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Abstract

The use of Ordinary Least Squares and its generalizations is widespread 
among economists, although it should be common knowledge that a single 
outlying observation can cause this technique to produce arbitrary estimates 
and hence incorrect t-values. In this paper a robust alternative, an example of 
a General M estimator, is discussed. Not only has this estimator a breakdown 
point of 50%, it also yields consistent estimates and, as we show by means of 
a simulation experiment, is more efficient than Rousseeuw’s Least Median of 
Squares estimator. We also propose a specific correction factor which 
improves both the resampling algorithm and the projection algorithm for 
computing the Minimum Volume Ellipsoid estimator.

We are much indebted to Teun Kloek (Erasmus University Rotterdam) for guiding us 
into the field of robust estimation. André Lucas (Erasmus University Rotterdam) provided 
valuable comments. Robert Waldmann (European University Institute) increased our 
understanding. The usual disclaimer applies.
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1. INTRODUCTION

The aim of a regression method is to reveal statistical patterns presumably 
contained in some data set. For this purpose, the use of Ordinary Least Squares 
(OLS) and its generalizations is widespread among economists, because of 
computational ease and because of the appealing statistical properties of OLS 
when data are (unrealistically) ’smooth’1. However, it should be common 
knowledge that adding a single outlying observation can cause this estimation 
technique to produce dramatically different estimates. And these outlying 
observations can be present in any data set due to a number of reasons: they 
may emerge from typos or measurement errors, the error term may come from 
a fat and/or long tailed distribution, or the fitted model may be only appropriate 
for a sub set of the data.

Ever since the discovery of the least squares criterium (which was around 
1800), researchers were aware of its shortcomings if data are erratic. In 1805 
Legendre noted that "If among these errors are some which appear too large to 
be admissible, then those observations which produced these errors will be 
rejected, as coming from too faulty experiments, and the unknowns will be 
determined by means of the other observations, which will then give much 
smaller errors"2. Legendre points here at the two core issues of robust 
estimation: which observation needs to be adjusted and in what way. An early 
attempt to generate robust estimates was made in 1887 by Edgeworth who 
introduced the least absolute values estimator. This estimator is defined as 
minimizing the sum of absolute errors (instead of minimizing the sum of 
squared errors) over the unknown parameters. Although this estimator is less 
sensitive than OLS to certain types of outliers (see Judge (1988, p.899)), it can 
still be tricked by one outlying observation.

By now, a considerable literature has developed on estimation techniques 
which are little affected by outlying observations. These so called robust 
estimators produce more or less the same estimates as classical estimators when 
smooth data are involved but keep producing adequate estimates when data are 
contaminated.

1 Smooth data do not contain leverage points and/or vertical outliers (see Section 2).

2 Cited by Rousseeuw and Leroy (1987).
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In principle there are two ways of constructing a robust estimate, and 
although the aim of both approaches is the same (revealing the statistical pattern 
of the majority of the data), the way of achieving it is quite opposite. The first 
approach is to develop an estimator which is not so easily affected by obscure 
observations. According to this robust estimate outliers are detected. The second 
approach is to construct regression diagnostics to reveal outlying observations. 
The data are then adjusted accordingly and a classical regression is performed 
on the altered data set. Unfortunately it is very difficult to identify outlying 
observations when there are many of them, or when the dimension of the 
problem exceeds three (in which case we can no longer rely on visual 
perception). In this paper we focus on the first approach.

Rousseeuw’s (1984) Least Median of Squares (LMS) estimator is an 
example of the first category. Instead of minimizing the sum of squares over the 
unknown parameters, it is the median of squares that is minimized3. This 
estimator has the appealing property that its breakdown point (the maximum 
fraction of data contamination which leaves the estimator undisturbed4) is 50%. 
By definition this is the highest percentage achievable5, since beyond this limit 
the distinction between ’good’ and ’bad’ data becomes arbitrary. The breakdown 
point of OLS is 0%, i.e. one outlying observation can cause this technique to 
produce completely arbitrary estimates.

In this paper another example of a robust estimation technique, a General 
M estimator, is presented. In effect we work out a specific example of the 
general (and complex) case presented by Simpson, Ruppert and Carroll (1992). 
This might be considered superfluous, but it is not at all a straightforward 
exercise to translate their article (and associated ones) into workable (GAUSS) 
computer programs. In doing so we try to bridge the gap between (advanced) 
statistics and applied economics, and provide a relatively simple outline for 
performing robust regression analyses.

3 In Appendix 4 this estimator is described in more detail.

4 In Appendix 2 we give a formal definition of this concept.

5 Strictly speaking this is only true for affine equivariant estimators.
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The idea of the GM estimator is to start with a high breakdown point 
(HBP) estimator, followed by some Newton-Raphson (NR) iterations to solve 
the first order condition associated with minimizing the (weighted) sum of 
squares. A natural HBP estimator is Rousseeuw’s LMS technique. Simpson, 
Ruppert and Carroll (1992) show that under mild conditions6 the breakdown 
point of the preliminary estimator(s) carries over to the final GM estimator. 
They also demonstrate that the GM estimator yields consistent estimates7. In 
addition, we show in this paper, by means of a simulation experiment, that the 
GM estimator we use is more efficient than it’s preliminary (LMS) estimator 
when different kinds of data contamination are involved.

The GM estimator we employ, involves computation of Minimum Volume 
Ellipsoid (MVE) location and scale estimates (see Rousseeuw and Leroy 
(1987))8. Since there is no analytical expression for this estimator we must rely 
on numerical approximations. In the literature two algorithms are developed for 
this purpose (see Rousseeuw and Van Zomeren (1990)): the resampling and the 
projection algorithm. We derive a correction factor which improves both 
algorithms for computing the Minimum Volume Ellipsoid estimator.

The set up of this paper is as follows. In Section 2 we give a heuristic 
explanation of the GM estimator, followed by Section 3, in which we indicate 
which models and what kind of data are suitable to apply this estimator on. The 
subsequent section illustrates the specific problems associated with OLS. 
Simulation results regarding the efficiency of the GM estimator are presented 
in Section 5. Section 6 presents a real data example while conclusions are stated 
in Section 7. Five appendices conclude this paper. The first contains an 
analytical derivation of the GM estimator, while some of its statistical properties 
(breakdown point and consistency) together with its covariance matrix are 
discussed in Appendix 2. Appendix 3 contains the description of a robust 
estimator for the variance of a regression which is followed by an analytical 
description of Rousseeuw’s LMS estimator in Appendix 4. Finally, in Appendix 
5 we give a formal definition of the MVE estimator, and also derive and test the 
above mentioned correction factor.

