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Endogenous growth and time-to-build: the AK case∗

Mauro Bambi
European University Institute

March 2006

Abstract

In this paper, a continuous time AK model is fully analyzed under the time-to-build assump-
tion. Existence and uniqueness of a balance growth path, as well as oscillatory convergence
are proved. Moreover, the role of transversality conditions and capital depreciation are high-
lighted. Numerical simulations are also provided for different choices of the time-to-build
delay.
Keywords: AK Model; Time-to-Build; D-Subdivision method.
JEL Classification: E00, E3, O40.

1 Introduction

Recently Boucekkine et al. [10], have studied the dynamics of an AK-type endogenous growth
model with vintage capital. They find that vintage capital leads to oscillatory dynamics governed
by replacement echoes consistently with previous results in Benhabib and Rustichini [5], and
Boucekkine et al. [9]. In this paper, we propose an AK endogenous growth model under the
assumption that capital takes time to become productive. In the literature, this assumption is
often referred as "time-to-build".

Jevons [19], was one of the first to underline the empirical relevance of this assumption:
"A vineyard is unproductive for at least three years before it is thoroughly fit for use. In gold
mining there is often a long delay, sometimes even of five or six years, before gold is reached"1.
The time dimension of capital was further studied by Hayek [17], who identified in the time of
production one of the possible sources of aggregate fluctuations. Hayek’s insight was formally
confirmed for the first time by Kalecki [20], and afterward by Kydland and Prescott [21], who
showed that it contributes to the persistence of the business cycle. In this paper, the time-to-
build assumption is introduced by a delay differential equation for capital. Delay differential
equations, and in general, functional differential equations are very interesting but, at the same
time, quite complicated mathematical objects. Since the first contributions of Kalecki [20],
Frisch and Holme [14], and, Belz and James [7], very few authors have used this mathematical
instrument for modeling the time structure of capital. To our knowledge, the only works in
(exogenous) growth theory introducing time-to-build in this way, are Rustichini [24], Asea and
Zak [1], and Collard et al. [12]. All these papers find that for values of the delay coefficient
which are sufficiently small, time-to-build is responsible for the oscillatory behavior of capital,
output and investment.

In this paper, some theorems regarding the existence, uniqueness and shape of the general
(continuous) solution of a linear delay differential equation with forcing term are presented in

∗The author thanks Jess Benhabib, Raouf Boucekkine, Franco Gori, Richard Hartl, Omar Licandro, Aldo
Rustichini and Paul Zak for their useful advice and comments. Correspondence address: European University
Institute (Florence), tel. +39-055-4685928, fax. +39-055-4685902, e-mail : mauro.bambi@iue.it.

1 Jevons [19], Chapter VII: Theory of Capital, page 225.
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details, and a "new" method to prove stability, the D-Subdivision method, is introduced. This
method is really useful since it let us count the number of roots (eigenvalues) having positive real
part even if the dimension of the set of the roots is infinite. Taking into account this theoretical
background, the existence of a unique balance growth path and the dynamic behaviors of the
detrended variables are fully analyzed.

The paper is organized as follows. We firstly present the model setup in Section 2 and we
derive the first order conditions by applying a variation of the Pontrjagin’s maximum principle.
In Section 3, we introduce some mathematical results on the theory of functional differential
equations and the D-Subdivision method. Then the existence and uniqueness of the balance
growth path is proved and the influence of a variation of the delay coefficient on the magnitude
of the growth rate is fully analyzed and reported also in a picture. The transitional dynamics
of the economy is reported in Section 5. The next section makes some considerations regarding
the role of capital depreciation on the dynamic behavior of capital. In particular, we explain
how the introduction of an hypothesis of depreciation "before use" let us extend the results to
any choice of the time-to-build delay. A numerical example showing the dynamic behavior of
the economy is reported in Section 6. Finally, in Section 7 there are some concluding remarks.

2 Problem Setup

We analyze a standard one sector AK model with time-to-build. To be precise we assume from
now on that capital takes d years to become productive. Then the social planner solves the
following problem

max

∞Z
0

c(t)1−σ − 1
1− σ

e−ρtdt

subject to
k̇ (t) = Ãk (t− d)− c (t) (1)

given initial condition k (t) = k0 (t) for t ∈ [−d, 0] with d > 0. All the variables are per capita.
The parameter Ã = (A− δ) e−φd > 0 depends on A, the productivity level, δ, the usual capital
depreciation, and φ, the depreciation rate of capital before it becomes productive. From now on
we refer to it as depreciation "before use". Given this capital depreciation structure, k(t−d)e−φd
is net capital at the time it becomes productive. Observe that the lower d is, the higher is the
net capital which is effectively employed in production. Moreover let us assume φ > 0, which
may be justified by referring to the depreciation in use literature (see Greenwood & al. [15],
and Burnside and Eichenbaum [11])2. Finally, with no time-to-build the problem becomes a
standard AK model. Following Kolmanovskii and Myshkis [22] it is possible to extend the
Pontrjagin’s principle to this optimal control problem. Then, the Hamiltonian for this system
can be constructed:

H (t) = c(t)1−σ − 1
1− σ

e−ρt + μ (t)
h
Ãk (t− d)− c (t)

i
and its optimality conditions are

c (t)−σ e−ρt = μ (t) (2)

μ (t+ d) Ã = −μ̇ (t) (3)

with the standard transversality conditions

lim
t→∞

μ (t) ≥ 0 and lim
t→∞

μ (t) k (t) = 0

2Remembering Jevon’s example, the introduction of the depreciation "before use" hypothesis, let us take into
account the effect of exogenous elements (such as bad weather etc.) on the vineyard before it becomes productive.
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From equations (2) and (3) we can get the forward looking Euler-type equation

ċ (t)

c(t)
=
1

σ

∙
Ã

µ
c(t)

c(t+ d)

¶σ

e−ρd − ρ

¸
(4)

Exactly as in the standard AK model, consumption growth does not depend on the stock of
capital per person. However in our context the positive constant growth rate is not explicitly
given by the Euler equation which is a nonlinear advanced differential equation in consumption.

This difference is due to the fact that the real interest rate r = Ã
³

c(t)
c(t+d)

´σ
e−ρd, which the

household gets investing in capital, is weighted by the marginal elasticity of substitution between
consumption at time t and consumption at time t + d. Before proceeding with the analysis of
the BGP of our economy, we present in the next section the mathematical instruments which
will be used to prove the main results and characteristic of the economy under study.

