Modelling Interactions Between State and Private Sector in a “Previously” Centrally Planned Economy

Paola Valbonesi
Please note
As from January 1990 the EUI Working Paper Series is divided into six sub-series, each sub-series is numbered individually (e.g. EUI Working Paper LAW No. 90/1).
Modelling Interactions Between State and Private Sector in a “Previously” Centrally Planned Economy

PAOLA VALBONESI

BADIA FIESOLANA, SAN DOMENICO (FI)
Modelling interactions between State and Private sector in a "previously "Centrally Planned Economy"

Paola Valbonesi
European University Institute - Firenze

Abstract: I model the impact of entry on market performance when a market is dominated by a former monopolist inherited from a previously centrally planned system. An oligopoly model is developed to analyze a market where one Large State Firm and a set of Small Private Firms produce a homogeneous good. Further extensions of the model investigate product differentiation and budget constraint.

* I wish to thank Prof. Steven Martin for helpful guidance through out the writing of the paper. But, of course, I am responsible for all views expressed and any errors.
1 Introduction

In the present work I focus on market performance during a transitional phase in which an economy is no longer a Centrally Planned Economy (CPE) but has not yet become a market economy. My aim is to investigate how state and private firms producing similar goods compete within a market where economic mechanisms of the old command system have been abolished and reforms have been implemented to promote market instruments and the "creation" of market actors.

In what follows I model three specific features of these markets.

The first considers the historic monopolistic position of state firms; as a consequence it is assumed that the state firm here investigated is a price-maker.

The second refers to the persistent shortages affecting these economies in the past and which - nowadays - could be seen as an incentive for new private firms to enter the market.

The third is related to the soft budget constraint sometimes faced by state firms during the transitional phase; what matters here is whether this budget constraint is relevant with respect to the presence of private firms in the market.

The remainder of this paper is organised as follows: in section 2 the model is developed to analyse a market where one Large State Firm (LSF) and \(n \) Small Private Firms (SPFs) produce a homogeneous good \(q \).

The LSF maximises profit along a residual demand curve. Following Alexeev (1987), the consumer demand for the product \(q \) of the LSF depends on a "full price" that includes waiting time. The LSF sets a price which does not clear the market: \(n \) SPFs enter the market and pick an output which maximises profits.

Given the LSF's optimisation problem, I focus on the determination of \(n \).

In section 3 \(n \) is then related to a parameter \(\theta \) of product differentiation.

I conclude with section 4 where the analysis is extended to investigate the budget constraint faced by the LSF. Notwithstanding that the state firm is profit-oriented, it
remains affected by a form of "soft budget constraint" in the way depicted by Kornai\(^1\): if the firm makes a loss, some sort of subsidy, bailout credit, or tax exemption is provided by the central government. The private firm is instead characterised by a "hard budget constraint" which means that its survival depends exclusively on the proceeds from its sales and on the costs of inputs; moreover, the private firm is unable to influence the price. The impact of soft and hard budget constraints faced by the LSF on the number of SPF\(s\) present are then compared to point out how these constraints affect equilibrium market shares.

2 Residual Demand Analysis

In this first model the interactions between the LSF’s price and the SPF’s price through the analysis of the state firm’s residual demand are considered. Consumers are free to buy the good \(q\) from the SPF or from the LSF. Consumers are indifferent between one unit of good \(q\) from a private firm immediately and \(1+w\) units from the state firm, where \(w\) is the opportunity cost of expected waiting time for a unit of good to be delivered by the LSF. A representative utility function with these characteristics is:

\[
u = m + a(x_{T,q}) - \frac{1}{2} b(x_{T,q})^2\]

where \(x_{T,q}\) indicates the total quantity of good \(q\) and the numéraire \(m\) represents all the other goods.

Let us denote by \(x_S\) the quantity purchased from the LSF and \(x_P\) the quantity purchased from the SPF; then

\[
x_{T,q} = \frac{x_S}{1+w} + x_P .
\]

The formulation chosen for $x_{T,q} - the total amount of good q desired by the consumer - is related to Alexeev's\(^2\) theoretical model of individual behaviour under the dualism of the official and parallel retail markets for agricultural products in Soviet Union.

Alexeev (1987) models a situation in which the good considered can be bought either in the first market or in the parallel one. The first market price is fixed below the market-clearing level and the consumers have to spend on average t hours in a queue for each unit of the good they want to buy. The parallel market price is flexible, market-clearing and gives immediate availability of the good purchased.

For the first market price, Alexeev introduces the concept of “full price”, which incorporates the consumer’s queuing time t for each unit of good and its monetary value w. In this way, Alexeev analyses the consumer behaviour based on the relationship between

$$p_1 + w^i t \text{ and } p_2$$

where w^i is the consumer's marginal value of time, p_1 is the first market price and p_2 is the parallel market price.

Obviously those consumers for whom $p_1 + w^i t < p_2$ would prefer to shop in the first market, while those for whom $p_1 + w^i t > p_2$ would opt for the parallel one.

In our model of homogeneous goods, if positive amounts of both goods are consumed, then $p_1 + w^i t$ must be equal to p_2.

Coming back to our analysis and substituting (2) into (1) we get:

$$u = m + a \left(\frac{x_S}{1+w} + x_P \right) - \frac{1}{2} b \left(\frac{x_S}{1+w} + x_P \right)^2 .$$

The Lagrangian for constrained utility maximisation is:

\[\mathcal{L} = m + a \left(\frac{x_s}{1+w} + x_P \right) - \frac{1}{2} b \left(\frac{x_s}{1+w} + x_P \right)^2 + \lambda \left(\gamma - m - p_S x_S - p_p x_P \right) \]

where \(\gamma - m - p_S x_S - p_p x_P \) is the consumer's budget constraint, \(\gamma \) is the consumer's income, \(p_p \) and \(p_S \) are the prices set by the SPF and by the LSF respectively.

If I consider the interior solution\(^3\) in which \(x_P > 0 \) and \(x_s > 0 \), then

\[\frac{\partial \mathcal{L}}{\partial m} = 1 - \lambda = 0 \quad \lambda = 1 \]

\[\frac{\partial \mathcal{L}}{\partial x_s} = a - \frac{b x_s}{1+w} - b x_P - \lambda (1+w) p_S = 0 \quad \text{and} \]

\[\frac{\partial \mathcal{L}}{\partial x_P} = a - \frac{b x_s}{1+w} - b x_P - \lambda p_p = 0 . \]

It follows that a necessary relationship between prices is:

\[p_p = (1+w)p_S \]

which depends on the assumption that all firms have positive sales in the long run considered. This is a specific version of Alexeev's result comparing prices on dual markets.

