aGAS (2.19)

where A;S; = s;. So §; is a production net to technology-neutral parameter A;.
As we already know, this equation has the unique solution with respect to s = As,
which is: s = %’—maw([ — aG)7'h. For fixed matrix A this uniquely determines the
vector S.

Suppose now that a technology shock hits firm ¢ resulting in a change from A;

to A; + e. Denoting the resulting matrix A with A, the equation (2.19) becomes:

— 11—«
A5 —
S Bm

wh + aG A8 (2.20)

The equation (2.20) also has the unique solution with respect to s = AS. The
equations (2.19) and (2.20) are identical with respect to s, implying that change in
A; will only affect § in the equilibrium, but not the centrality vector s. Furthermore,
the demands for inputs (2;;) ;¢ v+ and ; in the equilibrium (as given with equations
(2.26) and (2.27)) will not change. This is because s; = p;y; will remain fixed.
Since s; = p;y; will not change, y; is defined with (2.2), and the demands for inputs
will remain the same, the direct effect of the technology shock hitting firm ¢ must
be reflected only in price p;. The shock will not propagate upstream through the
network, as the demand for inputs will remain fixed. But as p; changes in the
equilibrium, so will the demand for good 7 by all firms that use ¢ in the production.
This effect will propagate further downstream through the network (in the direction

of the commodity flows) and will be mediated by the price adjustments.

To show the dynamics of the price adjustment, let b be the column vector
with elements b, = — (log Ai— (1 —a—pB)logs; +a);gjlog gij). Normalizing
pflogw + B =0, where B = alog o + S log 3, from (2.31) we get:
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logp = (I —aG’')"'b (2.21)

The equation (2.21) looks like an expression of the vector of Bonacich centralities
in the transposed production network (the centralities calculated in the direction of
the money flows). But, the vector b contains vector s and thus depends on p;.
Therefore, (2.21) does not define the prices as the centrality vector in network G’.
However, we are not interested here in an equation that determines the vector of
prices as a function of exogenous variables 8, but in the adjustment of prices in the
equilibrium as a consequence of the technology shock. As we have shown above, s
will not change in the equilibrium due to the technology shock. Thus, we can use
(2.21) to study the effect of the technology shocks on the equilibrium price vector
as if b does not depend on the prices. When A; changes to A; + ¢ the change in the
prices of all goods is:

Alogp = (I — aG') e (2.22)

where € is a column vector with € as i-th element, and zeros everywhere else. For a
particular good k this change will be equal to mj,e, where mj; is the (k,)-th element
of the matrix (I — aG’)~'. Recall that m); is proportional to the effect of node i on
the centrality of node k ® in matrix G’. In other words, the effect of the technology
shock of firm ¢ on prices of all other goods in the economy is determined by the
upstream intercentrality of node ¢ (the intercentrality of node ¢ in the network G).

Since the prices of all goods in the network will in general change as a response
to the technology shock of firm ¢, and s will remain fixed in the equilibrium, the
outputs of all firms in the economy will in general change. When the price of good

k changes from pg to p, + 0 in the equilibrium, the equilibrium output will change

Pk
from y; to o5 Yk

Remark 2.1. It is useful to note that the Bonacich centrality of a node in network
G is equal to its intercentrality in network G'. Indeed, let s = h + aGs define
the centrality in network G. Thus we have s = (I — aG)~th.  Transposing, we
get s' = h' + as'G’, and therefore s' = h'(I — aG")™t, which defines vector of the

intercentralities in network G’

8We can obtain such an equation by simply replacing s with expression s = %‘—maw(f —aG)"th

9See Section 2.2 for the discussion on the Bonacich centrality, and Appendix B for the definition
of the intercentrality adopted in this paper
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From Remark 2.1 and the discussion in this subsection it follows that the mag-
nitude of the effect of a technology shock hitting a firm ¢ is determined by its
intercentrality in network G’ (its centrality in network G). We can thus say that
the magnitude of a push effect caused by a technology shock is determined by the
centrality of the affected firm.

2.4.2 Taste Shocks

Let us now consider the taste shocks in the consumer’s utility function. Suppose the
weight of good ¢ in the utility function increases, increasing the demand for good i.
This will result in higher revenue of firm 7, which will in turn increase the demand
of firm ¢ for its inputs. Thus, the taste shock will propagate upstream and will be
dominantly mediated through quantity adjustments, increasing the revenues of the
firms upstream in the economy. Contrary to technology shocks, taste shocks will
have an effect on the distribution of centralities, as captured by equation (2.18). It
is also worth recalling that the magnitude of the taste shock will be captured with
the intercentrality of the affected good, as discussed in Subsection 2.3.3.2 and visible
from (2.18).

2.4.3 Revenue Distrotions

Let us now focus on the revenue distortion of the type we have discussed in Sub-
section 2.3.2, affecting firm k. One can think of this type of revenue distortion as a
combination of a technology and a taste shock. This comes from the fact that the
demand for inputs and the production of the firm k& will be as if firm £ has been
hit with a technology shock changing Ay, to Ax(1 —7) (equation 2.43). This will de-
crease'? the production of good k triggering the downstream (push) effect mediated
by prices as described in Subsection 2.4.1. Contrary to the pure technology shock,
there is also a taste shock dimension here, as matrix G will change to G + Q(7).
The effect of this change is analogous to the effect of a consumer taste shock - as
basically the taste of firm ¢ for goods it uses as inputs has changed. This shock
will propagate upstream through the network, starting from firm k&, creating a pull
effect. Thus the revenue shock has both the downstream and the upstream effect,

that is, both the pull and the push dimension.

10Tn the case 7 > 0, when 7 < 0 there will be an increase
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The pull effect is visible from equation (2.12) where the part in the numerator
(I —aG) Gy captures the upstream propagation of revenue shock that hits firm k.
The equation (2.12) describes how this distortion affects centralities of all nodes in
the network. Of course, a change in the distribution of centrality will consequently
change social welfare, as discussed in Section 2.3.

The downstream effect is not visible from the expression (2.12). This is due to
the fact that the technology shock will not change the distribution of centralities.
The downstream effect will be mediated through the prices as described in (2.21).
When firm £ is distorted, entry k of vector b in (2.21) will change as the term
(o + B)log(1 — 7) will be added to ¢ — th coordinate.

In light of Hirshman’s discussion of the pull vs. push effect we can say the
following: The revenue distortion of firm ¢ has both pull and push effect. The push
(downstream) effect is mediated through prices, and is captured with equation (2.21).
The pull (upstream) effect is mainly quantity mediated, and propagates upstream
through the network, affecting the centralities (and thus the profits) of firms in the
economy in the way described by equation (2.12).

2.5 General Formulation of the Model

In this section we provide a more general formulation of the model, allowing hetero-
geneity across nodes in the production function. We only require that the production

function is Cobb-Douglas. So we write the production function of firm i as:

yi = A0 | T 2% (2.23)
JENF
and o; + 5; < 1.
The utility function has a general form: U(c) = A.Y; v;log(c;), with v; > 0 Vi €
N
Then, the demand of firm ¢ for intermediate good j is:
_ piaigjiy'

Zji i

Pj

and the demand for labor:




2.5 General Formulation of the Model

The consumer’s demand for consumption good 1 is:

Yiamitw  w+ Y5 (- a; = B)py;
L >

The profit of a firm ¢ can now be written as:

T = (1 e Bz‘)piyz‘

Market clearing condition for good i states:

n

si = iw +5 Y _(L—a; = B)s; + D a;gi8; (2:24)

j=1 j=1

where S; = Pi%i-

Before proceeding let us introduce some additional notation:

gl l—ar =B o 0 ... 0
1 —a9— 0 a ... O
=" p= X % | anan = o
The market clearing condition for every good, in the matrix notation, can be
written as:
s =wy+vp's + GRs (2.25)
and thus:

s=w(l —yp —GN) 'y

Let us look at the matrix vp’ + GR. Note that the sum of column j of matrix
vp' is (1 — o — B5) Xpe1vi = (1 —a; — ;) < 1. The sum of column j of matrix
GN is 3, = grja;j = a; < 1. Then the sum of column j of matrix vp' + GR is
0 < 1—B; < 1. Furthermore, it is clear that all elements of matrix yp’ + G are
positive. Thus, matrix vp’ + GR can be seen as a submatrix of a column stochastic
matrix. It is implication of Perron Frobenius theorem that the spectral radius of
matrix yp’ + GN is smaller than 1. This implies that I — vp’ — GN is invertible (as
(I —~p —GR)™1 =32 (yp' + GR)' converges)

{ % if i is a consumption good

Settinga, =aVie N, 3, =pVi e Nand~y; =
0 otherwise

equation (2.24) becomes (2.28).
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2.6 Conclusion

This paper offers some new insights on the complex effects the network structure

has on profits of firms and the welfare in competitive equilibrium.

We show that the position of a firm in the production network determines its
revenue and profits in the equilibrium. The profit of a firm is proportional to its
Bonacich centrality in the network, where the centrality is calculated in the direction
of the commodity flows. The consumer preferences determine the weight vector
(taste vector) of the Bonacich centrality. When the benefits from the production

sophistication are large enough, the complete network will maximize social welfare.

The network mediates the effects of the distortions on the competitive equilib-
rium. In the case of aggregate shocks (distortions that affect each firm in the econ-
omy in the same way), the welfare and the distribution of profits can significantly
change depending on the network structure. Thus, even though a distortion affects
each firm in the same way, it will alter the set of market 'winners’ and ’losers’, and
thus the set of firms that will due to the low profit exit the economy in the future.
In the long run, the common distortions will therefore significantly alter the produc-
tion network topology. The same thing happens when a specific firm is distorted.
The effect of the distortion of a single firm will propagate through the network both
upstream and downstream creating the pull and the push effect. The push effect is
mediated by prices and its magnitude is determined by the centrality of a firm in the
network. The pull effect is mostly quantity mediated, and its magnitude depends
on the intercentralities of the direct suppliers of the affected firm.

An innovation of a firm (a change in the technology sophistication) will not nec-
essarily increase its profit. This will be the case even when the output is increasing
with technology sophistication, keeping everything else fixed. Finding a new market
(i.e. a firm that will use a good as an input) will always increase the profit of a firm.
The effects of the innovation of a firm ¢ will propagate through the network creating
the pull and the push effect. These effects will propagate through the network in
the same way as the effects of firm specific revenue distortions.

The model in the general case is rich enough to accommodate the heterogeneity of
firms in a number of dimensions and can therefore be used in the empirical analysis.
The empirical counterpart of this paper is work in progress.