3 Some Preliminary Results

Before proceeding, let us evoke some theoretical results from functional differential analysis.
Consider the general linear delay differential equation with forcing term f(t) :

a0u̇(t) + b0u(t) + b1u(t− d) = f(t) (5)

subject to the initial or boundary condition

u(t) = ξ(t) with t ∈ [−d, 0] . (6)

Theorem 1 (Existence and Uniqueness) Suppose that f is of class C1 on [0,∞) and that
ξ is of class C0 on [−d, 0]. Then there exists one and only one continuous function u(t) which
satisfies (6), and (5) for t ≥ 0. Moreover, this function u is of class C1 on (d,∞) and of class
C2 on (2d,∞). If ξ is of class C1 on [−d, 0], u̇ is continuous at τ if and only if

a0ξ̇(d) + b0ξ(d) + b1ξ(0) = f(d) (7)

If ξ is of class C2 on [−d, 0], ü is continuous at 2d if either (7) holds or else b1 = 0, and only
in these cases.

Proof. See Bellman and Cooke [6], , Theorem 3.1, page 50-51.

The function u singled out in this theorem is called the continuous solution of (5) and (6).
Then in order to see the shape of this continuous solution the following theorem is useful:

Theorem 2 Let u(t) be the continuous solution of (5) which satisfies the boundary condition
(6). If ξ is C0 on [−d, 0] and f is C0 on [0,∞) , then for t > 0,

u(t) =
X
r

pre
zrt +

tZ
0

f(s)
X
r

ezr(t−s)

h0 (zr)
ds (8)

where {zr}r and {pr}r are respectively the roots and the residue coming from the characteristic
equation, h(z), of the homogeneous delay differential equation

a0u̇(t) + b0u(t) + b1u(t− d) = 0 (9)

Note: pr =
p(zr)
h0(zr)

where

p(zr) = a0ξ(0) + (a0zr + b0)

0Z
−d

ξ(s)e−zrsds
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Proof. See Appendix A.1.

Since in our context it shall be fundamental to have real continuous general solution, we
present here the following theoretical results.

Theorem 3 The unique general continuous solution of problem (5) with boundary condition
ξ : I ⊂ R→ R and forcing term f : I → R, is a real function.

Proof. See Appendix A.2.

Some considerations on these theorems are needed. We start with the last result. The
important message of Theorem 3 is the following: if we assume a boundary condition and a
forcing term which are real functions then also the general continuous solution must be real.
Other considerations regard the proofs of Theorem 1 and 2: both of them are strictly related to
the fact that all the roots of h(z) lie in the complex z-plane to the left of some vertical line. That
is, there is a real constant c such that all roots z have real part less then c. This consideration
is in general no longer true for advanced differential equations which are characterized by CE
with zeros of arbitrarily large real part. However as explained by Bellman and Cooke [6],3 it is
possible to write the solution of any advanced differential equation as a sum of exponentials using
the finite Laplace transformation technique. Moreover observe that the characteristic equation
of (5),

h(z) ≡ z + a+ be−zd = 0 (10)

with a = b0
a0
and b = b1

a0
, is a trascendental function with an infinite number of finite roots.

Sometimes h(z) is also called the characteristic quasi-polynomial. Asymptotic stability requires
that all of these roots have negative real part. In order to help in the stability analysis we
introduce two important mathematical results: the Hayes theorem and the D-Subdivision method
or D-Partitions method. Hayes Theorem [18] in its more general formulation states the following:

Theorem 4 The roots of equation pez + q− zez = 0 where p, q ∈ R lies to the left of Re (z) = k
if and only if

(a) p− k < 1

(b) (p− k) ek < −q < ek
q
a21 + (p− k)2

where a1 is the root of a = p tan a such that a ∈ (0, π). If p = 0, we take a1 = π
2 .

One root lies on Re (z) = k and all the other roots on the left if and only if p − k < 1 and
(p− k) ek = −q.

Two roots lies on Re (z) = k and all the other roots on the left if and only if −q =

ek
q
a21 + (p− k)2

Proof. See Hayes [18], page 230-231.

However this Theorem doesn’t say anything about the sign of the real part of the roots of
the trascendental function when the conditions (a) and (b) are not respected. For this reason
the D-Subdivision method is now introduced (for more details on this method, El’sgol’ts and
Norkin [13], or Kolmanovskii and Nosov [23]). Given a trascendental function like, for example,
(10), this method is able to determine the number of roots having positive real part (for now
on p-zeros) in accordance with the value of its coefficients (a and b in our specific case). This
is possible since the zeros of a trascendental function are continuous functions of those same
coefficients.

3Look at Chapter 6 page 197-205.
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Definition 1 Given the characteristic equation of a functional differential equation with con-
stant coefficients, a D-Subdivision is a partition of the space of coefficients into regions by hy-
persurfaces, the points of which correspond to quasi-polynomials having at least one zero on the
imaginary axis (the case z = 0 is not excluded).

For continuous variation of the trascendental function coefficients the number of p-zeros may
change only by passage of some zeros through an imaginary axis, that is, if the point in the
coefficient space passes across the boundary of a region of the D-Subdivision. Thus, to every
region Γk of the D-Subdivision, it is possible to assign a number k which is the number of p-zeros
of the trascendental function. Among the regions of this partition are also found regions Γ0 (if
they exist) which are regions of asymptotic stability of solutions. Finally in order to clarify how
the number of roots with positive real parts changes as some boundary of the D-Subdivision is
crossed, the differential of the real part of the root is computed, and the decrease or increase of
the number of p-zeros is determined from its algebraic sign. Since it becomes very useful later,
we study, with the D-Subdivision method, the trascendental function (10).

First of all, observe that this equation has a zero root for a+ b = 0. This straight line (see
Figure 1) is one of the lines forming the boundary of the D-Subdivision. It is also immediately
derived that the trascendental function (10) has purely imaginary roots if and only if

a+ b cos dy = 0, y − b sin dy = 0 (11)

or

b =
y

sin dy
, a =

−y cos dy
sin dy

(12)

The equations in parametric form (11) or (12) identify all the other D-Subdivision boundaries. To
be precise there is one boundary for any of the following interval of y:

¡
0, πd

¢
,
¡
π
d ,
2π
d

¢
,
¡
2π
d ,

3π
d

¢
, . . ..

Moreover it is possible (and useful) to find the values of b for which the boundaries intercept
the b-axis. The sequence of such b is

©
. . . ,−7π2d ,−

3π
2d , 0,

π
2d ,

5π
2d , . . .