\(^3\)The corner solution \(x_P = 0 \) would involve entry deterring behavior by the incumbent, of the kind studied in the literature on limit pricing and predatory behaviour. It seems unlikely that public authorities in transition economies would permit such behaviour. The corner solution \(x_S = 0 \) would describe situations in which the former state monopolist was so inefficient that competition from small private firms drives it out from the market. While such markets may well exist in practice, their analysis would take me away from the topic of this paper, the interaction of private firms and former state monopolies.
From (4.b) and (4.c) we obtain the (inverse) demand function for q which is:

\[(6.a)\]

\[p_P = (1 + w)p_S = a - b \left(\frac{x_S}{1 + w} + x_P \right).\]

Let

\[(7)\]

\[x_S^* = \frac{x_S}{1 + w}\]

so that (6.a) can be rewritten as

\[(6.b)\]

\[p_P = (1 + w)p_S = a - b \left(x_S^* + x_P \right).\]

It follows that the equation for the LSF's residual demand is:

\[(8)\]

\[x_S^* = \left[a - (1 + w)p_S \right] \frac{x_P}{b},\]

which is expressed in terms of market demand function and of SPF's demand (x_P) for good q.

Now suppose there is a set of n SPF's who sell the same product q, acting as Cournot oligopolists. Each SPF chooses its level of output (x_P) so as to maximise profit.

Supposing the SPF's linear cost function to be

\[(9)\]

\[c(x_{p_i}) = c x_{p_i} + F,\]

- where F stands for fixed costs - and recalling (6.b), the profit of a single SPF can be expressed as follow

\[(10)\]

\[\pi_{p_i} = \left[a - c - b \left(x_S^* + \sum_{j=1}^{n} x_{p_j} \right) \right] x_{p_i} - F.\]
Thus each SPF will choose that level of output for which

$$\frac{\partial \pi_{p_i}}{\partial x_{p_i}} = \left[a - c - b \left(x_s^* + \sum_{j=1}^{n} x_{p_j} + x_{p_i} \right) \right] = 0. \tag{11}$$

Since the SPF's have identical cost functions and behave in the same way, in equilibrium they will produce identical outputs:

$$x_{p_1} = x_{p_2} = \ldots = x_{p_n} = \hat{x}_p. \tag{12}$$

This permits us to write the condensed SPF reaction function as

$$x_s^* + (n+1)\hat{x}_p = \frac{a - c}{b} \tag{13.a}$$

or

$$\hat{x}_p = \frac{1}{n+1} \left(\frac{a - c}{b} - x_s^* \right) \tag{13.b}$$

Recalling (6.b), the presence of n SPFs transforms the LSF's residual demand function as:

$$(1+w)p_s = a - b (x_s^* + n\hat{x}_p) \tag{14}$$

and combining (13.b) in the previous (14) we get

$$(1+w)p_s = c + \frac{a - c - bx_s^*}{n+1}. \tag{15}$$

We can now work out the LSF's optimisation problem with respect to its residual demand function. The LSF will act as a Stackelberg quantity leader and maximise profit:

$$\pi_s = (p_s - c)x_s. \tag{16}$$
Substituting (15) we get:

\[
\pi_s = \left[c + \frac{a - c - bx_s^*}{(n+1)} \right] (1+w)c x_s^*.
\]

Taking the derivative of (17) with respect to \(x_s\) and solving the resulting first order condition, we get the LSF's profit maximising output:

\[
x_s^* = \frac{1}{2} \left\{ \frac{a-[1+(n+1)w]c}{b} \right\}.
\]

which depends on \(a, b, c, w\) and \(n\).

It is now interesting to focus on the determination of the number of SPFs which share the market for good \(q\) with the LSF.

Suppose that \(n\) adjusts so that \(\hat{\pi}_p = 0\), which means that SPFs would enter the market until the profit of each private firm is driven to 0. Thus we have

\[
\hat{\pi}_p = b \left[\frac{1}{n+1} \left(\frac{a-c}{b} - x_s^* \right) \right]^2 - F = 0
\]

which after some manipulation can be written as

\[
(n+1) = \frac{(a-c-x_s^*)}{\sqrt{F}}
\]
and substituting the LSF's profit maximising output (18), equation (19.b) becomes

\[(n+1)=\frac{S}{\sqrt{\frac{F}{b}}}\]

(19.c)

where

\(S=\frac{a-c}{b}\).

Looking to (19.c), we can observe that \(n\) is an increasing function of \(w\) which means that the higher the opportunity cost of expected waiting time is for a unit of good to be delivered by the LSF, the larger the number of SPFs entering the market. Combining (19.b) into the previous (15), we get the long run equilibrium price

\[p_p=(1+w)p_s=c+\sqrt{bF}\]

(21)

3 Product Differentiation Analysis

We now modify the previous model to examine how product differentiation affects market performance - or more precisely - how it affects the number of SPFs coming into the market for good \(q\).

The parameter \(\theta\) measures the degree of product differentiation: its value can lie between 0 and 1. If \(\theta = 0\), products are completely differentiated and each producer is a monopolist for its own brand; if \(\theta = 1\), products are completely homogeneous and we are in the case of oligopolistic market.
With this notation, a quadratic representative utility function is

\begin{equation}
(22) \quad u = m + a \left(x_s + x_p \right) - b \left[\left(\frac{x_s}{1+w} \right)^2 + 2\theta x_s x_p \frac{x_s^2}{1+w^2} \right] .
\end{equation}

The Lagrangian for constrained utility maximisation is:

\begin{equation}
(23) \quad \mathcal{L} = m + a \left(x_s + x_p \right) - b \left[\left(\frac{x_s}{1+w} \right)^2 + 2\theta x_s x_p \frac{x_s^2}{1+w^2} \right] + \lambda \left[\gamma - m - p_s x_s - p_s x_p \right] .
\end{equation}

