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Abstract
The paper considers the impact on estimation and inference of interactions be

tween the existence of unit roots in a data generation process and the presence or 
absence of weak and strong exogeneity of conditioning variables for the parameters 
of interest in individual cointegrated linear relationships. The asymptotic distribu
tions of estimators for single equation conditional linear relations are analyzed in 
conjunction with a Monte Carlo study. The results confirm the important role of 
weak exogeneity in single equation estimation from integrated-cointegrated data: 
highlight the advantages of using an asymptotic analysis to understand the compli
cated interactions observed: and reveal the accuracy of the limiting distributions in 
characterizing finite sample behaviour.

‘ This research was financed in part by grants R000233447 and B00220012 from the UK Economic and 
Social Research Council. Helpful comments from Mike Clements, Juan Dolado, Spren Johansen, Grayham 
Mizon, Tom Rothenberg and Neil Shephard are gratefully acknowledged. This paper was presented at 
an Econometrics Workshop at the EUI in October 1992.
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Introduction 1

1 Introduction
The following analysis highlights the effects on estimation and inference of interactions 
between the presence of unit roots in a data generation process (D G P ) and the validity 
or otherwise of weak and/or strong exogeneity of contemporaneous regressors for the 
parameters of interest in individual cointegrated linear relationships.

Since the initial proposal of Engle and Granger [1987], many studies have consid
ered estimating single-equation models linking cointegrated variables. Both static and 
dynamic models have been considered and a wide variety of outcomes has been found 
for the behaviour of alternative methods (see, inter alia, Phillips and Durlauf [1986], 
Stock [1987], Gonzalo [1989], Phillips and Loretan [1991], Kiviet and Phillips [1992] and 
Banerjee, Dolado, Galbraith and Hendry, 1993). This paper investigates the effects of 
the presence and absence of both weak and strong exogeneity for the parameters of inter
est in postulated cointegrating equations. A simple bivariate DGP for two 1(1) variables 
captures the salient features of the problem, and leads to eight distinct cases of inter
est. The asymptotic distributions of estimators and hypotheses tests for single-equation 
conditional linear relations are analyzed in conjunction with a Monte Carlo study. This 
approach reveals both the complicated interactions which result and, despite super con
sistency, the crucial role of weak exogeneity in sustaining valid single-equation inference 
in cointegrated processes. Of course, weak exogeneity is insufficient to sustain efficient 
inference, either by itself or in conjunction with a diagonal long-run covariance matrix1. 
Conversely, the coincidence of the equation to be estimated with the conditional expec
tation and the relevant equation of the DGP is also insufficient for valid inference in the 
absence of weak exogeneity.

Section [2] reviews the concepts of weak and strong exogeneity. Section [3] presents the 
data generation process and delineates the eight cases to be investigated in detail. The 
next section derives the covariance matrices required for the asymptotic distributions of 
the estimators and other statistics, and section [5] describes the vector Brownian motion 
processes. Section [6] obtains the limiting distributions of the estimators and tests. Sec
tion [8] provides a Monte Carlo study of the finite sample behaviour of the estimators and 
tests to illustrate the interactions between the presence or absence of weak exogeneity 
and alternative regression specifications. Section [9] discusses testing for weak exogeneity 
and section [10] concludes.

2 Weak and Strong Exogeneity
The concept of weak exogeneity was proposed in Richard [1980] and analyzed by Engle, 
Hendry and Richard [1983], building on Koopmans [1950]: Ericsson [1992] provides an 
excellent exposition. Consider the sequential joint density Dx (•) at time t of the two 
variables Xj =  conditional on X t_i =  (X o ,X i,. . .  , x (_ i)  when X o denotes the
matrix of initial conditions:

Dx (yt,Zi | X (_ i ,0 )  where 6 =  (0a,...,0 n)' £ ©  C |R" for t =  1 ,...,T . (1)

H am indebted to Sdren Johansen for clarifying the precise role o f  each requirement.
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Weak and Strong Exogeneity 2

Consider an investigator who is interested in modelling the determination of yt. Generally, 
z, is endogenous in the framework of the joint density, so both variables must be modelled 
in order to determine yt. However, under certain conditions on the system (1), zt may not 
need to be analyzed to learn how yt is determined —  and the weak exogeneity of zt for 
the parameters of interest in the model of yt defines such conditions. Since a joint density 
can always be factorized into the product of a conditional density and a marginal density, 
weak exogeneity is intended to ensure that analyzing only the former sustains inference 
without loss of information about the parameters of interest in the system.

Transform from the original parameters 0 £ ©  to the set O t given by:

<f> =  f  (0) where and 0 €  © , (2)

and f  (•) defines a one-one reparameterization of 0s into <ps. Choose <p such that <p' =  
(<p[,<p2), where </>, has m elements (ni + «2  =  n) corresponding to the factorization of the 
joint density (1) into a conditional density and a marginal density:

Dx(s<,z« I X ,_ i ,0 )  =  Dy|Z (y. | 2 i,X w , ^ )  Dz (z, \ X (3)

Such a factorization can always be achieved if (j>i and 0 2 are defined to support it, although 
the resulting parameters may then be linked.

Denote the parameters of interest by 0 ,  a vector of k elements which is a subset of 0. 
Then zt is weakly exogenous for the parameters of interest 0  if:

(I) 0  =  g (0 i) alone, where the function g (0 i)  need not be one-one; and:

<j>\ and 02 are variation free, so the parameter space of ( 0 i ,0 2) is:

(<pi,4>i) € $1 X $2 where $1 x $ 2 =  {(<Pi,<Pz) ■ <t>i £ $1 and <fa €  # 2 } • (4)

Conditions (I) and (II) ensure that ip can be learned from <p\. and together exclude the 
possibility that ip depends on d>2 either directly (I), or indirectly (II), so no information 
about the parameters of interest can be derived from the marginal model. Hence we 
can learn ip uniquely and completely from the conditional model. The concept of weak 
exogeneity is, therefore, close to that of S-ancillarity in Barndorff-Nielsen [1978]. A failure 
of either condition (I) or (II) precludes inference from the conditional model alone without 
loss of information, although the analysis does not specify how that information loss is 
manifested.

Next, zt is strongly exogenous for ip if zt is weakly exogenous for ip, and:

(III) Dz (zt|Xt_i, <£2) =  Dz (^ IZ ^ jjX o, (p’i'j.

When (III) is satisfied, Zt does not depend upon Y (_i so y does not Granger cause z, 
following Granger [1969]. Such a condition sustains marginalizing Dz (z(|X(_i, </>2) with 
respect to Y J , ,  but does not concern conditioning. Consequently, Granger causality 
alone is neither necessary nor sufficient for weak exogeneity and cannot validate inference 
procedures.

Under parameter constancy, these definitions apply to the whole sample period ( 1 , . . . ,  T):

DX (Y i.,Z j.| X o ,f l)  =  n D x ^ l W )
t= 1

=  n  Dy|z (yt I Zi,X ,_i,d>i) Dz (z, I X,_i,</>2)
t = l  f= l

( 5)
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A Bivariate Cointegrated System 3

When zt is strongly exogenous for ip, then from (III):

n o x f o i x . . , , * )  =  n o . ( ^ i z j - i . x o , * )  ^
t = l  t = l  v ° /

=  Dz ( ^ . | X o , * )

which is the original joint (marginal) density of z. Hence from (5):

DX (YS..ZJ. | X o ,fl)  =  DY|z (Y j. | 4 , X o , « i )  Dz (Zy  | Xo,<fc) . (7)

Thus, the full-sample joint density factorizes into the product of density functions for 
Y j-|Zj- and Zy, which thereby sustains full-sample conditioning. All o f these results hold 
for yt,zt being vectors.

Formulations of weak exogeneity conditions and tests for various parameters of interest 
in cointegrated systems are discussed in Boswijk [1992a], [1992b], Dolado [1992], Hendry 
and Mizon [1992], Johansen [199a.b], Johansen and Juselius [1990] and Urbain [1992]. 
We establish the specific necessary conditions directly in each specification in the next 
section.