The results of this paper indicate that the distortions, aggregate and idiosyn-

cratic, have an important effect on the distribution of profits in the economy. As
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a firm’s probability of survival in the market is an increasing function of its profit,
then the effects of the distortions on the topology of the network and the welfare is
large in the long run. It is very important to take this into account when formu-
lating taxes and subsidy policies. The analysis the dynamic aspect seems to be a

promising direction for the future.

2.7 Appendix A: Proofs

2.7.1 Benchmark model

Definition 2.3 (Competitive equilibrium:). A competitive equilibrium of economy
G = G(N, L) is a set of prices (p1,p2, .., Pn, W), consumption bundle (¢y,ca, ..., Cm),

and quantities (li, yi, (2ji) jen+) Such that:

e The representative consumer solves

m

1
mazx Acm) [ e
—1
' n
s.t. Zpici:w—l—ZWk
ieC k=1

e Firms maximize profits, that is, solve:

maxr - PiYi — Z PiZ4iGji — wl;

(#5i)5:ls —
JET;

«

JEN;
e Markets for labour and intermediate goods clear:
Yi = ZZZ'J' +Ci \V/(’l [~ N)
J

=1

Proof of Proposition 2.1: The first order conditions for the maximization problem
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of firm ¢, with respect to zj;; are given with (V7)

ji—1 . Digji
Aipiagjilfz;g] H z:igk =Py == Zji = ! Aﬂy
K,k p;

7

and with respect to labour /;:

AipiBl] [[4 =w=1i= %yi
w
k

and the demand for final goods is V(i € S):

n

mp;

C; =

where m is the number of consumption goods. Profit of firm i is thus

bicgji piP
Wizpiyi—z<]?j ‘]3/1')—71) yi = (1 —a— B)pwy;
j

j w
Market clearing for labour gives (using (2.27)):
Zli =1 <:>6sz% - w
which gives:
o1 (I — o= B)pjy; +w _ (1—a)w

mp; Bmp;

and we can write market clearing for good i as:

C; =

Z2; = Cihi + Zzij =
J

(1 —-a)w
————hi+ta) gys;
fm 7

S; =

(2.26)

(2.27)

(2.28)

where s; = p;y; is a revenue of a firm i, and h; = 1 if good 7 is a consumption

good (there is a link from firm i toward the consumer); otherwise h; = 0. Note

that we assume symmetry in consumption goods here (See Section 2.5 for a more

general formulation). Using vector notation, we write the system of market clearing

conditions for all intermediate goods as:
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s:(l;ng)zuh—f-ozGS@(]—aG)s:(l;lg)Mhé
SZW(I—QG)_Ih

wn

where h is a column vector with elements h; as defined before. We shall also
define v =12 (I — aG)'h, sos = gV

This gives

m=(l-a-fs=(1-a-pF—

2.29
iy (2:29)
Suppose now that all goods are consumed (we call this the benchmark case).
Then h =1 Since a < 1 and G is stochastic we can write

vV = 1—a (Zaka>1
n

k=0

Note also that 1’G1 = n (the sum of all elements in matrix). Since the product of

two stochastic matrices is stochastic, we have that 1’G¥1 = n Vk € N this gives:

> 11—«
( ) kz:;] 1—«a
Now:
wn wn " wn
s=—v=>1s=—¢& = ——
nm/3 mp ;p v mp
for j — th element we have
wn Sj pjyj
P mp T T T (230)
which completes the proof.

Proof of Proposition 2.2: To calculate utility of the consumer we proceed as fol-

lows. Plug in the first order conditions for labour and intermediate goods into the
production function:
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yi = A (M%)ﬂ (pzagﬂ )
w

8
[T (5" )ui=A (plﬁ ) I (piegjivi)* " =
J

Nt
JEN;
agji
HjeN;r Pj
Di

o (8Y
si=A; | —s; | I (0493'7;51')
w ;
J

Taking natural logs we get that for every firm i:

«a Z gjilogp; +log s; —log p; = log A;+

JET;
B (log 8+ log s; — logw) + Y gji (log o + logg;ilog s;) <
J
e} Z gjilogp; —logp; =log A; + B — (1 —a — 3)logs; — Blogw + azgji log g;;
JET; J

(2.31)

Where B = aloga + Slog 8

We consider here the benchmark case (h = 1), and write system of (2.31) in

vector notation (Vi € N). After some rearranging we get:

(1—a)llogw = (a+k)logr—(1—a—p)logv+a (I — aG')logp+u+aH'l (2.32)

where r; = 32,1, is the indegree of node ¢ in the binary adjacency matrix
of network G (number of intermediate inputs that firm ¢ uses in the production).
Vector u is a vector with each element equal to: aloga+ flog 5+ (1 —a — f3)log 5
(and we use that s; = %vi, which follows from market clearing conditions). H is the
matrix with (¢, 7) element equal to g;; log g;;. Recall that 4; = r{*".

Premultiplying (2.32) with v/ = .=2h'( — aG’)™" we get:
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_al’logp+v’1u+av']:l’1 &

1
(1—a)v'llogw = (a+ k)V'logr — (1 —a — B)v'logv + «
(1—a)logw = (a+£)> vlogr;— (1—a—p szlogvz

o —

n

2
- Z log p; + Z Zvigji log gj; +u

i

We normalize the prices }_;logp; = 0. Furthermore, for the symmetric case g;; =
gri = 1/r;¥(j, k € N;7), we have:

ViGii lo i = V; lo l = — Vi lo T
Z Z 95i 108 9; § : & > g
i J % ? %

We can finally write:

(1-a)logw = (a+r—1)> vlogr;—(1—a—p)Y vlogv;+aloga+(1—a)log B

Recall that:

Combining two previous equations, we get:

1
logU = (¢ — 1) logn + log(l — a) —log § + 1 & ((a—i—/s— 1)Zvilogm~>

1
11—«

+ (—(1—@—5)Zvilogvi+0¢loga+(1—04)10g6> = (2.33)

logU = (€ — 1)logn + log(1 — a)aT=

1
((a +r—1)) vlogri—(1—a-— Z v; log vz> (2.34)

+l—oz

For a fixed n, let us find the welfare maximizing network topology. We write
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O(z,v) =37, v;logr;, and define function U as:

U(y) = max Z x;logy;

(xi)?:p(yi):'l:l i=1

S.t.
(2.35)

Syi=gAd z=1
i=1 i=1
yi<n—1Ay; >21ANz;>0,1=1,...n

One can easily show that function W is strictly increasing in y. For any graph
with n nodes and 7 links (3;r; = 7)we have ®(r;,v;) < U(r) < ¥U(n(n — 1)).
Note that for complete network V(i,j € N)(r; = rj) = ®(v;,r;) = Y(n(n — 1)).
Thus, complete network is the unique maximizer of ®. The unique minimizer of
®, in the space of strongly connected networks, is the ring network. The value of
expression — Y " v; log v; which is in fact the entropy measure of simplex vector v
will be maximized when v; = v,;V(i,j € N), which will incidentally be true in the
case of the complete network and the ring network. It fallows now that utility will
be maximized at the complete network when o« — x > 1 and that complete network
will be the unique network that maximizes consumers utility. When o« — x < 1 the
ring will maximize social welfare. When o — x = 1, then any network such that
centrality of each node is equal will maximize social welfare. This will be the case

for the subclass of the class of regular strongly connected networks. O]

2.7.2 Common Revenue Distortions

In the case of common distortion, demands for labor and intermediate goods (2.26)
and (2.27) become:

zi=(1-r7 )piigji Yi
J
pzﬂ
li=(1- i
(1—7) Y
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We can write profit of firm 7 as:

p@ozg‘z- plﬁ
(1) = (L=T)piyi — > pi(l—7 p,j yi—w(l=7)"

]€N+ J

(1 - 7—)(1 —a— 5)pzyz

(2.36)

From the labor market clearing condition, we have that >°"' | p;y; = ﬁ

Then we can write:
1-71)Yo(l—a=PBpy;+w  (1—a)w

mp; Bmp;

and we can write market clearing for good i as:
Z; = Cihi -+ ZZZ']' =
j

S; = (1- 5 h —i—ozz T)Gi;S;

Using vector notation, we write system of market clearing conditions for all inter-

mediate goods as:

(1—a)w

mB (I—a(l—7)G)"'h

827wh+a(1—T)GS:>S:

which gives the expression for centrality with common distortion.

As for utility we can write equation (2.31)

@ gjilogp; —logp; = log A; + (a + B)log(1 — 7) + B
—(1—a—p)logsi(t) — Blogw+a > gjlogg; (2.37)

J

and in the vector notation:

(1 —a)llogw = (a+ k) logr + (o + ) log(l — 7)1
—(1—a—=p)logv(t)+ (I — aG)logp+u+aH'1 (2.38)

Premuliplying (2.38) with v'(0) and using the fact that v/(0)1 = 1, we get:
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(1—a)logw = (a+r—1)> v(0)logr; — (1 —a—B)>_ v;(0)logv;(7)

i %

+aloga+ (1 —a)log 5+ (a+ B)log(l —7) (2.39)

where we have used the normalization > ;" ; log p; = 0 and assumed that all goods are
symmetric in every production function (gj; = gi; ¢,k € N;7) as in the no-distortion

case. The consumer utility then can be written as:

1
l—«

((a +r—=1)> v (0)logr; — (1 —a— ) > v;(0) log v;(7) + (o + ) log(1 — 7'))

7 7

logU(7) = (£ — 1)logn + log(1 — a)aﬁ +

Proof of Proposition 2.3: Using the normalization w = =4=723 — 3 (1 + %) we

-«

can write:

= :l_(1n_7-)ah + (1 —=7)aGs(t) = s(1) = 1_(171_7)@

s(T) (I —(1-7)aG)'h
(2.40)

and taking the derivative with respect to 7:

ds « ds

= Eh —aGs(t)+ (1 — T)CYGE =

ds (1

7= a(l = (1 —1)aG) <nh - GS(T))
() — all = (1= 7)aG) ()

=« (1_(1[ -(I-(1- T)&G)_1G> s(7) (2.41)

1 —7)a

The expression in the parenthesis in (2.41) determines the sign of the derivative,
and the relative movements of the profit due to common distortion 7. We can further

expand on (2.41) using (2.40) and write:

aGis(r) = — <s<7)—1_(1_7)0‘h>
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and plugging this into (2.41) we get:

ds «Q

= ms(ﬂ - ((I = (1=7)aG) 's(7) - s(7))

