EUI Working Paper ECO No. 94/30

Learning to Drink Beer by Mistake

Debora Di Gioacchino

European University Institute, Florence
Learning to Drink Beer by Mistake

DEBORAH DI GIOACCHINO

Abstract: This paper considers the possibility of close analogue learning and mistakes in the context of equilibrium in signaling games. It is assumed that players are boundedly rational in that they can selectively reread their beliefs. Moreover, only mistakes make mistakes and believe an action is rational. By combining imitation it is shown that while players do not make mistakes, the equilibrium selected depends on the initial distribution of beliefs. When the probability of imitation is positive the learning dynamics settles to a Nash equilibrium, quickly enough.

BADIA FIESOLANA, SAN DOMENICO (FI)
Learning to Drink Beer by Mistake

Debora Di Gioacchino

Trinity College, Cambridge (UK)
and
European University Institute

Abstract: This paper considers the possibility of using adaptive learning and mistakes to select a unique equilibrium in signaling games. It is assumed that players are boundedly rational in that they use an adaptive rule to update their beliefs. Moreover, they sometimes make mistakes and choose an action at random. By computer simulation it is shown that, when players do not make mistakes, the equilibrium selected depends on the initial distribution of beliefs. When the probability of mistakes is positive the learning dynamics selects for Kohlberg-Mertens’ stability concept.
Introduction

This paper considers the possibility of using adaptive learning and mistakes to select a unique equilibrium in extensive form games with incomplete information. The simplest class of games with incomplete information is that of signaling games (see next section). They have been widely used in economics (e.g. Spence, 1974; Grossman, 1981; Kreps-Wilson, 1982b; Milgrom-Roberts, 1982 and 1986). Typically, signaling games have multiple (sequential) equilibria. The approach followed in the literature to reduce this multiplicity has been to impose restrictions on out-of-equilibrium beliefs. Cho-Kreps (1987) and Banks-Sobel (1987) analyze the power of strategic stability (Kohlberg-Mertens, 1986) to select among equilibria in signaling games.

Here a different approach is followed. It is assumed that players are boundedly rational in that they use an adaptive rule to update their beliefs. Moreover, they sometime make mistakes and choose an action at random.

By computer simulations it is shown that, when players do not make mistakes, the equilibrium selected depends on the initial distribution of beliefs. When the probability of mistakes is positive the learning dynamics selects for strategic stability. This is similar to Fudenberg-Kreps (1988). In their model players are boundedly rational and deviations are the result of conscious experimentation by the players. They claim that by imposing restrictions on players’ experimentation procedures refinements of sequential equilibrium can be justified.

The remaining of this paper is organized as follows: the next section introduces signaling games; section 2 considers an example; the model is presented in section 3 and in section 4 the results of the simulations are illustrated; section 5 concludes.

1 Signaling Games

Consider a signaling game between two players: the sender (S) and the receiver (R). Nature moves first, selecting one of a finite number of possible types for player S according to a strictly positive probability distribution \(p=\{p(t)>0 \text{ for all types } t \in T \text{ and } \Sigma_{t \in T} p(t)=1 \} \) which is common knowledge among the players. Player S is informed of nature’s choice and sends to player

\[\text{In Fudenberg-Kreps, draft 0.11-July 1988, this is still a claim since no proof is given.}\]

\[\text{For an introduction to signaling games see ch.8 of Fudenberg-Tirole (1991); for more advanced material see ch.11 of the same book.}\]
R an observable message \(m \) (the signal), chosen from the finite set \(M \). The receiver then takes an action \(a \), from the finite set \(A \), in response to \(m \) without knowing the sender’s type but knowing \(p \). After the game is over S gets a payoff \(u_s(t,m,a) \) and R gets \(u_r(t,m,a) \). A strategy for S is a signaling rule \(m(t) \) which maps \(T \) into \(M \) (or into a probability distribution over \(M \) if mixed strategies are allowed). A strategy for R is an action rule \(a(m) \) which maps \(M \) into \(A \) (or into a probability distribution over \(A \) if mixed strategies are allowed) 3.

In a signaling game an equilibrium must specify not only the best strategy for each player but also players’ beliefs at each information set, including information sets off-the-equilibrium path (i.e. information sets that have zero probability in equilibrium).

