
 

 

Essays in Applied Macroeconomics 

 

Andrea Giovanni Gazzani 

 

Thesis submitted for assessment with a view to obtaining the degree of 
Doctor of Economics of the European University Institute 

Florence, 19 May 2017 





 
European University Institute 
Department of Economics 

Essays in Applied Macroeconomics 

 

Andrea Giovanni Gazzani 

 
 
 
 
 
 
 
Thesis submitted for assessment with a view to obtaining the degree of 
Doctor of Economics of the European University Institute 

Examining Board 
Prof. Evi Pappa, EUI, Supervisor 
Prof. Alessia Campolmi, EUI & University of Verona 
Prof. Luca Gambetti, Universitat Autonoma de Barcelona 
Dr. Matteo Iacoviello, Federal Reserve Board 

 

© Andrea Giovanni Gazzani, 2017 

No part of this thesis may be copied, reproduced or transmitted without prior 
permission of the author 



 
 



 

 

 

 
 
 
 
 
 

Researcher declaration to accompany the submission of written work  
 

 
I, Andrea Giovanni Gazzani, certify that I am the author of the work Essays in Applied 
Macroeconomics. I have presented for examination for the PhD thesis at the European 
University Institute.  I also certify that this is solely my own original work, other than where 
I have clearly indicated, in this declaration and in the thesis, that it is the work of others. 
 
I warrant that I have obtained all the permissions required for using any material from 
other copyrighted publications. 
 
I certify that this work complies with the Code of Ethics in Academic Research issued by the 
European University Institute (IUE 332/2/10 (CA 297). 
 
The copyright of this work rests with its author. [quotation from it is permitted, provided 
that full acknowledgement is made.] This work may not be reproduced without my prior 
written consent. This authorisation does not, to the best of my knowledge, infringe the 
rights of any third party. 
 
 
Statement of inclusion of previous work (if applicable): 
 
I confirm that chapter 2 was jointly co-authored with Alejandro Vicondoa and I contributed for 50% 
of the work. 
 
I confirm that chapter 3 was jointly co-authored with Alejandro Vicondoa and I contributed for 50% 
of the work. 
 
 
 
 
 

 
 
 
Signature and Date: 
 

 

 

Monday, March the 27th, 2017 



 



Abstract

This thesis studies the interaction between the real economy and assets like hous-

ing and bonds, and provide a new methodology to assess more accurately the

spillovers from financial markets to the real economy.

The first chapter analyses of the role of expectations of future fundamentals in

the housing market and their macroeconomic implications. News represent the

component of expectations that proves to be correct in the future. Noise consti-

tutes the component of expectations that does not materialize in the future. I find

that fundamentals in the housing market are aligned with the real economy and

that news shocks are the dominant driver of the housing market in the long run.

However, the bulk of fluctuations in housing prices at high-medium frequencies is

generated by noise. Notably, the latest housing cycle of the 2000s is entirely driven

by expectations unrelated with fundamentals.

The second chapter, jointly written with Alejandro Vicondoa, develops a novel

methodology, called Bridge Proxy-SVAR, to study the relationship between time

series sampled at different frequencies. Instead of using a joint system, we rely

on two systems at different frequencies and bridge them through an instrumental

variable approach. We carry out identification at the highest available frequency

and study the responses of the macroeconomic aggregates in a second stage. Our

analytical, simulation and empirical results show that the Bridge Proxy-SVAR sig-

nificantly mitigates temporal aggregation biases and it is particularly appealing to

study the financial spillovers to the real economy.

In fact, in the third chapter, jointly written with Alejandro Vicondoa, we provide

novel evidence on the large macroeconomic spillovers from changes in the liquidity

of bonds. In particular, we analyze Italian sovereigns and find that liquidity shocks,

orthogonal to changes in default risk, generate strong recessionary effect. Liquidity

and default risk affect the real economy through different channels. By analyzing

survey data, we find that liquidity shocks, differently from spikes in yields, do no

lead to an increase in the rate requested by banks for loans. On the other hand,

banks make their deadlines tighter and reduce the amount available for loan be-

cause they report problems with the liquidity and asset position.
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To all those who fall to the bottom, because they can rise renewed.

To all those who can see beyond and are willing to give a second chance.
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Chapter 1

News and Noise Bubbles in the

Housing Market

”[...] Long-term expectations [...] are arguably the more important determinants

of housing demand. [...] Long-term expectations have been consistently more

optimistic than short-term expectations across both time and location. [...] It is

from these nebulous and relatively slow-moving expectations that the bubble

took much of its impetus, and that future home price movements will as well.”

from Case, Shiller and Thompson (2014) “What they have been thinking? Home Buyer

Behavior in Hot and Cold Markets”

1.1 Introduction

The recent boom-bust in the US housing market is a crucial event in contempora-

neous economic history. Similar episodes have lately occurred in Spain, Ireland

and China. In the US, housing prices rose between 40% and 70% between 2000

and 2006 according to different measures. Then they fell, even more steeply, by

similar spectacular amounts after 2006. Housing starts dropped by roughly 80%

while the mortgage industry and financial system were stricken very hard begin-

ning of the Great Recession.

To understand this phenomenon, economists have explored important ex-

planatory factors like excessive lending, global imbalances, loosen monetary pol-

icy, financial innovations, etc. Case et al. (2015) highlight that, one the other hand,
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the role of expectations in the housing market has been significantly underesti-

mated. They analyze the behavior of homebuyers expectations of housing prices

from 2003 through 2014 through surveys and highlight some key findings. First,

short-term (1 year) expectations have not been over-optimistic but, if anything,

have under-reacted to new available information. Second, the roots of the housing

boom lie in the long-term (10 year) expectations that were abnormally optimistic.

Understanding the housing market and its drivers is valuable because, due to

the its strong ties with the mortgage and the banking industry, housing is par-

ticularly important from a macrofinancial stability perspective.1 While the dot-

com bubble lead only to a mild recession, boom-bust episodes in the housing

market endanger the stability of the financial system and macroeconomic growth

(Crowe et al., 2013; Dell’Ariccia et al., 2016). For example, by using data from

1870 on 17 countries, Jorda et al. (2015, forth) find strong evidence on the pre-

dictive power of the housing cycle for financial crisis (especially after WWII). In

particular, they compare the consequence of asset price bubbles (equity and hous-

ing) and find that the most harmful macroeconomic consequences are generated

from leveraged housing bubbles. Finally, Guerrieri and Iacoviello (2016) show

the asymmetric effect of housing cycles due to occasionally binding constraint in

a dynamic stochastic general equilibrium (DSGE) model. Housing cycles lead to

output losses because busts (e.g. 2007-2009) produce larger spillovers than booms

(e.g. 2001-2006).

This paper shares the view of Case et al. (2015) on the determinants of housing

price. Since homebuyers own their home for many years, purchasing decisions

are driven by long-terms expectations. But what determines long-term expecta-

tions? Purchase a house means buying a flow of future services, i.e. rents. The

fundamental role of rents for housing prices has been studied widely. Among

recent contributions, Gallin (2008), Campbell et al. (2009) stand out for studying

US data. On the other hand, Ambrose et al. (2013) and Eichholtz et al. (2012) use

1Housing is more closely linked to the real economy than other assets because of its unique
features. First, housing is the main asset of households and changes in housing wealth have much
stronger wealth effect than other assets, e.g. stocks (Case et al. (2005, 2012)). Second, housing is
employed as collateral in the mortgage industry. Third, the construction sector, that is mostly labor
intensive, comprises an important part of the industrial sector in every economy.

By taking a pure accounting view on US data, housing contributes to GDP in two basic ways:
through private residential investment, 5% of GDP, and consumption spending on housing ser-
vices, 12-13% of GDP, for a total 17-18%. In 2013, the housing stock owned by households and
non-profit organization was valued $21.6 trillions, whereas the capitalization of the stock market
was $20.3 trillions.
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historical data on the housing market of Amsterdam. Gallin (2008) analyze MSAs

in the US from 1978 to 2011 and find that pricing error account for half of hous-

ing prices volatility. Campbell et al. (2009) study the US housing market and find

that expected rent growth is a relevant driver of the rent-price ratio from 1975 to

1997 (together with the expected premia) and by far the main driver from 1997

and 2007. Ambrose et al. (2013) studies 355 years on the housing market in Am-

sterdam and report two main findings. First, real housing prices and rents are

cointegrated and share common fundamentals. Second, deviations from the fun-

damental housing prices can occur over long periods. Eichholtz et al. (2012) find

that rents link the housing market to the real economy by analyzing the housing

market of Amsterdam over the period 1550-1850.

Therefore, I take an asset pricing view of housing as the value of housing has

to be aligned with the present discount value of rents in the long run. However,

because the future is uncertain, expected future rents can be different from the

actual ones. In other words, I assume that agents dispose of noisy information on

future rents. In this setup, bubbles can arise in the housing market due to imper-

fect information on future fundamentals. The paper contributes to the literature

by analyzing boom-bust episodes in the housing market from a new perspective,

with special emphasis on the macroeconomic implications.

I decompose housing price into the correct information (news) and the wrong

information (noise) on future rents and analyze their macroeconomic conse-

quences. The identification exploits the non-standard structural Vector Autore-

gression (SVAR) technique proposed by Forni et al. (2016, forth) (FGLS hence-

forth). Contrary to DSGE models, this SVAR methodology relies on a minimal set

of assumptions and consists of two steps.2 First, common SVAR estimation and

identification procedure are used to recover shocks to expectations about future

fundamentals from agents’ information set. Second, shocks to expectations are

decomposed in news and noise by employing future data on fundamentals, out-

side agents’ information set. I draw the identification assumptions from a simple

present value model of housing prices under imperfect information.

News driven business cycle has recently return in vogue thanks to the work

of Cochrane (1994) and Beaudry and Portier (2006). Some authors have claimed

that news provide noisy information about the future. For instance, Lorenzoni

2These assumptions can lead to significantly different results as showed by the opposite con-
clusions reached by Barsky and Sims (2012) and Blanchard et al. (2013).
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(2009), Angeletos and La’O (2013), and Blanchard et al. (2013) study this infor-

mational structure in theoretical models. Building upon the work of Lippi and

Reichlin (1994), and by simplifying the information structure, Forni et al. (2016)

have developed an identification scheme based on dynamic rotations of reduced

form residuals to empirically recover news and noise shocks in the stock market.

In a companion paper, Forni et al. (forth) study how news and noise drive the

business cycle in the US.3

My empirical results suggest that fundamentals in the housing market are

aligned with the macroeconomy in the long-run. In fact, news (anticipated and

realized information about fundamentals) are a major source of fluctuations for

rents, housing prices, GDP and stock prices at low frequencies. On the other hand,

noise (anticipated but not materialized information about fundamentals) is the

most relevant component for short-term fluctuations of housing prices, GDP and

residential investment. The historical decomposition suggests that noisy bubbles

were a main driver of housing market since the ’70s. In particular, the boom-bust

occurred in the 2000s is entirely driven by noise, with estimated deviations from

the fundamental value in the order of 45%.

My approach is consistent with excess volatility that housing prices exhibit

compared to fundamentals (Glaeser et al., 2014). Moreover, I do not take any

stance on how agents expectations are formed, but only that information on rents,

anticipated or unanticipated, matters for housing prices. Thus both rational and

irrational interpretation are compatible with my analysis. In fact, the literature has

proposed different way to explain housing price cycles. Zhao (2015) employs an

overlapping generation model within a rational framework. Departing from full

rationality, Glaeser et al. (2014) propose an extrapolative model of housing prices

formation. Adam et al. (2012) and Caines (2015) resort to adaptive learning to

explain the dynamic of housing prices. Gelain and Lansing (2014) and Granziera

and Kozicki (2015) compare different models of expectations formation on hous-

ing prices. While both find that fully rational expectations model under-predict

the volatility in housing prices, near rational solutions are instead able to repli-

cation the empirical patterns. Engsted et al. (2016) study the explosive behavior

of housing prices in OECD countries between 1970 to 2013 and find evidence in

favor of the bubble hypothesis for all countries but Germany and Italy. Finally,

3Mertens and Ravn (2010) show an application to fiscal policy.
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the explanatory power of the model build by Garriga et al. (2012) increases dra-

matically through shocks to expectations.

The paper is organized as follows. Section 1.2 presents a simple present value

model of housing prices. Section 1.3 illustrates the identification strategy. Sec-

tion 1.4 describes the data, the empirical results and their historical interpretation.

Section 1.5 concludes.

1.2 A Present Value Model of Housing under Imper-

fect Information

In this section, I describe a simple partial equilibrium model of housing. The

model can be characterized as a present value model of housing under imperfect

information. Housing is an asset that provides a flow of housing services as stocks

provide a flow of dividends. Housing services may be traded on the market and

produce rental income or they may be directly enjoyed by the owner.4 The present

value model implies that housing prices are the sum of the expected discounted

flow of future rents.

Formally, the relationship between prices and rents is determined as:

pt = Et [βt,t+1 (pt+1 + rt+1)] (1.1)

where βt,t+1 is the stochastic discount discount factor between t and t + 1 that

depends on expected returns.

By iterating forward we obtain:

pt = Et

[
∞

∑
i=1

βt,t+irt+i

]
+ Et

[
lim

T→∞

∞

∑
T=0

βt,TEt [pT]

]

= Et

[
∞

∑
i=1

βt,t+irt+i

]
(1.2)

4Notice that in both cases those housing services have a market value: an actual value in the
former and an imputed value computed by public authorities for accounting/taxation purposes
in the latter.
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with the second term canceling out from the standard transversality condition

Et

[
lim

T→∞
∑∞

T=0 βt,TEt [pT]

]
→ 0 that ensures a stable path.5 Eq.(1.2) states that

changes in housing prices may be driven by changes in expected rents and by

variations in the discount factor. The discount factor depends on expected returns

that can be further decomposed into two components: risk free rate Rr f and a risk

premium over the risk free rate ϕ

βt,t+i =
1

Rr f
t,t+i + ϕt,t+i

(1.3)

While the stochastic discount factor cannot be measure exactly, we can roughly

account for it with the appropriate long term interest rates. A rate of horizon k is

captures fluctuations in the stochastic discount factor from 1 to k period ahead.6

Moreover, this assumption is necessary to maintain the analysis based on observ-

ables.

I introduce a crucial novelty with respect to the previous analyses on housing

prices. Purchasing a house means buying a flow of future service whose value

is uncertain. Consequently, I assume that agents receive a noisy signal of future

rents. This assumption implies that agents’ expectations are in part correct and

in part wrong. Under this assumption, the process of rents is subject to the news

shock ft, anticipated according to the lag polynomial C(L) with L the lag operator:

rt = rt−1 + C(L) ft (1.4)

For the sake of clarity, let us simplify the process for rents by considering an

innovation anticipated only one period ahead:7

rt = rt−1 + ft−1 (1.5)

However, agents cannot directly observe this anticipated shock, but only a

noisy signal. The noisy component is labeled noise shock nt. Consequently,

agents’ expectation can be decomposed as the sum of two gaussian white noise

components orthogonal at all lags and leads:

5Giglio et al. (2016) provide evidence against violations in the transversality condition in the
housing markets of UK and Singapore, even during periods of sizable bubbles.

6See Campbell and Shiller (1988)
7 Notice that the identification strategy will use instead a wide horizon (40 quarters, i.e. 10

years)
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st = ft + nt ft ⊥ nt (1.6)

σ2
s = σ2

f + σ2
n (1.7)

Due to the delayed impact of the news shock ft on rents, agents cannot disen-

tangle the two components of the signal contemporaneously at time t. Therefore,

agents discount the signal according to ψ, which represents the variance of the

news relative to the variance of the signal. They will only be able to draw in-

formation about the composition of the past signal st−1 by observing the level of

current rents rt. In fact, by construction ∆rt = ft−1 because the dynamics of rents

is affected only by news but not by noise. Only by observing current rents, agents

(and so the econometrician) can learn about past news and noise. Importantly, in

this setup learning does not regard the knowledge of agents on the true structure

of the economy but only the past realizations of news and noise.8

In other words, agents learn their past noise contained in the signal by observ-

ing their prediction error on rents ut:

ut = ∆rt −Et−1 [∆rt] (1.8)

= ∆rt − ψst−1

ut represents the unanticipated shock to rents and can be rewritten in terms

of ft−1 and nt−1 as ut = ft−1 (1− ψ) + ψnt−1. Equations 1.5 to 1.8 provide the

theoretical interpretations of the shocks that are recovered through the identifica-

tion strategy in Section 1.3. In sum, housing prices are affect by three components

that are fundamental: news, risk free rate and risk premia. The fourth component,

noise, can be interpreted as a bubble component driven by imperfect information.

In a first approach, I impose directly, even if loosely, the present value rela-

tionship by assuming that housing prices are themselves a signal of future rents.

However, compared to the equity market and to the bond market, the housing

8Agents discount the signal based on its reliability. The more the signal is driven by news, the

more agents respond to changes in the signal: Et [rt+1] =
σ2

f

σ2
s

st.
Consequently, noise shocks do not have any effect in two cases. First, when the noise shock does

not exist σn = 0. Second, when the signal is completely unreliable σf = σs. On the other hand, the
maximum impact of noise shocks corresponds to the case σf ≈ σn as noise is a significant driver
of the signal and the signal contains useful information on future fundamentals.



CHAPTER 1. NEWS AND NOISE BUBBLES IN THE HOUSING MARKET 8

market features unique characteristics that make it regulated and relatively ineffi-

cient. While a vast part of the asset pricing literature on housing as neglected these

issues, some key features may lead to departures from the present value relation-

ship. Asset pricing model builds upon the no arbitrage assumption. However,

the no arbitrage assumption might not be satisfied due to some special features of

housing: I) Houses are sold only entirely and cannot be divided in smaller pieces

(indivisibility). Consequently, it is hard to short them; I I) The housing market

is characterized by borrowing constraints, illiquidity and transaction costs; I I I)

Housing is a collateralizable asset; IV) The housing market is heavily regulated

both for purchasing and for renting; I I I) In the short run, renting and purchas-

ing are substitutes and the two markets are segmented; IV) The time to build in

residential investment.9

Due to these features, housing prices might not reflect instantaneously the pre-

sented discounted value of future rents. To tackle this concerns, I show that I

obtain the similar results by relaxing the present value relationship. In differ-

ent robustness exercises, I exploit other variables as measures of expectation in

the housing market and I check ex-post whether the present value relationship is

supported by the data. I employ variables that arguably take into account new

information immediately as the consumer and home builders surveys and stock

prices of home builder companies.

Other potentially relevant issues are fiscal treatment of owning, renting and

the tax deductibility of mortgage interests. While those points are impossible to

address properly as the data on the subject is poor, I check ex-post whether the

shocks that I identify are correlated with changes in the tax rate.10

1.3 Identification Strategy

The following moving average (MA) representation expresses the relationship be-

tween the variables introduced in Section 1.2: the change in rents ∆rt, housing

9See Piazzesi and Schneider (2016).
10Property tax data are available only annually and, consequently, the following exercise is per-

formed at this frequency. More in detail, I take the OECD data on property taxes an build a
measure of implicit tax rate dividing the revenues by housing prices. I regress the news and noise
shock that I identify on the property tax and I do not find a significant relationship. For both news
and noise shocks, the coefficient is negative but not even significant at the 10% level. These results
are available upon request.
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prices pt,11 and other relevant variables Xt (in particular the risk free rate and risk

premia) 
∆rt

pt − rt

Xt

 =


c(L) 0 0

1 1 0

θ(L) γ(L) 1




ft

nt

εx

 (1.9)

where c(L), θ(L), γ(L) are lag polynomials. By construction the news shock

ft has a lagged impact on rt, C(0) = 0 while further lags are different from 0. For

example, the representation in eq.(1.5) entails C(L) = L. Unfortunately, C(0) = 0

implies that the three variables at time t do not provide useful information to

recover ft and nt. In other words, the VAR estimated using
[

∆rt pt − rt Xt

]′
cannot be inverted to recover the MA representation in eq.(1.9) as the determinant

of the matrix is 0.

At time t, there are two sources of information. First, we observe housing

prices pt that measure the available information on future rents. Second, the dif-

ference between the current realization of rents and agents’ expectations yield the

past forecast error of agents. In the stylized model presented in Section 1.2, this

means ut = ∆rt −Et−1 [∆rt] = ∆rt − ψst−1.

However, only by employing future values of the surprise shock ut it is pos-

sible to recover ft and nt. Intuitively, by checking whether agents’ expectations

of future rents were correct or wrong we can infer whether changes in the signal

were driven by news or noise. This is possible because the noise shock does not

affect rents at all. Therefore, observing future rents provide perfect information

on past news.

The identification strategy consists of two steps.

First, estimate a reduce form VAR using
[

∆rt pt Xt

]′
and recover[

ut st εx
]′

through a simple Choleski decomposition. In fact, the corre-

sponding MA representation
∆rt

pt − rt

Xt

 =


d(L) c(L)ψ 0

0 1 0

θ̃(L) γ̃(L) 1




ut

st

εx

 (1.10)

11Or anyway a signal of future rents that may be different from housing prices. I test the robust-
ness of relaxing the implicit present value relationship in the empirical analysis.
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is invertible. The ordering in eq.(1.10) implies that changes in discounting,

e.g. risk premia, do not affect contemporaneously housing prices or alternative

signals. In the empirical analysis, I will also clean signal shocks from changes in

risk premia by ordering Xt before pt.

Second, we want to exploit future realization of rt to decompose the signal into

news and noise. At this aim, we have to decompose c(L) into two components:

c(L) = b(L)d(L). The decomposition is achieved by means of Blaschke matrices

as shown in Lippi and Reichlin (1994) and FGLS.12 b(L) incorporates the roots

of c(L) lying inside the unit circle, while d(L) collects the roots of c(L) inside the

unit circle. Intuitively, b(L) extracts the information that is available only from the

future realizations of rt, while d(L) represents the new information that agents

receive by observing the current value of rt. This decomposition allows us to

express the surprise shocks in the general case as ut =
∆rt

d(L) − ψc(L)st = b(L) ft −
ψb(L)st.13

Finally, we have derived the relationship
ut

st

εx

 =


(1− ψ) b(L) −ψb(L) 0

1 1 0

0 0 1




ft

nt

εx

 (1.11)

that links the shocks that can be recovered through standard SVAR tools, be-

longing to the present information set,
[

ut st

]′
and the shocks that we are truly

interested in
[

ft nt

]′
, which belong to the future information set. By construc-

tion, b(L) contains the roots of c(L) lying inside the unit circle and, consequently,

cannot be inverted in the past but only in the future: b(L)−1 = b(L−1) = b(F)

where F is the forward operator:
ft

nt

εx

 =


b(F) ψ 0

−b(F) 1− ψ 0

0 0 1




ft

nt

εx

 (1.12)

Another important point arises from the derivations presented hereby. In fact,

after the shocks ut and st are identified with standard VAR tools, the other shocks

εx
t are not employed in the identification of news and noise shocks. Basically, Xt

12Blaschke matrices are complex value operators that conserve the orthonormality of the vectors
to which they are applied.

13The stylized case mentioned above corresponds to the case d(L) = 1 and c(L) = L.
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is directly relevant only for the identification of ut and st. On the other hand, Xt

enters only indirectly the identification of ft and nt, but there is no direct link with

news and noise shocks.

Finally, the present value model in Section 1.2 is a useful tool to guide the

analysis and interpret the empirical results. However, in the empirical analysis I

depart from a strict interpretation of the the present value model. The economic

framework that guides the empirical investigation can be summarized by: (a) ex-

pectations of futures rents are relevant for housing prices such that agents respond

to new information on rents coming from news shocks ft and surprise shocks ut;

(b) the logarithms of rents and housing prices are cointegrated.

Starting from these premises, the econometric assumptions are: I) The news

shock ft produce a permanent effect on rents; I I) The noise nt shock does not affect

rents at any lead. I I I) The signal shock14 is the sum of the news shock ft and of

the noise shock nt; IV) The only shock affecting rents on impact is the surprise

shock ut. Additional shocks affect rents only with a lag and are observed.15

Some of the assumptions enumerated above are actually not imposed but used

for testing the validity of the theoretical framework. In particular, assumption (b)

is not imposed. In this way, I can test whether the news shock ft, which gen-

erates a permanent effect on rents by (I), also produces a permanent effect on

housing prices. In the same spirit, it can be checked ex-post whether noise shocks,

which following (I I) have no effect on rents, do not generate permanent effects in

housing prices. Moreover, assumption (I I) is imposed only on impact and in the

long run (40 quarters), but intermediate horizons are used to test whether such

an assumption is supported by the data. To conclude, the identification imposes

restrictions on the effect of the news shock ft and of the noise shock nt on rents

while leaving the implications of those shocks on housing prices completely un-

restricted.16

14A shock to housing prices in the baseline analysis.
15Rents are a slow moving variable and usually rental contracts last at least for one year.
16For a Monte Carlo test of the methodology, see FGLS.
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1.4 Empirical Analysis

1.4.1 The Data

I employ US quarterly data from 1963:Q1 - 2016:Q3. I build a measures of to-

tal rents multiplying the rents personal consumption expenditures (PCE) price

index (FRED: DHUTRC1Q027SBEA) by the rents PCE quantity index (FRED:

DTENRA3). Then, I divide this series by the PCE implicit price deflator

(FRED: DPCERD3Q086SBEA) and population aged 16 years or more (FRED:

NP16OV_NBD19480101). In the end, I obtain a measure of real per capita rents

that I transform in logs.17 As a measure of housing prices, I use the log of the

Average Price of Houses Sold (FRED: ASPUS) deflated by the GDP implicit price

deflator (FRED: GDPDEF).18 As first alternative signal of future rents, I use sur-

vey variables. In order to measure demand side expectations, I employ the log of

Buying Conditions for Houses (Table 41 in the Michigan Survey of Consumers).

For the supply side, I take the National Home Builders Association market survey

concerning the expected new single family home sales in next 6 months. (Datas-

tream: USNAHB1E). Moreover, I also combine these two variables through a

principal component analysis. As second alternative signal, I exploit information

on home builders from the stock market through the Datastream Home Builders

Stock Price Index (Datastream: HOMESUS). I deflate this variable by the GDP

implicit price deflator and take logs.

The risk free interest rate employed in my baseline specification is the 3-Month

Treasury Bill, Secondary Market Rate (FRED: TB3MS). The interest rate that in-

corporates a risk premium component is the Moody’s Seasoned Aaa Corporate

Bond Yield (FRED: AAA). As a robustness exercises, I also use interest rates more

closely related to the housing market. In particular, I take the 30 years Fixed Rate

Mortgage (FRED: MORTGAGE30US) as measure including a risk premium and

the corresponding maturity of the Treasury Yield (FRED: USTYCO30R) as risk free

measure.19

In the macroeconomic analysis, I include additional variables as the log of the

Real Gross Domestic Product (FRED: GDPC1), the log of Real Private Residential

17Notice that this measure is equivalent to the total per capita dividends employed in FGLS.
18Similar results hold by using the Case Shiller S&P Corelogic Home Price Index (FRED:

CSUSHPISA) or the series available on the website of R. Shiller.
19Or the equivalent 20 years maturity that spans a longer sample.
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Fixed Investment (FRED: PRFIC1) deflated by the GDP implicit price deflator,

and the log of the Standard & Poor’s Index of 500 Common Stocks (Datastream:

US500STK) deflated by the GDP implicit price deflator.

I use the variables in log-levels to avoid cointegration problems following

Stock et al. (1990). I include 2 lags as consistently suggested by the three infor-

mation criteria AIC, BIC, HQC. Variables are downloaded as seasonally adjusted

if possible. Otherwise, I employ the Census X13 to remove the seasonality (if nec-

essary).

1.4.2 Decomposition of Housing Prices

This first stage concerns the decomposition of housing prices in the four compo-

nents highlighted in Section 1.2. I include rents, housing prices, a risk free rate

and rate including risk premia and identify four corresponding shocks in the cur-

rent information set. The shocks are a surprise shock to rents, a shock to housing

prices (signal shock), a risk free rate shock (3 months T-Bill rate) and finally a risk

premia shock (Aaa Moody’s Corporate Bond Yield). While I present the results

using short-term rates, the same results hold using longer rates (e.g. rates closely

related to the housing market as the mortgage rate).20 The only role of variables

other than rents and housing prices concerns the identification of surprise and

signal shocks. Figure 1.1 display the impulse response functions (IRFs) to the sur-

prise and signal shock.21

Next, I use the procedure explained in Section 1.3 to identify news and noise

shocks as a linear combination of future surprise and signal shocks. The other

shocks identified in the VAR, i.e. risk free rate shocks and risk premia shocks do

not enter directly this additional computation. The IRFs are reported in Figure 1.2.

The news shock is identified as a shock to housing prices that produces a delayed

but permanent increase in (future) rents. On the other hand, the noise shock is a

shock to housing prices without impact and long-run effect on rents. Recall that

the response of housing prices to news and noise shocks is left completely uncon-

strained. Figure 1.2 suggests that the news shock generates a permanent effect on

20Including the risk premia explicitly as spread or as implicit component in the mortgage rate
yields the same results.

21The effects of risk free and risk premia shocks are reported in Figure A.1 Appendix. These
shock produce negligible effects on rents and a negative response of housing prices in line with
economic theory.
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housing while the noise shock produce a strong response that dies out after about

20 quarters. Even if not statistically different, the estimate impact responses of

housing prices to the noise shock is greater than the response to the news shock.

Finally, the forecast error variance decomposition (FEVD) in Figure 1.3 high-

lights that, consistently with the identifying assumptions, the noise shock explains

a marginal share of the variability in rents, while news shock explains the great

majority of it. For what concerns housing prices, the role of the noise shock is

dominant up to 15 quarters (ranging from 68% to 20%) and gradually dies out

after this horizon. The news shock contributes to the volatility of housing prices

for 38% on impact and 82% after 40 quarters.

