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Abstract

The power of standard panel cointegration statistics may be a¤ected by misspeci�cation errors if

proper account is not taken of the presence of structural breaks in the data. We propose modi�cations

to allow for one structural break when testing the null hypothesis of no cointegration that retain

good properties in terms of empirical size and power. Response surfaces to approximate the �nite

sample moments that are required to implement the statistics are provided. Since panel cointegration

statistics rely on the assumption of cross-section independence, a generalisation of the tests to the

common factor framework is carried out in order to allow for dependence among the units of the

panel.

Keywords: Panel cointegration, structural break, common factors, cross-section dependence
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1 Introduction

The theory of cointegration establishes that there exist linear combinations of integrated variables that

cancel out common stochastic trends. This phenomenon gives rise to equilibrium relationships among

integrated variables, which means that in the long-run these variables show co-movement or are coin-

tegrated with each other. Although a large part of the traditional theory has been based upon the

assumption of structural stability, the concept of cointegration per se does not rule out the possibility

that both the cointegrating vector(s) and the deterministic component(s) of the long-run relationship

might change during the time period analyzed. In fact, Hansen (1992), and Quintos and Phillips (1993)

propose test statistics to assess the stability of the cointegration relationship. More interestingly, it is

well known that if no account is taken of changes in the parameters of the model, inference concerning

the presence of cointegration can be a¤ected by misspeci�cation errors. This in turn can bias conclu-

sions towards accepting the null hypothesis of no cointegration �e.g. see Campos, Ericsson and Hendry

(1996), and Gregory and Hansen (1996).

�A. Banerjee thanks the Research Department of the European Central Bank for hosting his visit in July 2005 within
the framework of the Research Visitor programme. J. Ll. Carrion-i-Silvestre acknowledges �nancial support from the Gen-
eralitat de Catalunya, under grant 2003BEAI00308 of the Agència de Gestió d�Ajuts Universitaris i de Recerca (AGAUR).
We also thank an anonymous referee for comments.
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All these considerations have motivated the search for design procedures to test for cointegration

allowing for structural breaks. Thus, Gregory and Hansen (1996) generalized the standard cointegration

approach in Engle and Granger (1987) to allow for the presence of structural breaks that might a¤ect

either the deterministic component or the cointegration vector of the long-run relationship. Hao (1996),

Bartley, Lee and Strazicich (2001), and Carrion-i-Silvestre and Sansó (2004) use the multivariate version

of the KPSS statistic in Harris and Inder (1994), and Shin (1994) to test for the null of cointegration

with one structural break. Finally, Hansen and Johansen (1999), and Busetti (2002) propose methods

to estimate the cointegration rank in a multivariate framework.

These proposals are extremely relevant for the imperatives that arise in empirical modelling where

structural breaks are very common. Gregory and Hansen (1996) and Gabriel, Da Silva and Nunes (2002)

investigate the long-run money demand for the U.S. and Portugal, respectively. Busetti (2002) conducts

two illustrations using road casualties in Great Britain, and macroeconomic data for the UK. Finally,

Clemente, Marcuello, Montañés and Pueyo (2004) focus on health care expenditure demand functions.

The main conclusion that arises from these applications is that inference on cointegration analysis can

be a¤ected by the presence of structural breaks. Other applications that may be envisaged for this

methodology include looking at models of convergence, real exchange rates, exchange rate pass through

and the issue of the solvency of the current account and its relation to the budget de�cit, the so-called

Feldstein-Horioka puzzle.

The literature on panel data econometrics with integrated data has experienced rapid development

since the 1990s. The driving force behind the popularity of the use of the panel data techniques is the idea

that the power of tests for unit roots and cointegration might be increased by combining the information

that comes from the cross-section (i = 1; :::N) and the time (t = 1; 2; :: > T ) dimensions, especially when

the time dimension is restricted by the lack of availability of long series of reliable time-series data. As a

result, new statistics to assess the stochastic properties of panel data sets have appeared in the literature

�see Banerjee (1999), Baltagi and Kao (2000), and Baltagi (2005) for an overview of the �eld.

Surprisingly, the issue of instability has not received a great deal of attention in the panel data

cointegration framework. In this regard, Kao and Chiang (2000) analyze instability in cointegration

relationships assuming that cointegration is present, with a homogeneous cointegrating vector in all the

units of the panel �although it is possible to split the panel into two sub-panels using a bootstrap scheme

�and a common break point. Breitung (2005) proposes a VAR-based panel data cointegration procedure

that permits the introduction of dummy variables outside the long-run relationship. Finally, Westerlund

(2004) extends the LM statistic in McCoskey and Kao (1998) by allowing for structural breaks.

As may be seen, the scope of the literature that addresses the panel data cointegration hypothesis

testing allowing for structural breaks is fairly limited. The �rst contribution of our paper is therefore

to generalize the approach in Pedroni (1999, 2004) to account for one structural break that may a¤ect

the long-run relationship in a number of di¤erent ways. Our proposal applies more generally to the class

of static-equation-based panel tests for cointegration but does not extend to cointegrated vector error

correction models (VECM) for panels with integrated data for which more work is needed in order to

develop feasible procedures.

Pedroni proposes seven statistics depending on the way that the individual information is combined to

de�ne the panel tests. The statistics can be grouped into either parametric or non-parametric statistics,

depending on the way that autocorrelation and endogeneity bias are treated. In this paper we focus only

on the parametric statistics, since these are at least asymptotically equivalent to their non-parametric

counterparts. A Monte Carlo study, which could be constructed straightforwardly, would reveal the

behaviour of non-parametric tests in �nite samples when compared to the parametric tests, but is not

included here solely for the sake of concision.

One important feature to consider in these tests is cross-section dependence. Most panel data statistics
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�including those due to Pedroni �assume cross-section independence, except for common time e¤ects.

This is in many contexts a highly restrictive assumption to make. As our second contribution, we

address this concern by using a factor model approach due to Bai and Ng (2004) to generalize the degree

of permissible cross-section dependency to allow for idiosyncratic responses to multiple common factors.

Taken together we thereby generalize the class of panel cointegration tests to allow for both structural

breaks and cross-section dependence. The limiting distributions of the statistics are derived and new

sets of critical values are computed wherever required.

Our paper takes the following shape. In section 2 the interest of our proposal is motivated through

Monte Carlo simulations. Section 3 presents the models and statistics for the null hypothesis of no

cointegration with power against the alternative of broken cointegration. The moments that are required

for the computation of the panel data statistics are computed in this section. In this regard, we es-

timate response surfaces to approximate these moments for whichever sample size. Section 4 extends

the approach to the common factor framework. Section 5 focuses on the �nite sample properties of the

statistics. Finally, section 6 concludes with some remarks. Proofs are collected in the Appendix.

2 Motivation

Pedroni (1999, 2004) proposes seven statistics to test the null hypothesis of no cointegration using

single-equation methods based on the estimation of static regressions. Since the statistics are based

on single-equation methods the cointegrating rank for each unit is either 0 or 1, with a heterogeneous

cointegrating vector for each unit. After estimating individual static regressions for each unit, the

cointegrating residuals are used to compute each of the statistics. The seven statistics are classi�ed into

two di¤erent groups depending on whether they are within-dimension-based statistics �homogeneity is

assumed when computing the cointegration test statistics �or between-dimension-based statistics where

heterogeneous behaviour (across the units of the panel) is allowed. As mentioned in the introduction, we

are concerned only with the parametric version of the statistics, i.e. the normalized bias and the pseudo

t-ratio statistics.

To motivate our proposal we analyze the e¤ects of structural breaks on the parametric group of Pe-

droni statistics through Monte Carlo simulations. First, we focus on the case where there is cointegration

but the deterministic component changes at a point in time. Subsequently we also consider the case of

an unstable cointegrating vector.

The Data Generating Process (DGP) is given by:

yi;t = fi (t) + x
0
i;t�i;t + ei;t

�xi;t = vi;t

ei;t = �iei;t�1 + "i;t

�i;t = ("i;t; vi;t)
0 � iid N (0; I2) ;

where fi (t) denotes the deterministic component.

Four di¤erent cases are considered. Firstly, we have fi (t) = �i + �iDUi;t with DUi;t = 1 for t > Tbi
and 0 otherwise, where Tbi = �iT denotes the date of the break with �i 2 �, where � is a speci�ed
closed subset of (0; 1).1 The parameter set is given by �i = 1, �i = f0; 1; 3; 5; 10g, �i;t = �i = 1, and

�i = f0:25; 0:5; 0:75g. The autoregressive parameter comes from the set �i = f0; 0:5g. The sample size
is T = f100; 200g, the number of units is N = f20; 40g and the results are based on 1; 000 replications.
For simplicity but without loss of generality, we have speci�ed a common break point for all units in all

1We follow the suggestion in Zivot and Andrews (1992) and de�ne � = [2=T; (T � 1)=T )].
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the simulations. The model that has been estimated to compute the pseudo t-ratio Pedroni panel data

cointegration test statistics includes a constant term (individual e¤ects) as deterministic component.

Secondly, we have also analyzed the case where the structural break changes both the level and the

slope of the time trend. The deterministic function is given by fi (t) = �i + �iDUi;t + �it + 
iDT
�
i;t,

where �i = 1, �i = 3, �i = 0:3 and DT
�
i;t is the dummy variable de�ned above. Note that in this case

the pseudo t-ratio statistic has been computed using a time trend as the deterministic component.

The third case studies the e¤ects of a change both in the level and in the cointegrating vector. As

before, the deterministic component is fi (t) = �i + �iDUi;t, with �i = 1 and �i = f0; 3g. Now we focus
on the change in the cointegrating vector specifying �i;t = �i;1 = 1 for t � Tbi and �i;t = �i;2 = f0;
2, 3, 4, 5, 10g for t > Tbi. The model estimated to compute the (pseudo t-ratio) Pedroni panel data

cointegration statistic includes a constant term as deterministic component.

Finally, the fourth case considers a change in the level and time trend, that de�nes the deterministic

component, together with a change in the cointegrating vector. In this case fi (t) = �i+ �iDUi;t+ �it+


iDT
�
i;t, with �i = 1, �i = 3, �i = 0:3, 
i = 0:5, and �i;t = �i;1 = 1 for t � Tbi and �i;t = �i;2 = f0;

2; 3; 4; 5, 10g for t > Tbi. The model estimated to compute the pseudo t-ratio Pedroni panel data

cointegration statistic includes individual and time e¤ects.

Detailed results of the simulations for all four cases are available in Tables 1 to 3. In the �rst

case, results in Table 1 show that the e¤ect of a change in level only matters in those situations where

the magnitude of the change is large and the break point is located at the end of the time period.

Therefore, we can conclude that for small and moderate changes in level the misspeci�cation error of the

deterministic component does not damage the power of Pedroni statistic. However, in the second case

the consequences of the misspeci�cation error are more serious, since the empirical power approaches

zero as the magnitude of the change in trend (
i) increases when the break point is placed either in

the middle (�i = 0:5) or at the end (�i = 0:75) of the period. In the third case, Table 2 shows that

for the empirical power to diminish the change in the cointegrating vector has to be either moderate or

large, and be located in the middle (�i = 0:5) or at the end (�i = 0:75) of the period. Notice that this

conclusion is reached irrespective of the change in level that a¤ects the constant term.

Finally, when the level, time trend and the cointegrating vector change, and a model estimated to

compute the pseudo t-ratio Pedroni panel data cointegration statistic includes individual and time e¤ects,

the change in the trend implies further reductions on the empirical power of the statistic when the break

point is located in the middle and at the end of the period �see Table 3.

In summary, we may conclude that misspeci�cation errors due to the lack of accounting for a structural

break can reduce the power of the panel data cointegration test in Pedroni (2004) in those cases where

the break point is placed in the middle or at the end of the time period. Therefore, we observe a bias

towards the spurious non-rejection of the null hypothesis of no cointegration. A relevant feature is that

the power distortions seem to appear only when the break changes either the slope of the time trend or

the cointegrating vector, but no e¤ects are seen when the break only a¤ects the constant term.

3 Models and test statistics

In order to consider the issues described above more formally, let fYi;tg be a (m� 1)-vector of non-
stationary stochastic process with the following representation

�xi;t = vi;t

yi;t = fi (t) + x
0
i;t�i;t + ei;t; ei;t = �iei;t + "i;t;
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where Yi;t =
�
yi;t; x

0
i;t

�0
is conveniently partitioned into a scalar yi;t and the ((m� 1)� 1)-vector xi;t,

i = 1; : : : ; N , t = 1; : : : ; T . Let �i;t =
�
"i;t; v

0
i;t

�0
be a random sequence assumed to be strictly stationary

and ergodic, with mean zero and �nite variance. In addition, the partial sum process constructed from�
�i;t
	
satisfy the multivariate invariance principle de�ned in Phillips and Durlauf (1986). At this stage

and in order to set the analysis in a simpli�ed framework, let us assume that fvi;tg and f"i;tg are
independent.

The general functional form for the deterministic term f (t) is given by

fi (t) = �i + �it+ �iDUi;t + 
iDT
�
i;t; (1)

where

DUi;t =

(
0 t � Tbi
1 t > Tbi

;DT �i;t =

(
0 t � Tbi

(t� Tbi) t > Tbi
;

with Tbi = �iT , �i 2 �, denoting the time of the break for the i-th unit, i = 1; : : : ; N . Note also that
the cointegrating vector is speci�ed as a function of time so that

�i;t =

(
�i;1 t � Tbi
�i;2 t > Tbi

:

Using these elements, we propose up to six di¤erent model speci�cations:

� Model 1. Constant term with a change in level but stable cointegrating vector:

yi;t = �i + �iDUi;t + x
0
i;t�i + ei;t (2)

� Model 2. Time trend with a change in level but stable cointegrating vector:

yi;t = �i + �it+ �iDUi;t + x
0
i;t�i + ei;t (3)

� Model 3. Time trend with change in both level and trend but stable cointegrating vector:

yi;t = �i + �it+ �iDUi;t + 
iDT
�
i;t + x

0
i;t�i + ei;t (4)

� Model 4. Constant term with change in both level and cointegrating vector:

yi;t = �i + �iDUi;t + x
0
i;t�i;t + ei;t (5)

� Model 5. Time trend with change in both level and cointegrating vector (the slope of trend does
not change):

yi;t = �i + �it+ �iDUi;t + x
0
i;t�i;t + ei;t (6)

� Model 6. The time trend and the cointegrating vector change:

yi;t = �i + �it+ �iDUi;t + 
iDT
�
i;t + x

0
i;t�i;t + ei;t (7)

Using any one of these speci�cations we propose testing the null hypothesis of no cointegration

against the alternative hypothesis of cointegration (with break) using the ADF test statistic applied to

the residuals of the cointegration regression as in Engle and Granger (1987) and Gregory and Hansen

(1996) but in the panel data framework developed in Pedroni (1999, 2004). In fact, Gregory and Hansen
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(1996) propose the speci�cations given by models 1, 2 and 4 above, so that the speci�cations in models

3, 5 and 6 allow us to extend their approach.