ª
. Finally we show how p-zeros

rises. In particular, when a crossing of Cl from Γ0 to Γ2 implies the rising of two p-zeros (that
is, we focus on the interval 0 < y < π

d ). From (10) applying the implicit function theorem, we
have that on Cl

dx = −Re da

1− bde−diy

= −Re da

1− bd (cos dy − i sin dy)

=
(1− bd cos dy) da

(1− bd cos dy)2 + b2d2 sin2 dy

We find that cos yd < 0 for bd > 1. Therefore, upon crossing the boundary Cl from region Γ0
into Γ2, a pair of complex conjugate roots gain positive real parts. The analysis on the other
boundaries of the D-Subdivision is completely analogous. Taking into account all of these re-
sults, we are now ready to study our model completely.
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Figure 1: D-Subdivision for the trascendental function (10) assuming d = 5.

4 Balance Growth Path Analysis

In order to show the existence and uniqueness of the BGP, we now present some results re-
garding the roots of the characteristic equation of the law of motion of capital, of its shadow
price, and of consumption. These results are presented and proved in Lemma 1 and Lemma
2, respectively. Some pictures are also provided in order to help the reader get the main mes-
sage behind the maths. After that, the continuous solution of capital is rewritten as a sum of
weighted exponential (Proposition 1) and then, following a very similar strategy as that used in
the standard AK model, a unique balance growth path for consumption and capital is proved
by checking the transversality condition. Very similar to this, is the requirement that for any
exogenously given choice of the delay coefficient, the production function has to be sufficiently
productive to ensure growth in consumption, but not so productive as to yield unbounded util-
ity: A ∈ (Amin, Amax). On the other hand, it is possible to express the same requirement, given
a certain level of technology, in term of the delay coefficient: d ∈ (dmin, dmax). Finally as in the
standard case if σ > 1, then Amax is equal to plus infinity, while dmin is zero.

As anticipated in Lemma 1 we report some information on the roots of the CE of the law of
motion of capital and its shadow price:

Lemma 1 For any sufficiently high rate of depreciation "before use", φ, the following results

6



hold:
1) z̃ is the unique root with positive real part of the CE of the law of motion of capital;
2) s̃ is the unique root with negative real part of the CE of the law of motion of shadow price.

Proof. The characteristic equation of the law of motion of capital (1) is equal to the character-
istic equation of its homogeneous part4, namely

h(z) ≡ z − Ãe−zd = 0 (13)

It immediate to show that this equation has a unique positive real root zṽ = z̃ which is also
the highest among its roots. In particular, through the D-Subdivision method it is possible to
prove that the trascendental equation (13) has an increasing number of p-zeros as d rises. On
the other hand if we assume φ = φ̂ sufficiently high,5 it happens that Ã < 3π

2d for any choice
of d and then a unique p-zero exists6. These facts can be easily observed in Figure 2. Finally,
z̃ > Re(zv) occurs for any v 6= ṽ since all the roots of the CE of (1) in the detrended variables
x̂(t) = x(t)e−z̃t are negative. This is sufficient to prove result 1). Now observe that the CE of
the shadow price law of motion (3) is

h(s) ≡ −s− Ãesd = 0 (14)

then we can put in correspondence the roots of (13) and (14) through the transformation z = −s.
From this consideration follows immediately that Re(s) = −Re(z) and s̃ = −z̃ is the root with
the lowest real part of the characteristic equation of the law of motion of shadow price.

10 20 30 40
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0.2

0.4

0.6

0.8

1

1.2

1.4

A-d

3 p
ÅÅÅÅÅÅÅÅÅÅ
2 d

7 p
ÅÅÅÅÅÅÅÅÅÅ
2 d

HA-dL‰-f
`

 d

G1

G3

G5

Figure 2: Number of p-zeros of (13) according to the choice of the delay coefficient.

Lemma 1 tells us that if we assume a sufficiently high depreciation "before use" rate, φ̂, then
z̃ is the constant growth rate of capital and the unique p-zero of (13). Now it will be useful for
proving a common growth rate of consumption and capital to show the following Lemma:

Lemma 2 A positive and constant growth rate of consumption, gc, always exists for A > Amin =

δ + ρe(ρ+φ̂)d.
4The part of equation (1) not considering the forcing term −bC(t).
5 In the numerical simulation, reported in Section 7, we have assumed φ̂ ' 0.03.
6This is also a consequence of the fact that Ã converges to zero faster than 3π

2d as d→∞.
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Proof. First of all observe that since the Euler equation (4) is a nonlinear ADE we cannot
write directly its continuous general solution (Theorem 2 doesn’t apply). However it is possible
to overcome this fact by observing that the general continuous solution of consumption can be
obtained indirectly by the first order condition (2). Considering the general continuous solution
of the shadow price of capital μ (t) =

P
m
ame

−zmt, we have that

c(t) =
1µP

m
ame−σλmt

¶ 1
σ

(15)

where we have called
λ =

1

σ
(z − ρ) (16)

From equation (15) we can derive that the basic solutions of (4) have exponential form, namely
the basic solutions are

©
eλm

ª
m
; moreover taking into account (13) and (16) we can derive

indirectly the characteristic equation7 of (4)

h (λ) = σλ+ ρ− Ãe−(σλ+ρ)d (17)

Using the Hayes theorem or the D-Subdivision method, a unique positive real root, λm̃ = gc exists
for A sufficiently large, namely A > Amin = δ+ρe(ρ+φ)d. This is exactly the same condition of the
standard AKmodel when the assumption of time-to-build is introduced. Observe also that in this
context the same requirement can be expressed in term of the delay, d < dmax =

1
ρ+φ log

A−δ
ρ .

Exactly as before, a unique p-zero exists if Ãe−ρd < 3π
2d . It is obvious that, for φ = φ̂, the

inequality is always respected (see Figure 3) since φ̂ was sufficient to force Ã to stay below 3π
2d ,

and given that (A− δ) e−φ̂de−ρd is a product of functions which are positive and monotonic

decreasing in d. As it will appear clear in Section 6 for any φ ∈
h
0, φ̂

´
, some economically

implausible prediction may arise. Then, from now on, we focus on the case φ ≥ φ̂. Observe
moreover that endogenous growth implies that consumption and capital have to grow at a
positive rate over time. This implies that limt→∞ c (t) = +∞; then given (15), we have to
impose that

lim
t→∞

1Ã
am̃e−σgct +

P
m/∈m̃

ame−σλmt

! 1
σ

= +∞ (18)

Using the properties of the limits8, it is possible to rewrite (18) as

1⎛⎜⎜⎜⎝ limt→∞
am̃e

−σgct| {z }
→0

+
P
m/∈m̃

lim
t→∞

ame
−σλmt

| {z }
→∞

⎞⎟⎟⎟⎠
1
σ

= +∞

Then it results that the relation (18) is satisfied if and only if am = 0 for any m 6= m̃. Taking
into account this fact, the general continuous solution of consumption is

c (t) = a
− 1
σ

m̃ egct

7We have referred to equation (17) as the characteristic equation of the law of motion of consumption since
gives us all the basic solutions.

