EUI Working Paper ECO No. 97/11

Stability Properties in a Growth Model

ALESSANDRA PELLONI
and
ROBERT WALDMANN

BADIA FIESOLANA, SAN DOMENICO (FI)
All rights reserved.
No part of this paper may be reproduced in any form
without permission of the authors.

© Alessandra Pelloni and Robert Waldmann
Printed in Italy in May 1997
European University Institute
Badia Fiesolana
I - 50016 San Domenico (FI)
Italy
Stability properties in a growth model*

Alessandra Pelloni Robert Waldmann
Warwick University European University Institute

February 1997

Abstract

The inclusion of a labour/leisure choice in endogenous growth models has interesting and somewhat counter-intuitive effects. In existing one sector models, a condition for indeterminacy is that labour demand is upward-sloping, which is difficult to reconcile with the evidence. In this paper we give conditions for indeterminacy in a one sector model with decreasing returns to labour. We show that this requires that consumption and leisure are both highly intertemporally substitutable while the factors of production are highly complementary.

*We wish to thank G. Cazzavillan, R. Farmer, M. Salmon and participants in seminars in Florence, Istanbul and Warwick for helpful comments. All remaining errors are our own.
1 Introduction

In this paper we study whether the market outcome can be indeterminate in a one sector model of endogenous growth, where agents elastically supply labour and there are decreasing returns to labour. Recently there has been a renewed interest in the problem of indeterminacy of equilibria in growth models.\(^1\) As is well known, indeterminate steady states are associated with a continuum of rational expectations equilibria driven by self-fulfilling beliefs. These are dynamic examples of what Shell (1977) labeled “sunspot equilibria” and have welfare properties different from those of equilibria that depend only on fundamentals. In a growth framework, the existence of a continuum of equilibria means that countries with identical tastes, technology and initial endowments will converge to the same constant growth rate only in the very long run—while the level of income will remain different for ever. This seems an explanation deserving investigation for the differences in the growth patterns of the various countries observed in reality. The models suggest the possibility that appropriate policy interventions will in fact raise welfare, acting as selection devices for equilibria that differ during the transition interval. In fact cultural and institutional features in general may be seen as playing this same role.

To our knowledge, in existing one sector models a condition for indeterminacy is the presence of increasing returns to labour in the production of the factor that can be accumulated whether it is physical capital, human capital or knowledge. That labour demand slopes up is highly controversial and indeed very difficult to reconcile with evidence, so these models tend to fail empirically.\(^2\) In this paper we give conditions for indeterminacy in a one sector model with decreasing returns to labour. We show that this requires that consumption and leisure are both highly intertemporally substitutable while the factors of production are highly complementary. A heuristic explanation is the following: starting from an optimal path, if one attempts to construct a new equilibrium by increasing consumption, then, if the elasticity of substitution of consumption is more than one, leisure will increase as well. If the elasticity of substitution between labour and capital is low, the reduction in labour supply will cause a sharp decline in the interest rate. But with a high elasticity of substitution of consumption this can cause an even sharper decline in the rate of growth of

consumption, which can decline even more than the rate of growth of capital. Thus the economy would return to the balanced growth path.

The paper has four sections the first of which is this introduction. The second presents a model of unbounded accumulation with leisure in the utility function and gives general conditions for indeterminacy. The third provides an example by selecting specific functional forms for tastes and technology. The fourth draws conclusions.

2 A Model

We present a simple endogenous growth model with variable labour supply. All worker/consumers are identical and maximize the same CES inter-temporal utility function, multiplicatively separable in consumption of the homogeneous good C and the amount of labour they supply, $L \in [0,1]$:

$$ V = \int_0^\infty e^{-pt} \frac{C^{1-\sigma}}{1-\sigma} h(L) dt $$

where $h(L)$ is twice differentiable and the following two conditions must hold for utility to be increasing in consumption and decreasing in labour:

$$ h(L) > 0 $$

$$ (1 - \sigma) h'(L) < 0 $$

while the following two conditions must hold for concavity:

$$ (1 - \sigma) h''(L) < 0 $$

$$ \frac{\sigma}{(\sigma - 1)} h''(L) h(L) > (h'(L))^2 $$

We assume that there is a continuum of competitive firms. As is standard from Romer (1986) we assume that the production set at the firm level is convex in labour L and capital K but that average capital \bar{K} causes a labour augmenting spill-over which is taken as given by each firm, so that the social production function is linear in capital. With population normalized to unity production Y is then given by equation 6

$$ Y = F(L\bar{K}, K) = KF(L,1) \equiv Kf(L) $$
where \(f(0) = 0, \ f' > 0, \ f'' < 0 \). Profit maximization by firms and perfect competition give the wage and real interest rate:

\[
W = K f'(L) \tag{7}
\]

and

\[
r = f(L) - f'(L)L \tag{8}
\]