Our proposal can be described in the following steps. First and following Gregory and Hansen (1996),

we proceed to the OLS estimation of one of the models given in (2) to (7) and run the following ADF

type-regression equation on the estimated residuals (êi;t (�i)):

�êi;t (�i) = �iêi;t�1 (�i) +
kX
j=1

�i;j�êi;t�j (�i) + "i;t: (8)

The notation used refers to the break fraction (�i) parameter, which (if it exists) is in most cases un-

known. In order to get rid of the dependence of the statistics on the break fraction parameter, Gregory

and Hansen (1996) suggest estimating the models given in (2) to (7) for all possible break dates, subject

to trimming, obtaining the estimated OLS residuals and computing the corresponding ADF statistic.

With the sequence of ADF statistics in hand, we can also estimate the break point for each unit as

the date that minimizes the sequence of individual ADF test statistics � either the t-ratio, t�̂i (�i),

or the normalized bias, computed as T �̂i (�i) = T �̂i

�
1� �̂i;1 � � � � � �̂i;k

��1
� see Hamilton (1994),

pp. 523. Gregory and Hansen (1996) derive the limiting distribution of t�̂i

�
�̂i

�
= inf�i2� t�i (�i) and

T �̂i

�
�̂i

�
= inf�i2� T �̂i (�i), which are shown not to depend on the break fraction parameter. Speci�-

cally, Gregory and Hansen (1996) show that T �̂i
�
�̂i

�
) inf�i2�

R 1
0
Q (�i; s) dQ (�i; s)

. R 1
0
Q (�i; s)

2
ds,

and t�̂i

�
�̂i

�
) inf�i2�

R 1
0
Q (�i; s) dQ (�i; s)

. hR 1
0
Q (�i; s)

2
dr
�
1 + % (�i)

0
D (�i) % (�i)

�i1=2
, where )

denotes weak convergence, Q (�i; s) and % (�i) are functions of Brownian motions and the deterministic

component, and D (�i) depends on the model � see the Theorem in Gregory and Hansen (1996) for

further details. As mentioned above Gregory and Hansen (1996) deal only with some of the speci�ca-

tions in this paper, although their developments can be easily extended and similar limiting distributions

obtained for the statistics. Note that the estimation of the break point T̂bi is conducted as

T̂bi = argmin
�i2�

t�̂i (�i) ; T̂bi = argmin
�i2�

T �̂i (�i) ;

8i = 1; : : : ; N . At this point we could either follow Gregory and Hansen (1996) and test the null

hypothesis for each unit or decide to combine the unit-speci�c information in a panel data statistic.

The panel statistics on which we focus in order to test the null hypothesis are given by the Z�̂NT

and Zt̂NT
tests in Pedroni (1999, 2004), which can be thought as analogous to the residual-based tests

in Engle and Granger (1987). These test statistics are de�ned by pooling the individual ADF tests, so

that they belong to the class of between-dimension test statistics. Speci�cally, they are computed as:

N�1=2Z�̂NT

�
�̂
�

= N�1=2
NX
i=1

T �̂i

�
�̂i

�
(9)

N�1=2Zt̂NT

�
�̂
�

= N�1=2
NX
i=1

t�̂i

�
�̂i

�
: (10)

where �̂i
�
�̂i

�
and t�̂i

�
�̂i

�
are the estimated coe¢ cient and associated t-ratio from (8) and

�̂ =
�
�̂1; �̂2; : : : ; �̂i; : : : ; �̂N

�0
is the vector of estimated break fractions.

Note that in this framework we allow for a high degree of heterogeneity since the cointegrating vector,
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the short run dynamics and the break point estimate might di¤er among units. The use of the panel

data cointegration test aims to increase the power of the statistical inference when testing the null

hypothesis of no cointegration, but some heterogeneity is preserved when conducting the estimation of

the parameters individually.

Following Pedroni (1999, 2004), the panel test statistics are shown to converge to standard Normal

distributions once they have been properly standardized.

Theorem 1 Let � and 	 denote the mean and variance for the vector Brownian motion funcional

�0 � (inf�i2�
R 1
0
Q (�i; s) dQ (�i; s)

hR 1
0
Q (�i; s)

2
ds
i�1

, inf�i2�
R 1
0
Q (�i; s) dQ (�i; s)�

[
R 1
0
Q (�i; s)

2
ds

�
1 + % (�i)

0
D (�i) % (�i)

���1=2
). Then, under the null hypothesis of no cointegration the

asymptotic distribution of the statistics Z�̂NT

�
�̂
�
and Zt̂NT

�
�̂
�
de�ned in (9) and (10), respectively,

are given by

N�1=2Z�̂NT

�
�̂
�
��1

p
N ) N (0;	1)

N�1=2Zt̂NT

�
�̂
�
��2

p
N ) N (0;	2) ;

as (T;N !1)seq, where ) denotes weak convergence.

As in Pedroni (2004), in order to prove Theorem 1 we require only the assumption of �nite second

moments of the random variables characterized as Brownian motion functionals, which will allow to

apply the Lindberg-Levy Central Limit Theorem as N !1.
The moments of the limiting distributions, �1;	1;�2 and 	2, are approximated by Monte Carlo

simulation for the di¤erent speci�cations and allowing up to seven stochastic regressors in the cointe-

grating relationship �i.e. the dimension of the Yi;t (m� 1)-vector goes from (2� 1) to (8� 1). Table
4 presents the moments of the limit distributions based on T = 1; 000. As can be seen, the moments of

the distribution depends both on the speci�cation and the number of stochastic regressors.

Since the limiting distribution of the tests can provide a poor approximation in �nite samples, we

have approximated the moments of the test statistics for di¤erent values of the sample size, speci�cally

T = f30; 40; 50; 60; 70; 80; 90; 100; 150; 200; 250; 300; 400; 500; 1; 000g. In addition, the �nite sample distri-
butions depend on the procedure that is applied when selecting the order (k) of the parametric correction

in (8). The results reported in Tables 5 to 8 are �xed lag lenght at for k = 0; 2 and 5, and lag length

selection using the t-sig criterion in Ng and Perron (1995) with a kmax = 5 as the maximum order of

lags, respectively. Since reporting the moments of the �nite sample distribution for the di¤erent values

of T and the number of stochastic regressors p = (m� 1). The general functional form that has been

estimated is

g (T; p) =
3X
l=0

�
�0;l + �1;l

1

T
+ �2;l

1

T 2
+ �3;l

1

T 3

�
pl;

where g (T; p) in the relevant columns of Tables 5 to 8 refer to �1;	1;�2 and 	2, for the di¤erent model

speci�cations. These functions have been estimated by OLS using the Newey-West robust covariance

disturbance matrix to assess the individual signi�cance of the regressors �the level of signi�cance is 10%.

A GAUSS code is available from the authors to compute the statistics and corresponding moments. In

all simulations 10,000 replications were used to simulate the moments.

4 Common factors in panel cointegration

In the sections above, we have generalized static-regression-based tests for cointegration to include struc-

tural breaks in the deterministic components of the processes. These derivations are valid only under
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the assumption that the units are cross-sectionally independent. However, this requirement is rarely

likely to be satis�ed in empirical economic applications where countries or regions depend each other.

Therefore, in order to generalize the framework and applicability of the paper further, we have extended

our approach to allow for cross-section dependence. We model such dependence by using common factors

as in Bai and Ng (2004). In addition to dependence, our tests also can accommodate the presence of

structural breaks.2 We deal �rst with the case where the break date is known and then proceed to the

more realistic scenario of an unknown break date.

4.1 Break point known

In this framework the model is given in structural form as:

yi;t = fi (t) + x
0
i;t�i;t + ui;t (11)

ui;t = F 0t�i + ei;t (12)

(I � L)Ft = C (L)wt (13)

(1� �iL) ei;t = Hi (L) "i;t (14)

(I � L)xi;t = Gi (L) vi;t; (15)

t = 1; : : : ; T , i = 1; : : : ; N , where C (L) =
P1

j=0 CjL
j , and fi (t) denotes the deterministic component

(which may be broken as in 1 above), Ft denotes a (r � 1)-vector containing the common factors, with
�i the vector of loadings. Despite the operator (1� L) in equation (13), Ft does not have to be I(1). In
fact, Ft can be I(0), I(1), or a combination of both, depending on the rank of C(1). If C(1) = 0, then

Ft is I(0). If C(1) is of full rank, then each component of Ft is I(1). If C(1) 6= 0, but not full rank, then
some components of Ft are I(1) and some are I(0). Our analysis is based on the same set of assumptions

in Bai and Ng (2004), and Bai and Carrion-i-Silvestre (2005). Let M <1 be a generic positive number,

not depending on T and N :

Assumption A: (i) for non-random �i, k�ik � M ; for random �i, E k�ik4 � M , (ii) 1
N

PN
i=1 �i�

0
i
p!

��, a (r � r) positive de�nite matrix.
Assumption B: (i) wt � iid (0;�w), E kwtk4 � M , and (ii) V ar (�F 0t ) =

P1
j=0 Cj�wC

0
j > 0, (iii)P1

j=0 j kCjk < M ; and (iv) C (1) has rank r1, 0 � r1 � r.
Assumption C: (i) for each i, "i;t � iid

�
0; �2";i

�
, E j"i;tj8 �M ,

P1
j=0 j jHi;j j < M , !2i = Hi (1)

2
�2";i >

0; (ii) E ("i;t"j;t) = � i;j with
PN

i=1 j� i;j j �M for all j;

(iii) E
��� 1p

N

PN
i=1 ["i;s"i;t � E ("i;s"i;t)]

���4 �M , for every (t; s).
Assumption D: The errors "i;t, wt, and the loadings �i are three mutually independent groups.

Assumption E: E kF0k �M , and for every i = 1; : : : ; N , E jei;0j �M .
Assumption F: (i) vi;t � iid (0;�v), E kvi;tk4 �M , and (ii) V ar

�
�x0i;t

�
=
P1

j=0Gi;j�vG
0
i;j > 0, (iii)P1

j=0 j kGi;jk < M ; and (iv) G (1) has full rank.
Assumption G: (i) E (ei;tjvi;t) = 0 when stochastic regressors are assumed to be strictly exogenous

or (ii) E (ei;tjvi;t) = �x0i;tAi (L) + �i;t, with Ai (L) being a (k � 1)-vector of lags and leads polynomials
of �nite orders and �i;t � iid (0;��), when stochastic regressors are non-strictly exogenous.
Assumption A ensures that the factor loadings are identi�able. Assumption B establishes the condi-

tions on the short and long-run variance of �Ft �i.e. the short-run variance matrix is positive de�nite

and the long-run variance matrix may have reduced rank in order to accommodate stationary linear

combinations of I (1) factors. Assumption C(i) allows for some weak serial correlation in (1� �iL) ei;t,
2An alternative approach to dealing with cross-sectional dependence is proposed by Chang (2005) using a non-linear IV

technique.
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whereas C(ii) and C(iii) allow for weak cross-section correlation. Assumption E de�nes the initial condi-

tions. Assumption F establishes conditions on the �rst di¤erences of the stochastic regressors. Finally,

Assumption G de�nes two situations depending on whether the stochastic regressors are strictly exoge-

nous regressors or non-strictly exogenous. This distinction is important here, because in the common

factor framework the limiting distributions of the statistics do not depend on the number of stochastic

regressors if strict exogeneity holds. However, this is no longer true when correlation between ei;t and

vi;s is allowed and modi�cations need to be introduced to account for endogenous regressors. Here we

suggest using the DOLS estimation method in Stock and Watson (1993) to account for endogeneity,

where we assume that the number of leads and lags is �xed as in Stock and Watson (1993), although

they can be chosen using a BIC information criterion.3

For ease of exposition, we assume strictly exogenous stochastic regressors, although the Appendix

contains a discussion of the more general case. The estimation of the common factors is done as in Bai

and Ng (2004). We compute the �rst di¤erences:

�yi;t = �fi (t) + �x
0
i;t�i;t +�Ft�i +�ei;t;

and take the orthogonal projections:

Mi�yi = Mi�F�i +Mi�ei

= f�i + zi; (16)

with Mi = I ��xdi
�
�xd0i �x

d
i

��1
�xd0i being the idempotent matrix, and f = Mi�F and zi = Mi�ei.

