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Abstract

An important question in empirical macroeconomics is whether
structural vector autoregressions (SVARs) can reliably discriminate
between competing DSGE models. Several recent papers have sug-
gested that one reason SVARs may fail to do so is because they are
finite-order approximations to infinite-order processes. In this context,
we investigate the performance of models that do not suffer from this
type of misspecification. We estimate VARMA and state space models
using simulated data from a standard economic model and compare
true with estimated impulse responses. For our examples, we find that
one cannot gain much by using algorithms based on a VARMA rep-
resentation. However, algorithms that are based on the state space
representation do outperform VARs. Unfortunately, these alternative
estimates remain heavily biased and very imprecise. The findings of
this paper suggest that the reason SVARs perform weakly in these
types of simulation studies is not because they are simple finite-order
approximations. Given the properties of the generated data, their fail-
ure seems almost entirely due to the use of small samples.
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1 Introduction

Structural VARs are a widely used tool in empirical macroeconomics, par-

ticularly for the evaluation of DSGE models.1 The results from SVARs

are often viewed as stylized facts that economic models should replicate.

However, there has recently been some debate whether SVARs can actually

discriminate between competing DSGE models and whether their sampling

properties are good enough to justify their popularity in applied macroeco-

nomics. In response to the seminal paper by Gali (1999), the discussion

has focussed on the impact of technology shocks on hours worked, identified

using restrictions on the long-run impact matrix of the structural errors. In

their contributions, Chari, Kehoe and McGrattan (2005) and Christiano,

Eichenbaum and Vigfusson (2006) investigate the properties of the estima-

tors derived from SVARs by simulating an artificial data generating process

(DGP) derived from a simple RBC model and by comparing true with esti-

mated impulse responses.

According to Chari et al. (2005), SVARs fail dramatically for both a level

and difference specification of hours worked. Even with a correct specifica-

tion of the integration properties of the series, the SVAR overestimates in

most cases the impact of technology on labor and the estimates display high

variability. However, Christiano et al. (2006) argue that the parametrization

chosen by Chari et al. (2005) is highly unrealistic. With their preferred para-

metrization, Christiano et al. (2006) find that both long-run and short-run
1Examples in the literature are, among many others, Blanchard and Quah (1989), as

well as King, Plosser, Stock and Watson (1991), Christiano and Eichenbaum (1992) and
Gali (1999).
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identification schemes display only small biases and argue that, on average,

the confidence intervals produced by SVARs correctly reflect the degree of

sampling uncertainty. In addition, they find that short-run identification

schemes work much better compared to identification via long-run restric-

tions. Nevertheless, Christiano et al. (2006) also conclude that the estimates

obtained via a long-run identification scheme are extremely imprecise. These

results have been further confirmed by Erceg, Guerrieri and Gust (2005).

Thus with long-run restrictions, one can often not even make a correct in-

ference about the sign of the structural impulse responses. The question

is therefore if one should use this type of identification scheme at all. On

the other hand, long-run identification is attractive from a theoretical point

of view, since it usually requires much weaker assumptions than short-run

identification and is in any case a useful additional tool for model evaluation.

The failure of finite-order SVARs is sometimes attributed to the fact that

they are only approximations to infinite-order VAR processes or to the pos-

sibility that there does not exist a VAR representation at all. For example,

Cooley and Dwyer (1998) give an example of an economic model that im-

plies a vector autoregressive moving average (VARMA) representation of the

data series and state: “While VARMA models involve additional estimation

and identification issues, these complications do not justify systematically

ignoring these moving average components, as in the SVAR approach”. As

further shown by Fernández Villaverde, Rubio Ramı́rez and Sargent (2005),

DSGE models generally imply a state space system that has a VARMA

and eventually an infinite VAR representation. Fernández Villaverde et al.

(2005) propose the inclusion of moving average terms if the DSGE model
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at hand does not permit an infinite VAR representation. Christiano et al.

(2006) state that “Given our data generating processes, the true VAR of the

data has infinite lags. However, the econometrician can only use a finite

number of lags in the estimation procedure. The resulting specification error

is the reason why in some of our examples the sum of VAR coefficients is

difficult to estimate accurately”.