Equation 9 gives the instantaneous budget constraint consumers face:

\[
\frac{\dot{K}}{K} = r + \frac{WL}{K} - \frac{C}{K} \tag{9}
\]

The static first order condition for the choice between labour and leisure is:

\[
C = \frac{(\sigma - 1)h(L)W}{h'(L)} \tag{10}
\]

The consumers consumption savings choice implies:

\[
r - \rho = \sigma \frac{\dot{C}}{C} - \frac{h'(L)}{h(L)} \frac{\dot{L}}{L} = \left(-\sigma \frac{h''(L)}{h'(L)} + (\sigma - 1) \frac{h'(L)}{h(L)} \right) \dot{L} + \sigma \frac{\dot{W}}{W} \tag{11}
\]

where the second equality is obtained by differentiating the first order condition for consumption and leisure 10.

The instantaneous budget constraint 9 and the first order condition 10 imply:

\[
\frac{\dot{K}}{K} = f(L) + (1 - \sigma) \frac{h(L)}{h'(L)} f'(L) \tag{12}
\]

Differentiating 7 considering 12, and substituting in 11 we get:

\[
\left(-\sigma \frac{h''(L)}{h'(L)} - (1 - \sigma) \frac{h'(L)}{h(L)} \right) \dot{L} = r - \rho - \sigma \frac{\dot{K}}{K} = \left(r - \rho - \sigma \left(f(L) + (1 - \sigma) \frac{h(L)}{h'(L)} f'(L) \right) \right) \tag{13}
\]

Balanced growth \(\bar{L} \) (which is not necessarily unique) is then given by:

\[
\rho = (1 - \sigma) f(\bar{L}) - \left(\bar{L} + \sigma (1 - \sigma) \frac{h(\bar{L})}{h'(\bar{L})} \right) f'(\bar{L}) \tag{14}
\]

The transversality condition that the present value at time zero of the capital stock as time goes to infinity goes to zero can be written as:

\[
\lim_{t \to \infty} h(L)C^{-\sigma} K \exp(-\rho t) = 0 \tag{15}
\]
and implies that $\rho > g(1 - \sigma)$ where g indicates the asymptotic rate of growth. We have $g = \left(r(\bar{L}) - \rho \right) / \sigma$ with $r(\bar{L})$ being the asymptotic rate of interest. The transversality condition then also implies $r(\bar{L}) > g$ or $\rho > (1 - \sigma) r(\bar{L})$. By substituting in this last inequality the value for ρ given by 14 and rearranging we get 16 which we will use later.

$$\bar{L} - (\sigma - 1) \frac{h'(\bar{L})}{h''(\bar{L})} = \bar{L} - \frac{C}{W} < 0$$

We now analyse the dynamic nature of the steady state equilibrium. If this is stable when the economy is near balanced growth and labour supply drops slightly while consumption increases slightly then labour supply returns to its balanced growth level and the consumption capital ratio returns to its balanced growth level. Such stability implies indeterminacy – Consumption and labour supply can take a range of values each consistent with utility maximization and perfect foresight. As is well known, this in turn means that economically irrelevant publicly observable variables (sunspots) can effect the economy, even if all agents are rational utility maximizers with rational expectations. This is of some interest, since the effects of such a sunspot are permanent. The long run expected value of labour supply and of the consumption capital ratio are not affected by the sunspot, but the level of consumption and the capital stock are affected.

The coefficient of \bar{L} in 13 is always negative. In fact, 5 can be rewritten as $\sigma \frac{h''(\bar{L})}{h'(\bar{L})} + (1 - \sigma) \frac{h'(\bar{L})}{h''(\bar{L})} > 0$. The balanced growth path is then locally indeterminate if and only if:

$$(\bar{L} + \sigma(1 - \sigma) \frac{h(\bar{L})}{h'(\bar{L})}) \frac{f''(\bar{L})}{f'(\bar{L})} + \left(\sigma + \sigma(1 - \sigma)(1 - \frac{h(\bar{L}) h''(\bar{L})}{(h'(\bar{L})^2)} \right) f'(\bar{L}) < 0 \quad (17)$$