8The following properties have been used: limx→a
f(x)
g(x)

= limx→a f(x)
limx→a g(x)

, limx→a [f (x)]
n = [limx→a f (x)]

n, and

limx→a i fi (x) = i limx→a fi (x)
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Figure 3: Number of p-zeros of (17) according to the choice of the delay coefficient.

Our objective is to prove that the growth rate of consumption and capital are the same g =
gc. However before proving it, we introduce the following Corollary of Theorem 2 which let us
to rewrite the continuous solution of capital as a sum of weighted exponentials.

Proposition 1 The solution of the law of motion of capital can be written as

k(t) =
X

v
Pm̃,ve

gct +
X

v
Nm̃,ve

zvt (19)

where Pm̃,v = − a
− 1
σ

m̃
(gc−zv)h0(zv) and Nm̃,v = nv − Pm̃,v.

Proof. According to Theorem 2 and Lemma 2, the continuous general solution of consumption
and capital are respectively

c(t) = a
− 1
σ

m̃ egct (20)

k(t) =
X

v
nve

zvt −
Z t

0
c (s)

X
v

ezv(t−s)

h0(zv)
ds (21)

Now the integral part of equation (21) is equal to

Z t

0
a
− 1
σ

m̃ egcs
X

v

ezv(t−s)

h0(zv)
ds =

X
v

a
− 1
σ

m̃

(gc − zv)h0(zv)

¡
egct − ezvt

¢
and substituting in (21) after some algebra we get (19).

Some comments on equations (20) and (19) are needed. These equations are very close to
the general solution form for consumption and capital in the usual framework, with ordinary dif-
ferential equations; in particular k(t) is a weighted sum of exponentials; however, this similarity
can be found for systems of mixed functional differential equations only in the particular case
of a single equation with forced term. In the most general cases there doesn’t exist a theorem
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which lets us write the solution in this way9. Moreover, the continuous solution of the law of
motion of consumption (20) and capital (19), are not the optimal solution exactly as it happens
in the ordinary case. Before getting optimality, transversality conditions have to be checked.
Using this corollary and TVC, we prove now the existence of a unique balance growth path for
consumption and capital.

Proposition 2 Consumption and capital have the same balanced growth path g = gc. This
growth rate is positive and yields bounded utility if A ∈ (Amin, Amax).

Proof. As shown in Lemma 2, the growth rate of consumption gc is a positive constant if
A > Amin. Given that, we have to distinguish two cases: z̃ ≤ gc and z̃ > gc. The first case is
never possible. In fact, assume that z̃ ≤ gc then gc is also the growth rate of capital as follows
immediately by looking at equation (19). Then we can rewrite the characteristic equation of
capital, after the transformation k̂(t) = k(t)e−gct, as

−wew − gcde
w + Ãde−gcd = 0 (22)

where w = zd. Since gc is the root having greater positive real part, all the roots of (22) must
have negative real part which, from Hayes Theorem implies also that gc > Ãe−gcd. However,
this is never possible since it contradicts the positive sign of the consumption to output ratio at
the balanced growth path

c(t)

k(t)
= Ãe−gcd − gc > 0

which can be obtained by dividing the law of motion of capital (1) by k(t). Then the only
possible case is z̃ = σgc + ρ > gc. This is exactly the requirement for having no unbounded
utility: (1− σ) gc < ρ. Then, before passing to the TVC we observe that if σ > 1, the utility
is always bounded; on the other hand if 0 < σ < 1 we need a condition on A such that
the utility is bounded. Taking into account the CE (17) after some algebra this condition is

A < Amax = δ+ ρ
1−σe

ρ+φ(1−σ)
1−σ d

which is exactly the same condition for the standard AK model
when the time-to-build parameter is equal to zero. Observe also that such a condition can be
rewritten also in terms of the delay, d > dmin =

1−σ
ρ+(1−σ)φ log

(A−δ)(1−σ)
ρ . Now we show that the

TVC
lim
t→∞

μ (t) k(t) = 0 (23)

implies necessarily a unique BGP which is gc. In order to see this, we substitute the general
continuous solutions of μ(t) and k(t), into the TVC (23) and we get:

lim
t→∞

am̃e
−z̃t
³X

v
Pm̃,ve

gct +
X

v
Nm̃,ve

zvt
´
= 0 (24)

which is equal to

lim
t→∞

h
am̃Nm̃,ṽ +

X
v 6=ṽ

Nm̃,ṽe
(zv−z̃)t +

X
v
Pm̃,ve

(gc−z̃)t
i
= 0

now for am̃ 6= 0, the second and third term in the parenthesis converge to zero since zv − z̃ < 0
for any v and gc − z̃ < 0. Then the TVC are respected if and only if

Nm̃,ṽ ≡
a
− 1
σ

m̃

(gc − z̃)h0 (z̃)
+ nṽ = 0 (25)

9Recently Asl and Ulsoy [2] have proved that a general solution form can be written for system of delay
differential equations using Lambert function.
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which implies

am̃ =

µ
1

(z̃ − gc)h0 (z̃)nṽ

¶σ

(26)

Observe that if we assume a constant boundary condition for capital, k0, and for consumption,
c0, we can derive the following relation

c0 = (z̃ − gc) e
z̃dk0

which for d = 0 is exactly equal to the relation between c0 and k0 in the standard AK model
(see Barro and Sala-i-Martin [4]). Concluding TVC holds if and only if condition (25) is verified.
Given this condition, gc is also the growth rate of capital since the continuous general solution
of capital (21) can be rewritten as follows

k(t) =
X

v
Pm̃,ve

gct +
X

v 6=ṽ
Nm̃,ve

zvt (27)

Then the optimal solution of capital (27) is asymptotically driven by gc which implies a common
growth rate with consumption.

This proposition provides evidence of how a unique balance growth path for consumption and
capital can be proved to exist also in the case of time-to-build by checking to the transversality
conditions. In fact, through condition (25), it is possible to rule out the eigenvalue coming from
the characteristic equation of the law of motion of capital, having positive real part greater than
gc. Observe also that this fact and the assumption of the new structure of capital depreciation
make all of these results hold for any choice of the delay in the interval (dmin, dmax) which
guarantees the presence of endogenous growth and no unbounded utility.

Once we have shown that g = gc is the unique balanced growth path of consumption and
capital, it is also interesting to see how different choices of the delay coefficient, d, and of the
level of technology A affect it. These considerations are reported in the following corollary of
Proposition 2:

Corollary 1 Under A ∈ (Amin, Amax), ∂g
∂d and

∂g
∂φ are negative while

∂g
∂A is positive.

