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Abstract

This paper generalizes Benhabib and Farmer [5], by allowing for a strictly positive time-to-build of
capital. The introduction of a time-to-build delay yields a system of mixed functional di¤erential
equations. We develop an e¢ cient strategy to fully describe the dynamic properties of our economy;
in the simpler case of no externalities, the dynamic behavior of the economy around the steady state
is of "saddle-path" type while, in the Behnabib Farmer model, it is possible to show that the presence
of local indeterminacy rises for su¢ ciently large value of the time to build parameter even for small
externalities.
Keywords: Indeterminacy; Time-to-Build; Mixed Functional Di¤erential Equations
JEL Classi�cation : E00, E3, O40.

1 Introduction

This paper is an extension of Benhabib and Farmer [5] under the time-to-build assumption that new

capital goods become productive with some delay. The main concern is to understand how the dynamic

properties of a neoclassical growth economy with production externalities change by the introduction of

a time-to-build delay, as well as variations on its magnitude. In particular, we are interested in capturing

the in�uence of time-to-build on the existence of local indeterminacy.

The implications of time-to-build has long been analyzed by economists (s.a. Bohm-Bawerk [8]), who

have conjectured that production lags may induce cycles in output (see also Kalecki [18]) and account

for the persistence of output �uctuations. In their seminal paper, Kydland and Prescott [22] argue that

time-to-build, in the sense that investment projects need more than one period to be completed, strongly

contributes to the persistence of the business cycle. Asea and Zak [1] propose a continuum time optimal

growth model with a time-to-build delay and show that the optimal path may converge to the steady state,

eventually by oscillations, or even (Hopf) cycle around it. Consequently, they show that the dynamics

can be intrinsically oscillatory due (entirely) to the time-to-build technology.1

Local indeterminacy is a concept strictly related to the dynamics, and in particular to the stability

properties of the equilibrium in an in�nite horizon economy. In a two dimension dynamic general equi-

librium model, with one control and one state, there is local indeterminacy when a steady state is not

�The authors thank Jess Benhabib, Raouf Boucekkine, Gerry Ladas, Aldo Rustichini and Paul Zak for their use-
ful advice and comments. Corresponding author: Mauro Bambi, tel. +39-055-4685928, fax. +39-055-4685902, e-mail :
mauro.bambi@iue.it.

1Asea and Zak [1] use delayed di¤erential equations to rigorously analyze the implications of time-to-build delays. See
also Collard et al [11]. A rigorous proof of the existence of cycles in an optimal growth model with time-to-build was done
by Rustichini [24].
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(locally) a saddle path, as usual, but a stable node or a stable focus.2 In these cases, the equilibrium is

said to be locally indeterminate since for any given initial condition for the state variable there exists a

continuum of initial levels of the control (or co-state), each of which associated to a di¤erent equilibrium

path. Kehoe and Levine [19] argue that in pure exchange economies with in�nitely lived consumers,

equilibria are generically determinate. However, from the beginning of the nineties, in�nitely lived agent

models with some degree of increasing returns have been shown to exhibit multiple equilibria, indetermi-

nacy, and the possibility of sunspots. Benhabib and Farmer [5] (hereafter BF) add increasing returns to

the one sector neoclassical growth model and show that the equilibrium may be locally indeterminate3 .

In a discrete time Benhabib-Farmer framework, Hintermaier [16] analyses the existence of indeter-

minacy for di¤erent time frequencies. He shows that the conditions for the existence of indeterminacy

are stronger the lower is the time frequency. At the limit, when the time frequency goes to in�nite, or

the period length goes to zero, he obtains the same conditions than in BF. As it is standard in discrete

general equilibrium models, Hintermaier assumes that capital produced at time t becomes productive at

time t + 1. This is a one period time-to-build assumption. Consequently, by reducing the frequency of

the economy the time-to-build becomes longer and longer.

The introduction of adjustment costs in the BF model, has been shown by Kim [20] to increase the

required degree of increasing returns for indeterminacy to rise; Herrendorf and Valentinyi [15], starting

with a two sector model characterized by mild sector-speci�c externalities, extend this result both in the

case of total and of sector�s speci�c capital adjustment costs.

In this paper, we extend BF by assuming that capital produced at time t becomes productive at

time t + � , where � > 0 is a time-to-build delay. The analysis focuses, �rst, on the e¤ect of the time

to build in a Ramsey model with endogenous labour supply and then in a Behnabib Farmer model. It

is possible to show that under some parametrization, local indeterminacy rises even when the necessary

condition for indeterminacy of the "original" model doesn�t hold. In other terms, the presence of any

level of externalities are able to produce local indeterminacy of the steady state when a su¢ ciently large

level of the time to build parameter is chosen.

The paper is organized as follows. Section 2 describes the time-to-build economy. In section 3 we

analyze the dynamics of the model and we present the major theoretical results; section 4 concludes.