The superscript d in �xdi indicates that there are deterministic elements. The estimation of the common

factors and factor loadings can be done as in Bai and Ng (2004) using principal components. Specif-

ically, the estimated principal component of f = (f2; f3; : : : ; fT ), denoted as ~f , is
p
T � 1 times the

r eigenvectors corresponding to the �rst r largest eigenvalues of the (T � 1) � (T � 1) matrix y�y�0,
where y�i = Mi�yi. Under the normalization ~f ~f 0= (T � 1) = Ir, the estimated loading matrix is ~� =
~f 0y�= (T � 1). Therefore, the estimated residuals are de�ned as

~zi;t = y
�
i;t � ~ft~�i: (17)

We can recover the idiosyncratic disturbance terms through cumulation, i.e. ~ei;t =
Pt

j=2 ~zi;j , and

test the unit root hypothesis (�i;0 = 0) using the ADF regression equation

�~ei;t

�
�̂i

�
= �i;0~ei;t�1

�
�̂i

�
+

kX
j=1

�i;j�~ei;t�j

�
�̂i

�
+ "i;t: (18)

We denote by ADF c~e (i), ADF
�
~e (i) and ADF



~e (i) the pseudo t-ratio ADF statistics for testing �i;0 = 0

in (18), for the model that includes a constant, a linear time trend, and a time trend with a change in

trend, respectively. When r = 1 we can use an ADF-type equation to analyze the order of integration

of Ft as well. However, in this case we need to proceed in two steps. In the �rst step we regress ~Ft on

the deterministic speci�cation and the stochastic regressors. In the second step we estimate the ADF

3 In the more standard panel cointegration framework without common factors, as discussed above, the distributions of
the test statistics have been computed without making any assumption about strict exogeneity. The distributions depend
on the number of regressors in the model and this is re�ected in Table 4 for the asymptotic moments and the response
surfaces in Tables 5 to 8, both computed for varying m.
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regression equation using the detrended common factor
�
~F dt

�
, i.e. the residuals of the �rst step:

� ~F dt = �0 ~F
d
t�1 +

kX
j=1

�j� ~F
d
t�j + ut; (19)

and test if �0 = 0 �ADF d~F (�) denotes the pseudo t-ratio ADF statistic for testing �0 = 0 in (19).

Finally, if r > 1 we should use one of the two statistics proposed in Bai and Ng (2004) to �x the

number of common stochastic trends (q). As before, let ~F dt denote the detrended common factors. Start

with q = r and proceed in three stages �we reproduce these steps here for completeness:

1. Let ~�? be the q eigenvectors associated with the q largest eigenvalues of T
�2PT

t=2
~F dt ~F

d0
t .

2. Let ~Y dt = ~�? ~F
d
t , from which we can de�ne two statistics:

(a) Let K (j) = 1� j= (J + 1), j = 0; 1; 2; : : : ; J :

i. Let ~�
d

t be the residuals from estimating a �rst-order VAR in ~Y dt , and let

~�d1 =
JX
j=1

K (j)

 
T�1

TX
t=2

~�
d

t
~�
d0
t

!
:

ii. Let ~vdc (q) =
1
2

hPT
t=2

�
~Y dt
~Y d0t�1 +

~Y dt�1
~Y d0t

�
� T

�
~�d1 +

~�d01

�i�
T�1

PT
t=2

~Y dt�1
~Y d0t�1

��1
:

iii. De�ne MQdc (q) = T
�
~vdc (q)� 1

�
for the case of no change in the trend and MQdc (q; �) =

T
�
~vdc (q; �)� 1

�
for the case of a change in the trend.

(b) For p �xed that does not depend on N and T :

i. Estimate a VAR of order p in �~Y dt to obtain ~� (L) = Iq � ~�1L� : : :� ~�pL
p. Filter ~Y dt

by ~� (L) to get ~ydt = ~� (L) ~Y dt .

ii. Let ~vdf (q) be the smallest eigenvalue of

�df =
1

2

"
TX
t=2

�
~Y dt ~Y

d0
t�1 + ~Y dt�1 ~Y

d0
t

�# 
T�1

TX
t=2

~Y dt�1 ~Y
d0
t�1

!�1
:

iii. De�ne the statistic MQdf (q) = T
h
~vdf (q)� 1

i
for the case of no change in the trend and

MQdf (q; �) = T
h
~vdf (q; �)� 1

i
for the case of a change in the trend.

3. If H0 : r1 = q is rejected, set q = q � 1 and return to the �rst step. Otherwise, ~r1 = q and stop.

The following Theorem o¤ers the main results concerning these statistics.

Theorem 2 Let fyi;tg be the stochastic process with DGP given by (11) to (15). The following results
hold as N;T !1. Let k be the order of autoregression chosen such that k !1 and k3=min [N;T ]! 0.

(1) Under the null hypothesis that �i = 1 in (14),

(1.a) for the speci�cation that does not include a time trend, with or without change in level:

ADF c~e (i))
1
2

�
Wi (1)

2 � 1
�

�R 1
0
Wi (s)

2
ds
�1=2 ;
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(1.b) for those speci�cations including a time trend with or without change in level:

ADF �~e (i)) �1
2

�Z 1

0

Vi (s)
2
ds

��1=2
;

where Vi (s) =Wi (s)� sWi (1).

(1.c) for those speci�cations including a time trend with change in trend:

ADF 
~e (i)) �1
2

�
�2
Z 1

0

Vi (b1)
2
dr + (1� �)2

Z 1

0

Vi (b2)
2
dr

��1=2
;

where Vi (bj) =Wi (bj)� bjWi (1), j = 1; 2, are two independent detrended Brownian processes.

(2) When r = 1, under the null hypothesis that Ft has a unit root and no change in trend:

ADF d~F )
R 1
0
W d
w (s) dW

d
w (s)�R 1

0
W d
w (s)

2
ds
�1=2 ;

where W d
w (s) denotes the detrended Brownian motion, while when we allow for change in trend:

ADF d~F (�))
R 1
0
W d
w (s; �) dW

d
w (s; �)�R 1

0
W d
w (s; �)

2
dr
�1=2 ;

where W d
w (s; �) is the detrended Brownian motion and � denotes the break fraction parameter.

(3) When r > 1, let Wq be a q-vector of standard Brownian motion and W d
q the detrended counterpart.

Let vd� (q) be the smallest eigenvalues of the statistic computed for a model that does not include change

in trend. Then:

�d� =
1

2

�
W d
q (1)W

d
q (1)

0 � Ip
� �Z 1

0

W d
q (s)W

d
q (s)

0
ds

��1
;

and letting vd� (q; �) be the smallest eigenvalues of the statistic computed for the model that includes

change in trend:

�d� (�) =
1

2

�
W d
q (1; �)W

d
q (1; �)

0 � Ip
� �Z 1

0

W d
q (s; �)W

d
q (s; �)

0
ds

��1
;

(3.1) Let J be the truncation lag of the Bartlett kernel, chosen such that J !1 and J=min
hp
N;
p
T
i
!

0. Then, under the null hypothesis that Ft has q stochastic trends, MQdc (q)
d! vd� (q) and MQ

d
c (q; �)

d!
vd� (q; �) :

(3.2) Under the null hypothesis that Ft has q stochastic trends with a �nite VAR(�p) representation and

a VAR(p) is estimated with p � �p, MQdf (q)
d! vd� (q) and MQ

d
f (q; �)

d! vd� (q; �) :

The proof of the Theorem is outlined in the Appendix. Some remarks are in order. First, note that

the de�nition of the common factors framework implies that the matrix of projections Mi that is used

above cannot depend on i, which means that all elements that are de�ned in �xdi should be the same

across i. There are two di¤erent kind of elements in �xdi : (i) the deterministic regressors and (ii) the

stochastic regressors. Regarding the latter, we have shown in the Appendix that the limiting distribution

of the statistics do not depend on the presence of stochastic regressors, so that we can ignore the e¤ect of

these elements when de�ning Mi. Unfortunately, this is not true for the deterministic regressors. Thus,
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to warrant that Mi does not (asymptotically) depend on i we have to assume common break dates, i.e.

we assume that the break points are the same for all units. This restriction can be seen as a limitation of

our analysis, but in fact it is due to the de�nition of the common factors framework. Thus, (16) speci�es

a common factor structure for all units, so that ft cannot depend on i. If we look at the de�nition

of ft = Mi�Ft we can see that the speci�cation of heterogeneous structural breaks implies that the

idempotent matrix Mi depends on i. The only way to overcome this situation is to impose Mi = M 8i
so that the structural breaks are the same for all units. This is the reason why in Theorem 1 we have

not included any subscript on � for the units.

Second, the limiting distribution of the ADF statistic for the idiosyncratic disturbance term does

not depend on the presence of stochastic regressors. Moreover, the presence of changes in level does not

a¤ect the limiting distribution of the ADF statistic that is computed using the idiosyncratic disturbance

term.

Third, the distributions of the statistics that focus on the common factors depend on some elements

that de�ne the deterministic component although, surprisingly, they do not depend on the number of

stochastic regressors. Speci�cally, the presence of changes in level does not a¤ect the limiting distribution

of the ADF and �d� statistics, although this is not true when there are changes in trend. For the latter,

the test statistics depends on the number and location of the structural breaks. Moreover, in this case

we have to assume that these structural breaks are common to all units.

Finally, some remarks should be made concerning the limiting distributions of the statistics derived

in Theorem 1. The limiting distributions for ADF c~e (i) and ADF
d
~F
derived in (1.a) and (2) are the

standard Dickey-Fuller distributions for constant and constant and trend respectively. The moments for

ADF c~e (i), ADF
�
~e (i) and ADF



~e (i) for di¤erent sample sizes are reported in Table 9 which are used to

compute the pooled test given by (20) below.

The ADF statistic when there is one structural break given by ADF d~F (�) derived in (2) can be found

in Perron (1989) for the speci�cation denoted as Model C. The limiting distributions of the MQ tests

without break stated in (3) may be found in Bai and Ng (2004), while the corresponding distributions

for a single known break point, �d� (�) ; have been simulated by us and are reported in Table 10. The

asymptotic critical values reported in this table depend both on the number of stochastic common trends

and on the break fraction. Note however that these critical values correspond to the case of only one

structural break, though our approach can be easily extended to multiple changes in trend.

The individual ADF statistics for the idiosyncratic disturbance terms can be pooled to de�ne a panel

data cointegration test. Thus, following the steps given in the previous section we can de�ne

N�1=2Ze
t̂NT

(�)��e2 (�)
p
N ) N (0;	e2 (�)) ; (20)

where the superscript e denotes the idiosyncratic disturbance term using our results in (1) of Theorem

1 above. The moments �e2 (�) and 	
e
2 (�) depend on the deterministic speci�cation used and, except for

the case of changes in trend, are the same as the ones for the statistics in Bai and Ng (2004) (where

these do not depend on the break fraction �).4 Table 9 reports �nite sample moments �e2 (�) and 	
e
2 (�)

for the di¤erent statistics and di¤erent values of T .

4.2 Break point unknown

Up to now developments in this section have been based on the implicit assumption of known break

point. When the break point is unknown we can proceed to estimate it using the in�mum functional

as described above. However in contrast with case where factors were not present, we have to constrain

4Note that Bai and Ng prefer to combine individual p-values instead of using these moments.
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the (unknown) break point to be common to all units in the panel data set and to estimate both

the subspace spanned by the common factors and the idiosyncratic disturbance terms for all possible

break points. We then compute the Ze
t̂NT

(�) = N�1PN
i=1 t�̂i (�) statistic for each break point using

the idiosyncratic disturbance terms and estimate the break point as the argument that minimizes the

sequence of standardized Ze
t̂NT

(�) statistics. Thus, the test statistic that is used to test the null hypothesis

of non-cointegration for the idiosyncratic disturbance term is given by

Ze
t̂NT

�
�̂
�
= inf

�2�

 
N�1=2Ze

t̂NT
(�)��e2(�)

p
Np

	e2(�)

!
; (21)

where the moments again depend on the speci�cation of the deterministic term.

The estimated break date denoted T̂b is given by

T̂b = argmin
�2�

 
N�1=2Ze

t̂NT
(�)��e2(�)

p
Np

	e2(�)

!
:

The limiting distribution of Ze
t̂NT

�
�̂
�
is given in the following Theorem.

Theorem 3 Let fyi;tg the stochastic process with DGP given by (11) to (15). Then, as N;T !1 the

Ze
t̂NT

�
�̂
�
test in (21) converges to

Ze
t̂NT

�
�̂
�
) inf

�2�
� (�) ;

where � (�) denotes a standard Normal distribution for a given �.

The proof follows from the Continuous Mapping Theorem (CMT). Theorem 3 establishes the limiting

distribution of Ze
t̂NT

�
�̂
�
as the in�mum of a sequence of correlated standard Normal variables. It has

been shown that when the break point is known, the panel data statistics derived above converge to

standard Normal distributions. When the test statistic is computed for all possible break points we obtain

a correlated sequence of statistics, each of which is standard Normally distributed. The correlation comes

from the fact that the statistics in the sequence are all computed from the same time series information.

Critical values for (21) are obtained by simulation for di¤erent values of T and for N = 100 �see panel

A of Table 11.5

It is worth mentioning here that we need to consider �nally the case of testing for unit roots in the

common factors when the break is not known. As shown above, this matters only when there is a change

in trend. Our procedure would then involve estimating the break date by using the statistic given in (21).

This break date is then used to compute the ADF and the MQ tests for the common factors. Critical

values are reported in panel B of Table 11.

5 Monte Carlo simulation

In this section we analyze by conducting simulation experiments the �nite sample performance of the

statistics that have been proposed in the paper. We begin by considering a DGP where the units are

not cross-section dependent, so that our results in section 3 can be used. We then consider a DGP with

cross-section dependence which uses our results in section 4.

5As is usual in the literature, we introduce trimming at the end points of the sample so that � varies between [0:15; 0:85]:
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5.1 Cross-section independent

The empirical size of the tests is studied regressing two independent random walks, which have been

generated as the cumulated sum of iid N (0; 1) processes. The sample size has been set equal to T =

f50; 100; 250g and the number of units at N = f20; 40g. The results reported in Table 12 are obtained
from 5; 000 replications, assuming that the break point is unknown and using the estimated response

surfaces of the previous section. As can be seen, the empirical size of both the normalized bias and the

pseudo t-ratio statistics is close to the nominal size irrespective of T and N .