A sequential equilibrium 4 consists of a signaling rule \(m^*(t) \) for S, an action rule \(a^*(m) \) for R and beliefs \(\mu(\cdot | m) \) such that:

(i) \(m^*(t) \) belongs \(\text{argmax}_{m \in M} u_s(t,m,a^*(m)) \);
(ii) \(a^*(m) \) belongs \(\text{argmax}_{a \in A} \sum_{t \in T} u_r(t,m,a) \mu(t|m) \);
(iii) \(\mu(t|m) \) is computed from \(p(t) \), \(m \) and \(m^*(t) \) using Bayes’ rule, whenever applicable 5.

In words, (i) states that \(m^*(t) \) maximizes S’s expected utility given R’s equilibrium strategy; (ii) states that \(a^*(m) \) maximizes R’s expected utility given his posterior beliefs \(\mu(\cdot) \); (iii) states that, after messages whose prior probability is positive, R’s beliefs are updated using Bayes’ rule. After unexpected messages arbitrary posterior beliefs are allowed.

3We can write
\[m(t) = \{m : p_s(m/t) > 0 \text{ and } \sum_{m \in M} p_s(m/t) = 1 \ \forall t\} \]
and
\[a(m) = \{a : p_r(a/m) > 0 \text{ and } \sum_{a \in A} p_r(a/m) \forall m\} \]
where \(p_s(m/t) \) is the probability that S sends \(m \) given that his type is \(t \) and \(p_r(a/m) \) is the probability that R chooses \(a \) after having received \(m \).

4For signaling games the sets of sequential equilibria and Perfect Bayesian Equilibria coincide (Fudenberg-Tirole, 1991 p.346).

5That is:
\[\mu(t|m) = \frac{p(t)p_s(m/t)}{\sum_{t' \in T} p(t')p_s(m/t')} \]
whenever \(\sum_{t' \in T} p(t')p_s(m/t') > 0 \)
In a signaling game there may be multiple sequential equilibria. It is often the case that some are justified by more plausible beliefs than others. Accordingly, the refinement approach has tried to reduce the set of sequential equilibria by excluding unplausible beliefs.

Cho-Kreps’s (1987) refinement of sequential equilibrium (which they call the Intuitive Criterion) is based on equilibrium dominance and says that the receiver believes that an out-of-equilibrium message can only be sent by a type who can reasonably hope to gain from the deviation. Formally, let \(J(m) \) be the set of types who get less than their equilibrium payoff by choosing an out-of-equilibrium message \(m \), provided \(R \) plays an undominated strategy: \(J(m) = \{ t \mid s.t. u_s^*(t) > u_s(t, m, a^*(m)) \} \). The equilibrium under consideration satisfies the Intuitive Criterion if, for any out-of-equilibrium message \(m \), there is no type \(t' \) such that:

\[
u^*(t') < \min_{a \in BR(T|J(m), m)} u_s(t', m, a^*(m))\]

where \(BR(T|J(m), m) = \arg\max_{t \in |T|J(m)} \sum_{s \in T} u_R(t, s, a) \mu(t|m)\)

Note the central role given by this criterion to the equilibrium under consideration, that is utility is confronted with the utility obtained in the given equilibrium.

A stronger criterion is divinity (Bank-Sobel, 1987) according to which it is less likely that one type of sender has deviated in a particular fashion than another type, if any response by the receiver that makes the first type willing to deviate makes also the second type willing to deviate.

The above mentioned criteria are both implied by Kohlberg-Mertens’ stability concept. A subset \(M \) of the Nash equilibria of a given game \(G \) is said to be stable if for any \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that every game \(G', \) that is within \(\delta \) of \(G \), has some Nash equilibrium that is less than \(\varepsilon \) distant from \(G \).

6 Some differ only for the inference they allow the receiver to make when observing out-of-equilibrium signals; others also for the final outcome.

7 For a formal treatment of divinity and the related criterion of universal divinity see the original paper by Bank-Sobel or Fudenberg-Tirole (1991).