2 Time-to-Build

We model time-to-build in the simplest possible way by assuming, as suggested by Kalecki [18], that

capital goods produced at time t become operative at time t+ � , the time-to-build delay � being strictly

positive4 . This assumption is appended to the dynamic general equilibrium model with externalities

2 In continuous time, the eigenvalues lie respectively, in R�= f0g ; and in the left of the imaginary axis. In discrete time,
the eigenvalues are real and inside the unit circle, and complex and inside the unit circle, respecively.

3The empirically plausibility of the BF model has been extensively discussed in the literature, since an implausible high
level of externalities are required to the equilibrium be indeterminate. Benhabib and Nashimura [7] and Benhabib and Perli
[6] propose more general models where the conditions for indeterminacy are plausible.

4Kalecki refers to the parameter � as "gestation period" of any investment. This period starts with the investment orders
and �nished with the deliveries of �nished industrial equipments.
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proposed by Benhabib and Farmer [5].

2.1 Firm�s Problem

Markets are perfectly competitive and there is a continuum of measure one of identical �rms using a

Cobb-Douglas technology that transforms labor N and capital K into output Y :

Y (t) = A(t)K(t� �)aN(t)b:

As said before, the time-to-build assumption imposes that at time t �rms use capital goods produced

at time t � � . The state of technology is A(t) = �K(t � �)��a �N(t)��b, where 1 > � > a > 0, and

� > b > 0. As in BF, no-tradeable externalities come from the economy-wide capital average �K; and the

economy-wide labor average �N . Constant returns to scale at the �rm level requires a+ b = 1: There are,

however, increasing returns to scale at the aggregate level, since � + � > 1. The aggregate technology,

after substitution of �K by K and �N by N , can be written as

Y (t) = K(t� �)�N(t)� : (1)

Under the time-to-build assumption, the representative �rm faces the following static pro�t maxi-

mization problem:

max
N(t);K(t)

A(t)K(t� �)aN(t)b � w(t)N(t)� [r(t) + �]K(t� �):

where w(t) is the wage rate, � > 0 is the depreciation rate and r(t) + � is the rental rate of capital.

From the �rst order conditions, we get

bY (t) = w(t)N(t) (2)

aY (t) = [r(t) + �]K(t� �): (3)

Constant private returns to scale imply that factors of production receive a �xed share of output and

pro�ts are zero, which is consistent with perfect competition.

2.2 Consumer�s Problem

The economy is inhabited by a continuum of measure one of in�nitely lived households, with preferences

depending positively on consumption C and negatively on employment N . Households are assumed to

own the capital stock. The representative household faces the following in�nite horizon problem:

max

1Z
0

�
logC(t)� N(t)

1��

1� �

�
e��tdt;

s.t. _K(t) = r(t)K(t� �) + w(t)N(t)� C(t); (4)

given initial conditions K(t) = �(t); for t 2 [�� ; 0]. Parameter � � 0 while � > 0: This dynamic

optimization problem di¤ers from the standard consumers problem mainly because the budget constraint

(4) is not an ordinary di¤erential equation but a delayed di¤erential equation. From the time to build
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assumption, consumers rent at time t the capital stock produced at t � � and they build new capital

which will be available at t + � . Consequently, initial conditions �(t) need to be speci�ed in order to

identify the relevant history of the state variable K.

Following Kolimanovskii and Myshkis [21], the Hamiltonian associated to this problem is

H (t) =
�
logC(t)� N(t)

1��

1� �

�
e��t + �(t) [r(t)K(t� �) + w(t)N(t)� C(t)] ;

and the associated optimal conditions are

1

C(t)
e��t = �(t) (5)

1

N(t)�
e��t = �(t)w(t) (6)

�(t+ �)r(t+ �) = � _�(t) (7)

and, as shown by Boucekkine et al [10], the standard transversality conditions

lim
t!1

�(t) � 0 and lim
t!1

�(t)K(t) = 0

holds. The main di¤erence with respect to a standard optimal control problem is in equation (7). The

fundamental trade o¤ is between consuming today, whose marginal value is given by �(t), and consuming

at t+ � , with marginal value � (t+ �). From (5) and (6) we get the standard intratemporal substitution

condition between consumption and labor

C(t)

N(t)�
= w(t): (8)

From (5) and (7), we get the forward-looking Euler-type condition:

_C(t)

C(t)
=

C(t)

C(t+ �)
e���r(t+ �)� �; (9)

where the real interest rate, which the household get at time t+� by investing in capital today, is weighted

by the marginal elasticity of substitution between consumption at t and consumption at t+ � . It re�ects

the fact that investment allows households to substitute current consumption by consumption at time

t+ � .

3 Analysis of the Dynamics

In order to reduce the problem to a nonlinear functional di¤erential equations (FDEs) system,5 we proceed

in the following way. Firstly, we use equations (2) and (3) to substitute w and r into (4), (8) and (9).