_ (1_(1 I—(]—(l—T)aG)‘1> s(7)

1—7 1—7)a

and for a particular firm i:

dSi 1 1 n
i - (1 e —T)OcSi(T) —;mm-(T)sj(T))

= i - (rlz Z:m”(T) - imij(7—>5j<7—))
1 n
- S E = o) (242

2.7.3 Firm Specific Distortions

Suppose now that distortions differ across firms, and let 7 denote the revenue dis-

tortion that hits firm 7. Then the demand for intermediate goods and labor of firm

1 can be written as:

Gi= (1= 7)™ By,
J

L= (-2, (2.43)
w

and for all other firms as (2.26) and (2.27).
We can write the profit of firm i as: m; = (1 —7)(1 —a — 5)p;y;, and for all other

firms j # 4 as: m; = (1 — o — fB)p;y;. From the labor market clearing condition we
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have that 37, ;4 pjy; + (1 — T)piy; = 5. Then we can write:

o — (Z;L:u\j;ei(l —a—B)pjy;+ (1 —71)(1—a—B)py +w) . (1-ajw
" mp; ~ Bmpy,

The market clearing condition for distorted good £ is:
zL = cLhy +szj + (1 — T)Zki =
J#

1—
Sk = (ﬁyj)whk ta (Z 9kjSj — Tgkisi)

J

Using vector notation, we write the system of market clearing conditions for all

intermediate goods as:

s= s a@ s s = M - aG 0
and
0 ... —gut
o= T
0 ... —gur ... 0

As for utility, the equation (2.31) with distorted firm ¢ becomes

aY gjilogp; —logpy = log A; + Sy + B) log(1 — 7) + B
— (1 —a—p)logsi(r) — Blogw + aZgjkloggjk

J

where ;5 is the Kronecker delta.

For all firms we get:

(1 —a)llogw = (a+ k)logr + (o + ) log(l — 7)e; — (1 —a — B) log v(T)
+a(l —aG)logp+u+aHl
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Premultiplying with v/(0) we get:

(1—a)logw = (a+r—1)> v;(0)logr; — (1 —a—3)> v;(0)logv;(T)
J

J

+v;(0)log(1 — 7) + aloga + (1 — a) log 8

and we can write the consumer utility as:

1
l—«

logU = (£ — 1) logn + log(1 — oc)ozﬁ +

((a +r—1) Zvj(O) log rj)

T 1i <_(1 —a—pf) ZUJ‘(O) log v;(7T) + (o + B)v;(0) log(1 — T))

Proof of Proposition 2.4: Using the Sherman-Morrison formula we can write

s(1) = m([ — (@G + ate/’)) 'h

_(I-auw (( I—aG) 'h+ U ZQ_GO)Z;/?[T ii’éé;_??_ h) (2.44)

We shall use s(7) to denote the vector centralities after distortion 7, as we did

before. The first summand of the expression (2.44)

(1 —-a)w

Bm (I —aG) 'h

is equal to s(0). Let us focus on the second summand of the expression (2.44):

(1—-a)w (I —aG@) are/(I — aG)™!
pm 1 —ae/(I —aG) !

(2.45)
which essentially captures the effect on profits of firms caused by taxation of firm 7.
First we discuss the expression in the denominator. Note that e;'(I — aG)™! is the

i — th row in the matrix (I — aG)~!. As before, m;; denotes an (4, j) element of the

matrix (I — aG)~!. We can write:
&'l —aG) 't =—71 Zgﬂmw (2.46)
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if all goods are symmetric in the production function of good i, that is if g;; = ———

deg™ (1)
then (2.46) becomes:
" T
=T ) 9jiMyj = —————= mij (2.47)
]z:; ULy deg™ (i) jeX:N;r j
Let us now simplify the numerator of (2.45). Since %(I —aG) th = s(0) we

can write the numerator of (2.45) as: (I—aG)ate;’s(0). Furthermore e;'s(0) = s;(0).

Using the definition of 7 we can finally write the numerator of (2.45) as:

(1—-a)w

Bm (I —aG)lared(I — aG) ' = —ars;(0)(I — aG) "Gy (2.48)

where G| is the i-th column of the matrix G, that is:

g1
92i
(] — OéG)_lG[i] = (I — OéG)_l :
In—1i
9ni

The k — th element of this vector will be: > i1 my;gji- This is the sum of
contributions of nodes that are suppliers of node ¢ (i.e. gj; # 0) to the centrality of
node k, weighted by g;; - how important j is as a supplier for 7. In the symmetric
case Y i gjiMy; = m ?eNj Myj-

Using equations (2.46) and (2.48) we get:

(1—a)w

I —aG) Gy
_ w1k = 5(0) — arsi () ]
s(7) Bm ( aG — artey) s(0) — ats;(0) [ ar s gy

(2.49)

Thus the change in the centrality vector after the revenue distortion 7 hits only

firm ¢ is given with:

(I — OzG)_lG[i]
14+ ar Z?:l g5i;;

As =s(0) — s(7) = ars;(0)
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2.7.4 Link Updates

Proof of Proposition 2.6:

< (1-aw o1y (- ajw N1

=—(I - h=—"(I - — )""h
§ Bm (I — aG) Bm (I — aG — aqey)

- (I=a)w B 1 (I —aG) laqef(I — aG)™!

= (I —aG)""h+ I~ ae/(I — aG)lq h (2.50)

Let us focus on the expression:
_ _ -1 J(T -1
(1—-a)w (I —aG)'age (I — aG) h (2.51)

fm 1 —ae/(I —aG) q
Proceeding analogue to the analysis in Subsection 2.3.2, we get that the effect

of adding a link (j,7) on the centrality of firm k is:

Zthj QM + @My

1+« ZteNj G + Gy

Sk — Sp = —QS; (2.52)
where s}, is the centrality of k after adding link (j,4) and N;' is the in-neighbourhood

of firm 7 in network G. O

2.8 Appendix B: Definitions

2.8.1 Profits as a Stationary Distribution of a Markov chain

Matrix G in general has elements such that 3°; g;; = 1 Vi so it is column stochastic

matrix. For a column stochastic matrix P we have Px = x for stationary distribu-

tion x. From (2.30) we have >, p;y; = 1's = %. Normalizing w =  we can write:

s = 1_705h1’s + aGs = (1 N aG) s (2.53)
m m

The Matrix 1_7"‘h1’ in the benchmark case will be the matrix having sum of columns
(and rows) equal to 1 — a. The sum of elements of each column in matrix aG is
equal to a. Thus, matrix 1_7°‘h1’ + aG is a column stochastic matrix. The vector
of profits m = (1 — o — 8)s will be a scaled vector of the stationary distribution of

(column) stochastic, irreducible (because we look only at the active firms) Markov
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chain with the transition matrix 1_Wahl’ + aG. In general case, for an arbitrary h

and weights attached to each consumption good this matrix will still be stochastic.

2.8.2 Intercentrality

It is important to quantify the contribution of node & to the centrality of other nodes
in the network. The vector contributions of node k& to centralities of all other nodes

in the network is the intercentrality of node k.

Definition 2.4. Consider a network with n X n adjacency matriz G, scalars o, ¢
and n-dimensional vector h. The vector of intercentralities of graph G with discount

factor a and personalization vector h is given with m(G,a, ¢, h) = (h'(I — aG)™!

So, if k is not a consumption good, this contribution is 0 for every node in the
network. If k£ is a consumption good, than the intercentrality node £ is proportional

to the sum of elements of column k of matrix (I — aG)™".

2.9 Appendix C: Budget Constraint

In the paper we have assumed that revenue distortions are exogenous and come
from outside the system (i.e. revenue losses from the negative distortion are sunk,
and not transferred to the consumer). In other words, we have ignored the budget
balance condition when studying the revenue distortion. We have opted for this
approach, because our primary focus is on the role of the network when studying
revenue distortion of a general kind, and intentionally we were not specific about
the interpretation of the distortion. If we talk about specific distortions, such as a
tax in a closed economy, the budget balance constraint must be satisfied. In this
section we show that imposing this condition will not change the qualitative results
from Subsection 2.3.1 and Subsection 2.3.2.

2.9.1 Common Distortions

In the case of common distortion, the income of the consumer when budget con-

straint is included is:

In = (1_7—)(1—0z—6)Zpiyi+(1_7)26piyi+TZPiyi: wil ot~ 7))

iEN iEN ieN Bl —1)
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So we can write the centrality equation as:

w(l —a(l—71))
Bl —1)

The analysis of the derivative (change of the centrality vector) is analogous to the

s(T) =

h+ a(l —7)Gs(7)

analysis in subsection 2.3.1. For instance, when interested in the relative movement
of the centralities (keeping the sum of centralities fixed), the only thing that will
change is the normalization of wage w, and the results will be exactly the same.
When interested in the absolute movement of the centrality vector (with normaliza-

tion of wage independent of 7) we get:

B0 _ S — aGs(r) a1 - e

B — a1 —all - 1)G) () + S el =76 k=

dz(:) = —all = a1 =1)G) 'G5 + T ! 0=

B - - a( R0 s+ sr) + i —T)<1ia(1 —s(r) =
0oL <(1 —a(1=n6) " s(r) - 5 _27)_(1(1__@(()‘37_ T))s(7)> (2.54)

The difference from (2.7) is the term ms(r) as visible in the third line
of (2.54)which is the marginal effect of the income change (due to the tax transfer) to
centrality vector s(7). This effect will be positive pull effect, increasing the demand
for a good and thus its profit (centrality).

As for the analysis of the social welfare with common distortion, we need to
take into account now the increase in income due to tax transfer. The utility of the

consumer, in this case, can be written as:

logU(1) = (£ —1)logn +log(l — a(l — 7)) —log(1l —7) + ] “ loga+11
-« —

((a +r—1) Zvi(()) logr; — (1 —a — Zvl )logv; (1) + (a + ) log(1 — T))

2.9.2 Firm Specific Distortions

Suppose firm k is distorted. Then the income of the consumer becomes:
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In=> l—a—-B)piyi — 71 —a—B)pyr + B piyi — TBPRYE + TPIYk
iEN 1EN
1 -«

= W TR
s

and the centrality equation becomes:

11—«

11—«
_ _ w
bom

s(r) = g wh + %sk(f) +a(G+Q(r)s(r) = s(r)

(I-aG) 'n

The matrix G is created from the original matrix G by adding term —g;,7 + po
to each element ¢ of column k. This is again a rank one update of the matrix G.
Because of this, the analysis of the effect of a single firm revenue distortion can be

conducted using the same tools as before.