The empirical power of the statistics is assessed using the DGP given by:

yi;t = �i + �iDUi;t + �it+ 
iDT
�
i;t + x

0
i;t�i;t + ei;t

ei;t = �iei;t�1 + "i;t;

where "i;t � iid N (0; 1) 8i , i = 1; : : : ; N . The speci�cation of the values of the parameters depends on
the model under consideration. In general, the constant and, when required, the slope of the trend are set

equal to �i = 1 and �i = 0:3, respectively. When there is a change in the level the magnitude is set equal

to �i = 3, while for the change in trend we consider 
i = 0:5. The change in the cointegrating vector is

given by �i;t = �i;1 = 1 for t � Tbi and �i;t = �i;1 = 3 for t > Tbi, for a break point randomly located

at �i � U (0:15; 0:85), 8i , i = 1; : : : ; N , where U denotes the uniform distribution � the same results

are obtained when break fraction is �xed either at �i = 0:25, �i = 0:5 or �i = 0:75 8i . Simulations
were performed for two autoregressive coe¢ cients �i = f0:5; 0:8g, although we only report results for
�i = 0:8 to save space. The computation of the statistics controls the autocorrelation in the disturbance

term including up to kmax = 5 lags using the t-sig criterion to select the order of the autoregressive

correction. Results in Tables 13 and 14 show the empirical power of both statistics, respectively, for

di¤erent combinations of DGP�s and estimated models when �i = 0:8. Thus, we can assess the empirical

power of the statistics when DGP does not coincide with the model that is estimated. When the

DGP and estimated model coincide both statistics show good power, which increases with /T and N �

see bold-typed columns in Tables 13 and 14. However, Zt̂NT

�
�̂
�
outperforms Z�̂NT

�
�̂
�
since for the

former statistic the power equals one in all cases. In general, when the estimated model is misspeci�ed

and misspeci�cation involves the cointegrating vector, the empirical power of Z�̂NT

�
�̂
�
decreases. For

instance, when DGP is given by Model 1 and we estimate Model 4, the power of the Z�̂NT

�
�̂
�
statistic

is reduced �note that the converse is also true. The same is found when either the DGP is given by

Model 2 and we estimate Model 5, or when the DGP is given by Model 3 and we estimate Model 6.

However, this feature is not found for the Zt̂NT

�
�̂
�
statistic, which does not lose any power when this

sort of misspeci�cation occurs. Finally, misspeci�cation due to lack of accounting for time trend �i.e.

DGP given by Models 2, 3, 5 and 6, and estimation of speci�cations given by Models 1 and 4 �reduces

the power of both statistics as T increases, although for the Zt̂NT

�
�̂
�
statistic the speci�cations that

allow for a change in the cointegrating vector always show higher power.

In all, simulations lead us to conclude that Zt̂NT

�
�̂
�
statistic outperforms Z�̂NT

�
�̂
�
in all situations

that have been considered. Furthermore, overparameterisation of the estimated model does not cause

loss of power for the Zt̂NT

�
�̂
�
statistic. These features indicate that Zt̂NT

�
�̂
�
should be preferred to

Z�̂NT

�
�̂
�
in empirical applications.
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5.2 Cross-section dependent

In order to deal with the situation with common factors, to mimic the impact of cross-sectional depen-

dence, consider the DGP given by a bivariate system:

yi;t = fi (t) + x
0
i;t�i;t + ui;t

ui;t = Ft�i + ei;t

Ft = �Ft�1 + �Fwt

ei;t = �iei;t�1 + "i;t

�xi;t = vi;t;

where (wt; "i;t; vi;t)
0 follow a mutually iid standard multivariate Normal distribution for 8i; j i 6= j and

8t; s t 6= s. In this paper we consider two di¤erent situations depending on the number of common

factors, i.e. r = f1; 3g, and specify three values for the autoregressive parameters � = f0:8; 0:9; 1g and
�i = f0:8; 0:9; 1g 8i. Note that these values allow us to analyze both the empirical size and power of
the statistics. The importance of the common factors is controlled through the speci�cation of �2F =

f0:5; 1; 10g. The number of common factors is estimated using the panel BIC information criterion in
Bai and Ng (2002) with rmax = 6 as the maximum number of factors. We consider N = 40 units and

T = f50; 100; 250g time observations.
The simulation results for size and power for the case with no breaks (with one or more factors)

reported in Tables 15, 16 and 17 are close to those results in Bai and Ng (2004) �we only include the

set of results for the only constant case, although the ones for the linear time trend are available upon

request. From these results it may be seen that the empirical size of the ADF pooled idiosyncratic t-ratio

statistic
�
Ze
t̂NT

�
and the ADF statistic of the common factor �when there is only one factor in the DGP

�is close to the nominal size, which is set at the 5% level of signi�cance. As expected the power of the

tests increases as the autoregressive parameter moves away from unity. Moreover, the power of the Ze
t̂NT

test is higher or equal to the power shown by the ADF d
F̂
test.

These results do not change when specifying three common factors �see Tables 16 and 17. Thus, the

Ze
t̂NT

test shows correct empirical size and good power. The MQdc (q) test also shows correct empirical

size, while as expected the test has low power for large values of the autoregressive parameter � the

bandwidth for the Bartlett spectral window is set as J = 4ceil [min [N;T ] =100]1=4.

Turning now to the results for the case where there is one structural break, we start by assuming

that the break point is known and located at �i = f0:25; 0:5; 0:75g 8i. Table 18 reports results for the
empirical size and power for the model that allows for one change in level with �i = 0:5 and one common

factor. It should be noted that the results are not altered substantially either for other values of �i or

for a model that also includes a change in trend �these results are available upon request. On the one

hand, the panel data unit root test on the idiosyncratic disturbance terms show good properties in terms

of empirical size and power. On the other hand, the ADF statistic for the common factor shows the

right size although, as expected, it has low power when the autoregressive parameter is close to unity

and the sample size is small. Our results for three factors reported in Tables 19 and 20 con�rm those for

the one-factor case. Finally, Table 21 reports results for one common factor with one unknown break,

which show that the statistics retain their good �nite sample properties when the common break point

has to be estimated.
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6 Conclusions

This paper has shown that inference based on parametric Pedroni panel cointegration test statistics can

be a¤ected by the presence of structural breaks. Monte Carlo evidence indicates that in some situations

the power of the tests drops as the magnitude of the structural break increases. Speci�cally, when the

structural break a¤ects either the slope of the time trend or the cointegrating vector the power approaches

zero as T , N and the magnitude of the break increases. In contrast, the power of the standard parametric

Pedroni panel cointegration statistics is a¤ected to a much lesser extent when the structural break only

changes the level �we require a large magnitude of structural breaks located at the end of the time

period to reduce the power of the statistics.

These features have motivated our proposal, and have led us to design statistical procedures to account

for the presence of structural breaks when testing for cointegration. Six di¤erent speci�cations have been

introduced depending on the e¤ect of structural breaks on the long-run relationship. Finite sample and

asymptotic moments have been computed that allow us to de�ne panel cointegration statistics for the

speci�cations considered.

The issue of cross-section dependence is addressed in the paper by assuming an approximate common

factor structure. We derive the limiting distributions of statistics in two situations of interest, i.e. (i) for

the case of no structural break, and (ii) when there are changes in level and trend. The performance of

the approach is investigated through Monte Carlo simulations, from which we conclude that the statistics

show good performance once the procedures have accounted for structural breaks.
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A Mathematical Appendix

For the sake of simplicity let us �rst assume that the stochastic regressors are strictly exogenous. Once

the main result is derived, we show how these derivations can be extended to account for non-strictly

exogenous regressors.

A.1 Proof of statement (1.a) of Theorem 2

Let us assume the model given by (11) and (12). Furthermore, consider the case where there are no

structural breaks a¤ecting the model and there are no deterministic elements in the model �note that the

presence of a constant term does not change the results since it disappears when taking �rst di¤erences.

Alternatively, the model can be expressed as:

yi;t = x
0
i;t�i + Ft�i + ei;t:

As can be seen, the model assumes that residuals from the static regression follow a factor structure as

de�ned in Bai and Ng (2004). Note that if we introduce (16) in (17) we obtain

~zi;t = zi;t + ft�i � ~ft~�i (22)

= zi;t � vtH�1�i � ~ftdi;

where vt = ~ft � ftH and di = ~�i � H�10�i, where H is an (r � r) matrix de�ned as follows H =

V �1NT

�
f̂ 0f=T

�
(�0�=N) with VNT the (r � r) diagonal matrix of the �rst r largest eigenvalues of (NT )�1 y�y�0

in decreasing order. The computation of the partial sum processes of (22) gives:

T�1=2
tX

j=2

~zi;j = T
�1=2

tX
j=2

zi;j � T�1=2
tX

j=2

vjH
�1�i � T�1=2

tX
j=2

~fjdi: (23)

Let us analyse each element of (23) separately. The left-hand side of (23) is equal to

T�1=2
tX

j=2

~zi;j = T�1=2
tX

j=2

[Mi�~ei]j (24)

= T�1=2
tX

j=2

�~ei;j � T�1=2
tX

j=2

[Pi�~ei]j ;

where [�]j denotes the j-th element of the vector between parentheses, and Pi = IT�1 �Mi. The �rst

element on the right of (24) is equal to

T�1=2
tX

j=2

�~ei;j = T
�1=2~ei;t � T�1=2~ei;1 = T�1=2~ei;t +Op (1) ;

so that by the invariance principle

T�1=2
[sT ]X
j=2

�~ei;j ) �iWi (s) :
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The second element on the right hand of (24) is

T�1=2
tX

j=2

[Pi�~ei]j = T
�1=2 (xi;t � xi;1)0 (�x0i�xi)

�1
�x0i�~ei:

Note that (�x0i�xi)
�1
�x0i�~ei =

�
T�1�x0i�xi

��1 �
T�1�x0i�~ei

�
= op (1), since

�
T�1�x0i�xi

�
!p

Q�xi�xi , the variance and covariance matrix of �x
0
i�xi, and T

�1�x0i�~ei !p 0 since these elements

are orthogonal by de�nition. On the other hand, T�1=2xi;t ) 

1=2
22;iWm�1 (s) and T�1=2xi;1 !p 0 by

assumption. These derivations lead us to

T�1=2
tX

j=2

~zi;j = T
�1=2~ei;t + op (1) ;

since T�1=2xi;t (�x0i�xi)
�1
�x0i�~ei = op (1). The same result can be achieved for T

�1=2Pt
j=2 zi;j , i.e.

T�1=2
tX

j=2

zi;j = T
�1=2ei;t + op (1) :

This indicates that the presence of stochastic regressors does not have any e¤ect on the partial sum

processes. Regarding the term involving fvtg we see from Eq. (A.3) in Bai and Ng (2004) that

T�1=2
tX

j=2

vj = Op
�
C�1NT

�
;

where CNT = min
�
N�1=2; T�1=2

	
. Moreover and as shown in Bai and Ng (2004), the term di =

Op
�
C�1NT

�
and T�1=2

Pt
j=2

~fj = Op (1), so that

T�1=2
tX

j=2

~zi;j = T
�1=2

tX
j=2

zi;j +Op
�
C�1NT

�
:

From all these results it follows that

DF c~e (i))
1
2

�
Wi (1)

2 � 1
�

�R 1
0
Wi (s)

2
ds
�1=2 ;

that is, the limiting distribution is the same derived in Bai and Ng (2004) for the constant case �see Bai

and Ng (2004) for the proof. The same result is found for the ADF test provided that the order of the

autoregressive correction is selected such that k ! 1 and k3=min [N;T ] ! 0. This implies that the

presence of stochastic regressors does not a¤ect the limiting distribution of the statistic.

A.2 Proof of statement (1.b) of Theorem 2

The generalization that includes a time trend can be carried out as well. In this case the model (11) is

replaced by

yi;t = �i + �it+ x
0
i;t�i + ui;t:

Note that as before we are not dealing with the structural break case since we are de�ning the benchmark

limiting distributions. Contrary to the previous speci�cation, taking �rst di¤erences does not remove

the deterministic elements, since now the trend becomes a constant. This is a relevant feature since
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the limiting distribution of the ADF-type statistic varies. However, the asymptotic distribution of the

statistic is the same as the one derived in Bai and Ng (2004) for the trend case. The proof follows similar

steps above. Now the �rst di¤erence of regressors de�nes the following idempotent matrix

Mi = IT�1 ��xdi
�
�xd0i �x

d
i

��1
�xd0i ;

where the �xdi matrix is de�ned by the row vectors
�
1;�x0i;t

�0
. Note that as before the �rst element of

(24) converges to

T�1=2
[sT ]X
j=2

�~ei;j ) �iWi (s) :

The limiting expression of the second element in (24) has to be derived in several steps. First, note

that T�1�xd0i �x
d
i converges to variance and covariance matrix of �x

d
i , so that all these elements

are Op (1). The �rst element of the vector T�1�xd0i �~ei is given by T
�1=2

�
T�1=2

PT
t=1�~ei;t

�
=

T�1=2
�
T�1=2 (~ei;T � ~ei;1)

�
, where T�1=2 (~ei;T � ~ei;1) ) �iWi (1) since T�1=2~ei;1 !p 0. Note that the

extra rescaling term T�1=2 would be used below. The rest of the elements in T�1�xd0i �~ei involve cross-

products among the �rst di¤erence of the stochastic regressors and �~ei that converges to zero since we

have assumed independency. Therefore,

�
�xd0i �x

d
i

��1
�xd0i �~ei =

"
E T�1=2

�
T�1=2 (~ei;T � ~ei;1)

�
+ op (1)�

�D�1CE
�
T�1=2

�
T�1=2 (~ei;T � ~ei;1)

�
+ op (1)

#

where E =
�
A�BD�1C

��1
and A = 1; B = T�1�0�xi; C = B0 and D = T�1�x0i�xi denote the

elements of the partitioned matrix T�1�xd0i �x
d
i , with � = (1; : : : ; 1)

0. The partial sum process of �xdi;t
is

T�1=2
tX

j=2

�xdi;j =
h
T�1=2t T�1=2 (xi;t � xi;1)0

i
;

so that

T�1=2
tX

j=2

�xdi;j
�
�xd0i �x

d
i

��1
�xd0i �~ei =

t

T
E
�
T�1=2 (~ei;T � ~ei;1)

�
+ op (1) ;

since T�1 (xi;t � xi;1)0 = op (1). Moreover, the matrix E can be expressed as

�
A�BD�1C

��1
= A�1 +A�1B

�
D � CA�1B

��1
CA�1

= 1 +B (D �B0B)�1B0:

Note that B = T�1�0�xi !p 0 so that
�
A�BD�1C

��1
= 1 + op (1). Therefore,

T�1=2
tX

j=2

�xdi;j
�
�xd0i �x

d
i

��1
�xd0i �~ei =

t

T

�
T�1=2 (~ei;T � ~ei;1)

�
+ op (1)

) r �iWi (1) :

From Bai and Ng (2004), the terms T�1=2



Pt

j=2 vj




 = Op �C�1NT �, kdik = Op �C�1NT � and T�1=2 


Pt
j=2

~fj




 =
Op (1). These derivations lead us to

T�1=2
[sT ]X
j=2

~zi;j = T�1=2~ei;t �
s

T
T�1=2~ei;T +Op

�
C�1NT

�
) �i (Wi (s)� s Wi (1)) � �iVi (s) :
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The DF statistic is

DF �~e (i) =
T�1

PT
t=2 ~ei;t�1�~ei;t�

~�2iT
�2PT

t=2 ~e
2
i;t�1

�1=2 :
Note that the following identity holds

T�1
TX
t=2

~ei;t�1�~ei;t =
~e2i;T
2T

�
~e2i;1
2T

� 1

2T

TX
t=2

(�~ei;t)
2
;

which shows that T�1~e2i;T ) �2iVi (1)
2
= 0, T�1~e2i;1 = 0 and T�1

PT
t=2 (�~ei;t)

2 !p �2i , from which it

follows that T�1
PT

t=2 ~ei;t�1�~ei;t !p ��2i =2 and T�2
P[sT ]

t=2 ~e
2
i;t�1 ) �2i

R 1
0
Vi (s)

2
ds �see Bai and Ng

(2004), Lemma G.4. Using these elements it is straightforward to see that

DF �~e (i)) �1
2

�Z 1

0

Vi (s)
2
ds

��1=2
;

where Vi (s) =Wi (s)� s Wi (1), i.e. the limiting distribution is the same derived in Bai and Ng (2004)

for the trend case. Although the proof is more involved, the same result is achieved for the ADF test.