Secondly, we substitute N from (8). Finally, we substitute Y from (1) in (4) and (9). After making a

logarithmic transformation of K and C; we get a delayed di¤erential equation (DDE) for capital

_k(t) = ek(t��)�k(t)
n
e�0+�1k(t��)+�2c(t) � �

o
� ec(t)�k(t); (10)

5See Hale and Lunel [14].
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and an advanced di¤erential equation (ADE) for consumption

_c(t) = e���+c(t)�c(t+�)
n
a e�0+�1k(t)+�2c(t+�) � �

o
� �; (11)

where

�0 = � � log b
�+��1 ; �1 =

(��1)(��1)��
�+��1 ; and �2 =

�
�+��1 :

Small capital letters refer to variables in logarithms. We can immediately observe the following:

Remark 1 The FDEs system (10)-(11) becomes the di¤erential system in Behnabib and Farmer [5]

_k(t) = e�0+�1k(t)+�2c(t) � � � ec(t)�k(t)

_c(t) = a e�0+�1k(t)+�2c(t) � � � �:

when the time-to-build assumption is ruled out, i.e. � ! 0.

Moreover, we can prove some relevant relations between the signs of �2, �1 + �2; and 1 + �1.

Lemma 1 The following sign relations holds: sign(�2) = sign(�1 + �2) = � sign(1 + �1):

Proof. See Appendix A.1.

Finally let us give the following de�nition of an equilibrium path in a functional di¤erential equation

context.

De�nition 1 An equilibrium path is any trajectory '(t) = fc (t) ; k (t)g that solves the two autonomous

mixed di¤erential equations (10)-(11) subject to the boundary condition k(t) = log (�(t)) ; for t 2 [�� ; 0] ;

and the transversality conditions

lim
t!1

e�c(t)e��t � 0 and lim
t!1

ek(t)�c(t) e��t = 0:

3.1 Steady State Analysis

Under the usual assumption that at steady state _k(t) = _c(t) = 0, implying c(t) = c(t + �) = cs and

k(t) = k(t� �) = ks, from (10) and (11), we get

ks =
1

�1 + �2
(log [A]� �2 log [A� �]� �0) (12)

cs = log [A� �] + ks; (13)

where A � � + � e��

a
:

Since ks and cs are natural logarithms, they may have either positive or negative sign.

Remark 2 Equations (12)-(13) are identical to those obtained by Behnabib and Farmer [5], when � = 0.

Moreover, as expected the following result holds:

Proposition 1 The time-to-build delay � a¤ects negatively both ks and cs.

Proof. See Appendix A.2.

The economy is more ine¢ cient the larger the time-to-build delay is, implying that the steady state

values of capital and consumption are smaller.
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3.2 Stability Analysis

Let �rst linearize the system (10)-(11) around its steady state and compute the characteristic equation.

As shown in Bellman and Cooke [3] (page 337-339), the solution of the linearized system will have the

same properties of the nonlinearized one for su¢ ciently small perturbations. After some algebra,6 the

characteristic equation of the linearized system is

h(z) = det(�(z)) =

���� z � (A� � + �1A) e�z� ��2A+A� �
�a�1A e��� z � �+ (aA� � � a�2A) e��� ez�

���� : (14)

The Jacobian is not symmetric due to the presence of externalities.7 Moreover, introducing " = ��2A+

A� �; with " 2 R; using the de�nitions of �1 and �2; we can rewrite (14) as follows:

~h"(z) = det( ~�"(z)) =

���� z � [(�� 1)� + �"] e�z� "
�a [A� � (� + ")] e��� z � �+ [(a� 1)� + a"] ez�e���

���� : (15)

This characteristic equation describes completely the spectrum of the eigenvalues Z1 = fzrgr asso-

ciated to the FDEs system. Let us call Re(Z1) the set of the real parts of the eigenvalues; and with

Zk1 and Zc1 the sets of all the eigenvalues coming, respectively, from the characteristic equation of the

linearized law of motions of capital and consumption.

In the following, we present, �rst, some preliminar results on the theory of FDEs; then we prove a

general statement which ensures necessary and su¢ cient condition for local determinacy. This is a new

crucial result which let us to fully characterized the dynamic behavior of the economy both in the case

of no externalities and in the case of externalities. We show the main propositions in these two cases for

the case " = 0, and when possible we analyze the general case " 6= 0.