3 A Bivariate Cointegrated System
Consider the following bivariate DGP for the 1(1) vector x* =  (y, :

where:

and:

y, =  0z, +  wu 

ri =  Ay,., +  W2t

Sit
Sit( : : ) = C  ? ) t e M

(8)

(9)

( 10)

( i i )

The DGP in (8 ) - ( l l )  defines a (co-integrated vector process in triangular form (see 
Phillips, 1991) which can be written in many ways, of which the following error-correction 
form is perhaps the most useful:

Vt — S z t +  S it

A ri =  -^Aj/i-i +  p (yt-i — 0 zt-\) +  sn

where et =  (eu : Sit)' is distributed as in (11).
The parameters of the DGP are (0, A ,p,7,01,02) where:

(i) 0 ^ 0  determines the presence of cointegration between yt and zt;
(ii) A ^  0 determines Granger-causality of Ay  on A z;

(iii) p ^  0 determines a failure of weak exogeneity of zt for (0,Oi)\
(iv) 7 ^ 0  determines the presence of contemporaneity; and:
(v) 02/01 determines the signal-noise ratio for (8)

( 12)
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A Bivariate Cointegrated System 4

When cointegration holds, 0  and 0\ can be normalized at unity without loss of generality, 
as is assumed henceforth and we also set rr2 to unity in what follows to focus on the 
exogeneity issues. The investigator is assumed to be interested in estimating (8) and 
determining the parameter of interest 0, which characterizes the long-run relationship 
between yt and zt.

Let I j_ i denote available lagged information (the a -field generated by X ^ ) .  Then, 
from (11) and (12), the conditional expectation of yt given (zt,Xt_i) is:

E [yt | z t , l t - 1 ] =  0Z t +  7Azi -  7P {Vt- i -  0 * t - i )  -  7 AAj/(_1. (13)

For some parameter values in the DGP, the conditional expectation will coincide with 
(8), whereas for other parameter configurations, (8) and (13) will differ. In the latter 
case, it may be unsurprising that estimation of (8) is not fully informative, and that weak 
exogeneity is violated. However, an important aspect of cointegrated 1(1) processes is that 
a coincidence between the equation to be estimated and the conditional expectation of the 
dependent variable given all available information, is not sufficient to justify least squares 
estimation. This remains so even when the error is an innovation against the complete 
information set and is a surprising implication which highlights the essential role of weak 
exogeneity in justifying single equation inference. The following analysis will illustrate 
the practical importance of weak exogeneity failures in this context, and will stress that 
no serious difficulties arise from either Granger causality alone, or contemporaneity by 
itself, provided weak exogeneity holds.

Eight configurations of parameter values will be considered. In the first three, weak 
exogeneity holds or is easily obtained in a single equation specification. In the next three, 
weak exogeneity is violated. In the last two, weak exogeneity is again violated, but in 
ways which seek to refute alternative possible characterizations of the conditions for valid 
single equation inference in 1(1) systems.
(a) When A =  p =  7 =  0, (8) is a valid regression equation between 1(1) variables defined 
by the conditional expectation:

E[y, | =  0z,. (14)

All conditions (I)-(III) in section [2] are satisfied, so zt is both weakly and strongly ex
ogenous for the parameter of interest 0.
(b) When A =  p =  0, but 7 ^ 0 ,  then (8) suffers from ‘simultaneity bias’ in that zt and 
uiii are correlated. A valid regression equation is given by the conditional expectation:

E [yt | zi,Xi_i] =  0z, +  7 A zt. (15)

In (15), zt is both weakly and strongly exogenous for the parameters of interest (0 , j ) 
as (I)-(III) are satisfied. Thus, the addition of the impact variable A zt ‘corrects’ for 
the contemporaneous correlation between eu and £21, and restores valid single equation 
inference.
(c) When p =  7 =  0, but A ^  0, then y Granger causes z. Now, zt cannot be strongly 
exogenous for 0, but could be weakly exogenous. Indeed, the conditional expectation is:

E[yi | 2t,Xi-i] =  0zt (16)

and the second equation is uninformative about /?, allowing single equation inference 
without loss of information on the basis of (I)-(II). Equation (8) is again correctly specified.
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A Bivariate Cointegrated System 5

(d) When A =  7 =  0, but p ^  0, then there is a failure of weak exogeneity of z, for 0, 
even though the conditional expectation yields:

E [</i | z , , l t-,]  =  0zt. (17)

Nevertheless, zt is never weakly exogenous for the parameter of interest /? when p ^  0 
since:

Az, =  p(yt-i  -  0zt- i )  +  t21, (18)

so a more efficient analysis is feasible by jointly estimating (8) (or (17)) and (18). Thus, 
we have a case where (8) coincides with the conditional expectation, but weak exogeneity 
is violated by a failure of (II). Below, we investigate the effects of that loss of information.
(e) When A =  0 but p ^  0 and 7 ^ 0 ,  weak exogeneity of zt for 0  is clearly violated, as 
the conditional expectation becomes:

E [t/, | zt,Zt_i] =  0zt +  7 [Az, -  p (yt_! -  /3z,_i)]. (19)

Condition (II) is violated. Moreover, in such a situation, correcting for A z f as in (15) 
need not improve matters, since (yt-\ — 0zt-\) becomes an omitted regressor in place of 
Wit, thereby replacing a white-noise variable by an autocorrelated one.
(f) When p =  0 but A ^  0 and 7 ^ 0 ,  the conditional expectation is:

E [j/( | z( ,X(-i] =  0zt +  7 [Az( -  AAyf_ i ] . (20)

Condition (II) is violated again and consequently zt is not weakly exogenous for (/3,7, A). 
Nor are regressions of type (15) valid either, the omitted regressor now being Ayt-i .
(g) This is a special case of (e), where p +  7 =  0. As explained in section [4], the long- 
run covariance matrix becomes diagonal under such a condition, but weak exogeneity is 
violated. Dolado [1992] has argued for using the diagonality of the long-run covariance 
matrix as a criterion for validating single equation inference in (8). The relevance of this 
case is as a counter-example to that claim (discussed in more detail in sections [6] and
[ 8 D -

(h) The final case, cited by Dolado [1992], is almost the converse of (g): the long-run 
covariance matrix is diagonal and fully efficient inference results asymptotically although 
weak exogeneity fails. The model is close to (8 ) - (l l ) , namely:

Vt =  0Zt +  eif (21)

A z( =  S (Ayt-i  -  PAzt-i) +  e2t =  u2t (22)

where e< ~  IN (0,1). The main difference from (8)-(9) is that the parameter of interest 0 
enters the Azj equation through a term of order l(-l) , since (A1/1 — 0A zt) =  A ei( is the 
first difference of the error on (8). This induces diagonality in the long-run covariance 
matrix since the cross-finking due to the presence of e1( in both equations is asymptotically 
negligible.

The conditional expectations are all special cases of (13), but in many instances do 
not coincide with (8). However, even when the model is the conditional expectation, the 
validity of weak exogeneity depends on a joint analysis of the system: in each of (d), (e) 
and (f) correct specification of the conditional expectation is insufficient to sustain single 
equation analyses.
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Covariance Matrices 6

To keep the asymptotic and Monte Carlo analyses manageable, we focus on the eight 
cases (a)-(h), in all o f which p\ =  0. This simplifies the derivations of long-run covariance 
matrices and vector Brownian motion processes as discussed in the next two sections. 
We will consider three models, namely estimating cointegrating regressions in the form of 
(8); these corrected for 7, in the form of (15); and the relevant conditional expectation 
E \yt\zt,lt-\]. The last is always ‘correctly specified’ in terms of including all the relevant 
regressors and having an innovation error, but as stressed, the conditioning variables need 
not be weakly exogenous for its parameters. Such a regression yields an autoregressive- 
distributed lag model of the form in (13) written unrestrictedly as:

y, =  a0z, +  Qia,_i +  a2yt_x +  a3ty<_2 +  vt. (23)

The long-run solution to (23) is E [yt — k z (] =  0, where k =  (a0 +  07) /  (1 — a 2 — a 3) =  /?. 
This could be derived from direct estimation o.f (23), or equivalently in error-correction 
form:

Ay, =  (y8 +  7 ) A z, -  ('ip +  1) (j/,_! -  y3z,_i) -  -y\Ay,^ +  vt. (24)

It is more convenient in the Monte Carlo to use the Bewley [1979] transformation which 
yields (see Banerjee et al. [1993] for an exposition):

yt — 60zt -(- Si Az( 4- SjAyt 4- £3Aj/j_i 4 -1/(*, (25)

where 60 =  k =  Sj =  7 (1 -  p/3) /  (1 4- ip ); S2 =  ~/p/(l+ 7p) 63 =  - 7 A /  (1 -f 7P)\ and 
u' =  Vt/ (1 4- 7p). Due to the endogeneity of Ayt. (25) must be estimated by instrumental 
variables using yt-i  as the identifying instrument. Then the coefficient of zt delivers the 
long-run parameter. However, because instrumental variables has no existing integer mo
ments when just identified, the resulting estimates could potentially manifest outliers (see 
Sargan [1982], Maasoumi [1978] and Hendry [1990] for analyses and simulation results).