The information set employed in this exercise poses a potential concern. While

Forni et al. (2016) find that the equivalent four variable VAR for the stock market

is informationally sufficient, the housing market is more closely related to the real

economy for multiple reasons (see also Section 1.2). In fact, the Granger test pro-

posed by Forni and Gambetti (2014) reject the orthogonality of the shocks to lags

of potentially informative variables excluded from the VAR (Table A.2).22 This is

problematic because the shocks might be not correctly identified. To tackle this

concern, in the next Section I append the VAR with key macroeconomic aggre-

gates.

1.4.3 Macroeconomic Analysis

In this second stage, I include macroeconomic aggregates like GDP, residential

investment and the stock price index for multiple reasons. I repeat the Granger

test already applied in Section 1.4.2. The test now suggests that the shocks are

orthogonal to agents’ information set (Table A.3). Thus, the appended VAR is

informationally sufficient. There are other two key reasons to extend the analysis.

First, the goal of the paper is to assess the macroeconomic effects on news and

noise shocks. In particular, we can assess the impact of housing bubbles on the

macroeconomy as the identification isolates the bubble component in the housing

market. Second, I investigate whether the fundamentals in the housing market

are aligned with the macroeconomy in the long-run. I analyze whether a news

shock that has a permanent impact on rents has a similar effect on GDP and stock

22The variables are reported in Table A.1. Notice that Canova and Sahneh (2016) propose a dif-
ferent test. They claim that Granger tests may detect omitted variables but are not strictly related
to non-fundamentalness.
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prices. In this specification, I include only the Aaa Moody’s Corporate Bond Yield

and remove the 3-month T-Bill rate to avoid inflating the dimensionality of the

system.

I employ three different measures of expectations in the housing market. The

most natural consists of housing prices themselves (as in Section 1.4.2). In this

way, housing prices are assumed to incorporate all the available information

about future rents.

However, there may be departures from this framework because of the vari-

ous reasons discussed in Section 1.2. Therefore, I show that similar results hold

by employing two alternative variables as signal of future rents. First, I employ

the Buying Conditions for Houses from the Michigan Survey of Consumers. I

also include supply side expectations by using surveys from the Home Builders

National Association. Second, I assume that expectations in the housing market

can be (partially) proxied by the Home Builders Stock Prices Index. The three dif-

ferent signals produce very similar results. In particular, it is worth highlighting

that across all cases, a news shock produces a permanent effect both on rents and

on housing prices. Moreover, a noise shock generates significant responses on

housing prices and on macroeconomic aggregates.

1.4.4 Housing Prices as Signal

This section present the results obtained by using housing prices as signal of fu-

ture rents as implied by the present value relationship in equation 1.2. Notice that

the present value relationship is not imposed in a strict way, but I only assume

that new information on rent affects housing prices.

In this case, I include the following variables [RENTS, HOUSING PRICES, GDP,

RESIDENTIAL INVESTMENT, AAA MOODY’S CORPORATE YIELD, S&P INDEX] as

described in Section 1.4.1. The ordering matters for the identification of the sur-

prise shock and the signal shock as they are recovered through recursive zero

short-run restrictions (Choleski). I explore the sensitivity of the analysis to two

alternative orderings finding comparable results. I order housing prices second

after rents, but I also check the robustness of the results by placing them second

to last (before stock prices).

Figure 1.4 display the IRFs to a surprise shock and to a signal shocks. The

surprise shock generates a permanent effect on rents, housing prices, GDP and
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stock prices. There is no significant permanent effect residential investment as for

this series the trend is dominated by huge cyclical fluctuations. The signal shock is

a mixture of news and noise as represented in equation 1.6. It predicts an increase

in rents, GDP and stock prices because it incorporates news. However, for GDP

and housing prices this permanent effect is not statistically significant because the

signal shock is also incorporating noise.

Figure 1.5 reports the IRFs to news and noise shocks.23 First, the noise shock

does not have any significant effect on rents. I am imposing that the noise shock

does not have an impact and long-run (40 quarters) effect on rents, but at inter-

mediate horizon the response is unconstrained. Therefore, we can use the IRF at

intermediate horizon as a diagnostic of the identification strategy. In fact, the key

assumption is that rents allow to infer the past values of news and noise as they

are not affected by noise. Conversely, the news shock has a lagged but persistent

effect on rents. The lagged response of rents after the news shock is another good

indication of the identification. The news shock is constrained to have a delayed

effect on rents. The gradual increase of rent after a news shock suggests that the

identification is supported by the data.24 Housing prices react in a stronger way

to the noise shock than to the news shock on impact and in the short-run. This

means that the estimated variance of the noise shock is bigger than the variance

of the news shock. On the other hand, while the news shock lead to a permanent

change in the response of housing prices, the effect of a noise shock gradually dies

out and reaches zero after 15 quarters.

Regarding the macroeconomic effects, the news shock has the same permanent

effect on rents, housing prices GDP and stock prices. This means that the funda-

mentals in the housing market are in line with the macroeconomy. The noise shock

produces sizable but temporary effects on GDP, residential investment and stock

prices.

23The empirical results are consistent with DSGE model similar to Iacoviello and Neri (2010)
that includes also a rental market. News and noise shock to housing preference, or simply as a
reduced form shocks to rents, produce similar response of the corresponding VAR variables.

24The analysis may be biased if we think that the economy may be hit by transitory fundamental
shocks. These kind of shocks are are neglected in this identification strategy but, if relevant, they
would still be captured by the noise shock. The reason lies in the fact that also transitory funda-
mental shocks have zero long run effect on rents, but, differently from the noise shock itself, they
should affect rents at intermediate horizons. Given that noise shocks have no relevant effect on
rents at any horizon, we can conclude that identified noise shock does not contain also transitory
fundamental shocks.
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The quantitative implications of news and noise shocks are reported through

the FEVD in Figure 1.6. Rents are explained entirely by the news shock while the

noise shock has a marginal effect. The decomposition suggests that the bubble

component is the main drive of housing prices at high frequency (75% on impact)

but the news is the major driven in the long run, consistently with theory. In

fact, after 15 quarters the effect of the noise shock on housing prices dies out. A

similar picture holds for GDP. News is the main driver in the long-run, but in

the first five quarters noise dominates by explaining about 10% of the volatility

of GDP. Finally, residential investment is strongly affected by noise both at short

and medium horizons (up to 20%) while in the long run news plays a major role.

Due to the huge cyclical fluctuations, there is no significant permanent effect of

any shocks on residential investment.

1.4.4.1 Historical Decomposition

Figure 1.7 conveys the historical implication of the analysis. In this figure, I de-

compose the series of housing prices in a two orthogonal components: the funda-

mental component and bubble-noise component. The latter is expressed in per-

centage deviations from the fundamental component. The first important feature

is the increasing role of the noise component over the sample. In particular, the

noise component turns out to be more important after the deregulation of the

1980s.

In the 1970s, the housing market experienced a boom after the first oil price

shock in 1973 that is associated with a 25% noisy component.25 The downturn in

the US housing market of the 1990s was driven by noise (32%).

The largest housing cycle in the sample, which spans from 2000 to 2012, is

driven by a huge bubble, not related with future rents. The noisy component ac-

counts for sizable deviations of housing prices from fundamentals both during the

build-up and the collapse of the real estate market. The peak occurs in 2003 and

accounts for 45% deviation from fundamentals. The through explains about 40%

25Poterba (1984, 1991) relates this boom to demographics and the relationship between high
expected inflation and mortgage tax deductions. Piazzesi and Schneider (2009a) add the role of
inter-generational heterogeneity (baby boomers) to the high inflation explanation Demographics
factors are characterized as news as they are arguably expected to move future rents. This explana-
tory factor might be erroneously captured as a noise component. However, the estimation on the
sample 1985-2016 yield the same IRFs. Moreover, I control for inflation expectations by including
the inflation expectations from the Michigan Survey of consumers (Table 32) finding similar results
to the ones reported. These results are available upon request.
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of deviations from fundamentals and occurs in 2009. The same historical decom-

position of the Case & Shiller Corelogic Home Price Index points at an exceptional

role of noise during the 2000s. Therefore, expectations unrelated with fundamen-

tals are a key driver both of the housing boom that preceded the Great Recession

and of the following bust. Investigating the underlying reasons for those changes

in expectations is beyond the scope of this analysis, but this perspective should

receive more attention as already mentioned in Case et al. (2015).

These results are consistent with other existing works. For example, Agnello

and Schuknecht (2011) estimate a housing bust phase over 1990-97 (24% magni-

tude) and a boom from 1998-2005 (42% magnitude).26

Another important feature is the higher volatility of the noisy component with

respect to the actual housing price series. The excess volatility steams from the

highly volatile housing price series employed in the baseline analysis (which is

much more volatile than rents). This excess volatility disappears when using the

Case & Shiller Corelogic Home Price Index or other signals, whereas the key find-

ings from the historical decomposition hold still.

1.4.5 Alternative Signals

In two robustness exercises, I proxy the expectations in the housing market using

two alternative variables. This allows me to relax the assumption that housing

prices capture instantaneously all the available information on future rents. In

this way, we are able to test whether the results in Section 1.4.4 are driven by this

assumption.

First, I use survey information from the Buying Conditions for Houses from

the Michigan Survey of Consumer as signal. This variable captures demand side

expectations without a specific horizon.27 In order to include a proxy for the sup-

ply side expectations, I employ the National Home Builders Association market

survey (new single family home sales in next 6 months). Using this variable,

available only on a restricted sample, I find similar results. Finally, employing

together demand side and supply side expectations through a principal compo-

nent analysis yields consistent results. In this case, the VAR features the following

26They use the turning point methodology developed by Harding and Pagan (2002).
27Ideally, we would like to use a measure of exclusively long-term expectations that, unfortu-

nately, is not available
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variables [RENTS, SURVEY, GDP, RESIDENTIAL INVESTMENT, HOUSING PRICES,

AAA MOODY’S CORPORATE YIELD, S&P 500].

Second, I exploit the information contained in Home Builders Stock Price In-

dex. This variable contains the stock price of quoted home builders firms. This

variable arguably captures instantaneously all the available information. On the

other hand, there are also some disadvantages: i) stocks are an alternative asset,

with some dynamics that may be unrelated to the housing market at high frequen-

cies;28 ii) home builders are related exclusively with new houses built. In this case,

the VAR includes [RENTS, HOME BUILDERS STOCK PRICE INDEX, GDP, RESI-

DENTIAL INVESTMENT, HOUSING PRICES, AAA MOODY’S CORPORATE YIELD,

S&P 500]

The signal shock is now identified from these two alternative variables and

not directly from housing prices. Nonetheless, the results are comparable to the

findings presented in Section 1.4.4 (Figure A.3-A.7). In particular, the news shock

generates a permanent increase in rents and housing prices, GDP and stock prices.

The noise shock produces significant transitory responses in housing prices, GDP,

residential investment and stock prices. On the other, rents do not respond signif-

icantly to a noise shock.

These two alternative variables captures only partially expectations in the

housing market by construction. They convey information exclusively on con-

sumers’ expectations or home builders stock prices. Thus, while the results are

qualitatively very similar across all the specifications, the FEVD display a smaller

role for the noise shock compared to Section 1.4.4 (Figure A.4-A.8). Noise accounts

for a maximum of about 10% of the volatility of housing prices using the demand

side survey or the HBSPI. However, noise shocks still produce sizable macroe-

conomic implications as it is reflected in 15% (5%) of variability in GDP and in

20% (5%) residential investment using the survey (HBSPI). On the other hand, the

principal component of the demand and supply surveys captures expectations in

a more complete fashion. In this case, the quantitative role of noise raises consid-

erably for housing prices (25%), GDP (17%) and residential investment (30%).

Finally, the historical decomposition of housing prices (Figure A.5-A.9) dis-

plays some phase shift in the noise component comparing to Figure 1.7. However,

the main episode in the early 2000s is consistently decomposed across the three

28I obtain comparable results if I use as signal the HBSPI orthogonalized to the general stock
price index.
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different approaches. Using these two alternative signals, the noise component

explains 20% deviation of housing prices from the fundamental value.

1.4.6 Additional Robustness Exercises

I have performed additional robustness exercises: i) The most important concerns

the interest rate used which account for changes in discounting. Employing the

long-term interest rate, both risk free and including a risk premium, produces very

similar results to the baseline analysis; ii) I have included the amount of mortgages

(or total loans) to control for the quantity side of credit conditions; iii) There might

be concerns that the results are driven by the bust in the housing market after

2007. Similar results, with lower statistical significance, are obtained by running

the same exercise on the sample cut in 2006; iv) Finally, I have employed also

the Case & Shiller Corelogic Home Price Index instead of the Census measure of

housing prices on a restricted sample obtaining consistent results.

1.5 Conclusions

In this paper, I explore the role of long-term expectations in the housing market in

line with Case et al. (2015). I argue that long-term expectations have to be aligned

with future rents that represent the dividends from housing. However, since the

future is uncertain, expectations of future rents are noisy. Therefore, I introduce

imperfect information in a present value model of housing prices. Agents receive

noisy signals about future fundamentals and, as a result, bubbles can arise due to

this informational incompleteness. The approach is compatible both with rational

and irrational agents.

From a stylized present value model, I have derived identifying restrictions to

apply the non-standard structural VAR procedure developed by Forni et al. (2016,

forth). This methodology employs dynamic rotations of the reduced form resid-

uals to recover shocks related (news) and not related (noise) to future rents. The

identification exploits future rents to determine whether shocks to housing prices

are fundamental or noisy. At the same time, I roughly control for changes in dis-

counting by including different measures of interest rates (risk free and containing

a risk premium).
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The empirical results provide different insights on the dynamics of the hous-

ing market in the US. First, fundamentals in the housing market are aligned with

the macroeconomy. In fact, a news shock produces a permanent increase in rents,

housing prices, GDP and stock prices. Second, expectations not related to funda-

mentals are a relevant source of fluctuations for the housing market and macroe-

conomy. Noise shocks generate sizable responses in housing prices, GDP and

residential investment at the business cycle frequency but without permanent ef-

fects. In terms of forecast error variance, the noise shock is dominant in explaining

housing prices, GDP and residential investment at high frequency, but dies out af-

ter about 15 quarters. The historical decomposition shows that the role of noisy

bubbles, threatening macroeconomic stability, has increases over time. In particu-

lar, the boom-bust in the housing market during 2000s was entirely due to a noisy

bubble. Moreover, also the boom in 1970s and the depression in 1990s was driven

by a significant noise component.

The results are robust to different specifications. In particular, I relax the

present value hypothesis and rely on other variables to proxy expectations in the

housing market. On the one hand, I employ survey variables from consumers

(demand side) and home builders (supply side). On the other hand, I rely on the

stock prices of home builder companies. In both cases, the results are comparable

to the baseline specification.

The analysis sheds light on a relevant source of macrofinancial instability that

arises from the housing market. This finding is particularly meaningful in light of

the asymmetric spillovers from the housing market to the macroeconomy. Guer-

rieri and Iacoviello (2016) show the implications of the occasionally binding col-

lateral constraint on housing. The contribution of the housing boom (2001-2006)

to consumption growth was small. On the other hand, the (negative) implications

for consumption became much largest during the bust as the collateral constraint

become binding (2007-2009). Consequently, macro-prudential policies with a sta-

bilizing role may have the potential to reduce the harmful consequences of busts

and the excess volatility introduced by informational incompleteness. Exploring

this venue remains open for future research.
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1.6 Figures

Figure 1.1: IRFs to Surprise and Signal Shocks - Decomposition
IRFs to a surprise shock to rents and to a signal shock. The responses are reported in terms of the standard deviation of
the variables in the system. The solid blue line is the median, the dark and light blue shaded areas represents 68% and

90% confidence bands respectively (2000 bootstrap replications). The shocks are identified through the following
ordering: [Rents, Housing Prices, 3 Months Bill Rate, Aaa Moody’s Corporate Bond Yield]. The red line reports the

median IRFs obtained by the recursive ordering [Rents, 3 Months Bill Rate, Aaa Moody’s Corporate Bond Yield, Housing
Prices]. Sample: 1963:Q1 - 2016:Q3.
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Figure 1.2: IRFs to News and Noise Shocks - Decomposition
IRFs to news and noise shocks. The responses are reported in terms of the standard deviation of the variables in the

system. The solid red line is the median, the dark and light red shaded areas represents 68% and 90% confidence bands
respectively (2000 bootstrap replications). The shocks are identified through the following ordering: [Rents, Housing

Prices, 3 Months Bill Rate, Aaa Moody’s Corporate Bond Yield]. The blue dotted line reports the median IRFs obtained by
the recursive ordering [Rents, 3 Months Bill Rate, Aaa Moody’s Corporate Bond Yield, Housing Prices]. Sample: 1963:Q1 -

2016:Q3.
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Figure 1.3: Forecast Error Variance Decomposition
Forecast error variance decomposition of the variables in the system. The plot display the share of the variance explained
by news and noise at each horizon (not cumulatively). The shocks are identified through the following ordering: [Rents,

Housing Prices, 3 Months Bill Rate, Aaa Moody’s Corporate Bond Yield]. Sample: 1963:Q1 - 2016Q3.
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Figure 1.4: IRFs Surprise and Signal Shocks - Macro Analysis
IRFs to a surprise shock to rents and to a signal shock. The responses are reported in terms of the standard deviation of
the variables in the system. The solid blue line is the median, the dark and light blue shaded areas represents 68% and

90% confidence bands respectively (2000 bootstrap replications). The shocks are identified through the following
ordering: [Rents, Housing Prices, GDP, Residential Investment, Aaa Moody’s Corporate Bond Yield, S&P Index]. Sample:

1963:Q1 - 2016:Q3.
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Figure 1.5: IRFs News and Noise Shocks - Macro Analysis
IRFs to news and noise shocks. The responses are reported in terms of the standard deviation of the variables in the

system. The solid red line is the median, the dark and light red shaded areas represents 68% and 90% confidence bands
respectively (2000 bootstrap replications). The shocks are identified through the following ordering: [Rents, Housing

Prices, GDP, Residential Investment, Aaa Moody’s Corporate Bond Yield, S&P Index]. The blue dotted line reports the
median IRFs obtained by the recursive ordering [Rents, GDP, Residential Investment, Aaa Moody’s Corporate Bond

Yield, Housing Prices, S&P Index]. Sample: 1963:Q1 - 2016:Q3.
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Figure 1.6: Forecast Error Variance Decomposition - Macro Analysis
Forecast error variance decomposition of the variables in the system. The plot display the share of the variance explained
by news and noise at each horizon (not cumulatively). The shocks are identified through the following ordering: [Rents,

Housing Prices, GDP, Residential Investment, Aaa Moody’s Corporate Bond Yield, S&P Index]. Sample: 1963:Q1 -
2016Q3.
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Figure 1.7: Historical Decomposition - Macro Analysis
Historical decomposition of housing prices (dotted blue) into a fundamental component (blue) and noisy component

(orange). The shocks are identified through the following ordering: [Rents, Housing Prices, GDP, Residential Investment,
Aaa Moody’s Corporate Bond Yield, S&P Index]. Sample: 1963:Q1 - 2016Q3.



Chapter 2

Proxy-SVAR as a Bridge between

Mixed Frequencies

Joint with Alejandro Vicondoa

2.1 Introduction

Macroeconomists increasingly incorporate information from financial markets,

media, and the Web in their empirical analysis and models. The availability of

this type of data, in particular from financial markets, allows researchers to draw

information that was not available some years ago. Futures markets, for exam-

ple, provide real-time information on expected policy decisions. Additionally,

financial variables attract more attention due to the importance of recent financial-

related events like the Great Recession or the European Sovereign debt crisis.

However, while macroeconomic aggregates are available only at the monthly

or quarterly frequency, information from financial markets, media and Web is

collected in real time or on a daily basis. When facing data sampled at differ-

ent frequencies, the dominant approach still relies on temporal aggregation. The
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variables sampled at higher frequencies are converted to the lowest sampling fre-

quency.1 In this procedure, many properties of the original series are lost. Of par-

ticular interest for macroeconomists, temporal aggregation exacerbates the simul-

taneity problem that generates identification challenges in structural Vector Au-

toregressions (SVARs). More specifically, impulse response functions are not in-

variant to time aggregation as both the contemporaneous covariance of the resid-

uals and the parameters of the Wold representation change. Therefore, analyses

which rely on temporal aggregation can be strongly biased (see Marcellino, 1999).2

Mixed frequency techniques have consequently attracted a growing interest in

recent years. Mixed Data Sampling (MIDAS) and Mixed-Frequency Vector Au-

toregressions (MF-VARs) are two popular tools designed to deal with mixed fre-

quency data (for a survey on the topic see Foroni, Ghysels, and Marcellino, 2013).

Both, however, exhibit some shortcomings due to feasibility and computational

constraints. For example, the mismatch in frequencies cannot be too wide and/or

the number of high/low frequency variables cannot be too large. An alternative

approach, originally developed to overcome identification challenges in VARs,

actually constitutes a remedy for temporal aggregation biases. This methodol-

ogy, called high frequency identification in Proxy-SVAR (HFI-PSVAR), identifies

exogenous variations in high frequency variables around particular events and

uses them as proxies for the structural shocks of interest (e.g. Gertler and Karadi,

2015). Essentially, the researcher exploits the proxy together with the reduced

form residuals of a VAR to identify a shock of interest.3 However, selecting key

events for the phenomenon of interest is seldom straightforward and always ar-

bitrary to a certain degree. Moreover, the Proxy-SVAR assumes that the proxy is

orthogonal to the other structural shocks driving the system. Violations of this

exclusion restriction would bias the analysis.

1This aggregation usually follows either skip-sampling or averaging. Skip-sampling, or point-
in-time sampling, is usually applied to stocks. In this case, the variables available at the higher
frequency are converted to the lower frequency simply by taking the last value within the low
frequency period (for example the last monthly observation within a quarter). In the averaging
case, the variables are averaged over the lower frequency period and then observed only once for
each of those low frequency periods (for example, the quarterly average of monthly data).

2Intuitively, the severity of the simultaneity problem that we face in time series analysis is
decreasing with the sampling frequency. At the extreme, temporal aggregation can introduce si-
multaneity where there is none. Consider for example a monetary policy setup. By aggregating
the daily interest rate to the monthly frequency, the interest rate series will incorporate the en-
dogenous reaction of the central bank to the daily changes in (for example) inflation expectations,
which occurred within the month.

3This identification can be intuitively interpreted as an instrumental variable approach to VARs.
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In this paper, we propose a new methodology, labeled “Bridge Proxy-SVAR”,

that links data sampled at different frequencies, i.e. high frequency and low fre-

quency variables, through the Proxy-SVAR.4 First, we identify the structural shock

of interest in high frequency (HF) systems which are not subject to time aggrega-

tion and so characterized by less severe identification challenges (simultaneity).

Second, we aggregate the series of shocks at the lower frequency, e.g. monthly or

quarterly for macro variables. Third, we use the aggregated series of shocks as a

proxy for the corresponding structural shock at this lower frequency (LF). Namely,

we draw identifying restrictions for the LF representation from HF information.

Our methodology builds upon a crucial proposition: identification prior to tem-

poral aggregation is superior to identification post temporal aggregation. We il-

lustrate that this proposition holds analytically in a tractable case. In a bivariate

setup where the frequency mismatch is two, we prove that, if the HF shocks are

correctly identified, our methodology recovers the correct impact matrix. Monte

Carlo experiments generalize the test of the methodology to a variety of cases

and data generating processes (DGPs). In evaluating the performances, we focus

on the Impulse Response Functions (IRFs) that summarize the relevant informa-

tion from the estimation of VARs. Importantly, the Monte Carlo simulations also

allow us to compare the Bridge Proxy-SVAR with the common naive practice of

time aggregation (LF-VAR) and with the best possible estimation (HF-VAR). In

the LF-VAR, HF variables are introduced as time aggregated so all the available

information is compressed at LF. The HF-VAR, instead, is a counter-factual esti-

mation where the LF variables are observable at HF. As such, the HF-VAR also

provides the upper bound for the performances of the MF-VAR.

Our results show that the Bridge Proxy-SVAR (Bridge) is a suitable method for

approximating the true underlying responses under different data generating pro-

cesses. First, the Bridge greatly outperforms the LF-VAR in all case and yields simi-

lar but less precise estimates to the HF-VAR. Second, our procedure can be applied

in a simple manner, without computational burdens, even when the dimension-

ality of the system is large and when the frequency mismatch is wide. Third,

we apply our methodology to assess the effect of monetary policy shocks in the

US. Our benchmark is Gertler and Karadi (2015) as they apply the Proxy-SVAR.

4In what follows, we consider a standard VAR for the high frequency estimation but the anal-
ysis can apply any econometric model more suitable for high frequency data. What matters is the
identification of an unpredictable shock, orthogonal to other components.
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Their proxy consists of the series of monetary policy surprises built by Gurkaynak,

Sack, and Swanson (2005). While this identification exploits key events for mon-

etary policy, i.e. Federal Open Market Committee (FOMC) meeting days, we do

not impose a priori any special role for these dates. Nonetheless, we find ex-post

that the Bridge identifies shocks that are abnormally sizable on FOMC meeting

days vis-à-vis non-FOMC days. Our series of shocks produces similar macroeco-

nomic effects to those found in Gertler and Karadi (2015). Moreover, the monetary

policy shocks we identify are immune to some criticisms posed in the literature

on Gertler and Karadi (2015). This is related to the structural identification we

employ and to the wide information set included in our HF-VAR. Finally, within

our framework we can naturally take a further step consistent with the most re-

cent works on monetary policy. In particular, Gertler and Karadi (2015) capture

two distinct components on the path of interest rates, current and future, in their

measure of monetary policy surprises, with opposite macroeconomic effect in the

pre-crisis sample due to a strong informational content associated with shocks to

the future rate.

This paper originated from a companion (applied) paper: Gazzani and Vicon-

doa (2016), which disentangles the macroeconomic effects of liquidity shocks in

the Italian sovereign debt market. Two main identification challenges character-

ized that setup: first, the daily sampling frequency of financial variables opposed

to the monthly frequency of macroeconomic aggregates; second, a severe simul-

taneity characterizes liquidity and default risk. Moreover, other shocks can con-

temporaneously hit indicators of liquidity and default risk, further complicating

the analysis. In this framework, MF techniques proved to be unfeasible due to

frequency and dimensionality reasons. In particular, the daily frequency is crucial

for financial variables and we did not want to rely on aggregation to the weekly

frequency.5 Additionally, the inclusion of other financial indicators was necessary

to define a sufficient information set. In that setup, we could not find convinc-

ing events that could be exploited for identification through the Proxy-SVAR.6

5This data transformation is usually applied to employ financial and macroeconomic data in a
MF setup.

6Obviously, relevant events are available for the European Sovereign debt crisis (e.g. narrative
events). However, they are not convincing for identification because there are no events that are
mainly related with liquidity but not with default risk. A proxy build from this type of events,
which is practically used as an instrument for the identification, would not satisfy the exclusion
restriction being correlated with other structural shock (in particular default risk shocks).
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Instead, we developed the Bridge Proxy-SVAR: estimate a daily VAR and iden-

tify liquidity shocks in the Italian sovereign debt market, aggregate this series of

shocks to the monthly frequency, and use this monthly series as a proxy for the

liquidity shocks in a monthly VAR including macroeconomic variables.

The severity of temporal aggregation biases in VAR models is illustrated in

Marcellino (1999) and Foroni and Marcellino (2016). MF-VARs are the standard

tools to handle data sampled at different frequencies. There are two main ap-

proaches to estimating VARs with mixed frequency data. The most popular one,

developed by Zadrozny (1988), is based on a state space representation (a dynamic

linear model). The system is driven by latent shocks whose economic interpreta-

tion is not straightforward. The presence of latent shocks implies that the Forecast

Error Variance Decomposition (FEVD) of the system cannot be computed. Some

examples of this approach include Mariano and Murasawa (2010), Schofheide

and Song (2013), and Foroni, Ghysels, and Marcellino (2013). From a Bayesian

perspective, Eraker et al. (2015) and Bluwstein and Canova (2015) estimate the

state space representation via Gibbs sampler.7 The second approach, proposed

by Ghysels (2016), is more similar to standard VARs in being driven only by ob-

servable shocks. Contrary to model based on a state space representation, all the

usual VAR tools are at the researcher’s disposal. This particular VAR deals with

series sampled at different frequencies through stacking: a HF variable is decom-

posed into several LF variables and directly employed in the VAR. For example,

a monthly variable is introduced as three stacked series in a quarterly model. The

shortcoming consists of the curse of dimensionality, i.e. parameters proliferation.

Moreover, recovering the HF structural shocks from those in the stacked LF-VAR

is not necessarily straightforward. Importantly for structural analyses, Anderson

et al. (2016a) and Anderson et al. (2016b) study conditions for identifiability of the

HF representation of VARs from mixed frequency data.

Although MF-VARs are powerful tools that suit many analyses, they may not

be applicable in some cases. For example, the MF-VAR may not be a feasible

approach when the mismatch between high and low frequency variables is large

(e.g. 30 in the case of monthly-daily data). Additionally, also the dimensionality

of the system can be problematic. In fact, the stacked MF-VAR presents parameter

proliferation problems when the researcher has to include many HF variables.

7Some work as Angelini, Banbura, and Runstler (2010) have extended the mixed frequency
state space representation to Factor models.
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Computational problems may arise in the state space MF-VAR when there are

many unobservable states (LF variables).

The Bridge Proxy-SVAR is a useful alternative in these cases, since it provides

relevant computational advantages over the MF-VAR in terms of frequency mis-

match and dimensionality. On the other hand, the MF-VAR is a different econo-

metric model that improves, over a LF-VAR, the VAR estimates of both the autore-

gressive matrix and the impact matrix of the shocks.8 The Bridge Proxy-SVAR only

improves the impact matrix through information external to the LF-VAR, but still

relies on the same autoregressive matrix of the LF-VAR. Additionally, the MF-VAR

can assess the response of a HF variable on a LF variable, while the Bridge focuses

exclusively on the reversal. Finally, the Bridge Proxy-SVAR, as the method devel-

oped by Ghysels (2016), relies purely on observables and not on latent variables

and shocks as opposed to the state space MF-VAR.