From the first order conditions (assuming interior solutions) we get

\begin{align*}
\frac{\partial \mathcal{L}}{\partial m} &= 1 + \lambda = 0 \quad \lambda = 1 \\
\frac{\partial \mathcal{L}}{\partial x_s} &= \frac{a}{1+w} - b \left[\frac{x_s}{(1+w)^2} + \theta \frac{x_p}{(1+w)} \right] - \lambda p_s = 0 \\
\text{and} \\
\frac{\partial \mathcal{L}}{\partial x_p} &= a - b \left[\theta \frac{x_s}{(1+w)} + x_p \right] - \lambda p_p = 0
\end{align*}

from which we obtain the inverse demand curves:

\begin{align*}
(24.a) \quad p_s &= \frac{1}{(1+w)} \left[a - b \left(x_s + \theta x_p \right) \right] \\
\text{and} \\
(24.b) \quad p_p &= \left[a - b \left(\theta x_s + x_p \right) \right] .
\end{align*}
Proceeding in the same way as in the homogeneous product model, we derive the residual demand curve of the large state firm. The profit maximisation problem of n SPFs becomes now

\[(25.\text{a}) \quad \pi_{p_i} = \left[a - c - b\left(\beta x_S^* + \sum_{j=1}^{n} x_{p_j}\right)\right] x_{p_i} - F\]

where the profit maximising quantity is

\[(25.\text{b}) \quad x_{p_i} = \left[a - c - b\left(\beta x_S^* + \sum_{j=1}^{n} x_{p_j}\right)\right]\]

and on the n SPFs reaction function we get

\[(26.\text{a}) \quad \beta x_S^* + (n + 1)x_P = \frac{a - c}{b}\]

or

\[(26.\text{b}) \quad nx_P = \frac{n}{n + 1}\left(\frac{a - c}{b} - \beta x_S^*\right)\]

which represents the total output of all SPFs as a function of x_S^*.

The LSF's residual demand curve in a market affected by product differentiation becomes

\[(27) \quad (1 + w)p_S = \left[c + \frac{1 + (1 - \theta)n}{n + 1}(a - c) - b\frac{1 + (1 - \theta^2)n}{n + 1}x_S^*\right]\]

The LSF's profit is

\[(28) \quad \pi_S = \left[-wc + \frac{[1 + (1 - \theta)n(a - c) - [1 + (1 - \theta^2)n]bx_S^*]}{n + 1}\right]x_S^*\]
which is maximised for

\[x^*_S = \frac{[1+(1-\theta)n](a-c)-(n+1)wc}{2b[1+(1-\theta^2)n]} \]

We focus now on the relation between product differentiation and the number of SPFs. Recalling (26.a) and (24.b), \(p_P \) could also be expressed as follow

\[p_P = c + bx_P \]

which permit us to write the SPF's profit

\[\pi_P = (p_P - c)x_P - F = b(x_P)^2 - F \]

Substituting (29) in (26.b) we get

\[x_P = \frac{1}{n+1} \left[\frac{2-\theta+(1-\theta)(2+\theta)n}{2[1+(1-\theta^2)n]} \right] S + \frac{\theta}{2[1+(1-\theta^2)n]} \frac{wc}{b} \]

Suppose \(n \) adjusts so that \(\pi_P = 0 \); the profit maximisation problem of \(n \) SPFs in a market with product differentiation is

\[\frac{1}{2[1+(1-\theta^2)n]} \left[\frac{\left[2-\theta+(1-\theta)(2+\theta)n\right]S}{n+1} + \frac{\theta wc}{b} \right] = \sqrt{F} \]
Solving the previous (31.b) for \((n+1)\) we get

\[
(n+1) = \pm \left[\frac{2\theta^2 \sqrt[4]{\frac{F}{b}} - (1-\theta)(2+\theta)S - \theta \frac{w_c}{b}}{4\sqrt[4]{\frac{F}{b}}(1-\theta^2)} \right] + \frac{\sqrt{\left[2\theta^2 \sqrt[4]{\frac{F}{b}} - (1-\theta)(2+\theta)S - \theta \frac{w_c}{b} \right]^2 - 8\theta^2 \sqrt[4]{\frac{F}{b}}(1-\theta^2)S}}{4\sqrt[4]{\frac{F}{b}}(1-\theta^2)}
\]

Only the plus sign in the numerator need be considered. A numerical simulation gives a clear picture of the relation between the number of SPFs and product differentiation \((\theta)\), fixed costs \((F)\), and opportunity cost of expected waiting time \((w)\) respectively.

The three different cases are here investigated keeping constant values for \(a\), \(b\), \(c\), and \(m\) and assigning reasonable values to the parameters \(\theta\), \(F\), and \(w\). (See the Appendix for more details about the simulation).

The number of SPFs is positively affected by the opportunity cost of expected waiting time: as \(w\) increases, \((n+1)\) increases.

Considering fixed costs, it can be observed that \((n+1)\) is a decreasing function of \(F\).

In the case of product differentiation, the number of SPFs entering the market is higher the greater the product differentiation but only until \(\theta = 3/4\) (see Tab.1).

Coming back to the previous (31.b) and focusing on its partial derivatives, I found that the value of \(w\) is relevant to the sign of the whole function when \(\theta\) assumes values near to 1.

The problem now is to determine what could be a reasonable value for \(w\). In my view \(w\) should be somehow related to the firm's cost since it is a sort of cost as well but for the consumer. For this reason I performed the simulation assuming - as basic case - \(w = 11/4\), given \(c = 2\) and \(F = 4\).
In Tab. 2 numerical solutions of (33) are provided with respect to different values of θ and as w changes. As w increases the interval where $(n+1)$ is positively affected by the product differentiation becomes progressively smaller. This result is shown as well as by the graphical representations which follow the numerical simulation in the Appendix.

While performing the simulation, however, a new insight has been gained to the whole issue: the resulting consumer's Net Welfare has been investigated with respect to product differentiation, fixed costs and the opportunity cost of expected waiting time.

The results obtained highlight on the one hand that the consumer's Net Welfare decreases as product differentiation decreases and as fixed costs increase; on the other hand it increases as the opportunity cost of expected waiting time decreases (see Tab.1, 3, 4). It comes that the consumer is better off when product differentiation is present in the market and when “queuing time” disappears.

4 Budget Constraint Analysis

In this section we introduce the budget constraint analysis to the model.

Such budget constraints have been investigated by J. Kornai (1980) who recognised it as one of the key differences between capitalist and socialist firms along with resource constraints and demand constraint4.

Whereas a capitalist firm nearly always faces a hard budget constraint, the corresponding constraint for a socialist firm tends to be soft. In Kornai's analysis four conditions contribute to the softness of the constraint for a state enterprise:

1) price-making, in the sense that sooner or later enterprises are able to pass cost increases on to customers;

2) a soft tax system, in which the enterprise is able to negotiate special rates or exemptions, or to influence the formulation of tax rules;

4With respect to these last two items, Kornai underlined in his work that under capitalist conditions it is demand constraints that normally limit production while under socialism it is the resource constraints (of labour, capital, intermediate inputs) which perform that role.
3) free state grants available to enterprises for a variety of purposes;
4) a soft credit system, with loans only loosely related to future sale revenue and with only mild repayment conditions and/or weak penalties for non repayment.
Obviously under these conditions - which can hold to a different extent in different countries or at different times - the survival of a state firm depends hardly at all on its ability to cover all its cost out of its sales proceeds since grants, subsidies, bailouts, tax favours etc. can be negotiated to fill the gap.
It follows that the softness of the budget constraint which characterises socialist firms is an important feature in the evaluation of the transition toward a market economy and, moreover, in the analysis of interaction with the growing private sector.