2.10 Appendix D: Some Useful Results From Markov
Chain Theory

Here we state some results from the Markov chain analysis which lead to Proposition
2.5. The discussion of these results can be found in (Chien et al., 2004)

Definition 2.5. The mean first passage time from i to j denoted with p;; is the

expected number of steps from state v to state j

The following theorem gives connection between mean first passage time and

stationary distribution of a Markov chain.

Theorem 2.2. Let P be a transition matriz of a reqular Markov chain and 7 as-

sociated stationary distribution then:
1. For any two states © and j we have that pi; =1+ 3p2; Pijhirj
2. For any state i m; = i

3. For any two states i # j, a change in the transition probability from j to any

other state does not change fui;;
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Proof. See (Chien et al., 2004) O

Definition 2.6. Fundamental Matriz Z of Markov chain with transition matriz P
is defined with Z = (I — (P — B))™! where B = limy,_,, P*

The following theorem gives a connection between the stationary distribution of
Markov chain P and perturbed Markov chain P + A

Theorem 2.3. Let P and P be two transition matrices of a Markov chain such that

P =P+ A and let © and & be a corresponding two stationary distributions. Then:

1. 1=7wAZ+ 7w

2. 7 is diagonally dominant over columns, that is z;; > z; Vi,j and for any two

i,j such that i #] Zjj — Zijg = T
The following theorem:

Theorem 2.4. Let P be a transition matrixz of a finite state reqular Markov chain
and let i and j be two arbitrary states of P. Let A be a matrix that is zero everywhere
except in row i, the (i,7) element is the only positive element and P+P+A is also
a transition matriz of a reqular Markov chain. Let 7t denote stationary distribution
of P, then 7#; > ;

Proof. See (Chien et al., 2004) O
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Chapter 3

A Screening Role of Enforcement

Institutions

3.1 Introduction

Economic and social activities are governed by a set of formal and informal in-
stitutions. These institutions are important because markets and socio-economic
activities in general cannot function well without them. As indicated in (Dixit,
2009) there are 3 main goals of governance institutions: (i) securing property rights
(ii) enforcement of contracts (iii) resolving collective action problem. Here we focus
on (ii), specifically on the problem of contractual opportunism. When the quality
of institution that enforces contracts is low (in the sense that there is a low prob-
ability of being punished for breaking a contract), contractual opportunism creates
a prisoner’s dilemma problem and a society may end up in a state with very little
or no cooperation at all. Some agents, however, might cooperate and not break a
contract even when the quality of the enforcement institution is low due to their
innate sense of righteousness or morals. Cooperating in this case signals that an
agent has high morals or work ethics (from now on simply a type), which increases
agent’s reputation and making her a better partner for future ventures. When the
enforcement is extremely strong, in a sense that the probability of identifying and
punishing the defector makes the defection prohibitively costly, cooperating will not
signal anything about the type of an agent. The same will be when the quality of
enforcement institution is absent and costs of being defected on are high so that all

agents will defect. In this case again no information about types of the players will
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be revealed. When the quality of legal enforcement is on some intermediate level
such that some types choose to cooperate and others to defect, an agent’s action

will reveal some information about her type.

This mechanism may have a significant effect in different contexts of human
interaction. For example, consider a situation in which a population of firms inter-
act in two different ways. The first type of interaction is the the simpler (routine)
interaction which can be fully specified and thus monitored and enforced by a for-
mal institution (for example, a delivery of specified products). The second one is
a more complex and intangible interaction which cannot be (due to its complexity
or simply because it is too costly) monitored or enforced by a formal institution.
Examples are R&D projects or joint ventures. In this type of activities an agent
prefers having a partner with higher business ethics (better corporate culture, higher
morals), as this will imply lower probability of opportunistic behaviour and there-
fore a higher expected payoff. Cooperating in the first type interaction will signal
high business ethics when there is a possibility to defect and get away with it. The
screening role of the enforcement institution discussed above can in this case fa-
cilitate positive assortative matching between firms with better business ethics in
the second type interaction. When the expected pay-off from the second type ac-
tivity exhibits complementarity, positive assortativeness will increase social welfare.
A similar mechanism may be in play within the organization, concerning interac-
tion in teams between employees. Less monitored and rigid work environment will
facilitate larger output in more creative activities. Even in everyday interaction
between people - not defecting when there is a chance to defect signals high moral
values, making an agent a better partner in other socio-economic activities, such as

marriage or different kinds of neighbourhood communal activities.

The interaction between formal incentives and signalling concerns has been dis-
cussed in the literature in different contexts and can be tracked back to (Titmuss,
1970), who argued that paying blood donors could reduce the supply as it makes
donating blood ’less of a good deed’ due to monetary incentives. This interaction
between intrinsic (being a good, altruistic person) and extrinsic motivation is empir-
ically and experimentally documented in different contexts. For example, (Gneezy
and Rustichini, 2000) found that fining parents for picking up their children late from
day-care centres resulted in more late arrivals, indicating that extrinsic motivation
(fines) has crowded out intrinsic motivation (i.e. signalling being a good parent).

In experiments, (Fehr et al., 2001) recorded that subjects provided less effort when
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the contract specified punishment for bad behaviour, compared to the case when
it did not. The effect of extrinsic incentives on prosocial behaviour such as blood
donation from theoretical point of view is discussed in (Benabou and Tirole, 2006).
In the subsequent paper (Benabou and Tirole, 2011) the same authors in a similar
framework analyze how laws and norms interact, specifically in the context of the
optimal taxation problem. Even though the questions asked are different, the main
idea in these papers is similar to the idea here: "The effect of the extrinsic moti-
vation is substantially determined by the intrinsic motivation of an agent'. In this
context, we should also mention (Seabright, 2009), who considers a possibility of
crowding out of intrinsic motivation in the model as in (Benabou and Tirole, 2006)
with explicitly modelled signalling benefits, and (Levy and Razin, 2013) who studies
how self and social signalling by being religious can increase the level of cooperation
in a society.

In our model, signalling high type does not bring direct benefit, as in (Benabou
and Tirole, 2006) for example, but has an instrumental role - it provides better
match in the future. In this dimension, this paper has some similarities with the
literature on costly signalling and matching (see for example (Hoppe et al., 2009)).
However signalling here is not done by paying a cost directly, but by playing a
certain strategy in a bilateral game. The game itself, together with the population
of players, determines the cost (and the benefits) of signalling. Furthermore, which
game will be played is determined by the quality of the enforcement institution.
This, together with the distribution of types in the society, determines the cost of
signalling.

Our paper is also related to the literature that studies the relationship between
formal and informal enforcement institutions. The interaction between formal en-
forcement and reputation has been discussed in (Dixit, 2003). In his model, the gains
from cooperation (honest trade) are greater the larger the distance between the pair
of traders. On the the other hand, the frequencies of meetings and spread of infor-
mation are locally biased. In this setting, reputation can sustain cooperation when
the society is not too large. Otherwise, an external enforcement is needed to sustain
cooperation. Other related papers that discuss interaction of formal and informal
institution mostly focus on repeated interactions. The general conclusion is that
better external enforcement crowds out the effect of informal institutions because it

weakens reputation incentives (Dhillon and Rigolini, 2011; Kranton, 1996).

The paper is organized as follows. In Section 3.2 we present the basic model.
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The analysis of the equilibrium is conducted in Section 3.3, and in Section 3.4 we
discuss the effects of the quality of the enforcement institution on the welfare. In
Section 3.5 we analyze the quality of enforcement institutions when it is endoge-
nously determined in majority voting elections. Section 3.6 discusses the effect of

matching friction, and Section 3.7 concludes.

3.2 Setup

In the paper we are interested in bilateral interactions which, in the absence of
enforcement institution, can be represented as a Prisonner’s dilemma game (PD).
The enforcement institution is modelled as a probability that a defector will be
identified and fined. We refer to the magnitude of this probability as to the quality of
(enforcement) institution. The quality of institution has a direct effect of increasing
cooperation by making defection more costly and therefore less attractive.

We study a game with uncountable set of players. So, there is a population with
a continuum of heterogeneous agents which differ in their cost of defecting. The cost
of defecting is the type of an agent, and one can think of it as morals of an agent,
work ethics, an ability to defect, a psychological cost of cheating or even to a some
extent trust and trustworthiness'.

The interaction happens across three periods. In period 1 players learn their
types, and are randomly matched in pairs to play simultaneous move Bayesian
game with payoffs as in Table 3.1. When both players cooperate, they receive payoff
~v > 0. When player ¢ defects and player j cooperates, the defector receives payoff
Kk > 7, but also experiences disutility —\; (i.e. the psychological cost of immoral
action). In addition to this, the defector is identified with probability 6 € [0, 1] and
charged a fine normalized to 1. When this happens, the whole fine is transferred to
the cooperator. Thus when player ¢ defects and player j cooperates, the payoff of
player i is (k — 1 —X\;) + (1 —0)(k — A\;) = Kk — 0 — \;. The cost of being defected on
when cooperating is ¢ > 0. In this case player j suffers a loss ¢ and receives transfer
from the defector of size 1 with probability 6. We refer to 6 as to the quality of the
enforcement institution.

Agents don’t know the type of the agent they are matched with, but they do know

I In this context an agent is said to be more trustworthy if the probability that she will defect
conditional on opponent cooperating is low. An agent will be more trusting if it is more likely that
she will cooperate
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C D
C v,y 0—c,k—0—)\
D K—H—Ai,ﬁ—c _)‘ia_/\j

Table 3.1 Two players game

the distribution of types and own type. So type of an agent is private information.
In period 2 payoffs from period 1 are realized and actions taken by the every player
in the first period are observed by everyone?. In period 3, depending on the action
in the game from period 1, agents are assortatively matched with other players who
acted in the same way (cooperators with cooperators and defectors with defectors?).
Payoftf from the third period is assumed to exhibit complementarity in types in
a form standard in the matching literature. When players ¢ and j are matched,
the benefit to both of them is pA;A; where 1 > 0 is the parameter measuring the
importance of the matching stage. The discount factor is built in . There are no
strategic decisions in the third period, and one can think of it as a reduced form
representation of a potentially long term bilateral project that is intangible or too
complex to be enforced by a formal institution (such as an entrepreneurial or R&D
project). This formulation captures the idea that expected benefit from the joint

project is higher if a partner has higher cost of defection (higher morals, work ethics).