The Proxy-SVAR methodology, developed by Stock and Watson (2012) and

Mertens and Ravn (2013), is a very recent development in the identification of

SVAR. This method employs exogenous variations in one variable, which is in-

cluded in the VAR system, as a proxy for the structural shock of interest. The

proxy is assumed to be correlated with a structural shock of interest but orthog-

onal to other structural shocks. In practice, the proxy constitutes an instrument

for the reduced form residuals of the VAR and is used for (partial) identifica-

tion of the covariance matrix of the structural shocks. The clear advantage of

this technique is that, as long as the proxy is a relevant and valid instrument, the

identification relies on a much weaker set of assumptions than other identifica-

tion schemes. For example, no assumptions are made on the contemporaneous

relationship among the variables in the system. Moreover, Carriero et al. (2015)

have shown through Monte Carlo experiments that the PSVAR is robust to mea-

surement errors. Lunsford (2015) provides a characterization of the asymptotic

statistical properties of the Proxy-SVAR estimator.9 When the proxy is a strong

(weak) instrument, the estimator for the impact of structural shocks is consistent

(inconsistent and biased towards zero). Ludvigson, Ma, and Ng (2015) employ an

iterative projection IV to jointly build multiple external instruments. Proxies are

8Respectively, the A and B matrices in eq.(2.3).
9In Jentsch and Lunsford (2016) the performances of different bootstrapping techniques are

compared for the Proxy-SVAR. The suggest that the moving block bootstrap is the best option.
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usually built from a narrative description of policy decisions10 or exploiting high

frequency identification around some key events as in the already mentioned case

of Gurkaynak, Sack, and Swanson (2005) and Gertler and Karadi (2015).

The Bridge Proxy-SVAR generalizes the HFI-PSVAR to those cases where there

are no key events or when their selection is troublesome and arbitrary. The ad-

vantage of this methodology lies in the high frequency identification that may be

cumbersome at low frequencies. At the same time, the high frequency shocks are

used to instrument the reduced form residuals (prediction errors) of a LF-VAR. In-

tuitively, the Bridge always employs more information than a naive LF-VAR. Our

approach remotely resembles the bridging equations which link data available

at different frequencies through linear regression to produce nowcast and short-

term forecast; e.g. Baffigi, Golinelli, and Parigi (2004) and Diron (2008). However,

we exclusively focus on structural analysis and employ an instrumental variable

approach.

After weighing pros and cons of our methodology versus the existing alterna-

tives, we regard the Bridge as a particularly suitable tool for structural analysis on

macro-financial linkages.
The remainder of this paper is organized as follows. Section 2.2 describes the

Bridge Proxy-SVAR methodology. Section 2.3 presents the Monte Carlo experi-
ments employed for testing. In Section 2.4, we apply the Bridge to study monetary
policy in the US. Finally, Section 2.5 concludes.

2.2 Methodology

We introduce our methodology by summarizing the Proxy-SVAR identifica-

tion (Section 2.2.1). In Section 2.2.2, we explain the steps that constitute the Bridge

Proxy-SVAR methodology. First, we provide a general description of the identifica-

tion. Second, an illustrative example shows how the Bridge can recover the correct

impact matrix B in the VAR representation. On the other hand, when working

with temporally aggregated data (LF-VAR) even the correct identification scheme

cannot recover the true B matrix.
10See for example Stock and Watson (2012), Mertens and Ravn (2013) and Mertens and Ravn

(2014).
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2.2.1 Proxy-SVAR

Consider the simplest possible VAR representation:

Yt = AYt−1 + ut ut ∼ N (0, Σu) (2.1)

where Yt and ut are respectively n-dimensional vectors of endogenous variables

and reduced form residuals with variance-covariance matrix Σu. The objective is

to recover the structural form of the VAR, characterized by the vector of structural

shocks εt = B−1ut:

Yt = AYt−1 + Bεt εt ∼ N (0, I) (2.2)

Let us consider a bivariate VAR system, where X may represent a collection of

variable and not necessarily a single variable:[
Xt

yt

]
=

[
A11 A12

A21 A22

] [
Xt−1

yt−1

]
+

[
B11 B12

B21 B22

] [
εX

t

ε
y
t

]
(2.3)

The Proxy-SVAR is an identification strategy that partially identifies the unknown

B matrix. Namely,

[
B12

B22

]
represent the impact response (IRFs) of the system to

a structural innovation in the variable y. The Proxy-SVAR exploits the external

information to the VAR system contained in zt. zt is assumed to be a proxy for,

at least, a component of the true ε
y
t with the following (instrumental variable)

properties:

E
[
ε

y
t zt
]

= µ 6= 0

E
[
εX

t zt

]
= 0 (2.4)

From the conditions in eq.(2.4), it directly follows that B11 is identified up to a

scale-sign factor:

E
[
uy

t zt
]
= E

[(
B22ε

y
t + B21εX

t

)
zt

]
= B22µ (2.5)

In a similar fashion,

E
[
uX

t zt

]
= E

[(
B12ε

y
t + B11εX

t

)
zt

]
= B12µ (2.6)
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The unknown parameter µ represents the share of the information in εy captured

by zt. B22 can be recovered only if µ is known, which in practice reflects the as-

sumption µ = 1⇒ zt = εy. Otherwise, we cannot uniquely identify B22 and, as a

consequence, B12 either. However, µ does not affect the ratio

B12µ

B22µ
=

B12

B22
(2.7)

meaning that B12 is identified up to B22. We can interpret this procedure through

an instrumental variable approach, in particular as two stages least squares

(2SLS):

First Stage: regress uy
t on zt that yields β̂ I = B22µ and ûy

t = B̂22µzt

Second Stage: regress uX
t on ûy

t where β̂ I I = B12
B22

by applying the definition of

OLS.

The IRFs to εy are then computed across different horizons as:

IRFX
0 =

B12

B22
(2.8)

IRFX
n = An−1IRFX

n−1 ∀n > 0 (2.9)

2.2.2 Bridge Proxy-SVAR

Traditionally, studies on monetary and fiscal policy have exploited narrative series

or key events for identification. Such a strategy is hardly extendable to other areas

of research. We therefore propose a more general and structural approach that em-

ploys HF information and, in this way, attenuates the time aggregation bias (see

Section 2.2.3). Unlike the literature on mixed frequency, we do not model jointly

the relationship between HF and LF variables, instead we exploit HF information

to draw identification restrictions for the LF-VAR. As we show in Section 2.2.3.1,

our approach exploits the superiority of identification prior to temporal aggrega-

tion over identification post temporal aggregation. First of all, we describe the

steps in the Bridge Proxy-SVAR identification.

1. Define two VARs:

(a) The first VAR, labeled High Frequency VAR (HF-VAR), incorporates the

high frequency variables relevant for the analysis (e.g. financial daily).
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It includes the variable of interest y and all the other variables necessary

for the identification of the shocks. We define this collection of other

variables as the information set Ψ. Potentially, the researcher can use

other (more appropriate, depending on the case) econometric models

for HF data. Moreover, the applied identification scheme should follow

from economic theory.11 If these conditions are satisfied, then ε̂
y
t ≈ ε

y
t .

(b) The second VAR, defined Low Frequency VAR (LF-VAR), includes vari-

ables at lower frequency. It features presumably macroeconomic aggre-

gates and the variable yt aggregated at lower frequency yτ either by

skip-sampling or averaging. The estimation of the LF-VAR yields the

reduced form residuals uτ =
[

uX
τ uy

τ

]′
.

2. Aggregate the shocks estimated at HF to the LF:

zτ =
1
m

t+m
∑
i=t

ε̂
y
i averaging time aggregation

zτ = ε̂
y
mt skip-sampling time aggregation

where m is the number of HF periods contained in a LF frequency period.

If all sub-periods are the same then, in the averaging case, the correct ag-

gregation scheme is actually given by zτ = ε̂
y
t (the shock in the first HF

sub-period). If the assumptions in (1a) are satisfied, then, by construction,

the proxy is exogenous E
[
εX

t zt
]
= 0 and relevant E

[
ε

y
t zt
]
6= 0.

3. Use zτ as a proxy for the structural shock of interest: instrument uy
τ with

zτ and estimate the impact effect of a shock in y. This means that we are

identifying the second column in the B matrix in eq.(2.2). We can see this

procedure as 2SLS or directly as IV:

B2 =
(
z′τuy

τ

)−1
z′τuτ

=
[

µB22 µB12

]
=

[
1 B−1

22 B12

]
(2.10)

11The higher the frequency at which they are imposed, the less identifying restrictions constrain
the data and the more they are likely to hold.
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so that the impact response to ε
y
τ is identified up to the impact effect on y

itself. If we are confident that ε̂t = εt, then µ = 1 and we can estimate the

size of the shock from the standard deviation of the series obtained from the

first stage regression.

Notice that the assumption in point 1, ε̂
y
t ≈ ε

y
t , is far more stringent than what

we actually need. In fact, assume that the structural shock of interest can be de-

composed as a sum of two orthogonal iid components, weighted by the scalars

µ1, µ2:

ε
y
t = µ1ςt + µ2φt ςt ⊥ φt (2.11)

As explained in Section 2.2.1, the PSVAR partially identifies the B matrix and con-

sequently we need to recover only a component of the HF shock ε
y
t , for example

ςt. Once again, this feature resembles a standard IV case where we exploit an ex-

ogenous variation in a variable of interest and not the whole exogenous variation.

Recall indeed that eq. (2.4) does not assume the correlation being equal to 1, but

only different from 0.

Next, we analyze how the Bridge Proxy-SVAR deals with data sampled at

mixed frequencies. Starting from a general case, we move to a tractable exam-

ple where, if a component of the structural shocks is correctly identified at HF,

our proxy recovers the correct true impact matrix B.

2.2.3 Time Aggregation

As a first step, following Foroni and Marcellino (2016), we illustrate the most gen-

eral formulation. The objective of the analysis is to recover the IRF of the VAR

system to a shock in the HF variable. The common practice consists of trans-

forming the HF (indexed by t) at LF (indexed by τ) and running a VAR on time

aggregated data. For the sake of simplicity, we consider a stationary case without

deterministic components:

Yt = A(L)Yt + Bεt εt ∼ N (0, I), t = 1, 2, ..., T

[I − A(L)]Yt = Bεt εt ∼ N (0, I) (2.12)

Time aggregation is generally a two-step filter. First, the data is transformed

through the filter w(L) and, second, the series is made observable only every
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m periods through the filter D(L). We consider the time aggregated represen-

tation under skip-sampling (or point-in-time sampling) since average sampling

introduces an higher order MA component that further complicates the analysis.

Nonetheless, we report in Appendix B.3 the same derivations for the averaging

scheme and show that similar results hold in our Monte Carlo simulations. In the

skip-sampling case, the filter w(L) = 1 does not produce any change. We apply

the filter D(L) = I + AL + ... + AmLm so that the researcher can observe certain

variables only once every m periods:

D(L) [I − A(L)]Yt = D(L)Bεt

Yτ = C(L)Yτ + Q(L)εt εt ∼ N (0, I), τ = mt, 2mt, ..., T

Yτ = C(L)Yτ + ξτ ξτ ∼ N (0, Ω) (2.13)

where C(L) = D(L)A(L) and Q(L) = D(L)B. Ω is given by the squared con-

temporaneous elements in the Q(L) matrix as the structural shocks are not auto-

correlated. Time aggregation mixes different structural shocks at different times

in ξτ.

2.2.3.1 An Illustrative Example

We focus now on a more specific case. We aim at assessing the effect of the shock

in y, observable at HF, on x, available only at LF. x is time aggregated through

skip-sampling. We consider a VAR(1) representation and a mismatch between

HF and LF equal to two, such that we can illustrate the methodology through

simple algebra:

Yt = AYt−1 + Bεt εt ∼ N (0, I)

(I − AL)Yt = Bεt εt ∼ N (0, I) (2.14)

To move to the time aggregated representation (under skip-sampling), we apply

the filter D(L) = I + AL:

D(L) (I − AL)Yt = D(L)Bεt(
I − A2L2

)
Yt = (I + AL)Bεt

Yτ = CYτ−1 + ξτ ξτ ∼ N (0, BB′ + ABB′A′)

Yτ = CYτ−1 + Q(L)εt εt ∼ N (0, I) (2.15)
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where C = A2 and Q(L) = (B + ABL). Let us consider the system in extended

notation in terms of the reduced form residuals ut:[
xt

yt

]
=

[
a11 a12

a21 a22

] [
xt−1

yt−1

]
+

[
ux

t

uy
t

]
(2.16)

In particular, assume that B =

(
b11 0

b21 b22

)
so that we are in the standard

Cholesky case, as in Foroni and Marcellino (2016):[
xt

yt

]
=

[
a11 a12

a21 a22

] [
xt−1

yt−1

]
+

[
b11 0

b21 b22

] [
εx

t

ε
y
t

]
(2.17)

The temporally aggregated system is given by:[
xτ

yτ

]
=

[
a2

11 + a12a21 a11a12 + a12a22

a11a21 + a21a22 a12a21 + a2
22

] [
xτ−1

yτ−1

]
+

[
ξx

τ

ξ
y
τ

]
(2.18)

where [
ξx

τ

ξ
y
τ

]
=

[
b11εx

t + (a11b11 + a12b21) εx
t−1 + a12b22ε

y
t−1

b21εx
t + b22ε

y
t + (a21b11 + a22b21) εx

t−1 + a22b22ε
y
t−1

]
(2.19)

In the temporal aggregation case, biases arise even if the identification exploits

the correct Cholesky decomposition of the variance-covariance matrix of the re-

duced form residuals. The problem originates from the variance-covariance ma-

trix observable at LF: Ω = BB′ + ABB′A′ which is different from the true BB′.

Intuitively, in the LF-VAR the zero restriction constrains ε
y
t to have a zero effect

over x for m periods instead of one (in this simple case m = 2). An analytical

illustration of the time aggregation bias is reported in Appendix B.2.

Instead of imposing identification restrictions directly on the LF representa-

tion, we suggest identifying structural shocks from a HF system, which is not

subject to temporal aggregation biases. The (temporally aggregated) structural

shocks can be then employed to draw identifying assumptions in the LF-VAR

representation. As the variable x is not directly observable at HF, the goodness

of the identification is increasing in the amount of information included in the

HF-VAR (Ψ). Moreover, Ψ should contain all the variables necessary to achieve a
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correct identification at this HF stage, which depends on the specific cases under

examination.

In this stylized example, the HF system in the observables, assumed to be again

VAR(1), can be express in blocks as:[
Ψt

yt

]
= Γ

[
Ψt−1

yt−1

]
+ Φ

[
εΨ

t

ε
y
t

]
(2.20)

The correct identification is fully achieved if xt is spanned by the collection of

variables that constitute the HF system and the LF-VAR (lagged):12

xt ∈ span {Ψt, Ψt−1, yt−1, xτ−1} (2.21)

Intuitively, the Proxy-SVAR uses information contained both in the HF system

and the LF-VAR. It is the union of these two information sets that has to provide

enough information on the unobservable xt to achieve the correct identification.

For simplicity, assume that Ψt perfectly incorporates the information contained

in xt. In applied research, if the HF system consists of financial variables, such

an assumption is motivated by financial markets incorporating all available infor-

mation. Moreover, a wide literature studies the reaction of financial markets to

macroeconomic data releases. Imposing a recursive structure where yt is ordered

after Ψt yields the correct impact matrix B. In this way, identification restrictions

do not rely on the temporally aggregated system but are drawn at HF.

Notice that, actually, we do not need to fully capture ε
y
t but only a component

of it. In what follows, we assume that the proxy is given by a component of

the true structural shock as defined in eq. (2.11). In order to be consistent with

the skip-sampling temporal aggregation, we take the last HF shock within the LF

interval:

zτ = ςt

12Notice that those are the necessary requirements to achieve the correct identification. In order
to improve over the temporal aggregation practice, i.e. imposing restrictions directly on the LF-
VAR representation, the conditions are much milder.
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We can express the last stage in the Bridge either as a two stage least square (2SLS)

estimation or directly as IV. In the 2SLS case, we use zτ it in the first stage regres-

sion

ξ
y
τ = β1szτ + ητ ητ ∼WN

where η is the error term, assumed to follow the distribution iidN (0, σ2).13

The estimated coefficient from the first stage is:

β̂1s = E
[
z′τzτ

]−1
E
[
z′τξ

y
τ

]
=

E
[
ςt
(
b21εx

t + b22ε
y
t + (a21b11 + a22b21) εx

t−1 + a22b22ε
y
t−1

)]
E [ςtςt]

= µ1b22 (2.22)

If we employ the whole shock ε
y
t , then β̂1s = b22 which is the true parameter in

the HF representation. Notice that both requirement for a proxy are satisfied:

E
[
ξ

y
τzτ

]
= β̂1s = µ1b22 6= 0 IV relevance

E [εx
t zτ] = 0 IV validity (by construction) (2.23)

The fitted value from the first stage are given by:

β̂1szτ = µ1b22ςt (2.24)

The second stage regression reads

ξx
τ = β2s

(
β̂1szτ

)
+ ϕτ ϕτ ∼WN (2.25)

β̂2s = E
[(

β̂1szτ

)
β̂1szτ

]−1
E
[
β̂1szτξx

τ

]
= E

[
µ1b22ς2

t

]−1
E [ςtξ

x
τ]

= (µ1b22)
−1

E
[
ςt
(
b11εx

t + (a11b11 + a12b21) εx
t−1 + a12b22ε

y
t−1

)]
(2.26)

= 0
13Henceforth, white noise (WN) will point at the error term in simple OLS equations, assumed

to be distributed as iidN (0, σ2) and uncorrelated with the independent variables.
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meaning that the Bridge correctly recovers the Cholesky structure of the inno-

vations. We obtain an equivalent result if we apply straight the definition of IV

estimator:

β̂Proxy = E
[
zτξ

y
τ

]−1
E [zτξx

τ]

=
E
[
ςt
(
b11εx

t + (a11b11 + a12b21) εx
t−1 + a12b22ε

y
t−1

)]
E
[
ςt
(
b21εx

t + b22ε
y
t + (a21b11 + a22b21) εx

t−1 + a22b22ε
y
t−1

)]
= 0 (2.27)

Through this tractable case, we have shown analytically that the Bridge recov-

ers the true impact matrix, whereas the correct Cholesky ordering imposed at LF

introduces biases. The magnitude of these differences in a more general setup can

only quantified through Monte Carlo experiments, presented in Section 2.3. Fur-

thermore, we also test the robustness of the methodology to misspecifications and

to limited information in the HF system and LF system employed by the Bridge

(omitted variables).

2.3 Monte Carlo Experiments

Our design is similar to Foroni and Marcellino (2016) who compare the finite sam-

ple performances of the HF-VAR, LF-VAR (time aggregated), and the MF-VAR. In

the latter, one variable is unobservable at high frequency but the econometrician

only observes one out of three observations. We run the same experiment but

we substitute the MF-VAR with the Bridge. Notice that the HF-VAR constitutes a

“counter-factual” first best and an upper bound for the performances of the MF-

VAR. Temporal aggregation follows skip-sampling, while in Appendix B.3 we re-

port the main results under the averaging temporal aggregation scheme. We focus

on the IRFs that summarize the relevant information on the estimation of the sys-

tem. To be able to compare the IRFs under HF and LF representation, the IRFs

at HF have to be treated in a consistent manner with the temporal aggregation

scheme applied to the data.

The benchmark outline of the experiment is the following: we consider a

VAR(1) DGPs and, for thirteen representative parametrizations, generate 1000

replications of 3000 HF observations. In a first step, the frequency mismatch is

three, so that at LF we dispose of 1000 observations. For the sake of synthesis, we
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evaluate the performances of the three identifications through the lens of the Mean

Absolute Distance (MAD) which measures the distance between the estimated and

the true IRFs (cumulated over 8 horizons). For each replication, we compute the

MAD and then we average over the whole set of replications.

The analysis begins with a stylized case that highlights the time aggregation

bias alone. Then, one step at the time, we include further elements resembling the

identification challenges that economists face in applied research.

2.3.1 Pure Time Aggregation

The LF-VAR and the Bridge temporally aggregate information in antithetical ways.

In a LF-VAR, the aggregation occurs before identification while the Bridge identi-

fies structural shocks at HF and then compresses them at LF. We are implicitly

comparing the performances under these two temporal aggregation schemes.

The DGP follows the structure:(
xt

yt

)
=

(
ρ δl

δh ρ

)(
xt−1

yt−1

)
+

(
1 0

1 1

)(
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where

(
ex

t

ey
t

)
∼ N (0, I2). Basically, the innovations follow a recursive order-

ing structure that we correctly apply with the HF, LF and Bridge. We test 13 com-

binations of {ρ, δl, δh} that represent different possible structures of the DGP.14

Figure 2.1-2.2 display an example of IRFs recovered with the three identifica-

tions. The HF-VAR and the Bridge perfectly recover the true IRFs, while the LF-

VAR overestimates the size of the shock. Not surprisingly, Figure 2.3 points out

that the HF identification is the best possible identification. An infinitesimal bias

comes from the finite sample estimation of the HF-VAR system. The Bridge, which

is by construction a second best option, performs very closely to the HF-VAR.

Even if the Bridge and HF-VAR apply the same identification at HF, the Bridge is

inefficient due to the two stages in the estimation. The comparison resembles the

efficiency loss of the IV estimation with respect to OLS.

For nearly all cases, the Bridge recovers the IRFs with a smaller bias than the LF-

VAR. Under few DGPs, the exception consists of the shock to the second variable

y with zero impact on the first variable x. The zero restriction is imposed in the

14The parametrizations are reported in Appendix B.2.
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case of the HF-VAR and LF-VAR, while it is estimated from the first stage in the

case of the Bridge. Even if the median IRF is zero, the IRFs generated by the Bridge

across the 1000 replications may slightly differ from 0 due to finite sample bias.

As a result, when the MAD is generally very low, the Bridge may perform worse

than the LF-VAR.

While we present the main results of the Monte Carlo under averaging time

aggregation in Appendix B.1, Figure 2.4 provides an intuitive portrait of the biases

arising from this alternative time aggregation scheme. Even if the correct recursive

structure is imposed at LF on the variance-covariance matrix of the reduced form

residuals, the restriction constraints three HF periods instead of one. As a result,

the LF-VAR estimates strongly biased IRFs, whereas the Bridge correctly recover

them.

2.3.2 Time Aggregation and Misspecification

In applied research, the econometrician does not know the true DGP and, indeed,

the analysis aims at recovering information on it. In this light, the interaction

between temporal aggregation and misspecification deserves attention. The DGP

deviates from the recursive structure which, on the contrary, is still employed as

identifying restriction by HF-VAR, LF-VAR and Bridge. Additionally, we consider

two further issues: wider frequency mismatch and measurement error.

2.3.2.1 Contemporaneous Effects

The impact matrix features now all non-empty entries:(
xt

yt

)
=

(
ρ δl
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)(
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)
+

(
1 c1

c2 1

)(
ex

t

ey
t

)
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We present the results under {c1, c2} = {−0.3, 0.1}, but we have tested different

combinations obtaining similar results. In this case, the Bridge closely resembles

the performance of the HF-VAR whereas the LF-VAR leads to sizable biases (Fig-

ure 2.5).
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2.3.2.2 Wider Frequency Mismatch and Measurement Error

First, we now turn to a case in which the mismatch between HF and LF is sig-

nificantly wider, i.e. m = 30, which represent the monthly-daily case. Fig. B.7

compares the identifications over the 13 DGPs through the lens of MAD. The LF-

VAR induces a much larger bias with respect to the HF-VAR and Bridge.15

Second, we test the impact of measurement errors without finding any severe

effect for the Bridge, while LF-VAR suffers the most. The results reported in Fig.

B.8 refer to a case in which the first variable in the system is affected by a sizable

measurement error with standard error 0.3 (30% of the actual standard deviation

of the structural shocks).

2.3.3 A Practical Case - One LF and Two HF variables

Let us turn now to a more practical case: we consider a situation in which the

researcher observes two HF variables and one LF variable. x is observable only

at LF, whereas y and z are available at HF. We are interested in studying how the

shocks to the HF variables affect x (e.g. how financial shock affect the macroe-

conomy). Contrary to the previous MC exercises, in the first stage of the Bridge

we use only the two HF variables. In the second stage, we will include all three

variables (time aggregated). Once again, we compare the Bridge with the HF-VAR

(counter-factual) and LF-VAR.16
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Again, under the many parametrization tried, we choose to present the results

with 
1 c12 c13

c21 1 c23

c31 c32 1

 =


1 0.65 0.8

0.4 1 1

0.5 0.8 1


15Notice that the Bridge easily accommodates the daily-quarterly mismatch without relevant

computational costs.
16In this case, we rely on the conservative identification that is described in Appendix B.1.
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This parametrization represents the strong simultaneity among the variables

observed at HF (financial variables). The same pattern of the previous exercises

emerges also in this practical case (Figure 2.6). The HF identification of the Bridge,

not subject to temporal aggregation biases, employs only a subset of the actual

information. However, the missing variable is included in the LF-VAR represen-

tation whose reduced form residuals are instrumented in the second stage of the

Bridge. Consequently, we are using a richer information set than the LF-VAR.

Moreover, economists usually assume that financial markets incorporate with a

negligible lag all available information. In empirical implementations, the Bridge

is therefore unlikely to suffer from a problem of limited information at HF.

2.3.3.1 High Frequency not High enough?

A potential concern arises if the HF identification of the Bridge is implemented at

the wrong frequency. For example, the correct analysis for financial phenomena

could be though as intra-daily and not daily.17 To address this concern, we test

whether, by relying on a HF, which is not high enough, we can still mitigate time

aggregation biases. We repeat the same exercise of Section 2.3.3 but, while the HF-

VAR employs the correct frequency, the Bridge relies on mildly time aggregated

data (m = 3). The LF-VAR estimation is based on aggregation over nine periods

(m = 9). Figure B.9 depicts that the Bridge still attenuates the biases with respect

to the LF-VAR.

2.3.4 Large Systems

Until now, we have studied the performances of different identifications in small

systems with ad hoc parametrizations of the DGP. However, we know that many

events (shocks) hit economies at the same time and financial markets take this in-

formation nearly instantly into account. To represent this situation, we consider

a nine variables VAR as DGP. Moreover, in order to tackle any possible suspicion

of DGP “self-selection”, we randomly parametrized both the autoregressive ma-

trix A and the impact matrix B. The only constraints that we impose ensure the

stationary of the system and a mapping between variables and shocks.18 From

17In case relevant data is available at intra-daily frequency, the econometrician can recover
shocks at this frequency and link them with macro-variables through the Bridge. However, this
procedure may induce noise coming from the micro-structure of the market

18Each shock impacts the corresponding variable more than other variables.
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100 random parametrizations of the system, we generate 1000 data-points at LF

across 1000 simulations.19

We run this large experiment over three dimensions:

1. the time aggregation scheme: (a) skip-sampling

(b) averaging

2. information employed by the Bridge:

(a) partial information at LF: the HF stage of the Bridge employs full in-

formation but the LF stage (and LF-VAR) do not include the last two

variables in the system

(b) full information at LF:

i. full information at HF: all information is included both in the HF-

VAR and in the LF-VAR employed by the Bridge

ii. partial information at HF: the HF stage of the Bridge does not in-

clude the last two variables in the system

3. frequency mismatch: (a) quarterly-monthly (m = 3)

(b) monthly-daily (m = 30)

The case (2b) is a robustness check similar to the practical case presented in Section

2.3.3. However, we do not expect it to be particularly severe if the HF system

employs financial data.

The Bridge improves over the performances of the LF-VAR across all the cases

(Table 2.1). MAD percentage gains over the LF-VAR vary between 10% and 73%.

The gains are higher when the Bridge employs full information and under the av-

eraging scheme. In the latter case the biases from time aggregation are larger. Fig-

ure 2.7 displays examples of a heat-map of the MAD over the three identifications

for one of the 100 systems for all combinations of shocks and variables. The sim-

ilar results of the Bridge compared to the HF-VAR stand out immediately. At the

same time, the LF-VAR produce much worse estimates than the alternative meth-

ods. Figure 2.8 presents an example of IRFs. Even in this large system, the Bridge

performs very closely to the HF-VAR and it subject only to a loss in precision. In

conclusion, the Bridge greatly improves the performances of the analysis over the

19Similar results hold for 500 observations at LF.
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naive practice of time aggregation and it is often close to the performances of a

counter-factual HF-VAR. The more complete the information set is at HF in the

Bridge identification, the closer the results of the Bridge to the HF-VAR. On the

other hand, employing only partial information in the LF-VAR of the Bridge does

not produce too severe losses in performances. In fact, the information omitted

from the LF system does not affect the estimated B matrix but only the transmis-

sion of the shocks.

2.4 Application - Monetary Policy in the US

This section is devoted to an empirical application of our methodology. We choose

a popular empirical question in order to have benchmarks for comparison: the

macroeconomic effects of monetary policy shocks in the US. The related identi-

fication poses great problems due to various reasons and, in particular, due to

two challenges. First, the Federal Reserve (FED) often changes the policy rate in

response to current and expected economic conditions. Such responses cannot

obviously be considered exogenous. Second, agents anticipate a large component

of the changes in the policy rate (e.g. Vicondoa, 2016) and this anticipation can

lead to VAR failures. Romer and Romer (2004) and Gertler and Karadi (2015)

(RR and GK henceforth) employ two popular identification strategies and, con-

sequently, constitute our reference points. RR mainly tackle the first challenge,

analyzing US monetary policy through a narrative approach that takes into ac-

count the information contained in the Greenbook (FED forecasts). Their series

of monetary shocks have been updated, among others, by Coibion et al. (2012).

