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Abstract

This paper studies the aggregate distribution of declared opin-
ions and behavior when heterogeneous individuals make the trade-
off between being true to their private opinions and conforming
to a social norm. The model sheds light on how various sanction-
ing regimes induce conformity and by whom, and on phenom-
ena such as societal polarization and unimodal concentration. In
strict societies, individuals will tend to either fully conform to
the social norm or totally ignore it, while individuals in liberal
societies will tend to compromise between these two extremes.
Furthermore, the degree of strictness determines whether those
who nearly agree with the norm or those who strongly disagree
with it will conform. The degree of liberalism similarly deter-
mines which individuals will compromise the most. A number of
empirical predictions, and several methods of how to test them,
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1 Introduction

It is by now well established that social norms, and social pressure to
conform to these norms, influence individual decision making in a wide
spectrum of situations. In particular, imagine a controversial social or
political issue where there exists a social norm, that is, a consensual
opinion or norm of behavior. Suppose now that each individual in society
has some private opinion regarding this issue, and each needs to publicly
declare her stance. An individual whose private opinion differs from the
social norm will need to consider the trade-offbetween the social pressure
of violating the norm and the psychological cost of stating an opinion
different to her private view. In many cases, such as at what age to bear
children, howmuch alcohol to drink and to what extent to follow religious
customs, the individual can choose the extent of conformity to the norm
from a continuum. We analyze this basic trade-off in a heterogeneous
agent framework and present the aggregate outcomes across societies.
In particular, we examine the extent of conformity that one person

exhibits compared to that exhibited by another person with a different
private opinion. This analysis provides predictions for (i) which indi-
viduals in society will conform more, (ii) which individuals in society
will make larger individual concessions, (iii) the distribution of stated
opinions in society and (iv) which norms will be sustainable. We show
that although the problem faced by each individual is fairly simple, the
outcomes at the aggregate level are diverse, and we analyze how these
outcomes depend on the underlying characteristics of society.
In practice, societies differ not only in the general weight of social

pressure, but also in its curvature. That is, they differ in the way they
sanction small deviations from the norm compared to large ones. We
show that the curvature of social pressure has more intricate and possibly
more important effects than the general weight of pressure. Moreover,
in order to connect the model’s results to outcomes across societies, and
drawing on observations of sanctioning in different societies and cultures
(to be presented in the next section), we apply labels to the curvature
of social pressure: strict societies are those emphasizing full adherence
to the social norm, and hence they utilize concave social pressure; liberal
societies are those allowing freedom of expression as long as it is not
too extreme, and hence they utilize convex social pressure. Strictly
speaking, these labels are not necessary for the formal analysis, but they
prove useful, as they highlight the consistency between the results of the
model and observations of actual societies.
We find that in liberal societies, the convexity of social pressure fa-

cilitates a compromise mentality, where most individuals are compelled
to adjust at least a little bit to the norm. Furthermore, the degree of
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liberalism (i.e., the degree of convexity) plays an important role. Very
liberal societies will tend mainly to make those who privately detest the
norm adjust to it. This will create a society that looks polarized. Less
liberal societies will be more directed at getting moderates to conform
and hence will look cohesive, with a concentration of stances around the
norm.
Strictness, on the other hand, facilitates an all-or-nothing mentality,

since only full conformity counts. This may indeed lead to full confor-
mity, but may also backfire so that some individuals do not concede at
all. Moreover, the degree of strictness (i.e., the degree of concavity) is
important in predicting who follows the norm. In very strict societies,
the full conformers are those who nearly agree with the norm anyway,
while those who strongly reject the norm privately, express their dissent
publicly as well. However, in less strict societies, paradoxically those
who dislike the norm the most are the only ones upholding it, while
those who basically agree with the norm privately, criticize it mildly in
public. This creates a surprising result: an inversion of opinions.
We also find that, in some cases, opposition to the norm will be more

extreme in strict societies than in liberal ones. This result is surprising
as it emerges even when sanctions are harsher in strict societies. It is
driven by the all-or-nothing behavior of individuals in strict societies,
compared to the compromising behavior of individuals in liberal ones.
This result is formalized into a testable prediction and we suggest some
methods and situations of social interaction in which this and a few other
predictions can be tested.
Another outcome that clearly separates liberal and strict societies

relates to the possible location of the norm. Letting the norm be the
average declared opinion in society, we show that norms in liberal so-
cieties are bound to be representative also of the private sentiments in
society, as the norm coincides with the average private opinion. In con-
trast, strict societies may well maintain a biased social norm, centered
on a point that is far from the average private opinion. This implies
that strict societies allow for multiple equilibria, while liberal societies
do not. One interpretation of this result is that strictness is a tool for
maintaining biased norms.
The contribution of our paper lies in explaining different patterns

of norm conformity across societies. This requires modeling continuous
choice under various sanctioning regimes. Previous theoretical papers
with a similar individual trade-off usually model binary decisions (e.g.,
Bénabou & Tirole 2011; Brock & Durlauf 2001; Lindbeck et al. 2003;
Lopéz-Pintado &Watts 2008; Akerlof 1980; and Kuran 1995). Models of
continuous decisions usually assume quadratic utility functions (Kuran

3



and Sandholm 2008 and Manski and Mayshar 2003), thus limiting their
ability to analyze how the sanctioning regime affects conformity. An-
other type of model (see Bernheim 1994 and Bénabou and Tirole 2006)
assumes an exogenous norm in a signaling game. There individuals are
punished or rewarded for their private preferences, instead of their dec-
larations or actions as in our model. Finally, our paper is related to the
works of Eguia (2013) and Clark & Oswald (1998), who, although ana-
lyzing different issues than we do, do concentrate on how the curvature
of preferences affects individual behavior.1

The next section motivates our labels by considering observations of
sanctioning across societies. The model is outlined in section 3. Section
4 presents the main differences between liberal and strict societies and
Sections 5 and 6 analyze liberal and strict societies respectively in more
detail. Section 7 presents a number of testable model implications and
suggests some methods and data sources for carrying out these tests.
Section 8 concludes. Proofs are covered in the appendix.

2 Social pressure across societies

In this section we demonstrate that an important distinction between so-
cieties concerns the relative strength of sanctions they impose on small
versus large deviations from the norm. One example comes from ex-
periments using public goods games with punishment (Herrmann et al.
2008). In these games participants punish others who contribute a differ-
ent amount to a public good than they themselves do. The experimental
results suggest that deviations are punished convexly in places such as
Copenhagen, Bonn and Melbourne, while they are punished concavely
in places such as Riyadh and Muscat. Another detail to note in the
results is that for large deviations, heavier punishments were used in
Melbourne compared to those used in either Riyadh or Muscat, while
for small deviations the opposite applies. This pattern matches that of
the stylized societies 2 (representing Muscat and Riyadh) and 3 (repre-
senting Melbourne) in Figure 1.
A more anecdotal demonstration of these points emerges from a crude

comparison of the sanctioning systems in the Israeli Jewish Ultraortho-
dox community, or under the Taliban, with those of liberal West Euro-
pean institutions.2 An important difference between the Taliban and the
Ultraorthodox sanctioning systems is that the Taliban use substantially

1In a subsequent paper, Michaeli & Spiro (2014), we study the conditions for the
very existence of an endogenous social norm when all individuals put pressure on
each other.

2This is to some extent a comparison of informal and formal sanctioning, but the
purpose here is to highlight that sanctioning systems vary in curvature.
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Figure 1: Sanctioning across societies. A system of sanctioning may be
at the same time harsh and concave (society 1). Alternatively, it may be
light and concave (society 2). Or, it may be harsh and convex (society
3). Finally, like in society 4, it may be light and convex.

heavier sanctions for any comparable deviation from the norm. But one
characteristic they have in common is that they require strict adher-
ence to their code of conduct, sanctioning any small deviation harshly,
while large deviations are sanctioned only slightly more.3 Hence, they
respectively match stylized societies 1 and 2 in Figure 1.
What about the sanctioning structure of liberal West European in-

stitutions? Almost by definition, and as is manifested in their constitu-
tions, liberal democracies allow citizens a broad freedom of expression
and political parties a wide range of positions. But once a party or an
individual expresses views very far from the consensus, the sanction is
ramped up.4 This suggests that liberal democracies will tend to be con-
vex in how they deal with deviations constitutionally, like societies 3 and
4 in Figure 1.
As incomplete and stylized as these descriptions may be, they do

3There are numerous accounts of the Taliban using capital punishment for both
misdemeanor and larger offenses. In Israeli Ultraorthodox society, a woman may be
censured for wearing a dress that is too short, and a man for publicly supporting the
drafting of members of the Ultraorthodox community into the Israeli army.

4For example, a party that wants to abolish democracy may become illegal (like
Nazi parties are in certain countries). Likewise, an individual who openly expresses
extreme right-wing or extreme left-wing opinions, or supports Sharia Law, may be
subject to surveillance and in some cases even fined or arrested.
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highlight that a sanctioning system should be represented by both its
general harshness and its curvature. They also highlight that societies
often considered to be strict are the ones using concave sanctioning,
thus meticulously punishing minor deviations from the norm but not
distinguishing much between large and small wrongdoings. Similarly,
liberal societies are those using convex sanctioning, in doing so allowing
broad freedom of speech around the norm.

3 The model

An individual is represented by a type t ∈ [tl, th] ⊂ R, which is a point on
an axis of opinions. Let s be a point on that same axis, representing the
publicly declared stance of the individual (and thus a choice variable).
The psychological cost of a type t who publicly declares a stance s is
given by

D (s, t) = |s− t|α , α > 0.

D can be interpreted as the cognitive dissonance or inner discomfort felt
by taking a stance that does not reflect the bliss point t.5 α captures how
sensitive an individual is to small, relative to large, deviations from her
bliss point, thus representing the curvature of inner discomfort. When
α < 1, the inner discomfort is concave, representing a meticulous or
perfectionist individual attitude; when α > 1 inner discomfort is con-
vex, reflecting a flexibility with regard to small deviations from the bliss
point.6 An individual who takes s as a stance also feels social pressure

P (s, s̄) = K |s− s̄|β , β > 0.

Pressure arises when the stance deviates from s̄, which can be understood
as a social norm. Following the previous section, we use the labels liberal
for β > 1 and strict for β < 1. K represents the weight of social pressure
relative to the psychological cost. We will assume that the only difference
between individuals in society concerns their bliss points (t), while α, β
and K are the same for all members of society (but we will partly relax
this assumption in Section 7). For conciseness we ignore the special case
of α = β throughout the paper as it yields no additional insights.

5We use power functions for brevity and in order to facilitate the interpretation,
but nearly all upcoming results can be derived using general convex and concave
functional forms.