8 More precisely, for any completely mixed strategy vector \(\rho_s, \rho_R \) and for any \(\delta_s, \delta_R \) \((0 < \delta_i < \infty \) \(i = S, R \)) every strategy \(s_i \) in \(G \) is replaced by \((1-\delta)s_i + \delta_i \rho_i \) in \(G' \).
(according to a predefined metric) from the set M. This means that, for any small perturbation of the strategy set that induces the players to play completely mixed strategies, there is an equilibrium "near" the set M. Strategic stability is a set-valued concept; that is, a solution is a set of connected components 9.

For our purpose the following two results of Kohlberg-Mertens are relevant:

P1: There exists a stable set which is contained in a single connected component of the set of Nash equilibria and every generic tree has a stable payoff (i.e. a payoff obtained in every equilibrium of a stable set).

P2: A stable set contains a stable set of any game obtained by deletion of a strategy which is an inferior response in all the equilibria of the set.

The first proposition states that a stable set exists and that stability is a refinement of Nash equilibrium. Moreover, since the stable set is contained in the set of divine equilibria which in turn is contained in the set of equilibria satisfying the Intuitive Criterion 10, P1 ensures existence of them all. The second proposition captures the forward induction argument according to which past actions should be interpreted as signals of future intentions (even though those actions may not influence payoffs in the continuation game).

Accordingly, strategies that are never a (weak) best response to any of the opponent's strategy profiles in the component under consideration can be eliminated.

2 The 'Beer-Quiche' Game

A famous signaling game, known in the literature as the 'Beer-Quiche' game (Cho-Kreps, 1987), is the following: player S is one of two types: weak (W) with probability p(W) or tough (T) with probability p(T). He sends a signal to player R by choosing beer (B) or quiche (Q) for breakfast. The weak type of player S prefers quiche; the tough, beer. After having received the signal, player R decides whether to fight or not; he prefers to fight (F) if S is weak but he would rather not (D) if S is tough. Whether weak or tough, S prefers not to fight and he would rather have his least preferred breakfast than fight. The extensive form representation of the Beer-Quiche game is shown below:

9Intuitively, a connected set is such that any two points in the set can be joined by a path itself belonging to the set.

The game has two sequential equilibria in pure strategies 11. In the first, the 'beer equilibrium', the sender has beer for breakfast regardless of his type and the receiver replies F to Q and D to B. In the second, the 'quiche equilibrium', both types of S have quiche for breakfast and R replies F to B and D to Q. The first equilibrium is rationalized by out-of-equilibrium beliefs $p(W/Q) > \frac{1}{2}$. The second by $p(W/B) > \frac{1}{2}$ 12.

It is straightforward to see that the 'quiche equilibrium' is not stable, it fails divinity and the Intuitive Criterion. To see why it is not stable, note that, in the 'quiche equilibrium', drinking beer is never a weak best response for the weak type and therefore can be eliminated. Deleting the possibility for the weak type to drink beer causes D to be dominated by F. Thus by P2 the 'quiche equilibrium' is not stable. Moreover, it is not divine. In fact, since in this equilibrium the tough type is more willing to defect than the weak type, the relative probability of tough should increase if the receiver observes beer. However, to support the 'quiche equilibrium' the receiver must believe that it is more likely that the weak type of sender has beer than the tough one. The 'quiche equilibrium' also fails the Intuitive Criterion. In fact, in this equilibrium, the weak type is getting its highest possible payoff and has no incentive to switch to drinking beer, regardless of how R would respond to

11Here we are referring to a set-value solution. That is, each "equilibrium" is a set of equilibria differing for the out-of-equilibrium beliefs allowed.

12See Kreps (1990) for a discussion.
beer: that is \(W \in J(B) \). On the other hand, if the tough type could convince \(R \) of his type and thus induce him not to fight, he would obtain a higher payoff by switching to beer: \(u_5(T) < u_5(T,B,D) \).

In the next section we present a model in which players update their beliefs following an adaptive rule; they choose a strategy (the sender a message and the receiver an action) that maximizes expected utility, given their beliefs, but sometimes make mistakes. By computer simulations it is shown that, in the perturbed system, the unique long run outcome is the 'beer equilibrium'.

3 The Model

Consider two populations of players: a population of senders and a population of receivers. Let \(N \) be the number of individuals in each population, \(v(W) \) be the number of weak individuals in the population of senders and \(w = v(W)/N \) (\(w < 1/2 \)).

