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Μα κι εκεί ο αγώνας του δεν τελείωσε· απάνω στο Σταυρό
τον περίμενε ο Πειρασμός [...] το πλανερό δράμα μιας γαλήνιας,
ευτυχισμένης ζωης: είχε πάρει, λέει, ὲτσι του φάνηκε, τον εύκολο
δρόμο του ανθρώπου [...] θυμόταν τις λαχτάρες της νιότης του
και χαμογελούσε ευχαριστημένος, τί καλά, τί φρόνιμα που ὲκαμε
[...], και τι παραφροσύνη ὴταν εκείνη να θέλει, λέει, να σώσει τον
κόσμο! [...] είπε ὸχι , ὸχι , δεν πρόδωκε, δόξα σοι ο Θεός, δεν
λιποτάχτησε, εξετέλεσε την αποστολή του [...] Τετέλεσται!

Νίκος Καζαντζάκης (1955), Ο Τελευταίος Πειρασμός
Nikos Kazantzakis, The Last Temptation [of Christ], Prologue
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Abstract

The thesis has focused on issues related to the use of external information in the identification,

estimation and evaluation of Dynamic Stochastic General Equilibrium (DSGE) models, and

comprises three papers. The first paper, entitled Improving Inference for Dynamic Economies

with Frictions - The role of Qualitative Survey data, proposes a new inferential methodology

that is robust to misspecification of the mechanism generating frictions in a dynamic stochastic

economy. I derive a characterization of the model economy that provides identifying restric-

tions on the solution of the model that are consistent with a variety of mechanisms. I show how

qualitative survey data can be linked to the expectations of agents and how this link generates an

additional informative set of identifying restrictions. Moreover, I show how the framework can

be used to formally validate mechanisms that generate frictions. Finally, I apply the methodol-

ogy to estimate the distortions in the Spanish economy due to financial frictions and derive an

optimal robust Taylor rule. The second chapter, entitled Estimation and Inference for Incom-

plete Structural Models using Auxiliary Density Information considers an alternative method

for estimating the parameters of an equilibrium model which does not require the equilibrium

decision rules and produces an estimated probability model for the observables. This is done

by introducing auxiliary information about the conditional density of the observables, and us-

ing density projections. I develop and assess frequentist inference in this framework. I provide

the asymptotic theory for parameter estimates for a general set of conditional projection densi-

ties and simulation exercises. In the third chapter, entitled Monetary Policy Rules and External

Information, I analyze how conclusions about monetary policy stance are altered when we ex-

plicitly acknowledge that model concepts like the output gap and inflation are non-observable

and we utilize many proxies that are available in the data. I document the effects on Bayesian

inference of introducing such proxy information.
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Chapter 1

Summary

The thesis has focused on issues related to the use of external information in the identification,

estimation and evaluation of Dynamic Stochastic General Equilibrium (DSGE) models, and

comprises three papers.

The first paper, entitled "Improving Inference for Dynamic Economies with Frictions -

The role of Qualitative Survey data", proposes a new inferential methodology that is robust

to misspecification of the mechanism generating frictions in a dynamic stochastic economy.

The motivation comes from the fact that while frictions present in Dynamic Stochastic Gen-

eral Equilibrium (DSGE) models are essential to match the persistence observed in aggregate

macroeconomic time series, their selection and specification is a complicated process and fea-

tures arbitrary aspects. Thus, different studies may find support for different types of frictions

depending on auxiliary modeling assumptions. Moreover, unless frictions are micro-founded,

policy conclusions are whimsical as different mechanisms imply different relationships between

policy parameters and economic outcomes.

The proposed approach treats economies with frictions as perturbations of a frictionless

economy. Due to the fact that a variety of mechanisms are consistent with the same model

representation, models and their parameters are set identified. In order to reduce model uncer-

tainty, additional restrictions coming from qualitative survey data are utilized, and it is shown

that, under certain conditions, they can help to disentangle otherwise observationally equivalent

models. The econometric theory developed can accommodate conditional moment restrictions

constructed from data other than surveys.

The paper makes three contributions. First, it presents a characterization of the model

economy that provides identifying restrictions on the solution of the model. It is shown that

the sign of the conditional mean of the distortion induced by the frictions is known, even if
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the exact mechanism generating the friction is unknown. If the decision rules of the economy

with frictions are: Xt = X f
t + λt where X f

t is the solution of the frictionless model and λt an

unobserved variable, one can use equations of the form Etλt ≥ 0 or Etλt ≤ 0, depending on the

sign of conditional mean distortion to set-estimate the parameters.

Second, it shows how qualitative survey data can be linked to the expectations of agents

and how this link generates an additional set of identifying restrictions on the probability of

observing a distortion (relative to the frictionless model) in a macroeconomic variable. When

agents report their subjective conditional expectation, and under certain conditions, the addi-

tional restrictions lead to a smaller set of admissible models.

Third, it shows how the framework can be used to validate mechanisms that generate fric-

tions. It develops a test statistic that examines the minimum distance of the point identified

complete model to the admissible set of models. Under the null, that the fully parametrically

specified model belongs to the identified set of models, the expected minimum distance is zero.

Under the alternative, it is strictly positive. Large sample theory for this test is derived and

a bootstrap procedure to compute the critical values is proposed. The test is asymptotically

powerful against fixed alternatives. A Monte Carlo exercise confirms the asymptotic results.

Finally, the methodology is applied to estimate the distortions in the Spanish economy due

to financial frictions. A small open economy version of the (Smets and Wouters 2007) model

is employed and qualitative survey data on the financial constraints of the agents, collected by

the European Commission, is utilized. I identify the model generating the maximum distortion

to observed macroeconomic variables that is consistent with survey data and derive the corre-

sponding optimal Taylor rule.

The second paper, entitled "Estimation and Inference for Incomplete Structural Mod-

els using Auxiliary Density Information", deals with the fact that while macroeconomic the-

ory provides a set of equilibrium moment conditions, it rarely provides the complete probability

distribution of observables, and this forces users to make several auxiliary assumptions. For

example, one has to choose which solution concept to use and type (and degree) of approxima-

tion to consider. These choices may induce misspecification and loss of identification power.

On the other hand, having a complete probability distribution is useful, since one can make

counterfactual experiments and predictions.

This paper considers an alternative method for estimating the parameters of a DSGE model

which does not require the equilibrium decision rules and produces an estimated probability
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model for the observables. The model is completed by introducing information about the condi-

tional density of the observables f (x|z,φ), where z is the relevant conditioning information. This

density can be generally interpreted as an approximate reduced form model for the observables.

Utilizing a variation of the method of information projections, see for example (I.Csiszar 1975)

for the unconditional case, I obtain the conditional probability distribution that satisfies the mo-

ment restrictions provided by economic theory, E(m(x,ϑ)|z) = 0, and is as close as possible to

the prior density. This is also related to the work of (Giacomini and Ragusa 2014) where density

projections are used in a forecasting context.

The methodology can allude to the Bayesian paradigm in the sense that the approximate

model serves as a prior, which can nevertheless be data revisable. The paper also provides a

decision theoretic framework that rationalizes the estimator as an optimal outcome of a two

stage Stackelberg game between the leader, the Principal, who constrains the set of probability

distributions considered using prior information, and then delegates parameter estimation to the

follower, the Econometrician.

The paper mainly develops and assesses frequentist inference in this framework. It pro-

vides the asymptotic theory for parameter estimates for a general set of conditional projection

densities. Under the condition that there exists an admissible parameter of f (x|z,φ) such that

the moment conditions are satisfied, the estimator is consistent and asymptotically Normally

distributed, where the semi-parametric lower bound for the parameter estimates, is attained.

More interestingly, in the case of density misspecification, the first order conditions for estimat-

ing structural parameters are akin to penalizing the standard optimally weighted Generalized

Method of Moments (GMM) estimator with a penalty term that goes to zero as the approximate

density becomes closer, in the total variation distance, to the true density. Under local mis-

specification of the density in the form of improper finite dimensional restrictions, there exist

efficiency gains and therefore an asymptotic bias - variance trade-off. Monte Carlo simulations

are performed for the unconditional moment case, and comparisons of the Mean Squared Error

(MSE) of the estimator are provided in the case of fixed misspecification. More exercise are

done using the prototypical stochastic growth model.

The third paper, entitled "Monetary Policy Rules and External Information", analyzes

how conclusions about monetary policy stance are altered when I explicitly acknowledge that

model concepts like the output gap, inflation, and nominal interest rate are non-observable. On

the other hand, many proxies are available in the data. For example, there exist a number of
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measures of inflation, several types of interest rates and other inflation expectation measures

obtained form surveys, nowcasts and professional forecasts. I assume that the vector of ob-

servables is a noisy measure of model variables and perform Bayesian estimation of a textbook

New Keynesian model augmented with the vector of proxies, see for example (Del Negro and

Schorfheide 2013). I document a significant change in the posterior distributions of all the pa-

rameters relative to the case when only one proxy measure is employed and no allowance is

made for unobservable model concepts. Posterior distributions are not only less dispersed but

have different location and support. It is shown that under a measurement error interpretation,

the additional information improves the estimates of the state variables of the model and this

explains the lower variance of the posterior distributions. The significant change in the location

indicates that the standard approach faces both identification and misspecification problems.



Chapter 2

Improving Inference for Dynamic Economies

with Frictions - The role of Qualitative Survey

data
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2.1 Introduction

Frictions are essential in Dynamic Stochastic General Equilibrium (DSGE) models to match

the persistence observed in aggregate macroeconomic time series. However, the selection be-

tween real, nominal and informational frictions and specification of the functional forms is a

complicated process featuring arbitrary aspects. This arbitrariness means that different studies

may find support for different types of frictions, depending on other assumptions made. For

example, the choice of nominal rigidities might depend on which real rigidities are included

in the model or whether there is variable capital utilization or not1. Moreover, unless frictions

are micro-founded, policy conclusions may become whimsical as different mechanisms imply

different relationships between policy parameters and economic outcomes.

In this paper we propose a new inferential methodology that is robust to misspecification

of the mechanism generating frictions. The approach treats economies with frictions as per-

turbations of an ideal frictionless economy. These perturbations are not uniquely pinned down

since different specifications of functional forms may lead to observationally equivalent pertur-

bations. For example, a perturbation in the law of motion of capital can be consistent with many

exogenous and endogenous capital adjustment costs specifications.

The approach we propose consists of three steps. First, we derive a characterization of the

economy that imposes identifying restrictions on the solution of the model. (Chari, Kehoe, and

McGrattan 2007), CKM hereafter, identify wedges in the optimality conditions of a frictionless

model that produce the same equilibrium allocations in economies with specific parametric

choices for the frictions. We also take a frictionless model as a benchmark but contrary to CKM

we construct a general representation for the wedge in the decision rules. We illustrate through

examples that the sign of the conditional mean of the decision rule wedge is typically known,

even when the exact mechanism generating the friction is unknown. We provide necessary

and sufficient conditions such that the decision rules of linear (or linearized) economies with

frictions can be represented as Xt = X f
t +λt , where X f

t is the solution of the frictionless model

and λt a latent process. If these conditions are satisfied, one can use equations of the form Etλt ≥

0 or Etλt ≤ 0, depending on the sign of the conditional mean of the wedge, to set-identify the

parameters of the model. Moment inequality restrictions have been used to characterize frictions

in specific markets, see for example (Luttmer 1996) and (Chetty 2012). We are the first to apply

1See for example the analysis of (Christiano, Eichenbaum, and Evans 2005) and their comparison to the results
of (Chari, Kehoe, and McGrattan 2000).
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the methodology to dynamic stochastic macroeconomic models and to show their relationship

with the wedge literature. We deal with partial identification that moment inequalities imply

by employing recent advances on bounds estimation (i.e. (Liao and Jiang 2010, Chernozhukov,

Kocatulum, and Menzel 2012)).

Because we partially identify economic relationships to avoid misspecification, a large set

of models is likely to be consistent with the same identification assumptions. Thus, additional

data is needed to separate otherwise observationally equivalent models. We use qualitative

survey data for this purpose.

In the second step, we link qualitative survey data to the expectations of agents. If sur-

vey data reflect subjective conditional expectations, they contain important indications about

agents’ actions and thus provide information on which model may be inconsistent with the data.

Therefore, the set of admissible models may be reduced. In the literature 2 survey data are

typically linked to an observable model, and an explicit mapping between theory based and

observable variables is made with an additive measurement error (see e.g. (Del Negro and

Schorfheide 2013)). Such an approach however cannot be used with qualitative survey data due

to their categorical form.

Because the representation we derive accommodates both moment equalities and inequal-

ities, we can link the solution of the model to survey data of different types. In the case of

categorical data, we show that they imply restrictions on the probability of observing a friction

(relative to the frictionless model) and that, under certain conditions, the additional restrictions

lead to a smaller set of admissible models. The econometric theory we develop is sufficiently

general and accommodates conditional moment restrictions obtained from data other than sur-

veys.

As a third step, we show how the framework can be used to validate particular specifications

generating frictions. We exploit the fact that, once qualitative survey data are used, we have a

smaller set of models consistent with the same economic conditions. We propose a test statistic

that examines the minimum distance of the point identified parametrically specified model to

the admissible set of models. Under the null, that the parametrically specified model belongs to

the identified set of models, the expected minimum distance is zero. Under the alternative, it is

strictly positive. We derive large sample theory for this test and propose a bootstrap procedure

2We mainly refer to the treatment of survey data in the most recent "modern" DSGE literature. The treatment of
survey data in Rational Expectations models date back to the work of (Pesaran 1987) and others.
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to compute the critical values. We show that the test is asymptotically powerful against fixed

alternatives. A Monte Carlo exercise confirms the asymptotic results.

We apply the methodology to estimate the distortions present in the Spanish economy

due to financial frictions. We estimate a small open economy version of the (Smets and

Wouters 2007) model using qualitative survey data collected by the European Commission on

the financial constraints of the agents. We identify the model generating the maximum distortion

that is consistent with survey data and derive the corresponding optimal Taylor rule.

The paper is linked to four different strands of literature: the literature on wedges and fric-

tions (i.e. (Chari, Kehoe, and McGrattan 2007), (Christiano, Eichenbaum, and Evans 2005),

(Chari, Kehoe, and McGrattan 2000)), the partial identification literature (i.e. (Chernozhukov,

Lee, and Rosen 2013), (Chernozhukov, Kocatulum, and Menzel 2012), (Chernozhukov, Hong,

and Tamer 2007), (Liao and Jiang 2010)), the literature on robustness to model misspecifica-

tion (i.e. (Hansen 2013), (Hansen and Sargent 2005)), and the literature on including survey

data in DSGE models (i.e. (Del Negro and Schorfheide 2013)). Relative to (Chari, Kehoe,

and McGrattan 2007), we adopt a more general and different characterization of the wedge in

equilibrium conditions. This general characterization is what makes our approach robust to

misspecification, as it accommodates different plausible mechanisms. Moreover, we link the

characterization of the wedge in equilibrium conditions to an equivalent characterization for the

law of motion of macroeconomic variables. This is a very useful result as the law of motion,

compared to equilibrium conditions, can be easily linked to the data. As far as partial identifica-

tion is concerned, we utilize the quasi Bayesian MCMC methodology of (Liao and Jiang 2010)

with uniform priors. We deal with multiple moment inequalities by adopting a single inequality

approximation (see (Chernozhukov, Kocatulum, and Menzel 2012)). We also contribute to the

literature that deals with partial identification in structural macroeconomic models (e.g. (?)).

Although we use moment inequalities to represent model uncertainty, we also provide an in-

terpretation of decision rules wedges as causing a change on the probability measure of the

frictionless model. Following the semi-parametric approach in (Hansen 2013), we provide a

characterization of frictions over time and not just on average. Finally, relative to (Del Negro

and Schorfheide 2013), we use inequality restrictions which can accommodate both deviations

of the model prediction from aggregate macroeconomic data and qualitative survey data. Apart

from enabling us to accommodate qualitative survey data, inequality restrictions on the obser-

vation equation provide a more general way of linking models’ predictions to the data. This is
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not only true for DSGE models, but also any model that has a state space representation.

The rest of the paper is organized as follows. Section 2 provides a motivating prototype

economy which can be used as an experimental lab for the econometric method that we suggest.

Section 3 examines the distortions present in the decision rules and their observable aggregate

implications. Section 4 introduces qualitative survey data and derives the relevant bounds. Sec-

tion 5 provides necessary and sufficient conditions for the correct specification of the moment

conditions constructed from survey data, and identification results. Section 6 illustrates how the

identified set can be used to test models with specific frictions. Section 7 has an application

to Spanish data. Section 8 concludes and provides avenues for future extensions. Appendix

A contains the proofs, a simulation result for the proposed test statistic, a discussion on suffi-

cient conditions for estimating the identified set using Markov Chain Monte Carlo (MCMC).

Appendix B contains computational results for the case of capital adjustment costs, some plots

of survey time series and further details of the data in the application.

Throughout the paper we refer to three different probability measures. The objective proba-

bility measure, Pt , the probability measure determined by the frictionless model M f , Pt(.|M f , .),

and the subjective probability measure Pt,i where i identifies agent i and t the timing of the

conditioning set. All three are absolutely continuous with respect to Lebesgue measure. The

corresponding conditional expectation operators are Et(.), Et(.|M f , .) and Ei,t(.). We distinguish

between the first and the second as the model will be correctly specified only if the econome-

trician has the right DGP. T denotes the length of both the aggregate and average survey data,

and L the number of agents. We denote by θ ∈ Θ the parameters of interest, and by q j(;θ) a

measurable function. Bold capital letters e.g. Yt denote a vector of length t containing {Yj} j≤t .

The operator→p indicates convergence in probability and the operator→d convergence in dis-

tribution; N (., .) is the Normal distribution; ||.|| is the Euclidean norm unless otherwise stated;

⊥ indicates the orthogonal complement and /0 the empty set. We denote by (Ω,Sy,P) the prob-

ability triple for the observables to the econometrician, where Sy = σ(Y ), is the sigma-field

generated by Y and (Ω,F ,{F}t≥0,P) the corresponding filtered probability space.

2.2 A Working Example

This section considers a simple frictionless economy and illustrates what are the observable

implications of certain types of frictions. We call frictions mechanisms creating a wedge in the

equilibrium conditions of the frictionless model. Thus, frictions produce differences between the
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expectations of the variable, conditional on the frictionless model and the available information

set, and the data.

Consider a simple Real Business Cycle (RBC) model. The economy is populated with a

continuum of agents with Constant Relative Risk Aversion (CRRA) utility, each forming expec-

tations about key decision variables and making basic consumption - savings decisions. They

rent capital to a representative firm, which is used for production, and receive a share of profits.

Individual investment decisions increase the availability of capital for next period, up to a cer-

tain level of depreciation. We denote aggregate variables by capital letters i.e. Xt ≡
∫

xi,tdΛ(i, t),

where Λ(i, t) is the distribution of agents at time t. The problem is:

max
{ci,t}∞

1

Ei,0

∞

∑
t=1

β
t c1−ω

i,t

1−ω

subject to the following constraints:

ii,t + ci,t = ŷi,t = Rtki,t + pri,t

ki,t+1 = (1−δ )ki,t + ii,t

where pri,t = ηi,t(ZtKα
t −RtKt), for α > 0.

The system of linearized aggregate equilibrium conditions, where ξt is the aggregation

residual, and X̃ represents deviations of any aggregate variable Xt from aggregate steady state

xss is:

−ωC̃t −ξC,t −β rssĒt R̃t+1 +ω ĒtC̃t,+1 = 0

yssỸt − cssC̃t − issĨt = 0

K̃t+1− (1−δ )K̃t −δ Ĩt = 0

Ỹt − Z̃t −αK̃t −ξY,t = 0

R̃t − Z̃t +(1−α)K̃t −ξR,t = 0

Under approximate linearity, that is, when ξt is negligible 3, we can easily obtain the aggre-

gate decision rules for Xt . The equilibrium decision rules will depend on predetermined capital

3Approximate linearity has implications beyond the choice of functional form. In particular, we assume complete
markets. Nevertheless, note that incomplete markets is a friction, and thus can be one of the deviations one can
consider. We discuss this in the last two sections and Appendix B.
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k̃i,t and on expectations of the aggregate productivity shock for j periods ahead, Ei,t(Zt+ j|Xt).

For example, the aggregate investment decision rule is:

Ĩt = A1(θ)K̃t +A2(θ)
∞

∑
j=0

A3(θ)
jĒt(Z̃t+ j|Xt) (2.1)

where A j(θ), j = 1,2,3 are functions of the structural parameters θ and Ēt indicates aggregate

conditional expectations. Note that individual expectations Ei,t are not necessarily formed with

respect to the objective probability measure, nor with respect to the same information set.

As a benchmark case, consider the case when the econometrician has the same model as

the agents, that is the true model has no frictions, and agents have rational expectations i.e.

Ei(.|Xt) = E(.|Xt). Here, it is typical to assume that only a subset of the information set of the

agents is observed by the econometrician, that is σ(X1,t)⊂ σ(Xt). However, since the model is

well specified, on average, the difference in the conditional expectations of the econometrician

and of the agents is negligible and parameters can be consistently estimated. To see this, notice

that the decision rule used by the econometrician can be rewritten as:

Ĩ?t = A1(θ)K̃t +A2(θ)
∞

∑
j=0

A3(θ)
jE(Z̃t+ j|X1t)+ et (2.2)

where

et = A2(θ)(
∞

∑
j=0

A3(θ)
jE(Z̃t+ j|Xt)−

∞

∑
j=0

A3(θ)
jE(Z̃t+ j|X1,t))

In this setup, as (Hansen and Sargent 2013) have shown, due to the law of iterated expectations

the following moment equalities hold:

E(etφ(X1,t− j)) = 0

for any j ≥ 1 and X1,t− j measurable function φ(.).

The case of interest of this paper is when Ei(.|Xi,t) 6= E(.|Xt ,M f ). Here the agents and the

econometrician not only have different information, but they also have a different structure of

the economy in mind. We explicitly condition on M f to emphasize that E(.|Xt ,M f ) is consistent

with frictionless behavior and implicitly assume that the frictionless part of the model is well

specified. The mismatch between the agents’ expectations and the econometrician’s prediction

could be due to differences in the models and/or information sets. As long as informational
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differences affect agents’ behavior, both differences have similar implications for the decision

rules. The individual decision rule is:

0 = Ei(ii,t −A1(θ)ki,t +A2(θ)
∞

∑
j=0

A3(θ)
jzi,t+ j|Xt)

and the corresponding aggregate condition is:

0 =
∫
Ei(ii,t −A(θ)ki,t +A2(θ)

∞

∑
j=0

A3(θ)
jzi,t+ j|Xt)dΛ(i) (2.3)

Real, nominal or informational frictions make (2.3) different from (2.1), and therefore

(2.2). As we show below, these differences can be characterized by moment inequalities. We

consider three examples: adjustment costs, occasionally binding constraints, and non-rational

expectations. These frictions constrain agents’ optimal behavior and generate a “wedge” λ̃t

that can be used to construct moment conditions. For i∗ the unconstrained optimal choice of

investment and icon the constrained optimal choice and aggregating across agents, we have the

following representation:

Ĩ?t = A1(θ)K̃t +A2(θ)
∞

∑
j=0

A3(θ)
jE(Z̃t+ j|X1t)+ et + λ̃t

λ̃t = Icon,t − I∗t

Example 1. Capital Adjustment Costs

Assuming full depreciation, the capital accumulation equation of the representative firm is dis-

torted as follows: Kt+1 = It − φ

2 (
Kt+1
Kt
−1)2Kt for φ ∈ (0,1).

Using the capital accumulation equation in the linearized Euler equation and imposing

R̃t = Z̃t − (1−α)K̃t we have:

(ω +φ(1+β (1−α))+1−α)κt = (α−φ(1−βα))(α−1)K̃t +(ω +βφ)κt+1−φ Z̃t

= (α−φ(1−βα))R̃t +(ω +βφ)Etκt+1 + ...

...−α(1−βφ)Z̃t

where κt is the Lagrange multiplier on the capital accumulation equation. Assuming that pro-
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ductivity is iid, and iterating forward we get:

κt =
γ1

1− γ2L−1Et R̃t + γ3Z̃t = ζ (L,γ1,γ2)Et R̃t + γ3Z̃t

where γ1 ≡ α−φ(1−βα)
ω+φ(1+β (1−α))+1−α

, γ2 = ω+βφ

ω+φ(1+β (1−α))+1−α
and γ3 = −α(1−βφ)

ω+φ(1+β (1−α))+1−α
and L

the lag operator. Using κt =−ωC̃t , and letting s := Css
Iss

, aggregate investment is:

Ĩcon,t = (1+ s)Ỹt +
s
ω

ζ (L,γ1,γ2)Et R̃t +
s
ω

γ3Z̃t

When φ = 0,

Ĩ?t = (1+ s)Ỹt +
s
ω

ζ (L,γ1,φ=0,γ2,φ=0)Et R̃t +
s
ω

γ3,φ=0Z̃t (2.4)

Notice that ζ (L,γ1,γ2) is increasing in both γ1 and γ2 and dγ1
dφ

< 0, dγ2
dφ

< 0 for ω > 1 and dγ3
dφ

> 0.

Therefore, ζ (L,γ1,φ=0,γ2,φ=0)−ζ (L,γ1,γ2)> 0,∀φ and the difference the investment rules with

and without adjustment costs is:

λ̃t ≡ Ĩcon,t − Ĩ?t

=
s
ω
(ζ (L,γ1,φ=0,γ2,φ=0)−ζ (L,γ1,γ2))Et R̃t +

s
ω
(γ3,φ=0− γ3)Z̃t

= − s
ω
(ζ (L,γ1,φ=0,γ2,φ=0)−ζ (L,γ1,γ2))(1−α)K̃t ...

...+
s
ω
(ζ (L,γ1,φ=0,γ2,φ=0)−ζ (L,γ1,γ2)+(γ3,φ=0− γ3))Z̃t

Hence, λ̃t is negatively related to K̃t . Moreover, after some algebra it can be shown that the

coefficient of Z̃t is also bounded below by a positive number if α < 1
2β

. Nevertheless, the sign of

the conditional mean of λ̃t is determined and the following moment inequality holds: Eλ̃tK̃t− j ≤

0,∀ j ≥ 0.

Example 2. Occasionally binding constraints

The case of occasionally binding constraints can be best motivated by attaching an aggregate

marginal efficiency shock, εt to investment, that is, ki,t = (1−δ )ki,t−1 + εt ii,t . For simplicity we

assume that this shock is iid and takes two values, εH and εL. We analyze the case of constraints

on dis-investing (capital irreversibility), which can be thought of as a restriction on how much

capital households can withdraw from the firm every period. The optimization problem now

includes a new constraint of the form Kt ≥ ρ(1− δ )Kt−1 which is equivalent to It ≥ − ρ̃

εt
Kt

where ρ̃ ≡ (1−ρ)(1−δ ). Denoting by νt the Lagrange multiplier on this constraint, and κt
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the Lagrange multiplier on the law of motion of capital, the relevant optimality conditions are:

κt +βEκt+1(ρ̃− (1−δ ))+EC−ω

t+1(Rt+1 +
ρ̃

εt+1
) = 0

νt −κtεt −C−ω
t = 0

νt(It +
ρ̃

εt
Kt) = 0

When εt = εH the representative household will choose I?H,t according to the following Euler

equation, which we get by setting νt = 0:

C−ω
t = EβC−ω

t+1
εH,t

εt+1
(1−δ +Rt+1εt+1)

and linearizing we have:

−ωC̃t =−EC̃t+1 + ε̃H,t +ER̃t+1

Solving the Euler equation forward, we get Ĩ?H,t = Ĩ?t + ε̃H,t . When εt = εL,t , the household dis-

invests up to the irreversibility level, that is IL,t = − ρ̃

εt
Kt . The corresponding linearized rule is

ĨL,t =−(K̃t − ε̃t) where we have imposed that Eεt = 1. Therefore aggregate investment evolves

as:

Ĩcon,t = Ĩ?H,tP(εt = εH)+ IL,tP(εt = εL)

= Ĩ?t − (1−P(εt = εH))(Ĩ?H,t − ĨL,t)

and the distortion produced by the occasionally binding constraint is:

λ̃t = Ĩcon,t − Ĩ?t =−(1−P(εt = εH))(Ĩ?t + K̃t − ε̃L + ε̃H)

Here λ̃t is negative as by definition ε̃H > ε̃L. The moment inequality implied by this friction is

Eλ̃tK̃t− j ≤ 0, ∀ j ≥ 0.

Example 3. Non Rational Expectations

When agents employ different models to make predictions, have mis-perceptions or sentiments,

the sign of Eλ̃tK̃i,t− j depends on how the model used by the agent relates to the objective prob-

ability measure. Suppose, for illustration, that agents are unaware and unable to estimate the

stochastic process for productivity. Suppose that the true process is Z̃t = εt where εt ∼ N(0,1).
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Agents use output realizations to predict future productivity, Et Z̃t+ j = ρ jỸt for |ρ| < 1, since

Corr(Zt ,Yt) =
1

1+α2V(Kt)
> 0. Using this conditional expectation in the investment rule 2.1,

aggregate investment is:

Ĩcon,t = A1(θ)K̃t +A2(θ)(1−A3(θ)ρ)
−1(αK̃t + Z̃t)

while the investment rule used by the econometrician after substituting the true process for Z̃t in

(2.1) is:

Ĩt = A1(θ)K̃t +A2(θ)Z̃t (2.5)

The difference between the investment rule under bounded rationality and the one used by the

econometrician is therefore:

λ̃t = A2(θ)(1−A3(θ)ρ)
−1(αK̃t +ρA3(θ) Z̃t)

Assuming full capital depreciation and using the true process for productivity in equation (2.5),

which is identical to equation (2.4) once we substitute for the production function and the return

to capital, we get that A2(θ) = 1+ Css
Iss

> 0 and A3(θ) =
sα

(1+s)(ω+1−α) < 1. Therefore, λ̃t is a

positive function of K̃t and Z̃t , and the moment inequality in this case is, Eλ̃tKt− j ≥ 0, ∀ j≥ 0.

In all of the examples, λ̃t does not behave as classical measurement error and is endoge-

nous, as it depends on capital. Thus, the setup is similar to the endogeneity problem in standard

regressions where the omitted information is correlated with the regressors. By imposing the

inequalities we acknowledge this endogeneity.

The examples deal with distortions in the decision rules. In the next section, we show how

to translate distortions to the equilibrium conditions into observationally equivalent distortions

to decision rules. Distortions to decision rules are economically more informative as they di-

rectly affect the transmission of shocks and welfare and provide a framework where survey data

can be introduced.

Because we will work with linearized models, second or higher order effects will be ig-

nored. However, moment inequalities, would also appear in nonlinear models. We also ignore

the presence of approximation errors because the way we treat frictions does not depend on

assumptions regarding the approximation error.
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2.3 Perturbing the Frictionless Model

Denote by xi,t the endogenous individual state, by zi,t the exogenous individual state, and by

Xt =
∫

xi,tdΛ(i) and Zt =
∫

zi,tdΛ(i) the corresponding aggregate states.

Assume that the optimality conditions characterizing the individual decisions are:

G(θ)xi,t = F(θ)Ei,t

 xi,t+1

Xt+1

 |xi,t ,zi,t ,Xt ,Zt

+L(θ)zi,t (2.6)

zi,t = R(θ)zi,t−1 + εi,t

where E(εi,t) = 0. Because we assume that the coefficients of the optimality conditions are

common across agents, preferences and technologies are common across agents. Relaxing this

assumption would make the notation more complicated, but would not change the essence of the

argument. We could also specify equilibrium conditions that involve past endogenous variables

but this is unnecessary as we can always define dummy variables of the form x̃i,t ≡ xi,t−1 and

enlarge the vector of endogenous variables to include x̃i,t .

Aggregating across individuals, we have:

G(θ)Xt = F(θ)
∫
Ei,t

 xi,t+1

Xt+1

 |xi,t ,zi,t ,Xt ,Zt

dΛ(i)+L(θ)Zt (2.7)

Zt = R(θ)Zt−1 + εt (2.8)

We will refer to the economy with frictions as the triple (H(θ),Λ,Ei) where

H(θ) ≡ (vec(G(θ)T ),vec(F(θ))T ,vec(L(θ))T ,vec(R(θ))T ,vech(Σε)
T ).

We partition the vector θ into two subsets, (θ1,θ2) where θ2 collects the parameters of the

frictions. Thus, setting θ2 = 0, shuts down the frictions.

In an economy with no frictions, prices efficiently aggregate all the information. Thus

there is no need to distinguish between individual and aggregate information when predicting

aggregate state variables. When agents are rational, and the model is linear ( or linearized)



2.3. Perturbing the Frictionless Model 28

aggregate expectations for (xT
i,t+1,X

T
t+1)

T are as follows. For wi,t ≡ (xi,t ,Xi,t ,zi,t ,Zi,t),

∫∫
xi,t+1 pi(xi,t+1,Xt+1|wi,t)d(xi,t+1,Xt+1)dΛ(i) =∫∫

xi,t+1 p(xi,t+1|wi,t)d(xi,t+1)dΛ(i) =∫
Pi,1xi,tdΛ(i)+P2Xt +P3

∫
Pi,3zi,tdΛ(i)+P4Zt and∫∫

Xt+1 pi(xi,t+1,Xt+1|wi,t)d(xi,t+1,Xt+1)dΛ(i) =∫
Xt+1 p(Xt+1|Xt ,Zt)d(Xt+1) =

P5Xt +P6Zt ≡ E(Xt+1|Xt ,Zt)

where Pj, j=1..6 are the coefficients of the linear projection. By Rational expectations and since

the coefficients (G,F,L) are common across i, equilibrium consistency requires Pi,1 = P1,Pi,2 =

P2 and therefore P1 +P2 = P5 and P3 +P4 = P6. Thus, as expected, aggregate conditional expec-

tations collapse to E(Xt+1|Xt ,Zt).

The frictionless economy, (H(θ1,0),Λ,E), can be summarized by the equilibrium condi-

tions:

G(θ1,0)Xt = F(θ1,0)Et(Xt+1|Xt ,Zt)+L(θ1,0)Zt (2.9)

Zt = R(θ)Zt−1 + εt (2.10)

The following assumption ensures the existence of a Rational Expectations equilibrium in

a frictionless economy.

ASSUMPTION-EQ

There exist unique matrices P∗(θ1,0)
nx×nx

,Q∗(θ1,0)
nx×nz

satisfying:

(F(θ1,0)P∗(θ1,0)−G∗(θ1,0))P∗(θ1,0) = 0

(R(θ)T ⊗F(θ1,0)+ Iz⊗ (−F(θ1,0)P∗(θ1,0)+G∗(θ1,0)))vec(Q(θ1,0)) = −vec(L(θ1,0))

such that Xt = P∗(θ1,0)Xt−1 +Q∗(θ1,0)Zt is a competitive equilibrium.

These two conditions arise using the decision rule in the expectational system (2.9) and

solving for the undetermined coefficients, see for example (Marimon and Scott 1998). Since the
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econometrician does not know the model with frictions (she knows the model up to θ2 = 0), we

rearrange the equations of the economy with frictions into the known and the unknown part of

the specification. Adding and subtracting the first order conditions of the frictionless economy,

we have:

G(θ1,0)Xt = F(θ1,0)Et(Xt+1|Xt)+L(θ1,0)Zt +µt

where

µt ≡ −(G(θ)−G(θ1,0))Xt

+(F(θ)−F(θ1,0))
∫
Eit

 xi,t+1

Xt+1

 |xi,t ,Xt

dΛ(i)

+F(θ1,0)(
∫
Eit

 xi,t+1

Xt+1

 |xi,t ,Xt

dΛ(i)−Et(Xt+1|Xt))

+(L(θ)−L(θ1,0))Zt .

This system of equations cannot be solved without knowing the structure of µt . Nevertheless,

we characterize the relationship between µt and a set of candidate decision rules that depend on

the endogenous variables and some unobserved process, λt . The following proposition states

sufficient conditions such that decision rules are consistent with µt .

Proposition 1. Given:

1. The perturbed system of equilibrium conditions (2.9) where Et µt ≥ 0

2. A distorted aggregate decision rule X∗t = X f ,RE
t + λt where X f ,RE

t =
∫

xRE
i,t dΛ(i) is the

Rational Expectations equilibrium of (H(θ1,0),Λ,E) and

3. A λt vector process such that λt = λt−1Γ+νt for some real-valued Γ:

If there exists a non-empty subset of Θ1 that satisfies

Et(F(θ1,0)Γ−G(θ1,0))λt = −Et µt

The following condition is satisfied for almost all subsets of σ(Yt−1) :

Et(G(θ1,0)X∗t −F(θ1,0)(θ)X∗t+1−L(θ1,0)Zt) ≥ 0 (2.11)
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Proof. See Appendix

Proposition 4 states that, as long as there exists an admissible parameter vector θ1 ∈ Θ1

such that condition 3.6 holds, the decision rule X∗t = X f ,RE
t +λt generates the same restrictions

as those implied using the perturbed (by µt) first order equilibrium conditions. Model incom-

pleteness obtains because we only know the sign of λt . Moreover, we focus on parameter vectors

that yield determinate and stable equilibria in the frictionless economy. This implies a restric-

tion on the stochastic behavior of λt . Since there is limited information about λt , we are only

able to identify sets of economic relationships out of average moment inequality conditions.

However, in certain situations, we may be interested in characterizing frictions over time

(and not just on average), and therefore we need to obtain a conditional model that generates

λt . This requires imposing more restrictions on the stochastic behavior of λt . We will show that

restricting the distribution of aggregate shocks is enough. For every θ ∈Θ, there is a multiplicity

of corresponding conditional models which can be constructed with different distributions of

shocks but give rise to the same Eλt .

To construct this family of models, we use the fact that the process λt causes a change in

the measure implied by the frictionless model. As (Hansen 2013), we define a perturbationMt

such that for any measurable random variable Wt : EtMWt = Et(Wt |M f ) (and vice versa, that

is EtWt = Et(
˜̃MtWt |M f ) ). This representation is useful for two reasons. First, as we show in

the proof of Proposition 4, interpreting the distortions as a change of measure provides a unified

way of looking at frictions. Second, we can computeMt , for all t, and this can give us estimates

of the wedges at any point of time.

We briefly explain how one can computeMt - a full description is in the Appendix. Recall

that in the linearized model, λ̃t measures the distance between the prediction of the frictionless

model and the data, where the latter is assumed to be produced by a model with frictions. As

shown in section 2, λ̃t is a function of the endogenous variables and the shocks. Without loss of

generality assume that Eλ̃t > 0. We look for aMt that makes this expectation zero. By finding

aMt such that EMt λ̃t = 0 we are identifyingMtdP(.), which is the density of the frictionless

model that can be derived from the data by distorting the objective distribution, P. GivenMt ,

we can decompose Eλ̃t as: Eλ̃t ≡ EMt λ̃t +E(1−Mt)λ̃t . Therefore, to impose EMt λ̃t = 0

it suffices to set E(1−Mt)λ̃t = Eλ̃t . The term 1−Mt determines the distortion at time t.

To understand why using this decomposition is useful, notice that λ̃t is related to endogenous

frictions but also to the unobservable shocks. As we show below, 1−Mt is a time varying
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function of Eλ̃t . Since the latter is an average, unobservable shocks are eliminated and 1−Mt

captures only the endogenous frictions.

In general, there are multiple Mt that satisfy the restriction E(1−Mt)λ̃t = Eλ̃t . This

is exactly what we mean by a multiplicity of conditional models. In order to get a unique

conditional model, we need to impose more restrictions on the stochastic behavior ofMt and

therefore λ̃t . To do this, we introduce a pseudo-distance metric d(Mt), which we minimize

subject to the restriction E(Mt−1)λ̃t =Eλ̃t . The choice of the metric depends on the modelers’

beliefs of the distribution of the shocks. Below we illustrate what happens when d(Mt) ≡
1
2(M−1)T (M−1) which is consistent with the shocks having finite second moments 4. Note

that this distance metric is also used in the classic mean-variance frontiers in portfolio choice

theory, or to compute Hansen-Jagganathan bounds. Intuitively, the minimization implies that

we look for Mt that is consistent with our moment restrictions and has minimum variance 5.

Restricting the distribution of the shocks pins down a unique conditional model corresponding

to a value of θ .