4 Covariance Matrices
Two covariance matrices of importance to the distributions in sections [5] and [6] are 
derived here. For a mean-zero weakly stationary stochastic process { u ,} ,  the first is the 
unconditional covariance matrix d>„ defined bv =  E [u,u[]. The second is the long-run 
covariance matrix Sîu given by:

n „  =  e (26)

which is the vector expression analogous to limx_oo E |V 1 ut) j 'n the scalar case.

Note that is the variance matrix of the limiting distribution of the mean of {u (}. 
Rather than derive these for the complete DGP in section [3], we only consider the results 
when p\ =  0 since there is a marked simplification in that situation.

First, when A =  0 and p ^  0, the DGP can be written as:

yt =  4- uu (27)

A zt =  4-u2t (28)

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



Covariance Matrices 7

where U\t =  W\t and uït =  A Wn, so that: 

Ui =  R u i_i +  et where and e, ~  IN (0, E ) .

The unconditional covariance matrix of u ( is given by:

$ „  =  E[u,u'(] =  E [(Rui_i +  et)

=  RE [u(_1u j_1] R ' +  E [€,€{] 

=  R $ „ R ' +  E

(29)

(30)

using stationarity. When the error variances are unity, the elements of <FU in the present 
bivariate case are:

_  (  <kn <hï \ _  (  Ü 0 A /  1 7 ^ _ / l
\ 012 f e  /  V 0 p2^ !  )  \ 7 l y \ 7 l

7
+  P2

(31)

Next, the long-run covariance matrix is (the appendix provides fuller details):

EL =  E : - ( s  ■■)(§<) =  * „ + T '  +  T

=  ( I - R ) - ‘ * .  +  # .  ( I - » ) - * - « .  =  (I  — R ) -1 E  (I  — R ') _1

where the last expression uses (30). For the process in (27)-(29):

T ' =  R ( I - R ) - 1* « = ( °  7° J  (32)

and:

n “ =  ( 7  +  p 1 + 2  n  +  P2 ) '  (33)

Thus, n „  is diagonal if and only if 7 +  p =  0, for which a sufficient condition is 7 =  p =  0. 
Second, when p =  0 but A ^  0, the DGP can be written as:

Vt =  0*i +  nil

Az( =  A/?Azf_i +  AAu k _i  +  «21 =  C21 =  A:f s2; -1 +  A A «n_i +  «211 

where «n  =  Wu and u2i =  Awlt as before. Letting £, =  (uu : fa)':

Ci =  R 1C1-1 +  R2C1-2 +  ei

where:

R ' - ( “  A )  “ d E l ■  (  - A  ? ) •  

and again et ~  IN (0, E ). Now:

(34)

(35)

(36)

(37)

n c =  (I -  R , -  R 2 )"1 E  (I — R j -  R 2 1 7 ( 1 ~ W
7 ( 1 - 0 *  r 1 ( 1 - 0 * ) n

(38)
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Vector Brownian Motion 8

and hence Sl( is diagonal if and only if 7 =  0. The calculation of is best achieved by 
expressing (36) as a stacked first-order (4 x  4) system and solving as in (30), which yields:

*  _  /  1 7
C "  v 7 (1 -  /?2A T 1 [1 +  2 P  (1 +  Iht) (1 -  m

so that:

_j /  0 0 \
T ( =  ( l —0A)  ̂ 0lX  [A/? -  A2 (1 + /?7 ) (1 - /?A)2] )  ' (40)

The elements of are denoted by r^j, and in both (32) and (40), r2i =  0. These 
formulae will be used in the next two sections.

5 Vector Brownian Motion
Consider a general bivariate 1(1) process:

P i  =  P t - i  +  v , where p0 =  0, (41)

and V( is a ‘well behaved’ weakly stationary stochastic process with unconditional covari
ance E [vtv(] =  T . and non-singular long-run covariance 12,. =  4», -f ~TV 4 X ) , as in section 
[4], Sufficient conditions on {v ( }  for this paper are that it is a stationary, linear, mixing 
process with finite integer moments of up to fourth order. The analysis in this section 
draws on a number of results in Phillips and Durlauf [1986], Phillips [1986, 1987, 1988, 
1991], and Park and Phillips [1988, 1989]: see Banerjee et al. [1993] for an exposition. 

First, we standardize the process using f l " 1 =  K „K ( so that K (f2 „K „ =  I  and hence:

m , =  K'„p, =  K(,pt_! +  K '„v( where K '„v( =  e,. (42)

For a general block symmetric matrix ft:

n  — (  ^ 12
y 11'21 f l22

then:
K ' _  (  ^ ii52 —f f1ir2f7i2f f 221 \ _  f  H  —H C

\ 0 n 27  j  V o  ft™

where f2u .2 =  ( f in  — f l l2n 221n 2i)  =  H -2 , and C  =  f i i 2B j2 . Then m t/VT  converges 
weakly to a standardized vector Brownian motion denoted B M  (I), or more generally:

P>]
T~? ^  e( B  (r) for r £  [0,1] as T —* 00, (44)

(=i

where =t- denotes weak convergence and [Tr] is the integer part of Tr. In the bivariate 
case, B  (r) =  (Bi (r) : S 2 (r))' and the B, (r) are the independent standardized Wiener 
processes associated with accumulating the {e;t}.
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Vector Brownian Motion 9

Consider the case when ef ~  IN (0,1): then using a component by component analysis 
of the standardized m,(, in the present bivariate case (see e.g. Banerjee and Hendry, 
1992):

T 2 m«ml =*>

and:

T

J B ( r ) B ( r ) 'd r =  ^

=> j £  B ( r ) d B ( r ) '=  (

Id B\ (r )2 dr 
/0'H ,  (r) B2(r) dr

f01Bi (r)dB1(r)
fo B2 (r ) dB] (r)

fo (r) B2 (r) dr \ 
fo Bi (r )2 dr j

J0l B j( r )d B 3 (r) \

Next, consider an expression of the form:

T- 1 £  m,e; = r - 1 £  mi_ie; + T- 1 £  e«e; => f 1 B (r) dB (r)' + I.
t = l  (=1  1=1 J °

(45)

(46)

(47)

Thus, the error covariance matrix is added on if the cross-product under analysis is a 
contemporaneous rather than a lagged one.