Imagine that the basic game is repeated \(T \) times (\(T \) large) and in every period \(\tau \) each sender is randomly matched with a receiver who does not know the sender’s type but knows the proportion of weak individuals in the population of senders.

We make the following assumptions on players’ behaviour:

\(A1: \) All individuals in a population share the same beliefs. \(^{14} \) Let \(p_1(\tau) \) be the receiver’s belief at time \(\tau \) that the sender is weak given that he has chosen beer; \(p_2(\tau) \) be the receiver’s belief at time \(\tau \) that the sender is weak given that he has chosen quiche; \(p_3(\tau) \) be the sender’s belief at time \(\tau \) that the receiver responds fight to beer; \(p_4(\tau) \) be the sender’s belief at time \(\tau \) that the receiver responds fight to quiche.

\(A2: \) At any time \(\tau \), given \(p_3(\tau) \) and \(p_4(\tau) \) and knowing his own type, each sender chooses beer or quiche so as to maximize his current expected utility.

\(A3: \) At any time \(\tau \), given \(p_1(\tau) \) and \(p_2(\tau) \) and having received a message \(m \in \{B,Q\} \) from his matched opponent, each receiver chooses \(F \) or \(D \) so as to maximize his current expected utility, given beliefs about the opponent’s type.

\(A4: \) With a given probability \(p \) each player makes a mistake and chooses randomly between the actions at his disposal and according to a probability

\[^{13}\text{Recall that } J(B) \text{ is the set of types who get less than their equilibrium payoff by choosing the out-of-equilibrium breakfast } B.\]

\[^{14}\text{This captures the idea that all individuals in a population share the same information, either because each individual observes the outcome of every game played, or because society keeps records of what happens. More troublesome is the implicit assumption that all individuals in a population share the same prior.}\]
distribution that puts equal weight on each alternative \(^{15}\).

A5: At the end of each period populations’ beliefs are updated according to the following rule:

\[
p_i(\tau + 1) = (1 - \lambda(m)) p_i(\tau) + \lambda(m) \frac{v(m, h(i))}{v(m)} i = 1, 2, 3, 4.
\]

where \(m \in \{B, Q\}\); \(v(m)\) is the number of times that the message \(m\) has been observed; \(\lambda(m) = \lambda v(m) / N, 0 \leq \lambda \leq 1\); \(v(m, h(i))\) is the number of times that \(\{m \text{ and } h(i)\}\) has been observed, \(h(i) = W\) for \(i = 1, 2\) and \(h(i) = F\) for \(i = 3, 4\). According to this rule beliefs are updated using new information: current beliefs are a weighted average of previous period’s beliefs and observed frequencies, with weights \(1 - \lambda(m)\) and \(\lambda(m)\) respectively. If \(\lambda = 0\) then beliefs are static, that is to say, they do not change with new information; if \(\lambda = 1\) then beliefs are solely determined by the behaviour observed in the previous period (no memory of the past).

4 Simulations’ Results

We consider the model with \(w = 0.2\), \(T = 2,000\) and \(\lambda = 0.1\) \(^{16}\). In the model without mistakes both sequential equilibria have a basin of attraction and the long run outcome depends on initial beliefs. The dynamics of players’ beliefs is shown in figures 1 to 3 for different initial conditions. In figure 1 initial beliefs are \((.9, .1, .9, .1)\). After few repetitions the system sets at beliefs \((.9, .2, .9, 0)\) which are consistent with the 'quiche equilibrium' \(^{17}\). In fact, as can be seen in table 1, for the given initial beliefs the only actions ever observed are "quiche" for breakfast and "do not fight" as reply. Thus, since no observation intervenes to modify \(p_1\) and \(p_2\) they remain at their initial value. With initial beliefs \((.1, .9, .1, .9)\) and \((.5, .5, .5, .5)\) the system quickly

\(^{15}\)The idea that players sometimes make mistakes is clearly at odds with the interpretation that deviations from the equilibrium are due to conscious signaling or experimentation, as in Fudenberg-Kreps (1988). If an "unexpected" message is interpreted as a mistake then it contains no information about the sender’s type.