In 17 the coefficient of $f'(\bar{L})$ is positive both for $\sigma < 1$ and for $\sigma > 1$; in fact 5 implies

$$1 + (1 - \sigma)(1 - \frac{h(\bar{L}) h''(\bar{L})}{(h'(\bar{L})^2)}) > 1 + 1 - \sigma - \frac{(1 - \sigma)^2}{\sigma} = \frac{1}{\sigma} \quad (18)$$

A necessary condition for stability is therefore that the coefficient of $f''(\bar{L})$ in 17 is positive. From 16 it’s easy to infer that for $\sigma > 1$ we have $\bar{L} + \sigma(1 - \sigma) \frac{h(\bar{L})}{h'(\bar{L})} = \bar{L} - \sigma \frac{C}{W} < 0$.

A first result is then that for $\sigma > 1$ any balanced growth equilibrium is locally unstable. Since \bar{L} is a continuous function of L local instability implies
global instability. Thus, balanced growth equilibrium is unique for σ greater than one.

In contrast, for any σ less than one, for any $h(L)$ such that 19 holds there is a production function such that the economy has a stable and indeterminate growth path.

$$1 - \sigma (\sigma - 1) \frac{h'(1)}{h(1)} > 0 \quad (19)$$

For stability it is necessary that $L - \sigma \frac{C}{W}$ is positive. $L - \sigma \frac{C}{W} = L + \sigma (1 - \sigma) \frac{h(L)}{h'(L)}$ is increasing in L as for $\sigma < 1$, $h(L)$ is decreasing in L while $|h'(L)|$ is increasing in L. Therefore assumption 19 and the fact that $-\sigma \frac{h'(0)}{h(0)}$ is negative allow us to infer that there is a L^* such that $L^* - \sigma \frac{C(L^*)}{W(L^*)} = 0$. From 16 we can then see that if L^* is the balanced growth labour supply, the transversality condition is respected. L^* is the balanced growth labour supply if $\rho = (1 - \sigma)f(L^*)$. Now consider L^{**} slightly greater than L^*. The right hand side of 14 is continuous in L so L^{**} is the balanced growth labour supply for some positive ρ close to $(1 - \sigma)f(L^*)$. Since $L - \sigma \frac{C}{W}$ is increasing in L, this means that for any $\sigma < 1$, for any $h(L)$ such that 19 holds there is a positive ρ such that, in balanced growth \bar{L}, inequality 20 holds

$$\bar{L} - \sigma \frac{C}{W} > 0 \quad (20)$$

Notice that f'' does not appear either in 14 or in 20. This means that we can consider different production functions which give the same balanced growth \bar{L} and the same balanced growth $\frac{C}{K}(\bar{L})$ and $f'(\bar{L}) = \frac{W}{K}(\bar{L})$ but have different $f''(\bar{L})$. In particular, for fixed balanced growth $(\bar{L})L, \frac{C}{K}(\bar{L})$ and $\frac{W}{K}(\bar{L})$, there is a $f''(\bar{L})$ so far below zero that the condition for local stability 17 holds.

In conclusion we have shown that for any σ less than one, for any $h(L)$ such that $1 - \sigma (\sigma - 1) \frac{h(1)}{h'(1)} > 0$, there are ρ and $f(L)$ such that the balanced growth path is stable and indeterminate.

To sum up, for stability to obtain it is necessary i) that the elasticity of substitution of capital and labour is low so that the wage falls sharply and the interest rate rises sharply as labour supply increases and ii) that σ is small so that the marginal utility of consumption declines only slowly as consumption increases.

A heuristic explanation of the importance of a high elasticity of consumption ($\sigma < 1$) for stability is the following: for stability it is necessary that if the

3For stability it is necessary that $L - \sigma \frac{C}{W}$ is positive, so for $\rho = (1 - \sigma)f(L^*)$, the equilibrium is unstable. This means that differentiating 14 we have $\frac{\partial f}{\partial L}(L^*) < 0$.\}
initial consumption to capital ratio is slightly higher than balanced growth consumption to capital ratio then the rate of growth of consumption is lower than the rate of growth of capital. High initial consumption can imply a low rate of consumption if leisure is a normal good (as it must be if \(\sigma < 1 \)) so high initial consumption implies low initial labour supply. If the elasticity of substitution between labour and capital is low the reduction in labour supply will cause a sharp decline in the interest rate. But with a high elasticity of substitution of consumption this can cause an even sharper decline in the rate of growth of consumption which can decline even more than the rate of growth of capital. Thus the economy can return to the balanced growth path.