6 In Appendix 2 these conditions will be discussed in more detail.

7 See Appendix 2.

8 In Appendix 5 this estimator is explained in detail.
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2. A SIMPLE OUTLINE OF A GM ESTIMATOR

Robust regression methods originate from the mere existence of outlying 
observations. These outliers may corrupt classic statistical analyses and therefore 
need to be examined in more detail. Following Rousseeuw and Van Zomeren 
(1990) we distinguish two types of outliers: leverage points and vertical outliers 
(see Figure 1). Leverage points are data for which the explanatory variable lies 
far from the bulk of explanatory observations; vertical outliers are observations 
which are positioned far from the majority of the data, but whose explanatory 
component is not necessarily a leverage point. Of course, an observation can be 
both a vertical outlier and a leverage point.

The principle of the estimator is to detect both kinds of outlying 
observations and to diminish their impact9. In order to do so each observation 
is given a weight less than or equal to 1, according to its relative location in the 
data set. For each point it is examined how far its independent component lies 
from the majority of the explanatory variables (i.e. to what extent it is a leverage 
point) and a weight is given accordingly. By definition, the identification of 
leverage points is independent of the estimate of the unknown parameters. Also, 
given some preliminary robust estimate, the residual of each observation is 
examined in terms of size (i.e. to what extent it is a vertical outlier). Given 
initial weights based on the identification of leverage points and the preliminary 
robust estimate10, the first order condition associated with minimizing the 
weighted sum of squares is iteratively solved using NR. Since the estimate 
depends on the weights based on vertical outliers, which in turn are identified 
according to the estimate, we update these weights in each NR iteration.

To detect leverage points (and determine weights correspondingly), a 
measure of distance is needed. Classical measures, such as the entries on the 
diagonal of the hat matrix or the mahalanobis distance, are inappropriate since 
these indicators themselves can be corrupted by leverage points. Consequently,

9 As opposed to Lp and M estimators which only correct for vertical outliers (see e.g. 
Judge et al. (1988, Chapter 22)).

10 In Appendix 1 precise definitions of these weights are given.
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Figure 1 Simple Regression Example with (a) Regular Observation 

(b) Vertical Outlier, (c) Leverage Point and 

(d) Vertical Outlier and Leverage Point
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mild leverage points or a cluster of huge outliers in the x-dimension can escape 
easily from being discovered (for a prominent exposition of this phenomenon 
see Rousseeuw and Van Zomeren (1990)). To overcome this masking effect we 
use Minimum Volume Ellipsoid (MVE) estimates to compute a robust measure 
of distance. Indeed, the MVE estimator has a breakdown point of 50% whereas 
the classic measures can be tricked by a single observation.

Vertical outliers are defined relative to the statistical relationship contained 
in the data (for instance, point (c) in Figure 1 is not a vertical outlier since it fits 
perfectly to the relation between x and y). However, in general this relation is 
not known. Therefore, we use a robust preliminary estimate (Rousseeuw’s LMS) 
as a first approximation.

3. WHEN TO USE A GM ESTIMATOR

In economics, data can be qualitative or quantitative and be measured 
either at micro (e.g. firm or household) or macro (e.g. aggregate) level. In what 
follows we will discuss each of these cases and indicate when the GM estimator 
is to be used.

If the response variable is qualitative (giving rise to probit, logit, etc. 
models), the GM estimation technique is inappropriate. In this case weights 
based on residuals are of no meaning while correcting for leverage points is not 
at all straightforward11. On the other hand, if explanatory variables are 
dichotomous (i.e. dummies) and the dependent variable is not, the GM estimator 
can be applied. Note however that qualitative explanatory variables can never 
contain leverage points and are therefore left out when computing the MVE- 
distances.

Although time series often contain outlying observations, the GM 
estimation procedure is not developed to estimate ARIMA type models. In 
particular, outliers present in time series are of a fundamental different nature 
(see e.g. Gomez and Maravall (1994)) than the ones considered in this paper.

11 In fact, to the best of the authors’ knowledge, there is in the literature no research to 
be found on robust estimation techniques when the dependent variable is of qualitative nature.
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Using the GM approach is thus only appropriate when a structural model is to 
be estimated. For a discussion on joint estimation of model parameters and 
outlier effects in time series see Chen and Liu (1993).

Micro data are notorious for their erratic behaviour. Especially in this case 
a robust estimation technique is called for. Aggregation of micro data can 
remove some of the irregularities, but also in this case robust estimation is still 
desired since classic and robust estimates are almost identical when data are 
smooth. On the other hand, if the aggregate data remain erratic, the GM 
estimator yields more reliable estimates compared to classic techniques. 
Moreover, cross-country (macro economic) surveys are likely to contain (severe) 
outliers despite their aggregate nature.

To summarize, the GM estimator described in this paper is appropriate for 
estimating a structural model in which the response variable is not dichotomous.

4. OF LITTLE SIGNIFICANCE

As an illustration of the effect of leverage points and/or vertical outliers 
on OLS-estimates, we present in this section some examples of simple 
regressions when different types of data contamination are involved. In each of 
the cases considered we also compare OLS with the GM estimator and conclude 
that the latter is little affected by data pollution while the former in many cases 
generates unreliable estimates.

4.1 PARAMETER ESTIMATES

First data are generated according to

y, = Px(+e(, r = 1 1 0 0 ,  ^

where e, is iid N(0,1), (3 = 1 and x, is iid N(0,10). Re-estimating p, using both 
OLS and GM results12

12 Standard errors are within parentheses.
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OLS : S, = 1.0094*,, t = l,..,100, R 2 =0.87,
(0.036)

(2)

GM : S, = 1.0095*,, f = l,..,100, R 2 =0.89.
(0.041)

The estimates of p are almost identical and are both significant. Also, the
-2

respective adjusted coefficients of determination (R ) are approximately the 
same13. Indeed, when data are smooth, both techniques lead to the same results. 
Note however that in this case OLS is more efficient.