\(^{16}\)In the simulations we have tried \(N = 10\) (thus \(v(W) = 2\)) and \(N = 100\) (thus \(v(W) = 20\)) obtaining the same results.

\(^{17}\)The 'quiche equilibrium' is characterized by \(p_2 = w\), \(p_4 = 0\) and arbitrary \(p_1\) and \(p_2\) can take any value. Analogously, the 'beer equilibrium' is characterized by \(p_1 = w\), \(p_3 = 0\) and arbitrary \(p_2\) and \(p_4\).
converges to the 'beer equilibrium' (see table 1). The patterns of beliefs for these initial conditions are shown in figures 2 and 3, respectively. The comparison between figures 2 and 3 and table 1 confirms that out-of-equilibrium beliefs can be arbitrary (in figure 2 \(p_2 = p_4 = .9 \) while in figure 3 \(p_2 = p_4 = .5 \)).

The introduction of mistakes by players greatly changes the dynamics of beliefs. With mistakes, every action has positive probability of being taken (and observed); therefore, \(p_i > 0 \) \(\forall i \). As it is shown in figures 4, 5 and 6, the introduction of mistakes leads the system "close" to the 'beer equilibrium' for any initial distribution of beliefs (figures 4, 5 and 6 are obtained for the same initial conditions as figures 1, 2 and 3, respectively, but for a probability of mistake \(p = .1 \)). Table 1 shows that, even if players' beliefs cycle, their actions are, most of the time, close to the 'beer equilibrium'. A comparison of figures 6, 7 and 8 suggests that the length of the cycle in players' beliefs depends on the probability of mistake: the smaller is \(p \) the longer is the cycle. This is because with smaller \(p \) it takes longer for a given change in beliefs to occur (in the limit when \(p = 0 \) no change in beliefs occurs). Note that, while changing, players' beliefs remain such that no player has an incentive to deviate from the equilibrium, which is thus observed most of the time.

Changing \(\lambda \) does not affect the long run results but it affects the length of time in which the system is influenced by the initial conditions (with \(\lambda = .001 \) and \(p = .1 \) it takes about 30,000 repetitions before the 'beer equilibrium' is played) and the length of the cycle in players' beliefs.

Changing the proportion of weak individuals in the population does not change significantly the results as far as this number is not greater than \(N/2 \).

5 Conclusions

In this paper we have shown, with an example, that in signaling games adaptive learning can lead players to play according to a (sequential) equilibrium; moreover, by adding mistakes the learning dynamics provides an equilibrium selection device. Along the lines of Young (1993) we interpret this
last result as an indication that the 'beer equilibrium' is the easier to get into "by mistake"; in fact, the tough sender is easily convinced to drink beer if he observes the (out-of-equilibrium) response F to quiche. Note that since the game is not weakly acyclic according to Young’s (1993) definition, his results are not directly applicable here.

As compared to Fudenberg-Kreps (1988), which seem to need sophisticated experimentation, our example suggests that naive experimentation (mistakes) may be enough to rule out un plausible (sequential) equilibria in signaling games.

\(^{20}\) In fact, the Nash equilibria of the strategic form are not strict.
References

Table 1*: w=0.2, T=20,000, $\lambda=0.1$.

<table>
<thead>
<tr>
<th>Initial beliefs</th>
<th>p</th>
<th>WB</th>
<th>WQ</th>
<th>TB</th>
<th>TQ</th>
<th>BF</th>
<th>BD</th>
<th>QF</th>
<th>QD</th>
</tr>
</thead>
<tbody>
<tr>
<td>.9 .1 .9 .1</td>
<td>0</td>
<td>0</td>
<td>.2</td>
<td>0</td>
<td>.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>.1 .9 .1 .9</td>
<td>0</td>
<td>.2</td>
<td>0</td>
<td>.8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.5 .5 .5 .5</td>
<td>0</td>
<td>.2</td>
<td>0</td>
<td>.8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.9 .1 .9 .1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.7</td>
<td>.1</td>
<td>0</td>
<td>.8</td>
<td>0</td>
<td>.1</td>
</tr>
<tr>
<td>.1 .9 .1 .9</td>
<td>.1</td>
<td>.2</td>
<td>0</td>
<td>.8</td>
<td>0</td>
<td>0</td>
<td>.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.5 .5 .5 .5</td>
<td>.1</td>
<td>.2</td>
<td>0</td>
<td>.8</td>
<td>0</td>
<td>0</td>
<td>.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.5 .5 .5 .5</td>
<td>.05</td>
<td>.2</td>
<td>0</td>
<td>.8</td>
<td>0</td>
<td>0</td>
<td>.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.5 .5 .5 .5</td>
<td>.025</td>
<td>.2</td>
<td>0</td>
<td>.8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Values are approximated to the first decimal place.
Fig. 1 initial point (.9, .1, .9, .1) p=0