As before, this implies that the presence of stochastic regressors does not a¤ect the limiting distribution

of the statistic. Note that this result is also achieved when there are level shifts in the model, since the

impulse dummies do not a¤ect the limiting distribution of the ADF �~e (i) statistic.

A.3 Proof of statement (1.c) of Theorem 2

The model is given by the following deterministic speci�cation

fi (t) = �i + �it+ �iDUi;t + 
iDT
�
i;t;

which implies that �fi (t) = �i + �iD
�
T ib
�
t
+ 
iDUi;t and �x

d
i;t =

�
1; D

�
T ib
�
t
; DUi;t;�x

0
i;t

�
. In order

to simplify the steps of the proof, we deal with the equivalent speci�cation that does not include the

impulse dummy, i.e. �xdi;t =
�
1; DUi;t;�x

0
i;t

�
. This simpli�es derivations, although it does not imply

loss of generality. Moreover, note that the subspace spanned by
�
1; DUi;t;�x

0
i;t

�
is equivalent to the one

spanned by
�
DU1i;t; DU

2
i;t;�x

0
i;t

�
where DU1i;t = 1 for t � Tb and 0 otherwise, and DU2i;t = 1 for t > Tb

and 0 otherwise. This rede�nition makes DU1i;t and DU
2
i;t to be orthogonal. Note that as before the �rst

element of (24) converges to

T�1=2
[sT ]X
j=2

�~ei;j ) �iWi (s) :

The limiting expression of the second element in (24) has to be derived in several steps. First, note

that T�1�xd0i �x
d
i converges to variance and covariance matrix of �x

d
i , so that all these elements

are Op (1). The �rst element of the vector T�1�xd0i �~ei is given by T
�1=2

�
T�1=2

PTb
t=1�~ei;t

�
=

T�1=2
�
T�1=2 (~ei;Tb � ~ei;1)

�
, where T�1=2 (~ei;Tb � ~ei;1) ) �iWi (�) since T�1=2~ei;1 !p 0. The second

element is T�1=2
�
T�1=2

PT
t=Tb+1

�~ei;t

�
= T�1=2

�
T�1=2 (~ei;T � ~ei;Tb)

�
, where T�1=2 (~ei;T � ~ei;Tb) )

�iWi (1) � �iWi (�). Note that as before the extra rescaling term T�1=2 would be used below. Finally,

the third set of elements in the product is T�1�x0i�~ei that converges to zero since we have assumed

independency. Therefore,

�
�xd0i �x

d
i

��1
�xd0i �~ei =

"
E T�1=2

�
T�1=2 (~ei;Tb � ~ei;1) ; T�1=2 (~ei;T � ~ei;Tb)

�0
+ op (1)�

�D�1CE
�
T�1=2

�
T�1=2 (~ei;Tb � ~ei;1) ; T�1=2 (~ei;T � ~ei;Tb)

�0
+ op (1)

#
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where E =
�
A�BD�1C

��1
and A = diag (�; 1� �) ; B = T�1

�
DU1i ; DU

2
i

�0
�xi; C = B0 and D =

T�1�x0i�xi denote the elements of the partitioned matrix T
�1�xd0i �x

d
i . Moreover, following the steps

given above
�
A�BD�1C

��1
= A�1+ op (1), since B !p 0. The partial sum process of �xdi;t for t � Tb

is

T�1=2
tX

j=2

�xdi;j =
h
T�1=2t 0 T�1=2 (xi;t � xi;1)0

i
;

while for t > Tb is

T�1=2
[sT ]X
j=2

�xdi;j =
h
T�1=2Tb T�1=2 (s� Tb) T�1=2 (xi;t � xi;1)0

i
;

so that for t � Tb

T�1=2
[sT ]X
j=2

�xdi;j
�
�xd0i �x

d
i

��1
�xd0i �~ei =

s

T

1

�

�
T�1=2 (~ei;Tb � ~ei;1)

�
+ op (1)

) s

�
�iWi (�) ;

since T�1 (xi;t � xi;1)0 = op (1). Therefore, for t � Tb

T�1=2
[sT ]X
j=2

~zi;j = T�1=2~ei;t �
s

T
T�1=2~ei;T +Op

�
C�1NT

�
) �i

�
Wi (s)�

s

�
Wi (�)

�
;

since from Bai and Ng (2004), the terms T�1=2



Pt

j=2 vj




 = Op �C�1NT �, kdik = Op �C�1NT � and T�1=2 


Pt
j=2

~fj




 =
Op (1). Note that we can de�ne b1 = s=� so that 0 < b1 < 1, which in turn implies that

T�1=2
[sT ]X
j=2

~zi;j ) �i
p
�Wi (b1)� �ib1

p
�Wi (1)

= �i
p
� (Wi (b1)� b1Wi (1)) � �i

p
�Vi (b1) ;

given the properties of Brownian motions. On the other hand, for t > Tb

T�1=2
[sT ]X
j=2

�xdi;j
�
�xd0i �x

d
i

��1
�xd0i �~ei =

Tb
T

1

�

�
T�1=2 (~ei;Tb � ~ei;1)

�
+
s� Tb
T

1

1� �

�
T�1=2 (~ei;T � ~ei;Tb)

�
+ op (1)

) �i

�
Wi (�) +

s� �
1� � (Wi (1)�Wi (�))

�
;

so that

T�1=2
[sT ]X
j=2

~zi;j = T�1=2~ei;t �
s

T
T�1=2~ei;T +Op

�
C�1NT

�
) �i

�
Wi (s)�Wi (�)�

s� �
1� � (Wi (1)�Wi (�))

�
:
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As before, we can de�ne b2 = (s� �) = (1� �) so that 0 < b2 < 1, which in turn implies that

T�1=2
tX

j=2

~zi;j ) �i
p
1� � (Wi (b2)� b2Wi (1)) � �i

p
1� �Vi (b2) :

Using similar developments as in the previous proof, the numerator of the DF statistic converges to

T�1
PT

t=2 ~ei;t�1�~ei;t !p ��2=2, while the denominator is

T�2
TX
t=2

~e2i;t�1 = T�2
Tb+1X
t=2

~e2i;t�1 + T
�2

TX
t=Tb+2

~e2i;t�1

) �2i

�
�2
Z 1

0

Vi (b1)
2
db1 + (1� �)2

Z 1

0

Vi (b2)
2
db2

�
;

with V (b1) and V (b2) two independent Brownian bridges. Therefore, the limiting distribution of the

DF statistic is

DF �~e (i)) �1
2

�
�2
Z 1

0

Vi (b1)
2
db1 + (1� �)2

Z 1

0

Vi (b2)
2
db2

��1=2
:

It can be shown that this limiting distribution is symmetric around � = 0:5 since in this case we can

interchange �2 and (1� �)2 and obtain the same distribution. As before, the same limiting distribution
is found for the ADF statistic.

A.4 Proof of statement (2) of Theorem 2

Let us now deal with the unit root hypothesis testing when there is r = 1 common factor and no change

in trend. The model in �rst di¤erences de�nes an idempotent matrix Mi that is unit-dependent. At �rst

sight this goes against the de�nition of a common factor since we assume that this element is common to

all units and, hence, cannot depend on i. Nevertheless, it is shown below that the elements that depend

on i vanish asymptotically. Thus, note that

tX
j=2

~fj =
tX

j=2

h
Mi� ~F

i
j

= ~Ft � (xi;t � xi;1)0 (�x0i�xi)
�1
�x0i� ~F ; (25)

since we de�ne ~F1 = 0, where [�]j refers to the j-th element of the matrix between parentheses. Note
that the �rst element of (25) is

~Ft = H (Ft � F1) + Vt;

since � ~Ft = H �Ft + vt and Vt =
Pt

j=2 vj .

The detrended estimated factor will remove F1:

~F dt = H F dt + V
d
t ;

and it can be shown that

T�1=2 ~F dt = H T�1=2F dt +Op
�
C�1NT

�
;

since T�1=2V dt = Op
�
C�1NT

�
�see Bai and Ng (2004), Lemma B.2. The second term in (25) is T�1=2 (xi;t � xi;1)0

(�x0i�xi)
�1
�x0i�

~F = op (1), since T�1�x0i�xi converges to the matrix of covariance of �xi and
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T�1�x0i�
~F = op (1) by assumption. Since

T�1=2 ~F dt ) H W d
w (s)

T�2
TX
t=2

~F dt�1 ~F
d0
t�1 ) H2 �2w

Z 1

0

W d
w (s)

2
ds

T�1
TX
t=2

~F dt�1�
~Ft ) H2 �2w

Z 1

0

W d
w (s) dW (s) ;

the DF statistic converges to

DF d~F =
T�1

PT
t=2

~F dt�1�
~Ft�

~�2uT
�2PT

t=2

�
~F dt�1

�2�1=2 (26)

)
R 1
0
W d
w (s) dW (s)�R 1

0
W d
w (s)

2
ds
�1=2 ;

where W d
w (s) denotes the detrended Brownian motion and ~�

2
w

p! H2 �2w. The ADF statistic has the

same limiting distribution provided that the order of the autoregressive correction is selected such that

k !1 and k3=min [N;T ]! 0.

Following similar steps, it can be shown that when there is a time trend in the model

T�1=2
tX

j=2

~fj = H T�1=2
�
Ft � F1 � (FT � F1)

t

T

�
+Op

�
C�1NT

�
= H T�1=2F dt +Op

�
C�1NT

�
;

where F dt denotes the detrended common factor, which is obtained as the residual of a regression on a

constant and a time trend. Therefore, DF statistic given by (26) converges to

DF d~F )
R 1
0
W d
w (s) dW (s)�R 1

0
W d
w (s)

2
ds
�1=2 ;

where, as before, W d
w (s) denotes the detrended Brownian motion and ~�

2
w !p H2 �2w. The ADF statistic

has the same limiting distribution provided that the order of the autoregressive correction is selected

such that k !1 and k3=min [N;T ]! 0.

Finally, when there is one structural break that a¤ects the time trend, we can see that

T�1=2
tX

j=2

~fj = H T�1=2
�
Ft � F1 � (FT � F1)

t

T
� (FT � FTb)

t� Tb
T

1 (t > Tb)

�
+Op

�
C�1NT

�
= H T�1=2F dt +Op

�
C�1NT

�
;

where 1 (t > Tb) is an indicator function. Now F dt is obtained as the residual of a regression on a

constant, a time trend and the dummy variable DT �t = (t� Tb) 1 (t > Tb). Using these elements it is
straightforward to see that the DF statistic given by (26) converges to

DF d~F (�))
R 1
0
W d
w (s; �) dW (s; �)�R 1

0
W d
w (s; �)

2
dr
�1=2 ;
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where, as before, W d
w (s; �) denotes the detrended Brownian motion, � is the break fraction parameter

and ~�2w
p! H2 �2w. Note that this limiting distribution has been considered in Perron (1989) for the

speci�cation denoted as Model C. Finally, note that these derivations are valid when stochastic regressors

are non-strictly exogenous provided the regression equation includes leads and lags of their �rst di¤erence.

A.5 Proof of statement (3) of Theorem 2

The limiting distributions of the test statistics that are used when there is more than one common factor

(r > 1) but no break are the same as the ones derived in Bai and Ng (2004). These steps may be followed

routinely to derive the distributions given in (3) for the case where the break is unknown. As stated in

Bai and Ng (2004), pp. 1167, Remark 1, the validity of the MQ tests using detrended estimated factors

relies on the closeness of the true detrended factors, which has been shown in previous proofs. Thus, the

limiting distribution of the MQ tests is the same as in Bai and Ng (2004), but using properly detrended

Brownian motions.

A.6 Non strictly-exogenous regressors

Following developments in Bai and Carrion-i-Silvestre (2005) we can show that the same results are

obtained when stochastic regressors are non-strictly exogenous. Here we only consider the speci�cation

without any deterministic component, although derivations extend to all models proposed in the paper.