3.2.1 Some Preliminary Results

Before proceeding, let us evoke some theoretical results. Consider the general linear delay di¤erential

equation with forcing term f(t) :

a0 _u(t) + b0u(t) + b1u(t� �) = f(t) (16)

subject to the initial condition

u(t) = �(t) with t 2 [�� ; 0] : (17)

Theorem 1 (Existence and Uniqueness) Suppose that f is of class C1 on [0;1) and that � is of

class C0 on [�� ; 0]. Then there exists one and only one continuous function u(t) which satis�es (17),

and (16) for t � 0. Moreover, this function u is of class C1 on (� ;1) and of class C2 on (2� ;1). If �

is of class C1 on [�� ; 0], _u is continuous at � if and only if

a0 _�(�) + b0�(�) + b1�(0) = f(�) (18)

If � is of class C2 on [�� ; 0], �u is continuous at 2� if either (18) holds or else b1 = 0, and only in these

cases.
6See Appendix A.3 for technical details.
7 In particular the no-symmetry of the Jacobian derives from the presence of increasing return to scale in the production

function; in fact it can be easily shown that if � = a the Jacobian�s symmetric properties hold.
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Proof. See Bellman and Cooke [3], page 50-1.

The function u singled out in this theorem is called the continuous solution of (16) and (17). Then in

order to see the shape of this continuous solution the following theorem is useful:

Theorem 2 Let u(t) be the continuous solution of (16) which satis�es the boundary condition (17). If �

is C0 on [�� ; 0] and f is C0 on [0;1) ; then for t > 0;

u(t) =
P
r
pre

zrt +
R t
�
f(s)

P
r pre

zr(t�s)ds

where fzrgr and fprgr are respectively the roots and the residue coming from the characteristic equation,

h(z), of the homogeneous delay di¤erential equation

a0 _u(t) + b0u(t) + b1u(t� �) = 0

Note: fprgr are the residue of ezth(z)�1p(z) where

p(z) = �(�)e�zt � b1
R 0
�� �(s)e

�z�ds

and for Theorem 1 are unique for given initial condition.

Proof. See Bellman and Cooke [3], page 75.

An important theorem on stability of functional di¤erential equation is

Theorem 3 (Hayes Theorem) All the roots of pez + q � zez = 0, where p; q 2 R, have negative real

parts if and only if

(a) p < 1 and

(b) p < �q <
p
a21 + p

2

where a1 is the root of a = p tan a such that a 2 (0; �). If p = 0; we take a1 = �
2 .

Proof. see Bellman and Cooke [3], page 444.

In the next section, the concept of local determinacy is reformulated in the context of FDEs.

3.2.2 The determinacy and indeteminacy of solution in FDEs system

Before stating the main proposition we recall the following two mathematical concepts:

De�nition 2 A section (X;Y ) is an ordered pair of non-empty sets of Z � R such that any elements of

Z lies in one of them and x 2 X and y 2 Y implies x < y.

De�nition 3 A cutting element of a section (X;Y ) of Z, is any real number L with the property that

x � L � y for all x 2 X and y 2 Y .

Given these de�nition we are ready to present the following crucial and general result

Theorem 4 If exists a parametrization for � and " such that
�
Re
�
Zk1

�
;Re (Zc1)

�
is a section of Re (Z1)

with cutting element L = 0 then the dynamic behavior of the economy is locally determinate.
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Proof. Suppose such a parametrization exists. and L = 0 is the cutting element, then all the eigenvalues

having negative real part come necessarily from the linearized law of motion of capital while all the

positive from the linearized law of motion of consumption. Now following Boucekkine et al. [10],8 we

can rule out all the eigenvalues coming from the linearize law of motion of consumption which are all the

eigenvalues with positive real part. Taking into account Theorem 2, we can write the solution of the

system which for Theorem 1 exists and it is unique for any speci�cation of the boundary condition � (t).9

We can also observe that if such a parametrization exists but the cutting element is on the left of

the origin then the dynamic behavior of the economy is locally indeterminate since it exists at least one

eigenvalue coming from the characteristic equation of the linearized law of motion of consumption having

negative real part, call it ẑl. In this case the solution of consumption, after ruling out the roots having

positive real part, writes

c (t) = ple
zrt + pl

R t
�
k(s)ezr(t�s)ds

As we know in the term pl we have to specify initial condition for consumption. However we choose it,

we have that

lim
t!1

c(t) = 0

and then it exists more than one trajectory which converges to the equilibrium and then locally indeter-

minacy rises.

Now we show several exemples in which we fully characterized the dynamic behaviour of the economy

using Theorem 4.

3.2.3 The Ramsey problem with time to build and endogenous labor supply

We �rst study the particular and simplest case of " = 0+; remembering that for Rouche�s theorem, the

results obtained under this assumption are invariant to small enough perturbation of ".10 Under � = a

and " = 0+ the characteristic equation (15) becomes:

~h0(z) = det( ~�0(z)) =
�
z � (a� 1)� e�z�

� �
z � �+ (a� 1)� ez�e���

�
: (19)

Taking into account Theorem 4, it is possible to prove the following Proposition

Proposition 2 Under " = 0+; an equilibrium exists and is unique i¤ � 2
�
0; �

2(1�a)�

�
. Moreover, capital

dynamics exhibits oscillatory convergence.