6Theoretically we see no particular reason why a convex or concave psychological
cost function would be more or less reasonable. While in previous theoretical research
a convex disutility is more common (e.g. Bernheim, 1994; Manski & Mayshar, 2003),
some recent experimental research suggests concave preferences may be present in
many cases too (e.g. Kendall et al., 2015; Gino et al. 2010; Gneezy et al., 2013).

6



The total loss (or disutility) of an individual is the sum of the inner
discomfort and the social pressure.

L (s, t) = D (s, t) + P (s, s̄) (1)

Seeking to minimize L (s, t), it is immediate that each individual will
declare either her private bliss point t or the social norm s̄ (where both
are corner solutions), or alternatively choose a stance strictly in between
them (an inner solution). That is,

∀t, s∗ (t) ∈
{

[s̄, t] , if s̄ ≤ t
[t, s̄] , if t < s̄

,

where s∗ (t) is the stance that minimizes the loss for type t. In some
cases it will be useful to compare the loss incurred by the individual in
the two corner solutions. This is a comparison of D (s̄, t) = |t− s̄|α and
P (t, s̄) = K |t− s̄|β, which boils down to comparing |t− s̄| and K

1
α−β .

Denoting ∆ ≡ K
1

α−β is then useful for the presentation of some of the
results.
To compare the extent of norm conformity of different individuals in

society, two different measures will be used.

Definition 1 The conformity of t is: − |s∗ (t)− s̄|.

This measure quantifies how close to the norm an individual’s stance
is. We will say that t conforms more than t′ if |s∗ (t)− s̄| ≤ |s∗ (t′)− s̄|.

Definition 2 The relative concession of t is: |t− s∗ (t)| / |t− s̄|.

This measure is meant to portray the step an individual takes towards
the norm when declaring a stance, compared to the step she would take if
she completely conformed to the norm.We say that t concedes relatively
more than t′ if |t− s∗ (t)| / |t− s̄| ≥ |t′ − s∗ (t′)| / |t′ − s̄|.
The social norm s̄ is exogenous from the point of view of an indi-

vidual, but in equilibrium it will be endogenously determined by the
average stated opinion.

s̄ = E [s∗ (t)]

We then say that society is in equilibrium if the distribution of stances
given a certain norm s̄ has this norm as its average stance. In order to
obtain the distribution of stances we also need to specify a distribution
of types, which we assume is uniform, t ∼ U [tl, th]. It should be noted,
however, that all the results in the paper, except for those describing
the distribution of stances or the norm location, are independent of the
underlying distribution of types.
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Taken as a whole, the above model provides a rich description of so-
cieties (or cultures) in terms of their basic characteristics and outcomes.
Each society has its own underlying characteristics consisting of the dis-
tribution of private opinions (t), the curvature of social pressure (β),
the curvature of the individual psychological cost (α) and the weight
of pressure (K). In each society, we can then observe the behavior of
individuals and aggregate outcomes in terms of: how conformity and
concession depend on each individual’s type; what the distribution of
public opinions is; and what norm the society sustains.

4 Main patterns in strict and liberal societies

The main differences in outcomes between liberal societies (β > 1) and
strict societies (β < 1) can be demonstrated using a baseline case of
α = 1.

Proposition 1 Suppose α = 1. Then:

1. Individual stances: If society is liberal, types close to the norm
speak their minds (s∗ (t) = t) while types further away have inner
solutions; if society is strict, types close to the norm fully conform
(s∗ (t) = s̄) while types further away speak their minds.

2. Concession: If society is liberal, relative concession is weakly in-
creasing in |t− s̄|; if society is strict, relative concession is weakly
decreasing in |t− s̄|.

3. Stance distribution: If society is liberal, the distribution of stances
is either uniform or bimodal; if society is strict, the distribution of
stances is unimodal.

4. Norm location: If society is liberal, s̄ = tl+th
2
; if society is strict,

any s̄ ∈
{
tl+th

2

}
∪ [th −∆, tl + ∆] can be sustained.

With regard to liberal societies, the first statement of the proposition
expresses that moderates, who disagree only slightly with the norm, will
speak their minds, while extremists, whose private views are further
away from the norm, will moderate their public statements. This follows
almost directly from the fact that pressure is convex, implying lenient
pressure on small norm deviations. The second statement reflects this
logic by saying that liberal societies achieve relatively large concessions
from extremists compared to moderates. Extremists will compromise
just as much as needed to reduce the most severe pressure and so will
tend to bunch at a certain distance from the norm. As this happens on

8



both sides of the norm, the distribution will be bimodal (statement 3)
and society will be polarized.7

Meanwhile, the meticulousness of strict societies discourages compro-
mise —individuals will either speak their minds or completely conform
(statement 1). Unlike liberal societies, strict societies will be particularly
effective in getting full conformity from those who nearly agree with the
norm anyway, while essentially not affecting the declarations of those
who strongly disagree with it. This implies relatively large concessions
by moderates (statement 2). The concentration of such people at the
norm creates a unimodal distribution of stances (statement 3). This
will be at the expense of the possible moderation of those who strongly
disagree with the norm, who will speak their minds openly. An inter-
pretation of this is that strict societies alienate extremists. To create
cohesion, the strict society will need to use heavy pressure (large K) to
convince extremists to fully align with the norm.
Following the fourth statement regarding norm location, the model

predicts that liberal societies are bound to have norms that are repre-
sentative of the actual private sentiments in society. The intuition for
this is that in liberal societies everyone chooses a stance on her side of
the norm and nobody fully conforms. Thus, a biased norm will imply
too many declared stances on one side of the norm, preventing it from
being the average stance. In contrast, in strict societies the norm may
well be biased with respect to private opinions, because strict societies
can induce the full conformity of an individual, and when this happens
the individual has no effect on the norm’s location (we elaborate on this
in Section 6).
One interesting difference between the two kinds of societies is that

the most extreme deviation from the norm will often be more extreme
in strict societies than in liberal ones. This result is surprising as it
can occur even when pressure is higher in strict societies. To see this,
consider the following simple example. Compare two societies, one strict
and one liberal, such that in both societies tl = −1, th = 1 and s̄ = 0,
and both have the same K < 1. First note that the pressure on any
stance is at least as severe in the strict society as in the liberal one.
Second, it is easy to show that the most extreme types, th, and tl, are
speaking their minds (|s| = 1) in the strict society, while choosing a
compromise stance (|s| < 1) in the liberal one, provided that it is liberal
enough (β > 1/K).8 In this case, the largest norm deviation will be

7If the distribution of types is too narrow to have extremists who compromise,
the distribution of stances will be uniform.

8To see why s∗ (th) = th in the strict society, use part (1) of the proposition while
noting that L (th, th) = K < 1 = L (0, th), which means that th prefers speaking her
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observed in the strict society, even though it is harsher toward norm
breakers.
The statements of Proposition 1 need to be slightly refined when

considering α 6= 1. In the next two sections we show that it is the degree
of liberalism or strictness relative to the curvature of inner discomfort
that drives most of the results —that is, whether β or α is greater —and
that the relationship between the two provides additional insights.

5 Liberal societies

In this section we examine the case where β ≥ 1 while α may take any
positive value. In this case there is an inner solution for every type t if
α > 1 and a possibility for both inner and corner solutions if α ≤ 1. The
properties of stances and conformity in liberal societies are summarized
in the following proposition.

Proposition 2 If β ≥ 1 then:

1. If β < α, then |s∗ (t)− s̄| is increasing and convex in |t− s̄| , i.e.,
conformity is decreasing in |t− s̄|. Moreover, the relative conces-
sion is decreasing in |t− s̄| and the distribution of s∗ is unimodal.

2. If 1 < α < β, then |s∗ (t)− s̄| is increasing and concave in |t− s̄| ,
i.e., conformity is decreasing in |t− s̄|. Moreover, the relative con-
cession is increasing in |t− s̄| and the distribution of s∗ is bimodal.

3. If α ≤ 1 < β and th − tl > 2∆, then |s∗ (t)− s̄| is first increasing
and then decreasing in |t− s̄|. The relative concession is increasing
in |t− s̄| and the distribution of s∗ is bimodal.

The results are represented graphically in Figure 2 where the left pan-
els present the function s∗ (t) and the right panels present the resulting
distribution of stances given a uniform distribution of types.
To understand the intuition for the first part of the proposition (α >

β), consider a very large α. When α is large, individuals feel very little
dissonance if they deviate slightly from their bliss points. As illustrated
in the left panel of Figure 2A, a moderate person will thus choose a stance
very close to s̄. However, an extreme type will not be willing to move
as close to s̄, as her dissonance will then be very large. Thus, in relative
terms, extremists tend to concede less than moderates. The resulting

mind. To see why s∗ (th) < th in the liberal society, note that the derivative of the
loss function for type th at s = th = 1 is given by L′(th, th) = −1+βK (th − s̄)β−1

=
βK − 1 > 0, which means that this type has a profitable deviation from s = th = 1
to s < 1.
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Figure 2: The left panels depict s∗ (t) (full line) and s = t (dashed
line). The right panels depict the distribution of stances. In all graphs
t ∼ U (0, 1) and s̄ = .5. Panel A: K = 0.5, α = 2, β = 1.2. Panel B:
K = 2, α = 1.1, β = 2. Panel C: K = 2, α = 0.85, β = 1.5.

11



distribution of stances (right panel) will therefore be a concentration of
statements around the norm, created by the moderate types.
To understand the intuition for the second and third parts of the

proposition (β > α), consider now a very large β. A large β implies
that individuals feel very little pressure when they deviate a little from
s̄, but the pressure rises steeply when the deviation from s̄ is large.
Consequently, moderates will move only slightly from their bliss points,
if at all (left panels of Figures 2B and 2C). Meanwhile, extreme types will
take large steps from their bliss points, due to the high social pressure
on large deviations from the norm. The result will be a concentration
of extreme types at a certain distance from the norm on each side of
it and society will look polarized, as is illustrated in the right panels of
Figures 2B and 2C. The baseline case of α = 1 is a special case of this
(see Proposition 1).
There is, however, an important twist to liberal societies when inner

discomfort is concave (α < 1 < β). When individuals are sensitive to
small deviations from their bliss points, they will tend to either speak
their minds or, once they deviate from their bliss points, state almost
anything that lowers social pressure. Since in liberal societies pressure
is convex, moderate individuals will be under low pressure and hence
not make any concessions. Meanwhile, extremists would be under high
pressure if they spoke their minds. Therefore, they will be forced to
concede, and as α < 1, these concessions will be quite extensive, implying
that extremists will conform even more than some moderates —a pattern
that may be called inversion of opinions.9 As a result, conformity will
be non-monotonic in the distance from the norm, as illustrated in the
left panel of Figure 2C.10

In the baseline case of Section 4 we saw that liberal societies are
mainly effective in inducing conformity among extremists and that this
leads to a bimodal distribution of stances. The analysis in this section
makes an important refinement to these results. If the degree of liberal-
ism is high (i.e., β > α), society is indeed mainly directed at inducing
conformity by extremists, which leads to bimodality. On the other hand,
a low degree of liberalism (i.e., β < α) induces conformity by moderates,
leading to a unimodal concentration.