3.2.1 Parameters

Throughout the paper we shall maintain some assumptions on the parameter space
which we discuss in this section. First, for simplicity, we assume that the support
for type distribution is {A, X} = [0,1]. We will also assume that the cooperation is
efficient from the single shot game perspective in the first period, even for the worst
type(A = A) - that is that 2y > k — ¢. We shall also postulate that when 6 = 0,
meaning that practically there is no legal enforcement, the defection is the optimal
strategy for every player. This means that when 6 = 0 the game is PD. In terms of
parameters this means that: Kk =1 >y7A—c< -1=K>7y+1Ac>1

To be more clear let us state the assumptions explicitly:

Assumption 3.1. We assume the following restrictions on parameters

2Check Section 3.6 for the discussion on the observability assumption
3We shall allow for friction with this respect in section 3.6
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e 2v > Kk — ¢ - Cooperation is efficient
e The game is PD when 6 =0
(i) v<rk—1
(ii) ¢ > 1
The assumption 3.1 gives k —c <27y <2k —2=>K>2—c
For the sake of the discussion in sections below, let us define the concept of

strategic substitutes and strategic complements formally, following (Bulow et al.,
1985).

Definition 3.1. A bilateral game is said to be a game of strategic complements

8271'1'
Ox;0x; >0

(substitutes) if for every two players i and j and their strategies x; and x;:

(<0)

From Definition 3.1 it follows that in a game of strategic complements (substi-
tutes) best response functions are upward (downward) sloping. In the model consid-
ered in our case, strategic complements (substitutes) will imply that player is more
(less) prone to cooperate when the probability of being matched with cooperator is

higher.

3.3 Equilibrium

Note that in the third period (matching stage) there are no strategic decisions. Thus,
the game here is basically a simultaneous move game with incomplete information,
and therefore we shall employ the concept of Bayesian-Nash equilibrium (BNE). Let
us consider a match between arbitrary agents ¢ and j, and let p; denote the proba-
bility that player j will cooperate. We can write the expected payoff of cooperation

of player 7 as:
m(Ai, €) = 90 + (0 — ¢)(1 = pj) + pAE(A|C)
The expected payoff of defecting is:
7%, D) = (5 = 0 = A)p; + (=X)(L = p;) + A E(D)
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where E(A|C) is the expected type of cooperators, and E(A|D) is the expected
type of defectors. Thus the net benefit of cooperating is:

(i, Aj) = mi(C) = mi(D) = (v = K+ )p; + A — ¢+ pi (E(AC) — E(AID)) (3.1)

As \; € [0, 1], the strategy of player i is a function o; : [0,1] — {C, D}. We say
that player i uses cutoff strategy, if there exists some = € [0, 1] such that:

D otherwise

A cutoff equilibrium is BNE in cutoff strategies.
Suppose that player j uses cut-off strategy with cutoff y (o;()\;) = y). Than
the probability of cooperation of player j is 1 — F(y) where F is cdf of the type

distribution. We write:

(A y) = (v =k + ) (1 = F(y)) + Ai — e+ pi (E(AC) = E(A|D))

For cutoff strategy to be a best response it must be that II()\;, y) is increasing in
the first argument, that is, player ¢ should be more prone to choose C' over D the
more ethical she is.

We have that %:\\Zﬂy) =14 pu(E(MC) — E(A\D)) which will always be greater
than 0 given that all players use the cutoff strategy. Given the positive sign of the
partial derivative, we can write the best response of player i to cutoff strategy y of

player j as:

0 if 11(0,) > 0
xz € (0,1) otherwise

where z is the unique solution of equation II(\,y) = 0 (so when \; > = player ¢
plays C' and otherwise plays D)

As players are ex ante symmetric, we shall look for the symmetric equilibrium
in cutoff strategies (in which all players choose the same cutoff).

The following proposition gives a result regarding existence of the cuotoff equi-

libria:
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Proposition 3.1. There exist a cutoff equilibrium

Proof. See Appendix A n

Let us examine the effect of the quality of enforcement institution (), and rep-
utation pA(\) on the level of cooperation in the equilibrium. Taking the derivative
of(3.17) with respect to A we get:

OX*(0) 1

0~ T+ = (- K+ PN (3.2)

which for the region of parameters when A* is unique (Proposition 3.3) is always
positive. Similarly we get that % > (. Thus the increasing quality of the enforce-
ment institution and relative importance of the reputation benefits will increase the
cooperation in the first period. However, increasing 6, may actually decrease the
reputation benefits for cooperating vs. defecting. Before discussing this, let us first
state the result relating density function f with function A. Let f be a density
function f : [A, X] — R. Let us define function A : [A, X} — R with

A(x) = EAA >z) — E(AA < x)

where expectation is according to density function f. Then the following result
holds (Jewitt, 2004):

Theorem 3.1 (Jewitt). If f is everywhere decreasing (increasing) then A is every-
where increasing (decreasing). When f is unimodal, A is quasiconvex. If f has a

unique interior mazimum then A has an unique interior minimum

Proof. Omitted O
Following Theorem 3.1 we can state the following result:

Proposition 3.2. When distribution of types has increasing (decreasing) density
function f : [\, A] = R, the reputation benefit of cooperating versus defecting in the
interior equilibrium will increase (decrease) with the quality of enforcement 6. When

f reaches its mazimum in the interior of [\, A|, the reputation benefit of cooperating

versus defecting will reach its minimum in the interior [\, \]
Proof. Follows directly from Theorem 3.1. O
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For instance, a decreasing density function describes a situation in which there
are more 'bad types’ (agents with low cost of defecting) relative to the number of
'good types’ (i.e. in the case of decreasing density function) in the society. The
effect of improving the quality of enforcement institution on the level of cooperation
will then be partially crowded out, due to the decrease of the reputation incentive
to cooperate vs. defect. Increasing 6 will decrease equilibrium threshold A*(6) and
increase the mass of agents that cooperate. As f is decreasing, this means that the
expected type of cooperator will decrease more than the expected type of defector,
causing decrease in A(\*). This will partially crowd out the effect of increase of
on the level of cooperation. The strength of the crowding out effect is captured by
the term 14 pA’(A\*) in the equation (3.2). When the density function is increasing,
the reputation effect will reinforce the direct effect of 6. This is in essence the same
mechanism as in (Benabou and Tirole, 2006) applied to the situation modelled in
this paper.

Another, rather intuitive, insight the from equation 3.2 is that the effect of in-
crease 6 on the level of cooperation will be smaller in the case of strategic substitutes
(v — kK + ¢ < 0), than in the case of strategic complements (7 — k + ¢ > 0).

In what follows we shall focus on the parameter space in which the cutoff equi-

librium is unique. The following proposition gives a result regarding that:

Proposition 3.3. The cutoff equilibrium will be unique when:
pA(Y) +1 > [uo(y)A'(y) — (c+v = K)F'(y)|

Proof. See Appendix A m

3.3.1 Analysis of the Equilibrium

In this section we shall assume that the distribution of types is uniform on the

segment [0, 1]. The indifference condition can be be written as:

A
H()\,)\):(c+7—/<:)(1—)\)—c+9—|—§+)\20 (3.3)
which gives the cutoff point:

k—7y—0

A=
K—y—c+1+4§
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Let us first state the following corollary of Proposition 3.3, defining a region of

parameters for which the threshold equilibrium is unique.

Corollary 3.1. When types are distributed uniformly on the segment [0, 1] the equi-

librium will be unique when

1
5 (H+2) >y —rtd

Proof. When types are uniformly distributed on [0, 1] we get:

Y—K-+c
oi(y) = 2——— 3.5
and the claim directly follows from Proposition 3.3 n

First note that the threshold defined with equation (3.4) is a linear function
of §. By Proposition 3.3 the denominator of (3.4) will be positive, and therefore
the threshold will always decrease with 6 (mass of cooperators will increase). The

threshold will also decrease with pu as: % = — (_20_2;:3;_& -

> 0 since by the
Assumption 3.1 Kk —y—0 >k —7v—1>0.

The threshold will be interior when § +1—c¢> —0 < ¢ <1+ 6+ §, thus when
the cost when defected on is not too high, or when the long term benefits, captured
with p are relatively high. Note that due to Assumption 3.1 we have that xk —~ > 6
as 0 € [0, 1] so the expression in the numerator of (3.4) is always positive. Thus we

have showed that the following lemma holds.

Lemma 3.1. In the case of uniform distribution of types, the threshold will be
interior when

c<1+9+g (3.6)

In what follows we shall focus on the cases when the threshold is interior.

Let us check now how the payoffs depend on the level of enforcement. For type

A (and interior threshold) the payoff of the cooperator in equilibrium is given with:

2 (e + 2y + 0 —2k) +4(c — 0)(k — 0) — 2u(y + \) — 4y — A\
dle+y—rK—1)—2u

T\, C) = (3.7)
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and the payoff of defector with type A at interior threshold is:

2ANec+v—r—=1)+2(c—=0—-1)(k—0)+uA(vy+0+1)+0 —r(A+1))

m(A, D) = 2c+y—kKk—1)—pu
(3.8)

There are a couple of interesting things worth noting here. First let us look at
the payoff of cooperators. Taking derivative with respect to 6 we get:
on(C, A, 0) 2(c =20+ k) — A\

a0 - —2c =27+ 2K+ p+2 (3.9)

We are interested in the behaviour at the unique cutoff equilibrium, thus due to
Propostion 3.3, we have that denominator of (3.9) will always be positive. The sign
of the numerator 2(c — 20 + k) — Au can be either positive or negative. However, if
this expression is negative for some A = \ it is negative for all A > X. That is, if an
increase in the quality of institution decreases payoff of player with type A it will
decrease the payoff for every other player that has higher type (higher morals). The

2240426 - Algo, from Assumption 3.1 it

expression (3.9) will be negative when A >
follows that c—260+4x > 0*. So for low values of x this expression will be positive, and
it becomes negative when g is higher. The intuition is that if u is high, the benefit
from the matching stage is high and it becomes more important to be matched with
higher type. When 6 increases then by (3.4) the threshold will decrease, increasing
the number of cooperators, and thus the payoff from the first period. However, this
will result in a decrease of the average cooperator type, and in turn decrease the
expected payoff of cooperator from the matching stage. Which effect will dominate
depends on the size of u. We can now state the following proposition:

Proposition 3.4. Increase in the quality of enforcement institution will decrease the

benefit of cooperator with type \ > 2=49428 - This will be the case when reputation
2(ct+y—k—1)(c—260+k)

benefits are high enough, so p > p——"