Proof. In order to prove the existence and uniqueness of the solution we have to show the existence

of a parametrization for � such that
�
Re
�
Zk1

�
;Re (Zc1)

�
is a section of Re (Z1) with cutting element

L = 0. It�s immediate to observe that the �rst parenthesis in the right hand side of (19) is exactly the

characteristic equation for the law of motion of capital. Moreover it�s possible to rewrite it as follows

hk(w) = �wew + � (a� 1) � (20)

8This is simply an application of Lemma 14.
9For a more detailed discussion of the solution of system of functional di¤erential equations see Bellman and Cooke [3],

pag.186.
10An identical approach is used in Rustichini [24].
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with w = z� . From Hayes theorem, all the roots have negative real part if � 2
�
0; �

2(1�a)�

�
. Under this

parametrization, the second parenthesis in (19), call it hc(w), has exactly the same eigenvalues of hk(w)

but with real parts of opposite sign. In order to see this we can rewrite hc(w) as follows

hk(w) = �wew + � (a� 1) �

where this time w = (�z + �) � . From Hayes theorem all the roots have negative real part if � 2�
0; �

2(1�a)�

�
and since z = �w

� + � then all the roots before the transformation have positive real part.

Finally, zero is not a root. Then,
�
Re
�
Zk1

�
;Re (Zc1)

�
is a section of Re (Z1) with cutting element L = 0.

From Theorem 2, the continuous and unique solution for capital is

k(t) =
P

r pre
zrt (21)

with pr residue of ezth(z)�1p(z) where

p(z) = k(�)e�z� + (a� 1)�e�z�
R 0
�� k(t)e

�ztdt:

Finally let (xr; yr) such that zr = xr + iyr. Then the converging solution of (21) can be written as:

k(t) =
P

xr2Re�(Z1)
pre

xrt cos(yrt)

and since xr < 0, the capital dynamics exhibits oscillations that decrease in magnitude as t!1.

Now we analyze the more general case, " 6= 0. This case is of particular interest, since it corresponds

to a general Ramsey model with time-to-build and endogenous labor supply. Under � = a, equation (15)

becomes

~h"(z) = f"(z) + ~h"; (22)

where f"(z) = (z � [(a� 1)� + a"] e�z� ) (z � �+ [(a� 1)� + a"] ez�e��� ) and ~h" = a" [A� a (� + ")],

which is positive i¤ " 2
�
0; Aa � �

�
: We want to study ~h"(z) = 0 and derive the dyanmic behavior

of the economy.

Proposition 3 The equilibrium of a Ramsey model with time to build and endogenous labour supply

exists and it is unique. The dynamics of capital exhibits oscillatory convergence.

Proof. The prove is divided in two steps. In the �rst step, we prove that function f"(z) is even and then

any shift of the x-axis, call it ~h", identi�es new zeros with the property that to any root having positive

real part corresponds another root having a real part of the same magnitude but opposite sign. By using

this result we prove, in the second step, that
�
Re
�
Zk1

�
;Re (Zc1)

�
is a section of Re (Z1) with cutting

element L = 0.

Step 1 : For � su¢ ciently small, f"(z) is "almost" an even function, since

f"(�z) = f�z � [(a� 1)� + a"] ez�g
�
�~z + [(a� 1)� + a"] e�~z�

	
' f"(z):

where ~z = z � � ' z:Then, for any shift of the x-axis, call it ~h", the zeros of function ~h"(z) verify that

Re�(Z1) =
�
~x1j
	
j
and Re+(Z1) '

�
�~x1j

	
j
:
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Step 2 : In this step we show that all the eigenvalues coming from the law of motion of capital and

consumption have respectively negative and positive real parts. In order to prove that, we start with the

equations of the linearized law of motion of capital and consumption

_k(t) = g"k(t� �)� "c(t) (23)

_c(t) = �g"c(t+ �) + d"k(t) (24)

where for � su¢ ciently small, g" ' [(a� 1) � + a"], which is greater than zero for any feasible value of

", and d" ' a [A� a (� + ")]. Let us assume that k(t) = e�zt is a solution of (23) and c(t) ' e��zt is the

associated solution of (24). Given these solutions, we have that the characteristic equations of (23) and

(24) are:

hk = �z � g"e��z� + "e�2�zt (25)

hc = ��z + g"e��z� � d"e2�zt: (26)

From (26), hc = 0 implies

e2�zt =
��z + g"e��z�

d"

and substituting it in (25) we get

hk =
[�z � g"e��z� ]2 � ~h"

�z � g"e��z�
(27)

where �z � g"e��z� 6= 0, " > 1�a
a � > 0 and (25) has to be equal to zero. By proving that, it exists " and

� such that all the roots of the numerator of (27) have negative real parts, then all the considerations

in Lemma 2 apply also to this case. In order to do it, we observe that " 2
�
1�a
a �;