In this section we generalise the previous model - where one LSF and \(n \) SPF s were sharing the market for good \(q \) - to make bankruptcy possible and to model the impact of a soft budget constraint.
First of all we suppose the market inverse demand function has a stochastic intercept \(a \), taking a high \((a_H) \) or low \((a_L) \) value with probability \(\mu \) and \((1-\mu) \) respectively. Whether demand is high or low in a given period of time is unknown in advance by LSF and SPF s, while \(\mu \) is known to LSF and to SPF s.
This means that

\[
E(a) = \mu \pi_H + (1-\mu) \pi_L
\]

LSF and SPF s must pick output before they know the realised value of the market demand - that means before they know if \(a \) is high or low. The LSF and SPF s pick their own output to maximise their own expected profit.
Two cases will be considered: one where LSF is affected by a "hard budget constraint" and the other where LSF faces a "soft budget constraint".
In both the cases SPF s come into the market for good \(q \) until their expected profits are zero.
The expected profit of a generic SPF will now be

\[
\pi_p = \mu \pi_H + (1-\mu) \pi_L
\]
where, recalling (10), we have

\[(36) \quad \pi_H = \left\{ \left[a_H - c - b (x_S^* + x_{P_i} + \ldots + x_{P_n}) \right] x_{P_i} - F \right\} \]

and

\[(37) \quad \pi_L = \left\{ \left[a_L - c - b (x_S^* + x_{P_i} + \ldots + x_{P_n}) \right] x_{P_i} - F \right\}. \]

The first order condition is

\[(38) \quad \frac{\partial \pi_{P_i}}{\partial x_{P_i}} = \left[E(a) - c - b (x_S^* + 2x_{P_i} + \ldots + x_{P_n}) \right] = 0. \]

The (38) gives us the SPF profit maximising output, which can be written in condensed form as

\[(39) \quad x_P = \left[\frac{(E(a) - c)}{b} - x_S^* \right] \frac{1}{(n + 1)}. \]

The residual demand curve of LSF - in presence of \(n \) SPFs - becomes

\[(40) \quad (1 + w) \rho_S = \frac{\left[E(a) - bx_S^* \right] - c}{(n + 1)}. \]

Acting as a Stackelberg leader, the LSF maximises expected profit along the residual demand curve. LSF's expected profit is:

\[(41) \quad \pi_S = \frac{b}{(n + 1)} \left[\frac{E(a) - c}{b} - (n + 1)w \frac{c}{b} - x_S^* \right] x_S^*. \]
which is maximised for

\[x_S^* = \frac{1}{2} \left[\frac{E(a) - c}{b} - (n + 1)w \frac{c}{b} \right] \] \hspace{1cm} (42)

Considering the number of SPFs, when LSF faces a hard budget constraint, the previous (19.c) becomes

\[(n + 1)_{\text{Hard B.C.}} = \frac{E(a) - c}{b} \sqrt{\frac{F}{\sqrt{b}}} \] \hspace{1cm} (43)

Moving now to the case where LSF faces a soft budget constraint and recalling (36) and (37), the problem of the firm is:

\[\max \mu \pi_H + (1 - \mu)(0) \] \hspace{1cm} (44)

In the case of a hard budget constraint to a low demand function \((a_L)\) it will correspond to a negative profit \((\pi_L < 0)\); while in the case of a soft budget constraint - given the bailout credit provided by the central government - to \((a_L)\) it will result in a profit equal to zero \((\pi_L = 0)\). Whenever the LSF makes losses, the government covers them.

The inverse demand function is now

\[(1 + w)p_S = a_H - b[x_S^* + nx_P] \] \hspace{1cm} (45)
and considering (34) and (39) we get

\[(46) \quad (1+w)p_S = a_H - b \left[x_S^* + \frac{n}{n+1} \left(\frac{\mu a_H + (1-\mu) a_L - c}{b} \right) x_S^* \right] \]

The LSF's expected profit is

\[(47) \quad E(\pi_S) = \mu (p_S - c) x_S = \frac{\mu b}{n+1} \left\{ (n+1)(1-\mu)(a_H - a_L) w c + \frac{\mu a_H + (1-\mu) a_L - c}{b} - x_S^* \right\} x_S^* \]

which is maximised for

\[(48) \quad x_S^* = \frac{1}{2} \left\{ \left(\frac{\mu a_H + (1-\mu) a_L - c}{b} \right) - (n+1) w c + \left((1-\mu)(n+1) \left(\frac{a_H - a_L}{b} \right) \right) \right\} \]

Focusing on the determination of the number of SPFs sharing the market for good \(q \) with the LSF affected by a soft budget constraint we consider the previous (43) where the LSF maximising output is substituted by (48) and we get:

\[(49) \quad (n+1)_{\text{Soft B.C.}} = \frac{E(a) - c}{b} \sqrt{\frac{\bar{F}}{2}} \left(1 + \mu \left(\frac{a_H - a_L}{b} \right) \right) \]

Comparing (49) with the previous (43) we should highlight that in the presence of a LSF facing a soft budget constraint the number of SPFs is lower than in presence of a LSF facing a hard budget constraint.
5 Conclusion

In this paper I have studied the impact of small private firms on a market initially dominated by one large state firm in a previously Centrally Planned Economy. I considered a model which allows us to investigate a LSF behaving as a Stackelberg leader and n SPF playing Cournot.

For the analysis on residual demand (section 2) the main result is that increasing the LSF's "full price" - which includes the opportunity cost of expected waiting time - the number of SPF entering the market increases. In these circumstances, the number of private firms producing a homogeneous good is increased by the persistence in the market of queuing time in acquisition of commodities. Shortages should encourage the entry of SPF in the market.

In addition, considering product differentiation (section 3), under specific conditions given by the numerical simulation performed, the greater the differentiation of the good, the larger the number of SPF entering the market.

The budget constraint analysis (section 4) shows that if the LSF faces a soft budget constraint the number of SPF is lower than with a LSF facing a hard budget constraint. In the environment considered, where reforms to create conditions for a decentralised market system are being implemented, it is more desirable5 that a LSF faces a hard budget constraint, since this leads to a larger number of small private firms and, consequently, to higher competition6.

A last remark is in order. In this paper we dealt with a LSF maximising profit; this assumption is not at all obvious since the objective function of a state firm is controversial.