To consider the effect of outlying observations on the estimates of p , one 
observation is adjusted such that it becomes both a leverage point and a vertical 
outlier14. In particular we set x50 at 26 and y50 at -26. Re-estimating (1) with 
this adjusted data set gives us

OLS : y, = 0.0952*,, r = l,..,100, R 2 =0.01,
(0.033)

GM : y, = 1.0107*,, f = l,..,100, R 2 =0.89.
(0.042)

We see that the GM estimator produces almost exactly the same estimate as 
before, while the OLS estimate of p is completely wrong for the majority of the 
data.

In applied econometric studies it is not unusual to include the square of 
an explanatory variable into the regression to model non-linearities. However, 
when outliers are present this can lead to dramatic changes in the estimation 
results. To expose this phenomenon we first add the square of x as an 
explanatory variable to (1) and re-estimate the equation. This gives us

13 In case of GM estimation the adjusted coefficient of determination is, apart from the 
obvious correction for the number of explanatory variables, defined as the variance of the 
weighted estimated responses divided by the variance of the weighted response variable.

14 In Section 5 we consider case (a) through (d) of Figure 1 more rigorously.
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GM : y, = 0.9949*, -  0.0037*,2, r = l,..,100, R 2 =0.79.
(0.053) (0.012)

For both estimation procedures the inclusion of the square of x does not 
significantly change the results reported in (2). Both techniques reject the 
significance of the added explanatory variable and the estimated coefficient for 
x changes little. We now proceed with adding the square of x as an explanatory 
variable with again however *50 set equal to 26 and y50 to -26. Re-estimating 
the model we get the following results

OLS : y, = 1.1626*, -  0.0793*,2, r = 1 1 0 0 ,  R 2 = 0.85,
(0.019) (0.001)

GM : y, = 0.9950*, -  0.0035*,2, r = 1 1 0 0 ,  R 1 =0.79.
(0.053) (0.012)

OLS is obviously tricked by the outlying observation. Taking the square 
amplifies the effect this observation has on this estimation technique. On the 
other hand the GM estimator still reveals the true statistical pattern between x 
and y. In passing we can observe that OLS not only gives an unreliable 
parameter estimate for x and the square of x, but there is also a dramatic 
increase in the associated t-value for both explanatory variables. Indeed, this 
indicates yet another problem of OLS: misleading significance.

4.2 SPURIOUS REGRESSION

To reveal this problem more prominently, consider the following 
illustration. Two random samples (iid N(0,1)) of length 100, * and y, are 
regressed on each other, giving the following results

OLS : S, = 1.0066.x, + 0.0010*,2, r = 1 1 0 0 ,  R 2 =0.87,
(0.042) (0.007)
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GM : y, = -0.0530a:,, f = l,..,100, R 2 =0.00.
(0. 100)

As is to be expected, both techniques present insignificant estimates and find no 
statistical relationship between x  and y. Again we introduce one outlying 
observation by setting a50 and y50 equal to 10. Re-estimation with this 
contaminated data set leads to

OLS : y, = 0.4801a,, r = l,..,100, P  = 0.23,
(0.027)

GM : y, = -0.0420a,, r = 1 1 0 0 ,  R 2 =0.00.
(0.103)

Although for 99% of the observations there is no statistical relation between x  
and y, OLS returns a very significant estimate. Again however the GM approach 
is not significantly affected by the outlier.

4.3 NON-SPURIOUS REGRESSION

Finally, we consider the case in which OLS fails to find the statistical 
relation contained in some data set. In order to do so we change two observa­
tions of the data set used to generate (2), such that the estimate of the 
coefficient (by OLS) little changes. In particular we set yso at -535 and y5I at 
100. Re-estimating the relationship gives us

OLS : y, = 1.0095a,, r = l,..,100, P  = 0.00,
(0.605)

GM : y, = 1.0137a,, r = l,..,100, R 2=0.89.
(0.043)

OLS : S, = -0.0248x(, r = l,..,100, R 2 =0.00,
(0.031)
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Even though the estimate of OLS is almost the same, the significance of the 
statistical relation is not revealed. On the other hand, the GM estimator is 
relatively insensitive to the pollution of the data.

Routine data are thought to contain 1 to 10 percent contamination 
(Hampel et al. (1986, p.28)). The examples of this section indicate that OLS 
should be used with care in any applied research. On the other hand, the GM 
estimator results reliable parameter estimates and standard errors under various 
kinds of data pollution.

5. EFFICIENCY

In Appendix 2 the breakdown point of the GM estimator is presented 
together with its covariance matrix. Also it is shown that the estimator yields 
consistent estimates if the errors follow an approximately normal distribution. 
In this section we present our simulation results regarding the efficiency of the 
GM estimator.

To examine the efficiency of the GM estimator we have performed a 
simulation, the results of which are summarized in Table 1 and Table 2. A 
single experiment began with generating a matrix of explanatory variables, 
consisting of a constant and observations drawn from a standard normal 
distribution. Then a response variable was created according to (1) with p set 
equal to unity. Given these data we re-estimated p using the OLS, LMS and 
GM estimators. Next we successively corrupted the explanatory variables, the 
response variable and both the independent and dependent variables by replacing 
(randomly drawn) 10% of the observations by random values drawn from a 
normal distribution with zero mean and variance 100. In terms of figure 1 we 
first added points like (d) and (b) separately and then simultaneously. The last 
corruption may have involved adding observations like (c). Given these polluted 
data sets we again re-estimated P with all three estimators. For a number of 
explanatory variables this process was repeated a thousand times15.

15 Table 1 and Table 2 display the outcomes of the experiment for p  is 2 and 3 
respectively. We have performed also simulations for p  is 4 and 5. In general, this led to the 
same results as those depicted in Table 1 and Table 2, and are therefore left out.
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From Table 1 and Table 2 we see that when there is no pollution OLS is 
most efficient, i.e. the estimates of OLS have the lowest variance. However, in 
this case the variance of the GM estimates just exceeds that of OLS, while that 
of the LMS estimates is considerably greater (Indeed, the poor efficiency of the 
LMS estimator is considered a serious set back of this estimator (see e.g. 
Simpson, Ruppert and Carroll (1992)).

Moving on to the more realistic situations we see the dramatic decay of 
OLS. Especially when leverage points are involved this method breaks down 
completely. It is little consolidation that in these cases OLS is most efficient. 
Notice that vertical outliers have much less influence on OLS than leverage 
points (this is also observed by Rousseeuw and Leroy (1987)). Nevertheless, 
also when there are only vertical outliers OLS produces unreliable estimates. All 
in all, when data contain outlying observations OLS is not to be recommended 
as can be concluded from the high mean squared error in all of these cases16.