A simple diagrammatic analysis can help in clarifying the issue of the stability of equilibrium. Figures 1 and 2 show, as functions of \(L \), the \(\frac{\dot{K}}{\dot{K}} \) curve, that is, the budget constraint, and the \(\frac{\dot{L}}{\dot{L}} \) curve —which equals \(\frac{\dot{c}}{\dot{c}} \) if \(L = \dot{L} \) is constant. At balanced growth \(\dot{L} \) the \(\frac{\dot{K}}{\dot{K}} \) curve intersects the \(\frac{\dot{L}}{\dot{L}} \) curve. If the \(\frac{\dot{K}}{\dot{K}} \) curve cuts the \(\frac{\dot{L}}{\dot{L}} \) curve from above, as in figure 1, the balanced growth path is stable, while if the \(\frac{\dot{K}}{\dot{K}} \) curve cuts the \(\frac{\dot{L}}{\dot{L}} \) curve from below, as in figure 2, the balanced growth path is unstable. This is clear from inspection of equation 13, given that the coefficient of \(\dot{L} \) in the equation is always negative. 4

2.1 An Example of Dynamic Stability

In this section we provide an example of an endogenous growth model with elastic labour supply with a dynamically stable and indeterminate balanced growth path, by choosing specific functional forms for \(h(L) \) and \(f(L) \). We consider the case in which

\[
h(L) = (1 - L)^{1-x}
\]

(21)

On the technology side we consider a CES production function with a labour augmenting spill-over to capital and elasticity of substitution of \(\frac{1}{1-\phi} \).

4Notice that both the \(\frac{\dot{c}}{\dot{c}} \) curve and the \(\frac{\dot{L}}{\dot{L}} \) curve always slope up. In fact for the former this is immediate since the rate of interest is increasing in labour. For the latter differentiating the right hand side of 9 with respect to labour we find:

\[
(1 - \sigma) \frac{h}{h'} f'' + \sigma \left(1 + (1 - \sigma)(1 - \frac{h''}{h'^2}) \right) f' > 0
\]

as we know from 18 and the conditions for concavity of \(f \) and the utility function.
must be less than one for the production possibilities set to be convex. So we have:

\[Y = A \left(\alpha(KL)^\phi + (1 - \alpha)K^\phi \right)^{1/\phi} \]

(22)

where \(A \) is a scale factor and \(\alpha \in (0, 1) \).

Using the fact that \(L^\phi = \frac{1-a}{\alpha} \frac{S_L}{1-S_L} \), where \(S_L \) indicates the income share of labor and rearranging inequality 17 becomes inequality 23

\[\bar{L} \left((\phi - 1) \left(1 + \frac{\sigma(1-\sigma)}{1-\chi} \right) (1 - S_L) + \sigma \frac{(2 - \sigma - \chi)}{1-\chi} \right) < \frac{\sigma (1 - \sigma) (1 - S_L)}{(1 - \chi)} \]

(23)

We introduce the variable \(\nu \equiv \frac{\nu}{\rho} \), that is the ratio between the interest rate and the balanced growth rate in balanced growth. Notice that the transversality condition implies that \(\nu \) is greater than one. The balanced growth labour supply can be expressed as

\[\bar{L} = \frac{\frac{1-a}{\alpha} \frac{S_L}{1-S_L}}{1-\chi} \frac{1}{1-\chi} + \frac{\nu - 1}{\nu} \]

(24)

To obtain 24 we have proceeded as follows. Noticing that \(\rho = r(1 - \frac{a}{\nu}) \) and recalling that \(r = f - Lf' \), given the specification in 21 for \(h(L) \), 14 can be rewritten as

\[\frac{(1-a)}{\nu} \left(\frac{\nu}{\rho} \right)^{1/\phi - 1} = - \left(\frac{\nu}{\rho} \right)^{1/\phi} + \frac{1-a}{\alpha} (1 - \bar{L}) \left(\frac{\nu}{\rho} \right)^{1/\phi - 1} \bar{L}^{\phi - 1} \]

(25)

where \(\left(\frac{\nu}{\rho} \right)^{1/\phi} = (\frac{1-a}{\alpha}) \left(\frac{\nu}{\rho} \right)^{1/\phi - 1} \). Simplifying, noticing that \(\bar{L}^\phi = \frac{S_L}{(1-S_L)} \left(\frac{1-a}{\alpha} \right) \) and rearranging we get 24.