5The concept of desirability expressed in this statement refers to the objectives of the transitional phase in Central and Eastern economies among which the implementation of market competition assumes a relevant role. The social impact of the dynamics considered above have not been investigated here. Moreover, I should here stress that this conclusion comes from a partial equilibrium setting and it may not be true in a general equilibrium setting.

6The last statement could be correlated with some feedback which are beyond the scope of the present paper. In fact, soft and hard budget constraint have different influence on delays in production and shortages in supply. Such feedback may foster fundamental rethinking of the analysis above and may constitute new fields for further investigations.
The usual approach\(^7\) states that state firm is social welfare maximising. Our choice relates to the transitional phase of the economy, when the creation of market actors and the acquisition of market rules are being followed up and where a lot of large state firms are touched by the privatisation process which induces the state firm itself to maximise profit. In the light of these considerations, our assumption seems to be justified.

Appendix - Numerical Simulation

The numerical simulation presented here investigates the number of SPFs coming in the market and the consumer’s Net Welfare. In each case the behaviour of three key variables is described: the parameter of product differentiation \((\theta)\), the fixed costs \((F)\), and the opportunity cost of expected waiting time \((w)\).

The results from the following numerical simulation are performed assuming constant values for \(a\), \(b\), \(c\) and \(m\).

The number of SPFs is analysed evaluating the previous \((33)\) and considering the only positive root:

\[
(n+1) = \frac{2\theta^2 \sqrt{\frac{F}{b}} - (1-\theta)(2+\theta)S - \theta \frac{wc}{b}}{4\sqrt{\frac{F}{b}(1-\theta^2)}} + \frac{\sqrt{2\theta^2 \sqrt{\frac{F}{b}} - (1-\theta)(2+\theta)S - \theta \frac{wc}{b}}}{4\sqrt{\frac{F}{b}(1-\theta^2)}} - 8\theta^2 \sqrt{\frac{F}{b}(1-\theta^2)S}.
\]

The consumer's Net Welfare is measured through the equation of the consumer's utility function minus the costs of production (these last correspond to the costs faced by \((n+1)\) SPFs and the LSF to produce their output):

\[
\text{Net Welfare} = m + a \left(\frac{x_S}{1+w} + nx_p \right) - \frac{b}{2} \left[\left(\frac{x_S}{1+w} \right)^2 + 2\theta x_S nx_p \frac{1+w}{1+w} + (nx_p)^2 \right] - c(x_S + nx_p) - nF.
\]
Setting $F=4$ and $w=11/4$, Table 1 shows how the number of SPFs and the consumer's Net Welfare are affected by the parameter of product differentiation θ. In Table 2, I focus on the relation between $(n+1)$ SPFs and θ, as w changes. Table 3 and Table 4 describe how the number of SPFs and the consumer's Net Welfare are sensitive to different value of F and w respectively.

Tables

Tab. 1 - $\theta = (1/10, 1/8, 1/4, 1/2, 3/4, 7/8, 9/10, 11/12)$; $F = 4$; $w = 11/4 = 2.75$

Constant Parameters:
- $a = 56$
- $b = 1$
- $c = 2$
- $m = 0$

<table>
<thead>
<tr>
<th>θ</th>
<th>$(n+1)$</th>
<th>Net Welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/10$</td>
<td>25.91</td>
<td>2061.97</td>
</tr>
<tr>
<td>$1/8$</td>
<td>25.67</td>
<td>2023.96</td>
</tr>
<tr>
<td>$1/4$</td>
<td>24.64</td>
<td>1855.71</td>
</tr>
<tr>
<td>$1/2$</td>
<td>23.28</td>
<td>1603.86</td>
</tr>
<tr>
<td>$3/4$</td>
<td>23.04</td>
<td>1427.91</td>
</tr>
<tr>
<td>$7/8$</td>
<td>24.38</td>
<td>1365.89</td>
</tr>
<tr>
<td>$9/10$</td>
<td>25.14</td>
<td>1357.35</td>
</tr>
<tr>
<td>$11/12$</td>
<td>25.90</td>
<td>1353.52</td>
</tr>
</tbody>
</table>

Tab. 2 - $\theta = (1/10, 1/8, 1/4, 1/2, 3/4, 7/8, 9/10, 11/12)$; $F = 4$; $w = (0, 1, 11/4, 10, 100, 1000)$

Constant Parameters:
- $a = 56$
- $b = 1$
- $c = 2$
- $m = 0$

<table>
<thead>
<tr>
<th>w</th>
<th>θ</th>
<th>$(n+1)$</th>
<th>Net Welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1/10$</td>
<td>25.77</td>
<td>30.82</td>
</tr>
<tr>
<td>1</td>
<td>$1/8$</td>
<td>25.49</td>
<td>31.84</td>
</tr>
<tr>
<td></td>
<td>$1/4$</td>
<td>24.27</td>
<td>37.59</td>
</tr>
<tr>
<td></td>
<td>$1/2$</td>
<td>22.37</td>
<td>55.58</td>
</tr>
<tr>
<td></td>
<td>$3/4$</td>
<td>20.75</td>
<td>105.81</td>
</tr>
<tr>
<td></td>
<td>$7/8$</td>
<td>19.67</td>
<td>204.31</td>
</tr>
<tr>
<td></td>
<td>$9/10$</td>
<td>19.32</td>
<td>253.41</td>
</tr>
<tr>
<td></td>
<td>$11/12$</td>
<td>19.01</td>
<td>302.47</td>
</tr>
</tbody>
</table>

Tab. 3 - $\theta = 1/2$; $F = (4, 64, 144, 400, 1600)$; $w = 11/4$

<table>
<thead>
<tr>
<th>Constant Parameters:</th>
<th>(F = 4)</th>
<th>(F = 64)</th>
<th>(F = 144)</th>
<th>(F = 400)</th>
<th>(F = 1600)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((n+1))</td>
<td>23.28</td>
<td>5.72</td>
<td>3.77</td>
<td>2.21</td>
<td>1.05</td>
</tr>
<tr>
<td>Net Welfare</td>
<td>1603.86</td>
<td>267.06</td>
<td>-1515.34</td>
<td>-7219.02</td>
<td>-33955</td>
</tr>
</tbody>
</table>

Tab. 4 - $\theta = 1/2$; $F = 4$; \(w = (0, 1, 11/4, 10, 100, 1000) \)