This paper explores the possible advantages of structural VARMA and

state space models that capture the full structure of the time series represen-

tation implied by DSGE models. We investigate whether estimators based

on these alternative models can outperform SVARs in finite samples.2 Our

question is important for several reasons. First, it is useful to find out to

what extent the failure of SVARs in these simulation studies is due to the

omission of moving average components. Second, whether estimators based

on alternative representations of the same DGP have good sampling proper-

ties is interesting in itself. Employing these alternatives enables researchers

to quantify the robustness of their results by comparing different estimates.

In order to assess whether the inclusion of a moving average component

leads to important improvements, we stick to the research design of Chari

et al. (2005) and Christiano et al. (2006): We simulate DSGE models and

fit different reduced form models to recover the structural shocks. We then

compare the performance of these different procedures by focussing on the

estimated contemporaneous impact. The estimation procedure employs a
2After finishing the paper, we found out that McGrattan’s (2006) work is closely re-

lated to our paper. In a different setting, McGrattan (2006) also investigated indepen-
dently whether the application of state space or VARMA models with minimal structural
assumptions can uncover statistics of interest. Her work focusses on different business
cycle statistics, while we are exclusively concerned with classical structural estimation.
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Gauss-Newton algorithm for the VARMA models, and both a prediction

error method and a subspace algorithm for the state space models. One of

the findings of this exercise is that one could indeed perform slightly better

by taking the full structure of the DGP into account: While the algorithm

for VARMA models and the prediction error method do not perform signifi-

cantly better (and sometimes worse), the subspace algorithm for state space

models outperforms VARs in terms of mean squared error. Unfortunately,

we also find that even these alternative estimators are highly volatile and

are also ill-suited to discriminate reliably between different DSGE models.

One of the implications is that SVARs do not fail in these simulation studies

because they are only finite-order approximations. Given the properties of

the data, the poor performance of SVARs is most likely due to the fact that

the long-run identification approach is inappropriate with small samples.

The rest of the paper is organized as follows. In section 2 we present

the RBC model used by Chari et al. (2005) and Christiano et al. (2006)

that serves as the basis for our Monte Carlo simulations. In section 3 we

discuss the different statistical representations of the observed data series.

In section 4 we present the specification and estimation procedures and the

results from the Monte Carlo simulations. Section 5 concludes.

2 A simple RBC model

The DGP for the simulations is based on a very basic RBC model taken from

Chari et al. (2005). In the model, a technology shock is the only shock that

affects labor productivity in the long-run, which is the crucial identifying
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assumption made by Gali (1999) to assess the role of technology shocks in

the business cycle. For this reason, Chari et al. (2005) consider the model

as a best case scenario for the SVAR approach.

Households choose infinite sequences of per capita consumption, labor

and capital, {Ct, Lt, Kt+1 }∞t=0, to maximize expected lifetime utility

E0

∞∑

t=0

[β(1 + γ)]t
[
log Ct + ψ

(1− Lt)
1− σ

1−σ
]

,

given an initial capital stock K0, and subject to a set of budget constraints

given by

Ct + (1 + τx) ((1 + γ)Kt+1 − (1− δ)Kt) ≤ (1− τlt)wtLt + rtKt + Tt,

for t = 0, ...,∞, where wt is the wage, rt is the rental rate of capital, Tt are

lump-sum government transfers and τlt is an exogenous labor tax. The pa-

rameters include the discount factor β ∈ (0, 1), the labor supply parameters,

ψ > 0 and σ > 0, the deprecation rate δ ∈ (0, 1), the population growth

rate γ > 0 and a constant investment tax τx. The production technology is

Yt = Kα
t (XtLt)1−α,

where Xt reflects labor-augmenting technological progress and α ∈ (0, 1) is

the capital income share. Competitive firms maximize Yt−wtLt−rtKt. The

economy-wide resource constraint is Yt ≥ Ct + (1 + γ)Kt+1 − (1− δ)Kt.

The model contains two exogenous shocks, a technology shock and a tax
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shock, which follow the stochastic processes

log Xt+1 = µ + log Xt + σxεx,t+1,

τlt+1 = (1− ρ)τ̄l + ρτlt + σlεl,t+1,

where εx,t and εl,t are independent random variables with mean zero and

unit standard deviation. σx > 0 and σl > 0 are the standard deviations

of the two shocks, µ > 0 is the mean growth rate of technology, τ̄l > 0

is the mean labor tax and ρ ∈ (0, 1) measures the persistence of the tax

process. Hence, the model has two independent shocks: a unit root process

in technology and a stationary AR(1) process in the labor tax.