Returning to the unstandardized and potentially autocorrelated process { v , }. then 
p x/yJT converges weakly to the vector Brownian motion BM  (O ), or more generally:

[7> ]

^2 v< => V  (r) for r  €  [0,1] as T  —► oo. (48)
1=1

Let V  (r) =  (V) (r) : (r)) ' in the bivariate case, where Vi (r) and V2 (r ) are not indepen
dent in general. Corresponding to (45)-(47), we have (see e.g. Park and Phillips [1988, 
1989]):

T - ’ I > P ' . ^ / 1V ( r ) V ( r ) 'd r ; (49)
1=1 J0

T - 1 £  p ,- iv ;  = > / ‘ v  (r) dV  (r )' +  T „ ,  (50)
1=1 ■/ °

where Y „ is non-zero when { v ( } is autocorrelated; and noting that E [v(v(] =

r > £  p«v;=> f \ ( r ) d V ( r ) '  +  T v +  * v. (51)
{ 5  •/o

The vector Brownian motion could be standardized using B  (r) =  K [ V  (r), such that 
B  (r) is BM  (I). Multiplying out K'„ V  (r), we have:

K 'V
H - H C

0 n 22*
U V i ( r ) \  _ / H V , ( r ) - H C V 2 (r)

M V * (r ) /  V n j v i f r )
(52)

Thus, in the bivariate case:

Bi (r) =  h (Pi (r) -  cV2 (r)) and B2 (r) =  <r2 1V2 (r). (53)

Since the standardized vector Brownian motion B  (r) has independent components, 
V 2 (r) and (V i (r) — H12£l22 V 2 (r)) are independent also. Applying these results, we
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Limiting Distributions 10

have the following for {u ,}  and (£i) defined respectively by (29) and (36) in section [4], 
First, when A =  0, from (33):

n . - ' - ( ' - r T ‘ ( 1 ! (2r ++/

k : , . ( ( “ ) '  - ( r + o X y M ) " 1 |, ( « )

so that:

K  =  (
\ 0

where rj =  (1 — j 2) and u;22 =  (1 +  2(r\ +  p2) and hence:

(7 +  p)B i(r) ■ ( ? ) ’ (Vi W  - u;22 >)Vi (r) I and B 2 (r) =  u>22JV i(r ) . (55)

Next, when p =  0 but A /  0. from (38):

K ■/ =  (  V * - 7(1 - £ * ) > ?  * \
c V 0 ( i - W  ) '

again yielding two independent standardized processes, where: 

Bi (r) =  -T* (Vi (r) -  [ ^ 1  V i ( r ) ) ,  

with ai22 =  1 / (1 — 0 \ f  and f?2 (r) as in (55).

(56)

(57)

6 Limiting Distributions
6.1 OLS E stim ation : A =  0

We begin by considering the ordinary least-squares (OLS) estimator of (8) when A =  0. 
All of the subsequent derivations follow similar lines. Since wu =  t\t in (8), then using 
the results in section [5], and a functional central limit theorem (see Phillips [1986, 1987]):

The first step follows from (49) and (51), since r2i =  0 from (32); the second since <jiu21 =  7 
from (31); and the last line requires:

Vi (r) =  f — )  5 -Bi (r) +  V2 (r) and £ 2 (r) =  (r)
\tt>22 /  \ ^22 /

Hi")" (*-£—)
(/o1 Vi (r )2 d r ) -1 ( £  H  (r)dVi (r) +  ^u21)

( « a  Jo1 Vi (r )2 dr) * («J ?  £  l i  (r)dV i (r) +  J - )

(fa B2 (r )2 d r ) " '  ( [ ( ^ )  /«J B2 (r) dB, ( r ) ] )

+  (/o1 B2 (r)2 dr) ( fe M ) [Jo1 B2 (r) d S 2 (r) +  ^ ]  .
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Limiting Distributions 11

from (55). OLS remains super consistent, but the Monte Carlo results will demonstrate 
the relevance to finite sample inference of the normalized limiting distributions derived 
from (58).

Several o f the components of (58) have distributions which are related to the normal 
distribution. First, since Bi (r) and B2 (r) are independent Wiener processes, condition
ally on B2 (•) (see Park and Phillips [1988, 1989 or Banerjee and Hendry [1992] for an 
exposition):

so that:

£  B2 (r) d B, (r) ~  N (o, ( j f  B2 (r )2 d r ) ) (59)

( £ b2(tŸ d r ) * £  B2 (r)dBi (r) ~  N ^0, B2 (r)2 d r )  j  . (60)

Consequently, the distribution in (60) is a linear mixture of normals centered on 
Further: . I

zero.

(Ü B2(r)2<ir) \ja f t W d f l i ( r ) )  ~ N (0 ,1 ) (61)

and hence (61) holds unconditionally. Second (see Dickey and Fuller [1979,1981]):

DFa =  ( j f 1 fl2 (r )2d r ) ‘ £  B2 (r) dB2 (r) (62)

and

DFt =  (£  B2 (r )2 d r ) * £  B2 (r) d fl2 ( r ) , (63)

are the Dickey-Fuller T (a — 1) and t-distributions respectively for testing for a unit root 
in the univariate marginal process for { i t}. Finally, (see Fuller, 1976):

£  B2(r)dB2 ( r )~  \ (y 2 ( l ) - l ) ,

so the numerator in (62) is | (y 2 (1) — 1). The fact that P (y 2 (1) <  1) ~  0.7 suggests that 
the last term in (58) will impart a negative shift to the distribution.

To understand all the implications of (58), we consider the special cases (a), (b), (d), 
(e) and (g) in turn, and then examine (c) and (f) (where A ^  0) and finally (h). Table I 
summarizes the states of nature under consideration, using * to denote a non-zero value.

Table I
a b c d e f  g h

A 0 0 * 0 0 * 0 0
p 0 0 0 * * 0  —7 ê
7 0 * 0 0 * *  * 0

(a) When A =  p =  7 =  0, then 7 =  lû22 =  1 and <puV2 =  0, so (58) collapses to:

T {P ~  P) =* ( £  B2 (r )2 d r ) 1 { £  f?2 (r) d£x ( r ) )  , (64)

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



Limiting Distributions 12

so from (60):

r ( / 3 - / ? )  ~  N , (65)

Thus, the distribution of T [p — /?) in (65) is a linear mixture of normals centered on zero 
and any finite sample bias must be op (1 /T ). Although the limiting variance is stochastic, 
since:

( t ~2 Y ,  * ? ) =► “ 22 ( j f  B2 (r)2 d r )  , (66)

and a\ =  u>22 =  the conventional coefficient standard error (ESE) should accurately 
estimate the sampling standard deviation (SSD) in (65). Below, we consider the ratio of
SSD to ESE.
(b) When A =  p =  0 but 7 ^ 0 ,  then rj =  (1 — 72) , u>22 =  1 and <̂ui2 =  7, so (58) 
becomes:

T (/? -  0) =► ( £  B2 (r )2 d r )  ‘ [ , i  j f '  B2 (r) dB , (r) +  7 ( jT  B2 (r) dB 2 (r) +  l ) ]  (67)

However, the final term inside [•] in (67) is I7  (x 2 (1 )+  1) which has the same sign as 7. 
The first term in [•] remains a mixture of normals but scaled by \J{ 1 -  7 2), so relative 
to (a), when 7 >  0, the distribution is shifted rightwards and is non-normal. The con
ventional coefficient standard error no longer correctly estimates the sampling standard 
deviation, and hypothesis tests could be distorted. These, and the estimation of (15), are 
considered below.
(d) When A =  7 =  0 but p ^  0, then rj — 1, w22 =  1 +  p2 and (f>un  =  0, so (58) becomes:

T ip ~ P) =*■ ( j f  B2 (r )2 d r ) 1 ( l  +  p2) _1 [ j f1 B2 (r) dB, (r) +  p £  B2 (r) d fl2 (r)] .
(68)

This is a mixture of the normal and Dickey-Fuller distributions, and for sufficiently large 
p >  0, the last term will impart a negative shift to the distribution (conversely for negative 
p). Again, inference is liable to be distorted.
(e) When A =  0 but 7 /  0 and p ^  0, then rj =  (1 — 72) , ui22 =  1 +  27p +  p2 and 
(f>ui2 =  7 , so (58) remains as it is. The terms in ui22 [| (7 +  p) (x2 (1) ~  1) +  7] wiU 
partially offset each other, so having both a failure of weak exogeneity and simultaneity 
may induce less distortion than either alone. This matches the conclusions in (b) and (d) 
that (7 ^  0,p  =  0 ) ,  (7 =  0,p ^  0) impart different directions of skewness to the limiting 
distribution.
(g) When 7 =  — p, so 7 +  p =  0 we have an example of type (e) chosen to create a 
diagonal long-run covariance matrix while violating weak exogeneity. From (58), a bias 
is anticipated despite the independence of V) (r) and V2 (r). This bias is in accord with 
(19), which also explains why an augmented regression should not improve matters even 
though it might be thought to do so from (58) being written as (at the point 7 =  —p):

T ( $ - P )  => ( £  B2 (r)2 d r )

The limiting non-normality arises because $  is not diagonal even though f i  is. These cases 
reveal the separate roles played by weak exogeneity, simultaneity and the diagonality of the

Tp
ui2222 j  JO

B2(r)dB 1(r) +  -
0)22

(69)
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Limiting Distributions 13

long-run covariance matrix in determining the non-centrality of the limiting distribution 
and the independence of B\ (r) and B2 (r).