<table>
<thead>
<tr>
<th>Constant Parameters:</th>
<th>(w = 0)</th>
<th>(w = 1)</th>
<th>(w = 11/4)</th>
<th>(w = 10)</th>
<th>(w = 100)</th>
<th>(w = 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((n+1))</td>
<td>22.37</td>
<td>22.53</td>
<td>23.28</td>
<td>25.67</td>
<td>55.58</td>
<td>355.51</td>
</tr>
<tr>
<td>Net Welfare</td>
<td>1536.27</td>
<td>1764.35</td>
<td>1603.86</td>
<td>1371.02</td>
<td>1231.02</td>
<td>1214.51</td>
</tr>
</tbody>
</table>
Graphics

\[w = 0, \quad 1 > \theta > 0 \]

\[w = 1, \quad 1 > \theta > 0 \]
$w = 11/4, \ 1 > \theta > 0$

$w = 10, \ 1 > \theta > 0$
$w=100, \ 1 > \theta > 0$

$(n+1)$

$w=1000, \ 1 > \theta > 0$

$(n+1)$
$w = (0, 1, 11/4, 10, 100, 1000), \ 1 > \theta > 0$
References

EUI Working Papers are published and distributed by the European University Institute, Florence

Copies can be obtained free of charge - depending on the availability of stocks - from:

The Publications Officer
European University Institute
Badia Fiesolana
I-50016 San Domenico di Fiesole (FI)
Italy

Please use order form overleaf
Publications of the European University Institute

To

The Publications Officer
European University Institute
Badia Fiesolana
I-50016 San Domenico di Fiesole (FI) – Italy
Telefax No: +39/55/573728

From

Name
Address

☐ Please send me a complete list of EUI Working Papers
☐ Please send me a complete list of EUI book publications
☐ Please send me the EUI brochure Academic Year 1994/95
☐ Please send me the EUI Research Review

Please send me the following EUI Working Paper(s):

No, Author

Title:

No, Author

Title:

No, Author

Title:

No, Author

Title:

Date

Signature
Working Papers of the Department of Economics
Published since 1990

ECO No. 90/1
Tamer BASAR and Mark SALMON
Credibility and the Value of Information Transmission in a Model of Monetary Policy and Inflation

ECO No. 90/2
Horst UNGERER
The EMS – The First Ten Years Policies – Developments – Evolution

ECO No. 90/3
Peter J. HAMMOND
Interpersonal Comparisons of Utility: Why and how they are and should be made

ECO No. 90/4
Peter J. HAMMOND
A Revelation Principle for (Boundedly) Bayesian Rationalizable Strategies

ECO No. 90/5
Peter J. HAMMOND
Independence of Irrelevant Interpersonal Comparisons

ECO No. 90/6
Hal R. VARIAN
A Solution to the Problem of Externalities and Public Goods when Agents are Well-Informed

ECO No. 90/7
Hal R. VARIAN
Sequential Provision of Public Goods

ECO No. 90/8
T. BRIANZA, L. PHLIPS and J.F. RICHARD
Futures Markets, Speculation and Monopoly Pricing

ECO No. 90/9
Anthony B. ATKINSON/ John MICKLEWRIGHT
Unemployment Compensation and Labour Market Transition: A Critical Review

ECO No. 90/10
Peter J. HAMMOND
The Role of Information in Economics

ECO No. 90/11
Nicos M. CHRISTODOULAKIS
Debt Dynamics in a Small Open Economy

ECO No. 90/12
Stephen C. SMITH
On the Economic Rationale for Codetermination Law

ECO No. 90/13
Eletra AGLIARDI
Learning by Doing and Market Structures

ECO No. 90/14
Peter J. HAMMOND
Intertemporal Objectives

ECO No. 90/15
Andrew EVANS/Stephen MARTIN
Socially Acceptable Distortion of Competition: EC Policy on State Aid

ECO No. 90/16
Stephen MARTIN
Fringe Size and Cartel Stability

ECO No. 90/17
John MICKLEWRIGHT
Why Do Less Than a Quarter of the Unemployed in Britain Receive Unemployment Insurance?

ECO No. 90/18
Mrudula A. PATEL
Optimal Life Cycle Saving With Borrowing Constraints: A Graphical Solution

ECO No. 90/19
Peter J. HAMMOND
Money Metric Measures of Individual and Social Welfare Allowing for Environmental Externalities

ECO No. 90/20
Louis PHLIPS/ Ronald M. HARSTAD
Oligoplastic Manipulation of Spot Markets and the Timing of Futures Market Speculation

* Working Paper out of print
| ECO No. 90/21 | Christian DUSTMANN
Earnings Adjustment of Temporary Migrants |
| ECO No. 90/22 | John MICKLEWRIGHT
The Reform of Unemployment Compensation: Choices for East and West |
| ECO No. 90/23 | Joerg MAYER
U. S. Dollar and Deutschmark as Reserve Assets |
| ECO No. 90/24 | Sheila MARNIE
Labour Market Reform in the USSR: Fact or Fiction? |
| ECO No. 90/25 | Peter JENSEN/
Niels WESTERGÅRD-NIELSEN
Temporary Layoffs and the Duration of Unemployment: An Empirical Analysis |
| ECO No. 90/26 | Stephan L. KALB
Market-Led Approaches to European Monetary Union in the Light of a Legal Restrictions Theory of Money |
| ECO No. 90/27 | Robert J. WALDMANN
Implausible Results or Implausible Data? Anomalies in the Construction of Value Added Data and Implications for Estimates of Price-Cost Markups |
| ECO No. 90/28 | Stephen MARTIN
Periodic Model Changes in Oligopoly |
| ECO No. 90/29 | Nicos CHRISTODOULAKIS/
Martin WEALE
Imperfect Competition in an Open Economy |
| ECO No. 90/30 | Steve ALPERN/Dennis J. SNOWER
Unemployment Through ‘Learning From Experience’ |
| ECO No. 90/31 | David M. PRESCOTT/Thanasis STENGOS
Testing for Forecsteable Nonlinear Dependence in Weekly Gold Rates of Return |
| ECO No. 90/32 | Peter J. HAMMOND
Harsanyi’s Utilitarian Theorem: A Simpler Proof and Some Ethical Connotations |
| ECO No. 90/33 | Anthony B. ATKINSON/
John MICKLEWRIGHT
Economic Transformation in Eastern Europe and the Distribution of Income* |
| ECO No. 90/34 | Svend ALBAEK
On Nash and Stackelberg Equilibria when Costs are Private Information |
| ECO No. 90/35 | Stephen MARTIN
Private and Social Incentives to Form R & D Joint Ventures |
| ECO No. 90/36 | Louis PHILIPS
Manipulation of Crude Oil Futures |
| ECO No. 90/37 | Xavier CALSAMIGLIA/Alan KIRMAN
A Unique Informationally Efficient and Decentralized Mechanism With Fair Outcomes |
| ECO No. 90/38 | George S. ALOGOSKOUFIS/
Thanasis STENGOS
Testing for Nonlinear Dynamics in Historical Unemployment Series |
| ECO No. 90/39 | Peter J. HAMMOND
The Moral Status of Profits and Other Rewards: A Perspective From Modern Welfare Economics |

* Working Paper out of print
ECO No. 91/40
Vincent BROUSSEAU/Alan KIRMAN
The Dynamics of Learning in Mis-Specified Models

ECO No. 91/41
Robert James WALDMANN
Assessing the Relative Sizes of Industry- and Nation Specific Shocks to Output

ECO No. 91/42
Thorsten HENS/Alan KIRMAN/Louis PHLIPS
Exchange Rates and Oligopoly

ECO No. 91/43
Peter J. HAMMOND
Consequentialist Decision Theory and Utilitarian Ethics

ECO No. 91/44
Stephen MARTIN
Endogenous Firm Efficiency in a Cournot Principal-Agent Model

ECO No. 91/45
Svend ALBAEK
Upstream or Downstream Information Sharing?