3 Statistical Representations

Fernández Villaverde et al. (2005) show how the solution of a detrended,

log-linearized DSGE model leads to different statistical representations of

the model-generated data. This section presents several alternative ways to

write down a statistical model for the bivariate, stationary time series

yt =




∆log(Yt/Lt)

log(Lt)


 .

Labour productivity growth ∆ log(Yt/Lt) and hours worked log(Lt) are also

the series analyzed by Gali (1999), as well as Chari et al. (2005) and Chris-

tiano et al. (2006). The appendix provides more detail on the derivations.

Given the log-linearized solution of the RBC model of the previous section,
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we can write down the law of motion of the logs

log kt+1 = φ1 + φ11 log kt − φ11 log xt + φ12τt,

log yt − log Lt = φ2 + φ21 log kt − φ21 log xt + φ22τt,

log Lt = φ3 + φ31 log kt − φ31 log xt + φ32τt,

where kt = Kt/Xt+1 and yt = Yt/Xt are capital and output detrended with

the unit-root shock and the φ’s are the coefficients of the calculated policy

rules. Following Fernández Villaverde et al. (2005) the system can be written

in state space form. The state transition equation is




log kt+1

τt


 = K1 + A




log kt

τt−1


 + B




εx,t

εlt


 ,

xt+1 = K1 + Axt + Bεt

and the observation equation is




∆ log(Yt/Lt)

log Lt


 = K2 + C




log kt

τt−1


 + D




εx,t

εlt


 ,

yt = K2 + Cxt + Dεt,

where K1, A, B, K2, C and D are constant matrices that depend on the

coefficients of the policy rules and therefore on the “deep” parameters of

the model. The state vector is xt = [log kt, τt−1]′ and the noise vector is

εt = [εxt, εlt]′. Note that the system has a state vector of dimension two

with the logarithm of detrended capital and the tax rate shock as state
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components.

The above state space system is still a structural model, since the formu-

lation contains the non-observable state vector and the structural errors. We

now show different representations of the system for yt, which can actually

be estimated. Given certain invertibility conditions on the system matrices,

A,B,C, D, there is an infinite VAR representation:

yt = K3 + C
(
I − (A−BD−1C)L

)−1
BD−1yt−1 + Dεt, (1)

or

yt = K3 +
∞∑

i=1

Πiyt−i + ut,

where K3 and Πi, i = 1, 2, . . . are constant coefficient matrices, L denotes

the lag operator, ut = Dεt and ut ∼ N(0, DD′). Note that a condition for

the existence of an infinite VAR representation is that the eigenvalues of

(A − BD−1C) are strictly less than one in modulus. In practice, it is only

possible to approximate this structure by a finite-order VAR.

Alternatively, the system can be written as a state space model in “inno-

vations form”:

xt+1 = K1 + Axt + Kut, (2)

yt = K2 + Cxt + ut,

where the innovation, ut, is defined as above and K = BD−1. In contrast

to the VAR representation in (1), it is possible to estimate (2) exactly.
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Finally, the underlying DGP can be represented by a VARMA(1,1) rep-

resentation:

yt = K4 + CAC−1yt−1 +
(
D + (CB − CAC−1D)L

)
εt, (3)

yt = K4 + A1yt−1 + ut + M1ut−1,

where the last equation defines A1, M1 and ut = Dεt. As with the state space

representation representation, the VARMA(1,1) representation can also be

estimated exactly.

Given the conditions stated in Fernández Villaverde et al. (2005), all

three representations are algebraically equivalent. That is, given the same

input sequence {εt}, they produce the same output sequence {yt}. The

representations are however not statistically equivalent: the properties of

estimators and tests depend on the chosen statistical representation. It

should be emphasized that we are always interested in the same process and

ultimately in the estimation of the same coefficients, i.e. those associated

with the first-period response of yt to a unit technology shock, εx,t. How-

ever, the different representations require different estimation algorithms

and therefore our comparative study can be regarded as a comparison of

different algorithms to estimate the same linear system.
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4 Long-run Identification in the RBC Model