If an investigator knew that 7 =  —p, full information maximum likelihood estimation 
of (13) and the marginal process from (12) would be feasible due to the orthogonality of 
the errors and the non-linear cross-equation restrictions since the system takes the form:

Ay, =  ( P - p ) A z t +  (p2 -  1) (yt_i - £ z (- i )  + {1 , , 7Qn
A z, =  p(yt- i  -  fizt-i) +  «at

where Lit =  tu -  E [ei,|e21] so E [£i,e2<] =  0.

6.2 A u gm en ted  O LS E stim ation : A =  0

The possible failure of augmentation just noted is important in the context of using 
regressions such as equation (15) in which an attempt is made to correct for ‘simultaneity’ 
by adding A z, as a regressor. In terms of the original DGP (8)-( 11) when A =  0, an 
alternative reparameterization is:

yt =  0z, +  jA z t +  wlt 

Azt =  w2t

where:
(  wu )  =  f  0 0 )  f  wi‘ - i  )  , (  fit \
[  w2t J 0 j  \ Wit-t J \ fît J ’

and ( t ~  IN (0,1) with Lit as above. Consequently, from section [4]:

n ”  =  ( j  1 +  p2 ) ’ * w =  ( o  1 +  y2 )  a n d T "  =  ( 0  0

(71)

(72)

(73)

(74)

so that r) =  1, tu22 =  1 +  p2 and <pul2 =  r21 =  0. The parameter estimates of (21) are:

T \
(  V T (7 - 7 )
v T { $ - p )

( T - ' j^ iA z l )  T - ï j 2 z tA zt \ 1
t =  1 

T

T ~ iJ 2 z‘Azt T - 2E :

0 / 0' ^ ( r f d r

t = l
-1

/

T -h J ^ A ztiu

T - ' j Z z t u (75)

N (0 ,< r L )
/ 01 lT2 (r )d lT 1(r)

where Wi ( r ) , W2 (r) are the Wiener processes associated with accumulating the w,t. 
Thus:

T { $ - 0 )  => ( / 01 W2 (r)2d r )_ 1 [/01 W2 (r)d W l (r)]

=  (/J  Bi (r)2 dr) “ * [(1 +  pT '  / o Bi (r) dB, (r) +  p f0' B2 (r) df?2 (r)]
(76)

since W\ (r) =  B\ (r) -f ( ^ - )  W2 (r). This outcome is now compared to the corre
sponding result for estimating (8) in (58).
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Limiting Distributions 14

(a) Since 7 = 0  and p =  0, there can be no gain from fitting (15) relative to (8), since 
(76) coincides with (64) when p =  0.
(b) Since p =  0 and 7 ft o, a distinct improvement will occur relative to (67) because the 
distribution in (76) reverts to a mixture of normals. This matches the weak exogeneity 
of zt for the parameters of the conditioned model (15). Thus, inference proceeds as in (a), 
so by itself 7 ft o does not induce a weak exogeneity failure.
(d) As 7 =  0 anyway in this case, (76) is the same as (68) so there is no change from the 
conclusions for (8).
(e) Now both p f£ 0 and 7 ft 0 so the (left) skewness in the distribution could be 
exacerbated by correcting one of the two ‘problems’ . Conversely, as (76) coincides with 
(68), the correction has been ‘successful’ and asymptotically mimics 7  =  0.
(g) The same implications hold as in (e).

6.3 O LS E stim ation : p =  0

Now we turn to the cases where p =  0 but A ft 0. In such a situation, a similar analysis 
to (58) applies but using Sl( in (40). Since u)22 =  (1 — /?A)~2 , r/ =  (1 — j2) and <p(i2 =  7, 
estimating (8) by OLS yields:

- (-§*)>s~)
=* (fa v2 (r )2dr) ‘  ( /„ ' V, (r) dVj (r) +  * „ )

=  (Jo1 V2 (r )2 dr) ̂  [(1 -  /3A)-1 (1 -  72)* / 0‘  B2 (r) dB, (r)] (?7)

+  (Jo* V4 ( r f  dr) "* ( [ 7 ( 1 -  PX)] fo1 (r) dV2 (r) +  7 )

=  (1 -  PX) ( /„ ' B2 (r )2 d r ) - '  [(1 -  7 2)* f 1 B2 (r )d fl , (r)]

+ 7  (1 -  PX) (/„' B2 (r)2 d r )” ' ( f 2 B2 (r) dB2 (r) +  (1 -  fiX)) 

since T21 =  0 again, when:

V, (r) =  ( l  -  72) * B\ (r) +  [7 (1 — /?A)] V2 (r) and B2 (r) =  V2 (r) (1 -  0X)

from (57). As with (58), we find a mixture of a conditionally normal and a Dickey-Fuller
distribution in (77), as well as a non-centrality effect when 7 ^ 0 .  We can now consider 
the special cases (c) and (f)
(c) When p =  7  =  0, but A f£ 0, for estimating (8), (77) becomes:

T (P -  ft) => (1 -  $X) B2 (r)2 d r ) ' B2 (r) dB, ( r ) )  . (78)

Thus, despite the fact that y Granger causes 2, since B\ (r) and B2 (r) are independent 
Wiener processes, the distribution of the OLS estimator is a mixture of normals, centered 
on zero: the violation of strong exogeneity, when weak exogeneity is maintained, does 
not seriously affect inference in this unit-root model. Using (61) and matching (65), 
conditional on B2:

T (f> -  P) ~  N (0 , (1 -  f)\ )2 B2 (r)2 d r ) 1 j  , (79)

T (P — P)
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Limiting Distributions 15

so from (66), the conventional coefficient standard error correctly estimates the sampling 
standard deviation. However:
(f) When p — 0, but A yt 0 and 7 ^ 0 ,  then weak exogeneity is violated and (77) reveals 
that the limiting distribution of the OLS estimator is non-normal, and is not centered on 
zero, although the last two terms could partially offset each other. Inference could be 
seriously distorted, as investigated in [8].

6.4 A u gm en ted  O LS E stim ation : p =  0

In the present setting, correcting for A zt as in (15) could again have an important effect 
as follows. Reparameterize the DGP when p =  0 as:

yt =  pzt +  7* A  zt +  su 

A  z, =  sJt

where 7* =  ait =  en -  A7Ayt-i  and s2t =  e2t +  AAjtt_t, so that:

(;M:
(7 7 )(e )-*(7 ?)(£;)■

(80)

(81)

(82)

where eu =  elt — j ' c 2t- so that E [eife2(] =  0 and E [e2,] =  (1 — j 2). From the appendix 
analysis:

/  a i\2/t 1\ , zaz\z a\ \
(83)

(84)

0 .  -  a  -  w -  (  <‘  -  - f 1 )

and

i . - f 1 - ' * 1 -
V “ TV

- 7 2 (1 ~ V ) ~VP 
l + i p

when ip =  A2 (1 — A2/!2)-1 [fp +  2(1 — \fi) (1 +  /J7)]. The structure of s( as anon-diagonal 
first-order autoregression with a second-order moving-average error is such that Y , entails 
t2i 0 when 7A yt 0 since:

r21 =
- 7 A [/ ? - A ( l - A / ? ) 2 ( l  +  /37 )]

[(1 — A^ )2 (1 +  A/3)J

Consequently:

/  V T (7 - 7 ) T - 1E ( A « ? )  T - i ^ A z , v 1 /
t= 1 

T
r - i ^ 2 fA2, r - 25 > 2

T ~ \ ± A z tsu
t= 1 

T

0 £ W i ( r ) 2dr
(  N ( 0 ,* 2) \
U o ^ W d W i W  +  ^ + r j !  )■

(85)
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Inference 16

Thus, ‘correcting’ for simultaneity greatly complicates the limiting distribution, and in
creases its dependence on nuisance effects. The impact of these will become clear in the 
Monte Carlo.
(h) This case has a diagonal f i  but no weak exogeneity. In fact, both and $ u are 
diagonal so that:

T ($ — P) => { £  B2 (r )2 dr) ‘  £  B2 (r) dBx ( r ) . (86)

This confirms the asymptotic efficiency of OLS applied to (21), and holds despite the 
presence of f) in (22). The example contrasts vividly with (g) where a similar weak 
exogeneity failure (but with a levels rather than a difference feedback in the A zt process) 
induces a large bias in OLS. The asymptotic result is due to f) in (22) being a coefficient 
on an l(-l) term.