In general,Mt is a positive Ft− measurable random variable, unit expectation martingale,

E(Mt+1|Ft) =Mt , EMt = 1 6. We stack allMt in a vectorM and define M̃= 1−M where

1 is the unit vector, which corresponds to the frictionless steady state of Mt . The vector M

satisfies the following program, where bold letters indicate vectors, λ̃ (Yt ;θ) is the matrix con-

taining the distortions for every t for every variable j, λ̃ j,t and (π1,π2,π3) are the corresponding

Lagrange multiplier vectors.

max
M

−1
2
M̃TM̃

subject to 1TM̃= 0 (π1)

M̃T
λ̃ j(Yt ;θ) = 1T

λ̃ j(Yt ;θ), j = 1, ..p ,(π2, j)

M̃T
λ̃ j(Yt ;θ) =

[
1T

λ̃ j(Yt ;θ)
]
+
, j = p+1, ..r

M≥0 (π3,t ,∀t ∈ (1..T )

4For any random variable x and distorting density Mt by Cauchy Schwartz we have that (
∫

xtMtdP)2 ≤∫
x2

t dP
∫
M2

t dP. Minimizing the variance of the second term assumes that the variance of the first term exists.
5This is similar to the approach in generalized empirical likelihood settings in econometrics (i.e. (Newey and

Smith 2004)).
6Being a martingale is a necessary condition for the distorted conditional expectation to be consistent with the

Kolmogorov definition (Hansen and Sargent 2005).
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The first constraint imposes unit expectation while the last constraint imposes non nega-

tivity ofM. The rest of the constraints impose the moment conditions. We present an analyt-

ical solution of this problem ignoring the third constraint. The set of complete Kuhn-Tucker

conditions is in the Appendix. Letting λ̄ ≡ T−11Tλ̃ (Y ;θ), ˜̃
λ (Y ;θ) ≡ λ̃ (Y ;θ)− λ̄ (Y ;θ) and

V(λ̃ (Y ;θ))≡ T−1 ˜̃
λ (Y ;θ)Tλ̃ (Y ;θ) we have:

M̃ = ˜̃
λ (Y ;θ)V(λ (Y ;θ))−1

 λ̄1(Y ;θ)

[λ̄2(Y ;θ)]+

= wt

 0

[λ̄2(Y ;θ)]+

 (2.12)

where wt ≡ Ẑ2
t +λ̂t(λ̂t−Eλ̂t)

V(Ẑt)+V(λ̂t))
. The optimalMt is a time varying function wt of the average distortion

over the sample, λ̄2(Y ;θ). The weight wt is a function of the relative variability of λ̂ , which is

a function of the endogenous variables, and of Ẑt , which is function of the shocks Zt .

We illustrate Proposition 4 when the econometrician does not know the capital adjustment

cost function and the data have been generated using quadratic adjustment costs (as in Example

1). Note that here the distortion µ̃t appears in the aggregate (linearized) Euler equation. We

derive λ̃t for all endogenous variables.

Example 4. Analytical results for Example 1

Given the first order conditions of the frictionless model, let (λ̃1, λ̃2, λ̃3, λ̃4, λ̃5, λ̃6) be the lin-

earized distortions to (K̃t , K̃t+1,C̃t , R̃t , Ĩt ,Ỹt). Then, in this case Et(F(θ1,0)Γ−G(θ1,0))λ̃t +

µ̃t) = 0 is:



0 −βΓ 0 −β rssΓ 0 0

1−α 0 0 −1 0 0

0 0 −css 0 −iss yss

δ −1 0 0 0 1 0

−α 0 0 0 0 1

1 1 0 0 0 0





λ̃1,t

λ̃2,t

λ̃3,t

λ̃4,t

λ̃5,t

λ̃6,t


=



−µ̃1,t

0

0

0

0

0


where Γ is the projection of µ1,t+1 on µ1,t . All of λ̃ j,t , j ∈ (1,2..6) are determined by µ̃1,t . Letting
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Ω≡ Γβ ((α−1)rss +1) the solution is:



λ̃1,t

λ̃2,t

λ̃3,t

λ̃4,t

λ̃5,t

λ̃6,t


=

µ̃1,t

Ω



1

1

css(−iss(1−δ )+αyss)

α−1

1−δ

α


Since the adjustment cost is unknown, one can only argue that g(Kt+1,Kt) is increasing in

Ir =
Kt+1
Kt

. In this case the non linear Euler equation becomes

C−ω
t = βEC−ω

t+1(1−δ +Rt+1)−β
EC−ω

t+1

Kt
gIr,t(Ir,t +

C−ω

t+1

EC−ω

t+1
)

where gIr is the derivative of g(Kt+1,Kt) with respect to Ir. Therefore, µ1,t =−β
EC−ω

t+1
Kt

gIr,t (Ir,t +

C−ω
t

EC−ω

t+1
) < 0. Linearizing this equation does not change the sign of the conditional mean for the

distortion. Moreover, we know that λ1,t < 0 as the law of motion of capital is distorted by the

adjustment cost. Given that we know sign(Et µ̃1,t) and sign(Et λ̃1,t), we can derive sign(Et λ̃ j,t)

for all j > 1 using equation (3.9).

Moreover, given that we know the signs of the distortions to all of the variables, we can

utilize a subset of these as moment restrictions. For example, we can use the moment inequalities

for investment and capital:

Eλ̃5,t = E(It − Ĩ?t )Kt−1 ≤ 0

Eλ̃1,t = E(Kt − K̃?
t )Kt−1 ≤ 0

where Ĩ?, K̃? are the solution of the frictionless model. Correspondingly, we can estimate the

perturbations M̃t by substituting λ j for λ̃1, λ̃5 in equation (3.7).

For the rest of the paper we focus on the identification of the set of unconditional models,

indexed by θ . In the next section we will show how qualitative survey data can be formally

linked to the decision rules of the model, how they can be used to generate additional moment

conditions and provide a characterization of the identified set of parameters in this case.
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2.4 The Link to Qualitative Survey Data

To link survey data and DSGE model variables, one typically uses a measurement error ap-

proach, see (Del Negro and Schorfheide 2013), where the expected value of the survey variable

is a proxy for a model variable. For example, inflation expectations taken from the Survey of

Professional Forecasters have been linked to DSGE-model generated inflation expectations 7.

Let Y o
t be the observed variable of interest and Y m

t the model based conditional expectation of

Y o
t , Y m

t ≡ E(Y o
t |M,Ft). Furthermore, let Ỹt be some cross sectional statistic in the survey e.g.

the mean or the median. Then, the observation equation used is:

Ỹt = ΛY m
t +ut , E(ut |Y m

t ) = 0

where Λ is either estimated or fixed. Combining with this observation equation with the restric-

tions implied by the model, the augmented set of restrictions is:

E(Y o
t −Y m

t |Ft) = 0

E(Ỹt −ΛY m
t |Ft) = 0

This paper introduces inequality restrictions on both equations of the form:

E(Y o
t −Y m

t |Ft) ≥ 0 (2.13)

P(Y o
t −Y m

t ≥ 0|Ft) ≥ Ξt (2.14)

In the previous sections we have motivated equation 4.1. In this section we motivate equation

4.2. and how Ξt depends on survey data.

A general approach to the problem would be to treat equation 4.2 as an additional condi-

tional moment restriction that can be constructed using Ξt :

E(Y o
t −Y m

t |Ft) ≥ 0

E((g(Y o
t ,Y

m
t ,Ξt)|Ft)) ≥ 0

The choice of function g depends on the type of additional data available. While our identifica-

7Similarly, in the single equation New Keynesian Phillips Curve, inflation expectations are substituted with survey
data, see for example (Mavroeidis, Plagborg-Moller, and Stock 2014).
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tion results hold for any function g and Ξt , we focus on survey data of categorical nature i.e. on

representation 4.2.

Usually, qualitative survey data are in the form of aggregate statistics, where aggregation

is performed over categories of answers to particular questions. We choose to represent answers

as functions from the event space ω ∈ Ω to the range of the random variables of interest. This

is similar to the treatment in microeconometric studies, where it is assumed that the categorical

variable is a weakly increasing function of a continuous latent variable. We divide the support

of the control variables, which are assumed to be continuous, into a finite number of partitions

which depends on the number of categories of answers available to the survey respondents. For

example, if the question is of the type "How do you expect your financial situation to change

over the next quarter" and the answer is trichotomous, i.e "Better", "Same" and "Worse", then

the answers maps to partitioning end of period assets at+2 into three sets: at+2 ∈ [at+1− ε,∞),

at+2 ∈ (at+1−ε,at+1+ε) and at+2 ∈ (−∞,at+1−ε]. Therefore, there is a measurable mapping

from the categories of answers to the random variables relevant to the decision of each agent.

Moreover, since the decision of each agent depends on the model she has in mind, there is a

measurable mapping from answers to Ei,t(xt+1,i|xi,t ,Xt). For this interpretation to hold, we need

to assume that agents report their beliefs truthfully.

Denote by {Si,k,t}i≤N the survey sample over a period of length T, where i is the index over

survey respondents, and k an index over K, the class of questions that map to the same event on

Ω. For example, if a respondent reports that she expects her "future savings" to deteriorate, she

should also respond negatively to the question about her "future financial situation". Let Ck
l be

the lth categorical answer to question k and ξ̂i,t,k the respondent’s choice. Given some weights

{wl}l≤L on each category, the available statistics are of the form:

B̂k
t = ∑

l≤L
wl ∑

i≤N
wi1(ξ̂i,t ∈Ck

l )

The weight assigned on each individual response, wi, corrects for discrepancies in representation

between units, as it is done with the treatment of survey data by statistical agencies. For example,

the response of a two hundred employee firm has to be adjusted so as to be comparable to a five

employee firm. Without loss of generality, we assume a negative answer is equal to minus the

positive one, and we therefore restrict our analysis to the case of wl ∈ R+.

Since we have assumed truth telling, we can map the answer to the agent’s beliefs i.e.
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h : ξ̂i,t → ξi,t ≡ Ei,t(xi,t+1|xi,t ,Xt). Thus, the survey statistic is:

B̂k
t = ∑

l≤L
wl ∑

i≤N
wi1(Ei,t(xt+1,i|xi,t ,Xt) ∈ Bl) (2.15)

where Bl ≡ {(xi,t ,Xt) ∈R2nx : h(xi,t ,Xt) ∈Ck
l }. Since the conditional expectation is a func-

tion of the information set, Bl belongs to the partition of the support of individual xi,t (or aggre-

gate Xt) that corresponds to category Ck
l . Representation 4.3 can then be linked to the model.

Recall that the perturbed solution of the model is:

X̃t = P?(θ1,0)X̃t−1 +Q?(θ1,0)Z̃t + λ̃t

= P?(θ1,0)X̃t−1 +Q?(θ1,0)R(θ)Z̃t−1 +Q?(θ1,0)εt + λ̃t

Therefore, for every observable Y o
t we have that:

Y o
t ≡ Y m

t + c′εt + λ̃t ≡ Y m
t + et + λ̃t

If the distortion λ̃t is a positive function of the state variables, the macroeconomic event whose

probability we want to characterize isRt ≡ {λ̃t = Y o
t −Y m

t − et ≥ 0}8.

In section 3 we proposed a representation for λ̃t using the perturbationMt . This represen-

tation can be used when the user already has an estimator for the set ΘI and is not appropriate

for obtaining the identified set. Since λ̃t depends on the distance functional we minimize, the

definition ofRt is non unique. Moreover, that representation of λ̃t requires information over the

whole sample, while to constructRt we need information at time t. This problem did not appear

when the first set of restrictions was used (equation 4.1) because the identifying restrictions are

unaffected by the representation of λ̃t . In the second set of restrictions, the presence of the in-

dicator function makes the representation of λ̃t important. We avoid this problem by treating λ̃t

as an unobservable variable. To construct 4.2, we make an assumption on the probability of a

linear combination of the vector of shocks being positive. This assumption is less stringent than

those on the functional form of the distance functional in Section 3. Once Θ̂I is estimated, then

λ̃t can be obtained.

8Strictly speaking, this characterization is true only for positively valued random variables. If the variables are
transformed such that they take values on the whole real line, i.e. in deviation from steady state, then the proper
event is Rt ≡ {[Y o

t −Y m
t − et ]Xt−1 ≥ 0}.
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Since we deal with survey data, it is useful first to consider the event Rt , at the individ-

ual level, Ri,t ≡ {λi,t ≥ 0}. In the proof of Proposition 6, we establish two facts. First, since

the equilibrium conditions of the model with frictions depend on subjective conditional expec-

tations, and the model with frictions is a smooth perturbation of the frictionless model, any

probability statement on the subjective expectations translates to a probability statement on µi,t .

Second, any probability statement on µi,t is a probability statement on the solution of the model,

and therefore on λi,t . Given representation (2.15), qualitative survey data have information on

the quantiles of subjective conditional expectations of the agents. Therefore, survey data relate

directly to the probability of observing a friction, P(Ri,t) .

By treating shocks and frictions as unobservable, we can only construct P(R̃t) ≡ P(Y o
t −

Y m
t ≥ 0). We show that P(Rt) is bounded above by a constant times P(R̃t) and bounded below

by P(Ri,t). This generates another moment inequality restriction. Proposition 6 shows that

categorical survey data imply a lower bound on the probability of a distortion in an aggregate

variable due to a friction. The bound depends on survey data and on the assumed distribution

of the innovations to the shocks. The proposition deals with positive distortions; the same holds

for negative distortions.

Proposition 2. Let Λ be the distribution of agents in the economy and let B̂k
t be defined as in

4.3. If there exists an aggregate shock vector Zt of length p > 0, with innovation εt such that

E(εt |Ft−1) = 0 and V(εt |Ft−1) = Σ < ∞, P−a.s , then for a real valued c
p×1

such that et = c′εt

and κt ≡ P(et ≥ 0|Ft−1), the following lower bound holds, P−a.s.:

E(1(Y o
t −Y m

t ≥ 0)−B̂k
t κt |Ft−1)≥ 0 (2.16)

Proof. See Appendix

To obtain this result we assume that the shocks related to the friction are independent from

the other structural shocks, and therefore independent from any linear combination of them

(c′εt). For instance, in the capital irreversibility example, the marginal investment efficiency

shock is assumed to be independent from the aggregate productivity shock. Moreover, it is

typical to assume that the distribution of εt is symmetric around the origin, and therefore P(et ≥

0|Ft−1) is also easy to characterize. When this assumption is relaxed then characterizing P(et ≥

0|Ft−1) can be more difficult.

We also need assumptions about survey data and their econometric treatment. In order to
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cover cases which do not strictly belong to the ’indicator function’ representation that categori-

cal survey data imply, we consider a general representation which implies a choice of a statistic S

over responses on question k, ξ k
i,t . Examples of these statistics, for any function φ(.), can be av-

erages, S1(z) = (1′1)−1(1′φ(z)) or other order statistics like S2 = φ(mini(z)),S3 = φ(maxi(z)).

In the case of categorical variables, φ(.) ≡ wlwi1(.) and S ≡ S1 ◦ S1, therefore the statistic is

Ξk
t = B̂k

t . Our assumptions will be directly on Ξk
t :

ASSUMPTION-SD (Survey Data Assumptions)

1. {Ξk
t }t≤N is a collection of random variables indexed by t = 1..T with strong mixing coef-

ficient α of size −r/(r−1),r > 1

2. E|Ξk
t |r+δ < ∞

Lemma 1. Convergence of Survey Data Statistics

Under Assumption SD and Theorem 2.3 in (White and Domowitz 1984), | 1T ∑t(Ξ
k
t −EΞk

t )|
a.s→ 0

With regard to assumptions SD-1 and SD-2, one can derive sufficient conditions for them

to hold by characterizing the dependence of the state variables (xi,t ,zi,t ,Xt ,Zt) across t and across

i. This is because Ξt ≡ S(ξi,t) and ξi,t is a function of xi,t ,zi,t , Xt ,Zt . We focus on parameter

combinations that produce stable solutions, and on a linearized DSGE model that has a sta-

tionary VARMA(p,q) reduced form representation. Sufficient conditions for α− mixing of a

VARMA(p,q) process would therefore be sufficient for our setup. Moreover, one needs to char-

acterize how beliefs correlate across agents. For example, if S = S1 and r = 2, a sufficient

condition for assumption 2 to hold is that the absolute covariance of beliefs across agents is

summable over i9. Milder conditions that allow for the sum to grow at a rate less than equal to

N are also possible.

Apart from intrinsic randomness in survey data, there might be some additional noise in

individual responses which can be attributed to classification error or heterogeneity. In the case

of idiosyncratic noise, when S= S1 the noise can be averaged out. If the noise is common across

a subset of respondents, it is expected to generate bias in the identified bounds, especially if the

additional survey based restrictions are non linear in Ξt . When the restrictions are linear in Ξt ,

9Since ξ k
i,t ∈ (0,1), it has bounded moments. Moreover, E| 1

N ∑i≤N ξ k
i,t |2+δ ≤ E| 1T ∑i≤N ξ k

i,t |2 and the latter is
equal to 1

N2 ∑i≤N E|ξ k
i,t |2 +

1
N2 ∑ j 6=iE|ξ k

i,tξ
k
j,t |. The 1st component is bounded, as the second moment of ξ k

i,t is
bounded for all i, t. For the second component, letting h≡ j− i, E|ξ k

i,tξ
k
j,t | ≡αi, j and αi, j = α j,i, 1

N2 ∑ j 6=iE|ξ k
i,tξ

k
j,t |=

2
N ∑h,h≥0 |αi,i+h|. Summability of covariances of beliefs over different individuals at all times is sufficient for the
2nd component to converge to zero.
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using as many questions as possible that relate to the same event might reduce this bias as long

as the noise is independent across k. In the case of categorical survey data, g(., .) is separable in

Ξt , and thus the bias can be reduced.

In the next section we analyze the implications of the restrictions of Proposition 6 for model

identification.

2.5 Identification And Estimation

In the previous sections we have motivated how inequality restrictions arise from robust theoret-

ical predictions and the relation between agents subjective expectations and qualitative survey

data. In this section we provide a formal treatment of the identification of a linear(ized) Dynamic

Stochastic General Equilibrium (DSGE) model based on these restrictions. First, we illustrate

how our statistical representation of a DSGE model relates to the state space representation that

is typically used for estimation. Building on (Komunjer and Ng 2011), we will show necessary

and sufficient conditions for partial identification of the model arising from the theoretical mo-

ment inequalities. We also show conditions under which the survey data inequalities provide

additional information and therefore a sharper identified set.

We base the analysis on the innovation representation of the solution to the linear(ized)

DSGE model. This is the natural representation to use when there are differences in information

between economic agents and the econometrician, as it takes into account that not all the state

variables relevant the decision of agents are observable. We consider the following class of

models:

X̂t+1|t = A(θ)
nX×nX

X̂t|t−1 +Kt(θ)
nX×nX

at

Y o
t = C(θ)

nY×nx

X̂t|t−1 +at

where Kt(θ) is the Kalman gain and at is the one-step ahead forecast error which could be

derived from the state space representation:

Xt+1 = A(θ)
nX×nX

Xt + B(θ)
nX×nX

εt+1

Yt = C(θ)
nY×nX

Xt +λt = C(θ)
nY×nX

A(θ)
nX×nX

Xt−1 +C(θ)
nY×nX

B(θ)
nX×nX

εt +λt

= C̃(θ)
nY×nX

Xt−1 +D(θ)
nY×nX

εt +λt
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where εt is the innovation to the shock vector Zt . By construction,

at = λt +C(θ)A(θ)(Xt−1− X̂t−1|t−1)+C(θ)B(θ)εt

Therefore, the forecast error is a combination of the true innovations to the information sets

of the agents, εt , the estimation error of the state variable, Xt−1− X̂t−1,t−1, and the frictions, λt .

Let N(θ) ≡ vec(A(θ)′,B(θ)′,C(θ)′), and assume that E(εt |σ(Ft)) = 0, and E(εtε
′
s|σ(Ft)) =

1(s = t)Σεt , where Σεt � 0.

Given E(λt |σ(Ft−1))≥ 0, we define the following conditional moment restriction:

E(Y o
t −C(θ)

nY×nx

X̂t|t−1|σ(Ft−1))≥ 0

For any function φ(.) of a random vector Yt−1 that belongs to the information set of the econo-

metrician, the following holds:

E(Y o
t −C(θ)

nY×nx

X̂t|t−1)φ(Yt−1) = EV(Yt−1)φ(Yt−1)≥ 0

for a random function V(Yt−1) ∈ [0,∞]. In order to study the properties of these estimating

equations we need to make assumptions about the local identification of Θ0, given the value

of EV(Yt−1)φ (Yt−1). We resort to sufficient conditions that make the mapping from θ to the

solution of the model regular, and thus assume away population identification problems (see,

for example (Canova and Sala 2009)). We assume that Θ belongs to a compact subset of Rnθ .

Since certain parameters are naturally restricted, e.g. discount factors, persistence parameters

or fractions of the population, and others cannot take excessively high or low values, assuming

compactness is innocuous. We also need to acknowledge that due to cross - equation restrictions,

which we denote by L(θ) = 0, the number of observables used in the estimation need not be

equal to the cardinality of Θ, i.e., ny < nθ . (Komunjer and Ng 2011) provide the necessary and

sufficient conditions for local identification of the DSGE model from the auto-covariances of

the data. We reproduce them below, with the minor modification that Assumption LCI-6 holds

for any element of the identified set Θ0.

ASSUMPTION -LCI (Local Conditional Identification)

1. Θ is compact and connected
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2. (Stability) For any θ ∈Θ and for any z ∈ C, det(zInX −A(θ)) = 0, implies |z|< 1

3. For any θ ∈Θ, D(θ)ΣeD(θ)′ is non-singular

4. For any θ ∈ Θ, (i) The matrix (K(θ)A(θ)K(θ) ..,A(θ)nX−1K(θ)) has full row rank and

(C(θ)′A(θ)′C(θ)′ ..,A(θ)′nX−1C(θ)′)′ has full column rank.

5. For any θ ∈Θ, the mapping N : θ 7→ N(θ) is continuously differentiable

6. Rank of matrix ∆NS(θ) is constant in a neighborhood θ0 ∈ΘI and is equal to nθ +n2
x

10

Lemma 2. Given Vi(.) ∈ [V(.), V̄(.)], and Assumption LCI, θ is locally conditionally identified

at a θ0 in ΘI from the auto-covariances of Yt . Consequently, θ is locally conditionally identified

at any θ0 in ΘI .

Proof. See Appendix

In order to characterize the identified set, we also need to make assumptions on the correct

specification of the moment conditions we use. Correct specification is important as it implies

a non-empty identified set that covers the true θ0. We give two characterizations of this con-

cept, one that involves survey data and the other macroeconomic aggregates. Both have to be

consistent with the model’s predictions.

Definition 1. Correct Specification

CS-I: Let K be the class of questions that relate to the same event. For any question K ∈ K,

there does not exist a K′ ∈ K such that
⋂

k={K,K′} (
⋃

l∈L Bl,k) = /0,P−a.s

CS-II: ForRt ≡ {Y o
t −Y m

t − et ≥ 0}, ∃θ ∈Θ : P(Rt |σ(Ft))> 0.

The first condition, CS-I, implies that conditional on information at time t, the events

identified by different survey questions cannot be mutually exclusive11. The second condition

CS-II implies that for the model to be correctly specified, there must exist a subset of Θ such that

10

∆
NS(θ0) = (

∂δ NS(θ , Inx)

∂θ
,

∂δ NS(θ , Inx)

∂vecT
)|θ=θ0

where

δ
NS(θ ,T ) = (vec(TA(θ)T−1)T ,vec(T K(θ))T ,vec(C(θ)T−1)T ,vech(Σα (θ))

T )T

11In the Appendix we plot time series of average responses to questions that covers approximately similar events.
Mutual consistency should reveal as strong co-movement in the series.
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the event we are interested to identify,Rt , has positive conditional (and therefore unconditional)

probability. In Lemma 11 in the Appendix we show that the two conditions, are equivalent. If

either does not hold, the identified set is empty. Therefore, under correct specification, the

identified set is non empty, ΘI ∩Θ 6= /0.

All of the identification results assume the existence of appropriate instruments to con-

struct unconditional moment restrictions from the conditional moment inequalities 12. Such

instruments can be either past data or past state variables constructed with the Kalman filter. By

construction, the latter are uncorrelated with current information, but they might be noisy.

With regard to the survey data moment conditions, we need to show their validity as ”su-

pernumerary”, see (Bontemps, Magnac, and Maurin 2012), i.e. that they are useful in potentially

reducing the identified set by making the set of admissible V(Yt−1) smaller. We cannot strictly

follow the approach of (Bontemps, Magnac, and Maurin 2012) here for two reasons. First, their

characterization of the identified set is done through the support function of ΘI
13, which requires

the identified set to be convex. Since the stability conditions and the cross equation restrictions

introduce nonlinearities on L(θ) and therefore nonlinear restrictions on Θ, the identified set is

not necessarily convex. Second, we deal with additional moment conditions coming from sur-

vey data and not additional instruments. The main argument however, remains the same: if the

additional moment conditions carry information, then the identified set will be weakly smaller.

Recall that the number of moment conditions we use for estimation depend on the number

of observables. Assumption LCI-6 requires that there has to be enough (or the right kind) of

observables such that a rank condition is satisfied. In our case, the number of observables used

determines the number of first order conditions of the minimization. The minimum number (r)

of observables required such that conditional identification is achieved ( Lemma 8 is satisfied)

maps to the necessary first order conditions. For example, if we have Y1 and Y2 to estimate the

model, and we only need Y1 to conditionally identify θ , then the nθ × 1 first order conditions

arising from Y1 will be the necessary conditions. The rest of the conditions, those arising from

Y2 and from survey data are then supernumerary.

Let mα,t(θ) and mβ ,t(θ) denote the necessary and supernumerary moment func-

tions for identifying Θ, where E(mα,t(θ)|Yt−1) = Vα(Yt−1) ∈ [Vα(Yt−1), V̄α(Yt−1)] and

12Since we have conditional moment inequalities, we can in principle construct an infinite number of moment
inequality restrictions, so using a finite number of them involves information loss, and therefore the identified set
is not as sharp as possible. Recent work in the literature proposes constructing instrument functions to avoid this
information loss, see for example (Andrews and Shi 2013). We nevertheless do not pursue this in this paper.

13The support function, which is sup(qT Θ),∀q ∈ Rnθ , can fully characterize any convex set Θ.
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E(mβ ,t(θ)|Yt−1) = Vβ (Yt−1) ∈ [Vβ (Yt−1), V̄β (Yt−1)]. Comparing these general bounds to

the ones implied by the DSGE and survey data restrictions, Vα(Yt−1) = Vβ (Yt−1) = 0

and V̄α(Yt−1) = V̄β (Yt−1) = ∞. Due to the boundedness of Θ and the cross-equation

and stability restrictions, the actual lower and upper bounds are likely to lie strictly within

[0,∞] for every moment condition. Let φ(.) be any Yt−1− measurable function for which

m̂α,t(θ) := mα,t(θ)φ(Yt−1) and m̂β ,t(θ) := mβ ,t(θ)φ(Yt−1), m̂α(θ) and m̂β (θ) the corre-

sponding vectors, and m̄α(θ) and m̄β (θ) the vector means. Denote by Qα the projection matrix

for projecting on W
1
2 T

α m̂α(θ), where W is a real valued, possibly random weighting matrix,

diagonal in (Wα ,Wβ ).

The following proposition shows that as long as there is a proportion of agents who face

frictions, then survey data sharpen the identified set.

Proposition 3. Characterization of the identified set:

Given

1. A sample of survey data {B̂t}t≤N

2. CS-I

3. Ut ∈ [U,Ū ] where

U≡ (W
1
2 T

α Vα(Yt−1)+W
1
2 T

β
Vβ (Yt−1))φ(Yt−1) and

Ū ≡ (W
1
2 T

α V̄α(Yt−1)+W
1
2 T

β
V̄β (Yt−1))φ(Yt−1)

If B̂k,t
p→ B > 0, then the following condition holds non trivially

EQ⊥α

(
W

1
2 T

β
m̂β ,t(θ)−Ût

)
= 0 (2.17)

Consequently, Θ′I ⊂ΘI.

Proof. See the Appendix

The main argument behind Proposition 9 is the following. Suppose that the necessary mo-

ment conditions have no common information with the supernumerary conditions and that W =

Inα+nβ
. From the minimization of E1

2(m̄−Ūt)
T (m̄(θ)−Ūt) where m̄(θ)≡ (m̄α(θ),m̄β (θ))

T ,

the first order condition is

E(m̄α(θ)+ m̄β (θ)−Ūt) = 0
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which can be rewritten as:

E((m̄α(θ)−QαUt)+(m̄β (θ)−Q⊥αUt)) = 0

By construction the two parts of the left hand side of the expression are independent, and there-

fore both have to be zero.

E(m̄α(θ)−QαUt) = 0 (2.18)

E(m̄β (θ)−Q⊥αUt) = 0 (2.19)

Notice that, by construction, the set of necessary moment conditions in 5.3. must have full

rank, and this establishes a one-to-one mapping from Θ to the domain of variation of Ut ,

[U(Yt−1),Ū(Yt−1)]. Thus, there exists an inverse operator Gα such that θ =Gα(Ut ,P). Plugging

this expression for θ in 5.4, we get that

Em̄β (Gα(Ut ,P)) = EQ⊥αUt

This is a restriction on the values that Ut can take in addition to the ones implied by the

necessary conditions. A restriction on Ut implies a restriction on the admissible ΘI given the

one-to-one relationship in 5.3. Notice that when the supernumerary conditions do not add any

additional information, i.e. mα,t(θ)≡ mβ ,t(θ), the restriction collapses to Qα = Q⊥α = 1
2 .

We illustrate below how survey data constraints provide information in the context of Ex-

ample 1.

Example 5. Identification in the case of capital adjustment costs

We assume that the representative firm faces adjustment costs with iid probability Bt which

is a random variable with mean B. As long as B is positive, the conditional mean of λ̃t is the

same as the one derived in example 1. We focus on identification using the aggregate capital

accumulation equation. Denote the solution of the frictionless model as: Kt = ϕk(θ)Kt−1 +

ϕz(θ)Zt . Therefore, Et−1Kt = ϕk(θ)Kt−1. Let ζt denote an instrument and (ζ ,K,K−1,B) the

vectors containing data on (ζt ,Kt ,Kt−1,Bt). The two identifying conditions are:

Eζ
T (K−ϕk(θ)K−1) = v1,v1 ≤ 0 (2.20)

Eζ
T (1(K−ϕk(θ)K−1 ≤ 0)−B) = v2,v2 ≥ 0 (2.21)
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Rearranging the first equation and letting ϕk ≡ E(ζ T K−1)
−1Eζ T K, we get a lower bound

for ϕk(θ):

ϕk(θ) = ϕk−E(ζ T K−1)
−1v1 ≥ ϕk

Similarly, from the second equation, we have:

E(ζ T
ζ )−1Eζ

T
1(K−ϕk(θ)K−1 ≤ 0) = E(ζ T

ζ )−1Eζ
T B+E(ζ T

ζ )−1v2

Letting φs(θ)≡ E(ζ T ζ )−1Eζ T
1(K−ϕk(θ)K−1 ≤ 0) and ϕs ≡ E(ζ T ζ )−1Eζ T B, we have:

φs(θ) = ϕs +E(ζ T
ζ )−1v2 ≥ ϕs (2.22)

Using the first equation only, the interval we are able to identify is ϕk(θ) ∈ (ϕk, ϕ̄) where ϕ̄

is the natural upper bound of Φ. Let m̂β be the vector of observations of mβ ,t := ζt1(Kt −

ϕk(θ)Kt−1 ≤ 0) and m̂α the vector of observations of mα,t := ζt(Kt−ϕk(θ)Kt−1). Let γ̂ denote

the estimated coefficient of the projection of m̂β on m̂α and γ the population coefficient. Then

mβ ,t is: m̂β ,t = γm̂α,t +ut where E(ut |mα,t) = 0. Taking the unconditional expectation, we have

v1 = γv2, and therefore the following relation between model based and data based quantities:

ϕs(θ)−ϕs = |γ|(ϕk(θ)−ϕk)≥ 0 (2.23)

Equation (2.23) shows how the bounds on θ present in the capital accumulation equation

can be refined by considering additional survey information. If γ = 0, the additional bound in

(2.22) is as informative as possible. When γ > 0, some of the additional information is already

present in the original condition, making the refinement on the bound less pronounced.

It is important to stress that adding additional data will not give point identification as long

as there is heterogeneity and unobservable shocks. The convolution of two unobservables, the

aggregate distortions and shocks, in fact does not allow for point identification.

Corollary 2.1. Impossibility of Point Identification: If dimZt > 0 or Λ(i, t) is non degenerate,

then ΘI is not a singleton

Proof. See Appendix

The fact that qualitative survey data can potentially reduce the class of admissible the-

oretical models in a data driven way, makes them useful to validate models with parametric
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specification of frictions. However, care is required as assumptions need to be satisfied in order

to make the most of the information contained in qualitative survey data.

2.6 Testing Parametric Models of Frictions

We showed in the previous sections how to obtain the set of parameters ΘI that is consistent

with frictions. Given the definition of λ (Yt ,θ) in Section 3, a plug-in set estimate of the average

distortion (wedge) in a macroeconomic variable Yt is Eλ (Yt ,θI(Y )). This estimate can be used

to validate a particular parametric model, since a DSGE model with a particular specification of

frictions can produce wedges that fail to lie in the identified set. If survey data are informative,

the identified set is sharper, that is, for ϒ ≡ (Yt ,Ξt), θI(Y ) ⊂ θI(ϒ). Therefore there are values

θ ∈ Θ such that theory based restrictions are satisfied, but are not admissible, in the sense that

they are not consistent with survey data. Based on this idea, we propose a test statistic and

show its asymptotic size and power against fixed alternatives. We motivate its use through the

example on capital adjustment costs.

Example 6. Validating capital adjustment costs

Capital adjustment costs can be theoretically motivated using different setups see, for ex-

ample, (Wang and Wen 2012). All setups can be equivalently represented with an idiosyncratic

shock to the marginal efficiency of investment. Having such a shock implies time variation in

Tobin’s q, Qt , which is the Lagrange multiplier on the capital accumulation equation. Rewrite

the capital accumulation equation as Kt+1 = (1− δ )Kt +ψ(ı̂t)Kt where ı̂t ≡ It
Kt

and ψ(ı̂t) is a

function of the efficiency shock. The first order conditions relevant for investment and capital in

the example are the following:

Qt = 1/ψ
′(ı̂t)

Qt = βEt
c−ω

t+1

c−ω
t

(Rt+1 +(1−δ )Qt+1 +Qt+1ψ(ı̂t+1)− it+1)

Kt = (1−δ )Kt−1 +ψ(ı̂t)Kt

When ψ(ı̂t) = ı̂t the conditions are the same as in the frictionless economy. In example

1, the economy has additive adjustment costs, Kt+1 = (1− δ )Kt + It − φ

2 (
Kt+1
Kt
− 1)2Kt which

amounts to choosing ψ(ı̂t) = ı̂t − φ

2 (
Kt+1
Kt
−1)2.

Suppose one erroneously assumes that capital adjustment costs are due to financing fric-

tions. We adopt one of the specifications of (Wang and Wen 2012), where there are heteroge-
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neous firms which differ only in the marginal investment efficiency. Efficiency follows a Pareto

distribution across firms, with shape parameter η . Investment must be financed before produc-

tion takes place, and thus firms must issue a one period loan. The lender then lends a fraction

θ of the value of capital, which on aggregate, amounts to a restriction on aggregate investment

of the following form, It = θQη+1
t Kt−1. This results in ψ(ı̂t) =

η

η−1 θ
1

η+1 ı̂
η

η+1
t . Since the reduced

form of the model is the same as the reduced form of the original economy, despite the fact that

the functional form for ψ(.) is different, the two models are observationally equivalent.

We simulate data from the true economy when there is a 0.8 unconditional probability for

the representative firm to face an adjustment cost and we generate survey data by adding an

iid uniformly distributed shock u to generate a time varying conditional probability. Let the

productivity shock be Normally distributed.

We conduct the following experiment. We first estimate the identified set of frictions using

only the robust inequality restrictions on investment and capital derived in example 5. Then

re-estimate the identified set by adding the survey data restrictions. In particular, for this simple

example, the additional moment inequality is: E(1(Ko
t − K̃t)− 1

2(0.8+ ut)) ≥ 0. Finally, we

estimate the misspecified model, obtain a point estimate, and produce estimates of frictions by

plugging the set and point estimates in Eλ (Yt ,θI(Y )).

Figures 1.1− 1.2 plot posterior draws of the estimated wedges for capital using the mis-

specified model (blue) and the robust set estimates (red) without and with survey data. We also

report the point corresponding to the true model (dashed line) and the point estimate corre-

sponding to the mis-specified model (green circle). Clearly, the true estimates lies within the

’red’ set, while the ’blue’ estimates are far away, indicating misspecification. In Figure 2.2, the

use of survey data is to make inference sharper by further constraining the admissible frictions.

The proposed model of input financing frictions, although having the same reduced form as

the true model, it is ’too far’ from it, in the sense that stability restrictions on the parameters

result in a point estimate that is far from the red set, and we can therefore reject the model by

only using the economic theory based moment inequalities. It can be the case though that the

economic moment conditions are not informative enough to decide whether the complete model

with frictions is valid. This depends on how much misspecification there is, and how much sam-

pling uncertainty. By using survey data, we obtain a sharper identified region, leading to a more

precise inference about whether the proposed mechanism is valid.

The Wald statistic we use tests whether the expected distance from the point estimate of
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Figure 2.1: Pseudo - Posterior Capital Wedge estimates without Survey data

Figure 2.2: Pseudo - Posterior Capital Wedge estimates with Survey data
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the parametric model (green circle) to the (red) identified set is different than zero for all (or

some of) the observables. The statistic is:

Wt =

(
√

t inf
λs∈λ (Θ̂s)

||V−
1
2 (λs−λ

?
p)||

)2

where λ is the estimated friction obtained using either the identified point in the parametric

model case, λp, or the identified set in the robust case, λs. Individual frictions are weighted by

their respective estimate of standard deviation. The statistic measures the Euclidean distance

between the wedge that arises in the parametric model, and the set of admissible wedges, ad-

justed for estimation uncertainty. The Null hypothesis we seek to test is that λ (θp)∈ λ (Θs); the

alternative is λ (θp) /∈ λ (Θs). Under the Null , EWt = 0; under the alternative, EWt > 0.

To get critical values we use the following bootstrap procedure, where superscript ’?’ de-

notes the bootstrapped data:

1. Obtain B samples of length T of data, Y?
t,l , for t ≤ T,b ≤ B using a preferred consistent

block sampling scheme with block length l, e.g. (Politis and Romano 1994).

2. For each sample, obtain θ̂p and Θ̂s, and compute min fs ∑ j∈1..k Ṽ−1
j (λp, j(Y?)−λs, j(Y?))2

where j is the index of observables included in the test

3. Compute the 1−α quantile of the empirical distribution of Ŵb,b≤ B

This bootstrap test, under certain regularity conditions, is consistent and has asymptotic

power equal to one against fixed alternatives. The regularity conditions we need are the follow-

ing:

ASSUMPTION -R (Regularity conditions)

Let D and q be Y− measurable functions, continuous in θ w.p.1 and q̃(.;θ) ≡ q̃(.;θ)− q̄(.;θ)

such that:

1. For any Y, and any θ ∈Θ,
√

T q̃(Y;θ)→d N (0,Ω)

2. supθ∈Θ Dn(θ)→d D where D is positive definite

3. The above statements hold either for the original sample, or for any sequence of bootstrap

samples, conditional on almost all original sample paths.
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Proposition 4. Size and Power of Bootstrap Test for Fixed Alternative

Given:

1. Assumptions SD and R

2. (l,T,B)→ ∞ and l
T → 0

3. A critical value cα with α ∈ (0,1)

Conditional on almost all sample paths Yt,t≤T

1. Under H0: p lim
T,B→∞

P?(TW?(θp,Θs)≤ cα |Yt,t≤T ) = P(TW(θp,Θs)≤ cα) = 1−α

2. Under H1: p lim
T,B→∞

P?(TW?(θp,Θs)≤ cα |Yt,t≤T ) = P(TW(θp,Θs)≤ cα) = 0

Proof. See Appendix, Properties of Wald Test

In the Appendix we show that a normal Central Limit Theorem holds, and therefore that

the nonparametric bootstrap procedure we describe is valid. We also illustrate using an example

that the bootstrap distribution coincides with the asymptotic distribution.