GK focus mainly on the second identification threat, using the series of mone-

tary policy surprise built by Gurkaynak, Sack, and Swanson (2005) as a proxy to

reach identification in a monthly VAR. Since GK employ the Proxy-SVAR, they

are the most natural comparison for the Bridge. Gurkaynak, Sack, and Swanson

(2005) measure monetary policy surprises as the change in the price of Fed Funds

(FF) future contracts around FOMC meetings days. While they exploit these key

events for monetary policy, we do not impose a priori any special role for these

dates. Nonetheless, we find ex-post that the Bridge identifies shocks that are ab-

normally sizable on FOMC meeting days vis-à-vis non-FOMC days. Our series

of shocks produces similar macroeconomic effects to those found in Gertler and

Karadi (2015). Moreover, the monetary policy shocks we identify are immune to
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some criticisms posed in the literature on Gertler and Karadi (2015). For example,

our measure of monetary policy shock is orthogonal to changes in risk premia

that may be captured by the FF futures. Finally, within our framework, we can

easily decompose two components captured by GK and defined in Gurkaynak,

Sack, and Swanson (2005) as two orthogonal factors: a “current federal funds

rate target” factor and a “future path of policy” factor. The future component is

not strictly a monetary policy shock since incorporates significant informational

content. This finding is consistent with recent papers by Campbell et al. (2012)

and Campbell et al. (2016) who introduced the distinction between Delphic and

Odyssean forward guidance.20

Instead of focusing on particular events, we estimate a daily VAR on the sam-

ple 1991m1-2008m6 to avoid any issue related with the zero lower bound. The

optimal number of lags based on the three most popular information criteria is 22.

Notice that we may employ more refined econometric models, suitable for finan-

cial data, ranging from a VAR featuring stochastic volatility to a SVAR-GARCH.21

Nonetheless, as we show in a few lines, a standard VAR suffices in this case. A

daily analysis over such a long horizon offers vast degrees of freedom allowing

us to include a large amount of variables to widen as much as possible the infor-

mation set.

2.4.1 Romer & Romer and Gertler & Karadi

The Target Fed Fund Rate (TFFR) and the price of the FF Future contract 3 months

ahead (FF4) constitute our monetary policy indicators. The TFFR allows us to

resemble the analysis of RR while the FF4 corresponds to the analysis of GK. In

the latter case, it is necessary to remove the TFFR from the HF-VAR in order to

capture a mixture of shocks to the current and future path. We identify monetary

policy shocks through a recursive ordering, placing our measure of monetary

policy last. In other words, we regress the TFFR (FF4) on the lags and contempo-

raneous values of the other financial variables (plus the TFFR-FF4 own lags). This

procedure orthogonalizes the reduced form residual in the TFFR (FF4) equation

20Lakdawala (2016) also studies the macroeconomic effect of current and future factors. How-
ever, in our case the decomposition does not exploit FOMC meetings explicitly and it is applied
directly within our daily VAR. Moreover, the current factor identified in Lakdawala (2016) leads
to a positive reaction of CPI that we find puzzling.

21See for example Lutkepohl and Milunovich (2015). Additionally, when using financial vari-
ables, identification itself can exploit changes in volatility.
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from all innovations in other financial variables. In this way, we ensure that

we clean our measure of monetary policy shocks from other innovations in the

system occurring in the same day. In an intuitive fashion, we define as mone-

tary policy shocks the new information that enters the system at time t uniquely

through our measures of monetary policy (TFFR-FF4). In this way, we clean the

residuals in the FF4 from non-monetary disturbances like the endogenous market

reaction to macroeconomic news.22 We are aware that a wide literature studies

the reaction of financial markets to monetary policy shocks. For example, stock

prices, bond yields and exchange rates respond to the decisions of the central

banks in the same day. However, as explained in Section 2.2.1-2.2.3.1, the Bridge

only requires a component of the true structural shock and not the whole struc-

tural shock to yield unbiased estimates of the impact matrix.23 On the other hand,

a more relaxed identification scheme would incorporate other structural shocks

in our measure of monetary policy shocks, violating the exclusion restriction and

biasing our analysis. This issue is particularly relevant for the FF4 as the price

of the FF Futures may incorporate information not strictly related with monetary

policy which can nonetheless affect the conduct of monetary policy in the future.24

Notice that the procedure applied in this case corresponds to the conservative

Bridge identification formally illustrated and tested in the Monte Carlo experi-

ments (Appendix B.1). Our results are robust to two alternative high frequency

identifications that do not rely on timing assumptions. First, we follow Rigobon

(2003) in applying the identification through heteroskedasticity: we exploit the

change in the volatility of monetary policy shocks between FOMC meeting days

and non-FOMC meeting day. Second, independent component analysis allow us

to identify structural shock by exploiting the non-normality of the reduced form

residuals.25

22If the information set in our HF system is wide enough, a common unobservable factor may
affect all the financial variables at the same time. The available information on macroeconomic
aggregates is a good and important candidate. By ordering our monetary policy indicator last, we
clean our measure of monetary policy shocks from this unobservable factor, i.e. from all available
information captured by financial markets, in particular related with macroeconomic aggregates.

23An exogenous variation and not the whole exogenous variation with an instrumental variable
terminology.

24For the TFFR, the ordering does not matter: the correlation between shocks identified placed
the TFFR last or first is 0.97, while repeating the same exercise for the FF4 the correlation falls to
0.7.

25Further details on these two alternative identifications are available in Section B.4.1.2 (Ap-
pendix).
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The full list of variables reads:

VAR: [Fed Fund Future 3 months; S&P500; VXO; Bid-Cover Ratio in Treasury Auc-

tions; Brent Crude Oil; Eurodollar Exchange Rate; Commodity Price Index; Gold

Price Index; BBA Corporate Spread; FED Cleveland Financial Stress Index; As-

set Backed Securities (price); 10y Treasure Spread; 5y Treasure Spread; 1y Treasure

Spread, Fixed Mortgage Rate; Oil Futures; Dollar-Pound Exchange Rate; Eurodol-

lar Futures; Target Fed Fund Rate]

We label the shocks identified from our daily VAR as Bridge Target FFR and Bridge

FF4 respectively. As a first diagnostic of our identification at HF, we study the re-

lationship between the identified shocks and FOMC meeting days. FOMC meet-

ing days prove to be special day for the size and volatility of the shocks vis-à-vis a

“normal” day. Quite reasonably, such a special role is more relevant for the shorter

horizon contracts, with the maximum for the TFFR. In Appendix B.4, we provide

a detailed account through descriptive statistics and regression analysis.

In a second diagnostic, we compare our shocks with RR and GK by restricting

our series to the FOMC meeting days only. Table 2.2 reports the contemporaneous

correlation across the four series of shocks during FOMC meeting days, while

Table 2.3 refers to the monthly aggregates.26

Notably, the Bridge TFFR shocks are highly correlated with both the RR series

(0.77) and the GK series (0.41). The FF4 shocks are correlated mainly with the

GK series (0.61) and less with the RR series (0.27). These correlations decrease

once we move from the FOMC dates to the monthly aggregates as we consider

all available days in our sample. However, the correlations remain positive and

statistically significant also at the monthly frequency.

The lack of correlation around FOMC meetings between the Bridge TFFR

shocks and the Bridge FF4 shocks follows by construction from the two estima-

tions at daily frequency. When identifying shocks in the TFFR, we include the FF4

in the VAR and order the TFFR after the FF4. Consequently, a shock to the TFFR

does not produce any change in the FF4 in the same day. On the other hand, our

26Figures B.17-B.18 display the comparison in monthly terms (in Appendix B.4). The predictive
power of our Bridge Target for the RR shocks is reported in Figure B.19. In Figure B.20 we show
that both the Bridge Target FFR and the Bridge FF4 contain relevant information to fit the GK
shock series.
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alternative identification exploits the unexpected daily changes in the FF4 (uncor-

related with the forecast errors of all other variables). As a consequence, the two

series of shocks are uncorrelated.

Finally, Table B.9 reports anecdotal evidence of the largest daily shocks from

our daily VAR.

We check some properties of our TFFR (FF4) series of shocks that Ramey (2016)

and others has found problematic in GK:

• zero mean: we test the null hypothesis that our monthly aggregated shocks

are drawn from N(0, σ) through the Kolmorogov-Smirnov test. We cannot

reject the null at any significance level (the sample mean is 0.0007 (0.0016))

• autocorrelation: we regress our proxy on its own previous lag and we do

not find a significance coefficient. Moreover, the R2 accounts for 0.02 (0.008)

• predictability: we regress our daily proxy, around FOMC meetings, on the

Greenbook variables used by the RR.

– When we perform this exercise on the TFFR shocks, we find some evi-

dence of predictability with the private FED information. Nonetheless,

the only significant coefficient related to the current level of output. In

our analysis using the sport FF (FF1), this predictability vanishes and

the adjusted R2 turns negative. This discordance is most likely due to

the discrete nature of the TFFR.

– For the FF4, we do not find any significant coefficient and the R2 is in

the order of 0.06, while the adjusted R2 is negative.

This dissonance between the predictability in GK versus our series maybe

due to the event-study approach of the former study. Using the change in

the FF futures around a tight window might not include enough information

as all the events across two FOMC meetings (and in other financial markets)

are completely discarded.27

The third diagnostic refers to the macroeconomic effect of monetary policy shocks:

we aggregate by averaging the TFFR and FF4 shocks at monthly frequency and

we use the Proxy-SVAR. Using both the shocks in FOMC meeting days only and

27These results hold both for the daily and monthly series.
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all the monthly shocks, our results are similar to the small scale VAR of GK as

reported in Figure 2.9-2.10.28 Figure 2.9 displays the IRFs computed by employing

the identified monetary policy shocks in all the days of the sample. Due to the

larger informational content included in the instrument, the confidence bands are

narrower than in GK who exploit exclusively monetary policy surprises in FOMC

meeting days. On the other hand, in Figure 2.10 we repeat the same exercise

but we use only the shocks identified on FOMC meeting days. Furthermore, we

do not impute a 30 days window to such shock as in GK and, consequently, the

confidence bands are wider than in GK.29

If we move to the medium scale system, we find comparable results (Figure

B.23).30 The major difference concerns the response of the excess bond premium:

the response is weaker and less persistent in our case. A possible explanation of

this finding relies on the risk component. In fact, while GK take the raw change

in the price of FF4 contracts, our identification cleans the proxy of the risk compo-

nent by including many measures of risk in the daily VAR.

Another relevant issue is the informational (Delphic) component that GK in-

clude in their measure of monetary policy shocks. Once we include the current

rate and the FF future contracts together, we are able to disentangle shocks to

the current and future path of interest rates (Figure 2.11). As exemplified by the

response of industrial production, a shock to the current rate produces the oppo-

site effects to a shock to the future rate. Moreover, the IRF in GK is exactly the

mean between the IRF generate by the two components. We believe that further

research should disentangle Odyssean and Delphic components for a better un-

derstanding of monetary policy. However, this task goes beyond the scopes of this

methodological paper.

28In Appendix B.4, we report the same exercise that employs all the daily shocks within a month.
We find very similar results.

29This implies that our instrument displays many zero entries in the months without FOMC
meetings.

30Lunsford (2015) provides the correct critical value of the F statistic for the Proxy-SVAR and
our first stage result always satisfy his criteria.
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2.5 Conclusions

Temporal aggregation is a severe issue in time series analysis, largely ignored in

the macroeconomic literature. To alleviate temporal aggregation biases, this pa-

per proposes a new methodology, the Bridge Proxy-SVAR, which deals with mixed

frequency data. Structural shocks are recovered in high frequency systems, aggre-

gated at the lower frequency, and used as a proxy for a structural shock of interest

in lower frequency VARs. By instrumenting the reduced form residuals of a VAR

at the macroeconomic frequency, the proxy provides identification restrictions.

Our methodology relies on the superiority of identification prior to temporal ag-

gregation over identification post temporal aggregation. In other words, our pro-

cedure exploits high frequency data for identification by controlling for the correct

information set of policy makers and agents when making announcements or de-

cisions.

The properties of the Bridge Proxy-SVAR are studied analytically and its per-

formances are tested through Monte Carlo simulations. Our methodology largely

outperforms a LF-VAR using temporally aggregated data, which is the common

naive practice in applied macroeconomics. The Bridge is also close to the perfor-

mances of a counter-factual HF-VAR, which constitutes the best possible estima-

tion. In particular, if the amount of information employed is large enough, the

Bridge replicates the estimation of a HF-VAR with lower precision. The biases in-

troduced by temporal aggregation and the potential gain from the Bridge increase

with the complexity of the stochastic process under examination. Unlike existing

mixed frequency techniques, our methodology can exploit daily data in large di-

mensional systems to improve the identification of SVARs. At the same time, the

MF-VAR is a different econometric model that also improves the autoregressive

matrix over a LF-VAR.

As an empirical application, we study the macroeconomic effects of mone-

tary policy in the US. Monetary policy shocks are identified from a large scale

daily VAR over the sample 1991m8-2008m6. Although we do not impose any

special role for FOMC meeting days, the Bridge neatly captures FOMC meeting

days as crucial dates. After aggregating the daily shocks at monthly frequency,

we use them to instrument the reduced form residuals of the Fed Fund Rate in

the monthly VAR of Gertler and Karadi (2015). Our analysis produces very sim-

ilar IRFs to theirs. Consistently with recent findings in the literature, we show
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that Gertler and Karadi (2015) identify a mixture of shocks to the current path

and future path of interest rate, where the latter includes relevant informational

content.31

Importantly for future research, the Bridge Proxy-SVAR exploits high frequency

information for the identification of SVARs without relying on a definite set of

events. The higher the frequency at which they are imposed, the less identifying

restrictions constrain the data and the more they are likely to hold. The Bridge

is particularly promising to improve structural analyses on macro-financial link-

ages, which are characterized by a wide frequency mismatch and need to take into

account a wide information set.
31A significant example of the potential of the Bridge Proxy-SVAR can be found in the companion

paper Gazzani and Vicondoa (2016) where we apply the methodology to identify liquidity shocks
in the Italian sovereign debt market.
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2.6 Tables

MAD GAINS OVER LF-VAR

Identification
Temporal Aggregation Scheme

SKIP-SAMPLING AVERAGING

Quarterly-Monthly Frequency Mismatch

Full information at LF

HF-VAR 21.2% 41.4%

Bridge 20% 36.7%

Bridge - Partial Information at HF 10.3% 10.8%

Partial Information at LF

HF-VAR 32% 48.7%

Bridge 31.5% 28%

Monthly-Daily Frequency Mismatch

Full information at LF

HF-VAR 70% 81.2%

Bridge 65.6% 72.6%

Bridge - Partial Information at HF 33.2% 47.5%

Partial Information at LF

HF-VAR 72.9% 84.7%

Bridge 58.7% 64%

Table 2.1: Performance comparison in Monte Carlo simulations
Performance comparison across the counter-factual HF-VAR, the LF-VAR and the Bridge Proxy-
SVAR. Performances are evaluated in terms of the Mean Absolute Distance (MAD) between the
true IRFs and the estimated IRFs in 100 randomly parametrized DGPs. One summary statistic is
computed based all the combinations of shocks-variables in the system. The gains are expressed
as percentage MAD gains over the LF-VAR. We analyze different cases for a VAR(1) DGP: I) the
frequency mismatch between HF and LF is 3: monthly-quarterly case. II) the frequency mismatch
between HF and LF is 30: monthly-daily case. For both I) and II) we study two sub-cases: a) The
Bridge employs full information at HF; b) The Bridge employs only partial information at HF (7
out of 9 variables). In this latter case, the Bridge employs the conservative identification discussed
in Appendix B.1. For case a) we also analyze: a.1) the LF stage of the Bridge and the LF-VAR use
all available information; a.2) the LF stage and the LF-VAR do not include all the variables in the
system (only 7 out of 9 variables).
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Bridge Target FFR Bridge FF4 Romer & Romer Gertler & Karadi
Bridge Target FFR 1 * * *

Bridge FF4 0 1 * *
Romer & Romer 0.77 0.27 1 *
Gertler & Karadi 0.49 0.61 0.32 1

Table 2.2: Correlation across different monetary policy shocks in FOMC meeting
days
Correlations among different monetary policy shocks in FOMC meetings days: 1) Shocks to the

Target FFR identified from our daily VAR; 2) Shocks to the Fed Future contracts (3 months ahead)
identified from our daily VAR; 3) Monetary policy shocks as in Romer and Romer (2004) shocks
extended by Coibion et al. (2012); 4) Monetary policy shocks as in Gertler and Karadi (2015). All

coefficients different from 0 are statistically significant at the 1% level.

Bridge Target FFR Bridge FF4 Romer & Romer Gertler & Karadi
Bridge Target FFR 1 * * *

Bridge FF4 0.1 1 * *
Romer & Romer 0.34* 0.18* 1 *
Gertler & Karadi 0.27* 0.23* 0.2* 1

Table 2.3: Correlation across different monetary policy shocks at monthly fre-
quency

Correlations among monthly measures of different monetary policy shocks: 1) Shocks to the
Target FFR identified from our daily VAR; 2) Shocks to the Fed Future contracts (3 months ahead)
identified from our daily VAR; 3) Monetary policy shocks as in Romer and Romer (2004) shocks
extended by Coibion et al. (2012); 4) Monetary policy shocks as in Gertler and Karadi (2015). *

denotes statistical significance at the 1% level.
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2.7 Figures

Figure 2.1: IRFs1 in the two variable case - skip sampling
IRFs to a shock in the first variable (x) in the bivariate system. The true IRF is represented by the dotted black line. The
shock is identified through the correct recursive structure in the HF system (blue), LF system (green) and Bridge Proxy

(red). Shaded areas correspond to the 90% confidence bands across 1000 replications. Time aggregation follows a
skip-sampling scheme.

Figure 2.2: IRFs2 in the two variable case - skip sampling
IRFs to a shock in the second variable (y) in the bivariate system. The true IRF is represented by the dotted black line. The

shock is identified through the correct recursive structure in the HF system (blue), LF system (green) and Bridge Proxy
(red). Shaded areas correspond to the 90% confidence bands across 1000 replications. Time aggregation follows a

skip-sampling scheme.
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Figure 2.3: MAD comparison in the two variable case - skip sampling
Mean Absolute Distance (MAD) between the true IRFs and the IRFs estimated by the HF-VAR, LF-VAR and Bridge

Proxy-SVAR (through the correct recursive scheme). Results are reported for 13 parametrization of the DGP. The MAD is
computed by averaging the MAD over the 1000 replications. Time aggregation follows a skip-sampling scheme.

Figure 2.4: IRFs2 in the two variable case - averaging
IRFs to a shock in the second variable (y) in the bivariate system. The true IRF is represented by the dotted black line. The

shock is identified through the correct recursive structure in the HF system (blue), LF system (green) and Bridge Proxy
(red). Shaded areas correspond to the 90% confidence bands across 1000 replications. Time aggregation follows an

averaging scheme.
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Figure 2.5: MAD comparison in the two variable case - averaging
Mean Absolute Distance (MAD) between the true IRFs and the IRFs estimated by the HF-VAR, LF-VAR and Bridge

Proxy-SVAR (through the non-correct recursive scheme). Results are reported for 13 parametrization of the DGP. The
MAD is computed by averaging the MAD over the 1000 replications. Time aggregation follows an averaging scheme.

Figure 2.6: MAD comparison in the practical case
Mean Absolute Distance (MAD) between the true IRFs and the IRFs estimated by the HF-VAR, LF-VAR and Bridge

Proxy-SVAR (through the correct recursive scheme). Results are reported for 13 parametrization of the DGP. The MAD is
computed by averaging the MAD over the 1000 replications. Time aggregation follows a skip-sampling scheme.
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Figure 2.7: MAD heatmap from large randomized Monte Carlo experiment
Mean Absolute Distance (MAD) between the true IRFs and the IRFs estimated by the HF-VAR, LF-VAR and Bridge

Proxy-SVAR in one of the 100 randomly parametrized DGPs. Results are reported for each combination of
shocks-variables in the system (81). The MAD is computed by averaging the MAD over the 1000 replications. Time

aggregation follows a skip-sampling scheme.

Figure 2.8: IRFs from large randomized Monte Carlo experiment
Example of the IRFs of the system to a shock in the first variable in the system, estimated by the HF-VAR, LF-VAR and
Bridge Proxy-SVAR in one of the 100 randomly parametrized DGPs. Shaded areas correspond to the 90% confidence

bands across 1000 replications. The true IRF is represented by the dotted black line. Time aggregation follows a
skip-sampling scheme.
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Figure 2.9: IRFs TFFR
IRFs to a monetary policy shock identified by instrumenting the Fed Fund Rate with our series of shocks in the Target Fed

Fund rate recovered from our daily VAR. From the first stage, F− stat = 11. The VAR includes [FFR, CPI, Industrial
Production, Excess Bond Premium] and it is estimated in log-levels including the optimal number of lags (2) and a

deterministic constant. Shaded areas correspond to 95% bootstrapped confidence bands from 1000 replications.

Figure 2.10: IRFs FF4 comparable with Gertler and Karadi (2015)
IRFs to a monetary policy shock identified by instrumenting the Fed Fund Rate with the series of shocks in the Fed Fund

Future 3 month ahead recovered from our daily VAR. We assign each FOMC meeting day only to the corresponding
month ( without imputing it to other months). From the first stage, F− stat = 7.5. We employ exactly the same

specification of Gertler and Karadi (2015): the VAR includes [FFR, CPI, Industrial Production, Excess Bond Premium] and
it is estimated in log-levels including 12 lags and a deterministic constant. Shaded areas correspond to 95% bootstrapped

confidence bands from 1000 replications.
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Figure 2.11: IRFs - current and future path
IRFs to a monetary policy shock identified by instrumenting the Fed Fund Rate (Fed Fund Future 3 month ahead ) in blue (green)
with the series of shocks in the Fed Fund Future 1 (Fed Fund Future 3) month ahead recovered from our daily VAR. From the first
stage, for FF1 F− stat = 16.2 and for FF4 F− stat = 25.6. The VAR includes [FFR, CPI, Industrial Production, Excess Bond

Premium] and it is estimated in log-levels with the optimal number of lags (2) and includes a deterministic constant. Shaded areas
correspond to 95% bootstrapped confidence bands from 1000 replications.



Chapter 3

The Real Effect of Liquidity Shocks

in Sovereign Debt Markets: Evidence

from Italy

Joint with Alejandro Vicondoa

3.1 Introduction

The sovereign debt crisis has dramatically affected European countries since 2010.

In particular, southern European countries like Greece, Italy, Portugal and Spain

(GIPS) have been facing increasing unemployment rates and worsening credit

conditions for governments, households and firms. Both the media and economic

researchers have focused on the behavior of spreads in yields and credit default

swaps (CDS), which are supposed to reflect default risk. However, sovereign

bonds are highly demanded for their liquidity properties that have also fluctu-

ated during the crisis.

In this paper, we examine liquidity, understood as the ease in releasing an as-

set quickly without incurring additional costs (i.e. market liquidity), as a different

but complementary dimension of financial tensions. We measure liquidity by us-

ing the most popular measure: the Bid-Ask Spread (BAS). The BAS measures the

distance between the highest bid price and the lowest ask price for an asset. A

narrower BAS denotes liquidity because the lower the BAS the easier trading the

asset quickly without transaction costs. We also employ an alternative indicator
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which takes into account the volumes traded in secondary markets. Government

bonds are the most liquid assets in the economy, after money itself. European

banks hold large amounts of these assets in their portfolio due to their historical

low default risk and liquidity risk. Abrupt changes in the liquidity of sovereign

bonds could affect the lending decisions of banks.

To the best of our knowledge, this is the first empirical investigation on the

macroeconomic effects of exogenous changes in liquidity in sovereign debt mar-

kets, which we call liquidity shocks. The Euro crisis constitutes an ideal laboratory

for such analysis because indicators of liquidity and default risk display different

patterns that can be used for identification. Figure 3.1 shows the evolution of the

Bid-Ask Spread (BAS), CDS and yield for Italy, which accounts for 26% of Euro-

pean sovereign debt, between 2004 and 2014.1 While during 2007-2011 the yield

and BAS move in opposite directions, between 2011-2012 both of them increase.

Moreover, the CDS displays different dynamics with respect to the other vari-

ables. Considering the fluctuations in Italian business cycle during this period,

we identify the effects and transmission channels of liquidity shocks. We base our

analysis on Vector Autoregression models (VAR) and our identification strategy

relies both on the standard recursive ordering and on the Proxy-SVAR methodol-

ogy. The latter uses exogenous changes in liquidity identified in a financial daily

VAR as an instrument for structural liquidity shocks.

Liquidity, as we show, has been a major driver for the Italian economy during

the sovereign debt crisis. The Forecast Error Variance (FEV) decomposition shows

that liquidity shocks explain a relevant share of the volatility of unemployment

(15%) and confidence indicators, like consumer confidence, business confidence

and stock prices. A BAS shock generates macroeconomic effects that are at least

as strong as the effects generated by a raise in yield spreads.2

In order to understand the transmission mechanism of liquidity shocks, we

turn to survey data. The Bank Lending Survey and the ISTAT Business Confidence

Survey reveal that liquidity shocks affect the lending behavior of banks through

their liquidity position and costs related to their capital position. Shocks to

1European sovereign debt markets are concentrated with Italy and France accounting for
roughly 50% of the total public debt. Source: European Central Bank Statistics. Italy: 26.4%,
France 22.7%, and Germany 18.3%. The three variables are expressed as monthly averages.

2The joint contribution of BAS and yield spread shocks to the FEV of unemployment is 20%
across 2004-2014 (15% + 5% respectively) and raises up to 30% aver 2009-2014 (15% + 15% respec-
tively).
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sovereign yield spreads do not generate worse lending conditions through the

same channels. Our findings are particularly relevant to improve the understand-

ing of the relationship between real economy and financial markets.

Our empirical results can be interpreted using the theoretical framework de-

veloped by Cui and Radde (2015). They build a real DSGE model with search

and matching frictions in asset markets, where the financial sector intermediates

between buyers and sellers of financial assets. In this framework, an exogenous

increase in financial intermediation costs affects the market participation of buyers

more than the one of sellers and induces a fall in the liquidity of financial assets.

Market liquidity produces relevant implications for the real economy by tighten-

ing the financial constraints of firms and reducing their financing possibilities.3

Cui and Radde (2015) mainly focus on private assets since, in the U.S., sovereign

bonds did not experience a fall in liquidity during the crisis. On the contrary,

as Figure 3.1 displays, in the European (Italian) case, the liquidity of sovereign

bonds has fluctuated significantly.4 Moreover, their setup can accommodate both

market-based and bank-based financial intermediation, with the latter character-

izing European economies. Our empirical findings and their theoretical results

are consistent in terms of: the observed fall in output, fall in consumption and

investment (proxied by business and consumer confidence indicators), turnover

(i.e. traded volume relative the outstanding amount of the asset), and asset prices.

The only (qualitative) difference consists in their responses being starker than our

IRFs because they rely on a model without nominal frictions. In a similar setup

to Cui and Radde (2015), Cui (2016) studies monetary and fiscal interactions with

market liquidity, and draws conclusions on optimal policies by considering gov-

ernment debt as provider of liquidity services.

Further works have also studied liquidity in theoretical frameworks: Del Ne-

gro et al. (2011) and Benigno and Nistico (2014) study the effects of shocks to an

exogenous liquidity constraint, which restricts the fraction of an asset which can

be used to purchase goods. While Del Negro et al. (2011) impose this constraint on

the fraction of equity holdings that a household can resale, Benigno and Nistico

3Notice that, contrary to the existing literature, they are able to generate the comovement be-
tween asset turnover and asset prices.

4Notice that we have also found similar macroeconomic results for the liquidity of corporate
bonds and for the spread in liquidity between corporate and sovereign bonds. Nonetheless, in
all the specifications, shocks to the liquidity of sovereign bonds induce sizeable macroeconomic
effects.
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(2014) restrict the fraction of government bonds that can be exchanged for goods.

Unlike Cui and Radde (2015), these papers do not endogenize the dynamics of

asset liquidity. Both papers conclude that liquidity shocks (i.e a decrease in the

release fraction of these assets) produce strong and negative effects on GDP and

prices, which in both cases are partially explained by a fall in private consump-

tion. These results differ from our empirical findings since we do not find that liq-

uidity shocks induce a significant effect on CPI inflation. Passadore and Xu (2014)

investigate how liquidity risk and credit risk explain sovereign spreads through

the optimal behavior of buyers and sellers. In an endowment economy with in-

complete markets and search and matching frictions in the sovereign debt mar-

kets, they find that the liquidity component can explain up to 50% of sovereign

spread during the Argentinian crisis in 2001. Although the model matches the

correlations and standard deviations of consumption and net exports, they do not

consider the effects on output. Overall, we contribute to this literature by char-

acterizing the empirical effects of liquidity shocks and by identifying its trans-

mission through the banking sector. In light of our empirical findings and of the

existing models, we believe that financial intermediation and search frictions are

a key feature to be taken into account when studying liquidity.

This paper is also related to the strand of the literature that analyzes the

macroeconomic effects of shocks to the spread in yields. Bahaj (2014) and Neri

and Ropele (2015) study the macroeconomic effects of yield shocks and find that

they explain a relevant fraction of business cycle fluctuations in European coun-

tries. However, they do not consider sovereign debt liquidity in their analysis and

this omitted dimension could affect their conclusions. Regarding the transmis-

sion channels, tensions in sovereign debt markets induce a tightening in credit

conditions through an increase in the funding costs of banks (De Marco (2016))

or through the Repo market (Boissel et al. (2014) and Mancini et al. (2014)). In

this paper, we show that liquidity shocks have strong macroeconomic effects and

identify its transmission through the banking sector. We find that liquidity is at

least as relevant as spread in yields to explain fluctuations in economic activity

in Italy and Spain and that commercial banks respond to liquidity shocks in a

different way than to a yield shock.

The remainder of this paper is organized as follows. Section 3.2 describes the

high frequency variables that characterize Italian sovereign debt market. Section

3.3 presents the empirical specification and results using different identification
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schemes. Section 3.4 investigates the transmission channels by exploiting survey

data. Section 3.5 compares the Italian results to France, Germany and Spain and

Section 3.6 concludes.