9In fact, we get inversion at two levels. Firstly, between extremists and moderates,
the extremists conform more than some moderates. Secondly, within the group of
extremists, the most extreme conform more than the less extreme.
10The third part of the proposition considers only the case where the distribution

of types is suffi ciently broad, th − tl > 2∆. If the distribution of types is too narrow
to have extremists who compromise, the distribution of stances will be uniform.
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6 Strict societies

In this section we examine the case where β ≤ 1 while α can take any
positive value. In this case, if α ≤ 1, any inner solution to the indi-
vidual’s minimization problem is a maximum, implying that individuals
will either fully conform or speak their minds. This is intuitive, as an
individual with concave discomfort in a strict society, who takes a stance
in-between t and s̄, would feel both great inner discomfort and heavy
pressure. When α > 1, there is a possibility for both inner and corner
solutions. The properties of stances and conformity in a strict society
are summarized in the following proposition.11

Proposition 3 If β ≤ 1 and th − tl > 2∆, then:

1. If β < α ≤ 1, then types with |t− s̄| < ∆ fully conform while
types with |t− s̄| > ∆ speak their minds. Conformity and relative
concession are weakly decreasing in |t− s̄|. The distribution of s∗
has a peak at s̄ and uniform tails at the extreme ends of the range.

2. If α < β, then types with |t− s̄| < ∆ speak their minds while types
with |t− s̄| > ∆ fully conform. Conformity is first decreasing in
|t− s̄| and then sharply increases. Relative concession is weakly
increasing in |t− s̄|. The distribution of s∗ has a peak at s̄ and a
uniform section attached to it.

3. If β < 1 < α, then there exists a cutoff distance δ < ∆ such that
types closer than δ to the norm fully conform, while types further
than δ from the norm have inner solutions. Conformity and rel-
ative concession are weakly decreasing in |t− s̄|. The distribution
of s∗ is discontinuously trimodal with a central peak at s̄ and a
detached part on each side.

In part 1 of the proposition, society displays a relatively high degree
of strictness (β < α ≤ 1). It is illustrated in Figure 3A. Here moderates
choose to fully conform, while extremists simply cope with the full social
pressure and express their bliss points. This happens because in strict
societies one has to move all the way to the norm to alleviate pressure
to a substantial degree. Thus, when β < α, extreme types find it rel-
atively more painful to move to the norm compared to speaking their
minds. Overall, this means that very strict societies alienate people with

11The proposition considers only the case where the distribution of types is suffi -
ciently broad. If the distribution of types is narrow, then, when β < α, this would
lead to full conformity by all individuals and when α < β, it will lead to all individuals
speaking their minds.
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Figure 3: The left panels depict s∗ (t) (full line) and s = t (dashed
line). The right panels depict the distribution of stances. In all graphs
t ∼ U (0, 1) and s̄ = .5. Panel A: K = 0.5, α = 0.85, β = 0.5. Panel B:
K = 2, α = 0.5, β = 0.85. Panel C: K = 0.5, α = 1.25, β = 0.8.
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opinions far from the norm, but compel those with opinions close to the
norm to fully conform.
When society is strict to a lesser degree, so that β > α (part 2 of

Proposition 3), extreme types fully conform to the norm while moderates
speak their minds. The intuition is that moderates are unwilling to
conform as the psychological cost to them, of deviating from their bliss
point, is very concave. For extremists, however, not conforming will
imply a great deal of social pressure. All in all, this kind of society will
be good at attracting extremists to the norm while “allowing”freedom of
expression of those (suffi ciently) close to it.12 The observable outcome
of this case is a distribution that looks like a standard concentration
of individuals at and around the norm (right panel of Figure 3B). But
there is an important twist. Here we get the pattern of inversion of
opinions, where those who despise the norm the most are the (only)
ones conforming.
By comparing part 1 and part 2 of the proposition, we see that

both kinds of strict society with concave discomfort have one thing in
common —they foster an all-or-nothing mentality, making each person
either conform fully or not at all. But the degree of strictness leads to
an important refinement as it yields further predictions that are com-
pletely opposite depending on whether β > α or β < α. Firstly, less
strict societies (β > α) are predicted to induce extremists to conform,
while stricter societies (β < α) are predicted to induce moderates to
conform. Secondly, less strict societies are predicted to have a unimodal
concentration around the norm (right panel of Figure 3B), while stricter
societies are predicted to have a peak at the norm with detachment at
the extremes (right panel of Figure 3A).
In the third part of the proposition, when α > 1, only large deviations

from the bliss point create inner discomfort. We then get a combina-
tion of corner and inner solutions, where individuals with opinions far
enough from the norm choose an inner solution, while moderates com-
pletely conform to the norm. The right panel of Figure 3C illustrates
the resulting distribution of stances. The distribution has a peak at s̄
and a detached part towards each of the extreme ends. The intuition
for this is that, as society is strict, small deviations from the norm draw
relatively heavy pressure. When this is the case and individuals perceive
small deviations from their bliss points as almost painless, moderates do
best by completely conforming to the social norm. In comparison, be-
cause of the convexity of D, extremists would feel too much discomfort

12In fact, for any finite K, no matter how large, there will always be a group of
types close to the norm who speak their minds. Hence, full conformity by all cannot
be attained here.
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if they were to fully conform. However, they do not mind making small
concessions, and hence choose a compromise solution. Just like the case
in which individuals have concave discomfort and society is very strict
(β < α < 1), here too there is alienation, although extremists do make
some concessions. The general lesson from these two cases is that ex-
treme strictness alienates those who strongly disagree with the norm.
One interpretation is that these individuals would prefer to live out-
side the community, as in the Jewish Ultraorthodox community, which
practices excommunication.
We turn now to analyze which norms a strict society can sustain. In

Section 4 (Proposition 1, statement 4) we stated that liberal societies
can sustain only a central norm, while strict societies can also sustain a
norm that is biased with respect to private opinions. That is, the norm
in strict societies may be unrepresentative of the underlying preferences
in society. The following proposition outlines the conditions under which
this might happen.

Proposition 4 If β ≤ 1, there exists an equilibrium where s̄ = tl+th
2
.

Furthermore:

1. If β < α, there exist equilibria with s̄ 6= tl+th
2
if and only if th−tl <

2δ, where 0 < δ ≤ ∆ .

2. If α < β, there exist equilibria with s̄ 6= tl+th
2
if and only if th−tl >

2∆.

Part 1 of the proposition highlights that when α is larger than β, a
biased norm requires a narrow range of types. As we previously saw in
Proposition 3, when β < α moderates fully conform. The requirement
for a narrow range of types in part 1 of Proposition 4 is there to ensure
that society consists only of such moderates, i.e., that all types fully
conform. Otherwise a biased norm would lead to a greater mass of
opposition at one of the extreme ends than the other, implying the norm
is not the average stance. The need for full conformity implies that, in
order to uphold a biased norm, very strict societies require cohesion of
statements. This can occur either if private preferences are themselves
cohesive (i.e., there is a narrow range of bliss points) or if severe social
pressure is employed, which induces artificial cohesion of statements.
The second part of Proposition 4 deals with the case in which moder-

ates speak their minds while extremists fully conform (see Figure 3B). By
fully conforming, extremists give up their say in determining the norm’s
location, thus enabling it to be unfavorable to them. This implies that,
unlike the case of β < α, here it is not necessary to have cohesive private
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opinions in order to sustain a biased norm. In fact, a broader range of
types enables a broader range of norms. This is so because the norm
has to balance only the non-conforming statements expressed by those
close to it — individuals within distance ∆ from the norm. A broader
range of types —i.e., less cohesive private opinions —enables the norm to
be located further away from the center of the type distribution without
unbalancing these non-conforming statements.

7 Testable implications and further results

This section highlights some of the model predictions and presents sev-
eral further results that can be empirically tested. Each subsection con-
tains an empirical prediction, the intuition behind it and a description of
methods and sources of data that can be used for testing it. In subsection
7.1 we also present an illustrative test of the prediction in question. The
predictions presented in subsections 7.1 to 7.3 are independent of the
distribution of types and hence do not require knowing it. They are also
independent of α and can therefore be tested even when α is unknown
or heterogeneous in society. Section 7.4 presents a prediction that is
dependent on the type distribution and on α and provides applications
where it may be tested.

7.1 The effect of β on full conformity and maximum
norm deviation

Throughout the paper, we have highlighted that strict societies tend to
facilitate the choice of corner solutions by the individual, while liberal
societies tend to facilitate inner solutions. The following proposition can
be used to empirically test this claim. For that purpose, we denote by
sh the stance that constitutes the maximal feasible deviation from the
norm (to the right).

Proposition 5 Suppose sh − s̄ = 1. Then the proportion of individuals
choosing s ∈ {s̄, sh} is weakly decreasing in β.

By normalizing sh−s̄ to 1 we are essentially fixing the pressure on the
maximal deviation to K. Hence, the proposition considers the pure ef-
fect of a change in the curvature of pressure (β) on the statements made
in equilibrium. It essentially says that, ceteris paribus, a stricter society
will show larger concentrations of stances at the edges of the distribution
(at s̄ and at sh). The intuition for this is straightforward. When decreas-
ing β, the social pressure at s̄ and sh is unchanged, while it increases at
all intermediate stances. This means that full conformity and maximal
deviation become relatively more attractive, thus increasing the share
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of individuals taking such stances. The result is independent of the t-
distribution, α and K. Naturally, societies may differ with respect to
these parameters. However, as long as these parameters are either un-
correlated with β or can be controlled for in a regression, the proposition
gives a testable prediction.
As an example, consider religious practice in relation to a religious

norm. The sixth wave of the World Value Survey (WVS) measures
public support for statements such as: “the only acceptable religion is
my religion” (V154) and “people who belong to different religions are
probably just as moral as those who belong to mine” (V156).13 The
support for these statements can be thought of as measuring β. For
instance, agreement with “the only acceptable religion is my religion”
suggests an intolerance towards small deviations from one’s own religion
or extent of religiosity — a small β. According to Proposition 5, the
smaller β is in a society, the larger should be the total share of individuals
either fully adhering to the norm or maximally disobeying it. Thus,
one can collect data on religious norms and religious practices across
countries and test the prediction using the proxy for β obtained from
the WVS.
As a rough illustration of how the test can be performed, consider

the answers to the WVS question (V146) “How often do you pray?”. In
Muslim societies, the norm can be plausibly assumed to be five times a
day, as this is the commandment stated in the Koran. In the WVS, this
would be reported as the maximal frequency of praying (“several times a
day”). The largest possible deviation from the norm is not to pray at all,
which corresponds to answering “never, practically never”in the survey.
Thus, testing our prediction using this question is straightforward. If
the prediction is correct, then β should be negatively correlated with the
share of individuals reporting either of these two extremes. Likewise, β
should be positively correlated with the share of individuals reporting
intermediate frequencies of praying.
The WVS includes 16 countries in which the major religion is Islam

and for which the necessary data is available (see the list and further
details in the appendix). We ran a simple regression with no controls
to examine the fraction of people who report either the maximum or
the minimum frequency of prayers as a function of our proposed mea-
sure of β.14 The left panel of Figure 4 displays the data and regression