ECO No. 91/46
Thomas H. McCURDY/Thanasis STENGOS
A Comparison of Risk-Premium Forecasts Implied by Parametric Versus Nonparametric Conditional Mean Estimators

ECO No. 91/47
Christian DUSTMANN
Temporary Migration and the Investment into Human Capital

ECO No. 91/48
Jean-Daniel GUIGOU
Should Bankruptcy Proceedings be Initiated by a Mixed Creditor/Shareholder?

ECO No. 91/49
Nick VRIEND
Market-Making and Decentralized Trade

ECO No. 91/50
Jeffrey L. COLES/Peter J. HAMMOND
Walrasian Equilibrium without Survival: Existence, Efficiency, and Remedial Policy

ECO No. 91/51
Frank CRITCHLEY/Paul MARRIOTT/Mark SALMON
Preferred Point Geometry and Statistical Manifolds

ECO No. 91/52
Costanza TORRICELLI
The Influence of Futures on Spot Price Volatility in a Model for a Storable Commodity

ECO No. 91/53
Frank CRITCHLEY/Paul MARRIOTT/Mark SALMON
Preferred Point Geometry and the Local Differential Geometry of the Kullback-Leibler Divergence

ECO No. 91/54
Peter MØLLGAARD/Louis PHLIPS
Oil Futures and Strategic Stocks at Sea

ECO No. 91/55
Christian DUSTMANN/John MICKLEWRIGHT
Benefits, Incentives and Uncertainty

ECO No. 91/56
John MICKLEWRIGHT/Gianna GIANNELLI
Why do Women Married to Unemployed Men have Low Participation Rates?

ECO No. 91/57
John MICKLEWRIGHT
Income Support for the Unemployed in Hungary

ECO No. 91/58
Fabio CANOVA
Detrending and Business Cycle Facts

ECO No. 91/59
Fabio CANOVA/Jane MARRINAN
Reconciling the Term Structure of Interest Rates with the Consumption Based ICAP Model

ECO No. 91/60
John FINGLETON
Inventory Holdings by a Monopolist Middleman

* Working Paper out of print

ECO No. 92/61
Sara CONNOLLY/John MICKLEWRIGHT/Stephen NICKELL
The Occupational Success of Young Men Who Left School at Sixteen

ECO No. 92/62
Pier Luigi SACCO

ECO No. 92/63
Robert J. WALDMANN
Asymmetric Oligopolies

ECO No. 92/64
Robert J. WALDMANN/Stephen C. SMITH

ECO No. 92/65
Agustín MARAVALL/Victor GÓMEZ
Signal Extraction in ARIMA Time Series Program SEATS

ECO No. 92/66
Luigi BRIGHI
A Note on the Demand Theory of the Weak Axioms

ECO No. 92/67
Nikolaos GEORGANTZIS
The Effect of Mergers on Potential Competition under Economies or Diseconomies of Joint Production

ECO No. 92/68
Robert J. WALDMANN/J. Bradford DE LONG
Interpreting Pro-cyclical Productivity: Evidence from a Cross-Nation Cross-Industry Panel

ECO No. 92/69
Christian DUSTMANN/John MICKLEWRIGHT
Means-Tested Unemployment Benefit and Family Labour Supply: A Dynamic Analysis

ECO No. 92/70
Fabio CANOVA/Bruce E. HANSEN
Are Seasonal Patterns Constant Over Time? A Test for Seasonal Stability

ECO No. 92/71
Alessandra PELLONI
Long-Run Consequences of Finite Exchange Rate Bubbles

ECO No. 92/72
Jane MARRINAN
The Effects of Government Spending on Saving and Investment in an Open Economy

ECO No. 92/73
Fabio CANOVA and Jane MARRINAN
Profits, Risk and Uncertainty in Foreign Exchange Markets

ECO No. 92/74
Louis PHILIPS
Basing Point Pricing, Competition and Market Integration

ECO No. 92/75
Stephen MARTIN
Economic Efficiency and Concentration: Are Mergers a Fitting Response?

ECO No. 92/76
Luisa ZANCHI
The Inter-Industry Wage Structure: Empirical Evidence for Germany and a Comparison With the U.S. and Sweden

ECO NO. 92/77
Agustín MARAVALL
Stochastic Linear Trends: Models and Estimators

ECO No. 92/78
Fabio CANOVA
Three Tests for the Existence of Cycles in Time Series

ECO No. 92/79
Peter J. HAMMOND/Jaime SEMPERE
Limits to the Potential Gains from Market Integration and Other Supply-Side Policies

* Working Paper out of print
ECO No. 92/80
Victor GÓMEZ and Agustín MARAVALL
Estimation, Prediction and Interpolation for Nonstationary Series with the Kalman Filter

ECO No. 92/81
Victor GÓMEZ and Agustín MARAVALL
Time Series Regression with ARIMA Noise and Missing Observations Program TRAM

ECO No. 92/82
J. Bradford DE LONG/ Marco BECHT
"Excess Volatility" and the German Stock Market, 1876-1990

ECO No. 92/83
Alan KIRMAN/Louis PHLIPS
Exchange Rate Pass-Through and Market Structure

ECO No. 92/84
Christian DUSTMANN
Migration, Savings and Uncertainty

ECO No. 92/85
J. Bradford DE LONG
Productivity Growth and Machinery Investment: A Long-Run Look, 1870-1980

ECO No. 92/86
Robert B. BARSKEY and J. Bradford DE LONG
Why Does the Stock Market Fluctuate?