Thus, the model given by (11) and (12) with non-strictly exogenous regressors can be expressed as

yi;t = x
0
i;t�i +�x

0
i;tAi (L) + Ft�i + �i;t;

where Ai (L) denotes the (k � 1)-vector of lead and lag polynomials. Previous derivations concern-

ing idiosyncratic disturbance term still hold but replacing �~ei;t with �~�i;t. Now we de�ne �xdi;t =�
�x0i;t;�

2x0i;t
�0
. Note that T�1=2 (�xi;t ��xi;1) = T�1=2Op (1) !p 0, T�1�xd0i �x

d
i !p Q�xdi�xdi , the

covariance matrix of �xd0i �x
d
i , and T

�1�xd0i �
~�i !p 0, so that we can see that T�1=2

P[sT ]
j=2

h
Pi�~�i

i
j
!p

0. Then,

T�1=2
tX

j=2

~zi;j = T
�1=2~�i;t + op (1) ;

and

T�1=2
tX

j=2

zi;j = T
�1=2�i;t + op (1) ;

which indicates that the presence of (non-strictly) stochastic regressors does not have any e¤ect on the

partial sum processes once endogeneity has been taken into account and, hence, the rest of the proof

follows the one above for strictly exogenous regressors.
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Table 1: Empirical power of Pedroni pseudo t-ratio cointegration statistic. The structural change a¤ects
the deterministic component

�i = 0 �i = 0:5
T = 100 T = 250 T = 100 T = 250

�i (�i; 
i) N = 20 N = 40 N = 20 N = 40 N = 20; N = 40 N = 20; N = 40
0.25 (0; 0) 1 1 1 1 1 1 1 1

(1; 0) 1 1 1 1 1 1 1 1
(3; 0) 1 1 1 1 1 1 1 1
(5; 0) 1 1 1 1 1 1 1 1
(10; 0) 1 1 1 1 0.49 0.88 1 1

0.5 (1; 0) 1 1 1 1 1 1 1 1
(3; 0) 1 1 1 1 1 1 1 1
(5; 0) 1 1 1 1 0.99 1 1 1
(10; 0) 0.94 1 1 1 0.08 0.09 0.90 0.99

0.75 (1; 0) 1 1 1 1 1 1 1 1
(3; 0) 1 1 1 1 1 1 1 1
(5; 0) 1 1 1 1 0.99 1 1 1
(10; 0) 0.83 0.98 1 1 0.01 0.00 0.72 0.94

0.25 (0; 0) 1 1 1 1 1 1 1 1
(3; 0:5) 1 1 1 1 1 1 1 1
(3; 0:7) 1 1 1 1 1 1 1 1
(3; 1) 1 1 0.99 1 1 1 0.99 1

0.5 (3; 0:5) 0.65 0.89 0.01 0 0.02 0 0 0
(3; 0:7) 0.02 0.01 0 0 0 0 0 0
(3; 1) 0 0 0 0 0 0 0 0

0.75 (3; 0:5) 0.34 0.54 0 0 0 0 0 0
(3; 0:7) 0 0 0 0 0 0 0 0
(3; 1) 0 0 0 0 0 0 0 0

DGP: yt = �i + �iDUi;t + �it + 
iDT
�
i;t + x

0
i;t�i + zi;t; �xi;t = "i;t and zi;t = �izi;t�1 + vi;t with

�i;t = ("i;t; vi;t)
0 � iid N (0; I2), �i = 1, �i = 0:3 and �i = 1. The nominal size is set at the 5%

level and 1,000 replications are carried out.
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Table 2: Empirical power of Pedroni pseudo t-ratio cointegration statistic. The structural change a¤ects
both the deterministic component and the cointegrating vector

�i = 0 �i = 0:5
N (T = 100) N (T = 250) N (T = 100) N (T = 250)

�i (�i; 
i) (�i;1; �i;2) 20 40 20 40 20 40 20 40
0.25 (0; 0) (1; 0) 1 1 1 1 1 1 1 1

(0; 0) (1; 2) 1 1 1 1 1 1 1 1
(0; 0) (1; 3) 1 1 1 1 1 1 1 1
(0; 0) (1; 4) 1 1 1 1 1 1 1 1
(0; 0) (1; 5) 1 1 1 1 0.99 1 1 1
(0; 0) (1; 10) 0.99 1 1 1 0.97 1 1 1

0.5 (0; 0) (1; 2) 1 1 1 1 0.98 1 1 1
(0; 0) (1; 3) 0.98 1 0.99 1 0.50 0.77 0.76 0.94
(0; 0) (1; 4) 0.71 0.92 0.86 0.99 0.27 0.42 0.42 0.67
(0; 0) (1; 5) 0.45 0.68 0.62 0.853 0.17 0.31 0.32 0.50
(0; 0) (1; 10) 0.17 0.30 0.26 0.406 0.13 0.18 0.19 0.31

0.75 (0; 0) (1; 2) 1 1 1 1 0.83 0.97 0.96 1
(0; 0) (1; 3) 0.76 0.92 0.86 0.98 0.11 0.11 0.20 0.28
(0; 0) (1; 4) 0.26 0.32 0.33 0.48 0.02 0.01 0.04 0.03
(0; 0) (1; 5) 0.09 0.10 0.12 0.13 0.01 0.01 0.02 0.01
(0; 0) (1; 10) 0.01 0 0.01 0 0.01 0 0.01 0

0.25 (3; 0) (1; 2) 1 1 1 1 1 1 1 1
(3; 0) (1; 3) 1 1 1 1 0.99 1 1 1
(3; 0) (1; 4) 1 1 1 1 0.99 1 1 1
(3; 0) (1; 5) 1 1 1 1 0.98 1 1 1
(3; 0) (1; 10) 0.98 1 1 1 0.97 1 0.99 1

0.5 (3; 0) (1; 2) 1 1 1 1 0.97 1 1 1
(3; 0) (1; 3) 0.97 1 1 1 0.51 0.74 0.72 0.92
(3; 0) (1; 4) 0.71 0.92 0.84 0.98 0.23 0.44 0.43 0.69
(3; 0) (1; 5) 0.44 0.66 0.63 0.88 0.18 0.29 0.29 0.50
(3; 0) (1; 10) 0.18 0.28 0.26 0.42 0.12 0.18 0.19 0.32

0.75 (3; 0) (1; 2) 1 1 1 1 0.77 0.95 0.96 1
(3; 0) (1; 3) 0.74 0.91 0.86 0.98 0.11 0.10 0.18 0.26
(3; 0) (1; 4) 0.22 0.35 0.32 0.47 0.03 0.01 0.04 0.03
(3; 0) (1; 5) 0.09 0.09 0.10 0.14 0.01 0.00 0.02 0.01
(3; 0) (1; 10) 0.01 0 0.01 0.01 0 0 0.01 0

DGP: yt = �i + �iDUi;t + �it+ 
iDT
�
i;t + x

0
i;t�i;t + zi;t; �xi;t = "i;t and zi;t = �izi;t�1 + vi;t

with �i;t = ("i;t; vi;t)
0 � iid N (0; I2), �i = 1, �i = 0:3 and �i;t = �i;1 for t � Tb;i and

�i;t = �i;2 for t > Tb;i. The nominal size is set at the 5% level and 1,000 replications are
carried out.
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Table 3: Empirical power of Pedroni pseudo t-ratio cointegration statistic. The structural change a¤ects
both the deterministic component and the cointegrating vector

�i = 0 �i = 0:5
N (T = 100) N (T = 250) N (T = 100) N (T = 250)

�i (�i; 
i) (�i;1; �i;2) 20 40 20 40 20 40 20 40
0.25 (3; 0:5) (1; 2) 1 1 1 1 0.99 1 1 1

(3; 0:5) (1; 3) 1 1 1 1 0.99 1 0.98 1
(3; 0:5) (1; 4) 1 1 1 1 0.96 1 0.95 1
(3; 0:5) (1; 5) 0.98 1 0.98 1 0.92 1 0.95 1
(3; 0:5) (1; 10) 0.85 0.98 0.95 1 0.88 0.98 0.93 1

0.5 (3; 0:5) (1; 2) 0.43 0.72 0 0 0.01 0.01 0 0
(3; 0:5) (1; 3) 0.36 0.53 0.01 0 0.05 0.04 0 0
(3; 0:5) (1; 4) 0.28 0.41 0.03 0.01 0.08 0.09 0.01 0
(3; 0:5) (1; 5) 0.23 0.30 0.05 0.04 0.08 0.10 0.01 0.01
(3; 0:5) (1; 10) 0.14 0.21 0.08 0.13 0.12 0.19 0.09 0.10

0.75 (3; 0:5) (1; 2) 0.71 0.89 0.04 0.02 0.04 0.02 0 0
(3; 0:5) (1; 3) 0.52 0.68 0.11 0.08 0.08 0.08 0.01 0
(3; 0:5) (1; 4) 0.28 0.34 0.09 0.08 0.08 0.05 0.01 0
(3; 0:5) (1; 5) 0.15 0.16 0.06 0.04 0.05 0.05 0.01 0.01
(3; 0:5) (1; 10) 0.04 0.03 0.03 0.01 0.05 0.03 0.03 0.01

DGP: yt = �i + �iDUi;t + �it+ 
iDT
�
i;t + x

0
i;t�i;t + zi;t; �xi;t = "i;t and zi;t = �izi;t�1 + vi;t

with �i;t = ("i;t; vi;t)
0 � iid N (0; I2), �i = 1, �i = 0:3 and �i;t = �i;1 for t � Tb;i and

�i;t = �i;2 for t > Tb;i. The nominal size is set at the 5% level and 1,000 replications are
carried out.
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Table 5: Response surfaces for (k = 0)
Model 1 Model 2

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.39 60.648 -3.127 -19.196 0.339 67.8 -3.684 -26.679
�̂0;1 5.064 -1226.67 -8.833 121.763 6.104 -1885.589 -9.439 144.172
�̂0;2 179.334 -2571.386 16698.79 28.308 3575.522
�̂0;3 196196.7 -1990.403 58983.27 1029.447 -72734.42
�̂1;0 -0.005 16.530 -0.429 -6.238 0.003 17.645 -0.341 -5.625
�̂1;1 1 -1325.654 124.468 0.902 -1543.665 180.54
�̂1;2 34.590 42679.5 -60.807 -1312.53 39.629 53149.58 -51.393 -4444.318
�̂1;3 -532567.3 -663605.3 48906.87
�̂2;0 -0.362 0.016 0.112 -0.39 0.01 0.067
�̂2;1 -0.236 3.084 6.859 -0.228 1.208
�̂2;2 225.078 5.935 -51.736 4.325
�̂2;3

Model 3 Model 4

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.359 91.108 -3.971 -31.767 0.43 60.884 -3.221 -19.845
�̂0;1 7.472 -3645.426 -8.979 442.209 3.046 318.553
�̂0;2 59.681 75512.06 -49.326 -10829.74 102.433 -87968.11 -110.06 -16385.62
�̂0;3 -777252.4 164392.7 1874059 307418.8
�̂1;0 14.514 -0.314 -5.334 35.776 -0.628 -10.047
�̂1;1 0.852 -1361.209 -2.06 124.516 3.307 -3225.963 -2.236 219.694
�̂1;2 42.03 47092.270 -1139.025 121345.6 -1980.416
�̂1;3 -562391.3 -1725484
�̂2;0 -0.216 0.008 0.039 0.001 -1.033 0.023 0.136
�̂2;1 0.038 5.521 -0.165 -0.188 12.356
�̂2;2 -3.393 -128.867 11.955 797.530 -3.325 -290.951
�̂2;3

Model 5 Model 6

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.364 74.286 -3.78 -27.851 0.366 87.342 -3.968 -30.483
�̂0;1 6.564 -2146.293 -6.974 242.942 10.855 -2699.1 -8.23 191.322
�̂0;2 20055.64 -266.021 28358.7 -83.457 4931.966
�̂0;3 -42063.93 7384.621 -123591.5
�̂1;0 0.008 34.679 -0.544 -9.615 0.007 33.827 -0.505 -9.373
�̂1;1 2.617 -3212.648 -0.868 322.608 3.982 -3213.574 -1.767 357.392
�̂1;2 41.638 115262.4 -43.717 -8330.38 118816.1 -9875.101
�̂1;3 -1488387 113929.5 -1614095 131909.7
�̂2;0 -1.053 0.018 0.097 -0.888 0.014 0.072
�̂2;1 -0.161 24.408 -0.306 11.106 -0.325 -0.189 9.476
�̂2;2 10.166 -273.637 15.916 730.025 -5.392 -222.194
�̂2;3
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Table 6: Response surfaces for (k = 2)
Model 1 Model 2

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.415 62.309 -3.213 -19.672 0.336 69.482 -3.735 -26.724
�̂0;1 0.967 -104.685 4.102 91.646 2.873 1.953 -42.725
�̂0;2 85.478 -428.601 -6704.974 58.52 -18212.26 -286.032 421.283
�̂0;3 6757.605 103243.4 275990.6 5567.945
�̂1;0 -0.018 15.196 -0.414 -5.961 0.005 15.915 -0.334 -5.411
�̂1;1 1.579 -172.849 4.4 17.452 1.368 -236.01 6.006 56.212
�̂1;2 -26.560 438.162 -30.879 -59.458 -245.555
�̂1;3 612.861
�̂2;0 0.002 -0.147 0.015 0.08 -0.001 -0.195 0.010 0.05
�̂2;1 -0.085 -9.382 4.173 -0.138 0.614
�̂2;2 -2.239 -71.787
�̂2;3

Model 3 Model 4

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.353 89.831 -4.011 -31.141 0.429 66.591 -3.235 -19.246
�̂0;1 6.456 -173.345 5.695 25.550 1.626 -1025.367 66.531
�̂0;2 -6455.393 -543.11 -4224.155 100.548 30787.53 -76.879 -6527.479
�̂0;3 8627.961 84886.75 120101.1
�̂1;0 0.006 14.775 -0.317 -5.476 -0.002 29.482 -0.624 -9.880
�̂1;1 -1.009 -274.989 5.92 63.485 2.983 438.987 13.891 135.547
�̂1;2 81.566 -53.692 -245.299 -45.199 -24349.6 -374.707 -2851.772
�̂1;3 -631.881 4741.349 32282.1
�̂2;0 -0.001 -0.155 0.009 0.054 0.024 0.104
�̂2;1 0.181 -0.147 -0.199 -138.416 -0.304 2.734
�̂2;2 -5.953 6.356 3434.739
�̂2;3