In terms of efficiency the GM estimator is always superior to Rous- 
seeuw’s LMS. In some cases however the LMS estimates are closer to the real 
value of p , but in all cases the associated mean squared error exceeds that of 
the GM estimator. Based on statistical performance the GM estimator is 
therefore to be preferred to the LMS technique.

6. STARS, LIGHT AND HEAT

To illustrate the importance of robust estimation when data contain 
outlying observations, we use an example from the astronomy. In this field of 
science it is well known that the star cluster CYG OBI, which contains 47 stars 
in the direction of Cygnus, comprises four conspicuous stars, so called giants 
(see Rousseeuw and Leroy (1987)). The scatterplot of the logarithm of the 
effective temperature at the surface of a star (Te) and the logarithm of its light 
intensity (L/L0), the Hertzsprung-Russell diagram, for the star cluster CYG OBI, 
reveals that the celestial bodies can be divided into two groups: the majority of 
the stars, which are lying along a positively sloped band, and the four giant stars 
in the upper left comer (see Figure 2). Table 3 summarizes the data of star 
cluster CYG OBI (observations 11, 20, 30 and 34 are giants).

16 Note that this statistic takes into account both the variance of the estimates and the 
extent to which the estimates differ from the true value of the unknown parameter.
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Table 3 Data for the Hertzsprung-Russell Diagram

Star
Index

log Te
(Xj)

log(IVL0)
(Xi)

Star
Index

log Te
(X;)

log(L/L0)
(Yi)

1 4.37 5.23 25 4.38 5.02
2 4.56 5.74 26 4.42 4.66
3 4.26 4.93 27 4.29 4.66
4 4.56 5.74 28 4.38 4.90
5 4.30 5.19 29 4.22 4.39
6 4.46 5.46 30 3.48 6.05
7 3.84 4.65 31 4.38 4.42
8 4.57 5.27 32 4.56 5.10
9 4.26 5.57 33 4.45 5.22
10 4.37 5.12 34 3.49 6.29
11 3.49 5.73 35 4.23 4.34
12 4.43 5.45 36 4.62 5.62
13 4.48 5.42 37 4.53 5.10
14 4.01 4.05 38 4.45 5.22
15 4.29 4.26 39 4.53 5.18
16 4.42 4.58 40 4.43 5.57
17 4.23 3.94 41 4.38 4.62
18 4.42 4.18 42 4.45 5.06
19 4.23 4.18 43 4.50 5.34
20 3.49 5.89 44 4.45 5.34
21 4.29 4.38 45 4.55 5.54
22 4.29 4.22 46 4.45 4.98
23 4.42 4.42 47 4.42 4.50
24 4.49 4.85

Source: Rousseeuw and Leroy (1987, p.27).

OLS reveals a negative relation between the light intensity and the 
temperature of a star ( y = 6.793 - 0.413x ), although for 43 stars (which in the 
astronomy are said to lie on the main sequence) this relation is positive. Clearly, 
the four giants trick OLS. The LMS estimate is insensitive to these huge objects 
and yields a line which fits the majority of observations properly ( ^ = -12.964 
+ 4.046x )17. Also the GM estimator ignores these observations. However,

17 Rousseeuw and Leroy (1987) find a somewhat different LMS line (y -  -12.298 + 
3.898x). This is due to the enormous increase in computer technology over the years which 
enables us to perform much more drawings to compute the LMS estimator. The difference 
in LMS estimates does not affect the main conclusions of this section.
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Table 4 Estimation Results, Hertzsprung-Russell Data3

Dependent Variable: Log Light Intensity

Explanatory
Variables

OLS LMS GM

Constant 6.793
(1.237)

-12.964 -7.132
(3.023)

Log
Temperature

-0.413
(-0.286)

4.046 2.741
(0.680)

R 2 0.023 0.98

Ô 0.552 0.368b 0.440c

3 Standard errors are within parentheses. 
b See appendix 4 for a description of this estimator. 
c See appendix 3 for a description of this estimator.

since the GM estimator is more efficient than Rousseeuw’s LMS, it uses more 
information contained in the data. In particular, observations 7 and 14 attract the 
GM-line ( y = -7.132 + 2.741x ). On the other hand, they cannot reverse the 
relation between light intensity and temperature, as exhibited by the majority of 
the stars.

Table 4 summarizes the estimation results. It is striking to see that the 
OLS estimate is not only completely wrong (both coefficients have the wrong 
sign), but is also insignificant for the main explanatory variable. A well known 
phenomenon in the astronomy is not revealed by this estimation technique. The 
LMS and GM estimators find the true, positive, relation, whereas the latter 
technique leaves no doubt as to the significance of the relation between the light 
intensity and the temperature of a star.

The scatterplot of standardized residuals versus x-di stances is an aid in 
visualizing leverage points and vertical outliers (see Rousseeuw and Van 
Zomeren (1990)). For our regression results with OLS, LMS and GM these plots 
are depicted in Figure 3, 4 and 5 respectively. Leverage points are observations 
with a (robust) x-distance exceeding the square root of the 97.5th
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Table 5 Outliers in the CYG OBI Data Identified by LMS and GM

Estimation
Technique

Leverage
Points

Vertical
Outlier

Leverage 
Point and 
Vertical 
Outlier

Weights 
based on 

x-distances 
wM i )

Weights 
based on 
residuals

wr(ri)
7 0.695 0.220
11 0.430 0

GM 14 0.991 0.976
20 0.430 0
30 0.430 0
34 0.430 0
7

9
LMS 11

14
20
30
34

percentile of the x2(P ) distribution18. If p is 1, this critical value is 2.24. In 
terms of Figures 3, 4 and 5, points to the right of the vertical line with x- 
distance 2.24 are leverage points. The standardized residuals are expected to 
follow a standard normal distribution. For this probability density function the 
absolute value of 99% of its elements is less than 2.57. Points lying outside the 
strip indicated by this critical value are thus vertically outlying. The link 
between Figures 3, 4 and 5 and Figure 1 is that points in the mid west areas of 
the former figures coincide with points (a) in the latter, points in the mid east 
are like (c), points in the north east area are conform (d) and points in the south 
west area correspond to (b).