7 Inference
We now consider tests of specification hypotheses of the form Ho : /? =  /?* in the eight 
cases.

7.1 In feren ce: X =  0

(a) From (65) and (61) the t-test of H0 : /J =  /J‘  based on \pm =  (J3 — /3”)  /SE [/j] should 
be asymptotically N (0,1) when the null is true. In fact:

T T
=  T~l £  (y, -  0zt)  =  T -'  £  (wu - T ( & - 0 )  T - 'z t) 2 a? (87)

t=i 1=1

since the terms involving 2< are asymptotically negligible. Note that this result is true 
independently of p and 7. Thus, from (66):

tg. =  ( r - 2 Y . T ^ -  ^  =► N ( ° - 1) • (88)

(b) Although there is a bias in the limiting distribution of T [p — j)'j in (67), this is 
Op (X -1 ) and hence negligible in practice in large samples. The impact on inference does 
not vanish even asymptotically, however. Rather:

t/J. =  ( x - 2 f > . 2)  *T

=> ( 1 -  72) ’  (/o1 B2 (r)2 dr) 4  [/„> B2 (r) dB, (r)] (89)

+ 7  (/J  B2 (r)2 dr) [/0] B2 (r) dB2 (r) +  l]

=  (1 -  72) 2 N (0,1) +  7DFt +  7 (fo1 B2 (r)2 d r ) .

Compared to (a), when 7 ^ 0 ,  the distribution in (89) is non-normal and conventional 
hypothesis tests will not have the correct size.
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A Monte Carlo Study o f Finite Sample Outcomes 17

(d) Again, the t/3, statistic will not have an asymptotic normal distribution:

to. =»• (1 +  pT 1 (fo B, (r)2 dr) [j* B2 (r) dBx (r)]

+ / » ( ! +  P T '  ( /o B2 (r )2 d r p  [/* B2 ( r )d B2 (r )] (90)
=  ( l  +  p2) - 1 (N (0 ,l )  +  pDF() .

This is a weighted average of the normal and Dickey-Fuller ‘t ’ distribution.
(e) From (58), a result like (89) occurs with different weights for the three components.

7.2 In feren ce: p =  0

(c) From (79), using (66) for the estimated standard error, t-tests of Ho will be asymp
totically N (0,1).
(f) As in (89), from (77) the same three terms recur with new weights.

The Monte Carlo evidence in section [8] reveals how well these asymptotic results 
describe finite sample outcomes for both estimation and inference.

8 A Monte Carlo Study of Finite Sample Outcomes
The Monte Carlo study uses the same DGP as (8 ) - ( l l ) ,  for specific values of the pa
rameters (X .p.y) where /3 =  0 \ — o 2 — 1. The study was undertaken recursively using 
PC-NAIVE with 10,000 replications (see Hendry, Neale and Ericsson, 1991) across sample 
sizes T  =  2 0 , . . . ,  100 for the three regression models (8), (13) and (24) (the last estimated 
as (25) using instrumental variables). Numerical values of the parameters were selected 
to illustrate the theoretical derivations and comprised combinations of A, p and 7 from 
(0; 0.5) to cover the eight cases (a)-(h) (with 7 =  — | in (g)). We first focus on the 
full-sample biases in estimating /? by the 3 methods in the 8 states of nature.

Table II records the results. AOLS denotes the augmented OLS regression in (15); 
DOLS is the instrumental variables estimator of (25); MCSE is the Monte Carlo standard 
error of the bias; R is the ratio of the sampling standard deviation (SSD) in the experi
ments to the estimated standard error (ESE); P  is the rejection frequency for the correct 
null hypothesis that /3 =  1; and F  is the fraction of cases where the bias was positive. The 
Monte Carlo standard errors of P  were 0.002 at P =  0.05. When OLS was a ‘correctly 
specified’ special case of the other estimators, the latter were not computed (shown by
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A Monte Carlo Study o f Finite Sample Outcomes 18

- ) .  In all cases, an unrestricted intercept was included in estimated models.

Table II: Finite Sample Biases and Rejection Frequencies when T =  100
a b C d e / 9 h*

OLS 0.000 0.026 -0.0007 -0.020 0.0001 -0.0003 -0.066 0.023
MCSE 0.0003 0.0004 0.0002 0.0003 0.0002 0.0002 0.0006 0.0003

R 1.07 1.18 1.08 1.13 0.82 0.96 1.77 1.06
P (t) 0.048 0.101 0.049 0.092 0.017 0.030 0.407 0.092

F 0.50 0.79 0.48 0.24 0.52 0.49 0.07 0.78
AOLS - 0.0001 — -0.015 - -0 .007 -0.034 -0.01
MCSE - 0.0003 - 0.0002 - 0.0002 0.0005 0.0003

R - 1.08 0.97 - 1.07 1.46 1.01
P (t) - 0.048 - 0.046 - 0.053 0.205 0.039

F - 0.51 - 0.21 - 0.32 0.20 0.49
DOLS - 0.0002 - -0.020 -0.009 -0.0003 -0.037 0.0005
MCSE - 0.0003 - 0.0003 0.0002 0.0002 0.0005 0.0003

R - 1.09 — 1.15 1.12 1.12 1.20 1.11
P it ) - 0.052 - 0.092 0.071 0.068 0.129 0.066

F - 0.50 — 0.24 0.31 0.46 0.21 0.51

In almost all cases, the distribution of the t-test of a correct null hypothesis was 
closer to symmetry than the distribution of the estimator, but was centered on the wrong 
location such that its corresponding F  value was almost identical to that recorded in 
Table II.

Figure 1: Standardized frequency distribution of OLS biases in case (b)
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A Monte Carlo Study of Finite Sample Outcomes 19

(a) As the first column shows, OLS is well behaved, being unbiased, with an essentially 
unbiased ESE for the SSD (since R is close to unity) and about a 5% rejection frequency 
of the hypothesis that 0  =  1. F  confirms that OLS is median unbiased in accord with 
(61).
(b) Next, the introduction of cross correlation between the errors on the DGP induces 
a noticeable positive bias in OLS (matching (62)), substantial skewness as measured by 
F , increases R, and leads to considerable over-rejection of the correct null that 0 =  1. 
Figure 1 records the standardized frequency distribution of the estimates, which manifests 
substantial skewness. Correcting by using (15) (i.e. AOLS) restores mean and median 
unbiasedness and brings R and P  back to virtually the same values as OLS in case (a), 
matching (76) for p =  0. Further, the dynamic model (24) is well behaved. Since zt is 
strongly exogenous for the parameters in both (15) and (24), single equation inference 
need lose no relevant information.