1�a2
a2 �

�
as shown in

Appendix A.4. We can rewrite hk = 0 as follows

�wew � �
q
~h"e

w + �g" = 0 (28)

since ~h� is positive and w = z� . By applying the Hayes Theorem we �nd that the condition (a) is

always satis�ed since ��
p
~h" < 1. Moreover condition (b) is satis�ed, too. In fact the inequality

��g(") <
q
a21 + �

2~h" is obviously satis�ed, while the inequality g" <
p
~h" is respected for any value of

" 2
�
1�a
a �;~"

�
with ~" very close to 1�a2

a2 �. In particular it�s possible to show that the last inequality always

holds for the usual calibration of the parameters11 . Then all the eigenvalues of (28) to have negative real

part. Finally, since for Hayes theorem the condition is necessary and su¢ cient, we have that our guessed

solutions for (23) and (24) were exact. This is su¢ cient to prove that
�
Re
�
Zk1

�
;Re (Zc1)

�
is a section

of Re (Z1) with cutting element L = 0and then from Theorem 4 the equilibrium exists and is unique.

Finally we can rewrite the solution in its trigonometric form

k(t) =
P

xr2Re�(Z1)
p1r(t)e

xrt cos(yrt)

c(t) =
P

xr2Re�(Z1)
p2r(t)e

xrt cos(yrt)

11For example under the parametrization a = 1
3
, b = 2

3
, � = �0:25 and � = 0:1 we have

p
h" = 0:125 > 0:114 = g".
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and since xr < 0, capital and consumption dynamics exhibit at the beginning oscillations that decrease

in magnitude and �nally disappear.

Now we introduce externalities and we study the new economy.

3.2.4 A simpli�ed version of the B.-F. model with time to build

We now turn to the Behnabib-Farmer model with time-to-build. In this case, the graph of the function

f"(z) is no more symmetric respect the vertical axis and we choose to derive in a �rst moment some

results only for " = 0+ which makes the Jacobian matrix triangular. In this case the BF condition

for indeterminacy is not satis�ed as shown in Appendix A.5. Under this assumption, the characteristic

equation (15) becomes

~h0(z) = det( ~�0(z)) =
�
z � [(�� 1)�] e�z�

�| {z }
~h10(z)

�
z � �+ [(a� 1)�] ez�e���

�| {z }
~h20(z)

The following result holds:

Proposition 4 When � 2
�
0; �

2(1�a)�

�
the equilibrium exists and it is unique; however when � 2�

�
2(1�a)� ;

�
2(1��)�

�
; the equilibrium exists but it is not more unique. In both cases capital and consumption

dynamics exhibits at the beginning oscillations that decrease in magnitude and �nally disappear.

Proof. From Hayes theorem we can easily show that ~h10(z) has all the roots with negative real part

if � 2
�
0; �

2(1��)�

�
while ~h20(z) has all the roots with positive real part if � 2

�
0; �

2(1�a)�

�
. Now since

� 2 (a; 1), it follows immediately that �
2(1��)� >

�
2(1�a)� ; but then in the interval � 2

�
0; �

2(1�a)�

�
,�

Re
�
Zk1

�
;Re (Zc1)

�
is a section of Re (Z1) with cutting element L = 0 and then a unique equilibrium

exists. On the other hand in the interval � 2
�

�
2(1�a)� ;

�
2(1��)�

�
this cannot more be done since it exists

at least one root of ~h20(z), call it ẑl, having no-positive real part
12 . It�s immediate to verify that the values

of the parameter � under which the real part of ẑl is equal to zero is a zero measure set13 .Then for � in

this interval of values, as shown also in the proof of Theorem 4, the solution for consumption writes:

c(t) = ple
ẑlt + ~d0

Z t

�

(
P

r pre
zrs) ple

ẑl(t�s)ds (29)

where ~d0 = �a [A� ��]. As we know in the term pl we have to specify initial condition for consumption.

However we choose it, we have that

lim
t!1

c(t) = 0

and then it exists more than one trajectory which converges to the equilibrium and then locally inde-

terminacy rises. Finally let (x̂; ŷ) such that ẑ = x̂ + iŷ. Then the solution of consumption (29) can be

re-written in term of cosine and sine and since x̂l < 0, also the consumption dynamics exhibits oscillatory

convergence.

12To be precise this is always true when � 2
�
0; 1

�
Re (ŵl)

�
with � 2

�
�

2(1�a)� ;
�

2(1��)�

�
.

13This restrict the possibility of cycle equilibrium and Hopf bifurcation to zero measure parameter set.
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Then when the time to build assumption is introduced in a Behnabib Farmer model, we have that if

we choose values for � in the identi�ed interval, the steady state of the economy will be indeterminate

even if the necessary condition for indeterminacy of the original model is not satisfy.

It should be of extreme interest to study the general case of " 6= 0. The analysis of the general case is

really complex and it seems extremely di¢ cult to reach a clear analytical result. If the e¤ect of consider

" 6= 0 is similar to that obtained for the Ramsey model with endogenous labor supply, we can guess that

the dynamic behavior of the economy remains the same except for the absence of the region of divergence.