2.7 Estimating the Role of Financial Frictions in Spain

The benchmark economy we use features some frictions and since it is standard, we will di-

rectly introduce the log-linearized conditions. We consider a small open economy with capital

accumulation, along the lines of (Smets and Wouters 2007) and (Gali and Monacelli 2005).

There are households, intermediate good firms, final good firms, government expenditure, and

the foreign sector, which is composed by infinitesimal symmetric economies.

The type of frictions we allow in the baseline are those we do not have sufficiently infor-

mative survey data to implement our methodology. Thus, we keep the parametric Calvo friction

in the wage setting by labor unions and in the price setting behavior of firms. However, we

remove capital adjustment costs, and therefore Tobin’s q becomes constant. This implies that

the arbitrage condition between capital and bonds has no dynamics. All other frictions are going

to be semi-parametrically characterized. In what follows variables with ∗ denote the "rest of the

world", yt is real output, ct is consumption, it investment, qt the value of capital, kt is productive

capital, ks
t capital services, zt is capital utilization, µ

p
t is the price markup, πt is domestic infla-

tion, πcpi is CPI inflation, rk
t is the rental rate of capital, wt is the real wage and rt is the interest
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rate.

yt = cyct + iyit + zyzt +nxyst + ε
g
t

ct = c1Etct+1 + c2(lt −Elt+1)− c3(rt −Etπt+1 + ε
b
t )

Etrk
t+1 = r1(rt −Etπt+1 + ε

b
t )

yt = φp(αks
t +(1−α)lt + ε

α
t )

ct = c∗t +
1

σa
st

ks
t = kt−1 + zt

zt = z1rk
t

kt = k1kt−1 +(1− k1)it

µ
p
t = α(ks

t − lt)+ ε
α
t −wt

πt = π1πt−1 +π2Etπt+1− ε
p
t

πcpi = πt +ν∆st

rk
t = −(kt − lt)+wt

µ
w
t = wt −σllt + ct

wt = w1wt−1 +(1−w1)(Etwt+1 +Eπt+1)−w2πt +w3πt−1−w4µ
w
t + ε

w
t

rt = ρrt−1 +(1−ρ)[rππcpi,t + ry(yt − y
p

t )]+ r∆Y [(yt − y
p

t )− (yt−1− y
p

t−1)]+ ε
r
t

Let Xo
1 denote the vector of variables that enter the moment equalities and Xo

2 the vector of

variables used in the moment inequalities. Model predictions are denoted with superscript ’m’.

Let vector of instruments be Z. The conditions we use are:

E((Xo
1,t −Xm

1,t)⊗Zt) = 0

E((Xo
2,t −Xm

2,t)⊗Zt) ≤ 0

We estimate the model using a modification of the MCMC procedure of (Liao and

Jiang 2010) with uniform priors. The Appendix discusses sufficient conditions to estimate

the identified set using MCMC. 14 The real observables used are in per-capita terms and the

14One of the conditions that needs to be satisfied is that the the moment conditions we use, when multiplied by
T

1
2 should satisfy a Central Limit Theorem. While this is straightforward (under assumption SCI) for the robust
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variables employed in estimation are Non Government Consumption expenditure (C), Hours

(H), Inflation (π), Investment (I), Gross Domestic Product (Y), Wages (W), and the EONIA

rate (R). As instruments we use realized values of all the variables, lagged one period. We

estimate the model using two different subsets of survey data from Spain, collected by the Eu-

ropean Commission15. Our sample period covers 1999Q1 to 2013Q4. Detailed information

on this survey data can be found at: http://ec.europa.eu/economy_finance/db_

indicators/surveys/index_en.htm

In the first set of survey responses, we include responses to quarterly questions 1,2 and

11 from the Consumer Survey, that relate to the financial position of the household. We plot

the time series in the Appendix. Credit constraints imply negative distortions to household

consumption, and given that hours worked are complementary to consumption, they also imply

negative distortions to labor supply and output. We therefore choose Xo
1,t ≡ (W,π,R, I) and

Xo
2,t ≡ (C,H,Y ). In the second case we use business survey data, in particular questions 8F4

and 8F6, relating to capital adjustment costs and financial constraints to production capacity.

For the case of capital adjustment costs, we have restrictions on Y and I similar to those of

Example 5. Financial constraints to productive capacity imply similar restrictions and lead to

lower aggregate investment and output. We therefore choose Xo
1,t ≡ (C,H,W,π,R) and Xo

2,t ≡

(Y, I).

Some Preliminary Results

For each specification, we obtain estimates of the identified set of wedges, that is, a range for

the wedge in each observable that is consistent with survey data and conduct a simple policy

exercise. As in statistical decision theory, we specify a decision rule that maps a non singleton

set of models (data generating processes) to a single action. Thus, a risk functionR(Y,d,Pθ ) is

chosen and the policy maker chooses the decision d ∈D to minimizeR(Y,d,Pθ ). Because there

is multiplicity of Pθ , even after survey data are used, we need a selection rule. For this applica-

tion we consider a min-max criteria, mind∈D maxθ∈ΘR(Y,d,Pθ ). We choose the combination

of θ ∈ΘI for which the average (over the observed variables) estimated friction λ (θ) is highest.

In Figure 2.3, we plot estimates of consumption wedges consistent with the two different sets of

moment restrictions, we need differentiability in mean for the case of moment restrictions coming from survey data,
due to the presence of the non differentiable indicator function.

15I thank Fabio Canova for providing the dataset.

http://ec.europa.eu/economy_finance/db_indicators/surveys/index_en.htm
http://ec.europa.eu/economy_finance/db_indicators/surveys/index_en.htm
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Figure 2.3: Lower bounds to distortions due to different frictions

survey data and the corresponding lower bounds. We plot the estimates of the other variables in

the Appendix.

The red (blue) line represents the set of estimates of the distortions to aggregate consump-

tion that are consistent with survey data from consumers (firms). Our pessimistic decision maker

chooses a distortion to consumption that is higher in the case of household credit constraints than

in the case of financial frictions to firms. While the sign of the red area is determined by the

restrictions we impose, the blue set is not since consumption is unrestricted when estimating

the model. Nevertheless, because the lower bound to the distortions in output is higher than

the lower bound to distortions in investment, and foreign consumption is exogenous, distortions

to consumption must also be negative (blue set). In addition, the distortions to output in the

worst case scenario are higher if we only take into account financial constraints to firms. This

is not surprising, as the share of firms reporting financial frictions in the survey data have been

substantially high, especially after 2007. For the other unrestricted variables, we identify neg-

ative distortions coming from financial constraints to production in hours worked and negative

distortions to investment coming from financial constraints to households.

Given the identified worst case scenario distortions, we can compute a counter-factual con-

ditional path of the optimal interest rate. We restrict attention to the class of Taylor rules of the

type: rt = ρrt−1 +(1−ρ)[µr + rππcpi,t + ry(yt − y
p

t )]+ r∆Y [(yt − y
p

t )− (yt−1− y
p

t−1)] where the

objective function is the weighted sum of the variance of the log-deviations from the frictionless
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steady state of inflation, output and output growth. We plot the interest rate path by plugging

in the optimal coefficients and the observed values of the variables. Optimal coefficients are

obtained from estimates consistent with consumer survey data or firm survey data. We compare

the path we obtain to the path constructed by estimates of the Taylor rule coefficients in (Smets

and Wouters 2007) and the realized rate (the marginal lending facility rate). We plot in figures

2.4 and 2.5 the results.

Figure 2.4: Optimal Empirical Taylor Rules - Consumer Data

Figure 2.4, constructed with consumer survey data, indicates that the rate should have been

higher during the great moderation period up to the financial crisis. This coincides with the

widespread perception that pre-crisis interest rates were too low in some Eurozone countries

and this led to the excessive private sector borrowing. Figure 2.5, however, gives a different

result: the counterfactual rate should have been lower than the one observed during the same

period, because of the relatively high percentage of firms reporting financial constraints even

before the crisis. Since this proportion increased dramatically after 2010 our estimate of the

optimal interest rate path may be biased downwards. From 2011 and 2013, both Taylor rules do

not describe well the path of policy rate mainly due to the fact that inflation recovered from the

2008 - 2009 sharp fall. The persistent fall of inflation after 2013 explains why the counterfactual

rate falls into the negative territory.

While we have separated the two sets of survey data for illustration purposes, one could
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Figure 2.5: Optimal Empirical Taylor Rules - Industrial Data

and should include both of them in the estimation procedure. It is important to stress that our

results have nothing to say about regional biases - we need to conduct similar exercises for other

countries to reach that conclusion. Nevertheless, the information we have produced is useful

since optimal policy in a currency area with heterogeneous frictions implies a monetary policy

rule where the weights reflect the degree of frictions present in each country (see for example

(Benigno 2004)).

2.8 Conclusion

In this paper we propose a new inferential methodology which is robust to misspecification of

the mechanism generating frictions in dynamic stochastic economies. We characterize wedges

in equilibrium conditions in a way which is consistent with a variety of generating mechanisms

and show how to translate restrictions on the sign of the conditional mean of a wedge in the equi-

librium conditions into restrictions on the sign of the conditional mean of the distortion (relative

to the frictionless model) in an observable variable. We use the latter restrictions to partially

identify the parameters of the model, and to obtain a set of admissible economic relationships.

We also show how qualitative survey data can be linked to the expectations of agents and

how this link generates an additional set of identifying restrictions on the probability of observ-

ing a distortion in a variable. We state conditions under which the additional restrictions lead
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to a sharper identified set. We exploit this result to validate parametrically specified models of

frictions, propose a weighted Wald statistic, derive its large large sample properties and suggest

a bootstrap procedure to compute the critical values.

We apply our methodology to estimate the distortions in the Spanish economy due to fi-

nancial frictions using an small open economy version of (Smets and Wouters 2007) model and

qualitative survey data collected by the European Commission on the financial constraints of the

agents. We identify the model generating the maximum distortion to observable variables that is

consistent with survey data. We compute optimal policy under the identified worst case model

and find that while with survey data from households, the interest rate before the financial crisis

was too low relative to the optimal one, the opposite is true when survey data from firms are

employed.

In general, our work shows that adopting a robust approach to inference and using the

information present in surveys is a fruitful way of dealing with lack of knowledge about the

exact mechanisms generating frictions.

One direction where the work can be extended is the following. Throughout the analysis

we have focused on the representative agent approximation to the underlying heterogeneous

agent economy. We have explicitly considered frictions at the individual level, which when

aggregated, produce deviations from the frictionless representative agent world. The effect of

heterogeneity is captured by the distribution of the individual state variables. Qualitative Survey

data are informative on features of this distribution. Thus, while acknowledging heterogeneity,

we use as a benchmark the representative agent model, because it is easy to solve.

(Buera and Moll 2015) have recently shown that the distortions generated in an aggregate

equilibrium condition can depend on the type of heterogeneity present in the economy. Our

approach is robust to this criticism. The methodology does not rest on observing residuals from

representative agent frictionless economies - we just impose moment inequality restrictions the-

oretically motivated by deviations from the frictionless economy. In addition, if heterogeneity

has additional implications for the form of these restrictions, they can be taken on board. In ad-

dition, we impose weak moment inequalities. This is important when heterogeneous distortions

in decision rules cancel out. Finally, we impose restrictions implied by µt on all of the variables

and thus take general equilibrium effects into account. Nevertheless, future work could focus

on investigating the robustness of our methodology in environments where some heterogeneity

is ignored when imposing the identifying restrictions.
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2.9 Appendix A

Proof. of Proposition 4.

Recall the representation for the model with frictions, that is,

G(θ1,0)Xt = F(θ1,0)Et(Xt+1|Xt)+L(θ1,0)Zt + µ̃t

Plugging in the candidate distorted decision rule: X∗t = X f ,RE
t + λ̃t and using that

F(θ1,0)
nx×nx

P∗(θ1,0)
nx×nx

+ G∗(θ1,0)
nx×nx

= 0 and (R(θ1,0)T

nz×nz

⊗ F(θ1,0) + Iz ⊗ (F(θ1,0)P∗(θ1,0) +

G∗(θ1,0)))vec(Q(θ1,0)) =−vec(L(θ1,0)) we have the following condition:

Et(F(θ1,0)λt+1−G(θ1,0)λt + µ̃t) = 0

Note that in this proposition we let the econometician’s model variables (observables Yt and

unobservables Zt coincide with a proper subset of Xt and Zt . That is, setting θ2 = 0 essen-

tially eliminates some of the elements of (Xt ,Zt). Furthermore, in the proposition we state that

λt = λt−1Γ+νt for some real-valued Γ 6= 0. Substituting for λt we get the condition stated in

Proposition 3.7, that is:

Et(F(θ1,0)Γ−G(θ1,0))λt +µt) = 0 (2.24)

To motivate the assumption on the random variable λt notice that, the condition above essentially

links the conditional mean of λt with that of µt . Since µt is by construction a linear function

of Xt , then µt is correlated with subsets of the information set of the agent, σ(Ft). Then, there

exists a projection operator P such that for any element Ht ∈ Ft , µt = PHt +P⊥Ht = PHt + vt .

Projecting µt+1 on µt :

P(µt+1|µt) = P(PHt+1 + vt+1|PHt + vt)

= P(PHt+1 + vt+1|PHt)+P(PHt+1 + vt+1|vt)

= P(Ht+1|Ht)

This implies that, there exists a real valued matrix Γ̃ such that µt+1 = Γ̃µt +ut+1. Substituting

in the condition 9.1 and collecting all the errors in wt+1 (we can do this as they are not uniquely
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defined) we have that:

(F(θ1,0)Γ−G(θ1,0))λt+1 = Γ̃(F(θ1,0)Γ−G(θ1,0))λt +wt+1

Denoting by C̃ the generalized inverse of C := F(θ1,0)Γ−G(θ1,0) we have that λt+1 = Γ̃λt +

CC̃wt+1. Comparing with the proposed representation for λt we have that Γ = Γ̃ and a non

uniquely defined νt that nevertheless satisfies E(νt) = 0

Note: We assume that the system can be casted in the expectational form to which we

apply the method of undetermined coefficients. We could use more elaborate methods like a

canonical or Schur decomposition, so that we explicitly obtain forward and backward solutions.

This would complicate the argument without noticeable gains in the intuition why we have

an incomplete decision rule. Moreover, the existence of such a rule would require arguments

similar to the non zero determinant stability conditions for Γ(θ) and µt .

2.9.1 Characterization ofMt

We restate the optimization problem for a general distance d(M̃)

max
M

−d(M̃)

subject to 1TM̃= 0 (λ1)

M̃Tq j(Y ;θ)+1Tq j(Y ;θ) = 0, j = 1, ..p ,(λ2, j)

M̃Tq j(Y ;θ)+
[
1Tq j(Y ;θ)

]
+
= 0, j = p+1, ..r

M≥0 (λ3,t ,∀t ∈ (1..T )

where q(Y ;θ) is the matrix containing the moment functions and (λ1,λ2,λ3) the corre-

sponding Lagrange multiplier vectors. The first constraint imposes unit expectation while the

last constraint imposes non negativity of M. The rest of the constraints impose the moment

equalities and inequalities e.g. [x]+ ≡max(x,0)

Denote by d̃(Mt) as the inverse function of d(Mt). The Kuhn Tucker first order necessary

conditions are the following
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M∗ = q(Y;θ)λ2 +λ1 +λ3

d̃(q(Y;θ)λ2 +λ1 +λ3)
T q(Y;θ)+1T q(Y;θ) = 0, (λ2)

1T d̃(q(Y;θ)λ2 +λ1 +λ3) = 0, (λ1)

λ3,t ≥ 0

λ3,t(d̃(qt(Y,θ)λ2 +λ1 +λ3,t)) = 0, (λ3,t)

In the case of chi square distance, that is d(M̃)= 1
2M̃

TM̃ and ignoring the non - negativity

constraint we get an analytical solution. Solving the dual problem and concentrating out the first

constraint leads to solutions (M∗,λ ∗2 ) that satisfy the following system:

 IT −(q(Y ;θ)− q̄(Y ;θ))
T×r

q(Y ;θ)T

r×T
0

r×r


 M̃T×1

λ2
r×1

=


0

T×1

−1Tq1(Y ;θ)
p×1

−
[
1Tq2(Y ;θ)

]
+

(r−p)×1


We therefore have that for q̃(Y ;θ)≡ q(Y ;θ)− q̄(Y ;θ) and V(q(Yt ;θ))≡ T−1q̃(Y ;θ)Tq(Y ;θ)

 M̃
λ2
r×1

=


q̃(Y ;θ)V(q(Y ;θ))−1

 q̄1(Y ;θ)

[q̄2(Y ;θ)]+


−V(q(Y ;θ))−1

 q̄1(Y ;θ)

[q̄2(Y ;θ)]+




The solution above has been derived ignoring the non negativity constraint. Looking at M̃t the

constraint is violated with positive probability, since q̃(Y ;θ) can take values lower than minus

one. Taking into account the non-negativity constraint implies a non analytical solution. There

is a variety of algorithms in quadratic optimization to deal with this issue. An alternative way

is to use a penalty function that penalizes negative values of Mt . This also typically implies

non-closed form solutions. For the adjustment cost example, we re-computed the estimatedMt

and we report it in Appendix B. As is evident, violations of the constraint can be minimal. The

existence of a unique function M̃∗ (θ) implies that the set of models consistent with moment
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inequalities should have a corresponding one-to-one relation to the identified set, the subset of

Θ that satisfies those inequalities: θ ∈ Θ : Eq1(Y,θ) = 0,Eq2(Y,θ) ≥ 0. This is made clear

in Figure 2.6, which depicts two theory-based moment inequality restrictions on the Euclidean

parameter space. The darker area is the identified set, and for the sake of illustration, the point

of intersection of the two lines is the combination (θ1,θ2) that corresponds to the pseudo-true

parameter values of the case of no perturbation (Mt = 1). The identified set contains the true

value, which maps one-to-one to the set of admissible perturbations M̃2.

Moreover, choices of objective functional other than 1
T ∑t≤T M̃2

t leads to different sorts of

distortions. A general family of distances that can account for non-linearities or non-normalities

is the Cressie - Read divergence, of which Chi square is a special case ((Almeida and Garcia

2014, Cressie and Read 1984)). As in the case of non-negative constraints, computing the

multipliers might involve numerical optimization. It is also important to stress that for any

choice of distance functional, the moment inequality constraints are satisfied. Therefore, the

choice of distance functional does not affect the consistency of the parameter estimates.

Figure 2.6: Illustration of the mapping from perturbations to the identified set

Proof. of Proposition 6: Recall that agent i has the following behavioral equation:

G(θ1,θ2)xi,t = F(θ1,θ2)Et,i(xi,t+1|Ft−1,i)+L(θ1,θ2)zi,t (2.25)

G(θ1,0)xi,t = F(θ1,0)Et(xi,t+1|Ft−1)+L(θ1,0)zi,t +µi,t (2.26)

Before formally deriving the bounds, we need to establish some facts which will be used
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in the derivations:

1. µt is a continuous function of the state variables

We have already shown that we can move from the model with frictions to the friction-

less model (and vice versa) in two ways: Either by setting θ2 = 0 or by differences in

subjective expectations from rational expectations, Ei,t(Xt |Fi,t) 6= E(Xt |Ft,i∀i). While the

former is quite straightforward, we argue that also the latter can be justified as a change

in a component of the model. We have implicitly assumed that the model of the agents,

P(.|Ft,i) is absolutely continuous to the Rational Expectations measure P(.|Ft,i∀i), and

therefore, there exists a Radon Nikodym derivative Mt,i := dPi,t
dPt

such that we can for

any subset χ of X , Pi,t(χ) =
∫
χ

Mt,iPt . SettingMt,i = 1 for all t, i we get the frictionless

model. µt varies continuously through θ2 andMt,i, and is therefore a continuous function

of the state variables.

2. Any probability statement about µt translates to a probability statement on λt .

Since x?i,t solves the behavioral functional equation of the agent uniquely, there is a map

h : (G,F,L)→ (P,Q) which is a continuous bijection, and by the implicit function theo-

rem, any perturbation to the first order conditions (change in (G,F,L)) maps deterministi-

cally to perturbations of the solution, (P,Q). Therefore, for every univariate decision vari-

able, P(µi,t ∈ [Et µ i,t
,Eµ̄i,t ]) = P(h(λi,t) ∈ [Et µ i,t

,Eµ̄i,t ]) = P(λi,t ∈ [Etλ i,t ,Eλ̄i,t ]). Same

statement holds also for the conditional means of λi,t and µi,t given the necessary condi-

tion in Proposition 4.

3. Any probability statement on the subjective conditional expectations translates to a

probability statement on µi,t

Recall that we have redefined the variables in the decision problem of the agents such

that the enlarged state vector contains also past states, Xt ≡ (Xt , X̃t) where X̃t = Xt−1.

Observing Ei,t(xi,t+1) ∈ Bl therefore implies observing either an expectation about the

future or the present. Beliefs about the future or the present can therefore be mapped

directly to a statement on µi,t using the behavioral equation of the agent.

Given the above, we consider the expected value of the statistic B̂k,t . Given the (joint) measure
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P= P(t)×Λ(i), taking the expectation we have that

EB̂k,t = ∑
i≤N

wi

∫ ∫
1(Ei,t(xi,t+1|Ft−1,i) ∈ B)d(P(Ft |Ft−1)×Λ(i, t))

= ∑
i≤N

wiP̄t(Ei,t(xi,t+1|Ft−1,i) ∈ B)

= P̄t(Ei,t(xi,t+1|Ft−1,i) ∈ B)

= P̄t(Et µi,t ∈ [Et µ i,t
,Eµ̄i,t ])

= P̄t(Etλi,t ∈ [Etλ i,t ,Eλ̄i,t ])

In the second to last equality, we use fact 3 and in the last equality we have used fact 2

adapted to conditional means. We now derive the particular result for the positive distortion,

Et µi,t ≥ 0.

Let Y o
t = Xt and Y m

t = EXt . Using the fact that (A⇒ B)⇒ P(A)≤ P(B), the independence

of the friction and the vector of unexpected shocks, and denoting κt ≡ Pt(c′Zt ≥ 0), we have the

following bound:

Pt(λt +Q(θ1,0)Zt ≥ 0) = Pt(
∫

λidΛ(i, t)+Q(θ1,0)Zt ≥ 0)

= Pt(
∫
(Etλi,t +λi,t −Etλi,t)dΛ(i, t)+Q(θ1,0)Zt ≥ 0)

= Pt(
∫
(Etλi,t)dΛ(i, t)+ ...

...+
∫
(λi,t −Etλi,t)dΛ(i, t)+Q(θ1,0)Zt ≥ 0)

= Pt(
∫
(Etλi,t)dΛ(i, t)+ c′Zt ≥ 0)

≥ Pt(
∫
(Etλi,t)dΛ(i, t)≥ 0,c′Zt ≥ 0)

ind
= Pt(

∫
(Etλi,t)dΛ(i, t)≥ 0)Pt(c′Zt ≥ 0)

≥ Pt(∪i{Etλi ≥ 0})κt

Frechet
≥ max

i
Pt(Etλi ≥ 0)κt

≥ P̄t(Etλi ≥ 0)κt

∴

Et(1(Y o
t −Y m

t ≥ 0)−B̂k,tκt) ≥ 0
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Proof. of Lemma 8 Given Vi(Yt−1), the condition in 5.1 can be rewritten as

E(Ỹ o
t −C(θ)

nY×nx

X̂t|t−1)φ(Yt−1) = 0

where Ỹ o
t ≡ Y o

t −V(Yt−1). Given LCI, the Proposition 2-NS in (Komunjer and Ng 2011) can

be applied. Moreover, local identification holds for generic i, and therefore holds for any θ0 in

ΘI as LCI guarantees a unique map from Vi to θ0.

Proof. of Proposition 9

Recall that we have the following conditional moment conditions: q1(θ ,Yt−1) ≡ E(Y o
t −

Y m
t |Yt−1)≥ 0 and q2(θ ,Yt−1) = E(B̂t −1(Y o

t −Y m
t > 0)|Yt−1)≥ 0.

q1(θ ,Yt−1)
k×1

= V1(Yt−1) ∈ [V(Yt)1, V̄(Yt)1]

q2(θ ,Yt−1)
(m−k)×1

= V2(Yt−1) ∈ [V(Yt)2, V̄(Yt)2]

By choosing suitable instruments Zt , and any Z−measurable function φ(.), we can construct the

following set of unconditional moment conditions,

E(φ(Zt)(q1(θ ,Yt−1)−V1(Yt−1)) = 0

E(φ(Zt)(q2(θ ,Yt−1)−V2(Yt−1)) = 0

The equations above partially identify the reduced form parameters of the DSGE model. Given

a full column rank Jacobian matrix J(θ) ≡ ∂

∂θ
Λ(θ), for every observable Yt we can con-

struct nθ moment conditions in the first set of moment conditions. Let k be the minimum

number of observables in the first set such that J(θ) is of full column rank. Rewrite the

moment conditions such that the first nθ elements denoted by q, satisfy the rank condition.

Given the total number of moment conditions used, m, the rest of the system has m− nθ

equations. We partition J(θ) ≡ (Jr(θ),Jny−r(θ)) and let H be an m× nθ matrix where H ≡

(Jr×nθ
(θ)T ,J(ny−r)×nθ

(θ)T ,∆dimq2×nθ
(θ)T )T . Let m ≡H⊗φ(Zt) and partition m ≡ (mT

α ,m
T
β
)T

where mα contains the first r elements. . Since m > nθ , and given a general weighting matrix
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W , we have the following first order condition:

E(W
1
2 T

α mα +W
1
2 T

β
mβ −V (Zt)φ(Zt)) = 0

E(W
1
2 T

α mα +W
1
2 T

β
mβ − U

nθ×1
) = 0

This is a projection of m on a lower dimensional subspace. Since W is an arbitrary matrix,

and (mα ,mβ ) are possibly correlated, we reproject the sum onto the space spanned by W
1
2 T

α mα .

Define Qα := W
1
2 T

α mα(mT
αW T

α mα)
−1mT

αW
1
2

α the projection and Q⊥α the orthogonal projection.

Since the original sum satisfies the moment condition, then the two orthogonal complements

will also satisfy it: Therefore,

Qα

(
W

1
2 T

α mα +W
1
2 T

β
mβ −U

)
= W

1
2 T

α mα +Qα

(
W

1
2 T

β
mβ −U

)
= 0

and

Q⊥α

(
W

1
2 T

α mα +W
1
2 T

β
mβ −U

)
= Q⊥α

(
W

1
2 T

β
mβ −U

)
= 0

where U ∈ [W
1
2 T

α V(Yt)α +W
1
2 T

β
V(Yt)β , W

1
2 T

α V̄(Yt)α +W
1
2 T

β
V̄(Yt)β ]⊗φ(Yt). Since we are

interested in the additional information provided by the second set of restrictions, without loss

of generality the first set of restrictions identifies a one to one mapping from U to ΘI . The

second set of restrictions is independent of mα by construction and imposes further restrictions

on the domain of variation of U which are implied by the information contained in mβ that is

orthogonal to mα . By necessity, this implies further restrictions on ΘI . The same logic has been

followed by (Bontemps, Magnac, and Maurin 2012) in the instrumental variable context.

This proof focuses on general moment conditions. To appreciate why the Proposition re-

quires that B̂→p B > 0 notice that for B = 0, V(Yt)β = 0 while the upper bound remains to

be V̄(Yt)β = +∞. Therefore U ∈ [W
1
2 T

α V(Yt)α ,∞]⊗ φ(Yt). Moreover, the second set of re-

strictions does not longer provide any information as Q⊥αU ∈ [−Q⊥α εt ,∞]⊗φ(Yt) and therefore
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EQ⊥αU ∈ [0,∞].

Q⊥α

(
W

1
2 T

β
mβ −U

)
= Q⊥α

(
W

1
2 T

β
mβ + ε

)
⇔

EQ⊥α

(
W

1
2 T

β
mβ

)
∈ [0,∞)

is consistent with the unrestricted domain of Θ, that is, any θ ∈Θ for which P(Y o
t −Y m

t |Yt−1)≥

0) is defined is admissible.

Proof. of Corollary 11 Suppose that ΘI is a singleton. For this to be true, it must be that the

additional moment restrictions actually hold with equality. Looking at the proof of Proposition

6, this only holds if both Λ(i, t) has unit mass on one agent and Zt has dimension zero.

2.9.2 Properties of Wald Test and the Block Bootstrap

We first specify the general form of the estimated friction, and we then proceed in analyzing

the (first order) large sample behavior of the bootstrap. Recall that the estimates of the frictions

satisfy the following program for a general measure of distance, d(Mt). Denote by d̃(Mt)

as the inverse function of d(Mt). The corresponding first order conditions are the following,

where bold letters imply vector notation:

d̃(q(Y;θ)λ2 +λ1 +λ3)
T q(Y;θ)+1T q(Y;θ) = 0, (λ2)

1T d̃(q(Y;θ)λ2 +λ1 +λ3) = 0, (λ1)

λ3,t(d̃(qt(Y,θ)λ2 +λ1 +λ3,t)) = 0, (λ3,t)

Although different choices of d(.) lead to different estimates ofMt , the first constraint needs to

be satisfied. What this implies is that the inner product ofM and q(Y;θ) is equal to 1T q(Y;θ).

We therefore resort to analyzing the large sample behavior of plug-in estimates of T−
1
2 ∑t q(Y ;θ)

and its bootstrap counterpart. In the case of plug in estimates we need to take into account the

uncertainty coming from pointwise estimates of θ ∈ Θs. An alternative way is to construct an

α− level confidence interval for Θs, Θα,s . We then use bootstrap to characterize the uncer-

tainty arising from computing the “nuisance parameter”, γ ≡ T−1
∑t q(Y ;θ), which is part of

the solution to the moment inequality problem, infθ∈Θ infγ∈R+(q̄(Y ;θ)− γ)′W (q̄(Y ;θ)− γ).
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The Wald statistic we have in mind is the following:

TW(θp,Θs) = T ( inf
θ∈Θs
||V−

1
2 ( f (θp)− f (θs))||)2

where V is a positive definite diagonal matrix whose elements are the individual variance com-

ponents of f (θp)− f (θs). Under the Null hypothesis, H0 : θp ∈ Θs while under the alternative,

H1 : θp /∈Θs. Hereafter we derive the asymptotic distribution of the Wald statistic under the null

hypothesis. Let us consider the quantity T−
1
2 inf

θ∈Θ̂s
||V− 1

2 ( f̂ (θ̂p)− f̂ (θ̂s))||.

Given that Θ is a connected set and Θ̂s ∈ Θ, then Θ̂s is also connected. For any θ ,θ ′ ∈

cl(Θ̂s), d(θ ,θ ′)< ε for arbitrarily small ε > 0. This implies that if θp ∈ Θs then there exists a

θs ∈ Θ̂s such that ||V− 1
2 ( f (θp)− f (θs))||< ε . Given the moment inequality problem, for every

estimating equation, we redefine f̂ (θ̂p) = T−1
∑t q(Y ;θ)−T−1

∑t Eq(Y ;θ)+ γT = AT (θ)+ γT

where AT (θ) ≡ (AT,1(θ),AT,2(θ), ...At,p(θ))
T and γT = (γ1,T ,γ2,T , ...γp,T ,)

T . By element-

wise mean value expansion around θl ∈ Θl, l ∈ s, p, f̂ (θ̂) = Eq(Yt ,θl)+ ( f̂ (θl)−Eq(Yt ,θl))+

D(θ̃)(θ−θl)). Given mild assumptions on the (2+δ ) boundedness of each moment, the second

component scaled by
√

T ,
√

T ( f̂ (θl)−E f̂ (θl))→d N (0,Ω1,l) while the scaled third compo-

nent, D(θ̃)
√

T (θ − θl))→d N (0,Ω2,l). Consequently, for each j, j ≤ p, AT, j →d N (0,Ω∗j).

Let V(θ) = AsyVar(T
1
2 f (θp)−T

1
2 f (θs)) and denote by Vd(θ) be the matrix containing only

the diagonal elements of V(θ).

T
1
2V−

1
2

d ( f̂ (θ̂p)− f̂ (θ̂s)) = V−
1
2

d T
1
2 (AT (θp)−AT (θs)+ γT,p− γT,s)

Under the Null, θp ∈ Θs, or f (θp) ∈ f (Θs). Consequently, infθ∈Θs(γT,p − γT,s) ≡

infθ∈Θs(T
−1

∑t(Eq(Yt ,θp)−Eq(Yt ,θs))) = 0

TW(θp,Θs) = inf
f (θs)∈ f (Θ̂s)

||V̂d
− 1

2 (T
1
2 AT (θp)−T

1
2 AT (θs)+T

1
2 (γT,p− γT,s))||2

= inf
θs∈Θ̂s

||V̂d
− 1

2 (T
1
2 AT (θp)−T

1
2 AT (θs)+T

1
2 (γT,p− γT,s))||2

d→ || ∑
j=1..p

ω jN (0, Ip)||2

where ω j = V
− 1

2
d VV

− 1
2

d . Under the alternative, that is when θp 6= Θs, and therefore inf
θs∈Θs

(γT,p−
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γT,s) = O(1).

TW(θp,Θs) = inf
f (θs)∈ f (Θ̂s)

||V̂−
1
2 T

1
2 (AT (θp)−AT (θs)+ γT,p− γT,s)||2

= ||V̂−
1
2 (T

1
2 AT (θp)−T

1
2 AT (θs)+ inf

f (θs)∈ f (Θ̂s)
T

1
2 (γT,p− γT,s)||2

= ||Op(1)+Op(T
1
2 )||2

= Op(T )

To get a better approximation to the finite sample distribution of the test statistic, we use

a suitable version of bootstrap. Given a bootstrap sample {Y ∗t,l}t≤T,l≤B obtained with a block

bootstrap scheme we can compute the wedges to each equation, using the plug-in estimate of θ

under the survey-robust case and the full model. We consider the re-centered bootstrapped mo-

ments, ( f̃1(Y∗;θ), f̃2(Y∗;θ).. f̃k(Y∗;θ)) where f̃ j(Y∗;θ) ≡ f j(Y∗;θ)− f̄ j(Y∗;θ). We choose

to recenter the moments since we deal with an over-identified case, and therefore sample mo-

ments, q̄(Y ;θ), are not exactly equal to zero. We obtain critical values by computing the

(1−α)−quantile of TW ∗ (θp,Θs). That is, cα is chosen such that PT (TW ∗ (θp,Θs)< cα) =

1−α . We therefore have that, given the uniform consistency of the bootstrap :

1. Under H0 : p lim
T,B→∞

PT (TW∗ (θp,Θs)< cα |Yt,t≤T ) = P(TW(θp,Θs)< cα) = 1−α

2. Under H1 : p lim
T,B→∞

PT (TW∗ (θp,Θs)< cα |Yt,t≤T ) = P(TW∗ (θp,Θs)< cα) = 0

We illustrate below an example with which we show how the bootstrap behaves in large

samples. Small sample distortions is an interesting topic to pursue, but is the subject af another

paper. We use a regression based example, which is unrelated to survey data as such, but has the

same econometric structure.

Define Ct ≡−(DΩD′)−1DΩ the matrix such that θ̂s−θs =CtT−1
∑t q(Yt , θ̂), then we can

readily see that partitioning C in the columns that correspond to the initial and supernumerary

conditions, C = (C1,C2), T
1
2 (θ̂s− θs) = C1T−

1
2 ∑t q̃1(Yt , θ̂)+C2T−

1
2 ∑t q̃2(Yt ,Ξt , θ̂). The ex-

pression for T
1
2 (θ̂p−θp) is C1T−

1
2 ∑t q̃1(Yt , θ̂). Then, under the Null, T

1
2 (θ̂s−θs−(θ̂p−θp)) =

C2T−
1
2 ∑t q̃2(Yt ,Ξt , θ̂), which satisfies a standard Central Limit Theorem.

Note: We maintain regular inference by dealing with the multiple inequality issue (affect-

ing θ̂s) using the method proposed by (Chernozhukov, Kocatulum, and Menzel 2012), that is

using a single smooth inequality, that approximates the intersection of the multiple inequalities.
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More particularly, we use E(q(Yt , θ̂s)) ≡ ∑ j
exp(ιE(q j(Yt ,θ̂s)))

∑ j exp(ιE(q j(Yt ,θ̂s)))
E(q j(Yt , θ̂s))) for some constant

ι > 0. This is an approximation to max j E(q j(Yt , θ̂s)). The identified set Θs,ι therefore depends

on ι . The more well separated max j E(q j(Yt , θ̂s)) is from the rest inequality generating func-

tions the better the approximation. As shown in (Chernozhukov, Kocatulum, and Menzel 2012),

in general Θs ⊂ Θs,ι , that is the approximation is conservative. All of our results therefore are

directly on Θ̂s,ι .

Example 7. Measurement error in Regressors. Suppose there are two independent mea-

surements of a regressor and the model for the measurement error is X1,t = X∗t + ν1,t and

X2,t = X∗t +ν2,t respectively. Furthermore assume that ν1,t ∼N (0,0.22) and ν2,t ∼N (0,κσν1,t )

for κ > 1, X∗t ∼ N (0,0.1) and εt ∼ N (0,0.1). For simplicity (and this is inconsequential for

the test), we assume that she uses only one of the measurements. The important assumption in

this case is that she "knows" all parameters apart from β and that she mistakenly assumes that

σν1,t = 0.5. She uses Simulated Maximum likelihood to estimate βm where Yt = 0.2+βXt + εt .

A robust approach would be to be agnostic about the distribution of the errors and use the

well known fact that B0 = {β ∈ B : βols ≤ β}. Using both measurements, this would mean

that B0 = {β ∈ B : βols,1 ≤ β ∩βols,2 ≤ β}. Since βols,1 > βols,2 then the identified set is de-

termined by the first measurement which is also used by the econometrician. We therefore test

H0 : βm ∈ B0.

To see the equivalence of this test to the test we propose, notice that under the Null

T−
1
2 infβ0∈B0(X

T (Y − β̂0X)−XT (Y − β̂mX) is equal to T−
1
2 XT X(β̂m− βm− (β̂ ∗0 − β ∗0 )). The

residual in this case, ∑t q̃2(.) is equal to (XT X
T )−1XT ε+β0

XT X∗
XT X + X̃T X̃

T )−1X̃T ε+β0
X̃T X∗
X̃T X̃ . We plot

below the bootstrap distribution versus the simulated test statistic, which in this case accord-

ing to our theoretical result is, for λx1,x2 ≡
σ2

x1
σ2

x2
, TW ∼ (β 2((1−λx,x∗)(λx,x∗ − 2λx,x̃)+λx,x̃(1−

λx,x̃))+λε,x(λx,x∗−λx,x̃)χ
2(1)
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Figure 2.7: Q-Q plot of Bootstrap versus Asymptotic distribution of W ∗

2.9.3 Using MCMC to explore the GMM pseudo-likelihood

It has been shown in (Chernozhukov and Hong 2003) that the Generalized Method of Moment

(GMM) class of estimators can be easily embedded in a Laplace type of estimation. Although

the authors refer to models that are point identified, this limited information approach has been

considered also by (Liao and Jiang 2010) in a partially identified case. One of the main as-

sumptions which justify the use of a quasi likelihood approach to GMM is the fact that a scaled

(by n
1
2 ) moment condition is asymptotically Normal. The resulting pseudo-likelihood cannot

be considered as fully characterizing the probability distribution of the data as GMM involves

information loss. Nevertheless, the pseudo likelihood obtained can be used to characterize the

large sample frequentist properties of θ .