13The WVS has been used extensively in the economics literature to measure cul-
tural traits, values and norms. See Knack and Keefer (1997) for an early application.
Like in the previous literature, we treat answers in the WVS as being truthful.
14More precisely, our measure of β is the share of people who, with respect to the

statement “The only acceptable religion is mine”, answer “strongly disagree”, minus
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graph. As predicted, the slope of the regression line is negative (it is
also statistically significant). This result is further corroborated by the
positive (and significant) correlations between our proxy for β and each
intermediate extent of prayer. One such example is depicted in the right
panel of Figure 4. It shows that the share of individuals praying “once
a day” to “several times a week” is positively correlated with the β
proxy.15 The results suggest that stricter societies are not necessarily
making people behave more religiously in general, but are specifically
effective in fostering corner solutions.16

As a simple robustness check, we used the answers to two additional
WVS questions as controls. We chose these specific controls in order to
address concerns that our results might simply be driven by strict soci-
eties being more religious and harsher toward religious deviations. To
measure the degree of religiosity, we used the share of individuals who
declared they were religious (V147). This can be thought of as a proxy
for the location of the type distribution in religious space. The extent of
agreement with the statement “An essential characteristic of democracy
is: Religious authorities ultimately interpret the laws” (V132) can be
thought of as a proxy forK.17 All of the previous results were replicated.
The regression tables are reported in the appendix. Given that the tests
are based on cross country data using a small number of countries, these
results should of course be interpreted with caution. Furthermore, the
results merely show correlations and do not establish causality. Prefer-
ably, a more extensive test would use the proxy for β from the WVS in
order to test the prediction in a natural or a field experiment. Alterna-
tively, it would be useful to control for religiosity and other factors on

the share answering “strongly agree”.
15The WVS question on frequency of praying contains 10 possible answers, two of

which are “no answer”and “don’t know”. As for the other eight possible answers,
we took the intermediate six, ranging from “once a day” to “less often than once
a year”, and divided them into three pairs of adjacent answers (corresponding to
answer codes 2-3, 4-5, 6-7). For each such pair we found a positive and significant
slope for the fraction of people reporting an answer within the pair as a function of
our measure of β. Figure 4 (right) presents the regression graph for the first pair.
The regression tables for all pairs can be found in the appendix.
16The correlation between our measure of β and the share of people who report

the maximum frequency of praying (“several times a day”) is significantly negative,
while the correlation between our measure of β and the share of people who report
the minimum frequency of praying (“never, practically never”) is insignificant and
very close to zero. The former is thus in line with the model, while the latter neither
corroborates nor refutes it. The latter does, however, further corroborate that strict-
ness, as we measure it, does not simply imply more praying in general, as otherwise
the share of those never praying should have been lower in stricter societies.
17The scale goes from 1 (“Not an essential characteristic of democracy”) to 10

(“An essential characteristic of democracy”). We use the mean.
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Figure 4: Data and estimated linear correlation between the proxy for
β from answers to WVS V154 (share of people answering “strongly dis-
agree”minus share answering “strongly agree”) and reported extent of
praying (WVS V146). The left panel displays the share of people pray-
ing “several times a day”or “never, practically never”. The right panel
displays the share of people praying “once a day”or “several times per
week”.

an individual level. The purpose here has mainly been to illustrate how
the model could be tested. However, at least as a first pass, we do find
the results to be a sign of the potency of the model to generate valid
predictions.

7.2 The effect of K on full conformity
An implication of the model that follows directly from Propositions 2
and 3 and their proofs is the following.

Proposition 6 An increase in K (weakly) increases the number of in-
dividuals stating s̄ if and only if β ≤ 1.

The proposition predicts that increasing the weight of pressure should
produce a higher number of full conformers only in strict societies. In
liberal societies, such an increase may shift people in the direction of
the norm, but will not induce full conformity. Here again, the tendency
of strict societies to facilitate the choice of corner solutions and the
tendency of liberal societies to facilitate the choice of inner solutions
jointly determine the result.
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To see how this prediction can be tested, consider the dictator game.
Krupka and Weber (2013) measured the social appropriateness of divi-
sions in the dictator game and found not only that an equal split is the
most socially appropriate division (thus constituting a norm), but also
that the social pressure on deviations from an equal split is concave.
In light of Proposition 6, this suggests that, following an increase in the
prominence of social pressure in the dictator game, we should observe an
increase in the number of individuals choosing an equal split. In order to
test this prediction, one can manipulate the effect of K in the dictator
game by conducting the same experiment, once under anonymity and
once under full transparency, and then observe how divisions change
between the two settings. Alternatively, one can vary the perceived
probability that subjects are observed by others.
An alternative application would be to test the prediction on sensitive

issues such as sexual preference or political opinion. To do this, the first
step would be to elicit the perceived social appropriateness (i.e., the norm
and the curvature of social pressure) of certain preferences and opinions
using the technique of Krupka and Weber (2013).18 The next step would
be to ask (a new set of) respondents to state their own preferences (s)
while varying K across treatments. In order to vary K, one can use
different degrees of anonymity in the survey. One simple way to do this
would be to use the randomized response technique. Here, respondents
would roll a die that decides whether they should answer truthfully or
answer randomly with the help of a new roll of the die.19 By varying
the probability of having to give a truthful answer, the survey maker
can vary K: a higher probability of having to answer truthfully implies
a higher K. The proposition then predicts that, as we increase K, we
should see a stronger effect of clustering at s̄ in groups and issues for
which the initial step showed that β ≤ 1, compared to groups and issues
for which β > 1.

18The problem of identifying norms and pressure in surveys has been that responses
may be confounded by what the responders personally think is right and wrong. To
get a more direct measurement of collectively perceived appropriateness, Krupka and
Weber (2013) ask individuals anonymously for the social appropriateness of different
behaviors and reward them for matching the responses of others.
19The randomized response technique (Warner, 1965) was devised in order to elicit

private information or attitudes on sensitive issues. In the original usage of the
technique, subjects privately flip a coin before answering a binary question to which
a positive answer is regarded sensitive, and are instructed to answer “yes”if the coin
comes up tails and truthfully if it comes up heads. This method does not enable
the experimenter to get data on the individual level, but aggregate distributions can
be easily elicited. It is straightforward to extend this technique in order to enable
non-binary responses by, for instance, using a die instead of a coin as we suggest
here.
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7.3 The effect of β on small vs. large norm devia-
tions

The two previous subsections dealt with the effect of pressure on the
tendency to choose full conformity and maximum deviation from the
norm. This subsection deals with the effect of pressure on relatively
small vs. relatively large deviations from the norm. As will be shown,
these effects can be important from the point of view of a legislator.

Proposition 7 Let Slow denote the set of all observed stances in ]s̄, s̄+1]
and let Shigh denote the set of all observed stances above s̄ + 1. Then,
holding s̄ constant, |Slow| − |Shigh| weakly increases in β.

The proposition examines the distribution of stances to the right of
the norm and compares the proportion of stances “close” to it (s ∈
Slow) to the proportion “far” from it (s ∈ Shigh). An increase in β
implies that the pressure decreases in Slow while it increases in Shigh,
leading individuals to have a higher tendency to choose stances in Slow
and a lower tendency to choose stances in Shigh (so that |Slow| − |Shigh|
increases). The cutoff between the two regions is at distance 1 from the
norm, so that s = s̄ + 1 is a “flexpoint”, around which the pressure
function rotates as β increases.20

This result has important implications for legal sanctions. Enforcing
laws under a given budget constraint often implies a trade-off between
catching small and large offenders. For example, if the police try to
stop every driver they see exceeding the speed limit even slightly, this
will tend to lower the probability of catching the very fast drivers. In
practical terms, such a policy resembles a lowering of β. The testable
prediction of the proposition is that such a change in enforcement will
lead to a decrease in small deviations from the speed limit but an increase
in large deviations.

7.4 Relative concession across individuals
In Definition 2 we introduced relative concession as a measure for the
step an individual takes towards the norm when declaring a stance, com-
pared to the step she would take if she completely conformed. Part 2
of Proposition 1 then states that, when α = 1, relative concession in-
creases in |t− s̄| when pressure is convex and decreases in |t− s̄| when
20Note that unlike Proposition 5, where we set sh−s̄ = 1 in order to fix the maximal

pressure, Proposition 7 has interesting implications when sh− s̄ > 1, so that changing
β affects pressure on small and large deviations differently. The flexpoint itself can
be generalized to any location. This requires a small manipulation of the pressure
function to P = K (A (s− s̄))β , with s = s̄+ 1/A being the flexpoint.
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pressure is concave. As the case of α = 1 may reasonably apply to
settings in which the cost of deviation is monetary, this result yields a
testable prediction in the realm of tax evasion.
The true income of all individuals is often unobservable. But for

those who are audited, the authorities usually conduct a thorough in-
vestigation of the actual tax due. In terms of our model, the tax due
can be thought of as the value of t − s̄ (where s̄ can be set to zero,
reflecting that all taxes should be paid). The tax an individual evades
is the equivalent of s − s̄ in the model. The relative concession thus
captures the share of tax due that was actually paid by an individual
( t−s
t−s̄). Hence, the prediction is that a convex sanctioning of tax evasion
will lead heavy debtors to pay a higher share of their taxes than small
debtors. Concave sanctioning, on the other hand, will lead small debtors
to pay most of their taxes, while achieving low compliance among heavy
debtors.21

The next corollary is a generalization of the result about relative
concession to any value of α.

Corollary 8 The relative concession is increasing in |t− s̄| if and only
if β > α.