Proof. Under A ∈ (Amin, Amax), we have shown that g is the unique positive balance growth
path for consumption and capital. The effect of a variation of d, φ, and A on g can be easily
computed by applying the Implicit Function Theorem on the trascendental equation (17) which
is always satisfied for λ = g. After some algebra we obtain that

∂g

∂d
= −(A− δ) (σg + ρ+ φ) e−(σg+ρ+φ)d

σ + σd (A− δ) e−(σg+ρ+φ)d
< 0

∂g

∂φ
= − d (A− δ) e−(σg+ρ+φ)d

σ + σd (A− δ) e−(σg+ρ+φ)d
< 0

∂g

∂A
=

e−(σg+ρ+φ)d

σ + σd (A− δ) e−(σg+ρ+φ)d
> 0

These results are very intuitive; the negative relations between the time-to-build delay and the
growth rate and between the depreciation "before use" and the growth rate are due, respectively,
to the fact that an increase in the time-to-build delay increases the time to produce output and
by the fact that a higher depreciation "before use" reduces the net capital. On the other hand,
the positive effect of the productivity of capital is obvious and is present in the standard AK
model as well. In Figure 4, we have reported the behavior of g as d rises (the decreasing curve)
and the standard case with d = 0 for the following parametrization: σ = 8, ρ = 0.02, A = 0.30,
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δ = 0.04, and φ̂ = 0.04. Given these values, d has to be in the interval (0, 42.74) in order to
have a positive balance growth path.

Figure 4: Behavior of the balance growth path, g, to variations of d.

5 Consumption and Capital Dynamics

In the previous section, we have proved the existence and uniqueness of the balance growth
path. We have also shown the influence of the delay coefficient on the growth rate for a given
level of technology. In this section, we focus on the dynamic behavior of the optimal detrended
consumption and capital which let us to derive indirectly the behavior of detrended income and
detrended investment.

Proposition 3 Optimal detrended consumption is constant over time while optimal detrended
capital path is unique and oscillatory converges to a constant.

Proof. The optimal detrended solution of capital and consumption can be obtained by multi-
plying both sides of equations (27) and (20) by e−gct

ĉ(t) = a
− 1
σ

m̃ (28)

k̂(t) =
X

v
Pm̃,v +

X
v 6=ṽ

Nm̃,ve
(zv−gc)t (29)

After calling z = x + iy and n = α + iβ, and taking into account Theorem 3, the detrended
solution for capital can be rewritten, as shown in Appendix A.3, in the following way

k̂(t) = αṽ + 2
X

v 6=ṽ
Ψ0,v + 2

X
v 6=ṽ

[(αv −Ψ0,v) cos yt− (βv +Ψ1,v) sin yt] e(xv−gc)t (30)

where Ψ0,v,Ψ1,v ∈ R for any v. Finally, the asymptotic behavior of capital is equal to

lim
t→∞

k̂(t) = αṽ + 2
X

v
Ψ0,v (31)
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Expressions (30) and (31) tell us that the transition to the BGP is oscillatory due to the presence
of the cosine and sine term, and that the convergence is guarantee by the fact that xv = Re (zv) <
gc for any v 6= ṽ. Finally, the uniqueness of the path is due to the fact that the residue {nv}v
are fixed by the boundary condition of capital while the residue am̃ is fixed by the transversality
condition through the expression (26).

Moreover, taking into account the technology and the resources constraint of our economy,
it follows immediately that output and investment have an oscillatory behavior. In the following
section, we discuss the opportunity of introducing the depreciation "before use" hypothesis and
the role which a choice of a φ ≥ φ̂ has in extending our results for all the feasible values of the
delay. On the other hand, as it will appear clear soon, all the results obtained until now remain
valid even for the extreme case φ = 0 when an appropriate sub-interval of d is appropriately
chosen.

6 Considerations on the depreciation "before use" hypothesis.

It is quite easily observable that all the results obtained until now remain valid in the specific
case of φ = 0 for a restricted interval of the time-to-build coefficient. However, for a sufficiently
high choice of the delay, several technical problems arise. In particular, a general continuous
solution as a sum of exponentials as in (19) can no longer be written and following that the
validity of transversality conditions become extremely difficult to assess. Remember that in
exogenous growth models, as in Asea and Zak [1], and Rustichini [24], the choice of the delay is
crucial in avoiding the possible presence of capital divergence behavior. The introduction of the
depreciation "before use" hypothesis, and in particular with a sufficiently high level of φ, has a
crucial role in avoiding these problems and then in extending the results to the whole interval
of the delay. To be precise, the introduction of depreciation "before use", depending inversely
on the time-to-build parameter, is able to stabilize the capital equilibrium path by reducing net
capital.

7 Numerical Exercise

Now, we present a numerical exercise. In this section we report only the result of our simulation
while a detailed explanation of the computational methods is reported in Appendix A.4. The
following parametrization of our economy has been chosen:

σ ρ δ φ d A dmin dmax
0.8 0.02 0.05 0.03 20 0.3 7 50.51

Remember that if we have chosen σ > 1 the dmin should be equal to 0; in our case with σ = 0.8
a value of d less than dmin implies unbounded utility. On the other hand a value of the delay
greater than dmax implies no endogenous growth since the highest root is close to 0.02 and
taking into account our parametrization and relation (16), we have, that at the right of this
value the growth rate of consumption is no longer positive. Moreover, observe that given this
parametrization, the D-Subdivision method tells us that: in the case of no depreciation "before
use" (φ = 0), in the interval d =

h
d̃min, 18.85

´
we have only one root with positive real part;

in the interval d = [18.85, 43.98), three roots with positive real part, and finally in the interval
d = [43.98, d̃max], five roots with positive real part. This fact is reported in Figure 5, where a
subset of the infinite roots of the homogeneous part of (1) are numerically computed through
the Lambert function. Figure 5 and Figure 6 shows the real parts of the roots in the x-axis and
the imaginary parts in the y-axis:
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Figure 5: Number of p-roots for the law of motion of capital according to different choices of d.

This first graph of the spectrum is interesting, since it shows how an increase in the value of
the time-to-build coefficients reduces the magnitude of the real part of the highest eigenvalue.
Taking into account relation (16), this numerical result confirms Corollary 2. Now we show
the effect of the introduction of a minimum degree of depreciation "before use" on the capital
dynamics. In particular, through Figure 6, it is possible to observe how a choice of φ = 0.03
forces the spectrum of roots of the law of motion of capital to have only one eigenvalue with
positive real part even in the extreme case of a delay coefficient equal to dmax = 50.