In our case, the moment functions generated by the DSGE model are assumed to be well

behaved. Nevertheless, since we also use quantile functions to characterize the restrictions im-

plied by the survey data, we can no longer invoke smoothness assumptions. This does not pose

significant difficulty though as we can resort to sufficient stochastic equicontinuity conditions.
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These conditions are of the following type:

limsup
n→∞

P

{
sup

|θ−θ ′|≤δ

n
1
2 |Qn(θ)−Qn(θ

′)− (EQn(θ)−EQn(θ
′)|

1+n
1
2 |θ −θ ′|

> ε

}
< ε

In our case it is sufficient to look at Qn ≡ 1
T ∑t ((1(Y o

t −Y m
t (θ)≥ 0)φ(Yt−1)) as survey data

do not depend on θ . Since we are in the class of linear models, it is the case that Y m
t (θ) =

C(θ)Xt,t(θ) where Xt,t is Yt−1- measurable. The output of the Kalman filter (X t,t) is a lin-

ear function of the observable Yt−1and we can rewrite Y m
t (θ) = C(θ)Xt,t(θ) = D(θ)Yt−1 and

D(θ) continuously differentiable with respect to θ (given stability conditions, a well behaved

Σt,texists). Stochastic equicontinuity of Q(D) implies stochastic equicontinuity w.r.t θ . In order

to verify stochastic equicontinuity of Q in the case of dependent data, certain assumptions have

to be made about the degree of dependence allowed and the complexity of the function class

M considered. Sufficient conditions are the following ((Andrews 1993, Doukhan, Massart, and

Rio 1995)):

1. {Yt : t ≥ 1} is a stationary absolutely regular sequence with β (s)≤Cτs for some τ ∈ (0,1).

2. EM̄2(Yt) logM̄(Yt)< ∞

3. logN B
p (ε,M )≤C( 1

ε
)B for some B < 1

2 and p > 2.

where M̄ is the envelope function of M , that is maxi supθ qi(Yt ;θ) ≤ M̄(Yt) and N B
p (ε,M ) is

the L
p
bracketing cover number.

Assumption 1 is satisfied for VAR(1) processes as long as the innovations have a bounded

density with respect to Lebesgue measure and finite 2+ δ moments, (δ > 0). Nevertheless,

DSGE’s most likely have VARMA(p,q) representations. Moreover, if we let qi(Yt ;θ) = (1(Y o
i,t−

Y m
i,t (θ)≥ 0)φi(Yt−1) ∈M ≡M 1M2 where subscripts differentiate between the indicator func-

tion class and the instrument function class. Then assuming Emaxi supθ (logφi(Yt−1))
2+δ < ∞

for any measurable function of Yt is sufficient for Assumption 2. Finally, regarding Assumption

3, we can combine the cover numbers of 1(Y o
i,t−Y m

i,t (θ)≥ 0) and φ(Yt−1) as in (Andrews 1993).

It is well known that the indicator function has a bracketing number that grows at a polyno-

mial rate. Moreover, φ(Yt−1) is typically not a function of θ , although if we use (Kalman)

filtered state estimates, it will be. In the latter case, assuming Lipschitz continuity, compact

Θ and sufficiently smooth instrument functions with finite 2 + δ is sufficient. More partic-

ularly, logN B
p (ε,M ) = logN B

p (Dε,M1)+ logN B
p (Dε,M2) where logN B

p (Dε,M1) ∼ D
ε

,
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logN B
p (Dε,M2)∼ ( 1

Dε
)1/(2+δ ) and D∼ 1

Emaxi supθ (logφi(Yt−1))2+δ
The second bracketing number

dominates, and it grows at a rate slower than ( 1
ε
)1/2, satisfying therefore P−Donskerness.

Given these conditions are satisfied by the quantile-type of functions we use, then the

results of (Chernozhukov and Hong 2003) and (Liao and Jiang 2010) carry through. More par-

ticularly, let Sn(θ) = n
1
2 qn(θ)

′
+Wnn

1
2 qn(θ)+ be the criterion function to be minimized, where

qn(θ) are the moment functions to be used and qn(θ)+ ≡ max(qn(θ),0) = min(−qn(θ),0).

Let correspondingly pn(θ) be proportional to the pseudo density induced by GMM, pn(θ) ∝

exp(−Sn(θ). Then there exists a ∆n(θ0) and Jn(θ0) such that Sn(θ) admits a quadratic expan-

sion, that is

Sn(θ) = Sn(θ0)+ (θ −θ0)
′
∆n(θ0)−

1
2
(θ −θ0)

′nJn(θ0)(θ −θ0)+Rn(θ)

It is important to note that in this context the existence of the terms ∆n(θ0) and Jn(θ0) does

not rest on differentiability assumptions for qn(θ) but rather on differentiability in mean. This

allows us to assume the existence of a CLT on ∆n(θ0) without smoothness assumptions on qn(θ).

Furthermore, let me redefine Qn(θ) ≡ qn(θ)− b where b is t he bias term. That is instead

of looking at infθ Sn(θ) we can equivalently look at inf(θ ,b:b∈[0,∞)) S̃n(θ ,b) where S̃n(θ ,b) =

n
1
2 Qn(θ)

′Wnn
1
2 Qn(θ). we can therefore assume that the following holds:

V (θ0,b0)
− 1

2 ∆̃n(θ0,b0)
d→ N(0, I)

Given this result, in (Liao and Jiang 2010) it is shown that the posterior density (in our case,

simply the quasi likelihood) drops to zero exponentially on any subset δ > 0 away (in terms of

Euclidean distance) from Θc
I . Given this exponential rate, we can also estimate the identified

region.16 See (Liao and Jiang 2010) for further details.

We should bare in mind that it can be the case that the credible set estimated might be

inside the identified region ((Moon and Schorfheide 2012)). We do not perform inference based

16Define (Θc
I )
−δ = θ ∈ Θ : d(θ ,ΘI) ≥ δ where d(x,y) is the Euclidean distance. What (Liao and Jiang 2010)

show amongst other results is that:

1. ∀δ > 0 and for some α > 0,

P(θ ∈ (Θc
I )
−δ |Y) = op(exp(−αn))

2. ∀ nonempty open sets Θs ⊂ΘI ,

liminf
n→∞

P(θ ∈Θs|Y) > 0
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on Markov Chain Monte Carlo, we use it only to get a consistent estimate ofthe identified set.

We resort to the Bootstrap to do inference of the type H0 : θ = θ0.
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2.10 Appendix B

2.10.1 Computational results for the case of Capital Adjustment Costs

Figure 2.8: (Top) Estimates of (1−Mt)λt and (Bottom)Violations ofMt ≥ 0 over the whole artificial
sample (100 periods)
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2.10.2 Graphical Examples of Spanish Survey Data

The data used come from surveys conducted by the local statistical authority under the guide-

lines of the European Commission. What we present in the graphical evidence comes from the

sub-components of the Consumer Survey Index (CSI) and the Industrial Sector Index (ISI). The

indices constructed reflect the balances of the designated answers. In particular, the answers are:

” better (PP), little better (P) , same (E), little worse (M), lot worse (MM), N don’t know. Then,

balances are calculated as B = (PP+0.5P)-(0.5M+MM). We plot below aggregated answers to

typical questions relating to savings in the household sector and production constraints due to

equipment and financial constraints in the industrial sector.

Figure 2.9: Spain

Figure 2.10: Spain
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Figure 2.11: Spain
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2.10.3 Data Transformation and Filtering

2.10.3.1 Macro Aggregates

We extract the business cycles from Spanish macro aggregates by applying the Christiano -

Fitzgerald optimal approximation to the Band-Pass filter for length ranging from 4 to 32 quar-

ters. Figure 1.12 depicts the extracted cycles for each series.
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Figure 2.12: Spain
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Figure 2.13: Spain

2.10.3.2 Balance Statistics

Given that in our theoretical analysis we assumed positive balances that directly relate to a

probability statement, we need to make a simple transformation of the balance statistics. We

have already defined the probability of an event as a certain partition of the relevant random

variable of interest. If this random variable is x, then we partition x in i.e. 5 intervals, namely

x1,x2,x3,x4,x5. The probability mass pi in a particular partition will therefore give the prob-

ability of this random variable lying in this partition of the support. The balance statistic

B = p5 + 0.5p4 − p2 + 0.5p1 is equivalent to judging whether there is more mass above or

below the median x, med(x) and truncating the distribution on both ends by the same proportion

to avoid extremes. Taking the truncated distribution as the true distribution, then the balance

statistic is B≡ P(x > med(x))−P(x < med(x)) which implies that P(x > med(x)) = 1+B
2 .

2.10.3.3 Interpretation of P(x > med(x))

In the easiest case, that one in which agents report constraints, P(x > med(x)) is the probability

of having constraints. In more subtle cases, when agents report on the situation being the same,

better or worse, P(x > med(x)) is the conditional probability of a transition to a better or worse

state. Since decision rules from DSGE models depict decisions conditional on a state variable,

then P(x > med(x)) is the conditional probability on the evolution of an endogenous or trivially

an exogenous variable, or a combination of both. Such a subtle case arises in our application, in

which we have to link consumer qualitative survey data to aggregate implications for borrowing

constraints (incomplete markets).
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Figure 2.14: Spain

In the figure above we plot the proportion of people who claim that "it is a better moment to

save than not" (orange) versus proportion of people who believe that "their savings will improve

rather than not" (yellow). What is striking is that the two proportions coincide in the following

sense: Before the mid 1990’s global recession, roughly the same proportion of people believed

that it was a good moment to save and that their savings would deteriorate in the future, which

is an indication of behavior consistent with saving to smooth fluctuations in income. Agents

expect to run down savings in the future due to an expectation of worsening financial situation.

From 1997, more agents expected to save in the future and at the same time believed that it was

a good moment to save. The latter reversed during the boom period as housing markets were

booming. From 2008, with the outburst of the crisis, the proportion of people believing that

it is rather not a good time to save and that of expecting of saving to fall further in the future,

co-move (the complements of orange and yellow). This is also consistent with consumption

- saving behavior in incomplete markets, as agents use their existing savings to smooth their

consumption. We relate the blue series (expected financial situation in 2 months) to "cash on

hand", that is assets and income, and the yellow series to expectations about income (labor and

capital), since savings crucially depend on the latter in any model of consumption - savings

decision. The difference between the blue and the yellow (and orange after 2003) implies that

not all agents who believe that their financial situation will improve will necessarily save more

in the future. We conclude that the complement of the probability implied by the yellow series

is a rough approximation to the probability of having i.e. a negative distortion to the level
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of consumption relative to the frictionless case as it’s behavior over time is consistent with

incomplete markets. We nevertheless include the other series i.e. the complement of the blue

series, which is a lower bound to the probability level we want to characterize. It is co-moving

with the yellow series so it might lower variance at the expense of bias.

We should note that we have not controlled for "breaks" in the survey data series for a

few reasons. First, we have a small sample and the cost of dropping observations is quite high.

Second, from the data series we use, only the proportion of firms having financial constraints

seems to have a "structural break", see Figure 2.11. This might affect to some extent the level of

the correlation of this series with the instruments we use, which is what matters for estimation.
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2.10.4 Distortions due to different frictions

Figure 2.15: Spain



Chapter 3

Estimation and Inference for Incomplete

Structural Models using Auxiliary Density

Information

3.1 Introduction

The use of estimated Dynamic Stochastic General Equilibrium (DSGE) models has become

pervasive in both economic policy and academic institutions. In order to answer quantitative

questions within a data coherent framework, practitioners have resorted to a variety of full or

limited information methods. Nevertheless, while macroeconomic theory provides a set of equi-

librium conditions, it rarely provides the complete probability distribution of observables, which

is necessary to perform full information analysis. This forces users to make several auxiliary as-

sumptions; for example, one has to choose which solution concept to use and type (and degree)

of approximation to consider.

Although approximations make computation of the solution of the model easier, this can

possibly cause a form of misspecification with respect to the exact model. Approximations to

non linear models might not necessarily work well, as they can distort the dynamics implied

by the model (den Haan and de Wind 2010). Distorting the dynamics can lead to severely

wrong inference about parameters and policy recommendations. Moreover, approximation and

model solution can introduce further uncertainties like loss of identification power (Canova and

Sala 2009).

With regard to the form of the solution and types of equilibria considered, although some

solutions or equilibria can be easily discarded due to economic reasoning, it is often the case

that this is done with not so strong evidence (Pesaran 1987, Blanchard 1979). On the other
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hand, having a complete probability distribution is very useful. It enables practitioners to do

counterfactual experiments, predictions and therefore policy recommendations.

This paper considers an alternative method for estimating the parameters of a DSGE model

which does not require the equilibrium decision rules and produces an estimated probability

model for the observables. We propose the use of what we refer to as a ”base” conditional

probability measure with density f (X |Z,ϕ) where Z is conditioning information. This measure

can be generally interpreted as an approximate model for the observables. Utilizing a variation

of the method of information projections (Kitamura and Stutzer 1997, I.Csiszar 1975) we obtain

a probability distribution that satisfies the conditional restrictions of the economic model, that

is E(m(X ,ϑ)|z) = 0, and is as close as possible to the base measure. This is also related to the

recent work of (Giacomini and Ragusa 2014) in a forecasting context.

This approach can allude to the Bayesian paradigm in the sense that the approximate model

serves as a prior, which can nevertheless be data revisable. We provide a decision theoretic

framework that rationalizes the estimation method, and develop the corresponding frequentist

inference. We limit most of our analysis to the case of finite dimensional ϕ , although extensions,

under suitable assumptions, are possible1.

Furthermore, we deal with correctly specified or locally misspecified classes of f (X |Z,ϕ).

In case of local misspecification, we show that the proposed method is akin to shrinkage to-

wards the approximate model, and this is reflected in the first order estimating equations. More

interestingly, an explicit form of the asymptotic variance of the estimator is provided. Under

the condition that there exists an admissible parameter of f (x|z,ϕ) such that the moment condi-

tions are satisfied, the semi-parametric lower bound for the parameter estimates is attained (see

(Chamberlain 1987)). Another contribution of the paper is to show that under misspecification,

the estimator can be rewritten in the form of a regularized GEL estimator in which shrinkage

is towards the otherwise misspecified conditional density. Misspecification of the density in

the form of improper finite dimensional restrictions leads to efficiency gains and therefore an

asymptotic bias - variance trade-off.

Moreover, we provide simulation comparisons of the Mean Squared Error (MSE) of the

estimator for the case of fixed density misspecification. Well specifying the conditional mean is

important to get good estimates in the MSE sense. We also apply the method to the prototypical

1Indepenent work by (Shin 2014) proposes Bayesian algorithms to implement the exponential tilting estimation
using flexible mixtures of densities. Our contribution is mostly on the fequentist properties of exponential tilting for
a general parametric family of densities and our results are therefore complementary
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stochastic growth model.

The strand of literature that is closer to the methodology considered in this paper is the liter-

ature on Exponential Tilting i.e. (Schennah 2007, Kitamura and Stutzer 1997), and Generalized

Empirical Likelihood (GEL) criteria i.e. (Newey and Smith 2004) in a conditional moment

restrictions framework. We depart from this literature by considering a generalized version of

exponential tilting, where the form of f (X |Z,ϕ) is parametrically specified.

The paper is organized as follows. In Section 2, we introduce the problem of likelihood

recovery and provide a decision theoretic interpretation to the method. Moreover, an economic

example for density projections is provided. In Section 3 we provide the large sample properties

under correct specification of f (X |Z,ϕ). Section 4 provides a formal shrinkage formulation and

the asymptotic distribution in case of local misspecification while Section 5 provides simulation

evidence. Section 6 concludes. Appendix A provides some analytical details for the example

and application, and discusses the computational aspect of the method and the case of non

differentiable models. Appendix B contains the proofs.

Finally, a word on notation. Let N0 denote the length of the data and Ns the length of

simulated series. X is an nx× 1 vector of the variables of interest while Z is an nz× 1 vector

of conditioning variables. Both X and Z belong to a probability space (Ω,F ,P). In the paper

three different probability measures are used, the true measure P, the base measure Fϕ which

is indexed by parameters ϕ and the H(ϕ,ϑ) measure which is obtained after the information

projection. Moreover, these measures are considered absolutely continuous with respect to a

dominating measure v on the space where X is defined e.g. if X ∈ Rnx then v is a Lebesgue

measure. All these measures possess the corresponding density functions p, f and h. The set

of parameters ψ is decomposed in ϑ ∈ Θ, the set of structural (economic) parameters and ϕ

the parameters indexing the density f (X |Z,ϕ). In addition, Ps is the conditional distribution

where s can be a variable or a parameter. Furthermore, mi(X ,Z,ϑ) is a general moment X ⊗Z

measurable function and m(X ,Z,ϑ ) is an M× 1 vector containing these functions. For any

matrix function Di, the subscript i denotes the evaluation at datum (Xi,Zi). The operator →p

signifies convergence in probability and →d convergence in distribution; N (., .) signifies the

Normal distribution with certain mean and variance. In terms of norms, ||.|| signifies the Eu-

clidean norm unless otherwise stated. In addition ||.||TV is the Total Variation distance2. EP(.|.)

is the conditional mathematical expectations operator with respect to measure P. Finally, VP(x)

2||.||TV = sup
B∈Ω

∫
B | f − p|dv
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signifies the variance of variable x under the P− measure while VP̃,s(x) is the second moment of

a particular function s̃(.).

3.2 Incomplete Models, Likelihood and (Non) Revisable Informa-

tion

In this section we provide a decision theoretic motivation for the methodology by casting the

issue of likelihood recovery as a problem that involves the introduction of non data-revisable

information. Auxiliary modeling choices like model approximations and choice of particular

equilibria entail a loss to the econometrician or policy maker that is non revisable once the

selected model is taken to the data.

We can model such a loss by considering the decision problem of a modeler who makes

predictions by maximizing expected log-scoring, i.e. EPlog(p(X |Z,ϑ ,J) where ϑ is the param-

eter of interest and J represent non-data dependent choices that affect the score. The loss can

be further motivated by the fact that making better or more informed choices involves a cost

i.e. computing power, that is non negligible. We denote such a cost by ε(J). Taking quadratic

approximation to expected log-loss around the pseudo-true of the parameter of interest and sub-

tracting from the log loss based on p?(X |Z,ϑ) , we have that:

EPlog
(

p?(X |Z,ϑ0)

p(X |Z, ϑ̂ ,J)

)
= EPlog

(
p?(X |Z,ϑ0)

p(X |Z,ϑ ,J)

)
− 1

2
(ϑ̂ −ϑ)T ∂ 2log(p(X |Z, ϑ̃ ,J))

∂ϑϑ T (ϑ̂ −ϑ)

= ε(J)− 1
2
(ϑ̂ −ϑ)T ∂ 2log(p(X |Z, ϑ̃ ,J)

∂ϑϑ T (ϑ̂ −ϑ)

where the first term of the right hand side is the relative loss due to the auxiliary decisions, J,

and does not depend on N0.

It is important to recognize that there is no reason to believe that ε(J) diminishes as the

sample size N0 grows, since it is non-data revisable. For example, in the context of the approx-

imation of dynamic equilibrium models, (Ackerberg, Geweke, and Hahn 2009) have shown (in

Theorem 4) that consistency for ϑ0 is achieved only when a measure of approximation, ∆ j
3,

converges to zero at a faster rate than
√

N0. However, there is no intuitive reason why the qual-

ity of approximation can be tied to the sample size, and therefore the assumption behind the

3∆ j ≡max{sup
Xt ,ϑ
| ∂ k

∂ϑ k log(p j(X |ϑ ,J))− ∂ k

∂ϑ k log(p?(X |Z,ϑ))|}
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asymptotic result become tenuous. What is more is that we assume away the case of loss of

identification that arises due to approximations or equilibrium selection. Although this is very

important per se, it is not consequential in terms of the log-score itself as different values of ϑ

lead to the same p(X |Z,ϑ).

The above problem can be embedded in a Principal-Agent framework, in which the Princi-

pal delegates parameter estimation to the Agent and supplies the sample of data and a prior over

the form of the distribution of the data. The latter is provided for two reasons. First, there is a

monetary loss incurred for obtaining the otherwise unknown full likelihood. This necessitates

the introduction of prior information, usually coming from previous experience of the Principal.

In fact, the cost ε(J) calibrates a set of prior models as follows:

B(p?(X |ϑ),ε(J)) := {p ∈ P : Elog(
p?(X |Z,ϑ)

p
)< ε(J)}

Any prior p that yields a loss less than ε(J) is therefore admissible. Second, the Principal

seeks to guard against possible model overfit by the agents. One way of achieving this is by data

holdouts (see for example (Schorfheide and Wolpin 2016)). Another way is to prefer models

that are close as possible to prior information about the conditional density of the observables.

We follow the latter approach.

Moreover, the compensation scheme is such that the agent is rewarded based on log score

i.e. the "in sample" predictive performance. The Principal gains by a high log score as this

implies better choice of policies and higher welfare. On the other hand, she penalizes models

that are too far from the prior distribution. This can be represented by a two stage game in

which the Principal first chooses the family of densities that satisfy the restrictions coming from

economic theory, and then delegates model fit to the econometrician. This framework also fits

real world situations in which the government or manager has some more experience in what is

a good statistical model that has a good prior predictive performance. On the other hand, the

economic model is defined up to a set of equilibrium conditions. The Principal therefore solves

the following program:

min
h(X |Z,ϕ)∈Hθ

∫
h(X |Z,ψ)log(

h(X |Z,ψ)

f (X |Z,ϕ)
)h(Z)d(X ,Z) (3.1)
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where

a) Hθ :=
{

h ∈ Lp :
∫

h(X |Z,ψ)m(X ,Z,θ)dY = 0,
∫

h(X |Z,ψ)dY = 1
}

b) f (X |Z,ϕ) ∈ B(p?(X |ϑ),ε(J))

c) ψ? = argmin
ψ∈Ψ

∫
P(X ,Z) log( P(X ,Z)

h(X ,Z,ψ ))d(X ,Z)

In the information projections literature the minimization problem in 3.1 subject to con-

straint (a) is called exponential tilting as the distance metric minimized is the Kullback Leibler

distance, whose convex conjugate has an exponential form.

As already mentioned, the setHθ is the set of admissible densities i.e. the densities that by

construction satisfy the moment conditions. Solving the game backwards, they should satisfy

these conditions at ψ? i.e. taking into account the optimal choice of the econometrician. The

second qualifying statement (b) serves as a participation constraint, which by assumption always

binds for high enough cost (ε(J)) of actually solving the model and not using prior information.

In stage two, the econometrician therefore solves the standard parameter estimation prob-

lem:

maxψ∈Ψ

∫
log(h?(X ,Z|ψ))dP(X ,Z) (3.2)

Note that this game, whose extensive form is in figure 3.1, is not identical to the standard game

theoretic setup in the robustness literature i.e. (Hansen and Sargent 2005). In our case the game

is not zero sum, and therefore it does not belong to the min-max class of games. Moreover, the

game is trivially sequential in the sense that the Principal commits to a choice of conditional

density from time 0, while the Econometrician acts at time N > 0. Since the Econometrician

is not forward looking, there is not reason to keep track of the cost of keeping the Principal’s

promise, as is typical in dynamic Stackelberg (Ramsey) games, something that greatly simplifies

the setup.

The problem of the Principal can be conveniently rewritten such that the choice of density

h(Y |Z,θ) is equivalent to the choice of a perturbation M(X ,Z,θ) to the prior density, that is

h(x|z,ϑ ,ϕ) = f (X |Z,ϕ)M(X ,Z,ϑ). The perturbation factorM(x,z,ϑ) will be a function of

the sufficient information to estimate θ and is in general not unique. Selecting h(X |Z,ϑ ,ϕ) by
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t = 0, Principal

h?(Xt |Zt ,ψ) ∈H
t = N, Econometrician

ψ? ∈Ψ

Figure 3.1: Stackelberg Game

minimizing the Kullback-Leibler distance to the prior density is one way of selecting a unique

factorM. The program therefore becomes as follows:

minM∈ME f(Z,ϕ)M(X ,Z,ϑ) logM(X ,Z,ϑ)h(Z)d(X ,Z)

where

a) M :=
{
M∈Lp : E f(Z,ψ)

M(X ,Z,θ)m(X ,Z,θ) = 0, E f(Z,ψ)
M(X ,Z,θ)dY = 1

}
b) f (X |Z,ϕ) ∈ B(p?(X |ϑ),ε(J))

In turns out that the optimal choice for the perturbation factor is the following:

M? = exp
(
λ (Z)+µ(z)′m(X ,Z,ϑ)

)
which implies the choice of the following family of distributions:

h(X |Z,ψ) = f (X |Z,ϕ)exp
(
λ (Z)+µ(Z)′m(Y,ϑ)

)
(3.3)

where µ is the vector of the Lagrange multiplier functions enforcing the conditional moment

conditions on f (X |Z,ϕ) and λ is a scaling function. This density will be used to perform
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pseudo-maximum likelihood estimation of the equilibrium model under consideration.

Below, we present an illustrative example of projecting on densities that satisfy moment

conditions that arise from economic theory. In this simple case, due to linearity, the resulting

distribution after the change of measure implied by the projection is conjugate to the prior.

Economic theory therefore imposes structure on the moments of the prior distribution.

3.2.1 An Example

Consider the restrictions implied by the consumption-savings decision of the representative

household on the joint stochastic process of consumption, ct), and gross interest rate, Rt , that is,

they should satisfy the following Euler equation:

EP(βRt+1uc(ct+1)−uc(ct)|Ft) = 0

where Ft is the information set of the agent at time t and u(ct) = c2
t . Under Rational

expectations, the agent uses the objective probability measure to formulate expectations.

Suppose that a prior statistical model is a bivariate VAR for consumption and the interest

rate and for analytical tractability that they are not correlated. Their joint density conditional on

Ft is therefore:  ct+1

Rt+1

|Ft

∼ N

 ρcct

ρRRt

 ,

 1 0

0 1


Given the assumption on the utility function, E(Rt+1ct+1|Ft) =

ct
β

or Cov(Rt+1ct+1|Ft) =

ct
β
(1−RtβρcρR) . This is a restriction on the conditional covariation of consumption and interest

rates and the new density h(ct+1,Rt+1|Ft) is therefore:

 ct+1

Rt+1

|Ft

∼ N

 ρcct

ρRRt

 ,

 1 ct
β
(1−RtβρcρR)

∗ 1


Since we know the new density, the perturbation M(X ,Z;ϑ), can be computed as fol-

lows:

M =

N

 ρcct

ρRRt

 ,

 1 0

∗ 1

−1

N

 ρcct

ρRRt

 ,

 1 ct
β
(1−RtβρcρR)

∗ 1


= exp

−1
2

 (ct+1−ρcct ,Rt+1−ρRRt)
 1 ct

β
(1−RtβρcρR)

∗ 1

 ct+1−ρcct

Rt+1−ρRRt


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In Appendix A, we illustrate how the same expression forM can be obtained formally using a

conditional density projection, that is, solving 3.1 subject to the first constraint (a). Note that in

this example, the fact that the Euler equation is a direct restriction on the parameters of the base

density is an artifact of the form of the utility function assumed, and is therefore a special case.

In more general examples an analytical solution cannot be easily obtained and we therefore

resort to simulation. Details of the algorithm are provided in Appendix A.

In the rest of the paper we analyze the frequentist properties of this approach. More par-

ticularly, in the next section we provide the relevant asymptotic theory which is an extension of

the asymptotic theory developed for empirical likelihood (see e.g. (Newey and Smith 2004, Ki-

tamura, Tripathi, and Ahn 2004)). The main difference arise due to the fact that we project on

a general possibly misspecified density. Moreover, explicitly acknowledging for estimating the

parameters of the density yields some useful insight to the behaviour of the estimator.

3.3 Frequentist Inference

This section illustrates asymptotic results, that is consistency and asymptotic distribution for

ψ ≡ (ϑ ,ψ). The properties of the estimator, as expected, depend crucially on the distance

between the prior and the true population conditional density. In the case that the distance

vanishes for large N0, we provide an explicit shrinkage formulation in the GEL setting4.

Before stating the main results, we make certain assumptions that are fairly standard in

extremum estimation and are necessary and sufficient for the Propositions to be valid.

For {Xi,Zi}N0
i=1,n≥1 a stationary ergodic sequence, the following assumptions hold:

Assumptions I

1. (COMP) The sets Θ ⊂ Rk,ϕ ⊂ Rl ,M⊂ RM are compact, and therefore Ψ ≡ Θ×ϕ ⊂

Rk+l is compact.

2. (ID)There exists a unique vector (ϑ0 ∈ int(Θ),ϕ0 ∈ int(ϕ)) such that (ϑ0,ϕ0) =

argmax
Ψ

E logh(xt ,ϑ0,ϕ0)

3. (BD-1a)∀l ∈ 1..M and for d ≤ 4,P ∈ (Fϕ ,P) :

EP|z supψ ||ml(x,ϑ)||d ,EP|z supψ ||ml,ϑ (xt ,ϑ)||d ,and EP|z supψ ||ml,ϑϑ (xt ,ϑ)||d are finite,

Pz-a.s.

4Conditional density projections can therefore rationalize regularized versions of "optimal" GMM, see for exam-
ple (Hausman, Lewis, Menzel, and Newey 2011) for the case of the Continuous Updating Estimator (CUE).
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4. (BD-1b)supψ EPzi
||eµ ′i |m(x,zi,ϑ)|||1+δ < ∞ for δ > 0, ∀µi > 0 and ∀zi

5

5. (BD-2)supψ E(logh(x;z,ψ))2+δ̃ < ∞ where δ̃ > 0.

6. (PD-1) For any non zero vector ξ and closed Bδ (ψ) , δ > 0, and P ∈ (Fϕ ,P),

infξ×Bδ (ψ) ξ ′EPm(x,ϑ)m(x,ϑ)′ξ > 0 and supξ×Bδ (ψ) ξ ′EPm(x,ϑ)m(x,ϑ)′ξ < ∞

Assumptions (1)-(2) correspond to typical compactness and identification assumptions

found in (Newey and McFadden 1994) while (3) assumes uniform boundedness of conditional

moments, up to a set of measure zero. Assumption (4) assumes existence of exponential ab-

solute 1+ δ moments and (5) boundedness of the population objective function6. Finally, (6)

assumes away pathological cases of perfect correlation between moment conditions.

Note that the assumptions above correspond to the case of estimation of a density with

finite dimensional ϕ . In case ϕ is infinite dimensional, the conditions have to be sufficiently

generalized. Such a generalization involves additional conditions that control for parametric or

semi-non parametric estimators for f (x|z). In the former class of estimators we would need

to define a function S(x,z) that essentially replaces the usual score function in the finite di-

mensional case and corresponding stochastic equicontinuity and mean square differentiability

conditions, see again (Newey and McFadden 1994). In the semi-non parametric case, since the

estimation space becomes a function of the sample size, i.e. Φn ⊆ Φn+1... ⊂ Φ, conditions on

the uniform convergence and continuity of the objective function have to be suitably adjusted,

see for example (Chen 2007).

Although we abstract from the above generalizations, the characterization of the asymp-

totic distribution using the high level assumption of asymptotically correctly specified f (x|z) is

sufficient to illustrate the main trade-off arising when a practitioner wants to do inference using

an estimated probability model without solving the equilibrium conditions.

Recall that the problem for the econometrician is to maximize the likelihood provided by

the Principal (3.2). The empirical analogue is therefore the following:

5 Note that BD-1a and BD-1b imply that supψ EPzi
||eµ ′i m(x,zi,ϑ)+λ (zi,ϑ)m(x,zi,ϑ0)||1+δ < ∞ for δ > 0 and ∀zi.

6The additional subtlety here is that it has to hold for the base measure and the true measure. Given absolute
continuity of P(x|z) with respect to f (x|z), the existence of moments under P(x|z) is sufficient for the existence of
moments under f (x|z)
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max(θ ,ϕ)∈Θ×ϕ
1

N0
∑i=1..N0 log( f (xi|zi,ϕ)exp(µ ′i m(xi,zi,ϑ)+λi) (3.4)

subject to: (3.5)∫
f (Xi|Zi,ϕ)exp(µ ′i m(Xi,Zi,ϑ)ms(Xk,Zi,ϑ)dX = 0,∀l = 1..dim(m), i = 1..n(3.6)∫

f (Xi|Zi,ϕ)exp(µ ′i m(Xi,Zi,ϑ)dX = 1∀i = 1..n (3.7)

The corresponding first order conditions of the estimator are going to be useful in order

to understand both the asymptotic but also the finite sample results. For M the Jacobian of the

moment conditions, the first order conditions are:

ϑ : 1
N ∑

i
(µ(Zi)

′M(Xi,Zi,ϑ)+µθ (Zi)
′m(Xi,Zi,ϑ)+λϑ (Zi)) = 0

ϕ : 1
n ∑

i

(
s(Xi,Zi,ϕ)+µϕ(Zi)

′m(Xi,Zi,ϑ)+λϕ(Zi)
)

0 = 0

where:

µ(Zi) = argmin
µ∈Rk

∫
f (X |Zi,ϕ)exp(µ ′m(X ,Zi,ϑ)dX

λ (Zi) = 1− log(
∫

f (Xi|Zi,ϕ)exp(µ(Zi)
′m(Zi,Zi,ϑ)dX)

With regard to the existence of µ(Z), or equivalently, the existence of the conditional den-

sity projection, (Komunjer and Ragusa 2016) provide primitive conditions for the case of pro-

jecting using a divergence that belongs to the φ− divergence class and moment restrictions that

have unbounded moment functions. Assumptions BD-1a and BD-1b are sufficient for their

primitive conditions (Theorem 3).

In Appendix B we provide expressions for the first and second order derivatives of

(µ(Zi),λ (Mi)) which determine the behaviour of ϕ̂ in the neighborhood of ϕ?
0 . More interest-

ingly, these expressions will be useful for the characterization of the properties of our estimator

in the case that the total variation distance between the prior density and the true density is not

zero. In particular, the shrinkage direction will be towards the approximate model.

Below we present consistency results for both the case of misspecification and correct

specification, and the asymptotic distribution under the former case.



3.3. Frequentist Inference 92

3.3.1 Consistency and Asymptotic Normality

Due to the fact that the estimator involves a ’two step’ procedure, where the first step involves

using only simulated data, we need to make the assumption that the size of simulated data grows

at a higher rate than sample size. The uniform consistency of the estimator is then shown by

first proving pointwise consistency and then stochastic equicontinuity of the objective function.

Proposition 5. Consistency for ψ?
0

Under Assumptions I, for Ns,N0→ ∞ such that N γ̄+1
0
Ns
→c with c > 0 and γ̄ > 1+ 2

d :

(ϑ̂ , ϕ̂)→
p
(ϑ ?

0 ,ϕ
?
0 )

Proof. See the Appendix

Obviously, under correct specification, consistency is for ϑ0. This leads to the following

corollary:

Corollary 3.1. Consistency for ϑ0

If f (X |Z, ϕ̂) is consistent for P(X |Z) or correctly specified, then ϑ ?
0 = ϑ0.

Proof. See Appendix

Given consistency, we can proceed in deriving the limit distribution of the estimator by

the usual first order approximation around ψ0. Below, we present the main result for a general,

correctly specified density. Denoting by G(ψ) the matrix of first order derivatives with respect

to (ϑ ,ϕ), the asymptotic distribution is regular.

Proposition 6. Asymptotic Normality

Under asymptotic correct specification and Assumption I:

N
1
2

0 (ψ−ψ
∗)→

d
N(0, I(ψ0)

−1)

where I(ψ0)
−1 is the semi-parametric lower bound, I(ψ0)

−1 = E(G(ψ,z)′Vg(ψ,z)−1G(ψ,z)).

Proof. See the Appendix
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In Appendix B we derive the exact form of the variance covariance matrix of the estimator.

Given a finite number of conditional moment restrictions, this is the lowest variance bound that

can be achieved, see for example (Chamberlain 1987). With regard to the Jacobian terms,

G(ψ0) ≡

 Ḡi,ϑϑ ′(ψ̃) Ḡi,ϑϕ ′(ψ̃)

Ḡi,ϕϑ ′(ψ̃) Ḡi,ϕϕ ′(ψ̃)


for Mi(ϑ) ≡ E(M(x,ϑ)|Z), si ≡ E(s(X)|Z) and Bi the population projection coefficient

from projecting the score on the user specified moment conditions, the corresponding compo-

nents are as follows:

EGi,ϑlϑ
′ = EMi(ϑ)′V−1

m (ϑ)Mi(ϑ) (3.8)

EGi,ϑϕ ′ = EzMi(ϑ)V−1
m E(mi(ϑ)⊗ si(ϕ)

′|Z) (3.9)

= EzM′i(ϑ)Bi(ψ) (3.10)

EGi,ϕϕ ′ = Ezsi(ϕ)si(ϕ)
′ (3.11)

Notice also that the upper left component is the same as the information matrix corre-

sponding to ϑ when the conventional optimally weighted GMM criterion is employed. The

cross derivative involves the coefficient of projection of the score of the density on the eco-

nomic moment conditions. Moreover, 3.11 is the outer product of the score of the density.

With regard to the covariance matrix, Vg(ψ,z), notice that due to stationarity assumptions,

the form of the long run variance will be Vg(ψ,z) ≡ Vg,0(ψ,z)+∑
N0−1
i (Γg,i +Γ′g,i). More par-

ticularly, for sP
i ≡mBi, the instantaneous variance-covariance matrix,

V̄ (ψ0) ≡

 V̄11(ψ̃) V̄12(ψ̃)

V̄21(ψ̃) V̄22(ψ̃)


has the following components:

V̄11 = EzMi(ϑ)′V−1
m Mi(ϑ)

V̄22 = Ez(si(ϕ)+ sP
i (ϕ))(si(ϕ)+ sP

i (ϕ))
′

V̄12 = EzMi(ϑ)′Bi(ψ)
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Analogously, the components of the autocovariance terms, Γg,i =
1
k ∑

N0
k=i+1Egkgk−i are :

E(gkg′k−i)11 = EzMk(ϑ)′E(mk(ϑ)mk−i(ϑ)′)Mk−i(ϑ)

E(gkg′k−i)22 = Ez(sk(ϕ)+ sP
k (ϕ))(sk−i(ϕ)+ sP

k−i(ϕ))
′

E(gkg′k−i)12 = EzMk(ϑ)′Bk−i(ψ)

Interestingly, the above conditions have an intuitive interpretation. To see this, notice that

if the moment conditions we use satisfy m(X ,Z,ϑ) = s(X ,Z,ϕ)+U and E(U|s) = 0, then the

the variance covariance matrix (in the special case of iid data) collapses to:

V̄0 =

 H ′(Vs+VU )
−1H H ′+ ∂U

∂φ

H + ∂U
∂φ

′
4Vs


where H ≡ E ∂ 2

∂ϕϕ ′ log f (X ,Z,ϕ). Under correct specification of the density, H = Vs and

therefore

V̄0 =

 V ′s(Vs+VU )
−1Vs V ′s +

∂U
∂φ

Vs+
∂U
∂φ

′
4Vs


In addition, if the moment conditions used span the same space spanned by the scores of

the density, and this is the case when the model is solved, then the the Cramer - Rao bound is

attained as U = 0.

In the next section, we show that in the case of misspecification of a parametric density, the

first order conditions of the estimator can be conveniently rewritten such that they are equivalent

to optimal GMM type of first order conditions plus a penalty term, which will be a function of

the discrepancy between f (x|φ ,z) and p(x|z). Under local misspecification, this penalty has only

second order effects. Moreover, misspecification in the form of wrong parametric restrictions

can result in a bias - variance trade-off for ϑ . This also provides a shrinkage characterization of

the estimator, where shrinkage on the nuisance parameters translates to efficiency gains in the
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estimates of structural parameters.

3.4 Shrinkage Towards the Statistical Model

3.4.1 Parametric Case

Since we have limited the scope of our analysis to the case of finite dimensional ϕ , it is instruc-

tive to see what happens under misspecification. For simplicity we focus on misspecification of

the type R(ϕ) = 0, where R is possibly non linear. This is quite general, as it represents not only

non-linear restrictions on the space of parameters indexing a single density f (X |Z,ϕ) but also

restrictions on the mixture weights in finite mixtures of densities.

We first establish a few facts on the (lack of) first order effects of local misspecification of

the density. Recall that the first order conditions of the estimator for ϑ once we substitute for

the expressions for λ (Z) and µ(Z) are the following:

(MP−MH)
′V−1

m,κ, f m f +M′fV
−1
f ,mmP = 0

where for notational simplicity we deonote mP ≡
∫

m(X ,Z)dP(X ,Z) for any measure P.