Model 5 Model 6

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.380 78.16 -3.825 -27.922 0.383 91.354 -4.016 -31.322
�̂0;1 -1049.361 4.26 97.299 2.626 6.241 156.004
�̂0;2 94.123 11495.16 -98.231 -5411.362 90.144 -40668.1 -493.482 -11876.56
�̂0;3 88658.21 521643.9 7199.83 218847.8
�̂1;0 0.004 29.349 -0.524 -9.171 0.011 29.639 -0.488 -8.640
�̂1;1 2.825 14.206 143.512 2.271 -281.767 13.469 106.736
�̂1;2 -7443.609 -434.678 -3425.206 4060.874 -326.613 -744.496
�̂1;3 5633.642 49471.7 3497.908
�̂2;0 0.017 0.047 -0.001 0.014
�̂2;1 -0.136 -86.63 -0.236 5.337 -0.121 -58.02 -0.272 6.34
�̂2;2 1363.246 -74.929 1.486 -89.481
�̂2;3
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Table 7: Response surfaces for (k = 5)
Model 1 Model 2

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.411 61.076 -3.196 -19.09 0.327 70.537 -3.758 -26.36
�̂0;1 2333.282 -2.138 -251.033 1.926 3688.82 9.947 -577.95
�̂0;2 89.8 14804.35 -2084.949 -111525 -102.888 8408.465
�̂0;3 2785.821 -2085.401 5474.382 2935591 -70550.62
�̂1;0 -0.018 14.491 -0.419 -5.96 0.008 14.356 -0.324 -5.371
�̂1;1 1.282 1468.171 15.196 -102.32 0.596 1834.07 14.124 -70.904
�̂1;2 -14669.95 -348.385 2139.019 -25876.53 -368.115 1714.215
�̂1;3 4192.348 4228.759
�̂2;0 0.001 0.016 0.068 -0.001 0.010 0.029
�̂2;1 -0.069 -0.289 1.362 -0.172
�̂2;2
�̂2;3

Model 3 Model 4

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.367 89.609 -4.013 -30.645 0.435 58.969 -3.269 -19.333
�̂0;1 6021.446 10.749 -722.651 3904.387 8.328 -180.318
�̂0;2 139.06 -119796.1 -322.281 10502.56 -154668.9 -527.974 -3147.907
�̂0;3 4467.837 2779171 -173970.8 4215.836 3727902 6371.796
�̂1;0 -0.004 13.944 -0.307 -5.325 -0.003 27.297 -0.59 -9.213
�̂1;1 1.052 1272.166 15.51 -75.522 1.582 3537.474 24.265 -136.207
�̂1;2 -11.117 -394.685 1780.818 9.137 -47364.92 -666.318 2432.973
�̂1;3 4719.719 8318.551
�̂2;0 0.008 0.014 0.826 0.023
�̂2;1 70.693 -0.27 -0.092 -0.479
�̂2;2 -2726.643 81.938
�̂2;3

Model 5 Model 6

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.343 60.513 -3.828 -27.858 0.378 71.175 -4.026 -31.256
�̂0;1 1.636 6899.273 12.998 -253.539 0.867 11057.17 13.951 -408.183
�̂0;2 -88.332 -322583.2 -182.882 -13556.49 -499199.5 -403.515 -10959.25
�̂0;3 7587.446 5934887 359446.7 6664.312 10140177 228140.6
�̂1;0 0.016 32.949 -0.496 -8.767 0.011 29.816 -0.451 -8.12
�̂1;1 1.581 2404.486 25.834 -154.416 1.509 3570.033 24.749 -194.826
�̂1;2 -842.643 6727.948 -40673.95 -789.654 8114.972
�̂1;3 9999.87 -124097.4 10535.88 -121465.5
�̂2;0 -0.001 0.017 -5.136 -0.001 0.754 0.012 -0.078
�̂2;1 -0.083 187.542 -0.574 247.073 -0.074 -0.331
�̂2;2 -7067.742 9.204 120.421
�̂2;3

34



Table 8: Response surfaces for the automatic lag length selection method (kmax = 5)
Model 1 Model 2

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.41 56.823 -3.218 -19.638 0.372 71.034 -3.778 -26.654
�̂0;1 10.777 2079.863 -34.87 -97.193 1.676 1730.194 -42.359 -392.725
�̂0;2 -284.429 737.622 -3103.602 97.645 40207.55 1018.228 4124.832
�̂0;3 4332.145 -11377.84 -13147.4
�̂1;0 -0.004 18.14 -0.442 -6.027 0.005 13.145 -0.351 -5.628
�̂1;1 -2.036 1.628 -68.79 1293.969 3.225
�̂1;2 55.887 28710.63 1511.876 -18644.32 -36.265
�̂1;3
�̂2;0 -0.748 0.017 0.081 -0.001 0.01 0.064
�̂2;1 0.165 205.976 -0.114 0.967 48.061 -0.161 -5.218
�̂2;2 -5962.404 5.98 140.98
�̂2;3

Model 3 Model 4

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.389 72.251 -4.061 -31.033 0.517 70.453 -3.286 -19.519
�̂0;1 5.779 7427.681 -43.941 -465.591 1.919 -26.176 -101.832
�̂0;2 -225.895 -177465.4 921.364 1330.639 44801.21 166.728 -2334.409
�̂0;3 5584.734 2808044 -13082.02
�̂1;0 19.721 -0.335 -5.637 -0.02 26.003 -0.649 -9.78
�̂1;1 -0.798 3.616 2162.096 3.806 -26.883
�̂1;2 56.865 37740.3 -30.174 72.559 -45.143
�̂1;3
�̂2;0 0.001 -0.737 0.009 0.059 0.001 0.025 0.086
�̂2;1 0.093 190.91 -0.194 -6.067 0.176 275.749 -0.227 -8.473
�̂2;2 -5491.499 146.45 -8513.873 292.56
�̂2;3

Model 5 Model 6

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

Z�̂NT

�
�̂
�

Zt̂NT

�
�̂
�

�1 	1 �2 	2 �1 	1 �2 	2
�̂0;0 0.399 109.977 -3.875 -27.694 0.424 87.103 -4.071 -31.407
�̂0;1 -8193.521 -35.047 -296.345 5713.206 -41.846 -243.518
�̂0;2 119.632 607421 681.665 1996.116 147.021 -286832.2 938.021 -12550.07
�̂0;3 -9915995 -8374.721 7973939 -14997.98 240521.8
�̂1;0 0.011 7.772 -0.549 -9.262 0.011 19.269 -0.509 -8.675
�̂1;1 0.937 6841.871 4.83 -9.079 0.858 4385.407 5.806 -66.601
�̂1;2 -256154.3 -74.577 -540.416 -58727.81 -111.692 3590.481
�̂1;3 3915350 1563.76 -69517.66
�̂2;0 -0.001 1.661 0.018 0.048 -0.001 1.239 0.014
�̂2;1 -0.235 -8.318 -0.178 -7.49
�̂2;2 13.846 283.209 15.245 -3.999 271.886
�̂2;3
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Table 9: Mean and variance for the ADF c~e , ADF
�
~e and ADF



~e statistics

ADF c~e (i) statistic ADF �~e (i) statistic
T �e2 	e2 T �e2 	e2
50 -0.418 0.991 50 -1.549 0.367
100 -0.419 0.980 100 -1.541 0.353
250 -0.424 0.955 250 -1.538 0.346
500 -0.418 0.959 500 -1.536 0.346
1000 -0.424 0.964 1000 -1.535 0.341

ADF 
~e (i) statistic
T � �e2 	e2 T � �e2 	e2 T � �e2 	e2
50 0.1 -1.684 0.423 100 0.1 -1.680 0.405 250 0.1 -1.682 0.399

0.2 -1.829 0.450 0.2 -1.816 0.415 0.2 -1.810 0.394
0.3 -1.932 0.414 0.3 -1.920 0.402 0.3 -1.904 0.378
0.4 -2.013 0.398 0.4 -1.981 0.368 0.4 -1.957 0.354
0.5 -2.022 0.383 0.5 -1.998 0.358 0.5 -1.967 0.330
0.6 -2.011 0.404 0.6 -1.975 0.368 0.6 -1.961 0.349
0.7 -1.940 0.425 0.7 -1.913 0.390 0.7 -1.913 0.385
0.8 -1.834 0.447 0.8 -1.817 0.423 0.8 -1.808 0.402
0.9 -1.681 0.423 0.9 -1.676 0.397 0.9 -1.682 0.400

500 0.1 -1.688 0.395 1000 0.1 -1.676 0.389
0.2 -1.812 0.395 0.2 -1.809 0.392
0.3 -1.900 0.369 0.3 -1.902 0.371
0.4 -1.954 0.343 0.4 -1.950 0.338
0.5 -1.967 0.330 0.5 -1.972 0.339
0.6 -1.955 0.344 0.6 -1.953 0.346
0.7 -1.898 0.369 0.7 -1.900 0.365
0.8 -1.800 0.396 0.8 -1.799 0.390
0.9 -1.678 0.392 0.9 -1.691 0.392
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Table 10: Asymptotic critical values for the MQ tests
� = 0:1 � = 0:2 � = 0:3

r 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 -32.163 -23.629 -19.865 -34.858 -26.091 -22.144 -36.123 -27.562 -23.619
2 -43.372 -34.321 -30.056 -46.436 -37.139 -32.688 -46.773 -37.778 -33.492
3 -53.648 -44.378 -39.748 -55.828 -46.232 -41.766 -57.136 -47.511 -42.775
4 -63.359 -53.470 -48.595 -65.206 -55.582 -50.645 -65.570 -55.883 -51.370
5 -73.691 -62.796 -57.434 -74.601 -64.165 -59.199 -75.573 -64.731 -59.919
6 -81.346 -71.238 -65.663 -83.575 -72.562 -67.309 -83.921 -73.247 -67.908

� = 0:4 � = 0:5 � = 0:6
r 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 -36.635 -28.147 -24.140 -36.775 -28.226 -24.419 -36.805 -28.178 -24.176
2 -47.134 -38.391 -34.282 -48.148 -38.907 -34.553 -47.611 -38.587 -34.246
3 -57.176 -47.642 -43.088 -56.753 -47.715 -43.333 -57.230 -47.865 -43.200
4 -67.481 -56.958 -52.039 -65.752 -56.418 -51.708 -67.094 -56.599 -51.785
5 -75.603 -65.386 -60.204 -75.378 -65.302 -60.251 -75.182 -64.986 -60.057
6 -84.718 -73.703 -68.372 -83.902 -73.746 -68.222 -84.059 -73.136 -67.973

� = 0:7 � = 0:8 � = 0:9
r 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 -36.302 -27.751 -23.890 -35.249 -26.722 -22.713 -32.918 -24.712 -20.896
2 -47.383 -38.223 -34.045 -46.572 -37.227 -33.085 -43.959 -35.248 -31.190
3 -56.908 -47.282 -42.693 -55.960 -46.442 -41.998 -54.568 -45.183 -40.623
4 -66.869 -56.270 -51.337 -65.833 -55.750 -50.890 -63.920 -53.985 -49.399
5 -75.074 -64.828 -59.867 -74.046 -64.430 -59.290 -74.177 -63.063 -57.839
6 -85.434 -73.646 -68.332 -83.244 -72.857 -67.721 -82.664 -71.518 -66.449
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Table 11: Critical values for the Ze
t̂NT
(�̂), ADF ~F (�̂) and MQ(q; �̂) statistics

Panel A: Ze
t̂NT

�
�̂
�
statistic Panel B: Common factor statistics

Constant with or without change in level ADF ~F

�
�̂
�
: Time trend with one change in trend

T 1% 2.5% 5% 10% T 1% 2.5% 5% 10%
50 -2.926 -2.517 -2.219 -1.901 50 -4.779 -4.306 -4.008 -3.679
100 -2.824 -2.402 -2.113 -1.759 100 -4.549 -4.243 -3.930 -3.602
250 -2.560 -2.250 -1.985 -1.619 250 -4.474 -4.136 -3.873 -3.594

Time trend with or without change in level MQ
�
q; �̂
�

T 1% 2.5% 5% 10% T r 1% 2.5% 5% 10%
50 -2.389 -2.042 -1.670 -1.273 50 1 -31.046 -27.569 -24.828 -21.669
100 -2.441 -2.040 -1.708 -1.357 2 -38.827 -35.362 -32.792 -29.925
250 -2.296 -1.953 -1.619 -1.260 3 -44.744 -42.436 -39.703 -36.641

4 -47.752 -46.476 -44.865 -42.381
Time trend with one change in trend 5 -48.756 -48.305 -47.472 -46.119

T 1% 2.5% 5% 10% 6 -48.890 -48.746 -48.444 -47.879
50 -3.679 -3.389 -3.097 -2.714 100 1 -34.474 -30.234 -26.833 -23.102
100 -3.826 -3.467 -3.147 -2.804 2 -44.748 -40.147 -36.464 -32.729
250 -3.740 -3.373 -3.134 -2.794 3 -53.423 -49.142 -45.879 -41.862

4 -61.972 -57.307 -53.251 -49.284
5 -69.033 -64.937 -61.099 -56.747
6 -74.663 -70.434 -67.183 -63.437

250 1 -32.985 -28.983 -25.697 -22.843
2 -46.953 -41.768 -38.103 -33.778
3 -52.827 -48.542 -45.066 -41.136
4 -59.494 -56.474 -53.392 -49.240
5 -70.495 -66.474 -62.404 -57.440
6 -78.589 -73.456 -68.748 -64.459

Table 12: Empirical size of the tests (nominal size = 5%)

Z�̂NT

�
�̂
�
statistic

N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 0.039 0.046 0.043 0.033 0.054 0.045

100 0.055 0.049 0.053 0.059 0.048 0.050
250 0.050 0.053 0.046 0.052 0.056 0.059

40 50 0.040 0.049 0.046 0.030 0.044 0.056
100 0.047 0.047 0.057 0.066 0.051 0.047
250 0.056 0.061 0.047 0.044 0.046 0.055

Zt̂NT

�
�̂
�
statistic

N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 0.044 0.045 0.049 0.047 0.050 0.045

100 0.050 0.050 0.045 0.046 0.043 0.053
250 0.043 0.047 0.043 0.040 0.049 0.053

40 50 0.045 0.051 0.055 0.048 0.041 0.052
100 0.041 0.047 0.047 0.044 0.046 0.043
250 0.048 0.053 0.046 0.032 0.045 0.048