4 Conclusions

We have studied a Behnabib Farmer model in order to analyze the e¤ect of the time to build assumption

on the dynamic behavior of the economy. In a �rst moment, we have focused on a simpler Ramsey model

with endogenous labor supply, and we have proved that the dynamic behavior of the economy around

the steady state remains of "saddle-path" type. This result has been obtained by proving that all the

eigenvalues having negative and positive real part come respectively from the law of motion of capital and

consumption. Using the transversality conditions all the positive have been ruled out and an explicit and

perfectly determinate solution for capital and consumption has been got from the boundary condition of

capital. Then we have tried to use the same strategy in the case of presence of externalities. The analysis

becomes very complicated in this case, however we have been able to prove evidence of presence of local

indeterminacy for particular choice of the time to build parameter, independently by the magnitude of

the externalities. To be more precise the presence of local indeterminacy can be always obtained when a

su¢ ciently large value of the time to build parameter is chosen in a model with externalities independently

by their magnitude.
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A Appendix

A.1 Proof of Lemma1.

We start with the case �2 > 0: We can observe immediately that

�2 > 0() � > 1� �:

But then given the assumptions � 2 (0; 1) and � � 0; follows immediately that

�2 > 0() �1 + �2 =
(��1)(��1)
�+��1 > 0;

�2 > 0 =) 1 + �1 =
�(��1)
�+��1 < 0:

Now we analyze the case �2 < 0:We can observe immediately that

�2 < 0() � < 1� �:

But then given the assumptions � 2 (0; 1) and � � 0; follows immediately that

�2 < 0() �1 + �2 =
(��1)(��1)
�+��1 < 0;

�2 < 0 =) 1 + �1 =
�(��1)
�+��1 > 0:

and then we have proven all the relations between �2; �1+�2 and 1+�1: Moreover since we can write

�1 as follows:

�1 =
�(��1)
�+��1 � 1 = �1 =

�(��1+���)
�+��1 � 1 = ���2 + �� 1;

then we�ll have that if

�2 2
�
��1
� ;+1

�
=) �1 � 0;

�2 2
�
�1; ��1�

�
=) �1 > 0;

A.2 Proof of Proposition1.

We need to prove that both dks
d� and dcs

d� are negative. First of all we�ll have that:

dks
d�

=
A0 (�)

�1 + �2

�
(1� �2)A (�)� �
A (�) [A (�)� �]

�

now since A (�) > 0; A0 (�) = �2

a e
�� > 0 and A (�) � �

(13)
> 0 then sign

�
dks
d�

�
depends exclusively on

�2. If �2 < 0 then (1� �2)A (�)� � > 0 but for Lemma1, �1 + �2 < 0 and then dks
d� < 0. On the other

hand if �2 > 0, since 1 � �2 < 0, we�ll have that (1� �2)A (�) � � < 0 but this time �1 + �2 > 0 and

then dks
d� < 0:

Now we�ll study the sign
�
dcs
d�

�
in order to do that we put (12) into (13) and then we take the derivative

respect to � :
dcs
d�

=
A0 (�)

�1 + �2

�
(1 + �1)A (�)� �
A (�) [A (�)� �]

�

13



as before the sign
�
dcs
d�

�
depends exclusively on �2. In fact if �2 > 0, since 1 + �1

L1
< 0, we�ll have

(1 + �1)A (�)�� < 0 but �1+�2
L1
> 0 and then dcs

d� < 0:On the other hand suppose that �2 < 0, if we prove

that (1 + �1)A (�)� � > 0 since �1 + �2
L1
< 0 then dcs

d� < 0: In order to prove that (1 + �1)A (�)� � > 0

we distinguish the following two cases:

�2 2
�
�1; ��1�

� L1
=) �1 > 0 =) A (1 + �1)� � > A� �

(13)
> 0

�2 2 (��1� ; 0)
L1
=) A (1 + �1)� � > 0

where the last relation is obtained by studying the limit case �2 ! 0�. In fact if

�2 ! 0
L1
=) 1 + �1 ! � =) �2 ! �A� � > aA� � = �e�� > 0:

A.3 Linearization of the FDEs System.

We show how to obtain the Jacobian starting from the DDE for capital and the ADE for consumption.