Since MP−MH ≡
∫

M(x,ϑ)(dP(x,z)− dH(x,z)) the latter quantity collapses to zero for

almost all (x,z) if and only if the base statistical model is correctly specified for the true data

generating process. In this case the population first order conditions become the same as the

continuously updating GMM estimator that is:

M′PV−1
P,mmP = 0

In case of misspecification, rearranging terms in the above first order condition, the scaled by

N
1
2

0 conditions are as follows:

0 = (MPn−MHn)
′V−1

κ, fn
N

1
2

0 (m fn−mP,n)+(MPn−MHn)
′V−1

κ, fn
N

1
2

0 mPn + ... (3.12)

... +(M′fn
V−1

fn
−M′Pn

V−1
Pn

)N
1
2

0 mPn +M′Pn
V−1
Pn

N
1
2

0 mPn (3.13)

The first three terms are functions of the distance between the proposed and the true f (x|z).

Furthermore, we make use of the fact that we can derive the rate of convergence of the terms
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involving functionals of the true and the locally misspecified density. More particularly, we

provide below a decomposition that will be useful when thinking about the effects of discrep-

ancies between the conditional density used by the econometrician and the true density. This

decomposition will be trivial in the case of smooth parametric models.

Lemma 3. Influence function for plug-in estimator (Wasserman 2006)

For a general function W (x,z), conditional density Q(x|z) and L(x,z) ≡ W (x,z) −∫
W (x,z)dPz(x|z)

WQn−WP ≡
∫

W (x,z)d(Q(x|z)P(z))−
∫

W (x,z)d(P(x|z)P(z))

=
∫ ∫

L(x,z)dQ(x|z)P(z)

Given Lemma 3, we can the characterize the conditions under which local discrepancies

between the conditional density used by the econometrician and the true density have an effect

on the estimating equations characterizing ϑ . We first present the case that corresponds to the

class of densities considered in this paper, that is the parametric class.

Proposition 7. Parametric Smooth Density.

For any (x,z) - measurable function W (.) and P≡ P(ϕ), P(ϕ) 1-differentiable in φ , the follow-

ing statement holds:

W
P(φ0+hN

− 1
2

0 )
−WP = N−

1
2

0 h
∫

δW (z)dP(z)

Proof. See Appendix B

The distance between any functional will therefore have the same order as that of the dis-

tance between the conditional densities. The first three terms in 3.12-3.13 involve functionals of

the moment functions and their Jacobians. Given Proposition 1, we can now determine whether

the first order estimating equations for ϑ are affected by the misspecification.

Proposition 8. Local misspecification has first order effects on ϑ̂ only through φ̂ .

Given Proposition 1, the system of equations in (3.12) becomes as follows:
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0 = Op(hN−
1
2

0 )+M′Pn
V−1

Pn
N

1
2

0 mPn

Proof. See Appendix B

Note that the misspecification considered is arbitrary as h is arbitrary. Given this re-

sult, we can focus on shrinkage properties for ϑ arising solely because of shrinkage in φ .

We analyze shrinkage by adopting the local asymptotic experiment approach, see for exam-

ple (Hansen 2016). We investigate convergence in distribution along sequences ψn where

ψn = ψ0 + hN−
1
2

0 for ψn the true value, ψ0 ∈ Ψ0 the centering value and h the localizing pa-

rameter. The true parameter is therefore ”close” to the restricted parameter space up to h.

Proposition 9. Non Regularity and Superefficiency

For R(ϑ)≡ ∂

∂ϑ
r(ϑ), G−1 ≡

 G11 G12

G21 G22

, S1 ≡ [In1 ,0n1,n2 ], S2 ≡ [0n2,n1 , In2 ],

Under assumptions I such that N
1
2

0 Ĝ(ψ̃)−1g(ψn)→
d
Z ∼ N(0,Ω):

1. N
1
2

0 (ϑ̂ −ϑn)→
d
Zr

where Zr ≡ S1Z−G12(ψ0)R(ϑ0)(R(ϑ0)
′G22(ψ0)R(ϑ0))

−1R(ϑ0)
′(S2(Z+h))

2. For any non zero vector ξ , ξ ′(V(S1Z)−V(Zr))ξ ≥ 0

Proof. See Appendix B

There are two main implications of Proposition 4.2 for ϑ̂ . First, for h > 0, the asymptotic

distribution is non regular i.e. the distribution depends on h (see p. 115 in (van der Vaart 1998)).

Second, the variance of ϑn is lower than the conventional semiparametric lower bound for reg-

ular estimators. For ϑn arbitrarily close to the restricted subspace of ϑ0, efficiency increases.

More importantly, this increase in efficiency is not local as the size of h is left unrestricted.

Note that no statement has been made about the implications for MSE. Future work can pos-

sibly look at restrictions on the domain of h such that this estimator dominates conventional

semiparametric optimal feasible GMM.
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3.4.2 A note on the Non Parametric Case

While in this paper we have not formally dealt with non or semi parametric estimation of the

conditional density of the observations, we make a sketch of what can be expected in terms

of the behaviour of the estimator. First, it is clear that the conventional Taylor expansion is

not valid anymore in the case of infinite dimensional φ . We nevertheless can characterize the

behaviour of the estimator using the influence function in the non parametric case.

When a non parametric estimator is used, then integrating with respect to Q(x|Z) yields

that:

WQn−WP = ∑
i≤N0

ωiL(xi,zi)

where ωi are local weights that depend on the data and some tuning parameter i.e. bandwidth.

Letting ζi ≡ ωiL(xi,zi), we make two observations. First, Eζi is in general not zero as is typical

in non parametric estimation i.e. there is a bias which has the same order as the bandwidth.

Second, the variance of ζi is also typically of order lower than N−1
0 and therefore the rate of

convergence is typically lower than N−
1
2

0 . From equations 3.14-3.14 we can see that as long as

this rate of convergence is not as low as N−
1
4

0 , the first order conditions for ϑ do not have asymp-

totic first order bias. Moreover, restrictions on the class of densities considered will in general

reduce variance and potentially increase bias in the estimate of f (X |Z). In order to investigate

the effects on estimates of ϑ we need to compute the influence function for f̂ (X |Z) which is be-

yond the scope of this paper. Intuitively, optimizing the choice of auxiliary parameters like the

bandwidth in a way that minimizes mean squared error should also minimize the mean squared

error for ϑ , at least in the case of having a rate of convergence faster than N−
1
4

0 . If this is not

true, then we should expect slower rates of convergence for ϑ .

Although we have characterized the implications for the estimation of ϑ conditional on

the choice of the auxiliary conditional density, we have not yet discussed what would lead to

a reasonable choice of density. We provide such a discussion below. Moreover, we provide

some simulation evidence on the performance of this method and an application to a small scale

equilibrium model with standard agent optimization restrictions.
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3.5 Discussion and Simulation Evidence

3.5.1 Discussion on Choice of F(X |Z) and Asymptotic Bias

An obvious way to avoid distributional misspecification asymptotically is that of non paramet-

rically estimation of F(X |Z), which this paper abstracts from . One of the reasons is that within

the class of General Equilibrium models, once the equilibrium conditions are determined, we

know a lot about F(X |Z), even before solving the expectational system.

Recall that what is often specified without economic theory in the background, is the prob-

ability distribution of the shocks. Then, the practitioner specifies which moment conditions

should be satisfied by the model. For example, a well known specification for the production

function is the Cobb Douglas form, that is logyt = logAt + (1−α)Kt +αNt where At is an

efficiency factor. Conditional on Kt and Nt being observable, the law of motion of output is

determined by the production function and the process of At . Had At had been observable too,

then we could estimate its law of motion, F̂(At |zt−1). The next question is whether we should

estimate the law of motion for yt . If F(At |zt−1) and the Cobb Douglas condition are well speci-

fied, then we do not need to estimate F̂(yt |zt−1). Since the Cobb Douglas form of the production

function, or any other condition, are derived from economic theory, then they should be correctly

specified by assumption. This is in contrast with partial equilibrium models, like in (Gallant and

Tauchen 1989), where estimating the law of motion is more important as it is left unspecified

by the theory posed. In the context of this paper, what is more useful is to look at the extent

to which estimates can be biased when the base density is slightly misspecified, when it is in

principle observed and estimable. The type of misspecification that is most likely to arise is the

type of the distribution. Again, there might be ample of previous evidence on how skewed to

fat tailed the distribution is. For example, we know that financial data have heavy tails, and it

would be unwise for any practitioner not to account for that. Below, we provide evidence of

how severe the effects on MSE can be in a simple setting.

3.5.2 Monte Carlo experiments and MSE

In order to facilitate the Monte Carlo exercise, we consider a fairly general DGP which at

the same time satisfies a non linear moment condition. Furthermore, to ease computation we

utilize the representation of first order conditions in 3.127. In the Appendix, we also discuss the

7 Given that estimation involves also the finite dimensional nuisance parameter ϕ0, it is instructive to notice that
since ϕ0

p→ argminΦ

∫
p(x|z) log

(
p(x|z)

h(x|z,ϕ0,ϑ)

)
dx≡KL(P,H) for any ϑ ∈Θ, and by Pinsker inequality, we know that

TV (P,H)≤ KL(P,H). Therefore, minimizing KL(P,H) implies minimizing also
∫
|M(x,ϑ)||p(x)−h(x,ϕ,ϑ)|dx.
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computational details and provide the algorithm to implement the estimation. To further reduce

the computational burden, in the Monte Carlo experiment we focus on the special case of an

unconditional moment restriction. In the application to a typical equilibrium model we allow

for conditional moment restrictions.

3.5.2.1 Design of Experiment

We first present the true data generating process (DGP) for the vector of observables (X ,Y ),

which is partially unknown to the econometrician, up to a single non linear unconditional mo-

ment condition.

Let {yi,xi}n
i=1,n≥1 an iid sequence generated by the following DGP:

yi = δ1 +ui

ui = εi +δ2xi +δ3x2
i

εi ∼ iidD1(α1,α2)

xi ∼ iidD2(γ1,γ2)

In the following simulation experiments D is a generic distribution. Different assumptions on

D will be made to investigate different cases of misspecification i.e. in the location, scale,

skewness and kurtosis. As already noted, the above model satisfies the following (arbitrary)

moment restriction:

E(y−β0−2β0yx) = 0

To perform the experiments, we adopt the following base model:

yi = δ1 +ui

ui ∼ iidD3(α1b,α2b)

xi ∼ iidD4(γ1b,γ2b)

Clearly the probability model used in this exercise goes wrong in many dimensions i.e.

has omitted variables and has different distributional assumptions. We plot below the MSE (left

panel) when using the true and the misspecified density and the implied true and misspecified

densities of ut (right panel) for the following four cases:
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Table 3.1: Distributions Used

Case D1(α1,α2),D2(γ1,γ2) D3(α1b,α2b),D4(γ1b,γ2b)

1 t(7),Γ(2,5) N(0,4),Γ(2,5)
2 N(0,4),Γ(2,5) N(0,4),Γ(2,5)
3 t(7),U(0,1) N(0,4),U(0,1)
4 N(0,4),U(0,1) N(0,4),U(0,1)

Figure 3.2: Monte Carlo Case 1

Figure 3.3: Monte Carlo Case 2
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Figure 3.4: Monte Carlo Cases 3

Figure 3.5: Monte Carlo Case 4

Evidently, the biggest differences arise when density misspecification is severe i.e. in case

2. In this case the auxiliary density assigns very little mass on the support of ut . In the rest of

cases differences are very small, especially at sample sizes comparable to the conventional size

of macroeconomic datasets.

What we also need to mention is the fact that we do not estimate the parameters of the

proposed density. We nevertheless predict that allowing for estimation of the parameters of
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the density will have three implications. First, there will be additional noise coming from the

estimation of the nuisance parameters. Second, the proposed density will be as close as possible

to the true density. Third, we should notice the shrinkage properties characterized in Proposition

9. Moreover, given the fact that the densities used are not locally misspecified, the first order

conditions for ϑ are no longer unbiased, in the sense of Proposition 8. The bias is therefore

larger in this case.

3.5.3 Application to a prototypical DSGE

The prototypical DSGE model estimated is the standard stochastic growth model with full de-

preciation, see for example (Ireland 2004). Let xt ≡ (yt ,ct ,ht ,kt) be output, consumption, hours,

capital. The first order equilibrium conditions of the model are the following:

Yt = AtKθ
t H1−θ

t (3.14)

Kt+1 = Yt −Ct (3.15)

γCtHt = (1−θ)YtIt (3.16)
1
Ct

= βEt

{
1

Ct+1

(
θ

(
Yt+1

Kt+1

))}
(3.17)

log(It+1) = ρIlog(It)+ logN(0,σ2
I ) (3.18)

log(At+1) = ρIlog(At)+ logN(0,σ2
A) (3.19)

(3.20)

where 3.11 is the typical Cobb Douglas production function, 3.12 is capital accumulation

equation, 3.13 the distorted (by a marginal efficiency shock It) intra-temporal efficiency condi-

tion and 3.14 the inter-temporal efficiency condition (consumption Euler equation).

In this case, we know much more information about the conditional predictive density,

h(xt+1|xt ;ϕ), since the only equation that is not immediately solved is the Euler equation . The

rest of the equations of the system can be readily reduced to a single equation, and then plugged

in the Euler equation. This leads to great efficiency gains as the mapping of a subset of φ to ϑ is

now known. The only mapping that is still unknown is that of the reduced form of consumption,

since we do not solve for consumption. Moreover, uncertainty about the consumption function

translates to uncertainty about the exact solution for hours Ht and output Yt .

For simplicity we assume that we in principle observe all the variables of the system.
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Different sets of observables would lead to a different form for 3.18 that would be used for

estimation. Future work could look at the accommodation of unobserved variables. Our conjec-

ture is that exogenous unobserved components can be easily accommodated while endogenous

unobserved variables are much more challenging 8.

With regard to the solution of the model, the true solution vector for Ct+1,Ht+1,Kt+1 is the

following:

Ct+1 = (1−βθ)Yt+1

Ht+1 =
1−θ

γ(1−βθ)
It+1

Kt+1 = θβYt

log(It+1) = ρIlog(It)+ logN(0,σ2
I )

log(At+1) = ρIlog(At)+ logN(0,σ2
A)

which is essentially log-linear. In the following experiment, we will simulate 200 ob-

servations for Xt ≡ (At , It ,Ct ,Ht ,Kt)
′ and (β ,θ ,γ,ρA,ρI,σA,σI) := (0.96,0.3,0.5,0.9,0.9,1,1)

and then use this as a pseudo-dataset. As a base conditional density , h(Xt+1|Xt) we use

the log-Normal distribution, logN(B(ψ)Xt ,C(ψ)ΣC′(ψ)) where ψ includes both (β ,γ,θ),

(ρI,ρA,σA,σI) and nuisance parameters φ
nψ×1

. In the Appendix we show the explicit form of

B and C when solution is partially unknown and observations on Xt are used. The correspond-

ing moment condition used as a constraint in the projection is the following:

1
Ct

= βθEt

{
1

Ct+1
At+1

(
Ht+1

Kt+1

)1−θ
}

(3.21)

Due to identification issues, we set β = 0.96 and γ = 0.5, and we therefore estimate θ

together with the rest of the nuisance parameters. We also set σA = 1,σI = 1. Due to the

fact that we use 5 observables and we only have two independent sources of variation, we add

measurement error to (Ct ,Ht ,Kt), with variance σme = 0.25. We report below the point estimates

and confidence bands from a chain of 30000 draws :

8For recent advances towards this direction, see (Gallant, Giacomini, and Ragusa 2016)
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Table 3.2: Parameter Estimates

Parameter q2.5% Point q97.5%

θ 0.19 0.35 0.49
b31 0.75 1.11 1.54
b32 -0.21 0.32 0.71
b34 0.12 0.45 0.72
b35 0.19 0.45 0.81
c31 -0.05 0.74 1.67
c32 0.19 0.84 1.63
c41 -1.05 -0.20 0.46
c42 0.03 0.77 1.55

We also performed the estimation in the case of knowing the full likelihood function of

the model. The corresponding point estimate for θ is 0.3173 and the two sided 95% confidence

interval is (0.10,0.49). The results are therefore similar.

Although the stochastic growth model we have used is quite basic, we should note that

te approach suggested by this paper can be extended to more elaborate equilibrium models,

as long as moment conditions can be constructed trough simulation. In Appendix A we also

discuss the potential application to models with non-differentiabilities, which imply that first

order conditions cannot be readily employed. We pursue the discussion in the context of discrete

choice modeling.

3.6 Conclusion and Future Research

In this paper we have proposed an alternative approach to estimating a probability model that

satisfies (un)conditional moment restrictions coming from equilibrium models. The motivation

comes from the fact that solving these models for the equilibrium decision rules requires as-

sumptions that may not be valid and more importantly, are not revisable with the sample size.

The use of auxiliary information on the predictive density of the observations to obtain a com-

plete model enables one to construct estimated predictive distributions that can be used both for

policy and forecasting exercises. We have shown the asymptotic and finite sample properties of

this method under correct specification and local misspecification of the parametric conditional

density of the observations. With regard to the latter, parametric models defined by drifting

parameter sequences (that are local to the true parameter) can under some conditions lead to

efficiency gains that can justify the use of auxiliary information even if this information is not

accurate. In is worthwhile to note that the results of this paper are general and are not confined
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to the case of equilibrium models, but any model defined by conditional moment restrictions.

Using more information on the nuisance parameters leads naturally to efficiency gains. We have

also shown some simulation evidence for the performance of this method at various sample

sizes under non local misspecification. A comparison of the performance of this method to full

information methods is left for future work.
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3.7 Appendix A

3.7.1 Analytical derivations for Example 1

The well defined optimization problem is the following:

min
h∈H

∫
log(

h(x|z,ψ)

f (x|z,ϕ)
)h(x|z,ψ)dx s.t

∫
h(x|z,ψ)m(x,ϑ)dx = 0∫
h(x|z,ψ)dx = 1

The Lagrangian is

min
h∈H

∫
log(

h(x|z,ψ)

f (x|z,ϕ)
)h(x|z,ψ)dx+µ

∫
h(x|z,ψ)m(x,ϑ)dx+λ (

∫
h(x|z,ψ)dx−1)

The solution to this variational problem is the following, h(x|z,ψ)= f (x|z,ϕ)exp(µ ′m(x,ϑ)+

λ ) where µ = argmin
∫

f (x|z,ϕ)exp(µ ′m(x,ϑ)) and λ =− log(
∫

f (x|z,ϕ)exp(µ ′m(x,ϑ))).

In the particular example given in the paper, µ is the solution to µ

1−µ2 = ct
β
(1−RtρcρRβ ).

To see this, notice that, suppressing λ , the perturbation, exp(µ ′m(x,ϑ)+λ ) is proportional to

exp

−1
2


 ct+1−ρcct

Rt+1−ρRRt


′ 0 −µt

−µt 0

 ct+1−ρcct

Rt+1−ρRRt


−2µt

ct
β
(1−RtρcρRβ )


The trick here is that we can get the representation by rearranging terms, and drooping

terms that do not depend on µ , and then do the minimization. Therefore, for

 ε1,t+1

ε2,t+1

 ≡ ct+1−ρcct

Rt+1−ρRRt

 the problem becomes

min
µ

∫
exp(−1

2


 ε1,t+1

ε2,t+1


′ 1 −µt

−µt 1

 ε1,t+1

ε2,t+1

−2µt
ct

β
(1−RtρcρRβ )

d(R,C)

= min
µ

∫
exp−1

2


 ε1,t+1

ε2,t+1


′ 1

(1−µ2
t )

µt
(1−µ2

t )

µ

(1−µ2
t )

1
(1−µ2

t )

−1 ε1,t+1

ε2,t+1

−2µt
ct

β
(1−RtρcρRβ )

d(R,C)

We therefore have that the F.O.C

∫
exp−1

2


 ε1,t+1

ε2,t+1


′ 1

(1−µ2
t )

µt
(1−µ2

t )

µ

(1−µ2
t )

1
(1−µ2

t )

−1 ε1,t+1

ε2,t+1

−2µt
ct

β
(1−RtρcρRβ )

× ...
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...× (−2(ε1,t+1ε2,t+1−2
ct

β
(1−RtρcρRβ ))d(R,C) = 0

Then, for the Normal scaling constant C,

C
∫

N(

 ε1,t+1

ε2,t+1

 ,

 1
(1−µ2

t )
µt

(1−µ2
t )

µ

(1−µ2
t )

1
(1−µ2

t )

)(ε1,t+1)(ε2,t+1)−
ct

β
(1−RtρcρRβ ))d(R,C) = 0

µt

(1−µ2
t )
− ct

β
(1−RtρcρRβ ) = 0

3.7.2 Computational Considerations

This section comments on the computational aspects of using information projections to es-

timate models defined by moment restrictions. This is important in terms of practice, and is

indeed crucial when the number of moments conditions is higher. This makes it more costly

to compute the projection with high precision. Moreover, in the case of conditional moment

restrictions, the projection involves computing Lagrange multipliers which are both functions

defined on Θ×Z. The dimension of this space can be formidably high.

To begin with, it is instructive to notice that the problem we are solving is a min-max

problem, of a particular nature. In traditional empirical likelihood (GEL) computation, it is

often advocated that the dual approach (min-max) can be computationally easier in the sense

that it is lower dimensional. More particularly, in that case, if there are M constraints, N data

points, and K parameters, then the dimension of the constrained optimization is K +N with

M + 1 restrictions, while the min-max problem is of dimension K +M. Nevertheless, there is

a potential cost to this dimension reduction, and this is the issue that the whole problem is not

convex. While the inner loop (the one to obtain the multipliers) has a nice quadratic objective

function, and can be handled with a typical Gauss-Newton procedure, the outer loop is often

hard to handle.

In this paper, computation of the inner loop is much smoother than the one typically faced

in the GEL. This is for the reason that the constraints are imposed on the population density,

from which we can sample as much as we can. Furthermore, the issue of dimensionality reduc-

tion is more subtle as µ(z) and λ (z) are still functions, and we therefore operate in an infinite

dimensional space. The outer loop can nevertheless still be an issue. We use Markov Chain

Monte Carlo (MCMC) as in (Chernozhukov and Hong 2003) with a partially adaptive variance
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covariance matrix for the proposal distribution in the Metropolis - Hastings algorithm.

As already mentioned, µ,is a vector of functions of the information set and the parameter

vector. Therefore, in the estimation algorithm, the projection has to be implemented at all the

points of zi and at every proposal for the vector φ . In a high dimensional setting due to large

samples, instead of computing the projection it might be more efficient to estimate the unknown

functions µ(X ,Z) and λ (X ,Z) by simulating at different points of the support of the function and

use function approximation methods i.e. splines. In case the model admits a Markov structure,

the information set is substantially reduced, making computation much easier.

The general algorithm for the inner loop is therefore as follows:

1. Given proposal for (ϕ,ϑ), simulate Ns observations from F(x;z,ϕ)

2. For a finite set {z1,z2, ..zk..zK} compute µ(x;zkϑ)= argmin 1
ns

∑ j exp(µ(x;z,ϑ)′m(x;zk,ϑ))

and λ (x;zk,ϑ) = 1− log( 1
ns

∑ j exp(µ(x;z,ϑ)′m(x;zk,ϑ)))

3. Evaluate log-likelihood: L(x|z,ψ) = 1
n ∑i (logh(xi,zi)ϑ))

3.7.2.1 Inner loop

In order to facilitate the quick convergence for the inner minimization and avoid indefi-

nite solutions, we transform the objective function with a one to one mapping, and add

a penalizing quadratic function, More particularly, let the objective function be F(µ) =∫
f (x,ϕ)exp(∑ j m j(x,ϑ)) ≈ 1

ns
∑i=..Ns exp(∑ j m j(xi,ϑ)). The transformed objective function

is F̃(µ) = log(F(µ)+1)+τ||µ||2 where τ is the regularization parameter. We have tried many

different examples, and in all the cases, with large enough simulation (ns = 5000), the objective

function has a nice quadratic form, something that makes the regularization trivial. Regulariza-

tion becomes important when the simulation size is smaller, something that makes sense only if

we want to reduce computational time. This introduces a bias to the value of µwhich is in the

order of τ . The results reported are with ns = 5000, as it has been checked that the objective

function converges.

3.7.3 Counterfactual Distributions

An additional advantage of the method used in this paper, is that although the model is not

solved for the equilibrium decision rules, we can still perform counterfactual experiments. What

is more important is that this method readily gives a counterfactual distribution, while the dis-

tribution of the endogenous variables is hardly known in non-linear DSGE models. Knowing
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the distribution of outcomes is extremely important for policy analysis, especially when non

linear effects take place, and therefore the average effect is not a sufficient statistic to make a

decision. Below I present an example which is based on a modification of Example 1, where

the only difference is that the utility function is of the Constant Relative Risk Aversion form.

The counterfactual experiment consists of increasing the CRRA coefficient. Below I plot the

contour maps of the conditional joint density of (Rt+1,ct+1) with a change in the risk aversion

coefficient. An increase in risk aversion is consistent with higher mean interest rate, and lower

mean consumption. Moreover, consumption and interest rates are less negatively correlated.

This is also consistent what the log - linearized Euler equation implies, ct =− 1
σ

rt .:

Figure 3.6: Increase in Risk Aversion Coefficient

3.7.4 Reduced form coefficients in stochastic growth model

B≡



ρA 0 0 0 0

0 ρI 0 0 0

b31 b32 0 b34 b35

1+θ

θ
ρA− 1

θ
b31

1
θ
(ρI−b32) 0 1−θ − 1

θ
b34 1− 1

θ
b35

ρA 0 0 1−θ θ


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C ≡



1 0

0 1

c31 c32

c41 c42

1 0


where φ ≡ (vec(b),vec(c)′)

3.7.5 A Note On Non Differentiability

A not so uncommon case in economic theory in which first order conditions cannot be easily

derived due to differentiability issues is the case of discrete choice. Discrete choice might be

relevant in a macroeconomic framework in cases when some agents have to decide over finite

actions, for example job search, default e.t.c. As already mentioned, the approach of (Su and

Judd 2012) is instructive on how we can cast a discrete choice problem in our framework.

Discrete choice problems have a special structure, which we can also make use of. This is

the case because we can in principle obtain a conditional choice probability, (CCP), originally

introduced by (Hotz and Miller 1993). For now, let me briefly introduce the MPEC approach

here, and how it can be casted in our framework. Adapting to the notation of (Su and Judd 2012),

let me define the equation b(ϑ ,σ) = 0 to represent equilibrium conditions, where σ are the

policy functions. Then the set Σ(ϑ) : {σ : b(ϑ ,σ) = 0} is the set of policy functions which are

consistent with the equilibrium defining equation, and σ̂(ϑ) is an element of this set. In the case

of unique equilibrium, this is the unique policy function consistent with equilibrium and for the

sake of brevity let me focus on this case. The maximum log likelihood problem is equal to

ϑ̂ = argmax
ϑ∈Θ

1
n

L(ϑ , σ̂(ϑ);X)

= arg max
σ̂(ϑ)∈Σ(θ)

1
n

L(ϑ , σ̂(ϑ);X)

This can be a difficult problem in terms of computation, as the policy function has to be com-

puted at each iteration. The MPEC approach deals with a mathematically equivalent, but possi-

bly easier problem, that of:

ϑ̂ = argmax
ϑ ,σ

1
n

L(ϑ ,σ ;X)

s.t. b(ϑ ,σ) = 0
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Clearly, in this problem, the policy function is not solved for ϑ in the likelihood function. Mov-

ing to the discrete choice problem, e.g. (Rust 1987), denote the discrete choice sequence by

{dt ,dt+1,dt+2...}, let (x,ε) be the endogenous and exogenous state variables (with (x′,ε ′) de-

noting next period), v(x,d,θ) the instantaneous return function and p(.) the relevant probability

density. By a standard Bellman formulation, it is the solution the following functional equation,

V (x,ε) = max
d
{v(x,d,θ)+β

∫
(x′,ε ′)

V ((x′,ε ′)p(x′,ε ′|x,ε,d,ϑ)dx′dε
′)}

Under a conditional independence assumption, that is the Markov transition density is factorized

in the following manner,

p(x′,ε ′|x,ε,d,ϑ) = p2(ε
′|x′,ϑ2)p3(x′|x,d,ϑ3)

we notice that

EV (x) =
∫

ε

V (x,ε)p2(ε|x,ϑ2)dε)

and

EV (x,d) = v(x,d,θ1)+β

∫
x′
EV (x′)p3(x′|x,d,ϑ3)dx′)

Under conditional independence, we can write down the log likelihood of a data point {Xi}as

log li(Xd,i,ϑ) = logP(di|xi;ϑ)p3(xi|xi−1,di−1,ϑ3) (3.22)

There are various (often tricky) ways to obtain the CPP P(di|xi;ϑ) as a function of v(.), ϑ and

EV (x,d) in the microeconometrics literature, which can in principle be applied in the same

way here, but I abstract from this and I encourage the interested reader to refer to the papers

cited. The point that I would like to make here is that looking at 3.22, we can obtain the

likelihood in the following sense: Assuming that the data contain both continuous variables

(Yi), discrete variables (Xd,i), we can include the fixed point requirement EV = T (EV,ϑ) as

another restriction i.e. E(V −T (EV )) = Emd(xd,i,ϑd). The difference, as already pointed out,

is that this restriction will be satisfied for the true parameter vector that belongs to this discrete

choice problem, and will also a function of ϕ , i.e. ϑ d = τ(ϕ). More particularly, the tilted
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density will be of the form:

h(xd,i,yi|zi,ϑ) = f (yi|xd,i,zi,ϕ)exp(µ ′m(yi,ϑ)× p(xd,i|yi,zi,ϑd)δ (xd = xd,i)exp(µdmd(xd,i,ϑd))

= f (yi|xd,i,zi,ϕ)exp(µ ′m(yi,ϑ)× p(xd,i|yi,zi,ϑd)δ (xd = xd,i)exp(µdmd(xd,i,ϑd)

= f ((yi,di|zi,τ(ϕ))exp(µ ′m(yi,di,ϑ))

where δ (.) is the Dirac delta function, used to represent the probability density function of a

discrete variable.

It is important to see that the MPEC method, which I have embedded above in our frame-

work, avoids the non smoothness problem exactly by making the density a smooth function

of ϑ and EV . Furthermore, the asymptotic theory presented above, assumes differentiabil-

ity of the moment function m(.,ϑ) and this appears not to correspond to the class of discrete

choice problems. Nevertheless, looking at the fixed point constraint, the “moment function”

one can use is Ep2V (x)−T (Ep2V (x),ϑ) where E(V (x)) ≡
∫

ε ′ maxxd EV (x,d)p2(ε
′|x,ϑ2)dε ′).

If T is smooth, we can see that assuming a continuous type of distribution for ε , overcomes

the non differentiability of the ”max” operator. In our formulation, the moment condition is

Ex[Ep2V (x)−T (Ep2V (x),ϑ)] = 0 and therefore consistent with using the "smoothed" moment

function.

3.8 Appendix B

Proof. of Proposition 5 :

Consider the sets Vµ,δ = {µ ∈M : ||µ−µ0||< δ}and V(ϑ ,φ),δ = {ϑ ∈Θ : ||ϑ −ϑ0||< δ ,φ ∈

Φ : ||φ − φ0|| < δ} and the objective functions they optimize respectively. From Proposi-

tion 2, plugging in Fn(x,ϕ,zi), and the definition ofµ = arg infQ(x,zi,ϑ ,φ ,µ) for all ϑ ,φ ,

µ
M×1

(φ ,ϑ) exists and is unique . Fix Z = zi„ ∀δ > 0, we have that from a Taylor expansion of

Q(µ,zi) =
1
ns

∑1..ns eµ ′i mi(xs,ϑ) with Lagrange Remainder:

Q(µ0,zi) ≥ Q(µ,zi) = Q(µ0,zi)+Q′µ(µ0,zi)(µ−µ0)+
1
2

Q′′µ(µ̃,zi)(µ−µ0)
2

−1
2

Q′′µ(µ̃,zi)(µ−µ0)
2 ≥ Q′µ(µ0,zi)(µ−µ0)⇒ |Q′µ(µ0,zi)|>C||µ−µ0|||

By assumption (4), the sequence {eµ ′i m(xs,ϑ)m(xs,ϑ0,zi)}s=1..ns is uniformly integrable with
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respect to the F−measure , and by the WLLN for U.I sequences, we have that Q′µ(µ,zi) = op(1)

as:
1
ns

∑
1..ns

eµ ′i m(xs,zi,ϑ)+λ m(xs,ϑ0)
p→ Eh|ϕ,zim(xs,ϑ0,zi) = 0

Therefore, µi−µi,0 = op(1). (a.s) We can actually improve on this rate, as by assumption (3)

1
ns

∑
1..ns

eµ ′i m(xs,ϑ)m2
i (x,ϑ0)

u.p→ Eh|ϕ,zim
2
i (xt ,ϑ)

and by the Central Limit Theorem for Martingale Difference sequences, we have that

1
ns

∑
1..ns

eµ ′i m(xt ,ϑ)m(xs,ϑ0) = Op(n
− 1

2
s ).

Correspondingly, ψ ≡ (ϑ ,φ) = argsupG(x,ϑ ,µ) where

G(x,ϑ ,µ) =
1
n ∑

i=1..n
log
(

f (xi|zi,ϕ)exp(µ ′i m(xi,zi,ϑ)
)

Given the assumption that n
ns
→ 0 then ∀(φ ,ϑ),n , µ̂i = µi + op(1) and Gn(φ ,ϑ , µ̂ψ) =

Gn(φ ,ϑ ,µψ) + Op(n
− 1

2
s ) which follows from the differentiability of Gnin µ and the delta

method.

The following section seeks to establish uniform convergence results for the objective func-

tion. Despite the fact that the pair (µ̂, λ̂ ) is estimated at one-step, together with (ϕ,ϑ), the

existence of a simulation step necessitates the use of general uniform convergence results. Ac-

cording to Theorem 1 in Andrews D.K 1992, we need to show (i) BD (Total Boundedness)

of the metric space in which (ϕ,ϑ) together with (ii) PC (Pointwise consistency) and (iii) SE

(Stochastic Equicontinuity). Regarding (iii), we can proceed as follows:

Regarding (i). since in this section we are dealing with a finite dimensional ϕ , we assump-

tion 1 (COMP) implies total boundedness. Looking at pointwise convergence (ii), consider that

under identically distributed data,

Pr(|1n ∑i(log(h(xi;zi,ψ))−E log(h(xi;zi,ψ))|> ε)

≤ Pr(1
n ∑i | log(h(xi;zi,ψ))−E log(h(xi;zi,ψ)|))> ε)

MarkovIn≤ 1
n2ε

V(∑i | log((h(xi;zi,ψ)−E log(h(xi;zi,ψ)|))
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This probability goes to zero as E log(h(xi;zi,ψ)) < ∞ and the autocovariances are

summable by assumption of ergodicity of (xi,zi).

Stochastic equicontinuity for the objective function can be verified by the ”weak” Lipschitz

condition in Andrews (1992) , as

limsupn→∞ Pr(supψ supψ ′ |1n ∑i(logh(xi;zi,ψ)− log(h(xi;zi,ψ
′))|> ε)

≤ limsupn→∞ Pr(supψ supψ ′ |1n ∑i(log(1+ |h(xi;zi,ψ)−h(xi;zi,ψ
′)|

h(xi;zi,ψ ′))
)> ε)

≤ limsupn→∞ Pr(supψ supψ ′ | log(1+ 1
n ∑i

|h(xi;zi,ψ)−h(xi;zi,ψ
′))|

h(xi;zi,ψ ′))
)> ε)

by monot.≤ limsupn→∞ Pr(supψ supψ ′ |1n ∑i(h(xi;zi,ψ))−h(xi;zi,ψ
′))|> ε)

Therefore the condition that needs to be shown is that,

|Q̃nx(ψ, µ̂ψ)− Q̃nx(ψ
′, µ̂ψ)| ≤ Bng̃(d(ψ,ψ ′)),∀(ψ,ψ ′) ∈Ψ

where Bn = Op(1) and g̃:limy→0 g̃(y) = 0. To verify this condition,

|Q̃n(ψ, µ̂ψ)− Q̃n(ψ
′, µ̂ψ ′)| =

1
n
|∑

i

(
fi(ϕ)exp(µ̂ ′i,ψmi(ϑ)+ λ̂i,ψ − fi(ϕ

′)exp(µ̂ ′i mi(ϑ
′)+ λ̂i,ψ)

)
|

≤ 1
n ∑

i
| fi(ϕ)exp(µ̂i(ψ)′mi(ϑ)+ λ̂i(ψ)− fi(ϕ

′)exp(µ̂ ′i mi(ϑ
′)+ λ̂i(ψ))|

sup sum<sum sup ≤ 1
n ∑

i
|exp(log fi(ϕ)+ µ̂i(ψ)′mi(ϑ)+ λ̂i(ψ))− exp(log fi(ϕ

′)+ ...

µ̂
′
i mi(ϑ

′)+ λ̂i(ψ))|

Let qi(ψ) = log fi(ϕ)+ µ̂i(ψ)′mi(ϑ)+ λ̂i(ψ). Therefore,

|Q̃n(ψ, µ̂(ψ))− Q̃n(ψ
′, µ̂(ψ))| =

1
n ∑

i
|exp(qi(ψ))− exp(qi(ψ

′))|

=
1
n ∑

i
|exp(qi(ψ̃))∇qi(ψ̃)(ψ)− exp(qi(ψ̃

′))∇qi(ψ̃ ′)(ψ
′))|

≤ 1
n ∑

i
|exp(qi(ψ̄))∇qi(ψ̄)||ψ−ψ

′|

≤ 1
n ∑

i
|exp(qi(ψ̄))∇qi(ψ̄)||ψ−ψ

′|
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where ψ̄ = argmax{ψ̃,ψ̃ ′} |exp(qi(ψ̄))∇qi(ψ̄)|

Let Bnx =
1
n ∑i |exp(qi(ψ̄))∇qi(ψ̄)|. Notice that

E
1
n ∑

i
|exp(qi(ψ̄))∇qi(ψ̄)| ≤ EzEx|z

1
n ∑

i
|exp(qi(ψ̄))∇qi(ψ̄)|

≤ E|exp(qi(ψ̄))||∇qi(ψ̄)|

Cauchy Schwarz ≤
(
E(|exp(qi(ψ̄))|)2) 1

2
(
E(|∇qi(ψ̄))|)2) 1

2

< Op(1)×
(
E2log fi(ϕ)+(Eµ̂i(ψ)′mi(ϑ))2 +Eλ̂i(ψ)2

) 1
2

BD-1a,BD-2,CS,Prop 6 and Lem 10 ≤
(

2E log fi(ϕ)+E(µ̂i(ψ)′µ̂i(ψ)′)Emi(ϑ)′mi(ϑ)+Eλ̂
2
i,ψ

) 1
2

= Op(1)

Given the definition of the estimating equation i.e. the estimator of ψ̂ is an extremum

estimator, established weak uniform convergence, assumptions ID, COMP, and BD−2( which

guarantees continuity of the population objective), we have consistency by standard arguments

(i.e. (Newey and McFadden 1994) consistency results, Theorem 2.1)

Proof. of Corollary 3.1 Consistency or correct specification of f (X |Z,ϕ) imply that there exists

a ϕ0 ∈ ϕ : f (X |Z,ϕ0) = P(X |Z). By Lemma (), λ (Zi) = µ(Zi) = 0∀i and therefore h(X |Z,ψ) =

f (X |Z,ϕ). By construction, EHm(X ,Z,ϑ) =
∫
P(X ,Z)m(X ,Z,ϑ ?

0 )d(X ,Z) = 0. But it is true

that
∫
P(X ,Z)m(X ,Z,ϑ0)d(X ,Z) = 0. Since θ ?

0 is identified, θ0 = θ ?
0 .

Proof. of Proposition6: We have the following first order conditions characterizing the estimator:

ϑ : 1
n ∑

i

(
µ ′i Mi(ϑ)+µ ′

θ ,imi(ϑ)+λi,ϑ

)
= 0

φ : 1
n ∑

i

(
s(xi,zi,ϕ)
f (xi,zi,ϕ)

+µ ′
ϕ,imi(ϑ)+λi,φ

)
= 0

Define :e j,i = eµ ′i m j,i(ϑ), z j,i = e j,i(Inϑ
+ (µ ′i M j ⊗ m j)(M′jM j)

−1M j),ẽ j,i =
e j,i

1
ns ∑ j=1..s e j,i

, κ j.i =

− (eµ ′i m j,i(ϑ)−1)
µim j,i(ϑ)′ , s j := ∂

∂φ
log f (x|φ ,z) and s j := s j

f j
, ẽ j,ϑ = ẽ j(m′jµϑ + µ ′(M j −∑ j ẽ jM j)) and ẽ j,φ =

−ẽ j ∑ j ẽ j s̃ j.