According to the GM and LMS estimates, five observations, including the 
four giants, are both a leverage point and a vertical outlier (see also Table 5). 
Star 14 is only a leverage point. LMS also identifies observation 9 as vertically 
outlying. On the other hand, OLS only recognizes the giant stars as leverage 
points but not as vertical outliers. Note that this implies that, according to the

18 See Appendix 1.
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OLS result, the four giants are not characterized by a relation between light 
intensity and temperature which differs much from that associated with the 
majority of the data (compare Figure 1, in which leverage points (c) are in line 
with the regular observations (a)). Moreover, star 7 and 14 are not identified as 
outlying. The inability of the classical (mahalanobis) ^-distance to reveal these 
two observation as leverage points is due to the masking effect. The four giants 
corrupt the mahalanobis measure such that mild leverage points remain 
undiscovered (see also Appendix 5).

6. CONCLUSIONS

The success of OLS and its generalizations in applied economic research 
is not justified by its performance on ’contaminated’ (real) data. If leverage 
points and/or vertical outliers are present, OLS not only produces unreliable 
parameter estimates but also incorrect t-values. Especially in economics, where 
data are in many cases far from smooth, the use of OLS can lead to seriously 
wrong conclusions.

In this paper we have described a reliable alternative, a General M 
estimator, which has a high breakdown point, is consistent and, as our 
simulation results indicate, is more efficient than Rousseeuw’s LMS estimator. 
An example from the astronomy, involving real data, illustrates again that OLS 
should be used with care in applied research.

Also we have derived analytically a correction factor which, according to 
our simulation results, improves both the resampling and projection algorithm 
in approximating the MVE estimates.

On the other hand, much research still needs to be done to present a full 
alternative to OLS. Especially the lack of specification tests related to robust 
estimators is an omission.
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APPENDIX 1. A GENERAL M ESTIMATOR DERIVED

In this appendix we derive a General M estimator (such as presented by 
Simpson, Ruppert and Carroll (1992)) which, by definition, downweights both 
vertical outliers and leverage points. Consider the classical linear model

= Z;Y+v, , = 1-*n>

where the v,’s are approximately iid N(0,o2). q, is an observable dependent 
variable and z, a row vector of length p  of observable explanatory variables. We 
first scale the model with a robust estimate19 of a  to get

y, = * ;P +e, i = (Al)

causing the e .’s to be approximately iid N(0,1). To estimate the finite unknown 
parameter vector 3 we have as objective

m in"
P (A2)

where r. = y.-jr.ft and p e C 2[-c,c], p (-):R —>R, ce R . Mallows20 proposes 
to state the first order condition as

n

E x jw x(x.)rwr(r,) = °- (A3)1 = 1

where wx( •):RP-^R. and wr(-):R —>R. are weight functions based on the 
identification of leverage points and vertical outliers respectively (note that 
wr = ( 3 p ( r ) /3 r . ) / r ) .  x j  is the transpose of x r  Since both leverage points and 
vertical outliers are downweighted, the estimator belongs to the class of General 
M estimators (see e.g. Rousseeuw and Leroy (1987, p. 13)).

We use the Newton-Raphson (NR) algorithm to solve (A3). In order to 
do so we have to differentiate the LHS of (A3) with respect to 3, which results 
in

19 See appendix 4 for a description of this estimator.

20 See Hampel et al. (1986, p.322).
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-  E x fw ^ tx .v v X r.)- r tw '(r)] ,
i-l

where

(A4)

An initial robust approximation of 3 is obtained by using Rousseeuw’s LMS 
estimator21.

A 1.1 WEIGHTS BASED ON LEVERAGE POINTS

The identification of leverage points is independent of the estimate of 3. 
What we need in order to detect leverage points and to determine weights 
correspondingly is a measure of distance defined over the explanatory variables. 
A classical measure is the diagonal of the hat matrix (see e.g. Judge et al. (1988, 
p.892)).

where X = (x,,..,xji)r . This measure can be interpreted as the extent to which 
an observation deviates from the sample average. Related to (A5) is the 
Mahalanobis distance22

where T ()  is the arithmetic mean and C(-) the sample covariance matrix. Both 
(A5) and (A6) can however be corrupted by leverage points. Consequently, mild 
leverage points or a cluster of huge outliers can escape easily from being 
discovered when these classical non-robust indicators are used (For a prominent 
exposition of this phenomenon see Rousseeuw and Van Zomeren (1990). See 
also the example of Section 6). To overcome this masking effect we insert robust 
estimates of T(X) and C(X)'1 in (A6); the so called Minimum Volume Ellipsoid

21 See Appendix 4 for a description of this estimator.

22 Rousseeuw and Van Zomeren (1990) mention that hi=MD?/(n- \)  + \ ln .

(A5)

MD, = J [ x r T { X ) ] C ( X y l [xr n X ) ] T / = (A6)
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(MVE) estimates23. This results in robust distances RDi since the MVE 
estimator has a breakdown point of 50% (see Rousseeuw and Leroy (1987)). 

Weights based on leverage points are now given by

w (* ,) = m in .ll, /%0.975( P)
RD

i' = l,..,n . (A7)

Notice that all observations with a robust distance exceeding the 97.5th percentile 
of the x 2(p )  distribution are identified as leverage points and receive weights 
less than unity.

A1.2 WEIGHTS BASED ON VERTICAL OUTLIERS

The derivative of the objective function p ( •) with respect to r„ \ |r ( r ) ,  
measures the rate of change of the objective (A2) due to a infinitely small 
change in r,. In case of OLS the objective function can be written such that 
\|r(r.) equals r,. As a consequence, large residuals have a strong influence on 
(A2), i.e. OLS is highly sensitive to vertical outliers. To overcome this problem 
we propose \|/(r.) to be as depicted in Figure 6; the bi-square function. Notice 
that the influence of an observation first increases as its associated residual 
increases, but then diminishes to become zero for very large residuals.

To derive the bi-square function suppose p(-) can be described by a 
polynomial of degree 6 on some interval and as a constant elsewhere24

p (r.) = a 1/-,2+a2r,4 + a 3ri6

= Y

Differentiating (A8) results 

\|r(r.) = 2 a 1r.+ 4 a 2r,3+ 6 a3r,5 \r. |< c

= 0 | r. | >c.