Figure 6: Variation in the number of roots with positive real part in the case dmax = 50.

As we can expect, the presence of a positive depreciation "before use" rate reduces the growth
rate of capital, and indirectly, through relation (16), of consumption. This effect is due to the
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fact that net capital is reduced and, indirectly, output, consumption, and investment. The next
two figures show the dynamic behavior of detrended capital (equation (30)) over time. In the
first case, Figure 7, we have studied the detrended capital dynamics given a constant initial
value (boundary condition) of capital, k0.

Figure 7: Dynamic behavior of detrended capital given a positive and constant boundary
condition, k0.

As it appears clear, the presence of time-to-build is able to generate oscillatory behavior
of capital for a long interval of time. Taking into account the technology and the resources
constraint of our economy both output and investment will have a similar dynamic behavior
as capital. Observe that the oscillatory dynamic behavior of these variables is enhanced by
a consumption smoothing effect. In fact from Proposition 3, we know that the social planner
optimally chooses to have a constant detrended consumption while detrended capital bears most
of the adjustment to the BGP. Finally we have reported in Figure 8, the capital dynamic behavior
for different choices of the delay given the following parametrization

σ ρ δ φ d1, d2, d3, d4 A dmin dmax
8 0.02 0.05 0.03 0.5; 1; 5; 10 0.3 0 50.51
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Figure 8: Capital dynamic behavior for different choices of the delay.

It is interesting to notice that the higher the choice of the delay is the more relevant is the
oscillatory structure of capital dynamics. This fact has been reported in Figure 8, in the case
of σ = 8 starting with values of the delay sufficiently close to zero and given a same boundary
condition for capital k0. Remember that variation in the choice of the delay have an influence
on the value of the balance growth path. In particular, for Corollary 1, the higher is the delay,
the lower is the balance growth path. This fact appears also in Figure 8, where with ki,ss
and i = 1, ..., 4, we have indicated the different balance growth paths. Finally, the dynamic
behavior of capital appears more and more smooth as d is close to zero: this dynamic behavior
is consistent with what we aspect in the extreme case d = 0.

8 Conclusion

This paper has fully analyzed an AK endogenous growth model when the time-to-build as-
sumption is introduced through a delay differential equation for capital. It has been proved
the existence and uniqueness of the BGP and also that a unique optimal path of the detrended
capital is oscillatory convergent to its steady state value while detrended consumption jumps
directly on it as the usual case without delay. These results have been obtained through a careful
analysis of the role of transversality conditions and the introduction of a new structure of capital
depreciation, which takes into account the depreciation of capital before it becomes productive.
This last assumption appears to be crucial in avoiding implausible economic predictions which
may appear in this type of model for choices of the time-to-build coefficient sufficiently high.
Finally the analysis of the model let us confirm that time-to-build can be considered a source of
aggregate fluctuation for capital and output exactly as the vintage capital assumption.
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A Appendix

A.1 Proof of Theorem 2.

The proof of this theorem is mainly based on Bellman and Cooke [6] (Section 3.9, page 73-75).
The only relevant difference is that we assume a boundary condition defined in the interval
[−d, 0], and not in [0, d]. Given this difference we need an "auxiliary" function x(t) having the
following properties:

(a) x(t) = 0 t < −d;
(b) x(−d) = a−10 e−sd;
(c) x(t) is of class C0 on [0,∞) ;
(d) x(t) satisfies the equation

a0ẋ(t) + b0x (t) + b1x (t− d) = 0 for t > −d (32)

Before showing that the Laplace transform of x(t) is h−1(z), it is important to notice that it
is possible to prove (see Bellman and Cooke [6]) the existence and uniqueness of x(t) even if
equation (32) doesn’t respect theorem 1 since the boundary condition doesn’t define a continuous
function over [−2d, d]. We multiply each term of equation (32) by e−zt and integrate with respect
to t from −d and ∞, we get

a0

∞Z
−d

ẋ (t) e−ztdt+ b0

∞Z
−d

x (t) e−ztdt+ b1

∞Z
−d

x (t− d) e−ztdt = 0 (33)

and integrating by part the first term and making the change of variables t1 = t− d in the last
term, relation (33) can be rewritten

−1 + a0z

∞Z
−d

x (t) e−ztdt+ b0

∞Z
−d

x (t) e−ztdt+ b1e
−zd

∞Z
−d

x (t1) e
−zt1dt1 = 0

from which follows immediately that the Laplace transform of x(t) is

∞Z
−d

x (t) e−ztdt = h−1(z) (34)

Now, using the Laplace transform formula we get

x (t) =

Z
(c)

ezt

h (z)
dz for t > −d (35)

For the residue theorem equation (35) is equivalent to

x (t) =
X
r

RES

½
ezt

h (z)
, zr

¾

and taking into account the formula RES
h
ψ(a)
φ(a) , ã

i
= ψ(ã)

φ0(ã)
when ψ (ã) 6= 0

x (t) =
X
r

ezrt

h0 (zr)
for t > −d (36)
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Now for Theorem 3.7 of Bellman and Cooke [6], the general continuous solution, u(t), of the
delay differential equation with forcing term

a0u̇(t) + b0u(t) + b1u(t− d) = f(t) (37)

which satisfies the initial or boundary condition u(t) = ξ(t) with t ∈ [−d, 0] , is

u (t) = a0ξ (0)x (t) + (a0zr + b0)

0Z
−d

ξ(s)x (t− s) ds+

tZ
0

f(s)x(t− s)ds (38)

and taking into account relation (36) we can rewrite (38) as

u(t) =
X
r

a0ξ(0) + (a0zr + b0)

Z 0

−d
ξ(s)e−zrsds

h0 (zr)
ezrt +

tZ
0

f(s)
P
r

ezr(t−s)

h0 (zr)
ds

which ie exactly equal to relation (8).

A.2 Proof of Theorem 3.

The proof is organized in two parts. In the first part, we show that the unique general solution
of (5) with boundary condition (6)

u(t) =
P
r
pre

zrt +

tZ
0

f(s)
P
r

ezr(t−s)

h0 (zr)
ds (39)

where the roots {zr} and the residues {vr} come respectively from the characteristic equation
of the homogeneous part of (5)

h (z) = a0z + b0 + b1e
−zd (40)

and from the relation

pr =
p (zr)

h0 (zr)
=

a0ξ(0) + (a0zr + b0)

0Z
−d

ξ(s)e−zrsds

a0 − b1de−zrd
(41)

can be rewritten as

u (t) =
kP

r=0
ςre

xrt +
∞P
r=k

¡
are

zrt + āre
z̄rt
¢
+ (42)

+

tZ
0

f(s)

"
kP

r=0

exr(t−s)

h0 (xr)
+

∞P
r=k

Ã
ezr(t−s)

h0 (zr)
+

ez̄r(t−s)

h0 (z̄r)

!#
ds

where {xr} are real roots, {zr} are complex conjugate roots10, {ςr} are real constants, and {ar}
are complex conjugate constants. In fact, from the D-Subdivisions method we know that (40)
has at most two real roots and an infinite number of complex conjugate roots. From (41), it

10We have indicated the conjugate of a complex number a with ā.