We have already established that as long as the base density is asymptotically correctly specified,

then µi→
p

0 for almost all zi. Therefore, e j,i→
p

1, z j,i→
p

1 and κ j,i→
p
−1.

For Vf ,m = 1
Ns

∑
Ns
j m j(ϑ)m j(ϑ)′, let V−1

f ,m ≡ (v′1,v
′
s..v
′
nm)
′ and v1 ≡ (v11,v12...v1nm)

′.The derivatives
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terms are the following:

µi,ϑ = (− 1
ns

∑
j

e jm jm′j)
−1(

1
ns

∑
j

z jM j)

λi,ϑ = −µ
′
i ∑

j
ẽ jM j−∑

j
ẽ jm′jµϑ

µi,φ = (∑
j

e jm jm′j)
−1

∑
j

e jm j⊗ s j

λi,φ = −∑
j

ẽ js j−∑
j

ẽ jm′jµφ

µi,ϑlϑ
′ =

nm

∑
p
(vl,p,ϑ ′

1
Ns

Ns

∑
j

z jMp,l, j + vl,p
1
Ns

Ns

∑
j
(z jDl,p, j + z j,ϑ ′Mp,l, j))

=
nm

∑
p
(

1
Ns

Ns

∑
j
(vl,p,ϑ ′z j + vl,pz j,ϑ ′)Mp,l, j +

1
Ns

Ns

∑
j

vl,pz jDl,p, j)

λi,ϑlϑ
′ = − 2

ns
∑

j
ẽ jµ

′
ϑ M j−

1
ns

∑
j

ẽ jDl,ϑ ′, j...

... −∑
j

ẽ j(m′jµϑ +µ
′(M j)−∑

j
ẽ jM j)

′m′jµϑ −∑
j

ẽ jm′jµϑl ,ϑ
′

µi,φlφ
′ = [∑

j
κ jm jm′j]

−2[(
1
ns

∑
j

m j⊗ sl,φ ′ −µφ

1
ns

∑
j

κ jm jm′j⊗ sl, j− ...

... µ
1
ns

∑
j

κ jm jm′j⊗ sl, j,ϕ)∑
j

κ jm jm′j...

... −( 1
ns

∑
j

m j⊗ sl, j−µ
1
ns

∑
j

κ jm jm′j⊗ sl,φ ′, j)
1
ns

∑
j

κ jm jm′j⊗ sl, j]

λi,φlφ
′ = − 1

ns
∑

j
ẽ jsl,φ ′, j +(

1
ns

∑
j

ẽ jsl)
′(

1
ns

∑
j

ẽ jsl)

λi,ϑlφ
′ = −∑

j
e′jM

′
l, jµφ −µ

′
∑

j
e jMl, j⊗ s j +µ

′
∑

j
e js j ∑

j
ẽ jMl , j−∑

j
ẽ jm j⊗ s jµϑl −∑

j
ẽ jm jµϑlφ

µi,ϑφ = (
1
ns

∑
j

e jm jm′j)
−1 1

ns
∑

j
z jM j

1
ns

∑
j

e jm jm′j⊗ s j(
1
ns

∑
j

e jm jm′j)
−1...

... −( 1
ns

∑
j

e jm jm′j)
−1 1

ns
∑

j
z jM j⊗ s j

Under correct specification, the unconditional moments of the above derivatives are as follows:

EPn µi,ϑ
p→ −V−1

P,mMP

EPnλi,ϑ
p→ 0

EPn µi,φ
p→ Projc(s|m)

EPnλi,φ
p→ 0

EPn µi,ϑlϑ
′

p→
nm

∑
p
(vl,p,ϑ ′Mp,l, j + vl,pDl,p, j)

EPnλi,ϑϑ

p→ −2µ
′
ϑ Ml−Dl,ϑ
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EPn µi,φlφ
′

p→ ∂

∂φ ′
Pro jc(sl |µ)

EPnλi,φlφ
′

p→ 0

EPnλi,ϑlφ
′ = −M′l Pro jc(s|m)−Pro jc(s|m)′Ml

EPn µi,ϑlφ
′

p→ V−1
m MlE(mm′⊗ s′)V−1

m −V−1
m EMl⊗ s′

where Projc :=V−1
m Cov(s,m).

The estimator has this final implicit form:

Gn
p×M

= 0

Gn
p×M

=



1
n ∑

i

(
1
ns

∑
j

κ j,im j,i(ϑ)m j,i(ϑ)′

)
︸ ︷︷ ︸

A1

−1
Mi(ϑ)− 1

ns
∑

j
ẽ j,iM j,i(ϑ)︸ ︷︷ ︸


′

B1

 1
ns

∑
j

m j,i(ϑ)︸ ︷︷ ︸


C1

1
n ∑

i

 1
ns

∑
j

e j,im j.i(ϑ)m j,i(ϑ)′︸ ︷︷ ︸

−1

A2

 1
ns

∑
j

e j,im j,i(ϑ)⊗ s j,i(ψ)︸ ︷︷ ︸


B22

mi(ϑ)︸ ︷︷ ︸
C2




+ ..

...+



1
n ∑

i

(
1
ns

∑ j e j,im j.i(ϑ)m j,i(ϑ)′
)−1

 1
ns

∑
j

z j,iM j,i(ϑ)︸ ︷︷ ︸


B21

(mi(ϑ))

1
n ∑i(s(xi,zi,ϕ)−

1
ns

∑
j

ẽ j,is(x j,zi,ϕ)︸ ︷︷ ︸
B23

)



The way forward would be to decompose n
1
2 G1,i,n = n

1
2 Ai,0+n

1
2 ∆i and show that n

1
2 ∆i = op(1). To

start with, we investigate the convergence of individual quantities.

Â1 =
1
ns

∑
j

κ j,im j,i(ϑ)m j,i(ϑ)′
p→ A1

by iid sampling and domination assumptions BD−1. Regarding A2 and C1, they converge to

Ehm(ϑ)m(ϑ)′ ≡ Ve and C1 = 1
ns

∑ j m j,i(ϑ)
p→ E f (x|zi)m(ϑ) = mF respectively. For B12, the fact that

we divide by the sum of the weights in each case, makes it convenient, as given the iid assumption, we

have that :

B12 =
1
ns

∑ j ẽ j,iM j,i(ϑ)
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p→ Eh(x|zi)M(ϑ) = MH

Moreover, using Lemma 3,

B21 =
1
ns

∑ j z j,iM j,i(ϑ)
p→ E f (φ |zi)M(ϑ)) = MF

1
ns

∑
j

ẽ j,is(x j,zi,ϕ)
p→ EH(φ |zi)s(ϕ)) = sH

The convergence of the above quantities to well defined random variables will enable us to focus on the

desired quantities. Since we have effectively two different samples to handle, which are conditionally

independent (conditional on zi), we have to further decompose in different factors. We rewrite the above

first order conditions in the following form:

Gn =


1
n ∑

i

((
Â−1

i,1 −A−1
i,1

)
B̂1,iĈ1 +A−1

i,1 Mi(ϑ)C1,i

)
+A−1

i,1 B̂11,i
(
Ĉi,1−Ci,1

)
...

...+ 1
n ∑

i

(
...+A−1

i,12(B̂21,i−B2,i)Ĉ2,i

)
1
n ∑

i

((
Â−1

i,2 −A−1
i,2

)
B̂22,iĈ2,i +A−1

i,2 (B̂22,i−B2,i)Ĉ2,i +A−1
i,2 B22,iĈ2,i

)
+ ...

...+


1
n ∑

i

((
Â−1

i,12−A−1
i,2

)
B̂21,iĈ2,i +A−1

i,1

(
B̂−1

i,12−B−1
i,12

)
Ĉ1

)
+ ...

+... 1
n ∑

i

(
A−1

i,1 Bi,12
(
Ĉi,1−Ci,1

)
+A−1

i,1 Bi,12Ci,1 +A−1
i,2 B21,iC2,i

)
+ 1

n ∑i s(xi,zi,ϕ)− 1
n ∑

i

1
ns

∑
j
ẽ j,is(x j,zi,ϕ)


Regrouping into terms that vanish (Ξ1) and terms that do not, (Ξ2)

Ξ1 =

 1
n ∑

i

(
Â−1

i,1 −A−1
i,1

)
B̂1,iĈ1 +

1
n ∑

i
A−1

i,1 B̂11,i
(
Ĉi,1−Ci,1

)
+ 1

n ∑
i
A−1

i,2 (B̂21,i−B2,i)Ĉ2,i

+ 1
n ∑

i

(
Â−1

i,2 −A−1
i,2

)
B̂2,iĈ2,i +

1
n ∑

i
A−1

i,2 (B̂2,i−B2,i)Ĉ2,i

+ ...

...+

 1
n ∑

i

(
Â−1

i,2 −A−1
i,2

)
B̂21,iĈ2,i +

1
n ∑

i
A−1

i,1 B̂1,i

(
B̂−1

i,12−B−1
i,12

)
Ĉ1 +

1
n ∑

i
A−1

i,1 Bi,12
(
Ĉi,1−Ci,1

)
− 1

n ∑
i
( 1

ns
∑
j
ẽ j,is(x j,zi,ϕ)− sH,i)


p→ 0

where Lemmas 7 and 11 are systematically applied. For the sake of illustration,consider the first term:

||1
n∑

i

(
Â−1

i,1 −A−1
i,1

)
B̂1,iĈ1,i|| ≤ max

i
||Â−1

i,1 −A−1
i,1 ||max

i
||B̂1,i||||

1
n∑

i
Ĉ1,i||



3.8. Appendix B 120

= Op(n̄
− 1

2
s )×Op(1)×Op(n

1
ζ ) = Op(n

− 1
2 γ̄+ 1

ζ

z )

= op(1) provided that γ̄ >
2
ζ

where BD−1aand PD−1 are used and for the last term

||1
n∑

i
A−1

i,2 B21,i(Ĉ2,i−C2,i)|| ≤ max
i
||A−1

i,2 ||max
i
||B21,i||||

1
n∑

i
mi(ϑ)−Emi(ϑ))||

= Op(1)op(1)|

= op(1)

With regard to non vanishing terms:

Ξ̂2 =

 1
n ∑iA

−1
i,1 M′i(ϑ)C1,i− 1

n ∑iA
−1
i,1 Bi,12Ci,1 +

1
n ∑iA

−1
i,2 B21,iC2,i

+ 1
n ∑i(s(xi,zi,ϕ)− sH,i)+

1
n ∑iA

−1
i,2 B22,iC2,i


Note that under asymptotic correct specification,

Ξ̂23 =
1
n∑

i
A−1

i,1 M′i(ϑ)C1,i−
1
n ∑

i
A−1

i,1 Bi,12Ci,1)

=
1
n∑

i
A−1

i,1 (Mi(ϑ)−B′i,12)
′C1,i

= O(κ−1
n )

Similarly, Ξ̂24 =
1
n ∑i ξ ′2(s(xi,zi,ϕ)− sH,i) = O(κ−1

n ).

To show asymptotic normality, we make use of the Cramer-Wold device. Let ξ be a vector of real

valued numbers, normalized such that ||ξ ||= 1 then:

n
1
2 ξ
′
p×1Ξ2 = n−

1
2 ∑

i
ξ
′
1B21,iA−1

i,2 C2,i ++n−
1
2 ∑

i
ξ
′
2B22,iA−1

i,2 C2,i +O(n
1
2 κ
−1
n )

= Ξ̂21 + Ξ̂22 +o(1)

where ξ ′p×1 =

(
ξ ′1

dim(ϑ)

, ξ ′2
dim(ϕ)

)
.

What needs to be shown is that the variance of the above terms is finite. Then by the CLT for

Martingale Difference Sequences (Billingsley 1961) we conclude. We do not need to actually compute

the covariances of the above terms as we can further bound them by their variances using C-S inequality.

With regard to Ξ22,Vz(ξ
′B22A−1

2 C2)≤ ξ ′1Ez(Ci,2µφ ,iµ
′
φ ,iC

′
i,2)ξ1 < ∞

9

9For quadratic form ξ ′Aξ with A symmetric, Eξ ′Aξ = ∑l=1..dim(ξ ) ξ 2
l Eza2

ll +2∑l,l<k ξlξkEzalk < ∑l ξ 2
l Eza2

ll +

2∑l,l<k ξlξk
(
Eza2

ll
) 1

2
(
Eza2

kk
) 1

2 . Since dimξ < ∞and for Ξ̂23, all = b2
i,ll µ

2
i,ll , then Eza2

ll < (Ezb4
i,ll)

1
2 (Ezµ4

i,ll)
1
2 ≤



3.8. Appendix B 121

Similar argument is followed for Ξ̂21.

Combining the above results we can see that:

n
1
2 ξ
′
p×1(Gn−EGn,2) = n−

1
2 ξ
′
p×1(Ξn,2−EΞn,2)+op(1)

→ N(0,ξ ′Ωξ )

and therefore

n
1
2 (Gn(ψ0)−EGn,2(ψ0))→ N(0,Ω)

Below we derive the exact form of the Ω. Under correct specification, by a WLLN, all of the

averaged quantities below converge pointwise to some non random function. Furthermore, given that all

of these quantities are functions of m(x,z), M(x,z), D(x,z) using measure F or P, we can bound them

by dominating functions by taking the supremum over Ψ. By assumption BD1− a they are bounded.

Therefore we can establish uniform convergence to some non random limit.

Recall that we have the system of first order conditions, Gn(ϑ̂ , ϕ̂) = 0. By the mean value theorem

we know the following:

0 = Gn(ψ0)+Gψ,n(ψ̃)(ψ−ψ0)

We have already established a CLT for Gn(ψ0).

With regard to Gψ,n(ψ̃)≡ ∇(ϑ ,φ), recall that the population Jacobian matrix is the following:

Ḡi(ψ̃) ≡

 Ḡi,ϑϑ ′(ψ̃) Ḡi,ϑϕ ′(ψ̃)

Ḡi,ϕϑ ′(ψ̃) Ḡi,ϕϕ ′(ψ̃)


where

Gi,ϑlϑ
′ = mi(ϑ)′µi,ϑlϑ

′ +µ
′
i,ϑ ′(Mi(ϑ)− 1

Ns

Ns

∑
j

ẽ jM j(ϑ))+Mi(ϑ)′µi,ϑl + ...

...+µ
′
i (Di,l,ϑ ′(ϑ)− 1

Ns

Ns

∑
j

ẽ jD j,l,ϑ ′(ϑ))−µ
′
i

1
Ns

Ns

∑
j

ẽ j,ϑ ′M j(ϑ)

Ḡi,ϑlϑ
′ →

p
EMi(ϑ)′V−1

m (ϑ)Mi,l(ϑ)

Gi,ϑlϕ
′ = (Mi,l(ϑ)′− 1

Ns

Ns

∑
j

ẽ jM j,l(ϑ)′)µi,ϕ ′ +mi(ϑ)′µi,ϑlϕ
′ + ...

...−µ
′
i (

1
Ns

Ns

∑
j

ẽ jM j,l(ϑ)s j(ϕ)−
1
Ns

Ns

∑
j

ẽ js j(ϕ)
1
Ns

Ns

∑
j

ẽ jM j(ϕ))+ ...

...− (
Ns

∑
j

ẽ jm j(ϑ)′s j(ϕ))µϑ

(EzE f |zM(ϑ)4
i,ll)

1
2 (EzE f |zm(ϑ)4

i,ll)
1
2 < ∞. Similarly, for Ξ̂25, all = c2

i,ll µ
2
φ ,i,ll , then Eza2

ll < (Ezc4
i,ll)

1
2 (Ezµ4

φ ,i,ll)
1
2 ≤

(EzE f |z(m(ϑ))4
i,ll)

1
2 (EzE f |z∇φ f (ϑ)4

i,ll)
1
2 < ∞ Consequently, Eξ ′Aξ < ∞
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Ḡi,ϑlϕ
′ →

p
EzM(ϑ)V−1

m Emi(ϑ)′s j(ϕ)

Gi,ϕlϕ
′ =

∂ 2log( fi(ϕ))

∂ϕlϕ
′ − 1

NS
∑

j
ẽ j

∂ 2log( f j,i(ϕ))

∂ϕlϕ
′ +mi(ϑ)′µi,ϕlϕ

′ +
1
Ns

∑
j

ẽ jsl, j
1
Ns

∑
j

ẽ js
′
j

Ḡi,ϕlϕ
′ →

p
Ezsl,is

′
l,i

Let Λi ≡Mi(ϑ)−∑ j ẽ jM j,i(ϑ)

For Vf ,m = 1
Ns

∑
Ns
j m j(ϑ)m j(ϑ)′, let V−1

f ,m ≡ (v′1,v
′
s..v
′
nm)
′ and v1 ≡ (v11,v12...v1nm)

′. Notice also that

for any expansion that follows, we use the fact that for V̄f ,m ≡ EysVf ,m

V−1
f ,m = V̄−1

f ,m−V̄−1
f ,m(Vf ,m−V̄f ,m)V̄−1

f ,m +Op(N−1
s )

= V̄−1
f ,m +Op(N

− 1
2

s )

or more generally, for some function g : || f −g||<Cn:

V̄−1
g,m = V̄−1

f ,m−V̄−1
f ,m(V̄g,m−V̄f ,m)V̄−1

f ,m +Op(||g− f ||2TV )

Therefore,

V̄−1
g,m = V̄−1

f ,m−V̄−1
f ,m(V̄g,m−V̄f ,m)V̄−1

f ,m +Op(||g− f ||2TV )

= V̄−1
f ,m−V̄−1

f ,m(V̄g,m−V̄f ,m)V̄−1
f ,m +Op(||g− f ||2TV )

= V̄−1
f ,m +κ

−1
n ∆v(Z)

With regard to variance covariance matrices computed under the perturbed measure,

Ve, f ,m =
∫
(e−1)m(ϑ)m(ϑ)′ f (x|z)dx+

∫
m(ϑ)m(ϑ)′ f (x|z)dx

=
∫
(m(ϑ)′(µ−µ0))m(ϑ)m(ϑ)′ f (x|z)dx+

∫
m(ϑ)m(ϑ)′ f (x|z)dx+Op(κ

−2
n )

= κ
−1
n

∫
m(ϑ)′δ (z)m(ϑ)m(ϑ)′ f (x|z)dx+

∫
m(ϑ)m(ϑ)′ f (x|z)dx+Op(κ

−2
n )

=
∫

m(ϑ)m(ϑ)′ f (x|z)dx+κ
−1
n ∆(z)+Op(κ

−2
n )

= Vf ,m +κ
−1
n ∆(z)+Op(κ

−2
n )

Also, for any (y,z)− measurable vector or matrix S(y,z), a generic element of the product with V−1
f ,m is as
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follows:

EV∗ f ,m = EV−1
∗1, f ,m

1
Ns

∑
j

S(y j,z j)

=
Nm

∑
l=1

EV−1
∗ f ,m,(1,l)

1
Ns

∑
j

S(y j,z j)(l,1)

=
Nm

∑
l=1

V̄−1
∗ f ,m,(1,l)ES(y,z)(l,1)−

1
Ns

Nm

∑
l=1

Cov((V̄−1
f ,m,(1,l)Vf ,m,(1,l)V̄

−1
f ,m,(1,l)−V̄−1

f ,m,(1,l))S(y j,z j)(l,1))+ ...

...+Op(N−2
s )

In the following derivations we directly use V̄−1
f ,m for V−1

f ,m as any remainder will be of even higher order.We

derive below the variance covariance matrix:

V(κnĝ1(ϑ)) =

(
κn

N0

)2

(E(∑
i

µ̂
′
i Λi +∑

i
m′iµ̂i,ϑ )

′(∑
i

µ̂
′
i Λi +∑

i
m′iµ̂i,ϑ )︸ ︷︷ ︸

Γ

−

(
κ
−2
n

nm

∑
l

∫
δ (Z)Mi,(1,l)(ϑ)δ (Z)µl d(Y,Z)−

1
Ns

nm

∑
l
Eys

(
∆̃ j,l∆ j,l

))2

)

For Γ≡ Γ1 +Γ2 +Γ′2 +Γ3:

EΓ1 = ∑
i
EΛ
′
iµ̂iµ̂

′
i Λi +2 ∑

i> j
EΛ
′
j µ̂ j µ̂

′
i Λi

EΓ2 = ∑
i
Eµ̂
′
i,ϑ miµ̂

′
i Λi +2 ∑

i> j
Eµ̂
′
j,ϑ m j µ̂

′
i Λi

EΓ3 = ∑
i
Eµ̂
′
i,ϑ mim′iµ̂i,ϑ +2 ∑

i> j
Eµ̂
′
j,ϑ m jm′iµ̂i,ϑ

Using a similar type of expansion for µ̂ as for ϑ̂ −ϑ0,

µ−µi,0 = −N
− 1

2
s Q̄−1

µµ Q̃µ +Op(N−1
s )

Let also v∗ = M′V−1
f .m. Therefore,

Λ
′
iµ̂iµ̂

′
i Λi = (Mi(ϑ)− 1

Ns
∑

j
M j(ϑ))′

1
Ns

∑
j

V̄ ′∗ jm j(ϑ)
1
Ns

∑
j

m j(ϑ)′V̄∗ j(Mi(ϑ)− 1
Ns

∑
j

M j(ϑ))′

= Mi(ϑ)′
1
Ns

∑
j

V̄ ′∗ jm j(ϑ)
1
Ns

∑
j

V∗ jm j(ϑ)′Mi(ϑ)′...
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...−Mi(ϑ)
1
Ns

∑
j

V̄ ′−1
∗ j m j(ϑ)

1
Ns

∑
j

V̄∗ jm j(ϑ)′
1
Ns

∑
j

M j(ϑ)′+ ...

...− 1
Ns

∑
j

M j(ϑ)
1
Ns

∑
j

V̄ ′∗ jm j(ϑ)
1
Ns

∑
j

m j(ϑ)′V̄∗ jMi(ϑ)′

+
1
Ns

∑
j

M j(ϑ)
1
Ns

∑
j

V̄ ′∗ jm j(ϑ)
1
Ns

∑
j

m j(ϑ)′V̄∗ j
1
Ns

∑
j

M j(ϑ)′

= EΞ1 +EΞ2 +EΞ
′
2 +EΞ3

Therefore,

EΞ1 =
1
Ns

EzMi(ϑ)′Eys(V̄
′
∗ jm j(ϑ)V∗ jm j(ϑ)′|Z)Mi(ϑ)′+ ...

...+
Ns−1

Ns
EzMi(ϑ)′Eys(V̄

′
∗ jm j(ϑ)|Z)Eys(V∗ jm j(ϑ)′|Z)Mi(ϑ)′

=
1
Ns

EzMi(ϑ)′Eys(V̄
′
∗ jm j(ϑ)V∗ jm j(ϑ)′|Z)Mi(ϑ)′

− 1
Ns

EzMi(ϑ)′Eys(V̄
′
∗ jm j(ϑ)|Z)Eys(V∗ jm j(ϑ)′|Z)Mi(ϑ)′

...+EzMi(ϑ)′Eys(V̄
′
∗ jm j(ϑ)|Z)Eys(V∗ jm j(ϑ)′|Z)Mi(ϑ)′

EΞ2 = ...−Op(N−2
s )− Ns−1

N2
s

EzEy(Mi(ϑ)|Z)Eys(V̄
′−1
∗ j m j(ϑ)V̄∗ jm j(ϑ)′|Z)Eys(M j(ϑ)′|Z)...

....− Ns−1
N2

s
EzEy(Mi(ϑ)|Z)Eys(V̄

′−1
∗ j m j(ϑ)|Z)Eys(V̄∗ jm j(ϑ)′M j(ϑ)′|Z)...

....− (Ns−1)(Ns−2)
3!N2

s
EzEy(Mi(ϑ)|Z)Eys(V̄

′−1
∗ j m j(ϑ)|Z)Eys(V̄∗ jm j(ϑ)′|Z)Eys(M j(ϑ)′|Z)

= ...−Op(N−2
s )− 1

Ns
EzEy(Mi(ϑ)|Z)Eys(V̄

′−1
∗ j m j(ϑ)V̄∗ jm j(ϑ)′|Z)Eys(M j(ϑ)′|Z)...

...− 1
Ns

EzEy(Mi(ϑ)|Z)Eys(V̄
′−1
∗ j m j(ϑ)|Z)Eys(V̄∗ jm j(ϑ)′M j(ϑ)′|Z).

− (Ns−1)(Ns−2)
3!N2

s
EzEy(Mi(ϑ)|Z)Eys(V̄

′−1
∗ j m j(ϑ)|Z)Eys(V̄∗ jm j(ϑ)′|Z)Eys(M j(ϑ)′|Z)

EΞ3 =
1
Ns

E∑
j

M j(ϑ)
1
Ns

∑
j

V̄ ′∗ jm j(ϑ)
1
Ns

∑
j

m j(ϑ)′V̄∗ j
1
Ns

∑
j

M j(ϑ)

= Op(N−2
s )+E

(Ns−1)(Ns−2)
3!N3

s
(Eys(M j(ϑ)|Z)Eys(V̄

′
∗ jm j(ϑ)m j(ϑ)′V̄∗ jM j(ϑ)|Z)+ ...

...+Eys(M j(ϑ)V̄ ′∗ jm j(ϑ)|Z)Eys(m j(ϑ)′V̄∗ jM j(ϑ)|Z)+ ...

...+Eys(M j(ϑ)V̄ ′∗ jm j(ϑ)m j(ϑ)′V̄∗ j|Z)Eys(M j(ϑ)|Z))+ ...

...+
(N−1)(N−2)(N−3)

4!N3 Eys(M j(ϑ)|Z)Eys(V̄
′
∗ jm j(ϑ)|Z)Eys(m j(ϑ)′V̄∗ j|Z)Eys(M j(ϑ)|Z)
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With regard to the lagged terms, we show below an indicative derivation, which is similare to the

variance derivation, so we skip the rest for the sake of brevity.

Λ
′
iµ̂iµ̂

′
l Λl = (Mi(ϑ)− 1

Ns
∑

j
M j,i(ϑ))′

1
Ns

∑
j

V̄ ′∗ j,im j,i(ϑ)
1
Ns

∑
j

m j,l(ϑ)′V̄∗ j,l(Ml(ϑ)− 1
Ns

∑
j

M j,l(ϑ))′

= Mi(ϑ)′
1
Ns

∑
j

V̄ ′∗ j,im j,i(ϑ)
1
Ns

∑
j

V∗ j,lm j,l(ϑ)′Ml(ϑ)′...

...−Mi(ϑ)
1
Ns

∑
j

V̄ ′−1
∗ j,im j,i(ϑ)

1
Ns

∑
j

V̄∗ j,lm j,l(ϑ)′
1
Ns

∑
j

M j,l(ϑ)′+ ...

...− 1
Ns

∑
j

M j,i(ϑ)
1
Ns

∑
j

V̄ ′∗ j,im j,i(ϑ)
1
Ns

∑
j

m j,l(ϑ)′V̄∗ j,lMl(ϑ)′

+
1
Ns

∑
j

M j,i(ϑ)
1
Ns

∑
j

V̄ ′∗ j,im j,i(ϑ)
1
Ns

∑
j

m j,l(ϑ)′V̄∗ j,l
1
Ns

∑
j

M j,l(ϑ)′

= EΞ1 +EΞ2 +EΞ̃2 +EΞ3

EΞ1 =
1
Ns

EzMi(ϑ)′Eys(V̄
′
∗ j,im j,i(ϑ)V∗ j,lm j,l(ϑ)′|Z)Ml(ϑ)′+ ...

...+
Ns−1

Ns
EzMi(ϑ)′Eys(V̄

′
∗ j,im j,i(ϑ)|Z)Eys(V∗ j,lm j,l(ϑ)′|Z)Mi,l(ϑ)′

=
1
Ns

EzMi(ϑ)′Eys(V̄
′
∗ j,im j,i(ϑ)V∗ j,lm j,l(ϑ)′|Z)Ml(ϑ)′

− 1
Ns

EzMi(ϑ)′Eys(V̄
′
∗ j,im j(ϑ)|Z)Eys(V∗ j,lm j,l(ϑ)′|Z)Ml(ϑ)′

...+EzMi(ϑ)′Eys(V̄
′
∗ jm j,i(ϑ)|Z)Eys(V∗ j,lm j,l(ϑ)′|Z)Ml(ϑ)′

With regard to the second term,

Eµ̂
′
i,ϑ miµ̂

′
i Λi = −E 1

Ns
∑

j
(M j,i(ϑ)′Ve∗ j,iz′j)mi(ϑ)

1
Ns

∑
j

m j,i(ϑ)′V
′
∗ j,i(Mi(ϑ)− 1

Ns
∑

j
M j,i(ϑ))

= −E 1
Ns

∑
j
(M j,i(ϑ)′Ve∗ j,iz′j)mi(ϑ)

1
Ns

∑
j

m j,i(ϑ)V
′
∗ j,iMi(ϑ)

+E
1
Ns

∑
j
(M j,i(ϑ)′Ve∗ j,iz′j)mi(ϑ)

1
Ns

∑
j

m j,i(ϑ)V
′
∗ j,i

1
Ns

∑
j

M j,i(ϑ)

= − 1
Ns

EzEys(M j,i(ϑ)′(Ve∗ j,iz′j)Ey(mi(ϑ)m j,i(ϑ)V
′
∗ j,i|Z)Mi(ϑ)|Z)

−Ns−1
Ns

EzEys(M j,i(ϑ)′Ve∗ j,iz′j|Z)Ey(mi(ϑ)Eys(m j,i(ϑ)V
′
∗ j,i|Z)Mi(ϑ)|Z)

+Op(N−2
s )+

Ns−1
Ns

EzEys(M j,i(ϑ)′Ve∗ j,iz′j|Z)Ey(mi(ϑ)|Z)Eys(m j,i(ϑ)V
′
∗ j,iM j,i(ϑ)|Z)

+
Ns−1

Ns
EzEys(M j,i(ϑ)′Ve∗ j,iz′jEy(mi(ϑ)|Z)m j,i(ϑ)V

′
∗ j,i|Z)Eys(M j,i(ϑ)|Z)
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+
(N−1)(N−2)

3!N2 EzEys(M j,i(ϑ)′Ve∗ j,iz′j|Z)Ey(mi(ϑ)|Z)Eys(m j,i(ϑ)V
′
∗ j,i|Z)Eys(M j,i(ϑ)|Z)

With regard to the third term,

Eµ̂
′
i,ϑ mim′iµ̂i,ϑ = E

1
Ns

∑
j

M j,i(ϑ)′V−1
e, j,iz jmim′i

1
Ns

∑
j

V−1
e, j,iz jM j,i(ϑ)

= Ez
1
Ns

Eys M j,i(ϑ)′V−1
e, j,iz jEy(mim′i|Z)V−1

e, j,iz jM j,i(ϑ)+ ....

+Ez
Ns−1

Ns
Eys(M j,i(ϑ)′V−1

e, j,iz j)Ey(mim′i|Z)EysV
−1
e,k,izkMk,i(ϑ)|Z)

=
1
Ns

EzEys M j,i(ϑ)′Ve, j,iz jEy(mim′i|Z)Ve, j,iz jM j,i(ϑ)+ ....

+EzE(Mi(ϑ)′|Z)E(Vi|Z)E(Mi(ϑ)|Z)− 1
Ns

EzE(Mi(ϑ)′|Z)E(Vi|Z)E(Mi(ϑ)|Z)+ ...

+
Ns−1

Ns
Ez(EysM j,i(ϑ)′EV−1

e, j,iz j−E(Mi(ϑ)′|Z)E(Vi|Z)−1)E(Vi|Z)(EysVe,k,iz jMk,i(ϑ)

+E(Vi|Z)E(Mi(ϑ)|Z))

+
Ns−1

Ns
E(y,z)Eys(E(Mi(ϑ)|Z)−Mk,i(ϑ))′Ve,k,izkMk,i(ϑ))

+
Ns−1

Ns
E(y,z)Eys Mk,i(ϑ)′Ve,k,izk(Mk,i(ϑ)−E(Mi(ϑ)|Z))

+
Ns−1

Ns
Ez,ys(Mk,i(ϑ)′Ve,k,izk−M j,i(ϑ)′Ve, j,iz j)

=
1
Ns

EzEys M j,i(ϑ)′Ve, j,iz jEy(mim′i|Z)Ve, j,iz jM j,i(ϑ)+ ....

+EzE(Mi(ϑ)′|Z)E(Vi|Z)E(Mi(ϑ)|Z)− 1
Ns

EzE(Mi(ϑ)′|Z)E(Vi|Z)E(Mi(ϑ)|Z)+ ...

+
Ns−1

Ns
Ez(EysM j,i(ϑ)′(κ−1

n ∆(Z)+EysVf ,m +Op(κ
−2
n ))

−E(Mi(ϑ)′|Z)E(Vi|Z)−1)E(Vi|Z)(EysVe,k,iz jMk,i(ϑ)+E(Vi|Z)E(Mi(ϑ)|Z))

+
Ns−1

Ns
EzEys(E(Mi(ϑ)|Z)−Mk,i(ϑ))′Ve,k,izkMk,i(ϑ))+

Ns−1
Ns

E(y,z)Eys Mk,i(ϑ)′Ve,k,izk(Mk,i(ϑ)−E(Mi(ϑ)|Z))

+
Ns−1

Ns
Ez,ys(Mk,i(ϑ)′Ve,k,izk−M j,i(ϑ)′Ve, j,iz j)

=
1
Ns

EzEys M j,i(ϑ)′Ve, j,iz jEy(mim′i|Z)Ve, j,iz jM j,i(ϑ)+ ....

+EzE(Mi(ϑ)′|Z)E(Vi|Z)E(Mi(ϑ)|Z)− 1
Ns

EzE(Mi(ϑ)′|Z)E(Vi|Z)E(Mi(ϑ)|Z)+ ...

+
Ns−1

Ns
Ez(EysM j,i(ϑ)′−E(Mi(ϑ)′|Z)(E(Vi|Z)−1)+

κ
−1
n ∆v(Z))E(Vi|Z)−1)E(Vi|Z)(EysVe,k,iz jMk,i(ϑ)+E(Vi|Z)E(Mi(ϑ)|Z))

=
Ns−1

Ns
E(y,z)Eys(E(Mi(ϑ)|Z)−Mk,i(ϑ))′(E(Vi|Z)−1)+κ

−1
n ∆v(Z))Mk,i(ϑ))

+
Ns−1

Ns
E(y,z)Eys Mk,i(ϑ)′Ve,k,izk(Mk,i(ϑ)−E(Mi(ϑ)|Z))
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+
Ns−1

Ns
Ez,ys(Mk,i(ϑ)′Ve,k,izk−M j,i(ϑ)′(E(Vi|Z)−1)+κ

−1
n ∆v(Z)))

=
1
Ns

EzEysM j,i(ϑ)′Ve, j,iz jEy(mim′i|Z)Ve, j,iz jM j,i(ϑ)+ ....

+EzE(Mi(ϑ)′|Z)E(Vi|Z)E(Mi(ϑ)|Z)− 1
Ns

EzE(Mi(ϑ)′|Z)E(Vi|Z)E(Mi(ϑ)|Z)+ ...

+
Ns−1

Ns
Ez(EysM j,i(ϑ)′−E(Mi(ϑ)′|Z)(E(Vi|Z)−1)+

κ
−1
n ∆v(Z))E(Vi|Z)−1)E(Vi|Z)(EysVe,k,iz jMk,i(ϑ)+E(Vi|Z)E(Mi(ϑ)|Z))

+
Ns−1

Ns
E(y,z)Eys(E(Mi(ϑ)|Z)−Mk,i(ϑ))′(E(Vi|Z)−1)+κ

−1
n ∆v(Z))Mk,i(ϑ))+

Ns−1
Ns

E(y,z)Eys Mk,i(ϑ)′Ve,k,izk(Mk,i(ϑ)−E(Mi(ϑ)|Z))

+
Ns−1

Ns
Ez,ys(Mk,i(ϑ)′Ve,k,izk−M j,i(ϑ)′(E(Vi|Z)−1)+κ

−1
n ∆v(Z)))

=
1
Ns

EzEysM j,i(ϑ)′Ve, j,iz jEy(mim′i|Z)Ve, j,iz jM j,i(ϑ)+ ....

+EzE(Mi(ϑ)′|Z)E(Vi|Z)E(Mi(ϑ)|Z)− 1
Ns

EzE(Mi(ϑ)′|Z)E(Vi|Z)E(Mi(ϑ)|Z)+Op(κ
−1
n )

Let

ḡ2(ϑ)≡ 1
N ∑

i
(si(φ)−

1
Ns

∑
j

ẽ js j,i(φ))−
1
Ns

∑
j
(m j,i(ϑ)⊗ s j,i(φ))

1
N ∑

i
V−1

m, f mi(ϑ)

and denote by P
m
s,y the projection matrix for projecting the score s(y,z) on the moment conditions m(y,z)

and sp(y,z) ≡ m(y,z)P
m
s,y the predicted score. The variance component for the second set of moment

conditions is therefore:

V(κnĝ2(ψ)) =

(
κn

N0

)2

(∑
i
Eg2,i(ψ)g2,i(ψ)′+2 ∑

i> j
Eg2,i(ψ)g2,k(ψ)′)

Given ergodicity assumptions, the second component is summable. With regard to the first component :

E(y,z,ys)g2,i(ψ)g2,i(ψ)′

= E(y,z,ys)(si(φ)−
1
Ns

∑
j

ẽ js j,i(φ))(si(φ)
′− 1

Ns
∑

j
ẽ js j,i(φ)

′)+ ...

...−E(y,z,ys)(si(φ)−
1
Ns

∑
j

ẽ js j,i(φ))(
1
Ns

∑
j
(m j,i(ϑ)′⊗ s j,i(φ))V−1

m, f mi(ϑ)′+ ...

...−E(y,z,ys)(
1
Ns

∑
j

m j,i(ϑ)⊗s j,i(φ)V−1
m, f mi(ϑ)(si(φ)

′− 1
Ns

∑
j

ẽ js j,i(φ)
′)+ ...

...+E(y,z,ys)(
1
Ns

∑
j

m j,i(ϑ)⊗ s j,i(φ))V−1
m, f mi(ϑ)mi(ϑ)′V−1

m, f
1
Ns

∑
j

m j,i(ϑ)′⊗ s j,i(φ)
′)

= E(y,z,ys)(Ξ1 +Ξ
′
2 +Ξ2 +Ξ3)
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E(y,z,ys)Ξ1 = E(y,z,ys)(si(φ)si(φ)
′− si(φ)

1
Ns

∑
j

ẽ js j,i(φ)
′+ ...

...− 1
Ns

∑
j

ẽ js j,i(φ)si(φ)
′+

1
N2

s
∑
j,k

ẽ js j,i(φ)ẽksk,i(φ)
′

= E(y,z,ys)si(φ)si(φ)
′−EzEy(si(φ)|Z)Ey(ẽ js j,i(φ)

′|Z)−EzEys(ẽ js j,i(φ)|Z)Ey(si(φ)
′|Z)+ ...

...+
1
Ns

EzEys(ẽ js j,i(φ)|Z)Eys(ẽksk,i(φ)
′|Z)+ 1

N2
s

∑
j 6=k

Eys ẽ js j,i(φ)Eys ẽksk,i(φ)
′

= E(y,z,ys)si(φ)si(φ)
′−δsκ

−1
n +δss

Ns−1
Ns

κ
−1
n

E(y,z,ys)Ξ2 = −E(y,z,ys)
1
Ns

∑
j
(m j,i(ϑ)⊗ s j,i(φ))V−1

m, f mi(ϑ))(si(φ)
′− 1

Ns
∑

j
ẽ js j,i(φ)

′)

= − 1
Ns

EzEys(m j,i(ϑ)⊗ s j,i(φ))V−1
m, f |Z)Ey(mi(ϑ)si(φ)

′|Z)

+
1
Ns

EzEys(m j,i(ϑ)⊗ s j,i(φ))V−1
m, fEz(mi(ϑ)|Z)ẽ js j,i(φ)

′|Z)

+
Ns−1

Ns
EzEys(m j,i(ϑ)⊗ s j,i(φ))V−1

m, f |Z)Ey(mi(ϑ)|Z)Eys(ẽ js j,i(φ)
′|Z)

= Op(N−1
s )+δµφ

κ
−1
n +EzEys(m j,i(ϑ)⊗ s j,i(φ))V−1

m, f |Z)Ey(mi(ϑ)|Z)Eys(ẽ js j,i(φ)
′|Z)

= Op(N−1
s )+ δ̃µφ

κ
−1
n +Ey,z(s

p
i (φ)si(φ)

′|Z)

E(y,z,ys)Ξ3 = E(y,z,ys)(
1
Ns

∑
j

m j,i(ϑ)⊗ s j,i(φ))V−1
m, f mi(ϑ)mi(ϑ)′V−1

m, f
1
Ns

∑
j

m j,i(ϑ)′⊗ s j,i(φ)
′)

=
1
Ns

EzEys(m j,i(ϑ)⊗ s j,i(φ))V−1
m, fVmV−1

m, f (m j,i(ϑ)′⊗ s j,i(φ)
′)+ ...