This generalization follows directly from Propositions 2 and 3.22 If
one has access to both the private (t) and the public (s) opinions of indi-
viduals in a certain setting, this corollary can be tested as follows. First,
standard methods of structural estimation enable one to jointly estimate
α, β and K using our theoretical mapping from t to s∗(t;α, β,K). This
allows inferring which of α and β is the greatest. Then, Corollary 8 can
be tested by examining changes in the relative concession of an individ-
ual as a function of changes in s̄ (i.e., changes in the peer composition
around her).
To see how a test can be implemented, consider for instance students’

achievements in school, where the class composition can be expected to

21Note that, in practical enforcement of tax rules, there is a difference between
the auditing rule (which is based on the observed taxes paid) and the fine imposed
(which is applied following an audit and is based on how much a person evaded).
The expected fine for evading a certain amount of tax is a non-trivial combination
of the two parts. Most standard theoretical models abstract from this distinction
(see Slemrod, 2001, or Slemrod and Yithaki, 2002, for an overview) and assume
individuals have a perception of the expected fine for a given level of tax evasion.
One may estimate this perception through a survey.
22It can be generalized even further. With general functional forms, the con-

dition for decreasing relative concession is γP (x) ≡ −xP
′′(x)

P ′(x) ||s∗(t)−s̄| > γD (x) ≡
−xD

′′(x)
D′(x) ||t−s∗(t)|. Here γF (x) is the Arrow-Pratt measure of relative risk aversion of

the function F (x).
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determine whether a high or a low grade is considered normative. In
the recent literature on peer effects in schools (see, e.g., Leuven et al,
2010; Leuven & Rønning, forthcoming), pre-treatment test scores are
used as a proxy for ability (i.e., t), while post-treatment test scores are
used as a proxy for behavior (i.e., s). The empirically observed and the
theoretically predicted mapping from abilities to scores can then be used
to structurally estimate α, β and K, where the average post-treatment
test score in a class forms the norm. Next, in a field experiment in
the spirit of Booij et al. (2015), students can be repeatedly assigned to
tutorial groups of different compositions (i.e., having different norms).
One can then measure how close a student’s score in a certain class is
to the average score in that same class. The test of the model would
consist in seeing whether this measure is changing, across classes and
individuals, in a way that is consistent with our predictions. Suppose,
for example, that according to the structural estimation β > α, and
consider the distance between the pre-treatment score (t) of a low ability
student and the average score in her group (s̄). The corollary predicts
that this student should close a larger share of that distance when placed
with high ability peers compared to when placed with medium ability
peers.23

8 Conclusion

This paper has presented a simple theory of how social pressure affects
the distribution of stated opinions and visible actions across societies.
The main message is that the curvature of social pressure, and how it
relates to the curvature of individuals’inner discomfort when deviating
from their bliss points, is important when considering individual confor-
mity across societies. Drawing on observations of sanctioning in different
societies and cultures, both experimental and informal, we applied labels
to the curvature of social pressure in order to connect the results of the
model to outcomes across societies: strict societies are those emphasiz-
ing complete adherence to their code of conduct, hence utilizing concave
social pressure; liberal societies are those allowing freedom of expression
as long as it is not too extreme, hence utilizing convex social pressure.
In liberal societies, the convexity of the social pressure naturally in-

23There are other relevant settings in which t and s can be observed and a similar
approach may be used. For instance, in a study of obesity, Carrell et al. (2011)
distinguish between pre-treatment fitness (t) and post-treatment fitness (s), after
individuals have been subjected to peer effects. Similarly, in law and economics it is
common to use exogenous ideological scores as a proxy for judges’private political
preferences (see, for instance, Epstein et al. 2007), which can then be compared to
their rulings in court (s) when they are under pressure to make a unanimous decision
(see Epstein et al. 2011 for evidence on collegial pressure in courts).

24



duces individuals to compromise between fully conforming and stating
their private opinions in public. However, depending on the degree of
liberalism —the convexity —the distribution of declared stances will be
either a bimodal polarization or a unimodal concentration. In strict
societies, the concavity of the social pressure discourages compromise.
That is, it will tend to induce individuals to either completely conform
or completely speak their minds. Depending on the degree of strictness,
the conformists in society will be those whose private opinions are either
quite close to the norm anyway or, rather surprisingly, quite far from it.
The latter case displays inversion of opinions at the aggregate level of
society, as those who dislike the norm the most adhere to it more than
others.
Another prediction of the model is that liberal societies are bound to

have social norms that are representative of the average private opinion
in society —biased norms cannot be sustained in equilibrium. This may
be linked to the informal observation that a liberal atmosphere often
correlates with democracy. The model further predicts an association
between strict societies and biased norms —only in strict societies is it
possible to sustain a biased norm.
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A Appendix —Proofs and derivations

A.1 Some useful results
A.1.1 Conformity and relative concession

Minimizing (1) and by way of the implicit function theorem, we get the
following derivatives of s∗(t):

ds∗

dt
=

D′′ (t− s∗)
P ′′ (s∗) +D′′ (t− s∗) (2)

d2s∗

dt2
=

[
D′′′ (t− s∗) (P ′′ (s∗))2 − P ′′′ (s∗) (D′′ (t− s∗))2]

(P ′′ (s∗) +D′′ (t− s∗))3 (3)

Lemma 9 For t ≥ s̄ :

1. Conformity is locally weakly decreasing in t if and only if ds
∗

dt
≥ 0.

2. In corner solutions, relative concession is locally constant. In inner
solutions, relative concession is locally weakly increasing in t if and
only if (s∗ − s̄)P ′′ (s∗ − s̄) ≥ (t− s∗)D′′ (t− s∗).

Proof. 1) trivially follows from Definition 1. 2) In corner solutions
s∗ (t) ∈ {s̄, t} which implies that, locally, relative concession is either
equal to 1 or equal to 0. For inner solutions: By differentiating the ex-
pression (in Definition 2) for relative concession w.r.t. t, performing a
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few algebraic steps making use of equality of the first derivative in inner
solutions and equations 2 and 3, it can be verified that the derivative is
proportional to (s∗−s̄)P ′′(s∗−s̄)−(t−s∗)D′′(t−s∗)

P ′′(s∗−s̄)+D′′(t−s∗) . In min points the denomina-
tor is positive and the inequality then follows.

A.1.2 The possible locations of the norm in equilibrium

Lemma 10 Suppose s̄ is the average stance in society and t ∼ U (tl, th).
Then, for any positive α and β there is an equilibrium where s̄ = tl+th

2
.

Proof. Let d ≡ min {th − s̄, s̄− tl}. Since the solution for any type’s
optimization problem depends only on the distance from s̄, we know that
the distribution of the stances of all the types in the range [s̄− d, s̄+ d] is
symmetric around s̄. Thus s̄ is the average stance for this range of types.
If s̄ = tl+th

2
, then [s̄− d, s̄+ d] = [tl, th], and so s̄ is the average stance

for all types in society. It thus follows that s̄ = tl+th
2
can be sustained as

a social norm in equilibrium for any values positive of α and β.

Lemma 11 Suppose s̄ is the average stance in society and t ∼ U (tl, th).
Let d ≡ min {th − s̄, s̄− tl}. Then s̄ 6= tl+th

2
can be sustained in equilib-

rium only if s∗(t) = s̄ ∀t ∈ [tl, th] \ [s̄− d, s̄+ d].
Proof. Since the solution for any type’s optimization problem depends
only on the distance from s̄, we know that the distribution of the stances
of all the types in the range [s̄− d, s̄+ d] is symmetric around s̄. Thus
s̄ is the average stance for this range of types. If s̄ > tl+th

2
, then by

definition s̄ + d = th, and so ∀t ∈ [tl, th] \ [s̄− d, s̄+ d] = [tl, s̄− d] we
have s∗(t) ≤ s̄. For s̄ to be the average of all stances, it is then necessary
that s∗ (t) = s̄ ∀t < s̄− d.

A.1.3 Transformation from individually chosen stances to the
distribution of stances

We now analyze the density function of the chosen stances in society
(PDF ). We restrict ourselves to cases where the optimal stance of each
type is uniquely determined.24 We divide the range of types into n + 1
subranges

T0 = [tlow, t1] , T1 = [t1, t2] , ...Tn = [tn, thigh] ,

such that:

1. In each subrange, the function s∗ (t) either consists of only corner
solutions or consists of only inner solutions.

24Otherwise we have no way of determining the chosen stance of some types.
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2. In case of corner solutions we have either s∗ (t) = t ∀t ∈ Ti. or
s∗ (t) = s̄ ∀t ∈ Ti.

3. In case of inner solutions, s∗ (t) is continuous and strictly monotonic
in a subrange.

We now investigate separately the contribution of each such subrange
of types to the resultant PDF . The contribution of each such part is
called a partial PDF , to be denoted pPDFTi, where

PDF =
∑
i

pPDFTi .

Inner solutions Here we investigate the properties of the pPDFTi
(dropping the Ti index where possible) in subranges with inner solutions.
Denote by s∗min the lowest stance taken by a type in the subrange (strict
monotonicity ensures that this type is unique). Let Mi(s̃

∗) be the mass
of types in Ti with stances in the range (s∗min, s̃

∗] for some s̃∗:

Mi(s̃
∗)≡

s̃∗∫
s∗min

pPDFTids =



t(s̃∗)∫
ti

f (τ) dτ if s∗(t) is increasing in the subrange Ti

ti+1∫
t(s̃∗)

f (τ) dτ if s∗(t) is decreasing in the subrange Ti

where t (s̃∗) ≡{t s.t. s∗ (t) = s̃∗} and f(t) is the density function of t.

If the distribution of types is uniform, i.e. f(t) = 1/ (th − tl), we get:

Mi(s̃
∗) =

{ t(s̃∗)−ti
th−tl if s∗(t) is increasing in the subrange Ti

ti+1−t(s̃∗)
th−tl if s∗(t) is decreasing in the subrange Ti

(4)

pPDFTi (s̃∗) =
dMi(s̃

∗)

ds̃∗
=

1

th − tl

∣∣∣∣ dtds∗ |s̃∗
∣∣∣∣ (5)

Note that the last derivation is valid only if ds
∗

dt
|s̃∗ 6= 0 as otherwise dt

ds∗

is not defined. This is ensured under the strict monotonicity of s∗ (t).
We then have, by using the implicit function theorem twice:

d (pPDF (s̃∗))

ds∗
=

{ 1
th−tl

d2t
ds∗2 |s̃∗ if

dt
ds∗ |s̃∗ > 0

− 1
th−tl

d2t
ds∗2 |s̃∗if

dt
ds∗ |s̃∗ < 0

. (6)
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In inner solutions, the following result then applies.25

Lemma 12 In inner solutions, the pPDF is locally strictly increasing
at s∗ if d

2s∗

dt2
is negative, and strictly decreasing at s∗ if d

2s∗

dt2
is positive.

Proof. From equation 6, it follows that the pPDF is increasing if dt
ds∗

and d2t
ds∗2 have the same sign and decreasing if

dt
ds∗ and

d2t
ds∗2 have opposite

signs. We then use the fact that d2s∗

dt2
< 0 if dt

ds∗ and
d2t
ds∗2 have the same

sign, and d2s∗

dt2
> 0 if dt

ds∗ and
d2t
ds∗2 have opposite signs.