Proof. See Appendix A H

Let us look at the payoff of a defector. Partial derivative with respect to 6 is

or(D,A\,0)  25+2c—40 —2 — p(1+ )
Bl 2= 27+ 26+ p+2

(3.10)

Asc>1AK>y+1>1A0€](0,1]
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As was the case with cooperator, the partial derivative is monotone in A\. When both
0 and p are low, the sign of (3.10) might be positive. This is because an increase in 0
will increase the mass of cooperators, by decreasing the threshold. This will increase
the expected payoff of defectors from the first period, as it increases the probability
that they will be matched with a player who cooperates in the equilibrium. Increase
in # will make the average defector type lower, hence lowering the expected payoff
from the second stage for defectors. This effect will not be strong if i is low enough,

SO we can state:

Proposition 3.5. The payoff of defector of type A\ can increase with the quality

of enforcement institution. This will be the case when type X\ is defector and A <
2k+2c—40—-2—pn

. , which is satisfied when reputation benefit is not too high

Proof. See Appendix A n

What will be the effect of the increase of quality of enforcement institution is de-
termined by the value of the matching in the third stage. If the matching is relatively
unimportant, then the main effect of increasing 6 for the payoft of cooperators will
be through the increase the number of cooperators (thus the probability of meeting
a cooperator) in the first stage, which will be positive. As for defectors, increasing
the number of cooperators will increase the expected payoff, as it increases the prob-
ability of meeting the cooperator. On the other hand, increase in # will increase the
expected fine when defecting. The expected payoff from the third period for both
cooperator and defector will be smaller when threshold decreases. This is because
increase in the threshold will decrease the expected type of cooperators and the
expected type of defectors. If u is high, this effect will dominate and payoft of every
player will decrease with € (given that threshold is interior). When p is small, an
increase in # will increase the payoff of cooperators and the effect on the payoff of
defector will depend on the behaviour of threshold A*(6). The effect of changing the
quality of the enforcement institution thus can have different effects on the payoffs
of agents in the society. In the next section we examine what will be the effect on

the total welfare.

3.4 Welfare

From the first stage perspective it is optimal to maximize the cooperation, as it is

the efficient outcome of the first period game (first stage). However, the matching
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in the third period is done based on actions taken in the first stage. As the payoff
from the matching in period 3 exhibits complementaries, the efficient matching is
the perfect positive assortative matching. However, the type of an agent is a private
information, and only thing that is observable is the action in the first stage game.
Thus the matching will be coarse, with only two classes of agents - cooperators and
defectors from the first stage. Two classes seems to be too coarse to get a significant
gain in welfare, compared to the purely random matching. However, it has been
shown in McAfee (2002) that with two class matching with uniform distribution
75% of the value of using infinitely many classes can be obtained. When both are
one-tailed exponential, with two classes 74.62% of possible gains can be obtained.
When both are normally distributed, two classes result in about 63% of the possible
gains.

In our case, the matching with two classes and a cutoff point of A* from the same
population means associating values below A\* with values below, and values above

A* with values above A*. In this case, the social value of the matching is:

Wi = F(\) ( :* A]f:((;)) d)\> + (1= F(\Y) ( : )\% d)\> (3.11)

Players with type lower than \* (defectors) are matched with the players that
have type lower than A*, and cooperators are matched with cooperators. Thus,
the average match value is the probability that a player is defector times the ex-
pected value of the defector match, plus the analogue term conditional on both
being cooperators (having type higher than A*). Here A* is defined with (3.4). The
matching here is perfect in the sense that cooperators are matched with cooperators
and defectors are matched with defectors.

To find the optimal threshold A* (optimal § that induces this A*) social planner
is facing a trade-off. More cooperation will increase the total payoff from the first
stage, but it might not reveal enough information and thus make matching less
efficient. Maximizing social gains from matching requires a loss in the first stage,
due to the fact that then there must be some defectors in order to better screen out
the high types. When p is small compared to the benefits from cooperation in the
first stage, than the optimal A* will be the one that maximizes cooperation. When p
is larger, then matching payoff contributes relatively more to the welfare, and thus

it will be optimal to have A\* interior. The following proposition characterizes the
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optimal value of 6*

Proposition 3.6. For 2y +c—rx > &, 0; = 1 mazimizes welfare. Otherwise the

welfare will be mazximized with

34y + D)(c+v— k) 1 1

0=0 = = 3 - =

" Re—Sytsntara Tt IR -
which defines the threshold:

8c+ 16y — 8k — 1
2(8¢+ 8y — 8k — pu — 2)

*

Proof. See Appendix A O

When the social benefit from complementarity in the third period is small com-
pared to the benefits from the first stage i.e. the society gain from the cooperation,
then it is optimal to minimize mass of defectors in the society, setting * = 1. When
i is large, then it will be optimal to have some ’extra’ defectors in the society,
in order to more accurately screen out the good types for the matching, and thus
0<0; <1

3.5 Endogenous Quality of Enforcement

Having in mind the social game context discussed in the introduction, it is natural
to ask what level of § will emerge endogenously from a process of decentralized
social decision making. The question is even more interesting having in mind that
the results from Section 3.3.1 state that the payoff of defector and cooperator can
be both increasing and decreasing in 6.

When deciding on his preferred level of the enforcement, an agent faces a tradeoff.
Conditional on cooperating, a player would like 6 to be higher to protect him from
being defected on in period 1. On the other hand, he prefers a higher average type of
cooperators in the equilibrium as then the reputation benefit will be higher, which
happens when 6 is lower. Conditional on defecting, an agent prefers lower 6 as
this implies lower probability of being identified and fined as a defector. On the
other hand, he would like € to be high enough so there are still some cooperators in
the society that he can exploit in the first period. Furthermore, as higher ¢ implies

lower average type of defectors, he would prefer 6 to be lower, as this will increase his
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benefits from the third period. Thus, which 6 will emerge in a decentralized social
decision making process is determined by a complex interaction between reputation
concerns and the direct effect of # in changing rules of interaction in the first period.

To be more concrete, in this paper we shall focus on a simple voting model in
which agents vote sincerely on the value of #, and study how does the equilibrium
0 depends on the primitives of the model. Individual preferences over # are single
peaked, and as the voting is done over one-dimensional issue (value of #) we can
apply the median voter theorem. The agents will vote differently conditional on
whether they cooperate or defect in the equilibrium.

Type A\; will prefer different values of # conditional on cooperating or defecting,
and let us denote these two values with 6% and 6P respectively. If payoff of player
i is larger when defecting and 6 = 0P than when cooperating and 6 = 6¢, then she
will opt for 6P.

The following propostion gives the value of € in the voting equilibrium:

Proposition 3.7. The majority rule voting system will chose level of enforcement

¥ __ Cctk _ P
ev_ 2 8

Proof. See Appendix A H

Let us compare 6 chosen by the median voter stated in Proposition 3.7 (6), with

6 that maximizes the social welfare, defined in Proposition 3.6 (#}). We have that:

0r — 0 =

c+Kk 34y + 1)(c+v—kK) 1 i
2 __8_(—&—87+8n+u+2+2@+37+ﬁy_4)
34y +1D)(c+y—rK) 3y nu
 8c—87+8k+pu+2 2 8

_ —p? 4+ (8e+ 20y — 8k — 2)pu + 24c + 48 — 24k

8(8¢ + 8y — 8k — u —2)

(3.12)

The derivative of the expression (3.12) with respect to p is given with the ex-

pression:

3y +1)(c+v—k) +1

3.13
(—8c—8y+8k+p+2)2 8 (3:13)

which is always positive in the case of strategic complements v — k + ¢ > 0. Fur-
thermore, due to the uniqueness condition in Proposition 3.3 we have that at the

left side of the parameter space with respect to p expression (3.12) will have value:
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1(c+ 3y —k+1). Thus, (3.12) is increasing in p and takes positive value at the
lowest feasible value of . Thus (3.12) will always be positive. Note that in the

strategic complements case 7 is always relatively low comparing to pu.

In the case of strategic substitutes v — x + ¢ < 0 it might as well be that 8 < 07,
when g is small relative to v. When « is high comparing to p it becomes more
important to have larger mass of cooperators in the society and the screening role of
0 becomes less important. This means that 0] will be higher. However, the quality
of enforcement institution €7 preferred by the median voter does not depend on .
When 7 is high enough, and p low, then provided that we are in the case of strategic
substitutes, 8 > 0%. As was the case with strategic complements, in the case of
strategic substitutes the difference 6} — 07 is increasing in u, as (3.13)will be always
larger than zero. Even though the first part of the expression (3.13) is negative, the

quadratic equation

1 3y+1(c+y—k)

8 (—8c—8y+8k+pu+2)?

doesn’t have real zeros, and will always have the positive value (in the considered
parameter space). As p increases, the matching stage becomes more important,
decreasing the optimal 67 faster than it decreases the optimal 8, eventually making
0r <0

3.6 Matching Frictions

So far we have assumed that there is perfect matching in the third period in a
sense that cooperators will always be matched with cooperators and defectors will
always be matched with defectors. In this section we discuss the case when this
isn’t necessarily true. We assume that there is a non-negative probability that a
cooperator is matched with defector in the third period. Let P(C|7) denote the
probability of a player being matched with cooperator in the third period given that
his action in the first period is 7 € {C, D}. In this case the following balancing

condition must hold:

(1—-F(\)(1—P(C|C)) = F(\")P(C|D) (3.14)
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The condition (3.14) states just that the mass of defectors that are matched with
cooperators is equal to the mass of cooperators matched with defectors. As all
players are matched in the third period, it holds that P(C|C)+ P(D|C) = 1. Let us
denote with a(A*) = P(C|C) — P(C|D). In the matching literature a(\*) is referred
to as ’index of assortativity’ (Bergstrom, 2003). Furthermore, let ( = P(C|C) and
¢ = P(C|D), then a = { — . Using this notation we can write(3.14) as:

(1=FA)1 =) =FA)E =
(1-FA))(A =)

= FOV) =
a=(— A-FA)A-¢) ¢+FA)-1
FA) F(\)

Then the expected reputation benefit of cooperator and defector of type \; denoted
with R(7,\) 7 € {C, D}: can be written as:

R(C,A) = X (CE(AC) + (1 = Q)E(AD))
R(D,A;) = X (§E(AC) + (1 = §E(AD))
_, A=F)(1-9) (1—F)(1=7))
=\ 260 ENC) + (1 - 260 ) E(A\|D)

And reputational benefit from cooperating vs. defecting is then:

R(C,A) = R(D, A) = Ai((C=§EMNC) + (1 = -1+ &ED))
= A€ = &) (E(C) = E(AD))
= Xia (E(A|C) — E(A[D))

where « is the index of assortativity. We shall be interested in the case of positive
assortative matching in the third period, thus for the values of o € [0, 1]. Note that
then the analysis is parallel with what we had before, with u being « scaled by some

positive factor.