4.1 Monte Carlo Design and Econometric Techniques

To investigate the properties of the different estimators, we simulate 1000

samples of the vector series yt in linearized form and transform log-deviations

to values in log-levels. As in the previous Monte Carlo studies, the sample

size is 180 quarters. We use two different sets of parameter values: The first

is due to Chari et al. (2005) and is referred to as the CKM-specification,

while the second is the one used by Christiano et al. (2006) and is labelled

the KP-specification, referring to estimates obtained by Prescott (1986).3

The specific parameter values are given in Table 1. Christiano et al. (2006)

show that the key difference between the specifications is the implied fraction

of the variability in hours worked that is due to technology shocks. Table 1

also provides the eigenvalues of the autoregressive and moving average ma-

trices of the VARMA representation, together with the eigenvalues of the

Kalman gain K. In terms of these values, the time series properties are very

similar and indicate why estimation could be difficult. Note that the moving

average part is not of full rank and the associated eigenvalue is close to unity

in modulus. Also, the eigenvalues of the autoregressive part are close to one

and close to the eigenvalue of the moving average part in modulus. The fact

that one eigenvalue of the moving average part is close to one eigenvalue of

the autoregressive part could imply that the VARMA(1,1) representation is
3Both parametrizations are obtained by maximum likelihood estimation of the theo-

retical model, using time series on productivity and hours worked in the US. However,
because of differences in approach, both papers obtain different estimates and therefore
reach different conclusions.
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close to being not identified (Klein, Melard and Spreij 2004).

To check the robustness of our results, we also consider variations of

the benchmark models. As in Christiano et al. (2006), we consider different

values for the preference parameter σ and the standard deviation of the

labor tax, σl. These variations change the fraction of the business cycle

variability that is due to technology shocks. The different values for σ can

be seen in Table C.2. For the CKM specification, we also consider cases

where σl assumes a fraction of the original benchmark value.

Turning to the issue of identification, consider the following infinite mov-

ing average representation of yt

yt =
∞∑

i=0

Φu,iut−i = Φu(L)ut,

where we abstract from the intercept term. Let

Φu(1) = I + Φu,1 + Φu,2 + . . .

be the long-run impact matrix of the reduced form error ut. Note that the

existence of the infinite sum depends on the stationarity of the series. If the

stationarity requirement is violated or “nearly” violated, then the long-run

identification scheme is not valid or may face difficulties. Also note that the

matrix D defined in section 3 gives the first-period impact of a unit shock in

εt. Using the relation ut = Dεt, we know that Φε(1) = Φu(1)D and further

Σu = DD′, where Φε(1) is the long-run impact matrix of the underlying

structural errors and Σu is the covariance matrix of ut. The identifying
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restriction on Φε(1) is that only the technology shock has a permanent effect

on labor productivity. This restriction implies that in our bivariate system

the long-run impact matrix is triangular,

Φε(1) =




Φ11 0

Φ21 Φ22


 ,

and it is assumed that Φ11 > 0. Using Φε(1)Φ′ε(1) = Φu(1)ΣuΦ′u(1) we

can obtain Φε(1) from the Cholesky decomposition of Φu(1)ΣuΦ′u(1). The

contemporaneous impact matrix can be recovered from D = [Φu(1)]−1Φε(1).

Correspondingly, the estimated versions are

Φ̂ε(1) = chol[Φ̂u(1)Σ̂uΦ̂′u(1)],

D̂ = [Φ̂u(1)]−1Φ̂ε(1).

Only the first column of D̂ is identified and is our estimate of the first-period

impact of the technology shock.

Next, we comment on the estimation techniques. First, note that for

each representation there are several possible estimation methods. We chose

algorithms that are both popular in the literature and known to work well

in general. Of course, it is possible that there are algorithms that work

slightly better for one of the representations in the current setting. However,

the aim of this study is primarily to quantify whether the inclusion of the

moving average term alone leads to important gains in terms of more precise

estimates of the structural parameters.
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Vector Autoregressive Models: Structural VARs are well known, so we

comment only on a few issues. Fernández Villaverde et al. (2005) show that

for the CKM-specification, there exists an infinite VAR representation. We

verified that the same is true for the benchmark KP-specification. As in the

previous Monte Carlo studies, the VAR lag length is set at four. However,

for different sets of parameter values a VAR with different lags may yield

slightly better results. We have chosen to stick to the VAR(4) because we

want to facilitate comparison with the results of Christiano et al. (2006)

and because there was no lag order that performed uniformly better for all

DGPs.