Corner solutions. There are two candidate corner solutions. The
first is s∗ (t) = t. In a subrange of these corner solutions, the pPDF is
simply a uniform distribution with the trivial properties

pPDF (s̃∗) =
1

th − tl
dt

ds∗
|s̃∗ =

{ 1
th−tl if s̃

∗ (t) = t

0 otherwise
d (pPDF )

ds
= 0.

The other candidate corner solution is s∗ (t) = s̄. The solution of this
equation is independent of t, so in a subrange of these corner solutions,
the pPDF is a degenerate single peak with a mass equalling the mass
of types within that subrange.

pPDFTi (s̃∗) =

{ ti+1−ti
th−tl if s

∗ = s̄

0 otherwise

A.2 Proof of Proposition 1
For strict societies, the proofs of the first three statements are contained
in the proof to part (1) of Proposition 3. As for the fourth statement,
when s̄ ∈ [th −∆, tl + ∆] we get that max {th − s̄, s̄− tl} ≤ ∆, hence
|t− s̄| < ∆ for every type. In the proof to part 1 of Proposition 3 we
show that when β < α, s∗ (t) = s̄ for every t such that |t− s̄| < ∆. It
thus follows that s∗ (t) = s̄ for all types, and so s̄ is the average of all
stances, as required to constitute a norm. Lemma 10 states that s̄ = tl+th

2

can also be sustained in equilibrium, which concludes the proof.
In liberal societies we have 1 = α < β. Solving for the range t > s̄ and

then using symmetry around s̄, it is easy to verify that types suffi ciently
close to the norm declare their type, while types suffi ciently far from the

25Note that the previous expressions capture the “local”contribution to the PDF .
E.g., there can be cases where a stance s is chosen (as a corner solution) by the type
t = s and at the same time (as an inner solution) by a different type with t > s.
In such a case these two types will belong to two separate subranges (Ti) hence will
contribute to two separate pPDF ′s.
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norm have an inner solution s s.t. P ′(|s− s̄|) = 1 (= D′). This proves
statement (1). In the subrange where all declare their type, relative
concession equals 0, and in the subrange where all declare the same inner
stance it is increasing, as follows from Lemma 9 part (2) with P ′′ > 0
and D′′ = 0 (use symmetry to see that it holds also for the range t < s̄).
This proves statement (2). Before proving statement (3) we prove the
fourth statement. By Lemma 10 we know that s̄ = tl+th

2
can be sustained

in equilibrium. Thus, we only need to show that s̄ 6= tl+th
2

cannot be
an equilibrium. This follows directly from Lemma 11 and the fact that
no one chooses s∗ (t) = s̄. Finally, to see statement (3), note that the
value of s s.t. P ′(|s− s̄|) = 1 is given by solving βK (s− s̄)β−1 = 1,
which yields s − s̄ = (βK)

1
1−β . Given that s̄ = tl+th

2
, we get that if

th − tl > 2 (βK)
1

1−β then types at both edges of the distribution choose
the inner solutions s∗ = s̄ ± (βK)

1
1−β . These types form the modes of

a bimodal distribution while types closer to the norm form a uniform
part. If the range of types is smaller than 2 (βK)

1
1−β all types choose

s∗ (t) = t, implying a uniform distribution.�

A.3 Proof of Proposition 2
Since the functions are symmetric around s̄, we present only the proof
for the range of t ≥ s̄.
Parts 1 and 2:
The minimization problem of type t is symmetric around s̄, so we

will present the first- and second-order conditions for an inner solution
only for t ≥ s̄.

−α (t− s)α−1 + βK (s− s̄)β−1 = 0 (7)

(α− 1)α (t− s)α−2 + (β − 1) βK (s− s̄)β−2> 0 (8)

We perform the proof first for α, β > 1, and then for the special case of
1 = β < α.

α, β > 1: That every t has a unique inner solution can be easily
verified using equations (7) and (8). The statements that |s∗ (t)− s̄|
is increasing either convexly or concavely follow from applying the im-
plicit function theorem twice to equation (7) to get ds∗/dt and d2s∗/dt2.
Since all types have inner solutions, the statements regarding relative
concession follow from restating the inequality in part 2 of Lemma 9 ex-
plicitly for power functions, and substituting the FOC into it. Plugging
the expressions for the derivatives of P and D into equation (3), we get
that d2s∗

dt2
> 0 when α > β and d2s∗

dt2
< 0 when 1 < α < β. Using the

derived expression for d2s∗/dt2 it then follows from Lemma 12 that the
pPDF is decreasing in the distance to s̄ when α > β and increasing
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when 1 < α < β. As s∗ (t) is monotonic, the pPDF represents the total
PDF . From the symmetry of the functions around s̄ (and the central
location of the norm, as implied by Lemma 11 when no type chooses
s∗(t) = s̄), it then follows that the distribution is unimodal when α > β
and bimodal when α < β. Finally, the convexity of P and D implies
that ∀t ≥ s̄ we have 0 ≤ ds∗

dt
= D′′(t−s∗)

P ′′(s∗)+D′′(t−s∗) ≤ 1. Hence, it follows
from part 1 of Lemma 9 that conformity is decreasing ∀t ≥ s̄.

1 = β < α: It is easy to verify that types suffi ciently close to the norm
declare the norm (this is true for any K > 0) and types suffi ciently far
from the norm have a unique inner solution. For the subrange where all
declare the norm ds∗/dt = 0 and hence d2s∗/dt2 = 0. For the subrange
with inner solutions using β = 1 and α > 1 in equation (2) implies
ds∗/dt = 1 and hence d2s∗/dt2 = 0. Applying these results to Lemma
9 yields the first three statements of part 1. Since for any K > 0 there
exist some types suffi ciently close to the norm who declare the norm,
there will always be a peak at the norm. Since in the other subrange
ds∗/dt = 1 this implies a unimodal distribution in total.
Part 3:
For the case 1 = α < β, the proofs for all the statements are con-

tained in the proof of Proposition 1, except for (i) the statement about
conformity, which follows from the fact that types suffi ciently close to
the norm declare their type and types suffi ciently far from the norm
at each side of it declare the same stance s = s̄ ± (βK)

1
1−β (implying

that |s∗ (t)− s̄| is first increasing and then it is constant); (ii) show-
ing that th − tl > 2∆ is a suffi cient condition for a bimodal distrib-
ution of s∗, which follows from the fact that to get bimodality it was
shown that th − tl should be greater than 2 (βK)

1
1−β , and noting that

2 (βK)
1

1−β < 2K
1

1−β = 2∆.
For the case α < 1 < β, we will show that if th − tl > 2∆, then

a) |s∗ (t)− s̄| is first increasing then decreasing in |t− s̄|, implying non-
monotonic conformity; b) the relative concession is increasing in |t− s̄|;
and c) if, furthermore, t ∼ U (tl, th), then the distribution of s∗ is bi-
modal.
a) We will first show that the only relevant corner solution is s∗ = t,

then that types close to the norm choose this corner solution. In order
to find the global minimum we first need to investigate the behavior of
L (s, t) near the corner solutions.

L′ (s, t) = −α (t− s)α−1 +βK (s− s)β−1

Hence L′ (s, t) < 0 and L′ (t, t) < 0 since α < 1. Therefore s = t may
be a solution to the minimization problem while s = s̄ will not. The
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candidate solution s = t will now be compared to potential local minima
in the range [s, t]. In inner solutions L′ (s, t) = 0 and hence we get

α (t− s)α−1 = βK (s− s)β−1⇒ (t− s)α−1 (s− s)1−β = Kβ/α

Define f (s) ≡ (t− s)α−1 (s− s)1−β. For the existence of an inner min
point it is necessary that f (s) = βK/α for some s ∈]s, t[. Notice that
f(s) is strictly positive in ]s, t[, and that f(s)→∞ at both edges of the
range (i.e. at s = s and at s = t). This means that f(s) has at least
one local minimum in ]s, t[. We now proceed to check whether this local
minimum is unique:

f ′ (s) = (t− s)α−2 (s− s)−β [ (1− β) (t− s)− (α− 1) (s− s) ]

Since (t− s)α−2 (s− s)−β is strictly positive in ]s, t[, and [(1− β) (t− s)−
(α− 1) (s− s)] is linear in s, negative at s = s and positive at s = t,
f ′(s) = 0 exactly at one point at this range (i.e. a unique local minimum
of f(s) in ]s, t[).
From the continuity of f(s) we get that if the value of f(s) at this

local minimum is smaller than βK/α, then L(s, t) has exactly two ex-
trema in the range ]s, t[. From the negative values of L′(s, t) at the edges
of this range we finally conclude that the first extremum (where f(s) is
falling) is a minimum point of L(s, t), and the second extremum (where
f(s) is rising) is a maximum point of L(s, t). The global minimum of
L(s, t) is therefore either this local minimum (i.e. an inner solution), or
s = t (i.e. a corner solution). If however the value of f(s) at its local
minimum point is larger than βK/α, then there is no local extremum
to L(s, t) in the range ]s, t[, and therefore s = t is the solution to the
minimization problem.
Next we show that if th− tl > 2∆ then there exists a type who is far

enough from the norm to choose the inner solution. First, note that the
distance from the norm to the type who is the most remote from it is
larger than ∆. Suppose this type is th.. Then, comparing only the two
corner solutions this type can choose, we get

L(s̄, th)− L(th, th) = |th − s̄|α −K |th − s̄|β ,

which is strictly negative when |th − s̄| > ∆ = K
1

α−β and α < β. This
implies that th does not choose the corner solution of s̄, hence must
choose an inner solution.
Finally we show that if there exists any type t0 who chooses the inner

solution, then all types with t > t0 have an inner solution too. Then we
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show that in the range of inner solutions s∗ (t) is decreasing in t. First
notice that f(s) is decreasing in t, so if there exists a local minimum
of L(s, t0) for some t0, then there exists a local minimum of L(s, t) for
t > t0 too. Also note that f(s) is decreasing in t with lim

t→∞
f (s) =

0 < βK/α (for s ∈]s, t[), implying that an inner local minimum exists
for a suffi ciently large t. Second, if there is an inner solution to the
minimization problem for some t0, then there is also an inner solution
to the minimization problem for t > t0. To see this let ∆L ≡ L(t, t) −
L(s̃, t), where s̃ is the stance at which L(s, t) gets the local minimum.
Type t prefers the inner solution to the corner solution if and only if ∆L
is positive. Thus we need to show that ∆L is negative for small enough
|t− s̄| but is increasing in t (and so if ∆L is positive for t0 it is positive
for t > t0 too).

∆L= K (t− s)β −
[
(t− s̃)α +K (s̃− s)β

]
,

and since α < 1 ≤ β, for small enough |t− s̄| the dominant element is
(t− s̃)α and so ∆L is negative (i.e., types close to the norm choose the
corner solution of s∗ = t). Differentiating ∆L with respect to t yields

∆L′t=Kβ (t− s)β−1−
[
α (t− s̃)α−1

(
1− ds̃

dt

)
+ βK (s̃− s)β−1 ds̃

dt

]
.