In this context it might be more natural to conduct the analysis with respect
to ¢ - the probability that an agent will be matched with cooperator given that he
cooperates. ( can be interpreted as a speed of information transmission in the social
network, or simply as the quality of informal enforcement institution (reputation).

Keeping ¢ fixed, increase of 0, will decrease A*; F(A*) , and this will make assor-
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tativity index higher for a fixed (, increasing further on the level of cooperation.
This effect captures the complementarity between formal enforcement and reputa-
tion throughout a different channel than it has been discussed in context of function
A.

For example, in the case of uniform distribution (3.3) becomes:

H()\,)\):(c+fy—/<;)(1—)\)—c+9+u<+;\_1/2\+)\:O<:> (3.15)
H()\,)\):(c+”y—n)(1—A)—c+9+%(§+)\—1)+)\:0 (3.16)

and solving we get:

o =2y —Cu — 20+ 2k +
22y + 26+ +2

from where it is visible that A* will decrease with (. The further analysis parallel to
what has been done in the frictionless matching case in the paper can be conducted

in analogous way, and the qualitative nature of the results will not change.

3.7 Conclusion and Extensions

A higher level of enforcement and monitoring will make agents behave according to
a prescribed set of rules. However, there are a lot of situations in which the tasks
are too complex or intangible to be enforced in such a way. In these situations it is
essential to find a partner who will exert high effort, even when not being subject to
formal enforcement. When the returns from more complex interactions are higher
than from the interactions that can be monitored, it is socially optimal to have lower
level of enforcement such that some agents will choose to break the rules, and by
doing that signal that they have bad work ethics. This will screen out agents who
follow the rules only because of the high enforcement (disutility of being punished)
from agents who choose to take a prescribed action as they feel intrinsic disutility
from defecting. This will facilitate more efficient matching in tasks that cannot
be enforced by a set of formal rules. The model captures this screening role of
enforcement institution - emphasising the (nonmonotonic) effect of the strength of

the enforcement on welfare and payoffs of agents with high and low work ethics. The
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set of rules in the society usually arises endogenously through some kind of social
decision process. How the equilibrium institutions compare to the optimal depends
on the importance of the screening role of the enforcement institution and whether
the interaction in the monitored activities has the nature of strategic complements

or strategic substitutes.

The formal (f) and informal (reputation function A) enforcement institution
interact in determining the level of cooperation and social welfare. By behaving
according to the rules an agent earns a reputation to be of high work ethics. The
benefit from the good reputation will be higher if a smaller mass of other agents
behave the same way - and thus depends and the level of formal enforcement. The

matching distortions will decrease the reputation benefit.

The model provides a good framework to study interaction between formal insti-
tution (enforcement) and informal institution (reputation) in enhancing cooperation
in the society and the effects on the welfare. In relation to this, we find that the
effect of the formal enforcement can be both reinforced or diminished by the reputa-
tion concerns. When distribution of types is non-decreasing, increase in the quality
of institution will increase the reputation benefits, and thus the effect of reputation
and institutional quality will go in the same direction, increasing the level of coop-
eration. When the density function of type distribution is decreasing, then increase
of the quality of institution will increase the level of cooperation, but the effect will
be partially crowded out by reputation - as net reputation benefit of cooperation
will decrease. When the distribution of types is not monotonic, the direction of the
reputation effect will depend on the current level of . Lower matching frictions,
as jet another dimension of reputation as informal institution, imply higher level of
cooperation. A higher quality of enforcement institution can increase the quality of

matching, increasing the level of cooperation in the society even further.

There are several direction to extend the current model, and some of them are
already work in progress. First we have focused on the reputation effect on the
intensive margin. The agents do not make decisions to participate in the long term
(complex) projects, nor which action to take. The matching stage is just a reduced
form representation of this type of interaction, chosen to capture the basic idea that
interacting with an agent of higher work ethics will bring higher benefit. Extending
the model by allowing agents to choose to engage in non monitored activities that
can yield higher returns (i.e. entrepreneurial project), or to interact in enforceable

activities, would allow us to examine the information role of the enforcement institu-
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tion on the level of entrepreneurship in a society on the extensive margin. This can,
for example, have an important implications in studying the interaction between
quality of enforcement institutions and the level of entrepreneurship in the society.
Finally, the level of enforcement affects the utility of cooperators and defectors in a
non monotonic way. For some levels of § material payoff of defectors is higher than
payoff of cooperators and vice versa. In a simple indirect evolutionary process, akin
to the one in (Ok and Vega-Redondo, 2001), the level quality of enforcement insti-
tution will determine the distribution of types in the society. On the other hand,
agents choose the level of enforcement in elections as described in the paper, and the
equilibrium enforcement level will depend on the distribution of types. Examining
the co-evolution of institution and the type distribution in the society seems like

interesting avenue for building on this model.
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3.8 Appendix A: Proofs

Proof of Propostion 3.1: 11;(z,y) is increasing in z for all y € [0, 1] and II;(A, o(X)) is
continuous in A. When I1;(1,1) < 0 then 1 is the equilibrium cutoff. If I1;(0,0(0)) >
0, 0 is an equilibrium. Otherwise the equilibrium is defined as a solution of equation
IT;(A\, A) = 0, that is given with:

(47— k)1 —F) —c+0+ A+ AN (3.17)

O

Proof of Proposition 3.3: To show uniqueness it is sufficient to show that the slope
of the best response is in absolute value smaller than 1. It is known that this
guarantees that the two best response curves can intersect only once, see (Vives,
2000). The slope of the best response function o(y) we obtain by equating (3.17) to
zero and taking implicit derivation. That is we have:

Ma(oi(y),y) _  po(y)A'(y) —(c+v—r)F'(y)

oily) = TT(ou(y)y) pA(y) +1 (3.18)

]

Proof of Proposition 3.4: From (3.9) equilibrium payoff cooperator will decrease

with @ when A > \ = w. Type X will be cooperator when A > \*. So

the equilibrium payoff of cooperator of type A will decrease with # when % >

ﬁ which will be the case when p > 2(0”_’2;?,(2_29*“)- When payoff of A

decreases with 6, so does the payoff of type A > . m

Proof of Proposition 3.5: From (3.10) equilibrium payoff of defector of type A will
increase with § when A < \ = %. Type A will be defector when A < A*.
So the type A will be defector and have payoff which will be increasing function of 6

2k+2c—40—-2—pn < \*

when When payoff of type ) is increasing with 6, so is the payoff

of every type A < A O

Proof of Proposition 3.6: In our case, the distribution is by assumption uniform on

[0, 1] which gives the following expression for social gain from matching in the second
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stage, where \* is the threshold dividing population into two classes.

Wy =p (M A=adr) +(1 = ( A d>\> (3.19)
0 A* a1 — AF

Simplifying (3.19) we get:

Lo 1 b o H 2
Wy =npl|— + =—(14+X =X\ 2
M= </\* /0 A%dA v /v A d)\> 4( AT — )\ (3.20)

We can write the total welfare as:

A*
U:2)\*(1—/\*)(—c+0—9+m)+2(1—)\*)2v+)\*/ —;dA+WM
0

1
= ((8c+8y — 8k — 1 — 2N + (=8¢ — 167 + 8 + A" + (87 + 1))

This is a quadratic equation with respect to A\*, so when the term with \*? |

8c+ 8y — 8k — pu— 2 < 0, the expression will be maximized at the stationary point

Vo 8¢+ 167 — 8k — 1

3.21
Y 28c+ 8y —8k—pu—2) (3:21)

Ar € [0,1] when:

8c+ 167y —8k — < O0OAN28c+8y—8k —pu—2) <8+ 167y — 8k — pu &
8(y+ec—K)<pu—8yA8(y+c—k)<pu+4+8y=

2y +c—kr < "
8

Thus, the stationary point A;, will be the interior maximizer when: 2y+c—k < £.
When 2y +c—k > £ A8c+8y — 8k — pu—2 < 0, expression (3.21) will be negative,
and the feasible A\* that maximizes welfare will the left most feasible A* (the case
that maximizes the number of cooperators). This implies ¢ = 1.

When 8c + 8y — 8k — u — 2 > 0, welfare will be maximized at the corner; again
when \; takes the lowest possible value - implying 0} = 1. So, for 2y +c—x < &,
A € [0,1], and is defined with expression (3.21). The corresponding 67 is defined
then with (3.4. Solving for 0% we get: 0% = Sttbleti=r | t(c+3y+ k) — & For

—8c—8y+8k+pu+2
27 + ¢ — Kk > & the welfare is maximized when ¢ = 1.
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]

Proof of Proposition 3.7: To determine preferred 6 for every type i, we shall first
calculate ¢ and 0. The payoff of cooperator as a function of 6 is given equation
(3.7). Payoff in (3.7) is strictly concave function of . Maximizing with respect to ¢
we get that when

)

1
0° = 1(20 — \ift + 2K) (3.22)
and payoff of type i when 6 = 6¢ is:

=4 u(Be+ 4y = 3K) +4(c = K)* +8y(p +2) £ AN+ 4)p® + 8\

mi(67) 16(c+v—rk—1)—8u

Which for the median type has the value:

(—dc+ 4k + 3u)? + 16(4y + p)
64(c+v—r—1)—32u

mi(0) = —

From (3.8) we have that the preferred level of enforcement institution quality -

given that an agent will defect is:

(2

o0 — ;(c—i— 5= 1) = GOt D (3.23)

and the payoff at this level of enforcement institution for a defector is:

—4p2yA+c(A+1) —r(A+1)+A—-1)
16(c+y—Kr—1)—8u
16Ac+y—k—1)+4(—c+r+1)2+ (X +1)%p?
+ 16(c+v—Kr—1)—8pu

m(6P) =

Which for the median voter takes a value:

8u(3c+2y =3k —1) =16 ((c — K)> + 2y — 1) — 9p?
64(c+v—r—1)—32u

The difference of the median voter’s payoffs at the preferred levels of  conditional

on action in the first stage is:
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(2y+1)(r+2)

((05)) —m(0)) =
i) = 7 (0x1) —8c—8y+ 8k +4u+8

(3.24)

The numerator in (3.24) is positive, and as for the denominator, —8¢ — 8y +
8k +4p+8 >0« v+c—r <1+ 5. And this is the condition stated in (3.3).
As we are interested only in region of parameters where there is unique equilibrium,
m;(05,) — 7(0%)) will always be positive. The preferred level of enforcement 6 for the

median voter will thus be: CJ“T“ — £ O

104



References

Acemoglu, D., Antras, P., and Helpman, E. (2007). Contracts and technology adop-
tion. The American economic review, pages 916-943.