State Space Models: There are many ways to estimate a state space

model, e.g., the Kalman-based maximum likelihood methods and subspace

identification methods such as N4SID of van Overschee and DeMoor (1994)

or the CCA method of Larimore (1983). An obvious candidate is maxi-

mum likelihood. Therefore, we included a prediction error method that is

implemented with the PEM routine in the MATLAB system identification

toolbox. However, it is well-known that maximum likelihood methods can

face numerical problems that are due to the dependence on starting values,

nonlinear optimization or local minima. Indeed, these problems also apply

to our setting. Therefore, we also use the CCA subspace algorithm that is

asymptotically equivalent to maximum likelihood and was found to be re-

markably accurate in small samples. As argued in Bauer (2005), CCA might

be the best algorithm for econometric applications. The basic idea of sub-

space methods is that the state, xt, summarizes all information of the past
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that can be used for mean square prediction. Thus, the center of attention

is the state that is estimated in a first step. In a second step the coeffi-

cient matrices are estimated by OLS. The different subspace algorithms use

the structure of the state space representation in various ways. For general

introductions to subspace methods see Bauer (2005) and the appendix.

While implementing the algorithm, we chose the correct dimension of

the state vector n = 2.4 To calculate the long-run effect of the prediction

errors, it is necessary to solve the state space equations xt+1 = Axt +

Kut, yt = Cxt + ut, where the deterministic component is omitted. The

transfer function is given by

Φu(z) = I +
∞∑

j=0

CAjzj+1K = I + zC(I − zA)−1K,

where z ∈ C. The long-run impact matrix of the reduced form error is

given by Φu(1). An estimate can be obtained from the estimated system

matrices, Â, Ĉ, K̂, as Φ̂u(1) = I + Ĉ(I− Â)−1K̂. Henceforth, the estimation

of the contemporaneous impact matrix is entirely analogous to long-run

identification in a standard VAR setting, that is, we recover Φε(1) by a

Cholesky decomposition and then obtain an estimate of D.

4There are two auxiliary parameters in the subspace algorithm, f , p, which determine
the row and column dimension of a Hankel matrix which is estimated in an intermediate
step (see Bauer (2005) and the appendix). They have been set to f = p = 8. These
parameters are of no importance asymptotically as long as they increase at certain rates
with the sample size. In the literature it has been suggested to set f = p = 2p̂ where p̂ is
the order of the chosen autoregressive approximation (Bauer 2005).
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Vector Autoregressive Moving Average Models: The VARMA rep-

resentation given in (3) implies that we can represent yt in terms of the

innovations as

yt = (I −A1L)−1(I + M1L)ut = A(L)−1M(L)ut,

where A(L) and M(L) are the autoregressive polynomial and the moving

average polynomial, respectively and the intercept term has been omitted.

The long-run impact of ut is given by Φu(1) = A(1)−1M(1) and D can

be recovered as before. The representation in (3) is however not the most

useful representation in practice, because it is an unrestricted VARMA(1,1)

and, furthermore, the matrix multiplying ut−1 is singular. It is more use-

ful to choose a specific representation which guarantees that all parame-

ters are identified. For an introduction to the identification problem in

VARMA models see Lütkepohl (2005). Here we employ a final moving av-

erage (FMA) representation that can be derived analogously to the final

equation form (see Dufour and Pelletier 2004). In our case, this results in a

VARMAFMA(2,1) representation in final moving average form (see appen-

dix).5

As in the case of state space models there are many different estimation

methods for VARMA models. Examples are the methods developed by Han-

nan and Rissanen (1982), Koreisha and Pukkila (1990b), Mauricio (1995)

or Kapetanios (2003). We report the results for the estimation algorithm
5We also experimented with other identified representations such as the final equation

representation or the echelon representation. However, the final moving average represen-
tation was found to yield the best results.
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described by Hannan and Kavalieris (1984b). Though it is regression-based,

it is a Gauss-Newton procedure for the maximization of the likelihood, con-

ditional on initial values. First, a high-order VAR is fitted to get initial

estimates of the innovations. In the second stage these estimates are used to

estimate the autoregressive and moving average parameters by least squares.