Fig. 2 initial point (.1, .9, .1, .9) p=0
Fig. 3 initial point (.5, .5, .5, .5) $p=0$

Fig. 4 initial point (.9, .1, .9, .1) $p=.1$
Fig. 5 initial point
(.1, .9, .1, .9) p=.1

Fig. 6 initial point:
(.5, .5, .5, .5) p=.1
Fig. 7 initial point (.5, .5, .5, .5) \(p = .05 \)

Fig. 8 initial point (.5, .5, .5, .5) \(p = .025 \)
EUI Working Papers are published and distributed by the European University Institute, Florence

Copies can be obtained free of charge – depending on the availability of stocks – from:

The Publications Officer
European University Institute
Badia Fiesolana
I-50016 San Domenico di Fiesole (FI)
Italy

Please use order form overleaf
Publications of the European University Institute
Department of Economics Working Paper Series

To
Department of Economics WP
European University Institute
Badia Fiesolana
I-50016 San Domenico di Fiesole (FI)
Italy

From
Name ...
Address ..

(Please print)

☐ Please enter/confirm my name on EUI Economics Dept. Mailing List
☐ Please send me a complete list of EUI Working Papers
☐ Please send me a complete list of EUI book publications
☐ Please send me the EUI brochure Academic Year 1995/96

Please send me the following EUI ECO Working Paper(s):

No, Author ..
Title: ..
No, Author ..
Title: ..
No, Author ..
Title: ..

Date Signature ...
Working Papers of the Department of Economics
Published since 1993

ECO No. 93/1
Carlo GRILLENZONI
Forecasting Unstable and Non-Stationary Time Series

ECO No. 93/2
Carlo GRILLENZONI
Multilinear Models for Nonlinear Time Series

ECO No. 93/3
Ronald M. HARSTAD/Louis PHILIPS
Futures Market Contracting When You Don’t Know Who the Optimists Are

ECO No. 93/4
Alan KIRMAN/Louis PHILIPS
Empirical Studies of Product Markets

ECO No. 93/5
Grayham E. MIZON
Empirical Analysis of Time Series: Illustrations with Simulated Data

ECO No. 93/6
Tilman EHRBECK
Optimally Combining Individual Forecasts From Panel Data

ECO No. 93/7
Víctor GÓMEZ/Agustín MARAVALL
Initializing the Kalman Filter with Incompletely Specified Initial Conditions

ECO No. 93/8
Frederic PALOMINO
Informed Speculation: Small Markets Against Large Markets

ECO No. 93/9
Stephen MARTIN
Beyond Prices Versus Quantities

ECO No. 93/10
José María LABEAGA/Angel LÓPEZ
A Flexible Demand System and VAT Simulations from Spanish Microdata

ECO No. 93/11
Maozu LU/Grayham E. MIZON
The Encompassing Principle and Specification Tests

ECO No. 93/12
Louis PHILIPS/Peter MØLLGAARD
Oil Stocks as a Squeeze Preventing Mechanism: Is Self-Regulation Possible?