...+EzEys(m j,i(ϑ)⊗ s j,i(φ))V−1
m, f |Z)VmEys(V

−1
m, f (m j,i(ϑ)′⊗ s j,i(φ)

′|Z)+ ...

=
1
Ns

EzEy(mi(ϑ)⊗ si(φ))V−1
m (mi(ϑ)′⊗ si(φ)

′)+ ...

...+EzEys(m j,i(ϑ)⊗ s j,i(φ))V−1
m, f |Z)mi(ϑ)mi(ϑ)′Eys(V

−1
m, f (m j,i(ϑ)′⊗ s j,i(φ)

′|Z)+ ...

...+Op(κ
−1
n )

= Op(max(N−1
s ,κ−1

n ))+E(y,z,ys)s
p
i (φ)s

p
i (φ)

′

With regard to the covariance term,

Cov(κnĝ1(ψ),κnĝ2(ψ)) =

(
κn

N0

)2

(∑
i
Eg1,i(ψ)g2,i(ψ)′+2 ∑

i> j
Eg1,i(ψ)g2,k(ψ)′)
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=

(
κn

N0

)2

∑
i
Eg1,i(ψ)g2,i(ψ)′+2

(
κn

N0

)2

∑
i> j

Eg1,i(ψ)g2,k(ψ)′)

With regard to the first term, ...

Eg1,i(ψ)g2,i(ψ)′ = E(µ̂ ′i Λi +m′iµ̂i,ϑ )
′(si(φ)−

1
Ns

∑
j

ẽ js j,i(φ)−mi(ϑ)′V−1
m, f

1
Ns

∑
j
(m j,i(ϑ)′⊗ s j,i(φ)

′))

= E(Λiµ̂i(si(φ)−
1
Ns

∑
j

ẽ js j,i(φ))+ ...

...+Eµ̂
′
i,ϑ mi(ϑ)(si(φ)−

1
Ns

∑
j

ẽ js j,i(φ))
′+ ...

...+E(Λ′iµ̂i(mi(ϑ)′V−1
m, f (ϑ)

1
Ns

∑
j
(s j,i(φ)

′⊗m j,i(ϑ)′))+ ...

...+E(µ̂ ′i,ϑ mi(ϑ)mi(ϑ)′V−1
m, f (ϑ)

1
Ns

∑
j
s j,i(φ)⊗m j,i(ϑ)′)

= E(Ξ1 +Ξ3 +Ξ2 +Ξ4)

Treating each term separately, we have the following:

EΞ1 = EΛ
′
iµ̂isi(φ)

′−Λ
′
iµ̂i

1
Ns

∑
j

ẽ js j,i(φ)
′

= EzEys((Mi(ϑ)− 1
Ns

∑
j

ẽ jM j,i(ϑ))′µ̂i|Z)(si(φ)
′|Z)−

(Mi(ϑ)− 1
Ns

∑
j

ẽ jM j,i(ϑ))′µ̂i
1
Ns

∑
j

ẽ js j,i(φ)
′

= Ez(Ey(Mi(ϑ)′si(φ)|Z)Eys(µ̂i|Z)−EzEys(
1
Ns

∑
j

ẽ jM j,i(ϑ)′µ̂i)Ey(si(φ)|Z)+ ...

−EzEy(Mi(ϑ)|Z)′Eys µ̂i
1
Ns

∑
j

ẽ js j,i(φ)−EzEys

1
Ns

∑
j

ẽ jM j,i(ϑ)′µ̂i
1
Ns

∑
j

ẽ js j,i(φ)

= EΞ11 +EΞ12 +EΞ13 +EΞ14

Since µi =V−1
κ,m, f

1
Ns

∑ j m j(ϑ) and using results from Lemma (1),

EΞ11 = EzEy(Mi(ϑ)′si(φ)|Z)EysV
−1
κ,m, f (m j(ϑ)|Z)

= EzEy(Mi(ϑ)′si(φ)
′|Z)(V̄−1

f ,m +κ
−1
n ∆(z)+Op(N

− 1
2

s ))Eys(m j(ϑ)|Z)

= EzEy(Mi(ϑ)′si(φ)
′|Z)κ−1

n V̄−1
f ,mδm(Z)+Op(κ

−1
n N−

2
d )
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EΞ12 = −EzEys(
1
Ns

∑
j

ẽ jM j,i(ϑ)′µ̂i)Ey(si(φ)|Z)

=
1
Ns

Eys ẽ jM j,i(ϑ)(V̄−1
f ,m +κ

−1
n ∆(z)+Op(N

− 1
2

s ))(m j(ϑ)|Z))Ey(si(φ)
′|Z)+ ...

...+
Ns−1

Ns
Eys(ẽkMk,i(ϑ)|Z)(V̄−1

f ,m +κ
−1
n ∆(z)+Op(N

− 1
2

s ))Eys(m j(ϑ)|Z)Ey(si(φ)
′|Z)

= Op(κ
−2
n )

EΞ13 = −EzEy(Mi(ϑ)|Z)′Eys µ̂i
1
Ns

∑
j

ẽ js j,i(φ)

=
1
Ns

EzEysEy(Mi(ϑ)|Z)Eys(V̄
−1
f ,mm j(ϑ)ẽ js j,i(φ)|Z)+ ...

..+
Ns−1

Ns
EzEy(Mi(ϑ)|Z)Eys(V̄

−1
f ,mm j(ϑ)|Z)Eys ẽ js j,i(φ)

= Op(max(N−1
s ,κ−2

n ))

EΞ14 = −EzEys

1
Ns

∑
j

ẽ jM j,i(ϑ)′µ̂i
1
Ns

∑
j

ẽ js j,i(φ)

= Op(N−2
s )+

(Ns−1)(Ns−2)
3!N2

s
Eys(Mi(ϑ)|Z)EysV̄

−1
f ,mm j(ϑ)Eys ẽ js j,i(φ)

= Op(max(N−2
s ,κ−2

n ))

With regard to Ξ2:

EΞ2 = Eµ̂
′
i,ϑ mi(ϑ)(si(φ)−

1
Ns

∑
j

ẽ js j,i(φ))
′

= Eµ̂
′
i,ϑ mi(ϑ)si(φ)

′−Eµ̂
′
i,ϑ mi

1
Ns

∑
j

ẽ js j,i(φ)
′

= Eµ̂
′
i,ϑ mi(ϑ)si(φ)

′−EzEys(µ̂i,ϑEy(m′i|Z)
1
Ns

∑
j

ẽ js j,i(φ)
′|Z)

= E(V̄−1
f ,m +Op(N

− 1
2

s ))mi(ϑ)si(φ)
′+Op(κ

−1
n )

= EzEys(z jM j(ϑ)′|Z)V̄−1
f ,mEy(mi(ϑ)si(φ)

′)+Op(max(N
− 1

2
s ,κ−1

n ))

= EzEy(M j(ϑ)′|Z)V̄−1
m Ey(mi(ϑ)si(φ)

′)+Op(max(N
− 1

2
s ,κ−1

n ))
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With regard to Ξ3 :

EΞ3 = E(Λ′iµ̂imi(ϑ)V−1
m, f (ϑ)

1
Ns

∑
j
(s j,i(φ)

′⊗m j,i(ϑ)′))

= E((Mi(ϑ)− 1
Ns

∑
j

ẽ jM j,i(ϑ))′V−1
κm, f

1
Ns

∑
j

m j(ϑ)mi(ϑ)′V−1
m, f (ϑ)(

1
Ns

∑
j
(s j,i(φ)

′⊗m j,i(ϑ)′))

= E(Mi(ϑ)′V−1
κm, f

1
Ns

∑
j

m j(ϑ)mi(ϑ)′V−1
m, f (ϑ)

1
Ns

∑
j
(s j,i(φ)

′⊗m j,i(ϑ)′))+ ...

...−EzEys(
1
Ns

∑
j

ẽ jM j,i(ϑ)′V−1
κm, f

1
Ns

∑
j

m j(ϑ)Ey(mi(ϑ)|Z)′V−1
m, f (ϑ)(

1
Ns

∑
j
(s j,i(φ)

′⊗m j,i(ϑ)′))

=
1
Ns

E(Mi(ϑ)′EysV
−1
κm, f m j(ϑ)mi(ϑ)′V−1

m, f (ϑ)(s j,i(φ)
′⊗m j,i(ϑ)′)+ ...

...+
Ns−1

Ns
E(Mi(ϑ)′Eys(V

−1
κm, f m j(ϑ)|Z)mi(ϑ)′Eys(V

−1
m, f (ϑ)(s j,i(φ)

′⊗m j,i(ϑ)′)|Z)+

...−Ez
Ns−1

N2
s

Eys ẽ jM j,i(ϑ)′V−1
κm, f m j(ϑ)|Z)Ey(mi(ϑ)|Z)′EysV

−1
m, f (ϑ)(s j,i(φ)

′⊗m j,i(ϑ)′)|Z)+Op(N−2
s )

....−Ez
Ns−1

N2
s

Eys(ẽ jM j,i(ϑ)′|Z)V−1
κm, fE(m j(ϑ)|Z)Ey(mi(ϑ)|Z)′V−1

m, f (ϑ)(s j,i(φ)
′⊗m j,i(ϑ)′)|Z)

....−Ez
Ns−1

N2
s

Eys(ẽ jM j,i(ϑ)′V−1
κm, f m j(ϑ)Ey(mi(ϑ)|Z)′V−1

m, f (ϑ)(s j,i(φ)
′⊗m j,i(ϑ)′)|Z)

= EzEy(Mi(ϑ)′|Z)V−1
m Ey(mi(ϑ)|Z)E(mi(ϑ)′|Z)V−1

m Ey(si(φ)
′⊗mi(ϑ)′)|Z)+Op(max(N

− 1
2

s ,κ−1
n )

= EzEy(Mi(ϑ)′|Z)V−1
m Ey(mi(ϑ)|Z)Ey(s

p
i(φ)|Z)+Op(max(N

− 1
2

s ,κ−1
n )

Finally, with regard to Ξ4:

EΞ4 = E(µ̂ ′i,ϑ mi(ϑ)mi(ϑ)′V−1
m, f (ϑ)

1
Ns

∑
j
(s j,i(φ)⊗m j,i(ϑ)′)

= E(
1
Ns

∑
j

z jM j(ϑ)′(V̄−1
f ,m +Op(N

− 1
2

s )mi(ϑ)mi(ϑ)′(V−1
m, f (ϑ)+Op(N

− 1
2

s ))(
1
Ns

∑
j
(s j,i(φ)⊗m j,i(ϑ)))

= E(
1
Ns

∑
j

z jM j(ϑ)′V̄−1
f ,mmi(ϑ)mi(ϑ)′V̄−1

m, f (ϑ)(
1
Ns

∑
j
(s j,i(φ)⊗m j,i(ϑ))))+ ...

...+op(N
− 1

2
s )

=
1
Ns

Ez(Eys M j(ϑ)′V̄−1
f ,mEy(mi(ϑ)mi(ϑ)′|Z)V−1

m, f (ϑ)(s j,i(φ)⊗m j,i(ϑ))+ ...

...+
Ns−1

Ns
Ez(EysM j(ϑ)′V̄−1

f ,mEy(mi(ϑ)mi(ϑ)′|Z)V−1
m, f (ϑ)Eys(sk,i(φ)⊗mk,i(ϑ))

...+op(N
− 1

2
s )

= Ez(Eys M j(ϑ)′V̄−1
f ,mEy(mi(ϑ)mi(ϑ)′|Z)V−1

m, fEys(sk,i(φ)⊗mk,i(ϑ))+Op(N−1
s )+op(N

− 1
2

s )

= Ez(EyM j,i(ϑ)′V̄−1
m Ey(mi(ϑ)mi(ϑ)′|Z)V−1

m Ey(si(φ)⊗mi(ϑ))+Op(max(κ−1
n ,N−1

s ))+op(N
− 1

2
s )

= Ez(EyM j,i(ϑ)′V−1
m Ey(si(φ)⊗mi(ϑ))+Op(max(κ−1

n ,N−1
s ))+op(N

− 1
2

s )
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Proof. of Proposition 7

In the parametric case within the class of smooth densities, we can rewrite dQ(x|z)≡ dP(x|φ +

n−
1
2 h,z). Therefore, using a Taylor expansion of around φ0

dP(x|φ +n−
1
2 h,z) = dP(x|φ ,z)+ sφ (x,z)n−

1
2 h+o(n−

1
2 h)

Evaluating
∫ ∫
L(x,z)dQ(x|z)P(z) therefore naturally gives the following result:

wQn−wP ≡
∫

w(x,z)(sφ (x,z)n−
1
2 h+o(n−

1
2 h))

= n−
1
2 h
∫

δw(z)dP(z)

Proof. of Proposition 8

Substituting the result of Proposition 1 in 3.12 we get that:

0 = N−
1
2

0 δ
′
Mh′V−1hδm +n−

1
2 hδ

′
MV−1N

1
2

0 mPn + ...

... +(N−
1
2

0 δ
′
Mh′V−1 +M′PN−

1
2

0 hδV )N
1
2

0 mPn +M′Pn
V−1

Pn
N

1
2

0 mPn +op

(
hN−

1
2

0

)
0 = Op(hN−

1
2

0 )+M′Pn
V−1

Pn
N

1
2

0 mPn

Notice that for the Jacobian terms we also substituted P for Pn as the empirical distribution

function converges also at the N
1
2

0 rate 10.

Proof. of Proposition 9

1) The first order conditions for φ under restrictions r(φ) = 0 are as follows:

φ̂ −φn = −Ĝ21(ψ̃)ĝ1(ψn)− Ĝ22(ψ̃)(ĝ2(ψn)+πR(ϑn))

10This can also be verified by plugging Pn in Qn in the decomposition in Lemma 4.1



3.8. Appendix B 133

For notational convenience we drop indexing on ψ . Expanding the constraint around ϕ0 and

substituting for φ̂ −φn we get that

π = −(R′G22R)−1R′(G21g1 +G22g2 +hN−
1
2

0 )

Substituting for π in φ̂ − φn and plugging in the first order conditions for ϑ −ϑn the result

follows.

2) We show positive definiteness of V(S1ZS′1)−V(Zr) by showing that

tr((V(S1Z))−1(V(Zr)))< n1

Let S̃i = SiΩ
1
2 for i = 1,2, R̃ = [G22]

1
2 R and J = G12[G22]−

1
2 R̃(R̃′R̃)−1R̃′. Recall that Zr ≡

S1Z− JS2(Z+h). Positive definiteness of V(S1Z)−V(Zr) is equivalent to:

tr(V(S1Z)−1V(Zr)) < n1 (3.23)

where n1 is the dimension of g1. Absence of restrictions implies that R = 0 and therefore

Zr = S1Z . This implies that tr(V(S1Z)−1V(Zr)) = n1. What needs to be shown therefore is

that the inequality in 3.23 holds for any R 6= 0. Towards this, we first rewrite the left hand side

of 3.23 as follows:

tr(V(S1Z)−1V(Zr)) = tr((S1ΩS′1)
−1(S1− JS2)Ω(S1− JS2)

′)

= tr((S1ΩS′1)
−1(S1− JS2)Ω(S1− JS2)

′)

= tr((S̃1S̃′1)
−1(S̃1− JS̃2)(S̃1− JS̃2)

′)

= tr((S̃1− JS̃2)
′(S̃1S̃′1)

−1(S̃1− JS̃2))

For V ′ ≡
(

S̃1
n1×n

J.
n1×n2

)
, B≡

 I
n×n

0
n×n2

0
n2×n

0
n2×n2

, C ≡
(

I.
n×n

−S̃′2
n×n2

)′
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A≡CC′ =

 I
n×n

−S̃′2
n×n2

−S̃2
n2×n

Ω22
n2×n2

 where n = n1 +n2 and S̃2 =
(

[Ω]
1
2
12 [Ω]

1
2
22

)
,

tr(V(S1Z)−1V(Zr)) = tr((V ′(J)BV (J))−1V (J)′AV (J))

What needs to be shown is the following:

max
V

tr((V ′(J)BV (J))−1V (J)′AV (J)) = n1 (3.24)

The problem defined by the LHS is of 3.24 is a well defined problem in discriminant analysis

for a general matrix V , and is equivalent to:

max
V

tr(V (J)′AV (J))

s.t V ′(J)BV (J)< K

Using that A is symmetric, the first order conditions are:

AV (J) = BV (J)Λ (3.25)

where Λ is the n1× n1 matrix that contains the lagrange multipliers for the second set of con-

straints. Noticing that:

tr((V ′(J)BV (J))−1V (J)′AV (J)) = tr((V ′(J)BV (J))−1V (J)′AA−1BV (J)Λ)

= tr(Λ)

max
V

tr(V (J)′AV (J)) = ∑
i≤n1

λi

Since the system of equations in 3.25 is a generalized eigenvalue problem, then in order

for the maximum to be achieved, ∑i≤n1 λi must be the sum of the n1− th largest admissible

eigenvalues of B−1V and V the matrix containing the corresponding eigenvectors. A complica-

tion arises here because B is non invertible, and we therefore cannot compute the eigenvalues of

B−1A directly. We proceed as follows: We compute the eigenvalues µi of A−1B and use the fact
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that λi = µ
−1
i .

A−1B =

 Ξ
n×n

0
n×n2

0
n2×n

0
n2×n2


Ξ ≡

 I
n1×n1

− [Ω]
1
2
12[Ω]

− 1
2

22 [Ω]
1
2
21 −[Ω]

1
2
12[Ω]

− 1
2

22

−[Ω]
− 1

2
22 [Ω]

1
2
21 0

n2×n2


Therefore,

det
(

A−1B−µ I
(n+n2)×(n+n2)

)
= det

 Ξ
n×n
−λ I

n×n
0

n×n2

0
n2×n

−λ I
n2×n2


= det( Ξ

n×n
−λ I

n×n
)det

(
−λ I

n2×n2

)
= det( Ξ

n×n
−λ I

n×n
)(−λ )n2

Therefore, we establish that there exist n2 zero eigenvalues.

With regard to det( Ξ
n×n
−λ I

n×n
):

det

 I
n1×n1

− [Ω]
1
2
12[Ω]

− 1
2

22 [Ω]
1
2
21−λ I

n1×n1
−[Ω]

1
2
12[Ω]

1
2
22

−[Ω]
1
2
22[Ω]

1
2
21 λ I

n2×n2

 = 0

and therefore:

det(I− [Ω]
1
2
12[Ω]

− 1
2

22 [Ω]
1
2
21−λ I +[Ω]

1
2
12[Ω]−1

22 λ
−1[Ω]

1
2
21)λ

n2 = 0

det(λ I +(1−λ )[Ω]
1
2
12[Ω]

− 1
2

22 [Ω]
1
2
21−λ

2I)λ n2 = 0

det(λ (1−λ )I +(1−λ )[Ω]
1
2
12[Ω]

− 1
2

22 [Ω]
1
2
21λ

n2 = 0

det(λ I +[Ω]
1
2
12[Ω]

− 1
2

22 [Ω]
1
2
21)(1−λ )n1λ

n2 = 0

Since [Ω]
1
2
12[Ω]

− 1
2

22 [Ω]
1
2
21 is positive definite, det(λ I +[Ω]

1
2
12[Ω]

− 1
2

22 [Ω]
1
2
21) is not zero for any value

of λ . We therefore have that the eigenvalues of A−1B are 1, with multiplicity n1 and 0 with

multiplicity 2n2. Therefore, the eigenvalues that solve equation 3.25 are λi = 1 for i ≤ n1 and

λi = ∞ for i = n1...n+n2.
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Notice that in the analysis above we have not constrained the set of eigenvectors we consid-

ered beyond the bound on V ′BV . Since the vectors V we specified have a certain structure, the

maximum value attained should be less than or equal to the value implied by the set of solutions

that correspond to λi.

Since the set of potential maximum values are either ∑i≤n1 λi = n1 or ∞ it is easier to

search for the admissible vectors V∗(in terms of R) that could possibly achieve this maximum.

The system that determines the eigenvector is the following:

 I
n×n

−S̃′2
n×n2

−S̃2
n2×n

Ω22
n2×n2


 S̃′1

n×n1

J′.
n2×n1

 = λ

 S̃′1
n×n1

J′.
n2×n1


From the first set of equations, we have that:

G̃12R̃(R̃′R̃)−1R̃′S̃2 = S̃1(1−λ )

∴

G̃12R̃ = S̃1(1−λ )S̃′2(S̃2S̃′2)
−1R̃

Solving for the second set of equations,

G̃12R̃ = ([Ω]
1
2
11[Ω]

1
2
12 +[Ω]

1
2
12[Ω]

1
2
22)(λ I−Ω22)

−1S̃′2(S̃2S̃′2)
−1R̃

First, note that any value of R̃ satisfies both equations for λ /∈ {1,∞}. Moreover, we discard the

possibility that corresponds to λi = ∞ as for R̃ to satisfy the first set, a non differentiable r(ϑ) is

required. We then turn to the only possibility left, that of λi = 1. For λ = 1, the only admissible

solution of the first set is R = 0, while the second set is also satisfied. R̃ = 0 is then the only

admissible solution. The constrained maximum is therefore equal to ∑i≤n1 1 = n1. Thus, for

R 6= 0, tr(V(S1Z)−1V(Zr))< n1.

The following lemmata are systematically used in the proofs of the propositions above:

Lemma 4. For any Z-measurable function g(µ), we have that Ezg(µ̂i)→ Ezg(µi). Conse-

quently, Ezλ̂i→ Ezλ
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Proof. Given results above, consider that (a) ||µ̂i − µi|| < C−1|Q′µ(µ0,zi)| . By assumption
(BD−1b) the RHS is uniformly integrable. In addition, we have established the result that
(b) µ̂i− µi = op(1), a.s, given iid sampling by SLLN. By the Continuous Mapping Theorem,
g(µ̂i)−g(µi) = op(1) Sub - indexing by i signifies that µis a function of zi, which implies that
convergence is to a random variable. By Dominated Convergence, we conclude.

.

Lemma 5. µi = Op(TV ( fx,zi,n, px,zi)). Furthermore,

∀i ∈ {1..nz},max
i

sup
ϑ

|µ ′i m(ϑ ,xi)|= Op(TV ( fx,zi,n, px,zi)n
1
ζ )

A specific case of the above result is that of (Newey and Smith 2004), where TV ( fx,zi,n, px,zi) =
Op(n−ξ ) and therefore µi = op(1) and if 1

ζ
< ξ < 1

2 , maxi supϑ |µ ′i m(ϑ ,xk)|= op(1).

Proof. Consider the numerator,

1
ns

∑
j=1..s

m j,i(ϑ) =
∫

mi(ϑ)dFx,zi,nS

=
∫

mi(ϑ)dPx,zi +
∫

mi(ϑ)d(Fx,zi,ns−Fx,zi +Fx,zi−Px,zi)

by definition =
∫

mi(ϑ)d(Fx,zi,ns−Fx,zi +Fx,zi−Px,zi)

Assuming that Radon-Nikodym derivatives exist with respect to the Lebesgue measure on x, we
have that

∫
mi(ϑ)d(Fx,zi,ns,n−Fx,zi,n +Fx,zi,n−Px,zi) =

∫
mi(ϑ)( fx,zi,ns,n− fx,zi,n)dx+ ...

+...
∫

mi(ϑ)( fx,zi,n− px,zi,)dx

= op,1(1)+
∫

mi(ϑ)( fx,zi,n− px,zi)dx

The second equality is using the fact that the function mi(ϑ)( fx,zi,ns − fx,zi,) is itself domi-
nated by supψ mi(ϑ)| fx,zi,ns − fx,zi,| which is integrable by BD−1a. By SLLN and Dominated
convergence, we have that

∫
mi(ϑ)( fx,zi,ns − fx,zi,)dx a.s→ 0. Furthermore, regarding the third

inequality, we make use of the implicit assumption of absolute continuity of px,zi w.r.t fx,zi,n.
Define a set B0,F = {x ∈ X : Fzi(x) = 0 and B0,P similarly. Therefore, B0,P ⊆ B0,F .∫

mi(ϑ)( fx,zi,n− px,zi)dx =
∫
B0,F

mi(ϑ)( fx,zi,n− px,zi)dx+
∫
Bc

0,F

mi(ϑ)( fx,zi,n− px,zi)dx

=
∫
Bc

0,F

mi(ϑ)( fx,zi,n− px,zi)dx
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It is therefore safe to assume that the events {x = ∞,x =−∞} belong to B0,P. Therefore,∫
Bc

0,F

mi(ϑ)( fx,zi,n− px,zi)dx ≤ sup
(zi,x)∈Z×Bc

0,F

|mi(ϑ)|
∫
Bc

0,F

| fx,zi,n− px,zi |dx

≤ c
∫
| fx,zi,n− px,zi |dx≤ cTV (Fx,zi,n,Px,zi)

Therefore, we have shown that:

1
ns

∑
j=1..s

m j,i(ϑ) = Op(TV (Fx,zi,n,Px,zi))

Similarly, the denominator, given domination assumptions (3,4), we have that

1
ns

∑
j=1..s

m j,i(ϑ)m j,i(ϑ)′
p→ H > 0.

Also, for M̄ < ∞

P(max
i

sup
ϑ

||m(ϑ ,xi)||> M̄n
1
ζ ) = P(

⋃
k≤n

{sup
ϑ

||m(ϑ ,xi)||> M̄n
1
ζ })

≤ ∑
i

Pr(sup
ϑ

||m(ϑ ,xi)||ζ > M̄ζ n)

≤ ∑iE(supϑ ||m(ϑ ,xi)||ζ 1(supϑ ||m(ϑ ,xi)||ζ > M̄ζ n)
M̄ζ n

= M̃E(sup
ϑ

||m(ϑ ,xi)||ζ 1(sup
ϑ

||m(ϑ ,xi)||ζ > M̄ζ n)

→ 0

for ζ ≤ 4 due to assumption BD−1. Therefore,

max
i

sup
ϑ

||µ ′i m(ϑ ,xi)|| ≤ Op(TV (Fx,zi,n,Px,zi))Op(n
1
ζ ) = Op(TV (Fx,zi,n,Px,zi)n

1
ζ )

Lemma 6. For any real valued function c(xi,ψ) satisfying Lemma 7 and a weighting function

αi j : ∑i αi j = 1 and max j |αi j|< ∞, then ||1n ∑i αi jc(xi,ψ)||= Op(n
1
ζ )

Proof. ||1n ∑αi jc(xi,ψ)|| ≤max j |αi j|maxi, j supψ ||c(xi,ψ)||= Op(n
1
ζ )

Corollary 3.2. Any quantity of the form | 1
ns

∑ j ei, jµ
′
i m jR j| where R jis an arbitrary x-measurable

function, is op(1) as long as E||R j||ζ < ∞ and ζ > 2

Proof. || 1
ns

∑ j ei, jµ
′
i m jR j|| ≤max j ||R j|||| 1

ns
∑ j ei, jµ

′
i m j||= Op(n

1
ζ )Op(n−

1
2 ) = op(1)
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Lemma 7. Determination of µi:µi = Op(
1
ns

∑ j=1..s m j(ϑ))

Proof. The equation characterizing µi is ∑ j=1..s m j(ϑ)

∑ j=1..s κ jm j(ϑ)m j(ϑ)′ where κ j.i =
1−eµ ′i m j,i(ϑ)

m j,i(ϑ)′µi
. The claim

is that in determining the asymptotic behaviour of µiit is sufficient to look at the stochastic
behaviour of the numerator, provided the denominator is a bounded random variable.

Case 1: µi,0 = 0, w.p.1. It has been independently shown that µ̂i = µi + op,i(1) a.s.
Then, µ̂i = op,i(1) a.s. Substituting in the equation of µ̂i, and noticing that κ j.i = −1 +

op(1),
∑ j=1..s m j,i(ϑ)

−∑ j=1..s m j,i(ϑ)m j,i(ϑ)′+op,i(1)
= op,i(1). By assumption, ∑ j=1..s m j,i(ϑ)m j,i(ϑ)′−op,1(1) =

E f ,i(m(ϑ)m(ϑ)′) 6= 0, as. If ∑ j=1..s m j,i(ϑ) = E f ,im(ϑ) + oi,p(1),a.s. then it must be that
E f ,im(ϑ) = op,i(1) a.s. Then, P(µi,0 = 0) > P(E f ,im(ϑ) 6= 0) = 1− ε , ε arbitrarily small,
which agrees with the initial assumption. Therefore, for µi,0 = 0 and E f ,i(m(ϑ)m(ϑ)′) 6= 0,
∑ j=1..s m j,i(ϑ) determines µ̂i.

Case 2: µi,0 6= 0,w.p.1. In this case we cannot establish a direct algebraic determination
of µ̂i. Nevertheless, for stochastic order results, we can still establish the following result.
µ̂i = Op(

1
n ∑ j=1..s m j(ϑ)). Consider again

µ̂i =
∑ j=1..s m j(ϑ)

∑ j=1..s κ jm j(ϑ)m j(ϑ)′
=−

∑ j=1..s m j(ϑ)

∑ j=1..s m j(ϑ)m j(ϑ)′+∑ j=1..s r(µ̂m j(ϑ))m j(ϑ)m j(ϑ)′
.

The second term in the denominator can be decomposed into

|| ∑
j=1..s

r(µ̂m j(ϑ))m j(ϑ)m j(ϑ)′|| ≤

{
||∑ j=1..s m j(ϑ)m j(ϑ)′|| if r ∈ (µ ′i m j(ϑ),1)
||µ̂i||||∑ j=1..s ||m j(ϑ)||m j(ϑ)m j(ϑ)′|| if r ∈ (1,µ ′i m j(ϑ))

Since we already know that µ̂i = µi +op,i(1), that is µ̂i is a bounded, then ||µ̂i|| is also Op(1) as
long as µiexists. Using also assumption PD-1 for Pn, it must be the case that the second term is
bounded too. Let the event r ∈ (1,µ ′i m j(ϑ))be signified by event E . Looking at the quantity

||µi|| =
||∑ j=1..s m j(ϑ)||

||∑ j=1..s m j(ϑ)m j(ϑ)′+∑ j=1..s r(µ̂m j(ϑ))m j(ϑ)m j(ϑ)′||

≥
||∑ j=1..s m j(ϑ)||

||∑ j=1..s m j(ϑ)m j(ϑ)′(1+1Ec)||+ ||µi||||∑ j=1..s m j(ϑ)m j(ϑ)′1Ec ||

Therefore, ||µi||solves the following inequality,
||µi||||∑ j=1..s m j(ϑ)m j(ϑ)′(2−1(r∈ (1,µ ′i m j(ϑ)))||+ ||µi||2||∑ j=1..s m j(ϑ)m j(ϑ)′(1(r∈

(1,µ ′i m j(ϑ)))||− ||∑ j=1..s m j(ϑ)|| ≥ 0
The only admissible solution is :

||µi||=

{
≥ ||∑ j=1..s m j(ϑ)||

2||∑ j=1..s m j(ϑ)m j(ϑ)′|| if Ec

≥ −2||∑ j=1..s m j(ϑ)m j(ϑ)′|| otherwise

For some M̄ < ∞

Pr(||µ̂i||> M̄|| 1
ns

∑
j=1..s

m j(ϑ)||) = Pr(Ec)Pr(|| 1
ns

∑
j=1..s

m j(ϑ)m j(ϑ)′||< 1
2M̄

)+ ...

...+Pr(E)Pr(−|| 1
ns

∑
j=1..s

m j(ϑ)m j(ϑ)′||
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≥ M̄
2
|| ∑

j=1..s
m j(ϑ)||)

Now, the second probability of the second line is zero as ||.||> 0.
Pr(|| 1

ns
∑ j=1..s m j(ϑ)m j(ϑ)′||< 1

2M̄ ) can be made arbitrarily small (< ε), by choosing M̄ = 1
2ε

>

0 and using PD−1. Thus, µi = Op(
1
ns

∑ j=1..s m j(ϑ)).

Lemma 8. A useful result. With regard to r products of the form:

∏
R
r=1 ∑

N
i=1 xr

i

In the case of iid observations and for Ex1
i x2

i ..x
R
i < ∞

1)In the case of 4 products,

1
N4E∑

i
xi ∑

i
yi ∑

i
zi ∑

i
wi =

1
N4 (

 N

1

xiyiziwi +

 N

2

(xiyiz jw j + xiy jziw j + xiy jiz jwi)...+

...+

 N

3

(xiy jz jw j + x jyiz jw j + x jy jziw j + x jy jz jwi)+ ...

...+

 N

4

xiy jzkwl)

= O(N−1)+
(N−1)(N−2)(N−3)

4!N3 ExiEx jExkEwl

2) In the case of 3 products

1
N3E∑

i
xi ∑

j
y j ∑

k
zk =

1
N3

 N

1

xiyizi +

 N

2

xiy jz j +

 N

2

xiyiz j +

 N

3

xiy jzk


= O(N−1)+

(N−1)(N−2)
3!N2 ExiEx jExk

2)In the case of two products,

1
N2E∑

i
xi ∑

j
y j =

1
N2

[
∑

i
Exiyi +∑

i 6= j
Exiy j +∑

i 6= j
Exiyi

]



3.8. Appendix B 141

=
1
N
Exiyi +

(N−1)
N

ExiEy j

3)In the case of identically distributed dependent observations, the degree of dependence will

determine the summability or the rate of growth of the above covariances. For h = i− j, u =

k+h− i, w = u−h

1
N3E∑

i
xi ∑

j
y j ∑

k
zk =

1
N3

[
∑

i
Exiyizi +∑

i6= j
Exiy jz j +∑

i 6= j
Exiyiz j + ∑

i6= j 6=k
Exiy jzk

]

= O(N−2)+
2

N3 ∑

i,h > 0

Exiyi−hzi−h + ...

+...
2

N3 ∑
i,h>0

Exiyizi−h +
4

N3 ∑

i 6= h,h > 0

h 6= u,u > 0

Exiyi−hzi+u−h

= O(N−2)+
4

N3 ∑

i,h,w > 0

Exiyi−hzi+w +
4

N3 ∑

i,h,w > 0

Exiyi−hzi−w

4)In the case of two products, the assumption of ergodicity is sufficient.

1
N2E∑

i
xi ∑

j
y j =

1
N2

[
∑

i
Exiyi +∑

i 6= j
Exiy j +∑

i6= j
Exiyi

]

=
1
N
Exiyi +

2
N2 ∑

i,h>0
Exiyi−h

=
1
N
Exiyi +

2
N ∑

h>0
(N−h)(Cov(xi,yi−h)+ExiEyi−h)

=
1
N
Exiyi +

2
N ∑

h>0
(1− h

N
)(Cov(xi,yi−h)+ExiEyi−h)

In the case of non identically distributed dependent observations, different mixing assumptions

can be employed to guarantee asymptotic independence such that the expectations taken are

finite.



Chapter 4

Monetary Policy Rules and External

Information

4.1 Introduction

What is implicitly assumed in a significant portion of the structural estimation literature is that

policy makers react to the information generated by the stipulated model, whose variables are

assumed as perfectly observable. In addition, while it is acknowledged that the information

set of the agents of the economy is larger and different than the econometrician’s information

set, structural inference on monetary policy is often performed by neglecting the above fact.

Despite the richness of the literature on monetary policy evaluation, the question of how external

information affects structural inference on the stance of monetary policy is therefore interesting,

mainly due to methodological reasons. Moreover, the imperfect measurement of concepts like

the output gap, inflation, and the need for using the most model coherent interest rate data are

issues that need to be addressed.

Nevertheless, the existence of different kind of measures of inflation, several types of inter-

est rates and other measures like surveys, nowcasts and professional forecasts point towards the

need to incorporate them in the process of inference. Using external information in performing

estimation and inference is therefore deemed important. Beyond dealing with mis-measurement,

including measures of expectations accounts for the fact that while the model is solved under ra-

tional expectations, the reality is that policy structure can change after some period and this can

ultimately change the formation of expectations (Sargent 1984). An additional issue that is not

addressed in this paper is the fact that not only the information set of the policy maker is rich, it

is also different, in the sense that data used are ex post revised, and this makes historical analysis
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of monetary policy based on revised data questionable, according to (Orphanides 2003).

In order to address the question we will proceed in estimating a small standard New Key-

nesian model with an interest rate rule for the determination of the interest rate. While it is

acknowledged that the model per se is important in terms of misspecification, complicating

it would not necessarily alter our conclusions, as an even richer model would be potentially

misspecified and poorly identified. The estimation of the model will be done using Bayesian

methods. After estimating the model based the original information, we reestimate it using an

augmented data set and observe the changes in the posterior distribution of the parameters of

the interest rate rule. The way marginal distributions of parameters should change and what is

expected are analyzed.

The rest of the paper is organized as follows. In Section 2 we provide a brief review of the

relevant literature and in Section 3 we lay out the model used to perform the experiments. In

Section 4 we describe the data and the specification of the prior distributions for the parameters.

In Section 5 we discuss the implications for Bayesian inference of using external information

while in Sections 6 and 7 we report the results. In section 8 we conclude.

4.2 A brief view on the related literature on methodology and monetary policy evalua-

tion

The historical analysis of monetary policy is an important topic. Such analysis is useful for

several reasons, including evaluating the effectiveness of policy and its actual interdependence

with the business cycle. Many studies use a variety of time series approaches in estimating the

coefficients of the Taylor rule, while others include more structure. Structure is implied by the

theoretical predictions of models, i.e. conditional moments or even more by the solution to the

system of equations characterizing the economy. A strand of the literature does not exploit the

full set of cross equation restrictions but strives to perform inference based on a minimal set of

restrictions. In the results of these studies, some authors e.g (Sargent 1999) and (Clarida, Gali,

and Gertler 1999), argue that monetary policy since the 1980’s has changed fundamentally e.g.

focused on inflation stabilization rather than exploitation of the pre 1980’s empirical fact, the

Phillips. Another strand of authors e.g. (Leeper and Zha 2003) and (Canova 2006) show that

policy preferences have not really changed, and that systematic monetary policy has been rather

stable. Time varying approaches like (Cogley and Sargent 2001) and (Sims and Zha 2006) do

not agree on the strength of the causal link between monetary policy and the rest of the economy.
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Taking into account the mixed evidence, as this paper’s focus is on whether external information

alters substantially the inference on the stance of monetary policy, the issue of policy preference

stability is not addressed and the sample is reduced accordingly.

Moreover, using bigger datasets to forecast inflation and analyze monetary policy has been

largely an occupation of the ’less structural’ approaches, which performed the analysis by ’ex-

ploiting’ a larger information set i.e. (Stock and Watson 1999). The idea of using external

data in estimating DSGE models is relatively new. For example, (Boivin and Giannoni 2006)

relate this to approaches used in factor models, (Del Negro and Schorfheide 2013) use this in-

formation to improve forecasts. The mere fact that large datasets have proven to be useful in

explaining the evolution of the economy and that forecasting performance is directly related to

the efficient estimation of parameters is one of the reasons for the emergence of this literature.

More information leads to an improvement in the efficiency of estimation, better identification

of unobserved states and the disentangling of measurement error from structural shocks.

With regard to Bayesian techniques, there is a very rich literature and no attempt will

be made to summarize it. Standard references are (Bauwens, Lubrano, and Richard 2000),

(Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin 2013). In addition, for the Bayesian esti-

mation of DSGE models, a standard reference is (An and Schorfheide 2007).