18



appears also clear that the residues related to real roots are real while those related to complex
roots are complex. Taking into account these results it is possible to split (39) as follows

u (t) =
kP

r=0
ςre

xrt +
∞P
r=k

¡
are

zrt + cre
z̄rt
¢
+

tZ
0

f(s)

"
kP

r=0

exr(t−s)

h0 (xr)
+

∞P
r=k

Ã
ezr(t−s)

h0 (zr)
+

ez̄r(t−s)

h0 (z̄r)

!#
ds

where z = x + iy and z̄ = x − iy. We now show that cr = ār is always the case. This is
equivalent to show that, given the expressions of ar and cr, the Im (cr + ar) = 0 and that the
Re (cr − ar) = 0. We start by showing the first relation. In order to simplify the notation we
omit from now on the r:

a+ c =

a0ξ(0) + (a0z + b0)

0Z
−d

ξ(s)e−zsds

a0 − b1de−zd
+

a0ξ(0) + (a0z̄ + b0)

0Z
−d

ξ(s)e−z̄sds

a0 − b1de−z̄d

=

⎡⎣ξ(0) + ³z + b̃0

´ 0Z
−d

ξ(s)e−zsds

⎤⎦ £a0 − b1de
−z̄d¤

1
a0
[a0 − b1de−zd] [a0 − b1de−z̄d]

+ (43)

+

⎡⎣ξ(0) + ³z̄ + b̃0

´ 0Z
−d

ξ(s)e−z̄sds

⎤⎦ £a0 − b1de
−zd¤

1
a0
[a0 − b1de−zd] [a0 − b1de−z̄d]

(44)

where b̃0 = b0
a0
. The denominator is always real since:h

a0 − b1de
−zd
i h

a0 − b1de
−z̄d
i
= a20 − a0b1d

³
e−zd + e−z̄d

´
+ b21d

2e−zd−z̄d =

= a20 − a0b1de
−xd

³
e−iyd + eiyd

´
+ b21d

2e−2xd

and taking into account that eiy + e−iy = 2cos y while eiy − e−iy = 2i sin y we have thath
a0 − b1de

−zd
i h

a0 − b1de
−z̄d
i
= a20 − 2a0b1de−xd cos yd+ b21d

2e−2xd

which is real. Then we have also to show that the numerator of relation (43) is real.

Num = A+B

where

A = ξ(0)
h
a0 − b1de

−z̄d
i
+ ξ(0)

h
a0 − b1de

−zd
i

= 2a0ξ(0)− 2b1dξ(0)e−xd cos yd
= 2ξ(0)

h
a0 − b1de

−xd cos yd
i

which is real. On the other hand

B =
h
z + b̃0

i h
a0 − b1de

−z̄d
i 0Z
−d

ξ(s)e−zsds+
h
z̄ + b̃0

i h
a0 − b1de

−zd
i 0Z
−d

ξ(s)e−z̄sds (45)
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Now observe that

0Z
−d

ξ(s)e−zsds =

0Z
−d

ξ(s)e−xs cos ys ds

| {z }
α

−i
0Z
−d

ξ(s)e−xs sin ys ds

| {z }
β

while

0Z
−d

ξ(s)e−z̄sds =

α+ iβ. Taking into account this relation (45) is equivalent to

B =
h
z + b̃0

i h
a0 − b1de

−z̄d
i
[α− iβ] +

h
z̄ + b̃0

i h
a0 − b1de

−zd
i
[α+ iβ]

= a0α (z + z̄)− αb1d
³
ze−z̄d + z̄e−zd

´
− ia0β (z − z̄) + iβb1d

³
ze−z̄d − z̄e−zd

´
+

+2b̃0αa0 − αb̃0b1d
³
e−z̄d + e−zd

´
− ib̃0b1βd

³
e−z̄d − e−zd

´
= 2a0αx+ 2a0βy + 2b̃0αa0 − αb1de

−xd
h
x
³
eiyd + e−iyd

´
+ iy

³
eiyd − e−iyd

´i
+

+iβb1de
−xd

h
x
³
eiyd − e−iyd

´
+ iy

³
eiyd + e−iyd

´i
− αb̃0b1de

−xd
³
eiyd + e−iyd

´
+

−ib̃0b1βde−xd
³
eiyd − e−iyd

´
= 2a0αx+ 2a0βy + 2b̃0αa0 − 2αb1de−xd [x cos yd− y sin yd]− 2βb1de−xd [x sin yd+ y cos yd]

−2αb̃0b1de−xd cos yd+ 2b̃0b1βde−xd sin yd

which is real. This is sufficient to prove that a+c is real, given that it is a ratio of real numbers.
Now we have to show that Re (ar − cr) = 0.

a− c =

⎡⎣ξ(0) + ³z + b̃0

´ 0Z
−d

ξ(s)e−zsds

⎤⎦ £a0 − b1de
−z̄d¤

1
a0

£
a20 − 2a0b1de−xd cos yd+ b21d

2e−2xd
¤ +

−

⎡⎣ξ(0) + ³z̄ + b̃0

´ 0Z
−d

ξ(s)e−z̄sds

⎤⎦ £a0 − b1de
−zd¤

1
a0

£
a20 − 2a0b1de−xd cos yd+ b21d

2e−2xd
¤

the denominator as before is real. Then we have to show that the numerator is purely imaginary.
As before, we split the numerator

Num = C +D

where

C = ξ(0)
h
a0 − b1de

−z̄d
i
− ξ(0)

h
a0 − b1de

−zd
i

= −b1dξ(0)e−xd
³
eiyd − e−iyd

´
= 2ib1dξ(0)e

−xd sin yd
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which is purely imaginary, and

D =
h
z + b̃0

i h
a0 − b1de

−z̄d
i 0Z
−d

ξ(s)e−zsds−
h
z̄ + b̃0

i h
a0 − b1de

−zd
i 0Z
−d

ξ(s)e−z̄sds

=
h
z + b̃0

i h
a0 − b1de

−z̄d
i
[α− iβ]−

h
z̄ + b̃0

i h
a0 − b1de

−zd
i
[α+ iβ]

= a0α (z − z̄)− αb1d
³
ze−z̄d − z̄e−zd

´
− ia0β (z + z̄) + iβb1d

³
ze−z̄d + z̄e−zd

´
− 2ib̃0a0β +

−αb̃0b1d
³
e−z̄d − e−zd

´
− ib̃0b1βd

³
e−z̄d + e−zd

´
= 2i

h
a0αy − a0βx− b̃0a0β − αb1de

−xd (x sin yd+ y cos yd) + βb1de
−xd (x cos yd− y sin yd)+

−αb̃0b1de−xd sin yd− b̃0b1βde
−xd cos yd

i
which is purely imaginary too. Then Re (ar − cr) = 0 since it is a ratio of a sum of purely
imaginary numbers and a real number. This is sufficient to prove expression (42).