3.2 Data Description

Sovereign debt markets can be characterized by different indicators: Spread in

Yields (Spread), Credit Default Swaps (CDS), and Bid-Ask Spread (BAS). The

first one captures the difference in yields that a country has to pay in order to

issue sovereign debt with respect to a safe asset, which in this case is the German

sovereign bond with the same maturity. CDS is a proxy for credit risk. Finally, the

third is a widely-used indicator of sovereign debt liquidity (see for example Peri-

coli and Taboga (2015) and Pelizzon et al. (2015)).5 These variables enable us to

characterize the sovereign debt markets. For our analysis, we use data from Italy

for the period February 2004 until November 2014. The Italian sovereign debt

market is one of the most important in Europe, accounting for 26% of the Euro-

pean government debt.6 Before proceeding to the analysis, we describe briefly the

relationship between the three indicators. Table 3.1 displays the daily correlation

between these variables, both in levels and growth rates.

CDS is highly correlated (0.91) with the Spread while the BAS displays a rela-

tive low correlation with the other two variables. This fact also holds if we con-

sider the variables in daily growth rates instead of in levels. In particular, the daily

changes of the BAS are uncorrelated with the other financial variables while CDS

and Spread are positively correlated. From this preliminary description, we can

see that movements in Spread are more associated with credit risk (proxied by the

CDS) than liquidity risk, a similar finding with Pericoli and Taboga (2015).7 How-

ever, these variables maybe correlated with other financial ones like stock prices,

5Alternatively, people also look at the volume traded or at a combination of both. Figure A1
in Appendix C.1 displays the evolution of the volume traded together with the BAS. We use the
BAS for our empirical analysis and present the results using the Liquidity Index, which incorporates
both BAS and Turnover, in Appendix C.4.1.

6Source: European Central Bank Statistics.
7Notice that there is still no consensus in the finance literature. For example, Schwarz (2014)

highlights, through a novel measure of liquidity, that liquidity risk explains a large share of the
raising yields during the Euro crisis. Beber et al. (2009) show that, during period of market stress,
investors chase liquidity and not credit quality.
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interest rates or the equity implied volatility from options. Figure 3.2 displays the

evolution of these financial variables at daily frequency.8

The peaks in the VSTOXX index reflect the two main periods of financial stress:

the second part of 2008, associated with the collapse of Lehman Brothers, and

between the second half of 2011 and 2012, related to problems in the European

Sovereign Debt markets.9 These periods of stress are reflected in a different way

for each financial variable. On the one hand, the Italian stock price index (FTSE

MIB) falls with these two events and recover afterwards, without reaching the

peak of 2007. The response of the Eonia rate is similar and reflects the interest rate

decisions of the ECB and interbank market stress. On the other hand, financial

variables associated with sovereign debt markets display different dynamics. The

BAS spikes in 2009 and exhibits an abrupt change in volatility after January 14,

2011, when the Fitch agency downgraded Greek sovereign debt to junk status.10

The dynamics of CDS and Spread are similar during 2012, in line with the correla-

tions reported in Table 3.1, but the Spread declines at a lower pace after the spikes

than the CDS. During 2014, we observe some spikes in the BAS whereas Spread

and CDS decline steadily. The key point for identification is that the six financial

variables display different patterns.

Since in this paper we are going to focus on shocks to BAS, we analyze whether

fluctuations in this variable are associated with particular European events. This

analysis enables to us to understand better the underlying dynamics of this vari-

able and its sources of variation. Figure 3.3 displays the dynamics of the BAS to-

gether with some key events related to the European Sovereign debt crisis, which

are reported in Table C.1.

First of all, as we mentioned before, the series displays a clear change in volatil-

ity after January 14 2011. After that date, many events related to Portugal, Spain,

Greece, and Italy are reflected as spikes in this variable. Additionally, other Eu-

ropean events coincide with BAS local maxima or local minima. In particular,

the BAS reached a minimum, comparable to pre-crisis levels, when Mario Draghi

stated the “Whatever it takes to save the Euro”. Liquidity in the Italian sovereign

8We use the European Volatility Index (VSTOXX) instead of the one based on FTSE MIB index
because it is available for the whole period and it is representative also for the Italian economy.
Both indexes are highly correlated for the period when they coincide.

9In fact, the decline in the implied volatility happens after the famous speech of Mario Draghi,
president of the ECB, on July 26 2012.

10This fact holds for Spain only a few days later.
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debt market reflects important economic news, which is key for identification be-

cause many of those events can be considered as exogenous with respect to the

Italian economy.

3.3 Empirical Analysis

To analyze the effects of liquidity shocks we rely on different VAR specifications.

In Section 3.3.1, we estimate a small scale VAR used to identify the effects of liquid-

ity shocks. Then, we use an enlarged VAR for a better identification of the shocks

and to characterize in higher detail the results and the transmission mechanisms

(Section 3.3.2). Both specifications rely on the Cholesky decomposition to iden-

tify liquidity shocks. Given that imposing zero contemporaneous restrictions on

some financial variables can be controversial, in Section 3.3.3 we employ a more

agnostic identification strategy, the Proxy-SVAR, which places no restrictions on

the timing or sign of the responses. Finally, in Section 3.3.4 we present extensions

and additional exercises to further investigate liquidity and assess the robustness

of our findings.

3.3.1 Basic Specification

As a first step, we estimate the effect of BAS shocks on Italian business cycles

using a small scale VAR. In particular, we specify a VAR that includes the Unem-

ployment Rate, as a proxy for economic activity; Consumer Price Inflation expressed

as an annual rate, to capture price dynamics; FTSE MIB, which is the main index

of Stock Prices in Italy; Sovereign Spread; and BAS. While the first two variables

are useful to capture the transmission to the real economy, the last three are nec-

essary to identify a liquidity shock. Our sample runs from February 2004 through

November 2014. To deal with the different frequencies, we include the financial

variables as monthly averages in order to capture all the dynamics during the pe-

riod.11 Following Sims et al. (1990), we estimate the model in (log-)levels by OLS,

without explicitly modeling the possible cointegration relations among them.12

11In Appendix we report summary statistic of the main financial variables aggregated at
monthly frequency.

12Sims et al. (1990) show that if cointegration among the variables exists, the system’s dynamics
can be consistently estimated in a VAR in levels.
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In addition to a constant, we also include a deterministic trend. The lag order is

selected following the three information criteria and it is always one.13

We identify a liquidity shock using a standard Cholesky decomposition, which

is based on recursive ordering. The variables are ordered in the VAR from the

most exogenous to the most endogenous, which are allowed to respond contem-

poraneously to all structural shocks. Thus, we order Unemployment and Infla-

tion, assuming that they cannot react to the shock on the same month. A severe

problem arises from the three financial variables that our VAR incorporates. Obvi-

ously, they always react to all the available information and so there is no convinc-

ing way of ordering them. Considering this issue, we take a more agnostic stance.

Within the financial block, we consider all the possible orderings and we report

the median and percentiles of the impulse responses and Forecast Error Variance

(FEV). In this way, we identify 6 rotations and, for each of those, we compute 100

bootstrap replications. Figure 3.4 displays the Impulse Response Functions (IRFs)

to a one standard deviation BAS shock (i.e. a decrease in liquidity). We report

the median together with 68% and 90% confidence bands that include both the

identification (from the different Cholesky orderings) and statistical uncertainty.

An increase in the BAS induces an increase in Unemployment which lasts 10

months and a slight decrease in CPI inflation. However, the remaining financial

variables do not react to the BAS shock. Similar results hold if we estimate the

same VAR using the pre-2009 and the crisis sample.14 Thus, shocks to the BAS

have strong effects on economic activity. In order to understand the channels

behind this relationship and to see whether results are robust, in the next section

we consider a large scale VAR.

3.3.2 Full Specification

We aim at assessing the macroeconomic effects of BAS shocks, with special em-

phasis on the comparison with other financial shocks. For this purpose, we en-

large the previous VAR system with other variables. This system features six

macroeconomic variables (Unemployment, CPI Inflation, Public Debt, ECB Repo,

Italian M2, Consumer and Business Confidence) plus five financial indicators

(stock prices, Spread, CDS, BAS and VSTOXX). This set of variables is necessary

13We check that the residuals are normally distributed and they do not exhibit autocorrelation.
14For ease of exposition, we present these results in the Appendix.
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to identify financial shocks and assess their transmission to the real economy.15

Like in Section 3.3.1, we identify the liquidity shock through recursive ordering.

In particular, we assume that macroeconomic variables cannot react contempora-

neously to the financial shocks and we order them as follows: [UNEMPLOYMENT,

CPI, PUBLIC DEBT, M2, CONSUMER CONFIDENCE, BUSINESS CONFIDENCE].

Again, within the financial block, we consider all the possible orderings (120

rotations), compute five bootstrap replications for each of them and report the

median and percentiles of the impulse responses and FEV. Different possible or-

derings across the financial block lead to very similar results, which means that

the covariance matrix of the reduce form residuals is close to a diagonal matrix.

Figure 3.5 displays the IRFs to a one standard deviation BAS shock, where

68% and 90% confidence bands include both the identification (from the different

Cholesky orderings) and statistical uncertainty. A negative liquidity shock in-

duces an increase in unemployment that reaches its maximum after four months

without a significant effect on inflation, comparable to the findings of the VAR

presented in Section 3.3.1. The stock of government debt falls with a lag whereas

there is no reaction in the Repo rate and M2. Both business and consumer con-

fidence indicators decline in response to the shock and reach their trough four

months after the shock. The response of confidence is strong across all the specifi-

cations and could reflect a fall both in current and future consumption, which may

help to explain the strong response of unemployment (Ludvigson (2004)). More-

over, these dynamics are consistent with the findings of Garcia and Gimeno (2014)

for flight-to-liquidity episodes. The FEV contributions of BAS to consumer confi-

dence, business confidence and stock prices are respectively 15%, 9% and 7% one

year after the shock. Moving to the financial block, the equity premium, CDS and

spread increase and the FTSE declines by 1%, all of them with a lag. Responses of

financial variables are in line expected movements: a decrease in the BAS, which

could be interpreted as an increase in the uncertainty regarding the value of the

underlying asset, reduces prices (i.e. increases the Yield), confidence, and stock

prices and increases volatility and CDS.

A key point in our analysis, in light of the outstanding literature on the Euro

Crisis, consists of the comparison between BAS (Figure 3.5) and Spread shocks

15As in Section 3.3.1, we estimate the VAR in (log) levels by OLS equation by equation. The
optimal number of lags is one. Our sample consists of 130 observations which leaves us with
enough degrees of freedom for the estimation (15 coefficients in each equation).
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(Figure 3.6). The Spread shock induces a similar effect on unemployment slightly

less persistent and significant. However, this shock has a negative effect on CPI

inflation, which declines by 0.04% points 2 months after the shock. Even if the

response of CPI inflation is different with respect to a BAS shock, in Section 3.3.3

we show that, by using the Proxy-SVAR, the IRF of CPI to a BAS shock is also

negative.16 Unlike in the previous case, consumer confidence and business con-

fidence do not display a significant reaction. Regarding the financial block, the

responses are similar in magnitude (even if less significant) but less lagged than

the case of a BAS shock. An increase in Spread induces a delayed raise in BAS.

While the effects on unemployment are similar to the ones reported by Neri and

Ropele (2015) using a similar sample, the ones on inflation are the opposite from

theirs. This difference may be due to the omission of the liquidity dimension.

For a more comprehensive comparison among financial shocks, in Figure 3.7

we report the FEV decomposition of unemployment (i.e. how much each financial

shock explains of unemployment’s volatility). BAS shocks explain approximately

15% of unemployment fluctuations at a two year horizon. The second largest

shock in relevance is the stock prices, accounting for 7%. The remaining financial

shocks do not explain a significant fraction of fluctuations in unemployment. All

in all, exogenous fluctuations in financial variables explain around 30% of the total

variability of unemployment. From this analysis, we can conclude that liquidity is

a major driver of unemployment, out of all the financial variables, for the period

under analysis.17

3.3.3 Proxy-SVAR

While the results of Section 3.3.2 are robust to the different Cholesky orderings,

still, in each rotation, we are constraining (some) financial variables not to react

on impact to other financial shocks. In this section, we relax this assumption by

applying the so called Proxy-SVAR identification developed by Stock and Watson

(2012) and Mertens and Ravn (2013). The main idea is to use information external

to the VAR system as a proxy for the structural shock of interest, the BAS shock

16As we show later on, CPI is the only variable whose dynamics changes across the two method-
ologies. Notice that this difference comes from the years 2004-2009 as we display in Figure A2. The
response of Spread is robust for the sub-sample 2009-2014.

17The relative contribution of each financial shock changes if we consider the sub-sample 2009-
2014 (Figure A3 in Appendix C.4). In this case, the contribution of spread is similar to the one of
BAS, which is quantitatively stable over the full sample.
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in our case. In practice, the proxy constitutes an instrument for the reduced form

residuals of the VAR and provides partial identification of the structural shocks.

The instrument is assumed to be correlated with the structural shock of interest

but not with the remaining ones. An advantage of this technique is that, as long

as the proxy is a relevant and valid instrument, the identification relies on a much

weaker set of assumptions than the recursive identification scheme.18 In other

words, no assumptions are made on the contemporaneous relationship among

the variables in the system. Appendix C.3 contains a detailed explanation of this

methodology.

In order to obtain a valid instrument for BAS, we propose a new way to iden-

tify the proxy for the Proxy-SVAR at high frequency. We label this identification

“Bridge Proxy-SVAR” because the Proxy-SVAR links two VAR systems that include

data at different frequencies. In Gazzani and Vicondoa (2016b), we illustrate ana-

lytically the properties of Bridge Proxy-SVAR the and test it via Monte Carlo simu-

lations. The procedure consists of the following steps:

1. Construct two VARs systems. The first one is a VAR that incorporates daily

financial variables relevant for the analysis, defined as High Frequency VAR

(HF-VAR). This VAR features [BAS, CDS, Yield, FTSE, Eonia, VIX]. The sec-

ond one is a VAR, defined as Low Frequency VAR (LF-VAR), that includes

variables at monthly frequency. In particular, it is the same system that we

define in Section 3.3.2. Again, the financial variables in the LF-VAR are in-

cluded as monthly averages.

2. Estimate the HF-VAR and identify the structural shock of interest εBAS
HF with

the most appropriate identification scheme. Given that economic theory

does not support identification via sign restrictions, we apply the recur-

sive ordering Cholesky decomposition. Notice that the biases implied by

Cholesky in the HF-VAR are much lighter than in the LF-VAR. Since we ob-

serve a structural break in the daily volatility of financial variables in 2009,

we estimate a VAR at daily frequency to identify structural innovations in

the BAS during the period 2009m1-2014m11 and we use them as an instru-

ment for the structural BAS shocks at monthly frequency.

3. Aggregate εBAS
HF into monthly frequency obtaining ε̄BAS

HF .

18The proxy is not assumed to be perfectly correlated with the structural shock, but only to be a
component of it.
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4. Estimate the LF-VAR and apply the Proxy-SVAR identification, where ε̄BAS
HF

is employed as a proxy for the for the structural shock of interest in the

LF-VAR εBAS
LF . Namely, the reduced form residual uBAS

LF is instrumented

with ε̄BAS
HF . Again, the underlying assumptions concern the relevance,

corr
(
ε̄BAS

HF , εBAS
LF
)
6= 0 , and the validity, corr

(
ε̄BAS

HF , ε
j
LF

)
= 0 ∀j 6= BAS

, of the instrument.

This proxy explains a significant fraction of BAS reduced form residuals from the

monthly VAR. The statistics of the first stage are F-stat = 29.465 and R2 = 0.30231,

which satisfies the requirements of a strong instrument suggested by Stock and

Yogo (2002). This means that a relevant fraction of the reduced form residuals

are explained by the daily shocks to the BAS.19 Figure 7 reports the IRFs to an in-

strumented shock to the BAS. The BAS shock induces a significant and persistent

effect on unemployment, very similar both quantitatively and qualitatively to the

ones described in Section 3.3.2. Unlike with the recursive ordering, CPI inflation

decreases by 0.02% after the shock. As displayed in Figure A2, this difference is

not due to the methodology but to the shorter sample used. The remaining vari-

ables in the macroeconomic block display a comparable reaction to the recursive

ordering case. In particular, the BAS shock generates a strong response in the

indicators of confidence. All the financial variables display a significant lagged

response, except for the Equity Premium that reacts on impact.

Even if the Proxy-SVAR relies on a weaker set of assumptions, we include

it only as an alternative because this approach just reaches partial identifica-

tion. This implies that we cannot explicitly compare liquidity and spread shocks.

Nonetheless, the results from the Proxy-SVAR confirm the validity of the recur-

sive ordering identification previously applied, that is the standard methodology.

Notice that, with the Proxy-SVAR, even without imposing any contemporane-

ous restriction, financial variables do not display a significant response on impact

(apart from the Equity Premium). However, under this methodology, we can still

compute the historical contribution of liquidity shocks to unemployment, which

help us to assess the relevance of these shocks during the recent crisis. In fact,

Figure 3.9 provides the historical interpretation of our results by displaying the

19Figure 8 in Appendix C.3 includes a figure with the first stage results.
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component of unemployment explained by the BAS. In the upper panel, unem-

ployment is expressed in deviation from the trend whereas, in the lower one, at

the business cycle frequency.

The BAS explains the initial increase of unemployment, with respect to its

trend, in 2010 and 2013 and also the reduction observed in 2014. Finally, it is also

relevant to explain the increase observed during the last stage of 2014. Similar

conclusions hold if we look the contribution at business cycle frequencies.

Our findings, which are robust across the two different identification strate-

gies, suggest that liquidity shocks have significant effects on unemployment.

These results also hold if we consider industrial production and the ITA-coin.20 A

question that may arise naturally is why this peculiar financial variable, not even

on the focus of media’s attention, has so strong real effects. First, we find that

all the measures of confidence decline significantly in response to the decrease in

liquidity. This could point to a decrease in aggregate demand that explains the

decrease in economic activity (Ludvigson (2004)). Second, in Section 3.4, we show

that commercial banks change their lending conditions in response to liquidity

shocks.

3.3.4 Alternative VAR Specifications

Shocks to the BAS are a major driver of unemployment for the period under anal-

ysis. In this subsection, we consider additional specifications to assess the robust-

ness of our findings. For the ease of exposition, the IRFs of the exercises performed

in this section are presented in the Appendix C.4.

3.3.4.1 Indicator of Liquidity

The BAS is one of the most popular indicators of liquidity. However, it captures

only the price dimension of liquidity while another relevant feature is the quantity

side. A fall in liquidity equally distributed across price and quatities would gen-

erate an increase in the BAS and a fall in the quantity traded. In order to explore

whether this relationship holds in our analysis, we estimate the Full VAR includ-

ing the Turnover, volume traded normalized by the stock of the outstanding asset,

20Appendix C.4 displays the IRFs using each indicator.
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as an additional variable in the system. While responses of macroeconomic vari-

ables to a BAS shock remain unchanged, the turnover displays a significant reduc-

tion. This result conforms with the theoretical predictions of the model proposed

by Cui and Radde (2015).

In order to explicitly take this double dimension of liquidity into account,

we compute a liquidity index indicator that is defined as the ratio between the

Turnover and the BAS.21 Thus, when the liquidity index is higher (lower), the as-

set can be considered more (less) liquid. We estimate the same baseline VAR but

replacing the BAS with the Liquidity Index. Both responses of variables in the

system and the contribution of liquidity to explain fluctuations in unemployment

remain practically unchanged.

3.3.4.2 Measures of Economic Activity

All the results presented so far rely on Unemployment as a proxy for economic

activity. Alternatively, we estimate the VAR including Industrial Production and

a Coincident Indicator of Economic Activity (Indicatore Ciclico Coincidente (ITA-

coin)), a monthly indicator of economic activity published by the Bank of Italy.22

Results are comparable with the ones using Unemployment.

3.3.4.3 Different Samples

Figure 3.2 shows that financial variables display a change in volatility at daily

frequency after 2009. Moreover, in the same window there is also a stark fall in

interest rates that can constitute another source of structural break. To see whether

this fact affects our findings, we estimate our baseline VAR for the sub-sample

2009-2014. The main results remain unchanged. To tackle the possibility that our

results are driven only by the Euro crisis, we run the same analysis in 3.3.1 over the

sample 2004-2009. Once again, we find very similar results in this short sample.

21The correct measure would employ the quantity bid and asked, but unfortunately we cannot
access this data. Therefore, we use the actual number of trades (turnover on the secondary market)
compiled by MTS.

22See https://www.bancaditalia.it/statistiche/tematiche/indicatori/
indicatore-ciclico-coincidente/ for more information about ITA-coin.

https://www.bancaditalia.it/statistiche/tematiche/indicatori/indicatore-ciclico-coincidente/
https://www.bancaditalia.it/statistiche/tematiche/indicatori/indicatore-ciclico-coincidente/
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3.3.4.4 Corporate Liquidity

The finance literature has reported sizable fluctuations of the market liquidity

of corporate bonds in the U.S during the financial crisis (see Dick-Nielsen et al.

(2012)). Even if Italian firms rely more on banks as a source of finance, we analyze

the interrelation between sovereign and corporate liquidity. For this aim, we use

the BAS of a representative corporate bond and include it in the VAR instead of

the Equity Premium.23 A couple of interesting facts emerge. First, the effects of

sovereign BAS shocks remain unchanged. Second, an exogenous increase in the

private BAS generates a significant effect on Unemployment, which is comparable

to the one induced by the sovereign BAS. Finally, an exogenous change in the pri-

vate BAS does not affect significantly the sovereign BAS. These findings suggest

that both BAS are relevant to explain economic activity. Finally, we also consider

the BAS as a spread between the corporate and sovereign. A shock to this spread

induces also sizable effects on economic activity.

3.3.4.5 Market Stress Index

As we show in Figure 3.3, the BAS reflects some relevant European events, which

may be regarded as periods of Market Stress. To assess potential omitted variable

biases, we replace the Equity Premium with the Composite Indicator of Systemic

Stress (computed by the ECB) in our VAR. IRFs are comparable with respect to the

baseline specification. Thus, these results confirm that our results are not biased

by omitting other measures of stress in financial markets.

3.3.4.6 Financial Volatility

Financial variables display a time varying volatility at high frequency which is

not reflected at monthly frequency. To control for these changes, we compute the

monthly volatility of BAS, CDS and Spread using daily data. We build the first

principal component that explains 78% of the variability of these three measures.

Then, we include this index in the VAR instead of the Equity Premium. The IRFs

and the FEV are unaffected. This suggests that previous findings are not driven

by changes in volatility.
23We use the BAS of a bond issue by Telecom (TELECOM ITALIA TITIM 5 3/8 01/19) which is the

longest series available. Moreover, it is highly correlated with the liquidity of the other bonds (e.g.
0,91 with Unicredit - UCGIM 4 3/8 01/20 and 0,65 with ENI - ENI INTERNATIONAL FINANCE
ENIIM 5 1/27/19. Source: Bloomberg.
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3.4 Transmission Channels

The easiness of trading sovereign bonds is particularly relevant for Italian banks

because they hold exceptional amounts of Italian sovereign debt. Gennaioli et al.

(2014) show that banks hold large amounts of public bonds due to their liquidity

properties. The European Stress Test carried out in 2010 provides some insights

on the amount of these assets held by the main Italian commercial banks: Banca

Popolare, Intesa San Paolo, Monte dei Paschi, UBI Banca and Unicredit. Ital-

ian banks’ holding of national securities accounts for 74% of their total govern-

ment bond holdings. This share is even higher if we consider only the trading

book: 84%.24 Moreover, Italian sovereign bonds constitute 6.13% of the total as-

sets owned by those five Italian banks (Gennaioli et al. (2014)). In this Section,

we assess whether and how changes in sovereign debt liquidity and spread affect

banks’ lending decisions using two official surveys. First, we employ the ISTAT

Business Confidence Survey, which is carried out at monthly frequency. Second, we

use the Bank Lending Survey from the Bank of Italy, which is available at quarterly

frequency. Unlike statistics about total amount of loans that include both demand

and supply effects, survey data allows us to disentangle more precisely the trans-

mission channels.

3.4.1 ISTAT Business Confidence Survey

We employ data from the ISTAT Business Confidence Survey to assess the effects

of liquidity and spread shocks on firms’ credit conditions. This survey, which is

carried out by ISTAT at a monthly frequency since March 2008, covers a represen-

tative sample of 4,000 firms in the manufacturing sector and includes information

about firms’ assessments and expectations on the Italian economic situation.25 To

assess how changes in sovereign debt liquidity and spread affect the credit mar-

ket, we focus on questions regarding credit supply and demand and include them

24For regulatory purposes, banks divide their activities into two main categories: banking and
trading. The trading book was devised to house market-related assets rather than traditional bank-
ing activities. Trading book assets are supposed to be highly liquid and easy to trade.

25See http://siqual.istat.it/SIQual/visualizza.do?id=8888945&refresh=
true&language=UK for a detailed description of this survey. There is an analogous survey for
the service sector but the sample is shorter. However, results are similar to the ones reported in
this section.

http://siqual.istat.it/SIQual/visualizza.do?id=8888945&refresh=true&language=UK
http://siqual.istat.it/SIQual/visualizza.do?id=8888945&refresh=true&language=UK
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as an additional variable in our baseline VAR.26 Given that the sample is shorter,

we estimate the baseline VAR described in section 3.3.2 since August 2009, when

all the variables are available, including one variable at the time to avoid loosing

degrees of freedom. In particular, we assume that credit decisions cannot react

on impact to financial shocks and place these credit variables before the consumer

confidence, business confidence and the financial block.27 Figure 3.10 displays the

IRFs to a liquidity deterioration and a positive sovereign spread shock.

Liquidity and sovereign spread shocks have different effects on the credit mar-

ket. On the one hand, a BAS shock (i.e. a decrease of liquidity) does not change

the index on perceived credit conditions but induces worse conditions in terms of

interest rate, size of the credit, and costs other than the interest rate. Moreover, the

BAS leads to an rise in the number of denied loans by banks with a lag. On the

other hand, a spread shock immediately reduces the credit access and increases

the number of denied loans by banks and a rise in the interest rate charged by

banks. Notably, the reason why credit is not obtained by firms (credit not obtained)

is not related with firms rejecting the loans offered by the banks (credit not obtained

- too heavy conditions), but due to banks denying the loan (credit not obtained - bank

denial). In other words, credit supply is driving the lower access to credit. While

the spread shock affects mostly the interest rate and the size of the credit, a liq-

uidity shock also induces higher costs (apart from the interest rate). These higher

costs reflect higher commissions, extra-costs and tighter deadlines. For what con-

cerns the timing, we observe a more lagged response to a liquidity shock than to

a spread one. This is consistent with the delayed response of financial variables

presented in Section 3.3.3.

After analyzing firm’s survey responses, in the next subsection we assess

whether these results are consistent with bank’s replies. Additionally, we investi-

gate the reasons that drive banks behavior.

3.4.2 Bank Lending Survey

We exploit the Bank Lending Survey (BLS) on Italian commercial banks to deter-

mine the effects of liquidity and spread shocks. This survey, which is carried

out by Banca d’Italia in collaboration with the European Central Bank at quarterly

26TheAppendix contains the questions that we consider from the ISTAT Business Confidence
Survey.

27Results remain unchanged if we place this variable last in the VAR.
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frequency since January 2003, contains very detailed information about bank’s

decisions on different dimensions.28 Unlike in the previous subsection, we can-

not include the replies to the survey in the baseline VAR due to the differences in

frequencies. For this reason, we aggregate the monthly BAS and spread shocks

identified in section 3.3.2 to quarterly frequency and estimate the following equa-

tion:

∆BLSi
t = α +

8

∑
j=1

δj∆BLSi
t−j +

12

∑
j=0

β jshockk
t−j (3.1)

where ∆BLSi
t, shockk

t denote the change in bank’s behavior and quarterly BAS

and spread shocks, respectively. We follow Romer and Romer (2004) and choose

eight lags for the autoregressive part and twelve for the effect of the shock. Then,

we compute the IRF to a BAS and spread shock for the main bank decisions avail-

able in the Survey (Figure 3.11).29

Banks increase their credit standards to firms in response to liquidity and

spread shocks with a similar magnitude. However, the reasons for increasing

standards differ. On the one hand, in response to negative liquidity shock, banks

react due to changes in their liquidity position and costs related to their capital

position. On the other hand, banks do not report changes in the relevance of the

asset and liquidity position in response to a spread shock. These differences in be-

havior suggest that banks increase their focus on their own balance sheet in case

of a liquidity deterioration in sovereign debt markets. Moreover, banks adjust im-

mediately their standards for mortgage loans while they do not change it for the

case of spread shocks. Mortgages are collateralized loans and, in case of no re-

payment and liquidity problems, banks may not find it easy to release the house

and that may explain why they increase their standards. Finally, both shocks are

associated with an increase of similar magnitude in the perception of risk about

economic activity.

With the evidence presented in Sections 3.3 and 3.4, we conclude that liquidity

shocks have relevant real effects on the Italian economy and we document that

transmission is through changes in the credit supply. In the next section, we ana-

lyze whether liquidity shocks are also relevant for the other three major Eurozone

economies: Germany, France, and Spain.

28More information about this survey can be found at BLS .
29The Data Appendix contains the detailed questions we consider from the Bank and Lending

Survey.

https://www.bancaditalia.it/statistiche/tematiche/moneta-intermediari-finanza/intermediari-finanziari/indagine-credito-bancario/index.html?com.dotmarketing.htmlpage.language=1
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3.5 Comparison with other European Countries

In order to assess whether liquidity shocks are also relevant drivers of the business

cycle in other European economies, we perform the previous analysis also for Ger-

many, France, and Spain. First, in Table 3.2 we analyze if sovereign BAS are cor-

related across countries, which would indicate to what extent they are explained

by common shocks. We observe that BASs are positively correlated across the

biggest four Eurozone economies. While BAS for Germany seems to be less cor-

related with the rest of the countries, the correlation is stronger between France,

Italy and Spain.