Figure 2: Standardized frequency distribution of OLS biases in case (d)

(d) The bias in OLS is negative and hence opposite to (b), matching (65). Again, P shows 
considerable over-rejection of the correct null on 0. Figure 2 records the standardized 
frequency distribution to illustrate the skewness. Estimating the dynamic model does 
not help to correct such problems, since the outcome is almost the same as OLS. This is 
precisely the case in which both models coincide with the conditional expectation, but 
z( is not weakly exogenous for the parameters in any of (8), (15) or (24). Thus, the 
information loss from ignoring the marginal model (16) is marked and distorts several 
aspects of inference.
(e) This case would ordinarily be a puzzle in a simulation exercise: weak exogeneity 
is clearly violated, yet OLS is nearly mean and median unbiased. Such an outcome is
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A Monte Carlo Study o f Finite Sample Outcomes 20

explained by the partial offset of the terms in (58) for the parameter values deliberately 
chosen here. However, inference is distorted in that R is very low, as is the size of the 
‘t ’-test o f fi' =  i. Correcting for 7 ^ 0  induces a substantial negative bias, as anticipated 
from (76), although R and P  axe now better behaved. The dynamic model estimator 
based on (24) also remains negatively biased, despite coinciding with the conditional 
expectation in (17). Thus, once more a failure of weak exogeneity leads to an important 
loss of information. Further, although (68) and (76) show the asymptotic equivalence of 
OLS in (d) and AOLS in (e), Table II reveals distinct finite sample differences, especially 
on R and P.

We now consider the cases where p =  0 but A f  (). so strong exogeneity can never 
occur.
(c) When 7 =  0, there is a slight mean bias in OLS, but R, P  and F  are all well behaved. 
Since weak exogeneity of zt for /3 holds, and (78) shows that OLS is asymptotically a 
mixture of normals, the bias seems analogous to that which occurs in finite sample when 
estimating stationary dynamic models. AOLS and the dynamic model yielded similar 
results.

Figure 3: Standardized frequency distribution of OLS biases in case (g)

(f) This case is again an enigma at first sight: OLS is nearly mean and median unbiased, 
and R  is close to unity although P  is low. The outcome matches the offset anticipated 
from (77) which attenuates the slight bias in (c) above. Augmenting OLS by adding A zt 
does not help: the bias is much larger as (83) suggested could occur. The dynamic model 
(now with five regressors) performs fairly well despite the failure of weak exogeneity but 
shows some median bias. Since p — 0, the coefficient <52 in (25) is zero, so OLS could 
be applied to the unrestricted variant of the conditional expectation (20). This yielded a
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A Monte Carlo Study o f Finite Sample Outcomes 21

mean bias of -0.0002 (0.0002), with R =  1.09, P =  0.051 and F =  0.50, so there is no 
obvious evidence of the weak exogeneity failure for these parameter values.
(g) We used 7  =  — | and p =  | s o 7  +  p =  0as the example of type (e) with a diagonal 
long-run covariance matrix, while maintaining a violation of weak exogeneity. From (58), 
a negative bias can be anticipated despite the independence of V) (r) and 14 (r). This 
indeed occurs, confirming that a diagonal long-run covariance matrix is not sufficient to 
sustain inference about a cointegration parameter. This also matches (19), as recorded in 
(69). Figure 3 shows the frequency distribution of the OLS bias and confirms the leftwards 
skewness.
(h) The finite sample outcomes when 7 =  0 are not reported in detail here. However, 
they differed from the asymptotic predictions in (86) since there was a significant bias of 
-0.0012 (0.0003) even at T =  100. More importantly, the outcome in (86) depends on 
7 =  0, and when that does not hold (so that e, ~  IN (0 ,E )) , both f l„  (=  E ) and 
cease to be diagonal. This case is denoted (h*) and the limiting distribution becomes:

T ( / ? - / ? )  => ( ^ B 2 (r)2d r ) 1 [ j f1B >(r )d fl1 ( r ) + 7 { ^ l Ba (r)c<fl2 (r) +  l } ]  (91)

and an upward bias can be expected. Note that the weak exogeneity status of zt for 3 is 
not affected by the value of 7, although the outcome is since (8) ceases to be "correctly 
specified albeit by the omission of an 1(0) component. Column h* in Table If records 
the finite sample outcomes which do match (91) when 7 =  0.5. There is a substantial 
bias and distinct over-rejection of the correct null that 3* =  1.

Figure 4: AOLS biases in case (g) with ±2MCSE
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A Monte Carlo Study of Finite Sample Outcomes 22

Further, corrections like (15) fail since the conditional expectation is:

E [yt | zi] =  /3zi +  7 (A z, -  6 [Ayt_! -  /?Az,_i]) +  en, (92)

where E [ene2i] =  0. Thus, when 7 ^ 0 ,  the term -fS (At/i_i — /3Az(_ i) =  -ySAeu-i has 
been omitted from (15). This only induces a small amount of autocorrelation, as the 
entries for AOLS in (h) show: there is little mean or median bias but P  reveals a small 
test size. The dynamic estimator has six regressors ( l , z 4, Az<,Aj/t, A zt_ i, Ay<_i), and 
given (86), performs reasonably well despite the absence of weak exogeneity (but was too 
large to be estimated recursively).

The results above have all been at the largest sample size, namely T =  100 . We next 
consider the recursively computed findings, and summarize these in four graphs, of which 
the first two are only illustrative. Figure 4 shows a typical outcome for AOLS estimating 
the bias in case (g), and is included to emphasize the high degree of precision of the Monte 
Carlo. These figures were created using Pc-Give (Doornik and Hendry, 1992).

The central line shows the bias. This is large when T =  20, and falls towards zero 
at a rate which is less rapid than T  in the sample sizes used here. The bounding lines 
show the bias ±2MCSE and confirm the accuracy of the bias estimates at all sample sizes 
considered.

Figure 5 shows the relation between the ESE and the SSD (which was summarized 
in Table II by the ratio R) for AOLS in experiment (g). The relationship of ESE to 
SSD is similar at all the sample sizes considered and this finding was usually true across 
the experiments, suggesting that R in Table II is a fairly representative measure. The 
main summary graphs across sample sizes are Figures 6 and 7, which record the biases 
in experiments (a), (b), (d), (e) and (c), (f)-(h ) respectively for all estimator/model 
combinations computed.
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Figure 5: ESE and SSD for AOLS in case (g)

The substantial impact of the design variables on the biases is clear, as is the conver
gence of the biases to zero and the wide range of outcomes generated (biases which were 
large and positive have been plotted after a sign change to focus on absolute magnitudes). 
Since the estimated models are small, T  =  100 must be judged a ‘ large’ sample, so the 
outcomes at the smaller sample sizes (e.g. 40-60) may be more representative of empir
ical behaviour than those in Table II which were used to highlight the usefulness of the 
limiting distributions.

As both figures show, the biases are rather large at the smallest samples in many 
cases, particularly cases (b), (d) and (g). The unlabelled lines in Figure 6 are for OLS(a) 
and AOLS(b) where the biases axe negligible throughout (under 2%). In Figure 7, OLS(h) 
denotes the estimator of (20) and the line immediately adjacent to it is OLS(c); the 
remaining unlabelled lines are for OLS(f), A0LS(h*) and D0LS(h*). Apart from the 
sampling variability in DOLS at very small samples, the bias lines never cross, so the 
qualitative conclusions in Table II about relative biases are relevant at all the sample 
sizes studied. Given the accuracy in Figure 4, the main differences between biases are 
significant. The biases in Figure 7 for case (g) are the most extreme, exceeding 25% of 
0  for OLS at T =  20, yet this is when SI is diagonal. Further, the biases in case (h) are 
noticeable at small T, despite the asymptotic efficiency of OLS in that case, so there is a 
small loss in small samples due to the failure of weak exogeneity.
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Figure 6: Recursively computed biases in cases (a), (b), (d), (e)

Otherwise, for T >  50 and the parameter values chosen here, no biases exceed 10%. 
Since biases of that magnitude can occur in stationary dynamic models, there are no new 
estimation difficulties in 1(1) systems for the models under analysis when weak exogeneity 
of the conditioning variables holds for the parameters of interest. However, the parameter 
points selected as illustrative are far from extreme and provide a relatively favourable 
state for methods which violate weak exogeneity: in particular, 7 p =  —0.8 in (24) would 
be more realistic, and would generate far larger biases than those shown in Table II.