Substituting the expression for \(\bar{L} \) given in 24 in 23 we finally obtain:

\[(\phi - 1) \left(\sigma \left(1 - S_L \right) \frac{1-v}{v} + S_L (1 - \sigma) \right) < \frac{\sigma S_L}{(1 - S_L)} \frac{\sigma + \chi - 2}{1 - \chi} \]

(26)

As the right hand side of this inequality is negative we need for the inequality to hold that the left hand side is negative as well, that is

\[\sigma < \frac{v S_L}{v + S_L - 1} \]

(27)

Notice the higher is \(v \), the lower is \(S_L \), the lower must be \(\sigma \) for 27 to hold. In conclusion a necessary and sufficient condition for stability to obtain is 26, which implies 27. Inspection of 26 shows that for any value of \(\sigma \) respecting condition
27 there is a value of ϕ low enough to give rise to indeterminacy. Notice that stability is possible only if ϕ is negative, since

$$
\frac{\sigma S_p \sigma^{1-x} - 2}{(1-S_L)(1-\chi)} = \frac{\sigma^{1-x} - 1}{(1-S_L) \frac{1-x}{1-x} + S_L(1-\sigma)} < -1
$$

In fact the denominator of the fraction is always less than one, while the numerator is always less than minus one since $\sigma^{1-x} - 1$ can be rewritten, given $\sigma < 1, \chi < 1$, as $\sigma + \chi > 1$, which is implied by condition 5 for concavity.

3 Conclusions

We have given general conditions under which a model with one good produced under constant returns to capital and decreasing returns to labour, i.e. featuring a downward sloping labour demand, can have a stable balanced growth path, so that sunspots can matter. We have shown that for indeterminacy we need a low elasticity of substitution of labour and capital and an intertemporal elasticity of consumption less than one i.e. that the marginal utility of consumption declines slowly with consumption.
References

EUI Working Papers are published and distributed by the European University Institute, Florence

Copies can be obtained free of charge – depending on the availability of stocks – from:

The Publications Officer
European University Institute
Badia Fiesolana
I-50016 San Domenico di Fiesole (FI)
Italy

Please use order form overleaf
Publications of the European University Institute

To
The Publications Officer
European University Institute
Badia Fiesolana
I-50016 San Domenico di Fiesole (FI) – Italy
Telefax No: +39/55/4685 636
E-mail: publish@datacomm.iue.it

From
Name

Address

☐ Please send me a complete list of EUI Working Papers
☐ Please send me a complete list of EUI book publications
☐ Please send me the EUI brochure Academic Year 1997/98

Please send me the following EUI Working Paper(s):

No, Author
Title:

No, Author
Title:

No, Author
Title:

No, Author
Title:

Date

Signature
Working Papers of the Department of Economics
Published since 1994

ECO No. 96/1
Ana Rute CARDOSO
Earnings Inequality in Portugal: High and Rising?

ECO No. 96/2
Ana Rute CARDOSO
Workers or Employers: Who is Shaping Wage Inequality?

ECO No. 96/3
David F. HENDRY/Grayham E. MIZON
The Influence of A.W.H. Phillips on Econometrics

ECO No. 96/4
Andrzej BANIAK
The Multimarket Labour-Managed Firm and the Effects of Devaluation

ECO No. 96/5
Luca ANDERLINI/Hamid SABOURIAN
The Evolution of Algorithmic Learning: A Global Stability Result

ECO No. 96/6
James DOW
Arbitrage, Hedging, and Financial Innovation

ECO No. 96/7
Marion KÖHLER
Coalitions in International Monetary Policy Games

ECO No. 96/8
John MICKLEWRIGHT/Gyula NAGY
A Follow-Up Survey of Unemployment Insurance Exhausters in Hungary

ECO No. 96/9
Alastair McAULEY/John MICKLEWRIGHT/Aline COUDOUEL
Transfers and Exchange Between Households in Central Asia

ECO No. 96/10
Christian BELZIL/Xuelin ZHANG
Young Children and the Search Costs of Unemployed Females

ECO No. 96/11
Christian BELZIL
Contiguous Duration Dependence and Nonstationarity in Job Search: Some Reduced-Form Estimates

ECO No. 96/12
Ramon MARIMON
Learning from Learning in Economics

ECO No. 96/13
Luisa ZANFORLIN
Technological Diffusion, Learning and Economic Performance: An Empirical Investigation on an Extended Set of Countries

ECO No. 96/14
Humberto LÓPEZ/Eva ORTEGA/Angel UBIDE
Explaining the Dynamics of Spanish Unemployment