In order to simplify the algebra we rewrite the two functional di¤erential equations as follows:

_k(t) = ef(k(t);k(t��))
n
eg(k(t��);c(t)) � �

o
� eh(k(t);c(t));

_c(t) = ev(c(t);c(t+�))
n
ae~g(k(t);c(t+�)) � �

o
� �;

and we�ll use the following notation:

e�0+�1ks+�2cs =
� + �e��

a
� A; (30)

ecs�ks =
� + �e��

a
� � � A� �: (31)

Now we calculate the following derivative14 :

@ _k(t)

@k(t)
�

h
@

@k(t)f(k(t); k(t� �))
i
ef(k(t);k(t��))

n
eg(k(t��);c(t)) � �

o
+ef(k(t);k(t��))

h
@

@k(t)g(k(t� �); c(t))
i
eg(k(t��);c(t))

�
h

@
@k(t)h(k(t); c(t))

i
eh(k(t);c(t))

=
�
e�z� � 1

�
ek(t��)�k(t)

n
e�0+�1k(t��)+�2c(t) � �

o
+

ek(t��)�k(t)�1e
�z�e�0+�1k(t��)+�2c(t) + ec(t)�k(t);

and then

@ _k(t)

@k(t)

�����
s:s:

=
�
e�z� � 1

� �
e�0+�1ks+�2cs � �

�
+ �1e

�z�e�0+�1ks+�2cs + ecs�ks ;

and taking into account the relations (30) and (31) we�ll have �nally:

@ _k(t)

@k(t)

�����
s:s:

= e�z� (A� � + �1A) : (32)

14We search for a solution of type c(t) = k(t) = ezt and then we have the following relations k(t � �) = ez(t��) and
c(t+ �) = ez(t+�)
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Now we search for

@ _k(t)

@c(t)
� ef(k(t);k(t��))

h
@

@c(t)g(k(t� �); c(t))
i
eg(k(t��);c(t)) �

h
@

@c(t)h(k(t); c(t))
i
eh(k(t);c(t))

= �2e
�0+�1k(t��)+�2c(t) � ec(t)�k(t);

and then in steady state we get:

@ _k(t)

@c(t)

�����
s:s:

= �2A�A+ �: (33)

Now we pass to �nd

@ _c(t)

@k(t)
� ev(c(t);c(t+�))

h
@

@k(t) ~g(k(t); c(t+ �))
i
ae~g(k(t);c(t+�))

= e���+c(t)�c(t+�)a�1e
�0+�1k(t)+�2c(t+�);

and then in steady state we get:
@ _c(t)

@k(t)

����
s:s:

= e���a�1A: (34)

At last we calculate:

@ _c(t)

@c(t)
�

h
@

@c(t)v(c(t); c(t+ �))
i
ev(c(t);c(t+�))

n
ae~g(k(t);c(t+�)) � �

o
+

ev(c(t);c(t+�))
h

@
@c(t) ~g(k(t); c(t+ �))

i
ae~g(k(t);c(t+�))

= (1� ez� ) e���+c(t)�c(t+�)
n
ae�0+�1k(t)+�2c(t+�) � �

o
+

e���+c(t)�c(t+�)a�2e
�0+�1k(t)+�2c(t+�);

and then in steady state we get

@ _c(t)

@c(t)

����
s:s:

= �(aA� � � a�2A)e���ez� + (aA� �)e��� ; (35)

and then taking into account (32),(33),(34), and (35) we can construct the Jacobian (14).

The trace and the determinant of (14) are given by15 :

Tr(J) = (A� � + �1A)e�z� � (aA� � � a�2A)e���ez� + (aA� �)e��� ; (36)

Det(J) = (A� � + �1A)(aA� �)e���e�z� � (A� �)(aA� � � a�2A)e��� (37)

+�1A(1� a)�e��� :

A.4 Feasible values of " in a Ramsey model with endogenous L.

In a model without externalities, the set of the feasible values of " are in the interval
�
1�a
a �;

1�a2
a2 �

�
. In

order to prove this we proceed as follows: starting from the expression of " we can easily get:

" = ��2A+A� � =
�� a� 1
�� a � 1� a

a
�:

Now taking into account that � 2 (�1; 0) we deduce from the previous expression that " lies necessarily

in the interval
�
1�a
a �;

1�a2
a2 �

�
as we want to show.

15As we expected, we can obtain the same BF results for trace and determinant just assuming the delay equal to zero.

15



A.5 Relation between the B.-F. condition for indeterminacy and ":

The Benhabib Farmer condition for indeterminacy holds if and only if " 2 (�1;��) .In order to prove

this we proceed as follows: from the de�nition of ", �2 = A���"
A = 1� �+"

A , which is positive if and only

if " < A � �. Suppose for example " = A � � � � with � 2 R+ and remembering that �2 = �
�+��1 will

have that
1� �

� + �� 1 = �
A� �
A

and then, since � 2 R� while � and �2 2 R+ it must be � > 1� � which is satisfy only when � > A and

then " < ��.

On the other hand �2 is negative if and only if " > A � � > 0. Suppose for example " = A � � + �

with � 2 R+ and remembering that �2 = �
�+��1 will have that

1� �
� + �� 1 = �

A+ �

A
< 0

and then follows necessary that � < 1 � � for any � 2 R+. It�s important to note that the interval

" 2 (��; 0] is not feasible since it would imply � < 0.
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