A less sanguine conclusion holds for inference when weak exogeneity fails. Although 
the non-centrality of the limiting distribution of the estimator only induces biases of 
Op (T _1) which vanish quite rapidly in practice as figs. 6 and 7 reveal, the biases are 
of the same order as the estimated standard errors and hence inference is liable to be 
highly distorted. This can be seen in figs. 8-10 which plot the rejections of the correct 
null hypothesis of /? =  1 using conventional t-tests at the 5% significance level, in cases 
(a), (b), (d), (e); (f), (h) and (h*) and case (g) respectively. There is no tendency for 
the sizes of the tests to converge on 0.05 when they are incorrect, and in case (g) the 
size distortion is both large and increases over the sample sizes considered. Thus, minor 
biases can distort inference even asymptotically when weak exogeneity fails to hold or the 
model is incorrectly specified in its 1(0) components.
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Figure 7: Recursively computed biases in cases (c ). (f)-(h*)

9 Testing Weak Exogeneity
The eight special cases discussed in section [6] also serve to highlight important differences 
between various tests for weak exogeneity and estimator consistency respectively. Urbain 
[1992] draws a similar distinction. Here, tests for orthogonality between regressors and 
errors may or may not test for weak exogeneity. In one case (namely when p =  0, A =  0 
and 7 ^  0 as in (b)), since the fitted model (8) is mis-specified, such tests could reject with 
probability close to unity although zt is in fact weakly exogenous for the parameters of 
the conditional model. Conversely, they may fail to reject beyond their size even though 
z( is not weakly exogenous for the parameters of the conditional model (namely when 
p ^  0, A =  0 and 7 =  0 as in (d)).

From (13), the optimal tests for the DGP in (8 ) - (l l )  are for H,, : p =  0 when A =  0 and 
7 =  0; and for HT : 7 =  0 when p =  0 but A ^  0. The former remains valid but inefficient 
when 7 jk 0.

10 Conclusion
The paper exposits the impact of weak and strong exogeneity failures on estimating 
conditional expectations, and linear approximations thereto, in co-integrated processes. 
Its main aim was to exposit the asymptotic analysis and illustrate the findings, using a
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simple bivariate data generation process. The Monte Carlo results show a bewildering 
array of possible outcomes but the limiting distributions explain the vast majority of 
the outcomes. In almost all cases, there is an excellent match between the small sample 
outcomes and the asymptotic theory based on functionals of Wiener processes.

The results show the impact of weak exogeneity failures in integrated data. The diag
onally  of the long-run covariance matrix is not sufficient to sustain inference in all cases, 
especially in small samples, although efficient inference may be possible asymptotically in 
some cases where weak exogeneity fails but the long-run covariance matrix remains diag
onal. Granger-causality does not seriously impede inference when weak exogeneity holds, 
so strong exogeneity is not necessary to sustain inference. However, the absence of weak 
exogeneity can have adverse effects on estimation in small samples, and on inference even 
asymptotically, in co-integrated processes even when the model under analysis coincides 
with the conditional expectation. Tests for weak exogeneity do not necessarily coincide 
with tests for orthogonality between regressors and errors: the latter may reveal other 
forms of mis-specification of the fitted model when it does not coincide with the condi
tional expectation, and may reveal no mis-specification when the fitted model coincides 
with the conditional expectation but weak exogeneity is violated. Weak exogeneity, as the 
basis for inference with no loss of relevant information, seems to be at least as relevant in 
1(1) as in stationary processes.

Figure 8: Recursively computed rejection frequencies in (a), (b), (d), (e)
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Figure 9: Recursively computed rejection frequencies in (c), (f), (h), (h*)
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Figure 10: Recursively computed rejection frequencies in (g)

11 Appendix
The DGP in (8)-(12) defines the (co-)integrated vector process:

Vt =  PXxi,-i +  ldw-2 , +  wu (93)

Zt pXzt-i T  \w\t-i +  u>21. (94)

Differencing to remove the unit root in tn2, in (10), the system can be expressed as 
A x ( =  vt where:

/  cn \  0 \  /  Vu-i \  /  tit +  Ptzt — (1 — Pp)tU-i \
\ v2t J \ 0 AP J \ U21-1 )  \ t2t +  (A +  p) ei(_j — Aei(_2 )

(  A/3 0 W  vu-i \ ( 1  P \ (  tu \ (95)
~ v o w A «2.-1 j + \o i j U j

, (  Pp ~ 1 0 \  /  en -i ^ i (  9 0 \  /  tit—2  \
V A +  p 0 /  V t2<- i  )  \ — ̂  9 /  \ t2t-2 J

or:
vt =  +  C0e, +  +  C 2Ci-2. (96)

Thus, vt is a stationary VARM A(1,2). Alternatively, in VAR form, we have:

A x ,  =  7T A x , _ !  +  (S  -  I )  X,_1 +  JJ, (97 )
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where:

( S - I ) = ( - Q - M  )  (1 : - /3 )

Then:
t

x, = Sx,-! + VÏ =  S E  Vk + *o (98)
k=0

For many derivations in the text we require the long-run covariance matrix of a sta
tionary process. In general, the long-run covariance matrix of a mean-zero weakly 
stationary stochastic process {y t }  is given by the limit as T —► oo of:

T T

e  r - ‘ E E y « y i

e r -^ y J + E f r - ' f ;  E y*yi
:=1 L t=l *=*+*

T T

+ e r - ‘ E  e  y»y;
t= l 5=t+l

* + E E [y*yî-.] + E E [y*-»yil
5=1 5=1

*  +  T ' +  t  =  n ÿ

(99)

where $  =  E [y,yj] is the unconditional covariance matrix.
When the process is (e.g.) a first-order autoregression: y , =  R y ,_ j +  e, where e, ~  

IN (0, £ ) ,  then (99) becomes:

n „  =  ( i  +  R  +  R 2 +  R 3 +  • • • +  R r_1) #  +  $ ( l  +  R  +  R 2 +  R 3 +  -- - +  R r_1) '  -  #
(100)

which tends to (I — R ) 1 $  +  $  (I — R ')  1 — $ ,  where $  =  H 4»H/ +  £ .  However, a more 
convenient form of f l s , directly related to the spectral density at the origin, results from 
using:

£  =  $  — R $ R ' =  (I -  R ) $  +  $  (I  -  R ')  -  (I -  R )  $  ( /  -  R ' ) , (101)

so that on pre-multiplying £  by (I — R ) -1 and post-multiplying by (I — R ') _1 and using 
( 100):

=  (I — R )_1 £  (I -  R ')  . (102)

Similar principles apply to deriving the matrix for more general weakly stationary 
processes, such as those in the text. For example, in a first-order moving average:

then:

y , =  e, +  De,_i, where E [e,ej] =  £ ,  (103)

E [y,yj] =  *  =  E [(e, +  De.-O (e't +  e ^ D ')] =  DSD' +  S  (104)
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and:

n„ =  *  +  D S  +  E D ' =  D S D '  +  E  +  D E  +  E D ' =  (I +  D ) E  ( I  +  D ') . (105)

The long-run covariance matrix of {i>t}  in (95) is singular because of cointegration, 
and analogously to (102) and (105) is given by:

O , =  (I — B i) -1  (C 0 +  Ch +  C 2) S  (C(, +  C( +  C 2) (I — B 'j)-1

- o - w * ( *  î ) ( ? 5 ) ( Ÿ î ) (106)

=  ( i  - £ A )  2{p2<jì +  2fn + 1 > ( ï î )
Thus, despite its initial complexity, simpbfies greatly to a singular matrix, yet one 

which is dependent on all the parameters (/3, A, p ,7 , <r1; <t2) in the DGP.
However, the unconditional error variance matrix =  E [vtv[\ of { ut}  in (95) is not 

simple, namely:

+  C o SC g  +  C iE C (  +  C 2SC(, +  C jS C ^ B ', +  B iC o E C 'j 

+ B ( C 0E C j  +  B jC jS C ';,  +  C 2E C (,B 2' +  C 2E C '1B',

=  ( i  -  /92a2)-1 ( C o s q ,  +  C j E c ;  +  c 2e c ;,) ( 107)

+0\  (1 -  /32A2)-1 (CjSCi +  C0EC', +  C2EC', +  CjECJ)
+/32A2 (1 -  f)2A2)~ ' (C2EC(, +  C0E C ') .

In several special cases, (107) simplifies greatly.
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