Second, we estimate the baseline VAR described in Section 3.3.2 for each coun-

try to determine whether the macroeconomic results for Italy also hold for the

other countries.30 A first relevant finding is that the identified BAS shocks are

positively correlated across countries: the correlation ranges from 0.3, France-

Germany, to 0.21, France-Italy.31 Both the correlation of the variables in levels and

of the shocks indicate that liquidity in sovereign markets is driven by a relevant

European component.

We present the macroeconomic relevance of the financial shocks, across the

four countries, in Figure 11 through the FEV decomposition of unemployment.

There is a clear heterogeneity between the Mediterranean countries and the cen-

tral European ones. On the one hand, changes in BAS are an important driver of

unemployment for Spain and Italy. For both cases, BAS shocks account for 15% of

unemployment fluctuations.32 A special feature of Spain is the relevance of CDS,

which might be due to the perceived higher default risk. On the other hand, ex-

ogenous fluctuations in stock markets are the most relevant source of unemploy-

ment fluctuations for Germany and France. In fact, neither BAS nor sovereign

spread seem to be relevant to explain unemployment fluctuations in these coun-

tries. Even if financial shocks explain a similar fraction of the total variability of

unemployment (around 30%), the relevance of each financial shock differs across

countries. Although the sources of this difference are beyond the scope of this

30The sample is February 2004-November 2014 for Germany, Italy and Spain. Due to the lack
of CDS data before 2005, the sample for France starts in August 2005. All financial variables are
expressed as monthly averages.

31In particular, the estimated cross-country correlations are statistically significant for all the
cases but between France and Spain.

32Moreover, the IRF to a BAS shock has similar effects both in terms of magnitude and persis-
tence.
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paper, one possible reason could be the lower tensions in sovereign debt markets

in France and Germany. Moreover, while Italian and Spanish banks are heavily

exposed to their national sovereign debt (around 75% in 2010 according to the

European Stress Test), French and German financial institutions hold a more di-

versified portfolio.

3.6 Conclusions

Economists have been focusing on sovereign debt markets due the European

Sovereign Debt Crisis. Contrary to the growing number of theoretical models

that analyze changes in liquidity in those markets, the empirical evidence on their

real effects is still null. In this paper, we provide novel empirical evidence on the

macroeconomic effects of changes in liquidity in secondary sovereign debt mar-

kets. We focus on the Italian economy that was hit both by credit risk and liquidity

shocks during the recent crisis. We use monthly data from 2004 to 2014 in a VAR

analysis and consider two alternative identification strategies: recursive order-

ing and the Proxy-SVAR, which yield consistent results. The former takes into

account all the possible orderings among financial variables. The Proxy-SVAR ex-

ploits a daily financial VAR to control for all high-frequency changes in financial

markets. Specifically, we use daily BAS structural shocks as proxy for the monthly

BAS structural shocks. We find that, contrary to popular perceptions, liquidity is

a major financial driver of economic activity. An exogenous raise in this variable

generates a strong (15% of the Forecast Error Variance) and persistent (10 months)

surge in unemployment. The other variables that are mostly affected are confi-

dence indicators as Stock Prices, and Consumer and Business Sentiment. Banks

and firms survey data reveal that liquidity shocks have significant effects on banks

standard, in terms of loan’s size and through additional costs, particularly due to

the asset and liquidity position of Italian banks. Similar macroeconomic effects

hold for Spain, whereas liquidity shocks are not a significant driver for France

and Germany.

Our results differ from existing models, as Del Negro et al. (2011) and Benigno

and Nistico (2014), where liquidity shocks induce a pronounced deflation. There-

fore, in particular in the light of our findings related to the banking channel, we

believe that models that focus on the asset and liquidity position of financial in-

termediaries can enhance our understanding of these phenomena. We regard Cui
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and Radde (2015) as a first step towards this interesting direction for future re-

search. Frameworks of this kind, which can generate macroeconomic effects con-

sistent with the empirical evidence, can be used to assess whether and how policy

makers should react to changes in liquidity (Cui (2016)). They mainly focus on

the liquidity of corporate bonds as their reference is the US economy. Instead, by

studying European economies we conclude that the liquidity of sovereign bonds

is a key financial dimension for the business cycle. Liquidity shocks to these two

different assets may involve diverse policy reactions and have different implica-

tions.

3.7 Tables

Levels BAS Spread CDS
BAS 1 0.24*** 0.36***

Spread 0.24*** 1 0.91***
CDS 0.36*** 0.91*** 1

Growth Rates BAS Spread CDS
BAS 1 -0.03 -0.03

Spread -0.03 1 0.23
CDS -0.03 0.23*** 1

Table 3.1: Contemporaneous correlation between financial variables
Contemporaneous daily correlation between Italian financial variables at daily frequency: BAS,

Spread, CDS. All the variables correspond to 2 years maturity. Left-panel in levels, right-panel in
growth rates. ***, **, * denote 99%, 95% and 90% confidence intervals.

Italy Spain France Germany
Italy 1 0.49*** 0.56*** 0.24***
Spain 0.49*** 1 0.69*** 0.32***
France 0.56*** 0.69*** 1 0.42***

Germany 0.24*** 0.32*** 0.42*** 1

Table 3.2: Daily correlation of European BAS
Daily correlations of 2 year sovereign BAS across countries (source: Bloomberg).
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3.8 Figures
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Figure 3.1: Key financial variables
Italian (standardized) BAS, CDS and Yield (monthly average). Each variable corresponds to the first
principal components of 2, 5, 10 years bond maturities. Source: Bloomberg (BAS) and Banca d’Italia.

Figure 3.2: Daily dynamics of the main financial variables
Financial variables: BAS Italy, Spread Italy, CDS Italy, FTSE MIB (main Italian Stock Price index),
Vstoxx (European Implied Volatiliy Index), Euro Overnight Index Average (Eonia). All variables

are expressed in levels for all the business days since September 2004 to November 2014. All
variables but the Spread are expressed as an index=100 at the beginning of the sample. Spread is

computed as the difference between German and Italian yields and expressed in basis points
times 10.
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Figure 3.3: Daily BAS and key European events
Daily BAS Italy 2 Years (blue line) and key European events (red dots). Appendix A displays the

list of all the events.

Figure 3.4: IRF to a BAS shock in the small system
IRFs to a 1 std BAS shock (liquidity deterioration) identified through the following ordering

[Unemployment, π, FTSE, Spread, BAS]. The median point estimate, 68% and 90% confidence
bands are reported in blue and light blue, respectively. 50%, 68% and 90% bands include

statistical and identification uncertainty (from all the possible ordering within the financial
block).
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Figure 3.5: IRF to a BAS shock in the large system
IRFs to a 1 std deviation BAS shock (liquidity deterioration) identified through the following
ordering [Unemployment, π, Public Debt, R, M2, CC, BC, Financial Block]. The median point

estimate, 68% and 90% confidence bands are reported in blue and light blue, respectively. 50%,
68% and 90% bands include statistical and identification uncertainty (from all the possible

ordering within the financial block).

Figure 3.6: IRF to a Spread shock
IRFs to a 1 std deviation Spread shock identified through the following ordering

[Unemployment, π, Public Debt, R, M2, CC, BC, Financial Block]. The median point estimate,
68% and 90% confidence bands are reported in red and light red, respectively. 50%, 68% and 90%
bands include statistical and identification uncertainty (from all the possible ordering within the

financial block). Dotted line denotes the mean response to a 1 std deviation shock to BAS.
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Figure 3.7: FEV of unemployment
FEV of Unemployment in the VAR [Unemployment, π, Public Debt, R, M2, CC, BC, Financial
Block]. The bars denote the contribution of each financial shock in explaining the volatility of

Unemployment at each horizon (expressed in months).

Figure 3.8: IRF to a BAS shock: Bridge Proxy-SVAR
IRFs to a 1 standard deviation BAS shock (liquidity deterioration) in the VAR [Unemployment, π,

Public Debt, R, M2, CC, BC, Financial Block]. The shock is identified through the unpredictable
variation of the BAS in a daily VAR system. Sample: Jan:2009-Nov:2014. The median point
estimate, 68% and 90% confidence bands are reported in blue and light blue, respectively.

Confidence bands are computed using wild bootstrap with 1,000 replications. Dotted lines
denote the mean responses of each variable to a 1 standard deviation BAS shock identified via

recursive ordering.
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Figure 3.9: Historical contribution of BAS to unemployment: Bridge Proxy-SVAR
Historical contribution of BAS to Unemployment. Identified in the VAR [Unemployment, π,

Public Debt, R, M2, CC, BC, Financial Block] through the unpredictable variation of the BAS in a
daily VAR system. Upper panel - Unemployment in deviation from trend. Lower panel -

Unemployment at the business cycle frequency (18 to 96 months).

Figure 3.10: Changes in credit market conditions for manufacturing firms
NOTE. Changes in the credit market for manufacturing firms in response to a one standard posi-
tive BAS (blue) and sovereign spread (red) shocks. All figures denote change in the corresponding
index reported by ISTAT. Blue and red areas denote the 68% confidence intervals computed using
bootstrap and include both identification and statistical uncertainty.
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Figure 3.11: Change in banks lending decisions
Change in banks decisions in response to a positive shock in BAS and Spread. All the figures

denote the change in the corresponding index as reported in the BLS. Blue and red areas denote
the 90% confidence intervals computed using 500 bootstrap replications.

Figure 3.12: FEVD of unemployment for European countries
FEVD of Unemployment for Italy, France, Germany, and Spain. The FEVD is computed estimating
a VAR for each country that includes: [Unemployment, π, Public Debt, R, M2, CC, BC, Financial

Block]. BAS shocks are identified from all the possible rotations across the financial variables.
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Appendix A

Appendix: News and Noise Bubbles

in the Housing Market

A.1 Econometric Framework

I describe briefly the methodology of FGLS in what follows: I first present a simple

case, in which the fundamental news shock is anticipated one period ahead, to

provide intuitively the mechanism behind the identification and then I describe

a more general case. Notice that the actual identification employs (rents at) 40

quarters as the horizon to determine whether a shock to the signal is fundamental

or noisy.

If we consider eq.(3) and (4) in a MA representation(
∆rt

st

)
=

(
L 0

1 1

)(
ft

nt

)
(A.1)

it is trivial to see that the associated matrix has determinant 0 for L = 0 (comes

from the lagged impact of the news shock). Therefore, the MA representation is

non-fundamental and non-invertible. In this case, noise and news shock cannot

be expressed as a linear combination of present and past reduced form residuals.

Thus, a VAR representation in the structural shocks, news and noise, does not exist.

Intuitively, agents cannot distinguish the two shocks given their information set

and the same holds for the econometrician. Adding other variables to the system

cannot solve this issue. What the econometrician can recover is the following
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fundamental representation:

(
∆rt

st

)
=

 1 L
σ2

f

σ2
s

0 1

( ut

st

)
=

 ut + L
σ2

f

σ2
s
st

st

 (A.2)

where ut can be defined as unanticipated fundamental shock. The signal extrac-

tion problem depends on the relative importance of the news and noise shocks in

driving the signal: Et−1 (∆rt) =
σ2

f

σ2
s
st−1. In other words, ut is the forecast error of

the fundamental:

ut = ∆rt −Et−1 (∆rt) = ft−1 −
σ2

f

σ2
s
st−1 =

σ2
n

σ2
s

ft−1 −
σ2

f
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nt−1 (A.3)

We can express

(
ut

st

)
as combinations of present and past structural shocks(

ft

nt

)
:

(
ut

st

)
=

 L σ2
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1 1
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(
ut

st

)
can be identified through a standard VAR and, once the news to noise

variance ratio is estimated, we can use this information to recover

(
ft

nt

)
as fol-

lows:

(
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=

 L−1 σ2
f

σ2
s

−L−1 σ2
n

σ2
s

( ut

st

)
=

 L−1ut +
σ2

f

σ2
s
st

−L−1ut +
σ2

n
σ2

s
st

 =

 ut+1 +
σ2

f

σ2
s
st

−ut+1 +
σ2

n
σ2

s
st


(A.5)
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Notice that by inverting L we are employing present and future values of the

unanticipated fundamental and signal shocks, which, in other words, means we

are using future reduced form residuals.1A

The news shock can be expressed and thus recovered as the sum of the ex-ante

expectation of the fundamental and the realized forecast-error of the fundamental:

ft = ut+1 +
σ2

f

σ2
s

st = ∆rt+1 −
σ2

f

σ2
s

st +
σ2

f

σ2
s

st = ∆rt+1 (A.6)

The noise shocks is instead the component of the signal that is not reflected in

future changes of the fundamental:

nt = −ut+1 +
σ2

n
σ2

s
st = − ∆rt+1 +

σ2
f

σ2
s

st +
σ2

n
σ2

s
st = st − ∆rt+1 (A.7)

Consider a more comprehensive case, using a more general polynomial struc-

ture for the bivariate case (it is very easy to extend the scheme to the multivariate

case). We define

∆rt = c(L) ft (A.8)

and the Blaschke factor

b(L) =
n

∏
j=1

L− k j

1− k jL
(A.9)

with k j j = 1, 2, ..., n are the roots of c(L) smaller than one in modulus with kj

the respective complex conjugates. Following ?, it is not possible to invert b(L) in

the past, but it is possible in the future: b(L)−1 = b(L−1) = b(F).

(
∆rt

st

)
=

(
a11(L) a12(L)

a21(L) a22(L)

)(
ut

st

)
=

 c(L)
b(L) c(L)

σ2
f

σ2
s

0 1

( ut

st

)
(A.10)

1AThis is quite intuitive: as
(

ut
st

)
are combinations of present and past structural shocks(

ft
nt

)
, than

(
ft
nt

)
are combinations of present and future structural shocks

(
ut
st

)
.
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We can generalize the system by assuming that, even if the agents’ expecta-

tions are not perfectly observable, the econometrician has access to a variable in-

formative enough about the signal (zt):

(
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=
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The steps above exploit the relationship σu =

σf σn
σs

. The identification strategy

comprises of the following steps:

Step 1: Estimate a standard VAR for

(
∆rt

zt

)
and obtain the corresponding MA

representation

Step 2: a11(0) = c(0)σu
b(0) = 0 ⇒ c(0) = 0. This restriction implies that the sig-

nal does not affect the fundamental measure contemporaneously. Unantic-

ipated fundamental and signal shocks are identified at this point for the bi-

variate case.

Step 3: Given the estimate â12(L) =
ĉ(L)σ2

f
σs

take the roots of â12(L) smaller than

one in modulus in order to estimate b(L) as shown in (14)

Step 4: â11(1) is estimated as ĉ(1)σu
b(1) . Notice that since b(1) = 1 and σu =

σf σn
σs

,

the following condition holds for the ratio of variances of news and noise

shocks: a12(1)
a11(1)

=
σf
σn

estimated as â12(1)
â11(1)

=
σ̂f
σn

. 2A

2AIn practice, the ratio
σ̂f
σn

is computed as the ratio of the cumulated long-run

responses CIRF(∆rtto st)
CIRF(∆rtto ut)

. Notice that the theoretical restriction of a null effect of the noise shock
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Step 5: Since
σ2

f

σ2
s
+ σ2

n
σ2

s
= 1, σ̂f = sin(arctan(

σ̂f
σn
)) and σ̂n = cos(arctan(

σ̂f
σn
)) can be

directly computed. At this point the variance of the news and noise shock is

identified.

Step 6: Finally, using

(
ft

nt

)
=

 b(F) σn
σs

σ2
f

σ2
s

−b(F) σ2
n

σ2
s

( ut

st

)
one can recover the struc-

tural shocks.

on the fundamental should hold at every horizon. In practice, this is imposed on impact and in
the long-run (40 quarters), but it is used for testing at the other horizons (noise has no significant
effect on the fundamental at each horizon).
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A.2 Empirical Results

A.2.1 Risk Free Rate and Risk Premia Shock

Figure A.1: IRFs to risk free rate and risk premium shock - decomposition
IRFs to a risk free rate shock and to risk premium shock. The responses are reported in terms of the standard deviation of

the variables in the system. The solid blue line is the median, the dark and light blue shaded areas represents 68% and
90% confidence bands respectively (2000 bootstrap replications). The shocks are identified through the following

ordering: [Rents, Housing Prices, 3 Months Bill Rate, Aaa Moody’s Corporate Bond Yield]. The red line reports the
median IRFs obtained by the recursive ordering [Rents, 3 Months Bill Rate, Aaa Moody’s Corporate Bond Yield, Housing

Prices]. Sample: 1963:Q1 - 2016:Q3.
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A.2.2 Granger Tests

Variable Source Code
Real GDP FRED GDPC1

GDP Implicit Price Deflator FRED GDPDEF

Private Residential Fixed Investment FRED PRFI

Average Sales Price of Houses Sold FRED APSUS

Median Price of New Houses Sold FRED MSPNHSUS

Consumer Price Index for All Urban Consumers: Rent of primary residence FRED CUUR0000SEHA

Personal Consumption Expenditures: Rents Quantity Index FRED DTENRA3

Personal Consumption Expenditures: Rents Price Index FRED DHUTRC1Q027SBEA

Shiller Housing Price Index R. J. Shiller

New Private Housing Units Started FRED HSTARTS

New Housing Permits FRED HPERMITS

Standard and Poor Composite Index R. J. Shiller

Effective Fed Fund Rate FRED FFR

Moody’s Seasoned Aaa Corporate Bond Yield FRED AAA_yield

Civilian Non-institutional Population FRED CNP16OV_NBD19480101

US Treasury Yield Adjusted to Constant Maturity 10 years FRED GS10

US Treasury Yield Adjusted to Constant Maturity 20 years FRED GS20

3 Month Treasury Bill Rate FRED TB3MS

Buying Conditions for Housing Michigan Survey of Consumers Table 41

Personal Consumption Expenditures: Price Deflator FRED DPCERD3Q086SBEA

Households and Nonprofit Organizations: Home Mortgages FRED HHMSDODNS

Mortgage Debt Outstanding, All holders FRED MDOAH

Real Estate Loans, All Commercial Banks FRED REALLN

Price of New One-Family Houses Sold Including Value of Lot FRED USHSN1FLF?

Civilian Unemployment Rate FRED UNRATE

Table A.1: Variable employed in orthogonality test
Variables employed for the Granger Test of information sufficiency
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Shock Lags
Principal Components

(1) (2) (3) (4) (5) (6)

Surprise
2 0.17 0.34 0.36 0.12 0.00 0.00

4 0.30 0.22 0.28 0.11 0.02 0.02

Signal
2 0.61 0.72 0.33 0.04 0.10 0.05

4 0.36 0.24 0.03 0.03 0.08 0.06

News
2 0.47 0.25 0.09 0.02 0.02 0.01

4 0.48 0.52 0.02 0.05 0.04 0.03

Noise
2 0.18 0.13 0.19 0.11 0.20 0.06

4 0.02 0.00 0.01 0.01 0.03 0.00

Table A.2: Orthogonality Test - Decomposition
Results of the test for informational sufficiency in the four variables VAR including [Rents, Housing Prices, 3 Month T-Bill

Rate, Aaa Moody’s Corporate Yield]. The identified shocks are regressed on the lagged (two and four lags) principal
components of the variables listed in Table A.1. The table reports the p-values of the F-test in the regression.
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Shock Lags
Principal Components

(1) (2) (3) (4) (5) (6)

Surprise
2 0.38 0.68 0.80 0.49 0.49 0.61

4 0.64 0.72 0.87 0.36 0.18 0.33

Signal
2 0.86 0.96 0.64 0.76 0.84 0.71

4 0.92 0.93 0.93 0.98 1.00 0.91

News
2 0.57 0.84 0.70 0.82 0.86 0.80

4 0.92 0.84 0.47 0.65 0.64 0.60

Noise
2 0.81 0.86 0.82 0.91 0.96 0.96

4 0.87 0.90 0.90 0.94 0.92 0.88

Table A.3: Orthogonality Test - Macro Analysis
Results of the test for informational sufficiency in the six variables VAR including [Rents, Housing Prices, GDP,

Residential Investment, Aaa Moody’s Corporate Yield, S&P Composite Index]. The identified shocks are regressed on the
lagged (two and four lags) principal components of the variables listed in TableA.1. The table reports the p-values of the

F-test in the regression.
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A.2.3 Expectations from Surveys

Figure A.2: IRFs Surprise and Signal Shocks - Expectations from surveys
IRFs to a surprise shock to rents and to a signal shock. The responses are reported in terms of the standard deviation of
the variables in the system. The solid blue line is the median, the dark and light blue shaded areas represents 68% and

90% confidence bands respectively (2000 bootstrap replications). The shocks are identified through the following
ordering: [Rents, Buying Conditions for Housing, GDP, Residential Investment, Housing Prices, Aaa Moody’s Corporate

Bond Yield, S&P Index]. Sample: 1963:Q1 - 2016:Q3.
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Figure A.3: IRFs News and Noise Shocks - Expectations from surveys
IRFs to news and noise shocks. The responses are reported in terms of the standard deviation of the variables in the

system. The solid red line is the median, the dark and light red shaded areas represents 68% and 90% confidence bands
respectively (2000 bootstrap replications). The shocks are identified through the following ordering: [Rents, Buying

Conditions for Housing, GDP, Residential Investment, Housing Prices, Aaa Moody’s Corporate Bond Yield, S&P Index].
The blue dotted line reports the median IRFs obtained by the recursive ordering [Rents, GDP, Residential Investment, Aaa
Moody’s Corporate Bond Yield, Housing Prices, Buying Conditions for Housing, S&P Index]. Sample: 1963:Q1 - 2016:Q3.
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Figure A.4: Forecast Error Variance Decomposition - Expectations from surveys
Forecast error variance decomposition of the variables in the system. The plot display the share of the variance explained
by news and noise at each horizon (not cumulatively). The shocks are identified through the following ordering: [Rents,
Buying Conditions for Housing, GDP, Residential Investment, Housing Prices, Aaa Moody’s Corporate Bond Yield, S&P

Index]. Sample: 1963:Q1 - 2016Q3.
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Figure A.5: Historical Decomposition - Expectations from surveys
Historical decomposition of housing prices (dotted blue) into a fundamental component (blue) and noisy component

(orange). The shocks are identified through the following ordering: [Rents, Buying Conditions for Housing, GDP,
Residential Investment, Housing Prices, Aaa Moody’s Corporate Bond Yield, S&P Index]. Sample: 1963:Q1 - 2016Q3.
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A.2.4 Expectations from the Stock Market

Figure A.6: IRFs to Surprise and Signal Shocks - Expectations from stock prices
IRFs to a surprise shock to rents and to a signal shock. The responses are reported in terms of the standard deviation of
the variables in the system. The solid blue line is the median, the dark and light blue shaded areas represents 68% and

90% confidence bands respectively (2000 bootstrap replications). The shocks are identified through the following
ordering: [Rents, Home Builders Stock Price Index, GDP, Residential Investment, Housing Prices, Aaa Moody’s Corporate

Bond Yield, S&P Index]. Sample: 1973:Q1 - 2016:Q3.
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Figure A.7: IRFs to News and Noise Shocks - Expectations from stock prices
IRFs to news and noise shocks. The responses are reported in terms of the standard deviation of the variables in the

system. The solid red line is the median, the dark and light red shaded areas represents 68% and 90% confidence bands
respectively (2000 bootstrap replications). The shocks are identified through the following ordering: [Rents, Home
Builders Stock Price Index, GDP, Residential Investment, Housing Prices, Aaa Moody’s Corporate Bond Yield, S&P

Index]. The blue dotted line reports the median IRFs obtained by the recursive ordering [Rents, GDP, Residential
Investment, Aaa Moody’s Corporate Bond Yield, Housing Prices, Home Builders Stock Price Index, S&P Index]. Sample:

1973:Q1 - 2016:Q3.
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Figure A.8: Forecast Error Variance Decomposition - Expectations from stock
prices
Forecast error variance decomposition of the variables in the system. The plot display the share of the variance explained
by news and noise at each horizon (not cumulatively). The shocks are identified through the following ordering: [Rents,

Home Builders Stock Price Index, GDP, Residential Investment, Housing Prices, Aaa Moody’s Corporate Bond Yield, S&P
Index]. Sample: 1973:Q1 - 2016Q3.
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Figure A.9: Historical Decomposition - Expectations from stock prices
Historical decomposition of housing prices (dotted blue) into a fundamental component (blue) and noisy component

(orange). The shocks are identified through the following ordering: [Rents, Home Builders Stock Price Index, GDP,
Residential Investment, Housing Prices, Aaa Moody’s Corporate Bond Yield, S&P Index]. Sample: 1963:Q1 - 2016Q3.
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A.3 Robustness Exercises

A.3.1 Long Term Rates

Figure A.10: IRFs to Surprise and Signal Shocks - Long term rates
IRFs to a surprise shock to rents and to a signal shock. The responses are reported in terms of the standard deviation of
the variables in the system. The solid blue line is the median, the dark and light blue shaded areas represents 68% and

90% confidence bands respectively (2000 bootstrap replications). The shocks are identified through the following
ordering: [Rents, Housing Prices, GDP, Residential Investment, Treasury Yield at Constant 20 year Maturity, S&P Index].

Sample: 1963:Q1 - 2016:Q3.
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Figure A.11: IRFs to News and Noise Shocks - Expectations from stock prices
IRFs to news and noise shocks. The responses are reported in terms of the standard deviation of the variables in the

system. The solid red line is the median, the dark and light red shaded areas represents 68% and 90% confidence bands
respectively (2000 bootstrap replications). The shocks are identified through the following ordering: [Rents, Housing

Prices, GDP, Residential Investment, Treasury Yield at Constant 20 year Maturity, S&P Index]. The blue dotted line reports
the median IRFs obtained by the recursive ordering [Rents, GDP, Residential Investment, Treasury Yield at Constant 20

year Maturity, Housing Prices, S&P Index]. Sample: 1963:Q1 - 2016:Q3.
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Figure A.12: Forecast Error Variance Decomposition - Long term rates
Forecast error variance decomposition of the variables in the system. The plot display the share of the variance explained
by news and noise at each horizon (not cumulatively). The shocks are identified through the following ordering: [Rents,

Housing Prices, GDP, Residential Investment, Treasury Yield at Constant 20 year Maturity, S&P Index]. Sample: 1963:Q1 -
2016Q3.
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Figure A.13: Historical Decomposition - Long term rates
Historical decomposition of housing prices (dotted blue) into a fundamental component (blue) and noisy component

(orange). The shocks are identified through the following ordering: [Rents, Housing Prices, GDP, Residential Investment,
Treasury Yield at Constant 20 year Maturity, S&P Index]. Sample: 1963:Q1 - 2016Q3.
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A.3.2 Case & Shiller Corelogic Home Price Index

Figure A.14: IRFs to Surprise and Signal Shocks - C&S Corelogic
IRFs to a surprise shock to rents and to a signal shock. The responses are reported in terms of the standard deviation of
the variables in the system. The solid blue line is the median, the dark and light blue shaded areas represents 68% and

90% confidence bands respectively (2000 bootstrap replications). The shocks are identified through the following
ordering: [Rents, Housing Prices, GDP, Residential Investment, Treasury Yield at Constant 20 year Maturity, S&P Index].

Sample: 1963:Q1 - 2016:Q3.
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Figure A.15: IRFs to Surprise and Signal Shocks - C&S Corelogic
IRFs to news and noise shocks. The responses are reported in terms of the standard deviation of the variables in the

system. The solid red line is the median, the dark and light red shaded areas represents 68% and 90% confidence bands
respectively (2000 bootstrap replications). The shocks are identified through the following ordering: [Rents, Housing

Prices, GDP, Residential Investment, Treasury Yield at Constant 20 year Maturity, S&P Index]. The blue dotted line reports
the median IRFs obtained by the recursive ordering [Rents, GDP, Residential Investment, Treasury Yield at Constant 20

year Maturity, Housing Prices, S&P Index]. Sample: 1963:Q1 - 2016:Q3.
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Figure A.16: Forecast Error Variance Decompostion - C&S Corelogic
Variance Decomposition - share of the variance explained by News and Noise at each quarter (not cumulative)
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Figure A.17: Historical Decomposition - C&S Corelogic
Historical decomposition of housing prices (dotted blue) into a fundamental component (blue) and noisy component

(orange). The shocks are identified through the following ordering: [Rents, Housing Prices, GDP, Residential Investment,
Treasury Yield at Constant 20 year Maturity, S&P Index]. Sample: 1963:Q1 - 2016Q3.
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A.3.3 Pre-2007 Crash Sample

Figure A.18: IRFs to Surprise and Signal Shocks - pre 2007
IRFs to a surprise shock to rents and to a signal shock. The responses are reported in terms of the standard deviation of
the variables in the system. The solid blue line is the median, the dark and light blue shaded areas represents 68% and

90% confidence bands respectively (2000 bootstrap replications). The shocks are identified through the following
ordering: [Rents, Housing Prices, GDP, Residential Investment, Aaa Moody’s Corporate Bond Yield, S&P Index]. Sample:

1963:Q1 - 2006:Q4.
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Figure A.19: IRFs to Surprise and Signal Shocks - pre 2007
IRFs to news and noise shocks. The responses are reported in terms of the standard deviation of the variables in the

system. The solid red line is the median, the dark and light red shaded areas represents 68% and 90% confidence bands
respectively (2000 bootstrap replications). The shocks are identified through the following ordering: [Rents, Housing

Prices, GDP, Residential Investment, Aaa Moody’s Corporate Bond Yield, S&P Index]. The blue dotted line reports the
median IRFs obtained by the recursive ordering [Rents, GDP, Residential Investment, Aaa Moody’s Corporate Bond

Yield, Housing Prices, S&P Index]. Sample: 1963:Q1 - 2006:Q4.
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Figure A.20: Forecast Error Variance Decompostion - pre 2007
Forecast error variance decomposition of the variables in the system. The plot display the share of the variance explained
by news and noise at each horizon (not cumulatively). The shocks are identified through the following ordering: [Rents,

Housing Prices, GDP, Residential Investment, Aaa Moody’s Corporate Bond Yield, S&P Index]. Sample: 1963:Q1 -
2006Q4.
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Appendix: Bridge Proxy-SVAR

B.1 Conservative Identification - Orthogonalization

Our contribution concerns the way of studying the relationship between HF

and LF variables, independently of the particular identification scheme chosen.