ECO No. 92/87
Anthony B. ATKINSON/John Micklewright
The Distribution of Income in Eastern Europe

ECO No. 92/88
Agustín MARAVALL/Alexandre MATHIS
Encompassing Univariate Models in Multivariate Time Series: A Case Study

ECO No. 92/89
Peter J. HAMMOND
Aspects of Rationalizable Behaviour

ECO 92/90
Alan P. KIRMAN/Robert J. WALDMANN
I Quit

ECO No. 92/91
Tilman EHRBECK
Rejecting Rational Expectations in Panel Data: Some New Evidence

ECO No. 92/92
Djordje Suvakovic OLGIN
Simulating Codetermination in a Cooperative Economy

ECO No. 92/93
Djordje Suvakovic OLGIN
On Rational Wage Maximisers

ECO No. 92/94
Christian DUSTMANN
Do We Stay or Not? Return Intentions of Temporary Migrants

ECO No. 92/95
Djordje Suvakovic OLGIN
A Case for a Well-Defined Negative Marxian Exploitation

ECO No. 92/96
Sarah J. JARVIS/John MICKLEWRIGHT
The Targeting of Family Allowance in Hungary

ECO No. 92/97
Agustín MARAVALL/Daniel PEÑA
Missing Observations and Additive Outliers in Time Series Models

ECO No. 92/98
Marco BECHT

ECO No. 92/99
Louis PHLIPS and Ireneo Miguel MORAS
The AKZO Decision: A Case of Predatory Pricing?

ECO No. 92/100
Stephen MARTIN
Oligopoly Limit Pricing With Firm-Specific Cost Uncertainty

* Working Paper out of print
<table>
<thead>
<tr>
<th>ECO No.</th>
<th>Title and Authors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>92/101</td>
<td>Fabio CANOVA/Eric GHYSELS</td>
<td>Changes in Seasonal Patterns: Are They Cyclical?</td>
</tr>
<tr>
<td>92/102</td>
<td>Fabio CANOVA</td>
<td>Price Smoothing Policies: A Welfare Analysis</td>
</tr>
<tr>
<td>93/1</td>
<td>Carlo GRILLENZONI</td>
<td>Forecasting Unstable and Non-Stationary Time Series</td>
</tr>
<tr>
<td>93/2</td>
<td>Carlo GRILLENZONI</td>
<td>Multilinear Models for Nonlinear Time Series</td>
</tr>
<tr>
<td>93/3</td>
<td>Ronald M. HARSTAD/Louis PHLIPS</td>
<td>Futures Market Contracting When You Don't Know Who the Optimists Are</td>
</tr>
<tr>
<td>93/4</td>
<td>Alan KIRMAN/Louis PHLIPS</td>
<td>Empirical Studies of Product Markets</td>
</tr>
<tr>
<td>93/5</td>
<td>Grayham E. MIZON</td>
<td>Empirical Analysis of Time Series: Illustrations with Simulated Data</td>
</tr>
<tr>
<td>93/6</td>
<td>Tilman EHRBECK</td>
<td>Optimally Combining Individual Forecasts From Panel Data</td>
</tr>
<tr>
<td>93/7</td>
<td>Víctor GÓMEZ/Agustín MARAVALL</td>
<td>Initializing the Kalman Filter with Incompletely Specified Initial Conditions</td>
</tr>
<tr>
<td>93/8</td>
<td>Frederic PALOMINO</td>
<td>Informed Speculation: Small Markets Against Large Markets</td>
</tr>
<tr>
<td>93/9</td>
<td>Stephen MARTIN</td>
<td>Beyond Prices Versus Quantities</td>
</tr>
<tr>
<td>93/10</td>
<td>José María LABEAGA/Angel LÓPEZ</td>
<td>A Flexible Demand System and VAT Simulations from Spanish Microdata</td>
</tr>
<tr>
<td>93/11</td>
<td>Maozu LU/Grayham E. MIZON</td>
<td>The Encompassing Principle and Specification Tests</td>
</tr>
<tr>
<td>93/12</td>
<td>Louis PHLIPS/Peter MØLLGAARD</td>
<td>Oil Stocks as a Squeeze Preventing Mechanism: Is Self-Regulation Possible?</td>
</tr>
<tr>
<td>93/13</td>
<td>Pieter HASEKAMP</td>
<td>Disinflation Policy and Credibility: The Role of Conventions</td>
</tr>
<tr>
<td>93/14</td>
<td>Louis PHLIPS</td>
<td>Price Leadership and Conscious Parallelism: A Survey</td>
</tr>
<tr>
<td>93/15</td>
<td>Agustín MARAVALL</td>
<td>Short-Term Analysis of Macroeconomic Time Series</td>
</tr>
<tr>
<td>93/16</td>
<td>Philip Hans FRANSES/Niels HALDRUP</td>
<td>The Effects of Additive Outliers on Tests for Unit Roots and Cointegration</td>
</tr>
<tr>
<td>93/17</td>
<td>Fabio CANOVA/Jane MARRINAN</td>
<td>Predicting Excess Returns in Financial Markets</td>
</tr>
<tr>
<td>93/18</td>
<td>Íñigo HERGUERA</td>
<td>Exchange Rate Fluctuations, Market Structure and the Pass-through Relationship</td>
</tr>
<tr>
<td>93/19</td>
<td>Agustín MARAVALL</td>
<td>Use and Misuse of Unobserved Components in Economic Forecasting</td>
</tr>
</tbody>
</table>

* Working Paper out of print
ECO No. 93/20
Torben HOLVAD/Jens Leth HOUGAARD
Measuring Technical Input Efficiency for Similar Production Units: A Survey of the Non-Parametric Approach

ECO No. 93/21
Stephen MARTIN/Louis PHLIPS
Product Differentiation, Market Structure and Exchange Rate Passthrough

ECO No. 93/22
F. CANOVA/M. FINN/A. R. PAGAN
Evaluating a Real Business Cycle Model

ECO No. 93/23
Fabio CANOVA
Statistical Inference in Calibrated Models

ECO No. 93/24
Gilles TEYSSIÈRE
Matching Processes in the Labour Market in Marseilles. An Econometric Study

ECO No. 93/25
Fabio CANOVA
Sources and Propagation of International Business Cycles: Common Shocks or Transmission?

ECO No. 93/26
Marco BECHT/Carlos RAMÍREZ
Financial Capitalism in Pre-World War I Germany: The Role of the Universal Banks in the Financing of German Mining Companies 1906-1912

ECO No. 93/27
Isabelle MARET
Two Parametric Models of Demand, Structure of Market Demand from Heterogeneity

ECO No. 93/28
Stephen MARTIN
Vertical Product Differentiation, Intra-industry Trade, and Infant Industry Protection

ECO No. 93/29
J. Humberto LOPEZ
Testing for Unit Roots with the k-th Autocorrelation Coefficient