In the third stage the estimated coefficients are used to form new residuals

and the coefficient estimates from the second stage are refined (see, e.g.,

Hannan and Kavalieris (1984b), Hannan and Deistler (1988) or Dufour and

Pelletier (2004)). We use a VAR with lag length nT = 0.5 T 1/2 for the initial

long autoregression.6

4.2 Results of the Monte Carlo Study

Table C.2 summarizes the results of the Monte Carlo simulation study. We

tabulate Monte Carlo means and standard deviations of the estimates of

the contemporaneous impact of a technology shock on productivity and

hours worked for the various estimators. We also tabulate the MSE of the

different estimators relative to the MSE of the estimator resulting from

the benchmark VAR. Figures 1 and 2 depict the average estimated impulse

responses of hours worked, together with the true impulse responses for the

VAR and the CCA subspace algorithm. In the figures, the bands around the

mean lines correspond to the 0.025% and 0.975% quantiles of the estimated

impulse responses at each point of time.
6We also tried other estimation algorithms. More specifically, we employed full infor-

mation maximum likelihood maximization as, for example, in Mauricio (1995). However,
this procedure was found to be highly non-stable. The algorithm was therefore not con-
sidered to be a practical alternative. One reason for these problems is that the roots of
the AR and the MA polynomials are all close to the unit circle.
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Our SVAR results confirm the findings of both Christiano et al. (2006)

and Chari et al. (2005). While the SVAR is unbiased for the KP-specification,

the same is not true for the CKM-specification. The associated pictures for

both parametrizations show that the 95% bands around the mean impulse

responses comprise a very large region ranging from negative values to very

high positive values. Also, for the different variations of the benchmark

model we find that the SVAR is often severely biased and/or displays high

variability.

The PEM routine performs uniformly worse for all sets of parameter

values. Although, in contrast to the SVAR, the state space model nests the

DSGE model, the small sample performance of this estimation algorithm

is worse. The poor accuracy of the PEM routine can be attributed to the

near non-stationarity and non-invertibility of the series that cause difficulties

for the non-linear optimization. Also local optima are a concern. These

problems are not new. The results of the PEM routine illustrate that a

formally exact representation of the DGP is not necessarily the most efficient

representation for estimation because the associated estimation algorithm

may be numerically unreliable or not robust to the near violation of the

underlying assumptions.

The results for the CCA algorithm support this claim. We find that

the associated MSE of the estimated first-period impulse response is almost

uniformly lower for both series and across different specifications. Only in

two cases the MSE of the CCA-based estimates exceeds the MSE of the

SVAR, and only by a very small amount. In particular, the first-period

impact on hours worked is estimated more precisely up to a relative reduction
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to 85% in terms of MSE for the KP-specification. Figure 1 shows that the

95% interval is slightly narrower for the estimated state space model, but

still very wide. In almost all cases the bias is at least slightly reduced.

Generally, the response of hours worked is estimated more precisely, but the

performances of the SVAR and the state space model seem to be related.

That is, in cases where the VAR fails dramatically, the state space model

does so too, although it might still perform relatively better. The advantage

of the CCA algorithm over the VAR-based least squares algorithm should

be due to the use of the more general state space representation.

The VARMA models perform generally equivalent or worse than a sim-

ple VAR approximation. The Hannan-Kavalieris method may give some

improvement, but is plagued with numerical difficulties. In fact, the im-

provements in terms of bias are compromised by increases in variance and

a higher MSE. The reason is that we face an ill-conditioned problem that

cannot be remedied by rescaling the data because of the presence of eigen-

values close to the unit circle of both the autoregressive and moving average

parts. Furthermore, the roots of the moving average part and the autore-

gressive part imply that the model is close to being not identified. This

in turn implies a near singular information matrix of the parameters. In

comparison to the SVAR model, the VARMAs perform relatively well in es-

timating the impact on hours worked, but worse in estimating the response

of productivity to a technology shock. While the VARMA model fully nests

the underlying DGP, this representation is not very efficient in our context.