Simulation results based on 5,000 replications.
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Table 13: Empirical power of the normalised bias statistic (nominal size = 5%)

Z�̂NT

�
�̂
�
statistic

DGP: Model 1
N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 0.455 0.312 0.216 0.361 0.223 0.183

100 1 0.998 0.989 1 0.931 0.980
250 1 1 1 1 1 1

40 50 0.676 0.467 0.320 0.577 0.310 0.269
100 1 1 1 1 0.998 1
250 1 1 1 1 1 1

DGP: Model 2
N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 0.001 0.306 0.219 0.004 0.211 0.185

100 0 1 0.988 0.001 0.935 0.983
250 0 1 1 0.000 1 1

40 50 0 1 0.334 0.001 0.309 0.261
100 0 1 1 0.000 0.998 1
250 0 1 1 0 1 1

DGP: Model 3
N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 0 0.016 0.110 0 0.015 0.088

100 0 0.089 0.907 0.001 0.121 0.861
250 0 0.932 1 0 0.998 1

40 50 0 0.010 0.125 0 0.005 0.129
100 0 0.085 0.995 0 0.159 0.992
250 0 0.787 1 0 0.997 1

DGP: Model 4
N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 0.864 0.389 0.527 0.987 0.478 0.413

100 1 1 1 1 1 1
250 1 1 1 1 1 1

40 50 0.996 0.754 0.671 1 0.781 0.687
100 1 1 1 1 1 1
250 1 1 1 1 1 1

DGP: Model 5
N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 0.093 0.356 0.330 0.187 0.485 0.578

100 0.236 0.999 1 0.283 1 1
250 0.044 1 1 0.113 1 1

40 50 0.089 0.657 0.667 0.233 0.714 0.743
100 0.305 1 1 0.515 1 1
250 0.037 1 1 0.105 1 1

DGP: Model 6
N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 0.002 0.151 0.311 0.018 0.077 0.546

100 0.009 0.990 1 0.054 0.914 1
250 0.001 0.997 1 0.022 0.998 1

40 50 0 0.328 0.606 0.005 0.244 0.785
100 0 1 1 0.021 0.994 1
250 0 1 1 0.003 1 1

Simulation results based on 5,000 replications.
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Table 14: Empirical power of the pseudo t-ratio statistic (nominal size = 5%)

Zt̂NT

�
�̂
�
statistic

DGP: Model 1
N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 1 1 1 1 1 1

100 1 1 1 1 1 1
250 1 1 1 1 1 1

40 50 1 1 1 1 1 1
100 1 1 1 1 1 1
250 1 1 1 1 1 1

DGP: Model 2
N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 0.957 1 1 0.995 1 1

100 0.403 1 1 0.675 1 1
250 0.034 1 1 0.073 1 1

40 50 1 1 1 1 1 1
100 0.647 1 1 0.908 1 1
250 0.026 1 1 0.070 1 1

DGP: Model 3
N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 0.303 1 1 0.765 1 1

100 0.018 1 1 0.221 1 1
250 0.001 1 1 0.009 1 1

40 50 0.497 1 1 0.958 1 1
100 0.014 1 1 0.324 1 1
250 0 1 1 0.003 1 1

DGP: Model 4
N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 1 1 1 1 1 1

100 1 1 1 1 1 1
250 1 1 1 1 1 1

40 50 1 1 1 1 1 1
100 1 1 1 1 1 1
250 1 1 1 1 1 1

DGP: Model 5
N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 1 1 1 1 1 1

100 0.917 1 1 0.981 1 1
250 0.219 1 1 0.413 1 1

40 50 1 1 1 1 1 1
100 0.992 1 1 1 1 1
250 0.308 1 1 0.594 1 1

DGP: Model 6
N T Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
20 50 0.976 1 1 0.999 1 1

100 0.287 1 1 0.741 1 1
250 0.009 1 1 0.083 1 1

40 50 0.999 1 1 1 1 1
100 0.229 1 1 0.901 1 1
250 0.003 1 1 0.060 1 1

Simulation results based on 5,000 replications.
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Table 16: Empirical size and power. Constant case with three common factors (N = 40)
T �i � �2F Ze

t̂NT
MQ(0) MQ(1) MQ(2) MQ(3)

50 1 1 0.5 0.082 0.006 0.167 0.340 0.484
100 1 1 0.5 0.057 0.003 0.024 0.186 0.784
250 1 1 0.5 0.050 0.001 0.02 0.128 0.848
50 1 0.9 0.5 0.117 0.021 0.139 0.312 0.525
100 1 0.9 0.5 0.061 0.086 0.053 0.206 0.652
250 1 0.9 0.5 0.051 0.771 0.017 0.075 0.134
50 1 0.8 0.5 0.121 0.066 0.090 0.302 0.539
100 1 0.8 0.5 0.051 0.509 0.041 0.122 0.325
250 1 0.8 0.5 0.061 0.986 0.007 0.003 0.001
50 1 1 1 0.061 0 0.003 0.030 0.967
100 1 1 1 0.052 0 0.013 0.063 0.921
250 1 1 1 0.050 0 0.010 0.078 0.909
50 1 0.9 1 0.030 0.001 0.006 0.045 0.945
100 1 0.9 1 0.036 0.093 0.033 0.134 0.737
250 1 0.9 1 0.034 0.844 0.008 0.041 0.104
50 1 0.8 1 0.033 0.039 0.010 0.062 0.886
100 1 0.8 1 0.048 0.56 0.025 0.095 0.317
250 1 0.8 1 0.052 0.994 0.001 0.001 0.001
50 1 1 10 0.060 0 0.002 0.015 0.979
100 1 1 10 0.049 0.001 0.006 0.059 0.931
250 1 1 10 0.060 0.004 0.009 0.084 0.900
50 1 0.9 10 0.044 0.008 0.001 0.027 0.957
100 1 0.9 10 0.053 0.116 0.030 0.133 0.717
250 1 0.9 10 0.042 0.904 0.006 0.022 0.065
50 1 0.8 10 0.030 0.034 0.012 0.059 0.886
100 1 0.8 10 0.049 0.651 0.014 0.076 0.256
250 1 0.8 10 0.043 0.994 0.001 0.001 0.001

The nominal size is set at the 5% level. Simulation results based on 5,000 replications.
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Table 18: Empirical size and power. One level shift, known break point (�i = 0:5) and one common
factor (N = 40)

T �i � �2F Ze
t̂NT

ADF d
F̂

�i Ze
t̂NT

ADF d
F̂

�i Ze
t̂NT

ADF d
F̂

50 1 1 0.5 0.050 0.058 0.9 1 0.059 0.8 1 0.060
100 1 1 0.5 0.053 0.053 0.9 1 0.058 0.8 1 0.055
250 1 1 0.5 0.046 0.051 0.9 1 0.051 0.8 1 0.053
50 1 0.9 0.5 0.042 0.121 0.9 1 0.128 0.8 1 0.138
100 1 0.9 0.5 0.049 0.275 0.9 1 0.324 0.8 1 0.316
250 1 0.9 0.5 0.047 0.837 0.9 1 0.948 0.8 1 0.948
50 1 0.8 0.5 0.042 0.282 0.9 1 0.303 0.8 1 0.319
100 1 0.8 0.5 0.049 0.695 0.9 1 0.782 0.8 1 0.803
250 1 0.8 0.5 0.050 0.981 0.9 1 1 0.8 1 1
50 1 1 1 0.041 0.057 0.9 1 0.059 0.8 1 0.060
100 1 1 1 0.050 0.058 0.9 1 0.053 0.8 1 0.056
250 1 1 1 0.050 0.049 0.9 1 0.048 0.8 1 0.053
50 1 0.9 1 0.041 0.119 0.9 1 0.137 0.8 1 0.128
100 1 0.9 1 0.054 0.292 0.9 1 0.307 0.8 1 0.308
250 1 0.9 1 0.042 0.889 0.9 1 0.949 0.8 1 0.953
50 1 0.8 1 0.039 0.304 0.9 1 0.310 0.8 1 0.316
100 1 0.8 1 0.048 0.748 0.9 1 0.797 0.8 1 0.798
250 1 0.8 1 0.053 0.994 0.9 1 1 0.8 1 1
50 1 1 10 0.048 0.058 0.9 1 0.060 0.8 1 0.057
100 1 1 10 0.054 0.057 0.9 1 0.054 0.8 1 0.052
250 1 1 10 0.053 0.045 0.9 1 0.049 0.8 1 0.052
50 1 0.9 10 0.038 0.113 0.9 1 0.122 0.8 1 0.130
100 1 0.9 10 0.046 0.288 0.9 1 0.287 0.8 1 0.296
250 1 0.9 10 0.049 0.941 0.9 1 0.944 0.8 1 0.951
50 1 0.8 10 0.038 0.289 0.9 1 0.291 0.8 1 0.290
100 1 0.8 10 0.045 0.791 0.9 1 0.790 0.8 1 0.793
250 1 0.8 10 0.044 1 0.9 1 0.999 0.8 1 1

The nominal size is set at the 5% level. Simulation results based on 5,000 replications.
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Table 19: Empirical size and power with three common factors. One level shift, known break point
(� = 0:5, N = 40)

T �i � �2F Ze
t̂NT

MQ(0) MQ(1) MQ(2) MQ(3)

50 1 1 0.5 0.082 0.011 0.179 0.349 0.461
100 1 1 0.5 0.064 0.002 0.039 0.196 0.763
250 1 1 0.5 0.063 0.001 0.013 0.130 0.856
50 1 0.9 0.5 0.117 0.032 0.137 0.332 0.499
100 1 0.9 0.5 0.070 0.047 0.061 0.206 0.686
250 1 0.9 0.5 0.052 0.653 0.079 0.117 0.151
50 1 0.8 0.5 0.126 0.077 0.104 0.274 0.545
100 1 0.8 0.5 0.055 0.361 0.104 0.184 0.351
250 1 0.8 0.5 0.054 0.930 0.066 0.004 0
50 1 1 1 0.050 0 0.001 0.034 0.965
100 1 1 1 0.056 0.001 0.004 0.066 0.929
250 1 1 1 0.051 0.001 0.009 0.092 0.898
50 1 0.9 1 0.039 0.002 0.006 0.052 0.940
100 1 0.9 1 0.042 0.039 0.042 0.157 0.762
250 1 0.9 1 0.042 0.770 0.038 0.089 0.103
50 1 0.8 1 0.034 0.014 0.015 0.071 0.900
100 1 0.8 1 0.036 0.408 0.080 0.179 0.333
250 1 0.8 1 0.047 0.989 0.011 0 0
50 1 1 10 0.054 0.001 0.001 0.020 0.976
100 1 1 10 0.054 0 0.004 0.060 0.935
250 1 1 10 0.051 0 0.009 0.093 0.898
50 1 0.9 10 0.038 0.003 0.005 0.038 0.950
100 1 0.9 10 0.046 0.047 0.046 0.166 0.74
250 1 0.9 10 0.050 0.855 0.019 0.055 0.071
50 1 0.8 10 0.032 0.013 0.013 0.071 0.896
100 1 0.8 10 0.044 0.486 0.070 0.152 0.291
250 1 0.8 10 0.048 1 0 0 0

The nominal size is set at the 5% level. Simulation results based on 5,000 replications.
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Table 21: Empirical size and power. One level shift, unknown break point (�i = 0:5) and one common
factor (N = 40)

T �i � �2F Ze
t̂NT

ADF d
F̂

�i Ze
t̂NT

ADF d
F̂

�i Ze
t̂NT

ADF d
F̂

50 1 1 0.5 0.039 0.045 0.9 1 0.030 0.8 1 0.044
100 1 1 0.5 0.047 0.052 0.9 1 0.038 0.8 1 0.044
250 1 1 0.5 0.049 0.062 0.9 1 0.043 0.8 1 0.051
50 1 0.9 0.5 0.050 0.111 0.9 1 0.118 0.8 1 0.206
100 1 0.9 0.5 0.041 0.252 0.9 1 0.479 0.8 1 0.608
250 1 0.9 0.5 0.041 0.843 0.9 1 0.998 0.8 1 0.999
50 1 0.8 0.5 0.048 0.277 0.9 1 0.058 0.8 1 0.097
100 1 0.8 0.5 0.046 0.710 0.9 1 0.215 0.8 1 0.283
250 1 0.8 0.5 0.054 0.979 0.9 1 0.960 0.8 1 0.937
50 1 1 1 0.055 0.064 0.9 1 0.021 0.8 1 0.035
100 1 1 1 0.056 0.057 0.9 1 0.024 0.8 1 0.034
250 1 1 1 0.052 0.053 0.9 1 0.056 0.8 1 0.055
50 1 0.9 1 0.040 0.132 0.9 1 0.154 0.8 1 0.195
100 1 0.9 1 0.053 0.279 0.9 1 0.307 0.8 1 0.450
250 1 0.9 1 0.045 0.898 0.9 1 0.987 0.8 1 0.990
50 1 0.8 1 0.035 0.271 0.9 1 0.054 0.8 1 0.082
100 1 0.8 1 0.051 0.745 0.9 1 0.141 0.8 1 0.194
250 1 0.8 1 0.030 0.994 0.9 1 0.942 0.8 1 0.936
50 1 1 10 0.069 0.060 0.9 1 0.016 0.8 1 0.022
100 1 1 10 0.053 0.047 0.9 1 0.006 0.8 1 0.023
250 1 1 10 0.054 0.057 0.9 1 0.051 0.8 1 0.061
50 1 0.9 10 0.046 0.134 0.9 1 0.076 0.8 1 0.091
100 1 0.9 10 0.056 0.278 0.9 1 0.217 0.8 1 0.302
250 1 0.9 10 0.051 0.936 0.9 1 0.981 0.8 1 0.995
50 1 0.8 10 0.043 0.266 0.9 1 0.032 0.8 1 0.049
100 1 0.8 10 0.054 0.750 0.9 1 0.096 0.8 1 0.122
250 1 0.8 10 0.056 0.999 0.9 1 0.917 0.8 1 0.936

The nominal size is set at the 5% level. Simulation results based on 5,000 replications.
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