Nonetheless, we can take an additional step if we restrict the class of DGPs to the

subset in which each structural shock is associated with one variable.1B Using the

representation in eq. (2.3), this assumption means that B11 > B21; B22 > B12.2B

Then, consider a case in which the HF identification employs a VAR, and the re-

searcher does not dispose of other, economic based, identification schemes (first

best). In this setting, we can think of a recursive ordering where y is placed last,

after all the variables that constitute the information set Ψ, as a second best iden-

tification. Such procedure is namely an orthogonalization and it is equivalent to

use the residuals from the regression of the variable of interest y on its previous

lags p (where p are the lags included in the HF-VAR) and on the contemporaneous

values and lags of Ψ:

yt =
p

∑
l=1

βlyt−l +
p

∑
l=0

αlΨt−l + et et ∼WN (B.1)

If each shock is associated with a variable, regressing the variable of interest

yt on Ψt yields the new information introduced in the system uniquely by yt, that

we label ε
y
t .

1BThis means that each innovation enter the system mainly through a specific variable. For
example, we call structural shock an innovation in the variable y which is orthogonal to the inno-
vations in other variables. Notice that this is one of the many interpretations of innovation.

2BThe assumption is implicit in our notation ε
y
t and εx

t , but Section 2.2.2 is actually more general.
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Intuitively, the econometrician is likely to face identification trade-offs across

different schemes in applied research. The researcher observes the high frequency

reduced form residual ůy
t which is a linear combination of the structural shocks:

ůy
t = b22ε

y
t + b21εx

t

= b22 (µ1ςt + µ2φt) + b21εx
t (B.2)

Suppose that ςt satisfies the strength requirement of an IV, such that the resulting

estimates are statistically reliable: E
[
ςtu

y
τ

]
= µ1 6= 0. Given this condition, the

econometrician should favor the most conservative HF identifications that, even

washing out the component φt, does no capture in the proxy any other shocks εx
t .

While the former issue does not yield distorted estimates, this latter event would

induce biases by violating the exclusion restriction.

Furthermore, we wish to highlight two advantages of this conservative iden-

tification. First, the orthogonalization is robust to misspecifications thanks to the

instrumental variable approach embedded into it. The IV approach allows us to

employ only an exogenous variation (a component of the true structural shock)

and not the whole structural shocks. Second, this identification yields identified

shocks orthogonal with respect to the remainder of the current and past informa-

tion set. Macroeconomic variables are explicitly unobservable at LF and cannot

be included in the HF system. However, financial variables respond to the new

available information on macroeconomic variables in real-time.

B.1.1 An Illustrative Example

Let us consider how the conservative identification performs with respect to a

more relaxed identification. We study a simply bivariate system and compare

violations in the exclusion restriction in our instrument ε̂
y
t , i.e. how large is the

component of εx
t captured in ε̂

y
t . The system is structured as[

xt

yt

]
=

[
a11 a12

a21 a22

] [
xt−1

yt−1

]
+

[
1 b12

b21 1

] [
εx

t

ε
y
t

]
(B.3)

where we normalized b11 = b22 = 1. Recall the assumption b11 > b12 and b22 > b21

such that there is a mapping between variables and shocks. We restrict the pa-

rameter space to positive values of b12 and b21 to simplify the analysis. Moreover,
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we are only interested in studying the impact matrix B, so we consider a process

without persistence: [
xt

yt

]
=

[
1 b12

b21 1

] [
εx

t

ε
y
t

]
(B.4)

Under the relaxed identification scheme, we simply take the reduced form resid-

ual of y as structural shock. The component of εx
t captured in this measure is b21,

i.e. how much εx
t impacts on yt:

ε̂
yR
t = b21εx

t + ε
y
t (B.5)

Under the conservative identification scheme, we regress yt on xt and take the

residuals:

yt = Θxt + εt εt ∼ WN

b21εx
t + ε

y
t = Θ

(
εx

t + b12ε
y
t
)
+ εt εt ∼ WN (B.6)

Applying the definition of OLS we obtain:

Θ̂OLS = E [xtxt]
−1

E [xtyt]

=
E
[(

b21εx
t + ε

y
t
) (

εx
t + b12ε

y
t
)]

E
[(

εx
t + b12ε

y
t
) (

εx
t + b12ε

y
t
)]

=
b21 + b12

1 + b2
12

(B.7)

The residuals are computed as

yt − xtΘ̂OLS = b21εx
t + ε

y
t − Θ̂OLS

(
εx

t + b12ε
y
t
)

=
(
1− b12Θ̂OLS

)
ε

y
t +

(
b21 − Θ̂OLS

)
εx

t

=

(
1−

b2
12 + b21b12

1 + b2
12

)
ε

y
t +

(
b21 −

b12 + b21

1 + b2
12

)
εx

t

ε̂
yC
t = Λε

y
t + Γεx

t (B.8)

Γ represents a measure of violation in the exclusion restriction. In two extreme

cases: b21 = 0 ⇒‖ Γ ‖= b12
1+b2

12
and b12 = 0 ⇒‖ Γ ‖= 0. The comparison be-

tween relaxed and conservative identification reduces to the comparison between

Γ and b21. The condition Γ < b21 is satisfied ∀{b12, b12} as εx
t enters negatively
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in ε̂
yC
t . This is likely to downward bias ε̂

yC
t and make the first stage in the Bridge

ineffective. However, let us consider the modulus of Γ for completeness:

‖ Γ ‖ < b21 ⇒ −b21 < Γ < b21

b21 >
b12(

2b2
12 + 1

) (B.9)

A graphical representation of the analytical results is provided below in Fig. B.1.

The same results hold in a simulation design (Fig. B.2). The conservative identifi-

cation is overall better in building an exogenous instrument than a more relaxed

identification. The exception comes from low values of b21. However, when b21

overcomes a certain threshold than the gains from the conservative over the re-

laxed identification are exponentially increasing (and the value of b12 does not

matter anymore). In terms of economic interpretation, the Bridge is designed to

study the effect of a shock to an HF variable y. b21 represents how much y re-

sponds to other shocks on impact. We can realistically state that, if y is financial

variable, b21 takes large values and, in such a way, the conservative identification

dominates the relaxed identification.

Figure B.1: Violation of the exclusion restriction - analytical case
Comparison of the violation of the exclusion restrictions between our conservative and rough (relax) identifications over
the parameter space {b12, b21} = {0, 1}x{0.1}. The left panel is a 3D plot, while in the right panel the size of the violation
of the exclusion restriction have been collapsed. Where colors are cold b21 < Γ, where they are warm b21 > Γ. In black we

report the analytical condition where b21 crosses Γ.



APPENDIX B. BRIDGE PROXY-SVAR 135

Figure B.2: Violation of exclusion restriction - simulation
Comparison of the violation of the exclusion restrictions between our conservative and rough (relax) identifications over
the parameter space {b12, b21} = {0, 1}x{0.1}. The left panel is a 3D plot, while in the right panel the size of the violation
of the exclusion restriction have been collapsed. Where colors are cold b21 < Γ, where they are warm b21 > Γ. In black we

report the analytical condition where b21 crosses Γ.

B.1.2 Monte Carlo Performances

Figure B.3: MAD comparison in the two variable system: mispecification
Mean Absolute Distance (MAD) of IRFs estimated with the HF-VAR, LF-VAR and Bridge Proxy-SVAR in the 13 DGP

cases. Time aggregation follows a skip-sampling scheme. Our conservative identification at HF is applied in this case.
IRFs are standardize with respect to the true size of the shock.
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MAD GAINS OVER LF-VAR

Identification
Temporal Aggregation Scheme

SKIP-SAMPLING AVERAGING

Full information at HF for Bridge: Quarterly-Monthly Frequency Mismatch

HF-VAR 21.2% 41.4%

Bridge 20% 36.7%

Bridge - conservative identification 21.7% 38.3%

Full information at HF for Bridge: Monthly-Daily Frequency Mismatch

HF-VAR 70% 81.2%

Bridge 65.6% 72.6%

Bridge - conservative identification 65.2% 74.7%

Table B.1: Performance comparison in Monte Carlo simulations - additional cases
Performance comparison across the counter-factual HF-VAR, the LF-VAR and the Bridge Proxy-SVAR. Performances are
evaluated in terms of the Mean Absolute Distance (MAD) between the true IRFs and the estimated IRFs in 100 randomly
parametrized DGPs. One summary statistic is computed based all the combinations of shocks-variables in the system. The
gains are expressed as percentage MAD gains over the LF-VAR. We analyze different cases for a VAR(1) DGP: I) The Bridge
employs full information at HF and the impact matrix B is diagonally dominated; II) The Bridge employs full information
at HF and no restrictions are imposed on the impact matrix B; III) The Bridge employs only partial information at HF and
no restrictions are imposed on the impact matrix B. The system features nine variables and the frequency mismatch is three
(quarterly-monthly case). When possible, i.e. under full information, for the Bridge, we report both the results under the
same identification of LF/HF-VAR and our conservative identification.
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B.2 Skip Sampling Temporal Aggregation

B.2.1 Temporal Aggregation Bias

Following the recursive structure embodied in the impact matrix B, a Cholesky

decomposition on the reduced form residuals at HF would yield the impact matrix

itself:

Chol(BB′) =

[
b11 0

b21 b22

]
= B (B.10)

However, when we move to the time aggregation case, even the correct iden-

tification scheme yields biases. In fact, we impose the zero restriction on the time

aggregated reduced form residuals, whose variance-covariance matrix is given

by:

Ω = BB′ + ABB′A′

=

[
ω11 ω12

ω21 ω22

]
(B.11)

ω11 = a12

[
a12b2

22 + b21 (a11b11 + a12b21)
]
+ b2

11 + a11b11 (a11b11 + a12b21)

ω12 = a22

[
a12b2

22 + b21 (a11b11 + a12b21)
]
+ b11b21 + a21b11 (a11b11 + a12b21)

ω21 = a12

[
a22b2

22 + b21 (a21b11 + a22b21)
]
+ b11b21 + a11b11 (a21b11 + a22b21)

ω22 = a22

[
a22b2

22 + b21 (a21b11 + a22b21)
]
+ b2

21 + b2
22 + a21b11 (a21b11 + a22b21)

The Cholesky decomposition of Ω yields:

Chol(Ω) =

[
c11 0

c21 c22

]
(B.12)
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c11 =
(

a2
11b2

11 + 2a11a12b11b21 + a2
12b2

21 + a2
12b2

22 + b2
11

) 1
2

c21 =

(
b11b21 + a11a21b2

11 + a12a22 ∗ b2
21 + a12a22b2

22 + a11a22b11b21 + a12a21b11b21

a2
11b2

11 + 2a11a12b11b21 + a2
12b2

21 + a2
12b2

22 + b2
11

) 1
2

c22 =
[ (

b2
21 + b2

22 + a2
21b2

11 + a2
22b2

21 + a2
22b2

22 + 2a21a22b11b21

)
∗(

a2
11b2

11 + 2a11a12b11b21 + a2
12b2

21 + a2
12b2

22 + b2
11

)
+

−
(

b11b21 + a11a21b2
11 + a12a22b2

21 + a12a22b2
22 + a11a22b11b21 + a12a21b11b21

)2 ] 1
2 ∗

(a2
11b2

11 + 2a11a12b11b21 + a2
12b2

21 + a2
12b2

22 + b2
11)
−1/2

where {c11, c12,c22} 6= {b11, b12,b22} and the bias depends on the parametriza-

tion of of the DGP.

B.2.2 Monte Carlo - Additional Content

The parametrizations of the DGP (eq. 2.28) that we employ in the bivariate Monte

Carlo simulations are:

{ρ, ρl , , ρ} = {0.5, 0.4, , 0.4} ; {0.5, 0.08, , 0.4} ; {0.9, 0.08, , 0.08} ; {0.9, 0.1, , 0.08} ;
{0.1, 0.1, , 0.1} ; {0.1, 0.4, , 0.4} ; {0.1, 0.08, , 0.08} ; {0.5, 0.1, , 0.1} ;
{0.5, 0.2, , 0.2} ; {0.5, 0.4, , 0.2} ; {0.9, 0.01, , 0.01} ; {0.9, 0.04, , 0.04} ;
{0.9, 0.08, , 0.04} ;
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Figure B.4: IRFs2 in the two variable system: misspecification
IRFs to a shock in the second variable (y) in the bivariate system. The true IRF is represented by the dotted black line. The
shock is identified through a wrong recursive structure in the HF system (blue), LF system (green) and Bridge Proxy (red).
Shaded areas correspond to the 90% confidence bands across 1000 replications. Time aggregation follows a skip-sampling

scheme.

Figure B.5: IRF2 in the practical case
IRFs to a shock in the second variable (z) in the three variable system. Left panel - first variable (x); middle panel - second
variable (z); right panel - third variable (y). The shock is identified through a wrong Cholesky in the HF system (blue), LF
system (green) and Bridge Proxy (red). Shaded areas correspond to the 90% confidence bands. The black line is the true

IRF. Time aggregation follows a skip-sampling scheme.
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Figure B.6: IRF3 in the practical case
IRFs to a shock in the third variable (y) in the three variable system. Left panel - first variable (x); middle panel - second

variable (z); right panel - third variable (y). The shock is identified through wrong a Cholesky in the HF system (blue), LF
system (green) and Bridge Proxy (red). Shaded areas correspond to the 90% confidence bands. The black line is the true

IRF. Time aggregation follows a skip-sampling scheme.

Figure B.7: MAD in the two varriable system: wider frequency mismatch
Mean Absolute Distance (MAD) between the true IRFs and the IRFs estimated by the HF-VAR, LF-VAR and Bridge

Proxy-SVAR (through the correct recursive scheme). Results are reported for 13 parametrization of the DGP. The MAD is
computed by averaging the MAD over the 1000 replications. Time aggregation follows a skip-sampling scheme.
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Figure B.8: MAD in the two variable system under measurement error
Mean Absolute Distance (MAD) between the true IRFs and the IRFs estimated by the HF-VAR, LF-VAR and Bridge

Proxy-SVAR. Results are reported for 13 parametrization of the DGP. The MAD is computed by averaging the MAD over
the 1000 replications. Time aggregation follows a skip-sampling scheme.

Figure B.9: MAD in the practical case: the wrong high frequency
Mean Absolute Distance (MAD) between the true IRFs and the IRFs estimated by the HF-VAR, LF-VAR and Bridge

Proxy-SVAR. Results are reported for 13 parametrization of the DGP. The MAD is computed by averaging the MAD over
the 1000 replications. Time aggregation follows a skip-sampling scheme.
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Figure B.10: MAD in each of the 100 large randomly parametrized systems
Mean Absolute Distance performances in the 100 randomly parametrized large systems of the HF-VAR, LF-VAR and

Bridge Proxy-SVAR. The summary static is based on the percentage MAD between the true and estimated IRFs in each
combination of shocks-variables in the system. Time aggregation follows a skip-sampling scheme.

B.3 Averaging Temporal Aggregation

B.3.1 An Illustrative Example

This section presents the same derivations of Section 2.2.3.1 but when time ag-

gregation follows an averaging scheme. Averaging usually modifies the AR com-

ponent in the same way as point-in-time sampling but induces higher order MA

components.

Yt = AYt−1 + Bεt εt ∼ N (0, I)

(I − AL)Yt = Bεt εt ∼ N (0, I) (B.13)

To move to the time aggregated representation under averaging, we first apply

the filter w(L) = I + L to transform the series as sum (average is just a linear
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transformation of it) and then we skip-sample through D(L) = I + AL:

D(L)w(L) (I − AL)Yt = D(L)Bw(L)εt (B.14)(
I − A2L2

)
(I + L)Yt = (I + L) (I + AL)Bεt

Yt + Yt−1 = A2 (Yt−2 + Yt−3) + B (εt + εt−1) + AB (εt−1 + εt−2)

Yτ = CYτ−1 + υτ vτ ∼ (0, BB′ + (I + A) BB′ (I + A)′ + ABB′A′)

Yτ = CYτ−1 + Bξt + ABξt−1 ξt ∼ (0, I), corr (ξt, ξt−1) = AB′B

where C = A2. Let us consider a bivariate system in extended notation:[
xt

yt

]
=

[
a11 a12

a21 a22

] [
xt−1

yt−1

]
+

[
b11 0

b21 b22

] [
εx

t

ε
y
t

]
(B.15)

which is observed in time aggregation as

[
xτ

yτ

]
=

[
a2

11 + a12a21 a11a12 + a12a22

a11a21 + a21a22 a12a21 + a2
22

] [
xτ−1

yτ−1

]
+

[
υx

τ

υ
y
τ

]
(B.16)

where

[
vx

τ

vy
τ

]
=

[
b11
(
εx

t + εx
t−1

)
+ (a11b11 + a12b21)

(
εx

t−1 + εx
t−2
)
+ a12b22

(
ε

y
t−1 + ε

y
t−2

)
b21
(
εx

t + εx
t−1

)
+ b22

(
ε

y
t + ε

y
t−1

)
+ (a21b11 + a22b21)

(
εx

t−1 + εx
t−2
)
+ a22b22

(
ε

y
t−1 + ε

y
t−2

) ]

In this case, we employ as a proxy the first HF shock in the LF period to recover

the true impact matrix. Namely, zτ = ε
y
t−1. The first stage in our IV procedure

reads:

β̂1s = E
[
z
′
τzτ

]−1
E
[
z′τvy

τ

]
=

E
[
ε

y
t−1

{
b21
(
εx

t + εx
t−1
)
+ b22

(
ε

y
t + ε

y
t−1

)}]
E
[(

ε
y
t−1

) (
ε

y
t−1

)]
+

E
[
ε

y
t−1

{
(a21b11 + a22b21)

(
εx

t−1 + εx
t−2
)
+ a22b22

(
ε

y
t−1 + ε

y
t−2
)}]

E
[(

ε
y
t−1

) (
ε

y
t−1

)]
= (b22 + a22b22)

= b22 (1 + a22) (B.17)
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and the fitted values are

β̂1szτ = b22 (1 + a22) ε
y
t−1

The second stage regression reads

ξx
τ = β2s

(
β̂1szτ

)
+ ϕτ ϕτ ∼ WN

β̂2s = E
[(

β̂1szτ

)
β̂1szτ

]−1
E
[
β̂1szτvx

τ

]
=

(
β̂1s
)−1

E [zτzτ]
−1

E [zτξx
τ]

=
(

β̂1s
)−1

E
[
ε

y
t−1

{
b11 (ε

x
t + εx

t−1) + (a11b11 + a12b21) (ε
x
t−1 + εx

t−2) + a12b22
(
ε

y
t−1 + ε

y
t−2

)}]
=

a12b22

b22 (1 + a22)

=
a12

1 + a22
(B.18)

We obtain an equivalent result if we apply straight the definition of IV estimator:

β̂Proxy = E
[
zτvy

τ

]−1
E [zτvx

τ ]

=
E
[
ε

y
t−1

{
b11
(
εx

t + εx
t−1
)
+ (a11b11 + a12b21)

(
εx

t−1 + εx
t−2
)
+ a12b22

(
ε

y
t−1 + ε

y
t−2

)}]
E
[
ε

y
t−1

{
b21
(
εx

t + εx
t−1
)
+ b22

(
ε

y
t + ε

y
t−1

)
+ (a21b11 + a22b21)

(
εx

t−1 + εx
t−2
)
+ a22b22

(
ε

y
t−1 + ε

y
t−2

)}]
= [b22 (1 + a22)]

−1 a12b22

=
a12

1 + a22
(B.19)

It is important to highlight that, even if we are able to recover the true IRFs

on impact, the estimated autoregressive matrix of the LF-VAR is biased due to the

VARMA structure of the temporally aggregated process.3B VARMA models are

not used in empirical application due the high parametrization and severe prob-

lems in defining an economic interpretable structure (SVARMA). Therefore, we

do not tackle this issue as the improvement in identification over a LF-VAR is the

3BThe bias in the estimated A matrix induces a bias also in the estimated reduced form residuals.
However, the IRFs on impact (B) would be biased only if the bias in the A matrix were correlated
with the structural shocks. In a simple AR(1) process, the bias is a constant and so does not in-
terfere with the estimates of the B matrix. Moreover, our simulations of more complex processes
indicate that the Bridge always recover the impact response.
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best we can reach through our methodology. This steams from the fact that we

derive identifying restrictions at HF but we still rely on the LF-VAR representa-

tion for the transmission of the shocks. On the contrary, the state space MF-VAR

improves the estimates of the A matrix by shifting the representation of the LF

variables at HF.

B.3.2 Comparison Bridge - Mixed Frequency VAR

If financial processes are part of the analysis, the shortcoming of the MF-VAR

consists of the inability to use daily data.4B To the best of our knowledge, the

MF-VAR can exploit at most weekly data. Therefore, there is a trade-off between

the identification of the impact matrix B, favorable to the Bridge, and the estimates

of the autoregressive matrix A, favorable to the MF-VAR.5B Finally, notice that

sample size is quite relevant in this trade-off: the biases in the estimate A matrix

are decreasing in the sample size as the VARMA process is well approximate by a

VAR in large samples but not in short samples.6B

We design two Monte Carlo experiments to compare the performances of

the Bridge versus the MF-VAR. On the one hand, we quantitatively illustrate

this trade-off. On the other hand, and more importantly, our goal is to study

the dependence of the relative performances of the two methodologies on the

parametrization of the DGP. Our intuition suggests that when the variables in

the system are very responsive to other shocks on impact, i.e. the simultaneity

problem is very severe, improving the estimation of the impact matrix is crucial.

We consider both a full information and partial information setup. In the full

information case, the Bridge employs all variables in both stages, whereas the MF-

VAR is actually the counter-factual HF-VAR. In the partial information case, we

4BFor example, in a quarterly-weekly (m = 12) Monte Carlo simulation Foroni and Marcellino
(2016) report:

1. “For computational reasons (the number of missing values is high and therefore the com-
putational time increases substantially), we fix the number of replications to R = 500.”

2. “Due to the higher number of missing values when m = 12, we increase the size to 300
quarterly observations to obtain more stable results when running the Kalman filter.”

5BIf the true process occurs at daily frequency while the MF-VAR employs weekly data, the
estimates of the A matrix will still be biased, even if less than the monthly estimates.

6BNotice that, on the one hand, the strength of the instrument and the precision of the estimates
is increasing with the sample size for the Bridge. On the other hand, the computational burden of
the MF-VAR increases with the length of the sample.
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run the practical case presented in Section 2.3.3. The first variable in the system

is effectively unobservable at HF, so the Bridge employs only two variables in re-

covering the shocks at HF (first stage). The MF-VAR estimates in a state space

representation the missing observations of the LF variable.

Full Information We employ a nine variable system to quantitatively evaluate

the A-B trade-off, but we study also a two variable system to illustrate how this

trade-off depends on simultaneity. The true frequency of the process is daily but

macro variables are available only at the monthly frequency. We compare the best

performances of a MF-VAR (HF-VAR) on weekly data with the best performances

of the Bridge (full information) using daily as HF data and monthly as LF data.

Once again, we run a 100 random parametrization experiment in a three variable

system as we want to analyze the trade-off between Bridge (advantage in identify-

ing the impact matrix) versus MF-VAR (advantage in estimating the autoregres-

sive matrix). We do not constrain the generated parameter in anyway other than

maintaining a mapping variables-shocks. Overall, we obtain the results displayed

in Table B.2.

More importantly, for the bivariate case we build an index of relative perfor-

mances for the cross impacts of the shocks and regress it on the parameters of

the B matrix. Our index capture the percentage difference in the MAD between

the MF-VAR and Bridge. Table B.3 confirms our priors: when the off-diagonal

elements in the B matrix are large, the (daily-monthly) Bridge is preferred to the

(weekly) MF-VAR.
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Identification MAD GAINS OVER LF-VAR (MONTHLY)

Bivariate system

MF-VAR (HF-VAR weekly) 70.6%

Bridge (full-information daily) 78.7%

9 variable randomized system

MF-VAR (HF-VAR weekly) 67.4%

Bridge (full-information daily) 66.2%

Table B.2: Performance comparison in Monte Carlo simulations - Bridge and MF-
VAR
Performance comparison across the MF-VAR (weekly HF-VAR), the LF-VAR (monthly) and the (full information) Bridge
Proxy-SVAR (daily-monthly). Performances are evaluated in terms of the Mean Absolute Distance (MAD) between the true
IRFs and the estimated IRFs. The gains are expressed as percentage MAD gains over the LF-VAR. We report the results
for I) the bivariate case used to evaluate the dependence of the performances on the structure of the DGP; II) a 9 variable
randomly parametrized system in 100 randomly parametrized DGPs.

(1) (2) (3) (4)
OLS OLS Probit Probit

VARIABLES % ∆ MAD MF-B % ∆ MAD MF-B % ∆ MAD MF-B % ∆ MAD MF-B
Variable 2 - Shock 1 Var 1 - Shock 2 Var 2 - Shock 1 Var 1 - Shock 2

|b12| 0.40*** -0.25 1.07*** 0.93*
(0.13) (0.18) (0.27) (0.49)

|b21| -0.05 0.47*** -0.31 0.51
(0.12) (0.17) (0.23) (0.38)

Constant -0.19 1.10*** -0.73*** 0.39
(0.15) (0.21) (0.28) (0.38)

Observations 100 100 100 100
R-squared 0.09 0.09 0.14 (pseudo) 0.11 (pseudo)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table B.3: MAD comparison as function of DGP: full information
Relationship between relative performances of the (daily-monthly) Bridge over the (weekly) MF-VAR and the structure of
the impact matrix. In particular, we study the relationship between the estimated cross IRFs with the absolute values of the
off-diagonal elements in the B matrix: b12 and b21. The higher the degree of simultaneity, the wider the gains from using
daily data (Bridge) over weekly data (MF-VAR).
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Partial Information We turn next to a three variable system where one variable

is actually unobserved a HF and compare how the MF-VAR and Bridge cope with

this lack of information. The LF variable is observable only once each 24 periods

as average.7B The MF-VAR aggregates the HF over 8 periods and jointly esti-

mate the relationship with the LF variable. Basically, the MF-VAR reverse to the

monthly-quarterly case. Finally, the Bridge recovers shocks at the true frequency

by using a bivariate system with the two variables available at HF. In terms of

MAD percentage gains over the LF-VAR, the MF-VAR improves by 46.7%, while

the Bridge by 70.5%.

However, more than providing a quantitative comparison across the two

methodologies, we are interested in analyzing the cases that suit one or another

procedure. As in the previous case, we regress the relative performances of the

Bridge versus the MF-VAR on the parametrization of the B matrix. In particu-

lar, we focus on the simultaneity between the variables observable at the highest

frequency. We analyze how this simultaneity affects the bias in the estimated re-

sponses of the low frequency variable to the high frequency shocks. Namely, we

regress the bias in the IRF of variable x to shocks in z and y on b23 and b32.8B The

results presented Table highlight that the gains from using the Bridge increasing

in the simultaneity across the high frequency variable. This finding suggests that

the Bridge is particularly suitable to study macro-financial linkages where high

frequency variables contemporaneous co-move significantly.

7BThis number may be interpreted as the working days within one month.
8BWe include b22 and b33 to take into account the size of the shock.
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(1) (2)
VARIABLES % ∆ MAD MF-Bridge ∆ MAD MF-Bridge

Variable 1 - Shock 2 Variable 1 - shock 3

|b32| 2.49** 2.13*
(1.15) (1.27)

|b23| -0.63 2.22*
(1.18) (1.27)

|b33| 0.71 -0.99
(1.01) (1.08)

|b22| -0.86 0.034
(0.81) (0.91)

Constant 1.49 0.39
(1.84) (1.99)

Observations 99 96
R-squared 0.058 0.074

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table B.4: MAD comparison as function of DGP: partial information
Relationship between relative performances of the (daily-monthly) Bridge over the (weekly) MF-VAR and the structure of
the impact matrix. In particular, we study the relationship between the estimated cross IRFs with the absolute values of
the off-diagonal elements in the B matrix: b23 and b32. These two parameters represent the degree of simultaneity between
variable 2 (z) and variable 3 (y). The higher the degree of simultaneity, the wider the gains from using daily data (Bridge)
over weekly data (MF-VAR).
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B.3.3 Monte Carlo Simulations - Averaging Case

Figure B.11: MAD in the two variable system - averaging
Mean Absolute Distance (MAD) between the true IRFs and the IRFs estimated by the HF-VAR, LF-VAR and Bridge

Proxy-SVAR (through the correct recursive scheme). Results are reported for 13 parametrization of the DGP. The MAD is
computed by averaging the MAD over the 1000 replications. Time aggregation follows an averaging scheme.

Figure B.12: MAD in the two variable system: mispecification - averaging
Mean Absolute Distance (MAD) between the true IRFs and the IRFs estimated by the HF-VAR, LF-VAR and Bridge

Proxy-SVAR. Results are reported for 13 parametrization of the DGP. The MAD is computed by averaging the MAD over
the 1000 replications. Time aggregation follows a skip-sampling scheme.
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Figure B.13: IRFs from large randomized Monte Carlo experiment - averaging
Example of the IRFs of the system to a shock in the first variable in the system, estimated by the HF-VAR, LF-VAR and
Bridge Proxy-SVAR in one of the 100 randomly parametrized DGPs. Shaded areas correspond to the 90% confidence

bands across 1000 replications. The true IRF is represented by the dotted black line. Time aggregation follows an
averaging scheme.