A problem common to all algorithms is that the stationarity requirement

is nearly violated for the DGPs at hand. As we have seen in section 4.1,
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the stationarity assumption lies at the heart of the long-run identification

scheme. However, as the eigenvalues in Table C.2 indicate, this assumption

is nearly violated for the benchmark models. This problem is independent

of the chosen representation and, therefore, does not vanish even when we

control for omitted moving average terms. Apart from problems specific to

the algorithms, this common problem may explain the poor performance of

all algorithms - a problem that could be overcome in larger samples.7

5 Conclusions

There has been some debate whether SVARs can actually discriminate be-

tween competing DSGE models and whether their sampling properties are

good enough to justify their popularity in applied macroeconomics. In par-

ticular, several Monte Carlo studies indicate that SVARs based on long-run

restrictions could be heavily biased and very imprecise. Some authors sug-

gest that SVARs may fail because they are only approximate representations

of the underlying DGPs. Therefore, we replicate the simulation experiments

of Chari et al. (2005) and Christiano et al. (2006) and apply more general

models to their artificially generated data. In particular, we use algorithms

based on SVAR, VARMA and state space models and compare the resulting

estimates of the underlying structural model. For our simulations, we found

that one can perform only marginally better by taking the full structure

of the DGP into account. While our VARMA-based conditional ML algo-
7Our estimation results are in line with McGrattan’s (2006) findings. However, Mc-

Grattan (2006) stresses in her context that unrestricted state space and VARMA models
impose too few restrictions to uncover the structural shocks.
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rithm and the prediction error algorithm for state space models were found

to perform not significantly better and often even worse, the CCA subspace

algorithm seems to be at least equivalent to a VAR. Indeed, in several cases

the CCA algorithm performed better than the corresponding SVAR. How-

ever, the obtained estimates of the structural models display high variability

and are biased, regardless of the reduced form model. Furthermore, the per-

formances of the different estimators are strongly correlated. This finding

suggests, that SVARs do not fail because they are simple finite-order ap-

proximations. Given the properties of the data series, the failure of long-run

identification seems almost entirely a small sample problem in these type of

simulation studies.
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A Final MA Equation Form

Consider a standard representation for a stationary and invertible VARMA

process

A(L)yt = M(L)ut.

Recall that M−1(L) = M∗(L)/|M(L)|, where M∗(L) denotes the adjoint

of M(L) and |M(L)| its determinant. We can multiply the above equation

with M∗(L) to get

M∗(L)A(L)yt = |M(L)|ut.

This representation therefore places restrictions on the moving average poly-

nomial which is required to be a scalar operator, |M(L)|. Dufour and Pel-

letier (2004) show that this restriction leads to an identified representation.

More specifically, consider the VARMA(1,1) representation in (3). Since the

moving average part is not of full rank we can write the system as




1− a11L −a12L

−a21L 1− a22L


yt =




1 + m11L αm11L

m21L 1 + αm21L


ut,

where α is some constant not equal to zero.

Clearly, det(M(L)) = 1 + (m11 + αm21)L and we can write




1 + αm21L −αm11L

−m21L 1 + αm11L







1− a11L −a12L

−a21L 1− a22L


yt = [1 + (m11 + αm21)L]ut.
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Because of the reduced rank we end up with a VARMAFMA(2, 1). Note that

the moving average part is indeed restricted to be a scalar operator.

B Statistical Representations

This section elaborates on the derivation of the infinite VAR, VARMA and

state space representations that result from our DSGE model in order to get

an insight into the relationship between the economic model and the implied

time series properties.

Consider again the law of motion of the logs

log kt+1 = φ1 + φ11 log kt − φ11 log xt + φ12τt,

log yt − log Lt = φ2 + φ21 log kt − φ21 log xt + φ22τt,

log Lt = φ3 + φ31 log kt − φ31 log xt + φ32τt,

and the exogenous states

log xt+1 = µ + σxεx,t+1,

τt+1 = (1− ρ)τ̄l + ρτt + σlεl,t+1.

From these equations the state space representation can derived as follows.

First write down the law of motion of labor productivity in differences:

∆ log(Yt/Lt) = log xt + φ21∆log kt − φ21∆log xt + φ22∆τt.
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Thus the observed series can be expressed as

∆ log(Yt/Lt) = φ21 log kt − φ21 log kt−1 + (1− φ21) log xt

+φ21 log xt−1 + φ22τt − φ22τt−1,

log Lt = φ3 + φ31 log kt − φ31 log xt + φ32τt.

Next, rewrite the law of motion for capital as

log kt−1 = −φ−1
11 φ1 + φ−1

11 log kt + log xt−1 − φ−1
11 φ12τt−1,

in order to substitute for capital at time t− 1:

∆ log(Yt/Lt) = φ21φ
−1
11 φ1 + φ21(1− φ−1

11 ) log kt

+(1− φ21) log xt + φ22τt + (φ21φ
−1
11 φ12 − φ22)τt−1.