\r,\<c 

I r. I >c.
(A8)

23 See appendix 5 for a description of this estimator.

24 From Figure 6 it is clear that the primitive of the bi-square function is indeed a 
polynomial of at least degree 6.
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Figure 6 The Bi-Square Function and OLS' Psi-Function
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The second derivative equals

dV (r,)

dr>
2 a , + 12a2r,2 + 30a3r,4 | r .\<c

(A10)

= 0 k ( |>c.

Forcing (A9) and (A10) to be continuous functions and setting 
to 1 leads to the bi-square function

equal

V (r,) = r ([ l - ( r , . /c )2]2 | r ( |< c  

= 0 I r, |>c .
(All)

A common choice for c is 4.685 (see Beaton and Tuckey (1974)). Given this 
function, weights based on vertical outliers correspond to

wr(r,) = V(r,.)/r. r,*  0 

= 1 r,=0.
(A 12)

Equation (A4) now becomes 

w/(r,.) = 4 r(/ c 2[ l  - ( r ./c )2\x .  |r , |< c  

= 0 \r,\>c.

Since vertical outliers depend on the estimate of p , which in turn depends 
on the weights based on vertical outliers, wr( r () is computed iteratively, i.e. we 
update (A12) in every NR iteration.

After convergence of the NR algorithm, the GM estimator can be written 
as

$GM

n

Y .x Ti wx(x t)wr(<ri)yi
1-1

L x f w j x  ,)wr(
1-1

O x ,

(A13)

where wx(j:.) is given by (A7) and wr( r )  by (A12). In obvious matrix notation 
(A l3) reads
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PG„ = [ X rW ( X ) W ( r ) X ] - ‘[ X rW ( X ) W ( r ) y ] , (Al 4)

where WJX) is a diagonal matrix comprising wx(x .) ,  i=l,..,n, and Wr(r) is a 
diagonal matrix with entries w(.(ri), i=l,..,n.

APPENDIX 2. STATISTICAL PROPERTIES OF THE GM ESTIMATOR

A2.1 t-VALUES

To derive the covariance matrix of the GM estimator, cov(P), we use a 
Taylor expansion around P = p for the first order condition (A3)

0 =

" t JL chir(r.) dr. T »
= E\|r( ejx; wx(x.) + E _ - J --- Lx, w^x.xP - p].

<*i '*! dr. 0p

(A 15)

Evaluating (A 15) in P = P and performing obvious manipulations results

vQMJ « Jn [ ( * , )  j [lEv(el)*|'w (*,)].
t n / . i  d e  > v t u - \  >

In large samples, the covariance matrix of P approximately equals 

COV(P) = [X TV(X)Wx(X)X]-'X TWx(X)W,(X)X[X rV(X)W (X)XT1, (A l6)

where W is a diagonal matrix consisting of ^jr(r)2, i=l,..,n, V(X) is a diagonal 
matrix containing <h|r(r.)/drr  i=l,..,n and WJX) is as defined as in Appendix 
1. With (A l6) the usual t-values can be computed.

A2.2 BREAKDOWN POINT

To what extent a regression estimator is affected by corrupted data is 
measured by its breakdown point: the smallest amount of contamination that can 
cause the estimator to take on arbitrary values. Suppose T(-) is an estimator. 
Define t|(8;7X-),X) to be the supremum of S ìp C )-TfX)! for all X', where X' 
corresponds to the original data set with a fraction 8 (=m/n) of the observations
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replaced by arbitrary values. The breakdown point of T(-) on X  is then defined 
as (Rousseeuw (1984))

b(T(-)JO = min{” ;T] (m;7T-)J0=<»>. (A17)n

where n is the number of cases in X  and m the number of original data points 
replaced by arbitrary values. (From (A 17) it is clear that the OLS estimator has 
a breakdown point of zero; a single outlying observation can cause this 
technique to produce any estimate).

Simpson, Ruppert and Carroll show that "under reasonably general 
conditions the regression parameter estimates (GM estimates) inherit the 
breakdown properties of the preliminary estimates of the regression parameters 
and the multivariate location and scale estimates of the design * ’s" (1992, 
p.446). In particular it must be the case that

V (^ )

ri
d'lf(r.)

> 0 | r . \<a,

> 0 \r. | for at least n - m - — good points,

^  > o
dr.

| r ( \<a for all points,

the set o f ’good’ points (i.e. | rt \ <a) must contain a linearly 

independent subset o f size p,

(A 18) 

(A19) 

(A20)

(A21)

and a must strictly exceed some tuning constant K (A22)

From (Al l )  it is straightforward to recognize that (A 18) holds (see also Figure 
6). For ’bad’ points (i.e. a< \ r. \ <c) it is the case that 3 t|r(r.)/3 r.<0 , and (A20) 
is violated (see also (A28)). However, if (A 19) holds it is always possible to
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manipulate these ’bad’ points such that (A20) holds25. Since the majority of the 
r '  s are assumed to come from a normal distribution, condition (A 19) is always 
met. Finally, if c equals 4.685 than a is equal to 2.095 and exceeds k ( k being 
0.6745, see Appendix 3)).

To summarize, for the bi-square function conditions (A18)-(A22) are 
fulfilled. Therefore, the described GM estimator can handle up to 50% pollution 
of the data since both the LMS and MVE estimators have breakdown points of 
50%.

A2.3 CONSISTENCY

Simpson, Ruppert and Carroll (1992) show that under certain conditions 
the GM estimator is asymptotic normal and produces root-n consistent estimates 
of the unknown parameters, if the identification of leverage points is based on 
MVE estimates. In particular it must be that

The score function \|r(r.) is bounded and continuous,

E[\|/(ev)] = 0 and £[ev ^ r*-£v-*,] = 0 for any nonnegative scalar v, 
dr.

d\|r(r.)
\ir(r ) has derivative —— — such that 
V ' dr.

.. ... M e ) , ,--------  < °o and\\r.--------  < oo
II 0 ^  11sup "  l "sup

(A23)

(A24)

(A25)

where ||.||ji(p is the supremum norm,

9\|f(r.) <Pyf(r)
' has derivative ---------  such that

d r,

~dr,
2  "sup < 00, Ik,

drf

dr:2 SUP
< 00 and II r,

3 > (r ,)
(A26)

dr,
2 "sup

<  00

and

23 In particular these ’bad’ data points can be set equal to a forcing their contribution to 
the NR-version of the hessian to be zero (see also Ruppert, Simpson and Carroll (1992, p.441, 
Remark 2.1)).
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(A27)

for some symmetric positive definite matrices A and B.