Figure B.14: MAD heatmap from large randomized Monte Carlo experiment -
averaging

Mean Absolute Distance (MAD) between the true IRFs and the IRFs estimated by the HF-VAR, LF-VAR and Bridge
Proxy-SVAR in one of the 100 randomly parametrized DGPs. Results are reported for each combination of

shocks-variables in the system (81). The MAD is computed by averaging the MAD over the 1000 replications. Time
aggregation follows a skip-sampling scheme.
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Figure B.15: MAD in each of the 100 large randomly parametrized systems
Mean Absolute Distance performances in the 100 randomly parametrized large systems of the HF-VAR, LF-VAR and

Bridge Proxy-SVAR. The summary static is based on the percentage MAD between the true and estimated IRFs in each
combination of shocks-variables in the system. Time aggregation follows a skip-sampling scheme.
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B.4 Empirical Application

Name Datastream Code

Fed Funds Future 3 months ahead CFFCS30

S&P 500 S&PCOMP

Oil Price Index OILBREN

Oil Price Future 3 months ahead NCLCS30

BBA Corporate Spread LHIGBAA

Dollar-Euro Exchange Rate USEURSP

Dollar-Sterlin Exchange Rate USDOLLR

Commodity Price Index CRBSPOT

Gold Price Index GOLDHAR

Oil Future 3 months ahead NCLCS30

Eurodollar Future 3 months ahead NCLCS30

Cleveland Financial Stress Index USCVFSI

CBOE VXO - Stock Volatility Index CBOEVXO

Bid Cover Ratio in Trasuries Auctions (26 weeks) USBCR26

Bank of America Merril Lynch Asset Backed Security Index MLR0A2L

US Federal Funds Target Rate USFDTRG

US Treasury Term Premia 1 years USTTP1Y

US Treasury Term Premia 5 years USTTP5Y

US Treasury Term Premia 10 years USTTY10

Conventional Fixed Mortgage Rate FRCMORT

Table B.5: Data description
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Figure B.16: Comparison TFFR and FF4
Comparison Target Fed Fund Rate - Fed Fund Rate Future 3 month ahead

B.4.1 Shocks identified from the Daily VAR

B.4.1.1 Baseline Identification

Table B.6-B.7 point out that, even without imposing any particular role for the

FOMC meeting days, our conservative identification highlights a special role for

these days. In fact, both mean and standard deviation of the shocks on FOMC

meeting days are twice as sizable as the same statistics computed over the whole

sample. Not surprisingly, this difference is more relevant for future contracts at

shorter horizons. More formally, we also regress the size of the shocks over a

dummy that reflect the FOMC meeting days, finding the same pattern (Table B.8).

Finally, we provide anecdotal evidence on the identified shocks. Specifically,

the daily framework allows us to track the events that occurred on the days in

which we register the most sizable shocks. Description and references are in-

cluded in Table B.9.
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Variable Mean Std. Dev. Min. Max.
|TFFR*| 0.444 0.838 0 15.136
|fut4* | 0.6 0.747 0 10.156
|fut1| 0.53 0.79 0 15.973
|fut4| 0.598 0.739 0 10.151
|fut7| 0.614 0.726 0 8.268
|fut18| 0.559 0.769 0 15.361
Observations 4352

Table B.6: Descriptive statistics of monetary policy shocks - comparison across
maturities
Shocks in the whole sample - * refers to section 2.4.1; others show the robustness to using different future contracts (over a
slightly shorter sample).

Variable Mean Std. Dev. Min. Max.
|TFFR*| 2.832 3.422 0.015 15.136
|fut4* | 1.139 1.303 0.01 7.184
|fut1| 1.092 1.346 0.002 9.587
|fut4| 0.856 0.969 0.008 6.524
|fut7| 0.813 0.930 0.001 7.104
|fut18| 0.765 0.841 0.011 5.966
Observations 148

Table B.7: Descriptive statistics of monetary policy shocks on FOMC meeting
dates - comparison across maturities
Shocks in the FOMC dates - * refers to section 2.4.1; others show the robustness to using
different future contracts (over a slightly shorter sample).
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(1) (2) (3) (4) (5) (6)
VARIABLES |TFFR*| |fut4*| |fut1| |fut4| |fut7| |fut18|

FOMC 2.47*** 0.56*** 0.58*** 0.27*** 0.21*** 0.21***
(0.06) (0.06) (0.07) (0.06) (0.06) (0.06)

Constant 0.36*** 0.58*** 0.51*** 0.59*** 0.61*** 0.55***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Observations 4,352 4,352 4,352 4,352 4,352 4,352
R-squared 0.29 0.02 0.02 0.00 0.00 0.00

Standard errors in parentheses
*** p<0.01

Table B.8: Regression of monetary policy shocks on FOMC meeting dates dummy
- comparison across maturities
Daily shocks regressed on FOMC days dummy - * refers to Section 2.4.1; others show the robustness to using different
future contracts (over a slightly shorter sample).

Bridge TFFR Event 1 Event 2 Event 3

Dates 18 March 2008 22 January 2008 15 November 1994

Description FOMC meeting FOMC meeting FOMC meeting

Reference Event 1a; Event 1b Event 2a; Event 2b Event 3

Shock −15 std −13.1 std 15.9 std

Bridge FF4 Event 1 Event 2 Event 3

Dates 02 January 2001 22 January 2008 02 January 1995

Description Anticipation FOMC 03 Jan 2001 FOMC meeting $50 billion bailout Mexican tequila crisis

Reference Event 1 Event 2a Event 2b Event 3

Shock −7.9 std −7.5 std 10.5 std

Table B.9: Largest monetary policy shocks
Main shocks (reported in standard deviation units) identified in our daily VAR and corresponding events - section 2.4.1

https://www.federalreserve.gov/newsevents/press/monetary/20080318a.htm
https://www.federalreserve.gov/newsevents/press/monetary/20080318b.htm
https://www.federalreserve.gov/newsevents/press/monetary/20080122b.htm
https://www.federalreserve.gov/newsevents/press/monetary/20080122c.htm
https://www.federalreserve.gov/fomc/19941115default.htm
https://www.federalreserve.gov/boarddocs/press/general/2001/20010103/default.htm
https://www.federalreserve.gov/newsevents/press/monetary/20080122b.htm
https://www.federalreserve.gov/newsevents/press/monetary/20080122c.htm
https://www.federalreserve.gov/monetarypolicy/files/FOMC19950113confcall.pdf
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Figure B.17: Comparison of TFFR shocks with Romer and Romer shocks
Comparison of monetary policy shocks from different identifications. Bridge TFFR (blue) refers to the series of shocks

identified using our daily VAR. RR refers to the series of shocks build as Romer and Romer (2004), extended by Coibion
et al. (2012).

Figure B.18: Comparison of FF4 shocks with Gerter and Kararadi shocks
Comparison of monetary policy shocks from different identifications. Bridge FF4 (red) refers to the series of shocks

identified using our daily VAR. GKFF4 refers to the series of shocks employed by Gertler and Karadi (2015).
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Figure B.19: Explanatory power of TFFR shocks for Romer and Romer shocks
Romer and Romer (2004) shocks, extended by Coibion et al. (2012), fitted by your TFFR series of shocks estimated in a

daily VAR.

Figure B.20: Explanatory power of TFFR and FF4 shocks for Romer and Romer
shocks

Gertler and Karadi (2015) FF4 shocks fitted by your TFFR and FF4 shocks estimated in a daily VAR.

B.4.1.2 Alternative Identifications

Our two alternative identification strategies yield series of daily monetary policy

shocks that are very correlated with our baseline series. Moreover, they generate
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very similar macroeconomic effects. In Tables B.10-B.11 we report the correlations

among the shocks identified with all the strategies that we have employed.

Identification Via Heteroskedasticity

In short, the identification proposed by Rigobon (2003) exploits the change in the

volatility of the structural shocks across (at least) two regimes. Consistently with

our finding reported in Table B.6-B.7, we assume that the variance of the

monetary policy shocks changes across FOMC meeting days and non-FOMC

meeting days. We estimate a bivariate VAR including FF4 and SP&500 and

exploit the change in the variance of the shocks in FF4 across the two regimes for

identification. In this way, we obtain a series of shocks that correlates 0.9998 with

the shocks identified by ordering the TFFR last in our large scale VAR. The same

result hold in three and four variable daily VARs, which additionally include the

commodity price index and commodity price index plus the Cleveland Financial

Stress index. Finally, notice that event-based identification is equivalent to the

identification via heteroskedasticity where the change in the volatility across the

two regimes is assumed to be infinite.

Identification Via Independent Component Analysis

Detailed reference on the application of Independent Component Analysis (ICA)

to VARs can be found in Capasso and Moneta (2016) and Gourieroux et al. (2017).

Intuitively, ICA can be seen as a generalization of principal component analysis

(PCA). While PCA looks for uncorrelated latent components, ICA minimizes the

statistical independence among such components. Obviously, if the data is

normally distributed, the two concept are equivalent. However, when departing

from gaussianity, ICA can solve the identification problem in VARs. While the

reduced form residuals can be decomposed in uncorrelated structural shocks in

infinite ways, ICA searches for the (unique) combination of the most statistically

independent components.

Both visual inspection and the Kolmorogov-Smirnov reject the normality of the

18 reduced form residuals in our daily VAR. We do not assume any particular

distribution of the reduce form residuals but we estimate semi-parametrically the

independent components.9B We consider as monetary policy shock the structural
9BWe employ the algorithm Icasso v1.22 and FastICA v2.5.
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shock that contributes the most to the variance of the FF4 on impact. The

resulting series of structural shocks correlates 0.89 with the shocks in the TFFR

and 0.9 with the shocks in the FF4 identified with our baseline recursive ordering.

Target FFR - Last FF4 - Last FF4 - Heteroschedasticity FF4 - ICA
Target FFR - Last 1 * * *

FF4 - Last 0 1 * *
FF4 - Heteroskedasticity 1* 0 1 *

FF4 - ICA 0 0.92* 0 1

Table B.10: Correlation among monetary policy shocks across different identifica-
tions - daily frequency
Correlations among monetary policy shocks recovered at the daily frequency through different identification strategies: 1)
Target FFR ordered last in recursive identification; 2) Fed Future (3 months ahead) ordered last in recursive identification;

3) Fed Future (3 months ahead) exploiting the change volatility in FOMC meeting days and other days
(heteroskedasticity); 4) Fed Future (3 months ahead) exploiting the non-normality of the reduced form residuals

(Independent Component Analysis - ICA) . All coefficients different from 0 are statistically significant at the 1% level.

Target FFR - Last FF4 - Last FF4 - Heteroschedasticity FF4 - ICA
Target FFR - Last 1 * * *

FF4 - Last 0.1 1 * *
FF4 - Heteroskedasticity 1 * 0.11 1 *

FF4 - ICA 0.1 0.93* 0.11 1

Table B.11: Correlation among monetary policy shocks across different identifica-
tions - monthly frequency

Correlations among monetary policy shocks recovered at the daily frequency through different identification strategies
and aggregated at the monthly frequency: 1) Target FFR ordered last in recursive identification; 2) Fed Future (3 months
ahead) ordered last in recursive identification; 3) Fed Future (3 months ahead) exploiting the change volatility in FOMC
meeting days and other days (heteroskedasticity); 4) Fed Future (3 months ahead) exploiting the non-normality of the

reduced form residuals (Independent Component Analysis - ICA) . * denotes statistical significance at the 1% level.



APPENDIX B. BRIDGE PROXY-SVAR 161

B.4.1.3 Impulse Response Functions

Figure B.21: IRFs FF4
IRFs to a monetary policy shock identified using Bridge Future using all the available days (FOMC and non-FOMC).

From the first stage, F− stat = 7.7. The VAR is estimated in log-levels with the optimal number of lags (2) and includes a
deterministic constant. Shaded areas correspond to 95% bootstrapped confidence bands.
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IRFs in the Medium System of Gertler and Karadi

Figure B.22: IRFs TFFR - medium system
IRFs to a monetary policy shock identified using Bridge Target. From the first stage, F− stat = 10.2. The VAR includes

[FFR, CPI, Industrial Production, Excess Bond Premium, Mortgage Spread, Commercial Paper Spread] and it is estimated
in log-levels with the optimal number of lags (2) and includes a deterministic constant.Shaded areas correspond to 95%

bootstrapped confidence bands from 1000 replications.
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Figure B.23: IRFs FF4 - medium system
IRFs to a monetary policy shock identified using Bridge Future (FOMC and non-FOMC). From the first stage,
F− stat = 7.44. The VAR includes [FFR, CPI, Industrial Production, Excess Bond Premium, Mortgage Spread,
Commercial Paper Spread] and it is estimated in log-levels with the optimal number of lags (2) and includes a

deterministic constant. Shaded areas correspond to 95% bootstrapped confidence bands.
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Appendix C

Appendix: Liquidity Shocks

Italy Spain
Unemployment ISTAT Ministry of Economy

Industrial Production ISTAT INE
CPI Inflation ISTAT INE

Central Government Debt Bank of Italy Ministry of Economy
ECB Repo ECB ECB

M2 Bank of Italy Banco de España
Consumer Confidence ISTAT Ministry of Economy
Business Confidence ISTAT Ministry of Industry

Volatility Index ASR-Absolute Strategy VSTOXX
CDS Thomson Reuters CDS Thomson Reuters CDS

Bid-Ask Spread Bloomberg Bloomberg
Yield Spread ECB ECB
Stock Prices FTSE MIB IBEX 35

France Germany
Unemployment INSEE OECD

Industrial Production INSEE Federal Statistical Office
CPI Inflation Thomson Reuters Thomson Reuters

Central Government Debt Banque de France Deutsche Bundesbank
ECB Repo ECB ECB

M2 Banque de France Deutsche Bundesbank
Consumer Confidence DG ECFIN DG ECFIN
Business Confidence DG ECFIN DG ECFIN

Volatility Index Euronext Paris Deutsche Boerse
CDS Thomson Reuters CDS Thomson Reuters CDS

Bid-Ask Spread Bloomberg Bloomberg
Yield Spread ECB ECB
Stock Prices CAC 40 MDAX Frankfurt

Table C.1: Data Sources



APPENDIX C. LIQUIDITY SHOCKS 166

All the variables are seasonally adjusted originally or by using the X-13ARIMA

procedure. We deflate nominal variables by the corresponding CPI price index in

order to estimate the VAR with real variables.

In Section 3.4.2, we refer to the following questions from the Bank and Lending

Survey:

1. Firm ∆ Standards: Changes in bank’s credit standards for approving loans or

credit lines to enterprises, Overall (all firms and types of loans), Past three

months.

2. Firm: Costs-Asset Position: Changes in the contribution of cost of funds and

balance sheet constraints (costs related to bank’s capital position) affecting

credit standards for approving loans or credit lines to enterprises.

3. Firm: Liquidity Position: Changes in the contribution of cost of funds and bal-

ance sheet constraints (bank’s liquidity position) affecting credit standards

for approving loans or credit lines to enterprises.

4. Firm: Risk-Economic Activity: Changes in the contribution of perception of

risk about general economic situation and outlook affecting credit standards

for approving loans or credit lines to enterprises.

5. Mortgages: ∆ Standards: Changes in credit standards for approving loans to

households, loans for house purchase in the last three months.

6. Mortgages: Costs-Funding: Changes in the contribution of the following fac-

tors affecting credit standards for approving loans to households for house

purchase, cost of funds and balance sheet constraints.

Concerning the ISTAT survey, the questionnaire can be found at ISTAT question-

naire (only in Italian). We refer to the following questions/answers:

43 Today, in our opinion, are the credit conditions more or less favorable com-

pared to three months ago? (Possible answers: More; Constant; Less)

45 Have you obtained the loan you requested to the bank or financial institution?

(Possible answers: Yes, at the same conditions; Yes, at worse conditions; No; Only

asking information)

http://siqual.istat.it/SIQual/files/Questionario%20fiducia%20imprese%20manifatturiere.pdf?ind=8888945&cod=4919&progr=1&tipo=4
http://siqual.istat.it/SIQual/files/Questionario%20fiducia%20imprese%20manifatturiere.pdf?ind=8888945&cod=4919&progr=1&tipo=4
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46 In case answer to 43 was No - Has the bank reject your request or you have

not accepted their offer due to the conditions they were setting? (Possible

answers: The bank has not offered a loan; We have not accepted the loan due to not

favorable conditions)

47 In case answer to 45 was Yes, at worse conditions - Why the conditions have be-

come worse? (Possible answers: Higher rate; More personal collateral requested;

More real collateral requested; Limits on the amount of the loan; Additional costs)
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C.1 High Frequency Variables

Date Events
2/7/07 HSBC issue with subprimes
6/7/07 Bearn Sterns first bad news
8/9/07 BNP Paribas
9/13/07 Northern Rock
2/18/08 Northern Rock Nationalized
3/14/08 Bearn Sterns bought by JP Morgan
9/15/08 Lehman

10/16/08 Greek Deficit Surprise
5/7/10 EFSF
7/23/10 Stress Test

10/28/10 ESM
5/17/11 Portugal asks help
8/5/11 Letter to Mr. Berlusconi from ECB
8/16/11 ECB buys after Ita take measures
10/4/11 Downgrade ITA-SPAIN

10/11/11 CDS-ban announced
10/31/11 Draghi takes over
11/1/11 CDS-ban in place

11/14/11 Mr. Monti takes over
12/5/11 Mr. Monti package
12/8/11 LTRO announced

12/21/11 1st LRTO
2/28/12 LTRO announced
6/26/12 Cyprus requests aid
7/26/12 Mr. Draghi whatever it takes
8/2/12 OMT announced

12/10/12 Monti resigns
12/13/12 SSM announced
11/7/13 ECB cuts Rate

Table C.2: List of European and Italian events



APPENDIX C. LIQUIDITY SHOCKS 169

05-Sep-2004 02-Feb-2008 01-Jul-2011 27-Nov-2014

50

100

150

200

250

300

350

400

450 BAS
Volume

Figure C.1: Italian BAS and Turnover on the MTS platform

Figure C.2: Dyanmic correlations among Spread, CDS and BAS over 2004-2014.
Correlations are computed over a 90 days rolling window
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C.2 Financial Variables at Monthly Frequency

Table A3 summarizes statistics of the financial variables used in the empirical

analysis at monthly frequency:

Full Sample 2009-2014
BAS Yield CDS BAS Yield CDS

Mean 0.017 4.318 98.278 0.020 4.41 169.58
Max 0.037 7.057 546.159 0.037 7.057 546.159
Min 0.007 1.990 2.343 0.007 1.990 36.352

St. Dev. 0.007 0.809 124.411 0.007 1.008 128.619
Auto Corr. 0.836 0.956 0.964 0.782 0.957 0.940

Table C.3: Descriptive statistics of sovereign debt financial variables at monthly
frequency. Sources: Bloomberg, Datastream and Bank of Italy. Maturities: BAS
and CDS 2 years; Yield 10 years.

There is no significant change in volatility and standard deviation in the period

of the sovereign debt crisis at monthly frequency.

C.3 Proxy-SVAR

We describe the the Proxy SVAR methodology that we use to identify the effects

of BAS shocks and the first stage results (i.e. the linear projection of the reduced

form residuals on the exogenous variations of BAS identified at daily frequency).

C.3.1 Theoretical Reference

Consider the following VAR:

Yt = AYt−1 + ut (C.1)

with Yt a vector of endogenous variables and ut is a vector of reduced form

residuals with variance-covariance matrix Σu. The objective is to recover the struc-

tural form of the VAR, characterized by the vector of structural shocks εt = B−1ut:

Yt = AYt−1 + Bεt (C.2)
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We can rewrite the VAR system as partitioned (or bivariate for a matter of

interpretation):[
Bast

Xt

]
=

[
A11 A12

A21 A22

] [
Bast−1

Xt−1

]
+

[
B11 B12

B21 B22

] [
εbas

t

εX
t

]
(C.3)

The Proxy-SVAR is an identification strategy that (potentially) partially identi-

fies the unknown B matrix. Namely, we aim at identifying only the block

[
B11

B21

]
,

which would allows us to compute the IRFs of the system to a structural innova-

tion in the BAS. In order to reach the identification, we exploit information from

outside the VAR system. We use the variable zt as a proxy for the true structural

shock εbas
t . zt is assumed to be a proxy for (a component of) the true εbas

t with the

following (instrumental variable) properties:

E
[
εbas

t zt

]
6= 0

E
[
εX

t zt

]
= 0

In fact, under those assumptions, we can obtain consistent estimates of

[
B11

B21

]
by taking an instrumental variable approach:

First Stage: regress ubas
t = βzt + ξt obtaining ûbas

t

Second Stage: uX
t = B21

B11
ûbas

t + ζt

Given that the BAS reacts one to one to its own structural shock (on impact), we

can normalize B21
B11

= B21. The IRFs to a BAS shock can be then computed across

different horizons as:

IRFX
0 = B21

IRFX
n = An−1IRFX

n−1 ∀n > 0
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C.3.2 First Stage

Figure A4 displays the RF residuals predicted by the proxy, compared to the orig-

inal RF innovation series.
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Figure C.3: First stage result of the Bridge Proxy-SVAR identification
The blue line represents the RF residuals of the BAS from the VAR featuring [Unemployment, π,
Public Debt, R, M2, CC, BC, Financial Block]; the red bar is the RF residuals predicted by the Proxy
(BAS shocks identified in a daily VAR including [BAS, CDS, Yield, FTSE, Eonia, VIX])

C.4 Alternative VAR Specifications

We present the results from alternative VAR specifications described in Section

3.3.4. To keep the appendix short, we only report results using some particular

identification schemes (Basic, Full or Proxy SVAR). Results are robust using the

other identification schemes and are available from the authors upon request.
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C.4.1 Indicator of Liquidity

The following figures report the IRFs to a BAS shock of the Full VAR and Proxy-

SVAR specifications including the Turnover instead of the Equity Premium, re-

spectively. Moreover, we also display the IRFs and the FEVD of Unemployment

from the Full VAR including the Liquidity Index instead of the BAS. An increase

(decrease) in the Liquidity Index is analogous to a decrease (increase) in the BAS.

Figure C.4: IRFs to a BAS Shock - Choleski identification
IRFs to a 1 std BAS shock identified through the following ordering [Unemployment, π, Public
Debt, R, M2, CC, BC, Financial Block]. The turnover of Italian sovereign bonds is included in
place of the equity premium. The median point estimate, 68% and 90% confidence bands are

reported in cyan, blue, and light blue, respectively. 50%, 68% and 90% bands include statistical
and identification uncertainty (from all the possible ordering within the financial block)

.
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Figure C.5: IRFs to a BAS Shock - Bridge Proxy-SVAR identification
IRFs to a 1 standard deviation BAS shock in the VAR [IP, π, Public Debt, R, M2, CC, BC, Financial
Block]. The turnover of Italian sovereign bonds is included in place of the equity premium. The

shock is identified through the unpredictable variation of the BAS in a daily VAR system.
Sample: Jan:2009-Nov:2014. The median point estimate, 68% and 90% confidence bands are

reported in blue and light blue, respectively. Confidence bands are computed using wild
bootstrap with 1,000 replications.

Figure C.6: IRFs to a Liquidity Index shock - Choleski identification
IRFs to a 1 std Liquidity Index shock (liquidity improvement) identified through the following
ordering [Unemployment, π, Public Debt, R, M2, CC, BC, Financial Block]. The median point

estimate, 68% and 90% confidence bands are reported in cyan, blue, and light blue, respectively.
50%, 68% and 90% bands include statistical and identification uncertainty (from all the possible

ordering within the financial block).
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Figure C.7: FEVD of unemployment - Choleski identification
FEVD of unemployment including the Liquidity Index identified through the following ordering

[Unemployment, π, Public Debt, R, M2, CC, BC, Financial Block].

Liquidity accounts for around 20% of Unemployment fluctuations in the pe-

riod under analysis, in line with results presented in Section 3.3.2.

C.4.2 Measures of Economic Activity

In this case, we use alternative measures of economic activity and present the

corresponding IRFs. We include results both with our small VAR system and with

the Proxy-SVAR. We employ Industrial Production and the ITA-Coin.
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Table C.4: IRFs to a Liquidity Index shock - Choleski identification and industrial
production

IRFs to a 1 std Liquidity Index shock (liquidity improvement) identified through the following
ordering [Industrial Production, π, FTSE, Spread, BAS]. The median point estimate, 68% and 90%

confidence bands are reported in cyan, blue, and light blue, respectively. 50%, 68% and 90%
bands include statistical and identification uncertainty (from all the possible ordering within the

financial block).

Figure C.8: IRFs to a Liquidity Index shock - Choleski identification; industrial
production

IRFs to a 1 std Liquidity Index shock (liquidity improvement) identified through the following
ordering [Itacoin, π, FTSE, Spread, BAS]. The median point estimate, 68% and 90% confidence
bands are reported in cyan, blue, and light blue, respectively. 50%, 68% and 90% bands include

statistical and identification uncertainty (from all the possible ordering within the financial
block).
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Figure C.9: IRFs to a BAS shock - Bridge Proxy-SVAR identification; industrial
production
IRFs to a 1 standard deviation BAS shock (liquidity deterioration) in the VAR [IP, π, Public Debt,
R, M2, CC, BC, Financial Block]. The shock is identified through the unpredictable variation of

the BAS in a daily VAR system. Sample: Feb:2004-Nov:2014. The median point estimate, 68% and
90% confidence bands are reported in blue and light blue, respectively. Confidence bands are

computed using wild bootstrap with 1,000 replications.
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Figure C.10: IRFs to a BAS shock - Bridge Proxy-SVAR identification; Itacoin
IRFs to a 1 standard deviation BAS shock (liquidity deterioration) in the VAR [IP, π, Public Debt,
R, M2, CC, BC, Financial Block]. The shock is identified through the unpredictable variation of

the BAS in a daily VAR system. Sample: Feb:2009-Nov:2014. The median point estimate, 68% and
90% confidence bands are reported in blue and light blue, respectively. Confidence bands are

computed using wild bootstrap with 1,000 replications.

C.4.3 Alternative Samples

We study the dependence of our findings on the sample used. We display the

IRFs to a BAS shock and FEV of Unemployment using the sample January 2009-

November 2014 and on the pre-crisis sample (February 2004-December 2008). The

main conclusions remain unchanged.
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Figure C.11: IRFs to a BAS shock - Choleski; sample 2009-2014
IRFs to a 1 std BAS shock identified through the following ordering [Unemployment, π, Public

Debt, R, M2, CC, BC, Financial Block]. The median point estimate, 68% and 90% confidence
bands are reported in cyan, blue, and light blue, respectively. 50%, 68% and 90% bands include

statistical and identification uncertainty (from all the possible ordering within the financial
block).
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Figure C.12: IRFs to a BAS shock - Choleski; sample 2009-2014
FEVD of unemployment including the Liquidity Index identified through the following ordering

[Unemployment, π, Public Debt, R, M2, CC, BC, Financial Block].
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Figure C.13: IRFs to a BAS shock - Choleski; sample 2004-2008
IRFs to a 1 std Liquidity Index shock (liquidity improvement) identified through the following

ordering [Unemployment, π, FTSE, Spread, BAS]. The median point estimate, 68% and 90%
confidence bands are reported in cyan, blue, and light blue, respectively. 50%, 68% and 90%

bands include statistical and identification uncertainty (from all the possible ordering within the
financial block).

C.4.4 Corporate Liquidity

In this section, we consider the relationship between the Corporate and Sovereign

liquidity. Figure A16 displays the evolution of the Corporate BAS together with

sovereign variables aggregated at monthly frequency. Figure A17 displays the IRF

to a shock to corporate BAS and compares it to the one to a sovereign BAS. Finally,

Figure A18 shows the IRFs using as a variable the spread between Corporate and

Sovereign BAS instead of the BAS.
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Levels BAS-S Spread CDS BAS-C
BAS-S 1 -0.08 0.39* 0.31*
Spread -0.08 1 0.35 0.5*

CDS 0.39* 0.35 1 0.9*
BAS-C 0.31* 0.5* 0.9* 1

Table C.5: Sovereign and Corporate Liquidity
Correlation over the 2004-2014 among Sovereign and Corporate BAS, Spread and CDS (as

monthly averages).

Figure C.14: Comparison among Sovereign and Corporate BAS, Spread and CDS
(as monthly averages). Source of Corporate BAS: Bloomberg.
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Figure C.15: IRFs to a BAS shock- Choleski identification; sovereign and corporate
liquidity
IRFs to a 1 std Corporate BAS shock (compared to a sovereign BAS shock in blue) identified
through the following ordering [Unemployment, π, Public Debt, R, M2, CC, BC, Financial Block].
The median point estimate, 68% and 90% confidence bands are reported in cyan, blue, and light
blue, respectively. 50%, 68% and 90% bands include statistical and identification uncertainty (from
all the possible ordering within the financial block).

Figure C.16: IRFs to a BAS shock- Choleski identification; corporate bond liquidity
IRFs to a 1 std (Corporate-Sovereign) BAS shock identified through the following ordering

[Unemployment, π, Public Debt, R, M2, CC, BC, Financial Block]. The median point estimate,
68% and 90% confidence bands are reported in cyan, blue, and light blue, respectively. 50%, 68%
and 90% bands include statistical and identification uncertainty (from all the possible ordering

within the financial block).
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C.4.5 Market Stress Index

Figure A19 displays the IRFs to a BAS shock of the enlarged VAR that includes

the Composite Indicator of Systemic Stress, computed by the ECB.

Figure C.17: IRFs to a BAS shock- Choleski identification; CISS
IRFs to a 1 std BAS shock identified through the following ordering [Unemployment, π, Public

Debt, R, M2, CC, BC, Financial Block]. The CISS Index is included in place of the the equity
premium. The median point estimate, 68% and 90% confidence bands are reported in cyan, blue,

and light blue, respectively. 50%, 68% and 90% bands include statistical and identification
uncertainty (from all the possible ordering within the financial block).

C.4.6 Financial Volatility

We report the IRFs to a BAS shock of the enlarged VAR that includes an indicator

that account for volatility in sovereign debt markets. This indicator is defined as

the first principal component of the realized monthly volatility of sovereign BAS,

Spread and CDS, computed using daily data.
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Figure C.18: IRFs to a BAS shock- Choleski identification; financial volatility
IRFs to a 1 std BAS shock identified through the following ordering [Unemployment, π, Public
Debt, R, M2, CC, BC, Financial Block]. A principal component that summarizes the volatility of
financial variables is included in place of the equity premium. The median point estimate, 68%

and 90% confidence bands are reported in cyan, blue, and light blue, respectively. 50%, 68% and
90% bands include statistical and identification uncertainty (from all the possible ordering within

the financial block).
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