ECO No. 96/15
Spyros VASSILAKIS
Accelerating New Product Development by Overcoming Complexity Constraints

ECO No. 96/16
Andrew LEWIS
On Technological Differences in Oligopolistic Industries

ECO No. 96/17
Christian BELZIL
Employment Reallocation, Wages and the Allocation of Workers Between Expanding and Declining Firms

ECO No. 96/18
Christian BELZIL/Xuelin ZHANG
Unemployment, Search and the Gender Wage Gap: A Structural Model

ECO No. 96/19
Christian BELZIL
The Dynamics of Female Time Allocation upon a First Birth

ECO No. 96/20
Hans-Theo NORMANN
Endogenous Timing in a Duopoly Model with Incomplete Information

*out of print
ECO No. 96/21
Ramon MARIMON/Fabrizio ZILIBOTTI
‘Actual’ Versus ‘Virtual’ Employment in Europe: Is Spain Different?

ECO No. 96/22
Chiara MONFARDINI
Estimating Stochastic Volatility Models Through Indirect Inference

ECO No. 96/23
Luisa ZANFORLIN
Technological Diffusion, Learning and Growth: An Empirical Investigation of a Set of Developing Countries

ECO No. 96/24
Luisa ZANFORLIN
Technological Assimilation, Trade Patterns and Growth: An Empirical Investigation of a Set of Developing Countries

ECO No. 96/25
Giampiero M. GALLO/Massimiliano MARCELLINO
In Plato’s Cave: Sharpening the Shadows of Monetary Announcements

ECO No. 96/26
Dimitrios SIDERIS
The Wage-Price Spiral in Greece: An Application of the LSE Methodology in Systems of Nonstationary Variables

ECO No. 96/27
Andrei SAVKOV
The Optimal Sequence of Privatization in Transitional Economies

ECO No. 96/28
Jacob LUNDQUIST/Dorte VERNER
Optimal Allocation of Foreign Debt Solved by a Multivariate GARCH Model Applied to Danish Data

ECO No. 96/29
Dorte VERNER
The Brazilian Growth Experience in the Light of Old and New Growth Theories

ECO No. 96/30
Steffen HÖRNING/Andrea LOFARO/Louis PHILIPS
How Much to Collude Without Being Detected

ECO No. 96/31
Angel J. UBIDE
The International Transmission of Shocks in an Imperfectly Competitive International Business Cycle Model

ECO No. 96/32
Humberto LOPEZ/Angel J. UBIDE
Demand, Supply, and Animal Spirits

ECO No. 96/33
Andrea LOFARO
On the Efficiency of Bertrand and Cournot Competition with Incomplete Information

ECO No. 96/34
Anindya BANERJEE/David F. HENDRY/Grayham E. MIZON
The Econometric Analysis of Economic Policy

ECO No. 96/35
Christian SCHLUTER
On the Non-Stationarity of German Income Mobility (and Some Observations on Poverty Dynamics)

ECO No. 96/36
Jian-Ming ZHOU
Proposals for Land Consolidation and Expansion in Japan

ECO No. 96/37
Susana GARCIA CERVERO
Skill Differentials in the Long and in the Short Run. A 4-Digit SIC Level U.S. Manufacturing Study

ECO No. 97/1
Jonathan SIMON
The Expected Value of Lotto when not all Numbers are Equal

ECO No. 97/2
Bernhard WINKLER
Of Sticks and Carrots: Incentives and the Maastricht Road to EMU

ECO No. 97/3
James DOW/Rohit RAHI
Informed Trading, Investment, and Welfare

*out of print
ECO No. 97/4
Sandrine LABORY
Signalling Aspects of Managers’ Incentives

ECO No. 97/5
Humberto LÓPEZ/Eva ORTEGA/Ángel UBIDE
Dating and Forecasting the Spanish Business Cycle

ECO No. 97/6
Yadira GONZÁLEZ de LARA
Changes in Information and Optimal Debt Contracts: The Sea Loan

ECO No. 97/7
Sandrine LABORY
Organisational Dimensions of Innovation

ECO No. 97/8
Sandrine LABORY
Firm Structure and Market Structure: A Case Study of the Car Industry

ECO No. 97/9
Elena BARDASI/Chiara MONFARDINI
The Choice of the Working Sector in Italy: A Trivariate Probit Analysis

ECO No. 97/10
Bernhard WINKLER
Coordinating European Monetary Union

ECO No. 97/11
Alessandra PELLONI/Robert WALDMANN
Stability Properties in a Growth Model

out of print