Condition (A23) and (A24) are checked easily using (All),  noting that 
e( ’s are approximately iid N(0,1) and remembering that all odd moments of the 
normal distribution are zero. Further note that the derivative of \|t(-) equals

Clearly (A28) is bounded and becomes 0 for large residuals. As a result (A25) 
and (A26) follow immediately. Finally, since the errors are assumed to 
approximately follow a (standard) normal distribution, and because bothy(e.) 
and 3 v (e i.)/9ej are bounded, condition (A27) is satisfied.

APPENDIX 3. A ROBUST ESTIMATOR FOR THE VARIANCE OF A 
REGRESSION

Consider a normally distributed random variable, u, with mean p and 
variance a 2. For a sample of n observations of u (denoted by u) the sample 
median is a robust estimator of the location parameter p. Consequently u - 
med(n) is symmetrically distributed around zero. If we take the median of the 
absolute value of u - med(u), we have a robust estimate of the 75th percentile 
of the initial distribution of u. Therefore it is straightforward to propose

s = med( \ u -m ed (u )  |)/0.6745, (A29)

as a robust estimator for o  where 0.6745 is the 75th percentile of the standard 
normal distribution.

Table A1 shows that (A29) is indeed relatively insensitive to outlying 
observations. In order to generate this table standard normal vectors of length 
500 where generated for which both the usual standard deviation and (A29) 
where calculated. We then contaminated the series by replacing 50 randomly

= [ l - ( r . / c ) 2] [ l - 5 ( r . / c ) 2] | r , |< c
(A28)

= 0 r , |>c .
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Table A l. Simulation Results, n=500, 10% Pollution3

Normal Contaminated
Classic Robust Classic Robust
0.99997468
0.00095094
0.00095094

0.99791024
0.00277199
0.00276763

3.29625390
5.36803770
0.09525565

1.11684750
0.01693631
0.00328297

The entries in each cell are the mean estimated value, the mean 
squared error and the variance over the 1000 runs.

drawn observations by elements of a normal distribution with mean zero and 
variance 100. For these contaminated series we also calculated both (A29) and 
the classical standard variation.

In case of uncontaminated data the classical estimator is of course most 
efficient since it is the uniformly minimum variance unbiased estimator of o. 
However, when the data are less smooth it is striking to see that this estimator 
more than three times over-estimates the standard deviation of 90 percent of the 
data. In this case the robust estimator keeps producing reliable estimates.

We use as final estimation of the variance of the regression (see e.g. Table 
4) the square of (A29), where «, is defined as

XA = 1 (A30)

APPENDIX 4. LEAST MEDIAN OF SQUARES REGRESSION

Rousseeuw (1984) introduced a simple yet elegant and robust estimator 
for the unknown parameter vector P in the classical linear model

y. =x.p+e,. i = \,..,n.

The conventional least squares technique has as objective

min I f ,  ÔO 
P r t t -1

(A31)

Replacing the summation in (A31) by the median over all squares yields the 
Least Median of Squares estimator
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min
0 med(yi- x f i ) 2. (A32)

Rousseeuw (1984) shows that for n observations and p  explanatory 
variables the breakdown point of the LMS estimator is {[nl2]-p+2)ln, which is 
as high as 50% when n goes to infinity (the notation [r] stands for the largest 
integer less than or equal to r).

To approximate (A32) we compute the OLS estimator of a randomly 
drawn sample of size p+ 1 (this results a perfect fit). Given this estimate, , 
we calculate the objective value m ed{y.~x.^LMS)2 and proceed with the next 
drawing. The estimate with the lowest objective value is the first approximation 
of the LMS estimate. We then proceed by calculating a refinement for the 
intercept estimate. In particular, this final estimate is given by

where x '  = xj2..xij> and (T,ws = ( f ^ , . . , ^  )r  (see Rousseeuw and Leroy 
(1987)).

If all distinct samples were to be enumerated, there were far too many 
estimates to be made. However Rousseeuw and Leroy (1987) show that the 
probability of getting a sub sample consisting of p  non-outlying observations 
when the fraction of contamination equals 8 is

l - ( l - ( l - 8 y T ,  (A3 4)

where m is the required number of independent sub samples. Rewriting (A34) 
gives the number of drawings needed to get a ’good’ sub sample with 
probability A

m = ln(l -A)/ln(l -(1 -8 ) '’).

In our GAUSS program A is set equal to 0.99 and 8 is set equal to 0.5 
(However, when approximating the LMS estimator we used 10 times as much 
trials as prescribed by (A34)).

The standard deviation estimate associated with the LMS technique is the 
result of a two stage procedure (see Rousseeuw and Leroy (1987)). An initial 
estimate is made according to

(A3 3)
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5° = (1 + 5/(n - p ^ m e d i r ^ f ]  /0.6745.

Given s° weights are determined

fi i f  | r (/ s° |<2.5

w' m \
IO otherwise

The second step yields the estimate of the standard deviation

( é w r ,2)/(Ëw.
N i -i

■P)

We use (A35) as scale factor to get (Al).

(A35)

APPENDIX 5. THE MINIMUM VOLUME ELLIPSOID ESTIMATOR

A5.1 DEFINITION OF THE ESTIMATOR

The MVE estimator (see Rousseeuw and Leroy (1987) and Rousseeuw 
and Van Zomeren (1990)) is based on the (hyper) ellipsoid of minimum (hyper) 
area containing at least half of the observations. The location estimate 
corresponds to the centre of this (hyper) ellipsoid while the corresponding 
covariance estimate is the (hyper) ellipsoid multiplied by some factor to obtain 
consistency.

Since the (absolute value of the) determinant of a matrix can be 
interpreted as the hyper volume of the space comprised by the columns of this 
matrix, the MVE estimator, the pair (T,C), is formally defined as

(T,C) l det( C) I (A36)

a: #(i ; [* , - T I C 7 T < 8 2> > h
where h = [(n+p + \)l2\. If it is assumed that the majority of the data comes 
from a normal distribution, 82 is set equal to the 50th percentile of the%2(p) 
distribution.