Using the first order condition

∆L′t =Kβ (t− s)β−1−
[
βK (s̃− s)β−1

(
1− ds̃

dt

)
+ βK (s̃− s)β−1 ds̃

dt

]
=Kβ (t− s)β−1−βK (s̃− s)β−1> 0 when β > 1.

Differentiating once more

∆L′′t= Kβ (β − 1)

[
(t− s)β−2 − βKds̃

dt
(s̃− s)β−1

]
.

By equation 2 we have that ds̃
dt

< 0 in an inner solution when D is
concave, and so ∆L′′t > 0. Hence ∆L is strictly increasing and strictly
convex, implying that for a broad enough range of types, types suffi -
ciently far from the norm have an inner solution. Moreover, at this
subrange of types, ds∗

dt
< 0. This implies that s∗ is first increasing (in

the subrange of types with s∗ = t), and then decreasing (in the subrange
of types with inner solutions).
b) By the definition of relative concession it equals 0 at the subrange

of types choosing s∗ = t, and then it rises at the cutoff where ∆L = 0,
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and keeps rising as t increases (this follows from restating the inequality
in part 2 of Lemma 9 explicitly for power functions, and substituting
the FOC in it).
c) This implies that if the range of types is narrow, all types state

their type, creating a uniform distribution of stances. If the range of
types is broad enough to include types with inner solutions, then on top
of the uniform part there is a peak on each side of s̄ (since s̄ must equal
tl+th

2
, as implied by Lemma 11 when no type chooses s∗(t) = s̄). These

peaks are inside the uniform distribution. To see this, note that for the
type t who is just indifferent between the corner and inner solution, the
inner solution would entail s∗ (t) ≤ t. Together with the previous result
that ds

∗

dt
< 0 we get that all types with inner solutions choose statements

within the bounds of the uniform part.
To see the shape of the distribution of stances, note first that dt

ds∗ < 0

because ds∗

dt
< 0. As for d2t

ds∗2 , we have:

d2t

ds∗2
=

d

ds∗

(
dt

ds∗

)
=

(
βK

α

) 1
α−1 β − 1

α− 1

(
β − 1

α− 1
− 1

)
(s∗ − s)

β−1
α−1−2 .

Substituting t− s∗=
(
βK
α

) 1
α−1 (s∗ − s)

β−1
α−1 in this expression we get that

d2t

ds∗2
=

(β − 1) (t− s∗)
(α− 1) (s∗ − s)2

(
β − 1

α− 1
− 1

)
.

Since both (β−1)(t−s∗)
(α−1)(s∗−s)2 and

(
β−1
α−1
− 1 = β−α

α−1

)
are negative, we get that

d2t
ds∗2 > 0, which together with dt

ds∗ < 0 implies by the inverse function
theorem that d2s∗

dt2
> 0. Thus by Lemma 12 the pPDF for the inner

solutions is decreasing towards the edges.�

A.4 Proof of Proposition 3
Parts 1 and 2
The second-order condition (equation 8) is positive when α < β ≤ 1

or β < α ≤ 1, which implies that any inner extreme point is a max-
imum. The corner solutions are then either L (s = s̄) = |t− s̄|α or
L (s = t) = K |t− s̄|β. When β < α this implies that L (s = s̄) <

L (s = t) iff |t− s̄| < ∆ = K
1

α−β , and so s∗ (t) = t iff |t− s̄| ≥ ∆, and
s∗ (t) = s̄ iff |t− s̄| < ∆. This means that conformity is initially constant
and then strictly decreasing, which altogether implies that conformity is
everywhere weakly decreasing in |t− s̄|. When α < β the converse holds,
with s∗ (t) = t iff |t− s̄| < ∆, and s∗ (t) = s̄ iff |t− s̄| ≥ ∆, which means
that conformity is initially decreasing in t but then sharply increases to
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full conformity at |t− s̄| = ∆ (where it also stays). In the segment of
types choosing s∗ (t) = s̄, the relative concession is equal to 1, while in
the segment of types choosing s∗ (t) = t, the relative concession is 0.
From this, it follows that the relative concession is weakly decreasing
with the distance to s̄ for β < α and weakly increasing for α < β. As
for the distribution of s∗, we start with the case of β < α. First note
that a broad enough range of types, th− tl > 2∆, implies that s∗ (t) 6= s̄
for the type furthest away from s̄, which by Lemmas 10 and 11 implies
that s̄ = tl+th

2
is the only possible norm in equilibrium. The individual

choices will then lead to a distribution of stances that consists of a peak
at s̄ and two equally sized uniform tails at the extreme ends of the dis-
tribution, detached from the peak. In the case of α < β, the suffi cient
condition for having a peak at s̄ is to have types with |t− s̄| > ∆ at one
side of s̄, which holds when th − tl > 2∆.
Part 3
We perform the proof for t ≥ s̄. The opposite case is similar. We

will prove that if th − tl > 2∆, then: a) types close enough to the norm
fully conform, while types far from the norm choose an inner solution
and |s∗(t)− s̄| is increasing for them; b) conformity is weakly decreasing
in |t− s̄|; c) the relative concession is weakly decreasing in |t− s̄|; and
d) if furthermore, t ∼ U (tl, th), then the distribution is discontinuously
trimodal with a central peak at s̄ and a detached uniform part on each
side, peaking at the edge of the range. Along the way we will also
show that for a suffi ciently narrow range of types, the distribution is
degenerate at s̄.
a) We will first show that the only relevant corner solution is s∗ = s̄.

In order to find the global minimum we first need to investigate the
behavior of L (s, t) at the edges of this range.

L′ (s, t) = −α (t− s)α−1 +βK (s− s)β−1

Hence L′ (s, t) = ∞ and L′ (t, t) = βK (t− s)β−1 > 0. Therefore s = s
may be a solution to the minimization problem while s = t will not.
The candidate solution s = s will now be compared to potential local
minima in the range ]s, t[. In inner solutions L′ (s, t) = 0 and hence we
get

α (t− s)α−1 = βK (s− s)β−1⇒ (t− s)α−1 (s− s)1−β = βK/α.

Define f (s) ≡ (t− s)α−1 (s− s)1−β. For the existence of an inner min
point it is necessary that f (s) = βK/α for some s ∈]s, t[. Notice that
f(s) is strictly positive in ]s, t[, and that f(s) = 0 at both edges of the
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range (i.e. at s = s and at s = t). This means that f(s) has at least
one local maximum in ]s, t[. We now proceed to check whether this local
maximum is unique:

f ′ (s) = (t− s)α−2 (s− s)−β [ (1− β) (t− s)− (α− 1) (s− s) ]

Since (t− s)α−2 (s− s)−β is strictly positive in ]s, t[, and [(1− β) (t− s)−
(α− 1) (s− s)] is linear in s, positive at s = s and negative at s = t,
f ′(s) = 0 exactly at one point at this range (i.e. a unique local max-
imum of f(s) in ]s, t[). From the continuity of f(s) we get that if the
value of f(s) at this local maximum is greater than βK/α, then L(s, t)
has exactly two extrema in the range ]s, t[. From the positive values
of L′(s, t) at the edges of this range we finally conclude that the first
extremum (where f(s) is rising) is a maximum point of L(s, t), and the
second extremum (where f(s) is falling) is a minimum point of L(s, t).
The global minimum of L(s, t) is therefore either this local minimum
(i.e. an inner solution), or s = s (i.e. a corner solution). If however the
value of f(s) at its local maximum point is smaller than βK/α, then
there is no local extremum to L(s, t) in the range ]s, t[, and therefore
s = s is the solution to the minimization problem.
Next we show if th − tl > 2∆ then there exists a type who is far

enough from the norm to choose the inner solution. First, note that the
distance from the norm to the type who is the most remote from it is
larger than ∆. Suppose this type is th.. Then, comparing only the two
corner solutions this type can choose, we get

L(s̄, th)− L(th, th) = |th − s̄|α −K |th − s̄|β ,

which is strictly positive when |th − s̄| > ∆ = K
1

α−β and β < α. This
implies that th does not choose the corner solution of s̄, hence must
choose an inner solution.
Finally we show that if there exists any type t0 who chooses the inner

solution then all types with t > t0 have an inner solution. Then we show
that types close enough to the norm fully conform, and that in the range
of inner solutions |s∗(t)− s̄| is increasing in t. First notice that f(s) is
increasing in t, so if there exists a local minimum of L(s, t0) for some t0,
then there exists a local minimum of L(s, t) for t > t0 too. Also note
that f (s) is increasing in t with lim

t→∞
f (s) = ∞ > βK/α (for s ∈]s, t[),

implying an inner local min point exists for a broad enough range of
types. Second, if there is an inner solution to the minimization problem
for some t0 then there is also an inner solution to the minimization
problem for t > t0. To see this let ∆L ≡ L(s̄, t) − L(s̃, t), where s̃ is
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the stance at which L(s, t) gets the local minimum. Type t prefers the
inner solution to the corner solution if and only if ∆L is positive. Thus
we need to show that ∆L is negative for small enough |t− s̄| but is
increasing in t (and so if ∆L is positive for t0 it is positive for t1 too).

∆L= (t− s)α−
[
(t− s̃)α +K (s̃− s)β

]
,

and since β ≤ 1 < α, for small enough |t− s̄| the dominant element is
K (s̃− s)β and so∆L is negative (i.e., types close to the norm choose the
corner solution of s∗ = s). Differentiating ∆L with respect to t yields

∆L′t=α (t− s)α−1−
[
α (t− s̃)α−1

(
1− ds̃

dt

)
+ βK (s̃− s)β−1 ds̃

dt

]
.

Using the first order condition

∆L′t =α (t− s)α−1 −
[
α (t− s̃)α−1

(
1− ds̃

dt

)
+ α (t− s̃)α−1 ds̃

dt

]
=α (t− s)α−1 − α (t− s̃)α−1 > 0.

Differentiating once more

∆L′′t = α (α− 1)
[
(t− s)α−2 − (1− ds̃/dt) (t− s̃)α−2] .