Acemoglu, D., Carvalho, V. M., Ozdaglar, A., and Tahbaz-Salehi, A. (2012). The
network origins of aggregate fluctuations. Econometrica, 80(5):1977-2016.

Antal, T., Krapivsky, P. L., and Redner, S. (2006). Social balance on networks: The
dynamics of friendship and enmity. Physica D: Nonlinear Phenomena, 224(1):130—
136.

Bala, V. and Goyal, S. (2000). A noncooperative model of network formation.
Econometrica, 68(5):1181-1229.

Ballester, C., Calvé-Armengol, A., and Zenou, Y. (2006). Who’s who in networks.
wanted: the key player. Econometrica, 74(5):1403-1417.

Baye, M. R. and Hoppe, H. C. (2003). The strategic equivalence of rent-seeking,
innovation, and patent-race games. Games and Economic Behavior, 44(2):217-
226.

Benabou, R. and Tirole, J. (2006). Incentives and prosocial behavior. American
Economic Review, 96(5):1652-1678.

Benabou, R. and Tirole, J. (2011). Laws and norms. Technical report, National
Bureau of Economic Research.

Benassy, J.-P. (1996). Taste for variety and optimum production patterns in mo-
nopolistic competition. Economics Letters, 52(1):41-47.

Benassy, J.-P. (1998). Is there always too little research in endogenous growth with
expanding product variety? FEuropean Economic Review, 42(1):61-69.

Bergstrom, T. C. (2003). The algebra of assortative encounters and the evolution
of cooperation. International Game Theory Review, 5(03):211-228.

105



References

Bloch, F. and Dutta, B. (2009). Communication networks with endogenous link
strength. Games and Economic Behavior, 66(1):39-56.

Buchanan, J. M., Tollison, R. D., and Tullock, G. (1980). Toward a theory of the
rent-seeking society. Number 4. Texas A & M Univ Pr.

Bulow, J. 1., Geanakoplos, J. D.; and Klemperer, P. D. (1985). Multimarket
oligopoly: Strategic substitutes and complements. The Journal of Political Econ-
omy, pages 488-511.

Cartwright, D. and Harary, F. (1956). Structural balance: a generalization of hei-
der’s theory. Psychological review, 63(5):277.

Chien, S., Dwork, C., Kumar, R., Simon, D. R., and Sivakumar, D. (2004). Link
evolution: Analysis and algorithms. Internet mathematics, 1(3):277-304.

Corchén, L. C. (2007). The theory of contests: a survey. Review of Economic Design,
11(2):69-100.

Davis, J. A. (1967). Clustering and structural balance in graphs. Human relations.

Deroian, F. (2009). Endogenous link strength in directed communication networks.
Mathematical Social Sciences, 57(1):110-116.

Dhillon, A. and Rigolini, J. (2011). Development and the interaction of enforcement
institutions. Journal of Public Economics, 95(1):79-87.

Dixit, A. (2003). Trade expansion and contract enforcement. Journal of Political
Economy, 111(6):1293-1317.

Dixit, A. (2009). Governance institutions and economic activity. American Economic
Review, 99(1):5-24.

Fehr, E., Klein, A., and Schmidt, K. M. (2001). Fairness, incentives and contractual
incompleteness.

Franke, J. and Oztiirk, T. (2009). Conflict networks. Number 116. Ruhr economic
papers.

Gabaix, X. (2011). The granular origins of aggregate fluctuations. FEconometrica,
79(3):733-772.

Galeotti, A., Goyal, S., Jackson, M. O., Vega-Redondo, F., and Yariv, L. (2010).
Network games. The review of economic studies, 77(1):218-244.

106



References

Gneezy, U. and Rustichini, A. (2000). Fine is a price, a. J. Legal Stud., 29:1.

Goodman, J. C. (1980). Note on existence and uniqueness of equilibrium points for
concave n-person games. FEconometrica, 48(1).

Hager, W. W. (1989). Updating the inverse of a matrix. SIAM review, 31(2):221—
239.

Heider, F. (1946). Attitudes and cognitive organization. The Journal of psychology,
21(1):107-112.

Hiller, T. (2011). Alliance formation and coercion in networks. Technical report,
Nota di lavoro//Fondazione Eni Enrico Mattei: Climate Change and Sustainable
Development Series.

Hillman, A. L. and Riley, J. G. (1989). Politically contestable rents and transfers.
Economics & Politics, 1(1):17-39.

Hirschman, A. O. (1958). The strategy of economic development, volume 58. Yale
University Press New Haven.

Hirshleifer, J. (1989). Conflict and rent-seeking success functions: Ratio vs. differ-
ence models of relative success. Public choice, 63(2):101-112.

Hopenhayn, H. A. (1992). Entry, exit, and firm dynamics in long run equilibrium.
Econometrica: Journal of the Econometric Society, pages 1127-1150.

Hoppe, H. C.; Moldovanu, B., and Sela, A. (2009). The theory of assortative match-
ing based on costly signals. The Review of Economic Studies, 76(1):253-281.

Horvath, M. (1998). Cyclicality and sectoral linkages: Aggregate fluctuations from
independent sectoral shocks. Review of Economic Dynamics, 1(4):781-808.

Jackson, M. O. and Wolinsky, A. (1996). A strategic model of social and economic
networks. Journal of economic theory, 71(1):44-74.

Jain, S. and Krishna, S. (1998). Autocatalytic sets and the growth of complexity in
an evolutionary model. Physical Review Letters, 81(25):5684-5687.

Jewitt, I. (2004). Notes on the shape of distributions. Technical report, Mimeo,
Oxford University, Summer.

Jones, C. I. (2011). Misallocation, economic growth, and input-output economics.
Technical report, National Bureau of Economic Research.

107



References

Kranton, R. E. (1996). Reciprocal exchange: a self-sustaining system. The American
Economic Review, pages 830-851.

Levy, G. and Razin, R. (2013). Calvin’s reformation in geneva: self and social
signalling. Journal of Public Economic Theory.

Long, J. B. and Plosser, C. 1. (1983). Real business cycles. The Journal of Political
Economy, pages 39-69.

McAfee, R. P. (2002). Coarse Matching. Econometrica, 70(5):2025-2034.
McDougall, P. (2007). Microsoft’s court battles with alcatel-lucent far from over.

Nti, K. O. (1997). Comparative statics of contests and rent-seeking games. Inter-
national Economic Review, pages 43-59.

Ok, E. A. and Vega-Redondo, F. (2001). On the evolution of individualistic pref-
erences: An incomplete information scenario. Journal of Economic Theory,
97(2):231-254.

Rosen, J. B. (1965). Existence and uniqueness of equilibrium points for concave n-
person games. Econometrica: Journal of the Econometric Society, pages 520-534.

Seabright, P. (2009). Continuous Preferences and Discontinuous Choices: How Al-
truists Respond to Incentives. The B.E. Journal of Theoretical Economics, 9(1):1—
28.

Sherman, J. and Morrison, W. J. (1949). Adjustment of an inverse matrix cor-
responding to changes in the elements of a given column or a given row of the
original matrix. In Annals of Mathematical Statistics, volume 20, pages 621-621.

Sytch, M. and Tatarynowicz, A. (2013). Friends and foes: The dynamics of dual
social structures. Academy of Management Journal.

Szell, M., Lambiotte, R., and Thurner, S. (2010). Multirelational organization of
large-scale social networks in an online world. Proceedings of the National Academy
of Sciences, 107(31):13636-13641.

Titmuss, R. M. (1970). The gift relationship: from human blood to social policy.

Vives, X. (2000). Oligopoly pricing. MIT Press, Cambridge, Mass. [u.a.].

108



	Table of contents
	List of figures
	1 Rent Seeking and Power Hierarchies: A Noncooperative Model of Network Formation with Antagonistic Links
	1.1 Literature Review
	1.1.1 Games on a Fixed Network
	1.1.2 Network Formation
	1.1.3 Contest Games

	1.2 Bilateral Contest Game
	1.3 Game on a Fixed Network
	1.4 Network Formation
	1.4.1 Actions Adjustment Process
	1.4.2 Efficiency

	1.5 Final Remarks
	1.6 Appendix A: Proofs
	1.7 Appendix B: An Alternative Formulation
	1.8 Appendix C: Numerical Example

	2 Production Networks
	2.1 Introduction
	2.2 The Model and Basic Results
	2.3 Distortions and the Role of Network
	2.3.1 Common Revenue Distortions
	2.3.1.1 Utility

	2.3.2 Firm Specific Distortions
	2.3.2.1 Utility

	2.3.3 Link Updates
	2.3.3.1 Adding and Deleting Links Between Firms
	2.3.3.2 Adding Links Toward Consumer


	2.4 Push vs. pull effect
	2.4.1 Technology Shocks
	2.4.2 Taste Shocks
	2.4.3 Revenue Distrotions

	2.5 General Formulation of the Model
	2.6 Conclusion
	2.7 Appendix A: Proofs
	2.7.1 Benchmark model
	2.7.2 Common Revenue Distortions
	2.7.3 Firm Specific Distortions
	2.7.4 Link Updates

	2.8 Appendix B: Definitions 
	2.8.1 Profits as a Stationary Distribution of a Markov chain
	2.8.2 Intercentrality

	2.9 Appendix C: Budget Constraint
	2.9.1 Common Distortions
	2.9.2 Firm Specific Distortions

	2.10 Appendix D: Some Useful Results From Markov Chain Theory

	3 A Screening Role of Enforcement Institutions
	3.1 Introduction
	3.2 Setup
	3.2.1 Parameters

	3.3 Equilibrium
	3.3.1 Analysis of the Equilibrium

	3.4 Welfare
	3.5 Endogenous Quality of Enforcement
	3.6 Matching Frictions
	3.7 Conclusion and Extensions
	3.8 Appendix A: Proofs

	References