ECO No. 93/13
Pieter HASEKAMP
Disinflation Policy and Credibility: The Role of Conventions

ECO No. 93/14
Louis PHILIPS
Price Leadership and Conscious Parallelism: A Survey

ECO No. 93/15
Agustín MARAVALL
Short-Term Analysis of Macroeconomic Time Series

ECO No. 93/16
Philip Hans FRANSES/Niels HALDRUP
The Effects of Additive Outliers on Tests for Unit Roots and Cointegration

ECO No. 93/17
Fabio CANOVA/Jane MARRINAN
Predicting Excess Returns in Financial Markets

ECO No. 93/18
Inigo HERGUERA
Exchange Rate Fluctuations, Market Structure and the Pass-through Relationship

ECO No. 93/19
Agustín MARAVALL
Use and Misuse of Unobserved Components in Economic Forecasting

ECO No. 93/20
Torben HOLVAD/Jens Leth HOUGAARD
Measuring Technical Input Efficiency for Similar Production Units: A Survey of the Non-Parametric Approach
ECO No. 93/21
Stephen MARTIN/Louis PHLIPS
Product Differentiation, Market Structure and Exchange Rate Passthrough

ECO No. 93/22
F. CANOVA/M. FINN/A. R. PAGAN
Evaluating a Real Business Cycle Model

ECO No. 93/23
Fabio CANOVA
Statistical Inference in Calibrated Models

ECO No. 93/24
Gilles TEYSSIÈRE
Matching Processes in the Labour Market in Marseilles. An Econometric Study

ECO No. 93/25
Fabio CANOVA
Sources and Propagation of International Business Cycles: Common Shocks or Transmission?

ECO No. 93/26
Marco BECHT/Carlos RAMÍREZ
Financial Capitalism in Pre-World War I Germany: The Role of the Universal Banks in the Financing of German Mining Companies 1906-1912

ECO No. 93/27
Isabelle MARET
Two Parametric Models of Demand, Structure of Market Demand from Heterogeneity

ECO No. 93/28
Stephen MARTIN
Vertical Product Differentiation, Intra-industry Trade, and Infant Industry Protection

ECO No. 93/29
J. Humberto LOPEZ
Testing for Unit Roots with the k-th Autocorrelation Coefficient

ECO No. 93/30
Paola VALBONESI
Modelling Interactions Between State and Private Sector in a “Previously” Centrally Planned Economy

ECO No. 93/31
Enrique ALBEROLA ILA/J. Humberto LOPEZ/Vicente ORTS RIOS
An Application of the Kalman Filter to the Spanish Experience in a Target Zone (1989-92)

ECO No. 93/32
Fabio CANOVA/Morten O. RAVN
International Consumption Risk Sharing

ECO No. 93/33
Morten Overgaard RAVN
International Business Cycles: How much can Standard Theory Account for?

ECO No. 93/34
Agustín MARAVALL
Unobserved Components in Economic Time Series

ECO No. 93/35
Sheila MARNIE/John MICKLEWRIGHT
“Poverty in Pre-Reform Uzbekistan: What do Official Data Really Reveal?”

ECO No. 93/36
Torben HOLVAD/Jens Leth HOUGAARD
Measuring Technical Input Efficiency for Similar Production Units: 80 Danish Hospitals

ECO No. 93/37
Grayham E. MIZON
A Simple Message for Autocorrelation Correctors: DON’T

ECO No. 93/38
Barbara BOEHLEIN
The Impact of Product Differentiation on Collusive Equilibria and Multimarket Contact

ECO No. 93/39
H. Peter MØLLGAARD
Bargaining and Efficiency in a Speculative Forward Market