The second part of the proof consists in showing that (42) is a real function. We start by
considering the first term

kP
r=0

ςre
xrt +

∞P
r=k

¡
are

zrt + āre
z̄rt
¢

(46)

Calling a = ς + iω we have that

aezt + āez̄t = (ς + iω) exteiyt + (ς − iω) exte−iyt

= ext [(ς + iω) (cos yt+ i sin yt) + (ς − iω) (cos yt− i sin yt)]

= 2ext (ς cos yt− ω sin yt)

and then (46) becomes
kP

r=0
ςre

xrt + 2
∞P
r=k

ext (ς cos yt− ω sin yt)

which is a real function of t. Now we study the term

∞P
r=k

Ã
ezr(t−s)

h0 (zr)
+

ez̄r(t−s)

h0 (z̄r)

!

After some boring algebra this can be rewritten as

∞P
r=k

2
©
a0 cos [yr (t− s)]− b1de

−xrd cos [yr (t− s+ d)]
ª

a20 − 2a0b1de−xrd cos yrd+ b21d
2e−2xrd

exr(t−s)

which is a real function. Then it follows immediately that the general continuous solution (42)
can be rewritten as

u (t) =
kP

r=0
ςre

xrt + 2
∞P
r=k

ext (ς cos yt− ω sin yt) + (47)

+

tZ
0

f(s)

"
kP

r=0

exr(t−s)

h0 (xr)
+

∞P
r=k

2
©
a0 cos [yr (t− s)]− b1de

−xrd cos [yr (t− s+ d)]
ª

a20 − 2a0b1de−xrd cos yrd+ b21d
2e−2xrd

exr(t−s)
#
ds

which is clearly a real function.u : I → R.
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A.3 How to get expression (30) from (29).

First of all, observe that from Theorem 3 we can rewriteX
v
Pm̃,v = −a−

1
σ

m̃

∙
1

(gc − z̃)h0(z̃)
+
X

v 6=ṽ

µ
1

(gc − zv)h0(zv)
+

1

(gc − z̄v)h0(z̄v)

¶¸
= αṽ − a

− 1
σ

m̃

X
v 6=ṽ

µ
(gc − z̄v)h

0(z̄v) + (gc − zv)h
0(zv)

(gc − zv) (gc − z̄v)h0(zv)h0(z̄v)

¶
Now calling z = x+ iy and n = α+ iβ, and taking into account the shape of the characteristic
equation we get after some algebraX

v
Pm̃,v = αṽ + 2

X
v 6=ṽ
Ψ0,v (48)

where

Ψ0,v = −a
− 1
σ

m̃

gc − xv + Ãe−xvd
©£
(gc − xv)xv + y2v

¤
cos yvd+ [(gc − xv) yv + xvyv] sin yvd

ª
(g2c − 2gcxv + x2v + y2v)

h
1 + Ãe−2xvd (x2v + y2v) + 2Ãe

−xvd (xv cos yvd+ yv sin yvd)
i

Now we have to rewriteX
v 6=ṽ

Nm̃,ve
zvt =

X
v 6=ṽ

(nv − Pm̃,v) e
zvt

=
X

v 6=ṽ

¡
nve

zvt + n̄ve
z̄vt
¢
+ a

− 1
σ

m̃

X
v 6=ṽ

µ
ezvt

(gc − zv)h0(zv)
+

ez̄vt

(gc − z̄v)h0(z̄v)

¶
which taking into account the results of the previous Appendix is equal to

2
X

v 6=ṽ
(αv cos yvt− βv sin yvt) e

xvt + a
− 1
σ

m̃

X
v 6=ṽ

µ
(gc − z̄v)h

0(z̄v)ezvt + (gc − zv)h
0(zv)ez̄vt

(gc − zv) (gc − z̄v)h0(zv)h0(z̄v)

¶
which after some algebra and taking into account some trigonometric relations can be rewritten
as

2
X

v 6=ṽ
[(α−Ψ0,v) cos yt− (β +Ψ1,v) sin yt] exvt (49)

where

Ψ1,v = a
− 1
σ

m̃

yv + Ãe−xvd
©£
(gc − xv)xv + y2v

¤
sin yvd− [(gc − xv) yv + xvyv] cos yvd

ª
(g2c − 2gcxv + x2v + y2v)

h
1 + Ãe−2xvd (x2v + y2v) + 2Ãe

−xvd (xv cos yvd+ yv sin yvd)
i

Finally taking into account relations (48) and (49) follows immediately the shape of the general
continuous solution in (30).

A.4 Computational method

In order to obtain the spectrum of the roots from the law of motion of capital and its solution,
we have used Lambert functions as proposed recently by Asl and Ulsoy [2]. A class of functions
W (s) are called Lambert functions if they satisfy the relation

W (s)eW (s) = s (50)

Then considering the characteristic equation of the law of motion of capital

−ses + dÃ = 0 (51)
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with s = zd, and taking into account the definition of the Lambert function (50), we have that

W
³
dÃ
´
eW (dÃ) = dÃ (52)

Now comparing (51) and (52), the solutions of the equation which describe the characteristic
spectrum are

z =
1

d
W
³
dÃ
´

In the most general form, the Lambert function is a complex function with infinite branches.
Calculation of both the principal branch and the other branches can be presented in series form
([2] see for more details). Taking into account these results, we have used the MatLab programs
(Lambertww.m, Spectrum.m, and Solutions.m) in order to derive the first m = 16 branches11

and from them the corresponding roots. Then we have derived the roots of the characteristic
equation of the law of motion of consumption through relation (16) and residue pm through
the relation (41). Observe that to any branch corresponds a particular solution for the delay
differential equation. Finally, using the result in Theorem 3, namely the shape of the general
continuous solution (30), it is possible to derive the general continuous solution.

11The results obtained in our analysis are invariant to a higher choice of m.
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