Rousseeuw and Leroy (1987) prove that the breakdown point of the MVE 
estimator is ([n/2]-p+l)/n, which is 50% as the number of observations, n, goes 
to infinity.
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A5.2 DERIVATION OF A CORRECTION FACTOR

To approximate (A36) we have tested two algorithms; the resampling 
algorithm and the projection algorithm (see Rousseeuw and Van Zomeren (1990, 
1991) and Gasko and Donoho (1982)). In the one-dimensional version of the 
projection algorithm we look at

RD = \ x t ~ ( x j + x i - h * i ' ) / 2  I

xr xj-k.i
1 =  1 (A37)

where h = [(n+p + l ) /2 ] ,  x .-x J_htl is the smallest of the differences of

X h ~ X i » X h * l  ~ X 2' " ' X n ~ X n - h  +1

and x l<x2<...<xn. If x iid N(P ,o2), then the median of (x-(3) /o must equal 
the square root of xl.so( 1) or 0.675. On the other hand, by definition of h, 50% 
of the x ’s are in between x._htl and x.. Therefore, the median difference (over 
i) between x, and (Xj_htl +x.)/2 equals

Xj - Ì X j . m +Xj ) / 2  = (•*,.*,, + x j ) / 2 - X j _ ht i = (x.-x._^1)/2. (A3 8)

Inserting (A38) into (A37) reveals that the median of RD, equals 0.5 in stead of 
0.675. To restore this deviation we propose as correction factor26

/Xo.5oO)
med. (RD,)

(A39)

We have chosen the 50th percentile of the x2 -distribution since the MVE 
estimator has a breakdown point of 50%.

A5.3 SIMULATION RESULTS

We have tested different versions of both the resampling and projection 
algorithm to approximate (A36). Table A2 reports our simulation results. Each 
experiment consisted of generating a standard normal random variable for which

26 This factor is originally conceived by Teun Kloek.
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the MVE-distances were approximated, using various versions of the resampling 
algorithm (lines 1-4) and the projection algorithm (lines 5-6). It was then 
examined how many of these distances exceeded the square of the 97.5th 
percentile of the %2 (p ) -distribution (ft). This was repeated a thousand times 
both for a small sample (n = 50) and a large sample (n = 200), as well as for 
a number of explanatory variables. In Table A2 the mean outcomes of 1 -  ft are 
reported. Further the variances of the different 1 -  ft were calculated with which 
the hypothesis H0: ft =0.025 could be tested. The absolute values of the test 
statistic

0.975-(1 1
Tooo ,■

1000

Eft,.)

V ^var(ft)/1000

are also reported in Table A2.
The rows labelled (1) of Table A2 contain the results obtained when using 

the resampling algorithm as described in Rousseeuw and van Zomeren (1990, 
Appendix). Apart from the one variable case this algorithm does not adequately 
approximate the MVE-distances. The second entries (2) involved the resampling 
algorithm with the one-step improvement as suggested by Rousseeuw and Leroy 
(1987, p.260). This however does not significantly improve the performance of 
the resampling algorithm. In fact, only for the small sample with p= 1 it yields 
reliable distances. Algorithm (3) consists of applying correction factor (A39) on
(1). This however does not give any satisfactory result. Both the one-step 
improvement of Rousseeuw and Leroy (1987) and (A39) are used in algorithm 
(4). Surprisingly, this version of the resampling algorithm has the best 
performance of all versions considered27. For the large sample the hypothesis 
that 1 - f t  = 0.975 cannot be rejected. And although it is rejected for p  = 3,..,5 
when n = 50, it is only by a small margin. The projection algorithm (5) almost 
never yields appropriate distance approximations (of course, for p = 1 this 
follows immediately from the last section). Applying correction factor (A39) to 
this algorithm does improve its performance as can be seen from the rows 
marked (6). If the sample is large and there are a substantial number of 
explanatory variables (i.e. p  exceeds 2), H0 cannot be rejected when using this 
adjusted version of the projection algorithm.

27 The authors cannot give an analytical explanation for this result.
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Table A2 Simulation Results of the Resampling and Projection Algorithms.

n--5 0

Algo- P-1 p -2 P -3 p - 4 P -5

1 - & t i - & t i - a t 1 - 0 t i - a t
(O' 0.9819 1 .39 0.9576 2.64 0.9505 3.46 0.9488 3.80 0.9501 3.61

(2) 0.9675 1.39 0.9562 2.97 0.9519 3.42 0.9525 3.43 0.9563 2.97

(3) 0.9355 5.93 0.8783 12.11 0.8569 14.39 0.8426 16.20 0.8419 16.34

(4) 0.9677 1.25 0.9650 1.70 0.9611 2.25 0.9599 2.50 0.9628 2.08

(5) 0.9849 2.12 0.9742 0 .1 5 0.9875 2.92 0.9927 4.75 0.9979 8.49

(6) 0.9352 5.95 0.9768 0 .3 3 0.9680 1 .2 6 0.9544 3.15 0.9445 4.62

n-200

(1) 0.9730 0.51 0.9637 2.50 0.9584 3.48 0.9523 4.66 0.9418 6.33

(2) 0.9609 3.47 0.9605 3.49 0.9607 3.53 0.9602 3.67 0.9586 3.91

(3) 0.9605 3.39 0.9462 5.82 0.9372 7.22 0.9274 8.90 0.9129 11.01

(4) 0.9727 0 .5 9 0.9712 1 .00 0.9716 0 .9 2 0.9706 1.18 0.9703 1.24

(5) 0.9940 7.52 0.9933 7.22 0.9965 10.20 0.9984 13.39 0.9994 18.04

(6) 0.9601 3.48 0.9855 3.16 0.9811 1.71 0.9737 0.31 0.9658 1.98

‘ (1) Resampling
(2) Resampling with one-step improvement
(3) Resampling with correction factor (A39)
(4) Resampling with one-step improvement and correction factor (A39)
(5) Projection
(6) Projection with correction factor (A39)

To conclude, in all cases considered the resampling algorithm with 
Rousseeuw and Leroy’s one step improvement combined with correction factor 
(A39) yields reliable approximations of the MVE distances. On the other hand, 
if the sample is large and the number of explanatory variables not too small, 
applying correction factor (A39) to the projection algorithm also results in 
appropriate distance approximations. In this case we recommend using the latter 
since the projection algorithm is much faster than the resampling algorithm (see 
also Rousseeuw and Van Zomeren (1991)).
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