By equation 2 we have that ds̃
dt

> 1 in an inner solution when P is
concave, and so ∆L′′t > 0. Hence ∆L is strictly increasing and strictly
convex, implying that for a broad enough range of types (in particular
larger than 2∆, as shown above), types suffi ciently far from the norm
have an inner solution where ds∗

dt
> 1, and so |s∗(t)− s̄| is increasing in

t at the range of inner solutions.
b) Looking at |s∗(t)− s̄| as |t− s̄| gradually increases, we first have

|s∗(t)− s̄| constant and equal to 0 in the range where s∗(t) = s∗. Then
at some point we reach the first type who chooses an inner solution,
and so for her |s∗(t)− s̄| > 0, and afterwards |s∗(t)− s̄| was shown to
keep increasing. Therefore conformity is everywhere weakly decreasing
in |t− s̄|.
c) By the definition of relative concession it equals 1 at the range of

types choosing s∗ = s, and then it falls at the cutoff where ∆L = 0, and
keeps falling as t increases (this follows from restating the inequality in
part 2 of Lemma 9 explicitly for power functions, and substituting the
FOC in it).
d) If the range of types is narrow, all types state the norm, hence

follows a degenerate distribution at s. Otherwise, if the range of types
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is broad enough (so that some have an inner solution), the resulting
distribution of stances has a peak at s = s with a tail at each side of
it. The tails will be of equal size because s∗ (t) 6= s̄ for the type furthest
away from s̄, which by Lemmas 10 and 11 implies that s̄ = tl+th

2
, and so

the distribution of stances is symmetric. The tails are detached, since for
the type t who is indifferent to either the corner or the inner solution the
inner solution s∗ is necessarily strictly greater than s̄ (because L′ (s̄, t) =
∞ while L′ (s∗, t) = 0 in inner solutions).
For the shape of these tails, note first that dt

ds∗ > 0 because ds∗

dt
>

0. Moreover, d2t
ds∗2= (β−1)(t−s∗)

(α−1)(s∗−s)2
(
β−1
α−1
− 1
)
(see the proof of Proposition 2

part 3). Since both (β−1)(t−s∗)
(α−1)(s∗−s)2 and

(
β−1
α−1
− 1
)
are negative, we get that

d2t
ds∗2 > 0, which together with dt

ds∗ > 0 implies by the inverse function
theorem that d2s∗

dt2
< 0. Thus by Lemma 12 the pPDF for the inner

solutions is increasing towards the edges, which together with the peak
at s implies a trimodal distribution of stances.�

A.5 Proof of Proposition 4
Lemma 10 ensures that s̄ = tl+th

2
is a possible equilibrium. Furthermore:

1) From parts (1) and (3) of Proposition 3 we know that if α ≤ 1
then types with |t− s̄| ≤ ∆ fully conform and if 1 < α then there exists
a cutoff distance δ < ∆ such that types with |t− s̄| ≤ δ fully conform.
So if α ≤ 1 and th − tl < 2∆ or alternatively 1 < α and th − tl < 2δ,
and if

∣∣s̄− tl+th
2

∣∣ is small enough to ensure that the type furthest away
from s̄ is still within distance ∆ (in the case α ≤ 1) or δ (in the case
1 < α) from s̄, then s∗ (t) = s̄ ∀t. In this case s̄ is obviously the average
of all stances and this concludes suffi ciency. To show necessity, we need
to show that if α ≤ 1 and th − tl ≥ 2∆ or alternatively 1 < α and
th − tl ≥ 2δ, there exist no equilibria with s̄ 6= th+tl

2
. To see this, note

that s̄ 6= th+tl
2

would imply that |t− s̄| > ∆ (in the case α ≤ 1) or
|t− s̄| > δ (in the case 1 < α) for the type furthest away from s̄. Then,
parts (1) and (3) of Proposition 3 imply that s∗ (t) 6= s̄ for that type,
and by Lemma 11 s̄ 6= th+tl

2
cannot be sustained in equilibrium.

2) From Proposition 3 part (2) we know that types with |t− s̄| < ∆
choose s∗ = t, while types with |t− s̄| > ∆ choose s̄ as their stance
(and therefore do not affect its location). If th − tl > 2∆, take any
s̄ ∈ [tl + ∆, th −∆]. This implies that s̄ − tl > ∆ and th − s̄ > ∆,
and so ensures that the whole uniform section of the stance distribution,
[s̄−∆, s̄+ ∆] , is contained within [tl, th], with s̄ located at the center
of the uniform section, implying that it is the average stance. This con-
cludes suffi ciency. Otherwise, suppose th−tl < 2∆. Then [tl + ∆, th −∆]
is an empty set, therefore either s̄ > th − ∆ or s̄ < tl + ∆ (or both).
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Suppose s̄ > th − ∆. Then d ≡ th − s̄ < ∆, and so s∗ (t) = t 6= s̄ for
types with t ∈ [s̄−∆, s̄− d], which by Lemma 11 implies that s̄ can-
not be sustained in equilibrium. A corresponding argument applies to
s̄ < tl+∆. Repeating the same exercise for the case th− tl = 2∆ implies
that s̄ = tl+th

2
is the unique possible norm in this case. This concludes

necessity.�

A.6 Proof of Proposition 5
sh = s̄ + 1 implies that P in the range ]s̄, s̄+ 1[ strictly decreases in
β while P at {s̄, s̄+ 1} is independent of β. Hence, a decrease of β
implies that any stance in ]s̄, s̄+ 1[ becomes less attractive, while the
attractiveness of the stances s̄ and s̄+1, where pressure is fixed at 0 and
K respectively, stays the same. Thus, for any given t, if s∗(t) ∈ {s̄, s̄+ 1}
for β then s∗(t) ∈ {s̄, s̄+ 1} also for any β′ < β.

A.7 Proof of Proposition 7
At any stance s > s̄, the pressure P = K(s − s̄)β strictly decreases in
β if s ∈]s̄, s̄ + 1[ and strictly increases in β if s > s̄ + 1, while staying
constant at s = s̄ and s = s̄ + 1. Therefore, for any t > s̄, the function
L (s, t) (which t minimizes at [s̄, t] to get s∗(t)) decreases in β at the
range ]s̄, s̄ + 1] and increases in β at the range s > s̄ + 1. Considering
now the effect of increasing β, this implies that if before the increase
s∗(t) ∈ Slow =]s̄, s̄ + 1], then s∗(t) ∈ Slow also after the increase, and
if s∗(t) ∈ Shigh after the increase, then s∗(t) ∈ Shigh also before it.
Therefore, |Slow| is weakly greater after the increase, while |Shigh| is
weakly smaller after the increase. Together with the fact that s∗(t) ≤ s̄
for types with t ≤ s̄ (and so these types do not affect |Slow| and |Shigh|),
we get that |Slow| − |Shigh| increases in β.�

A.8 Proof of Proposition 6
If β > 1, then no one with t 6= s̄ chooses s̄ as her stance regardless of
the value of K, as a small deviation toward t would reduce D without
affecting P . Thus, increasing K will not increase the number of individ-
uals stating s̄. Suppose, however, that β ≤ 1, and consider an increase
in K from some K1 to some K2 > K1. An increase in K implies that the
loss in any possible stance except for s̄ increases, so anyone who chooses
s̄ under K1 also chooses it under K2. This implies that the number of
people stating s̄ will not decrease when K increases. Furthermore, if
th− tl > 2∆, then under K1 there are types who are indifferent between
choosing s̄ and choosing some different stance (see Proposition 3). These
types will strictly prefer s̄ under K2, implying a strict increase in the
number of people stating s̄ as K increases from K1 to K2.
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A.9 Proof of Corollary 8
Follows directly from propositions 2 and 3.

B Appendix: data and empirical details for Section
7.1

The data was accessed in February 2015 fromwww.worldvaluessurvey.org
through their online analysis toolbox.

• Countries: Algeria, Azerbaijan, Palestine, Iraq, Kazakhstan, Jor-
dan, Kyrgyzstan, Lebanon, Libya, Malaysia, Morocco, Pakistan,
Tunisia, Turkey, Uzbekistan, Yemen. 16 countries in total. Each
question is answered by around 1000 individuals in each country.
There are a few additional Muslim countries but they do not have
data on the praying variable.

• β proxy variable: The proxy for β was constructed using answers
to question V154 measuring agreement with the statement “The
only acceptable religion is my religion”. The measure was con-
structed by taking the share strongly disagreeing minus the share
strongly agreeing. This implies a high value will be the equivalent
of a high β. Note that values can be negative. Plain “Agree”and
“Disagree”were not used since it would be unclear how the ordi-
nality in-between answers could be collapsed to a single measure
(e.g., if 50% answer agree and 50% disagree, is that society more
or less strict than if 50% answer strongly agree and 50% answer
strongly disagree?).

• Religiosity variable (t-distribution): The share answering “A
religious person” to question V147. The other possible answers
are “Not a religious person”, “Atheist”, “No answer”and “Don’t
know”.

• Harshness variable (K): Answers to question V132 “Democ-
racy: Religious authorities interpret the laws”. The possible an-
swers range from 1) “Not an essential characteristic of democracy”
to 10) “An essential characteristic of democracy”. We used the
mean.

• Praying variable (s): V146, “How often do you pray?”. Apart
from “Don’t know” and “No Answer” the alternatives were 1)
“Several times a day”, 2) “Once a day”, 3) “Several times each
week”, 4) “Only when attending religious services”, 5) “Only on
special holy days”, 6) “Once a year”, 7) “Less often than once a
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year”and 8) “Never, practically never”. In the regression table,
the total share answering either 1 or 8 is defined as “Extremes”.
The share answering 2 or 3 is defined as “Religious non-extremes”.
The share answering 4 or 5 is defined as “Mid”. The share answer-
ing 6 or 7 is defined as “Secular non-extremes”.

Table 1: Summary statistics

Variable Mean Min Max
β proxy -45.2 -81.4 (Libya) 14.5 (Kazakhstan)
Religiousity % 71.0 26.7 (Azerbaijan) 99.7 (Pakistan)
Harshness 5.3 3.69 (Azerbaijan) 6.42 (Yemen)
Praying: Extremes % 69.0 43.6 (Lebanon) 93.6 (Tunisia)
Praying: Religious non-extremes % 14.8 1.2 (Tunisia) 41.9 (Lebanon)
Praying: Mid % 9.6 1.5 (Jordan) 34.4 (Azerbaijan)
Praying: Secular non-extremes % 5.4 1 (Jordan) 13.9 (Uzbekistan)
Praying: Several times per day % 53.2 6.3 (Kazakhstan) 86.4 (Jordan)
Pracying: Never, practically Never % 15.8 0.6 (Pakistan) 53.7 (Uzbekistan)

Table 2: Regression results

Extremes Extremes Religious
non-
extremes

Religious
non-
extremes

Mid Mid Secular
non-
extremes

Secular
non-
extremes

Intercept 45.5*** 57.2*** 23.1*** 2.98 23.2*** 38.5*** 9.0*** 3.5
β proxy -0.53*** -0.58*** 0.19* 0.28** 0.30*** 0.22** 0.08** 0.12**
Religiosity -0.27 0.43** -0.09 -0.04
Harshness 0.80 -1.11 -2.31 1.92
R2 0.66 0.72 0.19 0.51 0.65 0.74 0.26 0.37
The dependent variable is indicated in the top of each column. 16
observations. * p-value ≤ 10%, ** p-value ≤ 5%, *** p-value ≤ 1%.
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