4.3 Model

As already stated, the simple new Keynesian model is used, which comprises of the following

log-linear final form:

x̃t =−
1
σ
(ĩt −Et{π̃t+1})+Et{x̃t+1}+ e1t (4.1)

π̃t = βEt{π̃t+1}+κ x̃t + e2t (4.2)

ĩt = ρi ĩt−1 +φπ π̃t−1 +φyỹt−1 +φπeEt{π̃t+1}+φyeEt{ỹt+1}+ e3t (4.3)

where (1) is the Dynamic IS curve, which is the combination of the standard consumption

Euler Equation, the Fisher equation and market clearing, (2) is the New Keynesian Philips curve

derived from the ’Calvo’ pricing problem of the production firm and (3) is the hybrid interest rate

policy rule of the regulator. With regard to the shocks to the equations, e1t can be considered
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a positive demand shock i.e. expenditure shock while e2t can be a cost push shock. e1t is a

standard monetary policy shock. Moreover, xt is the output gap, πt inflation and it the nominal

interest rate. With regard to the parameters, σ is the coefficient of relative risk aversion in the

CRRA utility function, β the discount factor, ϑ is the inverse elasticity of labour supply and ξ

the proportion of firms that cannot adjust prices.

Given that the above model is the prototypical New Keynesian model1, we will not show

the derivations from beginning to end (we briefly mention the basic elements of the model in

the Appendix).

There are obviously weaknesses in this prototypical model, see for example (Chari, Kehoe,

and McGrattan 2009). We nevertheless focus mostly on those relevant in answering our ques-

tion. The specification of the interest rate rule avoids having to take care of money balances.

We assume that the interest rate is set and demand for real money balances adjusts to reach

equilibrium in the money market. In this sense, matters like liquidity and non standard policy

measures are not relevant, and as such the recent crisis cannot be properly addressed. Including

expectations in the monetary policy rule adapts to what have been long pointed out, that due to

the lag of effects of monetary policy on the wider economy, the regulator needs to react also to

expected inflation and output gap. With reference to the monetary policy shock, it is assumed

i.i.d and any persistence in the monetary policy rule is captured by ρr . Moreover, the model

abstracts from investment and capital accumulation. According to (Guerron-Quintana 2010),

omitting variables in the estimation of a DSGE induces effects on parameters’ posteriors e.g.

multimodality, which is also observed in this paper.

4.4 Estimation

4.4.1 Data

Given that this is a constant coefficient DSGE model, we avoid including in the estimation pre

1980 observations and the period of after the onset of the financial crisis. The period used to

estimate the model is therefore 1981Q1 to 2006Q1. We use quarterly data from the United

States on Gross Domestic Product (GDP), 3-month Treasury Bill and Inflation constructed from

the Consumer Price Index (CPI).2. With regard to filtering or detrending the data, we chose

to detrend using a deterministic trend. Some series that exhibited change in trends where de-

trended by splitting the sample at t∗where t∗was determined by minimizing the sum of squared
1For the analytical derivation a standard reference is (GalÃ 2008)
2Data Source is the FRED database at the St Louis Fed
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residuals in the corresponding subsample 3. With regard to stochastic trends, no filtering has

been done. Using a filter like Hodrick-Prescott would probably alter the power of the spectrum

over business cycle frequencies and introduce spurious serial correlation in the filtered series

(Canova 2007). Given that we are looking for the effects of introducing new information, using

filtering would probably distort our conclusions.

Since we are concerned with the effects on the parameters’ posterior distributions of adding

information , changing the variability of a series will distort its true informativeness on predict-

ing the state, something very important as illustrated later on. 4

4.4.2 Extraneous data and the Experiment:

The experiment is done in four stages. In the first stage, the model is estimated using the

aforementioned variables while in the second stage, the model is estimated by adding Inflation

measures, like Producers Price Index (PPI), Personal Consumption Expenditures (PCE) and the

Implicit Output Deflator (DEF). The coherence of these measures to CPI inflation is illustrated

in the appendix.

In the third stage, the model is estimated using the original variables, plus measures of

expectations. With regard to inflation expectations, there exist two databases, the Survey of

Professional Forecasters and the U Michigan household survey. According to (Ormeno 2009),

household expectations which are based on a general sense of inflation are unlikely to be a

good match to CPI inflation, which is used in the model. Arguably, the Survey of professional

forecasters can be a much better predictor of the state and it can also be justified with the whole

methodology, that is the Rational expectations solution. Since we are imposing this, then a

consistent measurement is needed. In addition, it can be said that professional forecasters have

a better view of the economy, and they condition on a larger information set, which possibly

nests that of households. In the second stage, we also include expected output gap measures,

like manufacturing Purchasing Managers Index (PMI) which can be considered as an indicator

of future productive capacity. A potential drawback of PMI is that the manufacturing sector

has declined over the years, and in addition productive capacity in terms of services is hard to

capture. An additional measure of expectations is SENT, the Consumer Sentiments Survey.

In the final stage, we include all of the above and other measures, e.g. U.Michigan data

3 t∗= argmin
[1,..T ]

(
t
∑

i=1
ε̃i

2 +
T
∑

i=t+1
ε̃i

2).

4An alternative way to directly incorporate the trend in the estimation is to specify the observation equation in
terms of first differences and a scale factor to account for the differences in the scale of the series.
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(MICH) on expectations about inflation.

4.4.3 Priors

The prior distribution of parameters is considered important in performing inference, as the

less information there is in the likelihood about parameters, the more effect the prior has on

posterior inference. Priors should therefore reflect some objective or subjective information on

the parameters. Consider the parameter vector

Θ≡ (σ ,β ,ϑ ,ξ ,φπ ,φy,ρy,ρπ ,σ
2
e1,σ

2
e2,σ

2
e3)

and the prior distribution g(θ) =
|Θ|
∏
i=1

gi(θi) i.e. the parameters are assumed to have independent

distributions. More analytically, the distributions are centered at calibrated values from other

papers, summarized in (Canova 2006),: σ ∼ N(2,0.752), β ∼ B(98,2), ϑ ∼ N(4,1.252),ξ ∼

B(4,2), ψr ∼ B(6,2), φπ ∼ N(2.7,0.352), φy ∼ N(1,0.152), ρy ∼ B(6,2), ρπ ∼ B(6,2), σ2
e1 ∼

Γ(2,0.001), σ2
e2 ∼ Γ(2,0.001), σ2

e3 ∼ Γ(2,0.001), φπe ∼ N(2.7,0.352),φyeN(1,0.152). With

regard to priors for the additional parameters estimated when extraneous information is added,

the following distributions are used:

λi ∼ N(1,3)

σi ∼ Γ(2,0.001)

With regard to indeterminacy, the segment of the parameter space that generates unstable

solutions to the expectational system is assigned logL(θ ,Y ) = −∞. In this sense there exist

restrictions imposed by the likelihood on the domain of the parameter space5.

4.4.4 Posterior Simulation

In order to obtain draws from the posterior distribution, we use the Random Walk Metropolis

Hastings algorithm with an acceptance rate between 33% and 50%. The simulation sample size,

T , was increased when more data where added as there was added variance to the process and

we kept every 10th draw after an initial burn in L̄ = T −10000. The typical induced sample size

was therefore 1000 data points.

5Estimation of the New Keynesian model without restricting the parameter space has been undertaken by
(Thomas A. Lubik 2004) but inference is more involving as there exist observational equivalent equilibria in the
determinacy and indeterminacy region.
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4.5 Using external information

In this section we describe the setup of the experiments to investigate the effect on posterior in-

ference when including extraneous information. What we essentially do is to enlarge the vector

of observables in the measurement equation of the current state vector st ≡ [xt ,πt , it ,e1t ,e2t ,e3t ].

The new state-space system is therefore the following:

st = P(θ)st−1 +Q(θ)vt (4.4)

dt =


xt

πt

it

ht

=

 Idim∆×dim∆

Λdim(h̃t)×dim∆

∆st +ut (4.5)

where ∆ is a selection matrix.6

4.5.1 Implications for Bayesian Inference

The usefulness of adding extraneous information becomes more obvious when we consider the

construction of the likelihood by using the Kalman Filter. Looking at the algorithm, we see that

the updated estimates of the state st|t are based on the projection of the state estimation error

st− st|t−1 on the prediction error dt−dt|t−1. A larger information set on the observables has the

potential of improving the signal.

Proposition 10. Let Ft be the filtration generated by the model at time t, and Fo,t ⊂ Ft the

information set generated by the observed vector dt
nd×1

. Then, for an augmented vector d′t ≡

[dt , d̃t ], where d̃t is Ft− measurable but not Fo,t− measurable

• V(st|t ,d′t)≤ V(st|t ,dt)

• V(θ̂ ′)≤ V(θ̂)

Proof. See Appendix

Efficiency improvements in the estimation of the latent state translate to efficiency im-

provements in the estimation of parameters. Given that enlarging the information set implies
6In our case, the original variables used in estimation are the ones allocated with the unit coefficient in the Λ

matrix. In addition, we add measurement error to the variable we are adding an indicator for. If no indicator is
added, then the variable is assumed to be perfectly observable. In addition, we have restricted the information gain
to be solely for a single variable, but it can be easily extended to more variables.
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that the likelihood function l(θ |Y ) will be steeper, that is, lower z′Σt|t−1z,z > 0 for all t), this

will have an effect on the posterior distribution of the parameters. Intuitively, this implies that

in regions of the parameter space where the likelihood was relatively flat i.e. the posterior was

not much more informative than the prior, the posterior will now be different.

Nevertheless, a change in the variance of the marginal posterior distributions does not

necessarily imply uniform changes on the rest of the properties of the posterior distribu-

tion across the parameter space. As already noted, Bayesian estimates of θ i.e. θ̂ =

argmin
Θ

∫
L(θ , θ̂)p(Y |θ)dθ where L(θ , θ̂) is a general loss function, are also minimizers of

the Kullback Leibler Information Criterion (KLIC), argmin
θ∈Θ

∫
log( f (y)

p(Y |θ))dF(Y ) where in this

case f (y) is the joint distribution of the observables. Therefore, if the model is misspecified,

including more information will induce a change in the pseudo true parameters that optimize

KLIC. This leads to drastic changes in the location of the marginal posterior distributions of θ ,

something that we will document in our empirical results. Moreover, including more informa-

tion will affect the estimates of the latent states, as they are parameter driven.

What is also understood is that information will be more relevant for some states over the

others, and so the efficiency gains will not be uniform over the parameter space. Given that the

coefficients of the solution of the model are complicated functions of the primitives, it is difficult

to see how the information gain will be allocated. With regard to identification issues, including

more information can improve identification problems that are related to the ’flatness’ of the

likelihood; unfortunately it cannot potentially deal with population identification problems.

4.6 Results

4.6.1 Initial Results

The main object of interest are the parameters of the policy rule, and therefore inference on

the deep parameters will not be emphasized. Below are the initial results of the benchmark

estimation of the model, the posterior distribution of the parameters of interest.

Looking at figure 4.1, the (normalized) posterior distributions appear to be much more

informative than the prior for some parameters, namely σ ,ϑ ,ξ ,ρr,σ
2
m,φye,φy, something that

implies that the likelihood is informative in those dimensions. On the contrary, the likelihood

is comparatively less informative for β ,φπ ,φye, . Note that although the same prior probability

distribution was placed on backward and forward looking components of monetary policy, a

posteriori there is evidence of stronger reaction to expected inflation, as the mass of the distribu-
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tion of φπe is shifted to the right. In addition, there is a lot of information about the persistence

of monetary policy, which is concentrated around 0.65, and the variance of the monetary policy

shock is much higher than where the prior placed most of the mass of the distribution.

As evident in figure 4.2, including the measure of PCE, leads to a shift in the mass of the

distribution to all of the relevant variables, implying a stronger response to past inflation, lower

response to expected inflation and past and expected output gap,and lower persistence to the in-

terest rate rule. In this sense, monetary policy appears relatively less forward looking, although

relative magnitudes are still high. In general, what is also noticeable is that the distributions

much steeper. In addition, in some of the parameters, the support of the marginals is non over-

lapping with that using the original measure, implying a substantial effect on inference. The

inclusion of PCE also adds relevant information to the estimates of the deep parameters, espe-

cially ξ where the effect is particularly sharp, since it is directly related to the model implied

process of inflation.

With regard to figure 4.3, the Deflator is informative for all parameters; Monetary policy is

stronger on the backward looking component, as the posterior for φπ is shifted to the right while

the posterior of φπe shifts to the left . The effect on φye is also significant as the two posteriors

do not overlap. Policy appears to be much less responsive to the output gap. In addition, the

interest rate rule is much less persistent and the variance of the monetary policy shock smaller.

As it regards the deep parameters, the same effect on ξ is observed;β and θ are also sharply

concentrated.

In the next section we report results from experiments using information on agent expecta-

tions.



4.6. Results 151

Fi
gu

re
4.

1:
C

om
pa

ri
so

n
of

pr
io

ra
nd

po
st

er
io

r



4.6. Results 152

Fi
gu

re
4.

2:
C

om
pa

ri
so

n
of

Po
st

er
io

rw
ith

C
PI

an
d

Po
st

er
io

rw
ith

C
PI

an
d

PC
E



4.7. Results on noisy measures: 153

4.7 Results on noisy measures:

4.7.1 Surveys and Expectations

4.7.1.1 Inflation expectations and different information sets

Incorporating expectations involves using the state vector such that to link the observed data

on expectations to the model’s latent variables. For example, for π̃e
t+1 denoting the observed

inflation expectations, then the measurement equation becomes as follows:

dt,π =

 πt

π̃e
t+1

= Λπ

 Idim(st)

P(θ)π

st +ut (4.6)

since π̃e
t+1 = Et{πt+1}+ut = Et{P(θ)πst +Q(θ)vt+1}+ut = P(θ)πst +ut .

A slight complication arises because the ’inflation expectations’ quarterly data are for the 1-

year horizon while the model involves expectations over the next quarter. Nevertheless, we can

still use the structure implied by the DSGE solution to map the data to the model expectations,

that is π̃e
t+k = Et{πt+k}+ut = [P(θ)k]πst +ut .

As mentioned before, using measures of expectations involves exploiting the fact that,

under rational expectations, the information set of the econometrician Ot , the information set

of the professional forecasters,Hp
t , and that of the agents of the economy Ha, are assumed to

be related as such: Ot ⊂Hp
t ⊂Ha

t . In terms of conditional expectations, we can see that if we

assume thatHp
t =Ot +Jt , Ot⊥Jt , then E(dt+1|Hp

t ) = E(dt+1|Ot)+E(dt+1|Jt) = E(dt+1|Ot)+

ut , something that rationalizes the operationalization of how to include inflation expectations in

our estimation.7

Again, including expectations measures in the observables implies that the forecast error

et will also involve information useful for updating the forecast of the state. Nevertheless, since

the link of observed and actual expectations is model dependent, model misspecification can

induce further uncertainty and therefore signal extraction is also affected.

4.7.1.2 Results with Expectations measures

In this case, including measures of expected inflation, leads to more information about the rel-

evant parameter, φπe , but relatively less for φπ . Monetary policy seems less responsive to

expected inflation. In addition, no significant information is added to other parameters like ξ .

In this case, PMI is not directly related in the sense of measurement to the output gap8;

7Ot + Jt corresponds to the set {ot + jt : ot ∈Ot ∧ jt ∈ Jt}
8The expectations are again linked to the state variables of the DSGE through P(θ)k

y, using the same k as inflation



4.7. Results on noisy measures: 154

nevertheless, it shifts a significant amount of the mass of φy , φye to the left and right respectively.

Monetary policy appears more responsive to expected output gap; more that what we would

infer using the original dataset. In addition, policy is again less persistent and the variance of

the monetary policy shock lower.

The consumer sentiments index appears to be equally informative on the policy rule coeffi-

cients on inflation and the output gap; again, there is relatively more evidence of lagging rather

than foreword looking monetary policy in terms of inflation. What is also noticeable is the fact

that adding consumer sentiments carries a lot of information about σ , the coefficient of relative

risk aversion and ϑ , the inverse elasticity of labour supply.

4.7.1.3 Including all measures

The inclusion of all measures has let to much more informative posteriors, as evident in Figure

4.7. All in all, the addition of extra information has affected the posteriors of the parameters of

the monetary policy rule in the following way: φπ is evidently higher and φπe lower. Monetary

policy appears less responsive to lagged output gap. The posterior of φye is also much more

concentrated than the original. Monetary policy is much less persistent than originally inferred;

what this implies is that effective monetary policy has placed more weight in the systematic

component rather than keeping the previous interest rate level. In addition, the variance of

the monetary policy shock is also lower; some of the variance is attributed to measurement

error but we cannot disentangle which variable as roughly the same change in the posterior

was observed for all experiments. The posterior distribution of ξ is much more reasonable

than with the original information, which implied that more than 10% firms would not have

changed their prices after 5 years! With regard to β , the posterior is concentrated over values

that imply relatively high equilibrium interest rates, 6-8%. The Frisch elasticity is also higher

than previously inferred.

expectations. It can be argued though that choosing the same k is restrictive. Same approach is followed for consumer
expectations (SENT).
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4.7.2 Marginal Likelihood Comparison

The - joint and marginal - posterior distribution of the parameters is the main workhorse of

inference in Bayesian estimation. In order to be able to compare the different specifications of

the observables, we can use the marginal likelihood, p(yt |Mi) which in principle can be obtained

by multidimensional integration over the parameter dimensions.

Nevertheless, we proceed in computing the marginal likelihood following (Geweke 1999),

that is using the modified harmonic mean estimator which is based on the identity 1
p(y) =∫ f (θ)

L(θ |Y )g(θ) p(θ |Y )dθ where
∫

f (θ)dθ = 1. Geweke (1999) proposed f (θ) to be the truncated

multivariate N(θ̄ ,V (θ)) , where the arguments are the posterior mean and variance, and the

truncation is defined by 1{(θ − θ̄)V−1
θ

(θ − θ̄)≤ F−1
χ2 (τ)} for τ ∈ (0,1). So the harmonic mean

estimator is:

P̂m j(Y ) =

[
1
ns

ns

∑
i=1

f (θ i)

L(θ i|Y )g(θ i)

]−1

The marginal log likelihood of the NK model using the initial information set and τ = 0.9,

is -1731.9014. When all extraneous information is added, the marginal log likelihood of the

model deteriorates to -3125.741.

Although this observation initially seems contradictory, we can claim that while marginal

likelihood is computed by evaluating the likelihood with draws from the prior distribution,

pm j(Y ) =
∫

p(Y |θ)p(θ)dθ , extraneous information is informative for the parameters only a

posteriori. In fact, by augmenting with more observables the same model m j, it is inevitable

that the in sample fit to the augmented data set will deteriorate. What is really exploited by aug-

menting the estimation with more data is the forecasting error of the observables. With regard to

prediction, to the contrary, more information improves forecasts as evident from the predictive

density, p(YT+1:T+h|Y1:T ) =
∫

p(YT+1:T+h|Y1:T ,θ)p(θ |Y1:T )dθ . Forecasts are made with respect

to the posterior distribution of the parameters, which is indeed more informative than the prior,

and even more informative with the extra information.

4.8 Summary and Conclusion

This paper has explored the dimensions over which additional information can help in improv-

ing inference when analyzing monetary policy through a DSGE model. Additional information

includes several measures of inflation and the productive potential of the economy, surveys on
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inflation expectations and consumer confidence, and professional forecasts. The general result

is that augmenting the model with more observables leads to a substantial change in the poste-

rior distributions not only of the monetary policy rule parameters, but also the deep parameters.

External information has both a statistical and economic interpretation within the discipline of

rational expectations, and is indeed crucial in performing better inference on historical mone-

tary policy structure. Further exercises could look at whether external information is useful in

improving the forecasting performance for key macroeconomic variables. Improving the es-

timates of unobserved states is likely to be the main driver of possible forecast improvements.

Another avenue for future research is to allow for indeterminacy. Since under indeterminacy be-

lief shocks (sunspots) are also additional unobserved state variables, using external information

can possibly improve their identification and measurement.

4.9 Appendix

4.9.1 The New Keynesian model in a nutshell

The representative consumer maximizes over an infinite horizon expected utility, where instan-

taneous utility belongs to the CRRA class,

E0

∞

∑
t=0

β
t
(

C1−σ
t

1−σ
− (1− lt)1−ϑ

1−ϑ

)
(4.7)

which is additive in consumption and labour supply. Consumption is aggregated by Ct =(∫
(0,1)C(i)1−ε

t di
) ε

1−ε

, where ε is the elasticity of substitution between goods. Maximization

is subject to a sequence of budget constraints:

∫
(0,1)

C(i)tPt(i)di+QtBt ≤ Bt−1 +wtNt

The consumption -savings decision leads to the typical Euler equation,

Qt = βEt{
Uc,t+1Pt

Uc,tPt+1
}

where Pt =
(∫

(0,1) P(i)1−ε
t

) ε

1−ε

is the aggregate price, and the allocation of total consumption to

different goods leads to the following demand function,

Ct(i) =
(

Pt(i)
Pt

)−ε

Ct (4.8)
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The typical intratemporal tradeoff between consumption and leisure is:

−Cσ
t

Nϑ
t

=
wt

Pt

As it regards the production sector, which is monopolistically competitive, the proportion

of 1−ξ firms that get to re-optimize, choose prices P∗t to maximize profits,

Et

∞

∑
j=0

ξ
jQt,t+ j (P∗t Yt,t+ j− τt+ j(Yt,t+ j))

with a constant returns to scale labour intensive production function, Yt(i) = ZtNt(i) and cost

function τt(Yt), subject to the the isoelastic consumer demand function (4.8) . The resulting first

order condition is

Et

∞

∑
j=0

ξ
jQt,t+ j (P∗t Yt,t+ j−mct+ j(Yt,t+ j)) = 0 (4.9)

Equilibrium Yt = Ct and further manipulations lead to the New Keynesian Phillips Curve out-

lined above.

Proof. of Proposition 10

1. For a general state space model, defined by

st = Pst−1 +Qεt

yt = Rst +ut

Recall that from the Kalman Filter recursions, for st|t−1 ≡ E(st |Fo,t−1) and dt|t−1 ≡ E(dtFo,t−1)

st|t = st|t−1 +Ktgt

where K̃t ≡ Ωt,t−1RΣ
−1
t,t−1 is the orthogonal projection of st − st|t−1 on dt −dt|t−1 ≡ gt , the

prediction error on time t.

Therefore, conditional on Fo,t−1 (or any Ft−1 measurable set)

V(st|t) = K̃Σt,t−1K̃′

= Ωt,t−1RΣ
−1
t,t−1R′Ωt,t−1



4.9. Appendix 163

Augmenting dt to d′t , implies that Σt,t−1 ≥ Σ′t,t−1 as the dimension of observables increases.

Therefore, V(st|t,d′t ) ≤ V(st|t,d′t ). Another way of showing this is to set d′t ≡ (dtQd′t ,dtQ⊥d′t ) ≡

(d̂t ,zt) where zt is orthogonal to dt by construction as Qd′t is a projection matrix. Then,

V(st|t,d′t ) ≡ V(E(st − st|t−1|g′t))

where g′t ≡ d′t −dt|t−1 By the law of total variance,

V(E(st − st|t−1|gt)) = E(V(E(st − st|t−1|gt)|g′t))+V(E(st − st|t−1|gt ,g′t))

and since V(E(st − st|t−1|gt))is positive for almost all g′t ∈ Ft \Fo,t ,

V(E(st − st|t−1|gt)) ≥ V(E(st − st|t−1|gt ,g′t))

= V(E(st − st|t−1|gt ,zt))

2. We have shown that V(st|t,d′t ) ≤ V(st|t,dt ) conditional on Fo,t for any t ≤ T and conditional

on any Ft measurable set. This implies that V(d′i,t+1|t) = PV(st|t,d′t )P
T for each variable di.

We use the fact that the posterior density P(θ |dt=1:T ) converges in total variation distance to

N(∆n,θ0 , I
−1
θ0

) 9 where ∆n,θ0 is the random score and I−1
θ0

is the inverse of the information matrix.

Iθ0 is inversely related to the Hessian of the log likelihood function, −E ∂ 2log(P(θ |dt=1:T ))
∂θθ T , and

in turn the Hessian is inversely related to Σ? = RΩ?RT +Σu with Ω? ≡ lim
t→∞

Ωt|t−1 = PΩ?P′+

QΣεQT . Since the dimension of εt is independent of the dimension of dt and Ω?(d′) < Ω?(d),

Σ?(d′)< Σ?(d) and Iθ0(d
′)> Iθ0(d).

9Bernstein-von Mises Theorem, see (der Vaart 2000)
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4.9.2 Coherence of other inflation measures to CPI inflation:

With regard to the measures of inflation used in the estimation, below is plotted their coherence

to CPI inflation, Cx,CPI =
|Px,CPI |2

Px,CPIPy,CPI
, which is a frequency domain measure of cross correla-

tion and under assumptions, of least squares predictability, something directly relevant to the

methodology followed. As is evident, none of them is perfect over any frequency. At business

cycle frequencies, that is for quarterly data at the range of [π

6 ,
π

10 ] their coherence lies between

0.4 and 0.8. PCE coherence is much more stable over all frequencies, which makes sense as by

definition its closer to CPI inflation.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Frequency(*pi)

C
oh

er
en

ce

Coherence of Inflation measures relative to CPI

 

 
PCE
DEF
PPI



Bibliography

ACKERBERG, D., J. GEWEKE, AND J. HAHN (2009): “Comments on "Convergence Properties

of the Likelihood of Computed Dynamic Models,” Econometrica, 77(6), 2009–2017.

ALMEIDA, C., AND R. GARCIA (2014): “Economic Implications of Nonlinear Pricing Ker-

nels,” Discussion paper, AFA 2009 San Francisco Meetings Papers.

AN, S., AND F. SCHORFHEIDE (2007): “Bayesian analysis of DSGE models,” Econometrics

Review, 26, 187–192.

ANDREWS, D., AND X. SHI (2013): “Inference for Parameters Defined by Conditional Moment

Inequalities,” Econometrica, 81(2), 609–666.

ANDREWS, D. W. (1993): “An introduction to econometric applications of empirical process

theory for dependent random variables,” Econometric Reviews, 12(2), 183–216.

BAUWENS, L., M. LUBRANO, AND J.-F. RICHARD (2000): Bayesian Inference in Dynamic

Econometric Models. Oxford University Press.

BENIGNO, P. (2004): “Optimal monetary policy in a currency area,” Journal of International

Economics, 63(2), 293–320.

BILLINGSLEY, P. (1961): “The Lindeberg-Levy Theorem for Martingales,” Proceedings of the

American Mathematical Society, 12(5), pp. 788–792.

BLANCHARD, O. J. (1979): “Backward and Forward Solutions for Economies with Rational

Expectations,” The American Economic Review, 69(2), pp. 114–118.

BOIVIN, J., AND M. GIANNONI (2006): “DSGE Models in a Data-Rich Environment,” Work-

ing Paper 12772, National Bureau of Economic Research.



Bibliography 166

BONTEMPS, C., T. MAGNAC, AND E. MAURIN (2012): “Set Identified Linear Models,” Econo-

metrica, 80(3), 1129–1155.

BUERA, F. J., AND B. MOLL (2015): “Aggregate Implications of a Credit Crunch: The Impor-

tance of Heterogeneity,” American Economic Journal: Macroeconomics, 7(3), 1–42.

CANOVA, F. (2006): “Monetary Policy and the Evolution of the US Economy,” CEPR Discus-

sion Papers 5467, C.E.P.R. Discussion Papers.

CANOVA, F. (2007): Methods for Applied Macroeconomic Research, no. v. 13 in Methods for

applied macroeconomic research. Princeton University Press.

CANOVA, F., AND L. SALA (2009): “Back to square one: Identification issues in {DSGE}

models,” Journal of Monetary Economics, 56(4), 431 – 449.

CHAMBERLAIN, G. (1987): “Asymptotic efficiency in estimation with conditional moment

restrictions,” Journal of Econometrics, 34(3), 305 – 334.

CHARI, V. V., P. J. KEHOE, AND E. R. MCGRATTAN (2000): “Sticky Price Models of the

Business Cycle: Can the Contract Multiplier Solve the Persistence Problem?,” Econometrica,

68(5), pp. 1151–1179.

(2007): “Business Cycle Accounting,” Econometrica, 75(3), 781–836.

(2009): “New Keynesian Models: Not Yet Useful for Policy Analysis,” American

Economic Journal: Macroeconomics, 1(1), 242–66.

CHEN, X. (2007): “Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Mod-

els,” vol. 6, Part B of Handbook of Econometrics, pp. 5549 – 5632. Elsevier.

CHERNOZHUKOV, V., AND H. HONG (2003): “An {MCMC} approach to classical estimation,”

Journal of Econometrics, 115(2), 293 – 346.

CHERNOZHUKOV, V., H. HONG, AND E. TAMER (2007): “Estimation and Confidence Regions

for Parameter Sets in Econometric Models1,” Econometrica, 75(5), 1243–1284.

CHERNOZHUKOV, V., E. KOCATULUM, AND K. MENZEL (2012): “Inference on Sets in Fi-

nance,” .



Bibliography 167

CHERNOZHUKOV, V., S. LEE, AND A. M. ROSEN (2013): “Intersection Bounds: Estimation

and Inference,” Econometrica, 81(2), 667–737.

CHETTY, R. (2012): “Bounds on Elasticities With Optimization Frictions: A Synthesis of Micro

and Macro Evidence on Labor Supply,” Econometrica, 80(3), 969–1018.

CHRISTIANO, L. J., M. EICHENBAUM, AND C. L. EVANS (2005): “Nominal rigidities and the

dynamic effects of a shock to monetary policy,” Journal of Political Economy, 113(1), 1–45.

CLARIDA, R., J. GALI, AND M. GERTLER (1999): “The Science of Monetary Policy: A New

Keynesian Perspective,” Journal of Economic Literature, 37(4), 1661–1707.

COGLEY, T., AND T. SARGENT (2001): “Evolving Post-World War II U.S. Inflation Dynam-

ics,” Working Papers 2132872, Department of Economics, W. P. Carey School of Business,

Arizona State University.

CRESSIE, N., AND T. R. C. READ (1984): “Multinomial Goodness-of-Fit Tests,” Journal of

the Royal Statistical Society. Series B (Methodological), 46(3), pp. 440–464.

DEL NEGRO, M., AND F. SCHORFHEIDE (2013): DSGE Model-Based Forecastingvol. 2, Part

A of Handbook of Economic Forecasting, chap. 2, pp. 57 – 140. Elsevier.

DEN HAAN, W. J., AND J. DE WIND (2010): “How well-behaved are higher-order perturbation

solutions?,” DNB Working Papers 240, Netherlands Central Bank, Research Department.

DER VAART, A. V. (2000): Asymptotic Statistics. Cambridge University Press.

DOUKHAN, P., P. MASSART, AND E. RIO (1995): “Invariance principles for absolutely regular

empirical processes,” Annales de l’institut Henri PoincarÃ© (B) ProbabilitÃ©s et Statis-

tiques, 31(2), 393–427.

GALÃ, J. (2008): Introduction to Monetary Policy, Inflation, and the Business Cycle: An In-

troduction to the New Keynesian Framework [Monetary Policy, Inflation, and the Business

Cycle: An Introduction to the New KeIntroductory Chapters. Princeton University Press.

GALI, J., AND T. MONACELLI (2005): “Monetary Policy and Exchange Rate Volatility in a

Small Open Economy,” The Review of Economic Studies, 72(3), 707–734.



Bibliography 168

GALLANT, A. R., R. GIACOMINI, AND G. RAGUSA (2016): “Bayesian Estimation of State

Space Models Using Moment Conditions,” Working paper.

GALLANT, A. R., AND G. TAUCHEN (1989): “Seminonparametric Estimation of Conditionally

Constrained Heterogeneous Processes: Asset Pricing Applications,” Econometrica, 57(5),

pp. 1091–1120.

GELMAN, A., J. CARLIN, H. STERN, D. DUNSON, A. VEHTARI, AND D. RUBIN (2013):

Bayesian Data Analysis, Third Edition, Chapman & Hall/CRC Texts in Statistical Science.

Taylor & Francis.

GEWEKE, J. (1999): “Using simulation methods for Bayesian econometric models: Inference,

development and communication,” Econometric Review, pp. 1–126.

GIACOMINI, R., AND G. RAGUSA (2014): “Theory-coherent forecasting,” Journal of Econo-

metrics, 182(1), 145 – 155, Causality, Prediction, and Specification Analysis: Recent Ad-

vances and Future Directions.

GUERRON-QUINTANA, P. A. (2010): “What you match does matter: the effects of data on

DSGE estimation,” Journal of Applied Econometrics, 25(5), 774–804.

HANSEN, B. E. (2016): “Efficient shrinkage in parametric models,” Journal of Econometrics,

190(1), 115–132.

HANSEN, L. P. (2013): “Uncertainty Outside and Inside Economic Models,” (2013).

HANSEN, L. P., AND T. J. SARGENT (2005): “Robust estimation and control under commit-

ment,” Journal of Economic Theory, 124(2), 258–301.

(2013): Recursive Models of Dynamic Linear Economies, The Gorman Lectures.

Princeton University Press.

HAUSMAN, J., R. LEWIS, K. MENZEL, AND W. NEWEY (2011): “Properties of the CUE

estimator and a modification with moments,” Journal of Econometrics, 165(1), 45 – 57,

Moment Restriction-Based Econometric Methods.

HOTZ, V. J., AND R. A. MILLER (1993): “Conditional Choice Probabilities and the Estimation

of Dynamic Models,” The Review of Economic Studies, 60(3), pp. 497–529.



Bibliography 169

I.CSISZAR (1975): “I-Divergence Geometry of Probability Distributions and Minimization

Problems,” Annals of Probability, 3(1), 146–158.

IRELAND, P. N. (2004): “A method for taking models to the data,” Journal of Economic Dy-

namics and Control, 28(6), 1205 – 1226.

KITAMURA, Y., AND M. STUTZER (1997): “An Information-Theoretic Alternative to General-

ized Method of Moments Estimation,” Econometrica, 65(4), 861–874.

KITAMURA, Y., G. TRIPATHI, AND H. AHN (2004): “Empirical Likelihood-Based Inference

in Conditional Moment Restriction Models,” Econometrica, 72(6), pp. 1667–1714.

KOMUNJER, I., AND S. NG (2011): “Dynamic Identification of Dynamic Stochastic General

Equilibrium Models,” Econometrica, 79(6), 1995–2032.

KOMUNJER, I., AND G. RAGUSA (2016): “Existence and characterization of conditional den-

sity projections,” Econometric Theory, pp. 1–41.

LEEPER, E. M., AND T. ZHA (2003): “Modest policy interventions,” Journal of Monetary

Economics, 50(8), 1673 – 1700.

LIAO, Y., AND W. JIANG (2010): “Bayesian analysis in moment inequality models,” The Annals

of Statistics, 38(1), 275–316.

LUTTMER, E. G. J. (1996): “Asset Pricing in Economies with Frictions,” Econometrica, 64(6),

pp. 1439–1467.

MARIMON, R., AND A. SCOTT (eds.) (1998): Computational Methods for the Study of Dy-

namic Economies. Oxford University Press.

MAVROEIDIS, S., M. PLAGBORG-MOLLER, AND J. H. STOCK (2014): “Empirical Evidence

on Inflation Expectations in the New Keynesian Phillips Curve,” Journal of Economic Liter-

ature, 52(1), 124–88.

MOON, H. R., AND F. SCHORFHEIDE (2012): “Bayesian and Frequentist Inference in Partially

Identified Models,” Econometrica, 80(2), 755–782.

NEWEY, W. K., AND D. MCFADDEN (1994): “Chapter 36 Large sample estimation and hy-

pothesis testing,” vol. 4 of Handbook of Econometrics, pp. 2111 – 2245. Elsevier.



Bibliography 170

NEWEY, W. K., AND R. J. SMITH (2004): “Higher Order Properties of Gmm and Generalized

Empirical Likelihood Estimators,” Econometrica, 72(1), 219–255.

ORMENO, A. (2009): “Inflation expectations, learning, and DSGE model estimation,” Mimeo

UPF.

ORPHANIDES, A. (2003): “Monetary policy evaluation with noisy information,” Journal of

Monetary Economics, 50(3), 605–631.

PESARAN, M. H. (1987): The Limits to Rational Expectations. Basil Blackwell.

POLITIS, D. N., AND J. P. ROMANO (1994): “The Stationary Bootstrap,” Journal of the Amer-

ican Statistical Association, 89(428), 303 – 1313.

RUST, J. (1987): “Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold

Zurcher,” Econometrica, 55(5), pp. 999–1033.

SARGENT, T. (1999): The Conquest of American Inflation, Princeton paperbacks. Princeton

University Press.

SARGENT, T. J. (1984): “Autoregressions, Expectations, and Advice,” American Economic

Review, 74(2), 408–15.

SCHENNAH, S. (2007): “Point Estimation with Exponentially Tilted Likelihood,” Annals of

Statistics, 35(2), 634–672.

SCHORFHEIDE, F., AND K. I. WOLPIN (2016): “To Hold Out or Not to Hold Out,” Discussion

paper.

SHIN, M. (2014): “Bayesian GMM,” Manuscript.

SIMS, C. A., AND T. ZHA (2006): “Were There Regime Switches in U.S. Monetary Policy?,”

American Economic Review, 96(1), 54–81.

SMETS, F., AND R. WOUTERS (2007): “Shocks and Frictions in US Business Cycles: A

Bayesian DSGE Approach,” American Economic Review, 97(3), 586–606.

STOCK, J. H., AND M. W. WATSON (1999): “Forecasting inflation,” Journal of Monetary

Economics, 44(2), 293–335.



Bibliography 171

SU, C.-L., AND K. L. JUDD (2012): “Constrained Optimization Approaches to Estimation of

Structural Models,” Econometrica, 80(5), 2213–2230.

THOMAS A. LUBIK, F. S. (2004): “Testing for Indeterminacy: An Application to U.S. Mone-

tary Policy,” The American Economic Review, 94(1), 190–217.

VAN DER VAART, A. (1998): Asymptotic statistics, Cambridge Series in Statistical and Proba-

bilistic Mathematics. Cambridge University Press.

WANG, P., AND Y. WEN (2012): “Hayashi meets Kiyotaki and Moore : A theory of capital

adjustment costs,” Review of Economic Dynamics, 15(2), 207–225.

WASSERMAN, L. (2006): All of Nonparametric Statistics (Springer Texts in Statistics).

Springer-Verlag New York, Secaucus, NJ, USA.

WHITE, H., AND I. DOMOWITZ (1984): “Nonlinear Regression with Dependent Observations,”

Econometrica, 52(1), 143–162.


	Summary
	Improving Inference for Dynamic Economies with Frictions - The role of Qualitative Survey data
	Introduction
	A Working Example
	Perturbing the Frictionless Model
	The Link to Qualitative Survey Data
	Identification And Estimation
	Testing Parametric Models of Frictions
	Estimating the Role of Financial Frictions in Spain
	Conclusion
	Appendix A
	Characterization of Mt
	Properties of Wald Test and the Block Bootstrap
	Using MCMC to explore the GMM pseudo-likelihood

	Appendix B
	Computational results for the case of Capital Adjustment Costs
	Graphical Examples of Spanish Survey Data
	Data Transformation and Filtering
	Distortions due to different frictions


	Estimation and Inference for Incomplete Structural Models using Auxiliary Density Information
	Introduction
	Incomplete Models, Likelihood and (Non) Revisable Information
	An Example

	Frequentist Inference
	Consistency and Asymptotic Normality

	Shrinkage Towards the Statistical Model
	Parametric Case
	A note on the Non Parametric Case

	Discussion and Simulation Evidence
	Discussion on Choice of F(X|Z) and Asymptotic Bias
	Monte Carlo experiments and MSE
	Application to a prototypical DSGE

	Conclusion and Future Research
	Appendix A 
	Analytical derivations for Example 1
	Computational Considerations
	Counterfactual Distributions
	Reduced form coefficients in stochastic growth model
	A Note On Non Differentiability

	Appendix B

	Monetary Policy Rules and External Information
	Introduction
	A brief view on the related literature on methodology and monetary policy evaluation
	Model
	Estimation
	Data
	Extraneous data and the Experiment:
	Priors
	Posterior Simulation

	Using external information
	Implications for Bayesian Inference

	Results
	Initial Results

	Results on noisy measures:
	Surveys and Expectations
	Marginal Likelihood Comparison

	Summary and Conclusion
	Appendix
	The New Keynesian model in a nutshell
	Coherence of other inflation measures to CPI inflation: 


	Bibliography