<table>
<thead>
<tr>
<th>ECO No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>94/1</td>
<td>Cooperatives With Privately Optimal Price Indexed Debt Increase Membership When Demand Increases</td>
<td>Robert WALDMANN</td>
</tr>
<tr>
<td>94/2</td>
<td>Can Forecasters’ Motives Explain Rejection of the Rational Expectations Hypothesis?</td>
<td>Tilman EHRBECK/Robert WALDMANN</td>
</tr>
<tr>
<td>94/3</td>
<td>Public Policy in a Two Sector Model of Endogenous Growth</td>
<td>Alessandra PELLONI</td>
</tr>
<tr>
<td>94/4</td>
<td>On the Interactions of Unit Roots and Exogeneity</td>
<td>David F. HENDRY</td>
</tr>
<tr>
<td>94/5</td>
<td>Encompassing in Stationary Linear Dynamic Models</td>
<td>Bernadette GOVAERTS/David F. HENDRY/Jean-François RICHARD</td>
</tr>
<tr>
<td>94/6</td>
<td>Testing the Joint Hypothesis of Rationality and Neutrality under Seasonal Cointegration: The Case of Korea</td>
<td>Luigi ERMINI/Dongkoo CHANG</td>
</tr>
<tr>
<td>94/7</td>
<td>Unobserved Components in ARCH Models: An Application to Seasonal Adjustment</td>
<td>Gabriele FIORENTINI/Agustín MARAVALL</td>
</tr>
<tr>
<td>94/8</td>
<td>Polynomially Cointegrated Systems and their Representations: A Synthesis</td>
<td>Niels HALDRUP/Mark SALMON</td>
</tr>
<tr>
<td>94/9</td>
<td>Currency Option Pricing with Stochastic Interest Rates and Transaction Costs: A Theoretical Model</td>
<td>Mariusz TAMBORSKI</td>
</tr>
<tr>
<td>94/10</td>
<td>Are Standard Deviations Implied in Currency Option Prices Good Predictors of Future Exchange Rate Volatility?</td>
<td>Mariusz TAMBORSKI</td>
</tr>
<tr>
<td>94/11</td>
<td>How Does the Hungarian Unemployment Insurance System Really Work?</td>
<td>John MICKLEWRIGHT/Gyula NAGY</td>
</tr>
<tr>
<td>94/12</td>
<td>An Elementary Account of Amari’s Expected Geometry</td>
<td>Frank CRITCHLEY/Paul MARIOTTI/Mark SALMON</td>
</tr>
<tr>
<td>94/13</td>
<td>Procyclical Productivity, Externalities and Labor Hoarding: A Reexamination of Evidence from U.S. Manufacturing</td>
<td>Domenico Junior MARCHETTI</td>
</tr>
<tr>
<td>94/14</td>
<td>A Structural Model of Intra-European Airline Competition</td>
<td>Giovanni NERO</td>
</tr>
<tr>
<td>94/15</td>
<td>Oligopoly Limit Pricing: Strategic Substitutes, Strategic Complements</td>
<td>Stephen MARTIN</td>
</tr>
<tr>
<td>94/16</td>
<td>Learning and Evolution in a Heterogeneous Population</td>
<td>Ed HOPKINS</td>
</tr>
<tr>
<td>94/17</td>
<td>Seigniorage, Optimal Taxation, and Time Consistency: A Review</td>
<td>Berthold HERRENDORF</td>
</tr>
<tr>
<td>94/18</td>
<td>Noise Trading in Small Markets</td>
<td>Frederic PALOMINO</td>
</tr>
<tr>
<td>94/19</td>
<td>Vertical Foreclosure, Tax Spinning and Oil Taxation in Oligopoly</td>
<td>Alexander SCHRADER</td>
</tr>
<tr>
<td>94/20</td>
<td>La Pléiade and Exchange Rate Pass-Through</td>
<td>Andrzej BANIACK/Louis PHILIPS</td>
</tr>
<tr>
<td>94/21</td>
<td>Bounded Rationality and Learning; Procedural Learning</td>
<td>Mark SALMON</td>
</tr>
</tbody>
</table>
ECO No. 94/22
Isabelle MARET
Heterogeneity and Dynamics of Temporary Equilibria: Short-Run Versus Long-Run Stability

ECO No. 94/23
Nikolaos GEORGANTZIS
Short-Run and Long-Run Cournot Equilibria in Multiproduct Industries

ECO No. 94/24
Alexander SCHRADER
Vertical Mergers and Market Foreclosure: Comment

ECO No. 94/25
Jeroen HINLOOPEN
Subsidising Cooperative and Non-Cooperative R&D in Duopoly with Spillovers

ECO No. 94/26
Debora DI GIOACCHINO
The Evolution of Cooperation: Robustness to Mistakes and Mutation

ECO No. 94/27
Kristina KOSTIAL
The Role of the Signal-Noise Ratio in Cointegrated Systems

ECO No. 94/28
Agustín MARAVALL/Víctor GÓMEZ
Program SEATS “Signal Extraction in ARIMA Time Series” - Instructions for the User

ECO No. 94/29
Luigi ERMINI
A Discrete-Time Consumption-CAP Model under Durability of Goods, Habit Formation and Temporal Aggregation

ECO No. 94/30
Debora DI GIOACCHINO
Learning to Drink Beer by Mistake