Using the laws of motion for the stochastic shock processes, substitute the

current exogenous shocks to get

∆ log(Yt/Lt) =
[
φ21φ

−1
11 φ1 + (1− φ21)µ + φ22(1− ρ)τ̄l

]
+ φ21(1− φ−1

11 ) log kt

+(φ21φ
−1
11 φ12 − (1− ρ)φ22)τt−1 + (1− φ21)σxεx,t + φ22σlεl,t,

log Lt = [φ3 − φ31µ + φ32(1− ρ)τ̄l] + φ31 log kt + φ32ρτt−1

−φ31σxεx,t + φ32σlεl,t.

Next, consider the law of motion for capital and express future capital in
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terms of the current states as

log kt+1 = [φ1 − φ11µ + φ12(1− ρ)τ̄l] + φ11 log kt + φ12ρτt−1

−φ11σxεx,t + φ12σlεl,t.

Collecting the above equations, the system can be written in state space

form according to Fernández Villaverde et al. (2005). The state transition

equation is




log kt+1

τt


 = K1 + A




log kt

τt−1


 + B




εx,t

εlt


 ,

where the system matrices are given by

K1 =




φ1 − φ11µ + φ12(1− ρ)τ̄l

(1− ρ)τ̄


 ,

A =




φ11 φ12ρ

0 ρ


 ,

and

B =



−φ11σx φ12σl

0 σl


 .

The observation equation is




∆log(Yt/Lt)

log Lt


 = K2 + C




log kt

τt−1


 + D




εx,t

εlt


 ,
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with system matrices

K2 =




φ21φ
−1
11 φ1 + (1− φ21)µ + φ22(1− ρ)τ̄l

φ3 − φ31µ + φ32(1− ρ)τ̄l


 ,

C =




φ21(1− φ−1
11 ) φ21φ

−1
11 φ12 − (1− ρ)φ22

φ31 φ32ρ


 ,

and

D =




(1− φ21)σx φ22σl

−φ31σx φ32σl


 .

This representation permits us to derive the infinite VAR and VARMA

representation in compact form.

Let yt denote the vector of observables, xt the vector of states, and ε the

white noise shocks. Then we have as above

xt+1 = K1 + Axt + Bεt,

yt = K2 + Cxt + Dεt.

If D is invertible, it is possible to use

εt = D−1 (yt −K2 − Cxt)
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in the transition equation to obtain

xt+1 = K1 + Axt + BD−1(yt −K2 − Cxt),

(I − (A−BD−1C)L)xt+1 = [K1 −BD−1K2] + BD−1yt.

If the eigenvalues of (A−BD−1C) are strictly less than one in modulus

we can solve for xt+1:

xt+1 =
(
I − (A−BD−1C)L

)−1 (
[K1 −BD−1K2] + BD−1yt

)
.

Using this relation in the observation equation yields the infinite VAR rep-

resentation for yt:

yt = K2+C
(
I − (A−BD−1C)L

)−1 (
[K1 −BD−1K2] + BD−1yt−1

)
+Dεt,

yt = K3 + C
(
I − (A−BD−1C)L

)−1
BD−1yt−1 + Dεt.

Note that the condition for the existence of an infinite VAR-representation is

that I− (A−BD−1C) is invertible. If this condition does not hold, impulse

responses from a VAR are unlikely to match up those from the model.

If C is invertible, it is possible to rewrite the state as

xt = C−1 (yt −K2 −Dεt)

and use it in the observation equation:

C−1 (yt+1 −K2 −Dεt+1) = K1 + AC−1 (yt −K2 −Dεt) + Bεt,
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yt+1 −CAC−1yt = CK1 + K2 −CAC−1K2 + (CB −CAC−1D)εt + Dεt+1.

Therefore, we obtain a VARMA(1,1) representation of yt:

yt = K4 + CAC−1yt−1 +
(
I + (CBD−1 − CAC−1)L

)
ut.

with ut ∼ N(0, DD′).

C Estimation Algorithms

C.1 Hannan-Kavalieris Method

This method goes originally back to Durbin (1960) and has been introduced

by Hannan and Kavalieris (1984a) for multivariate processes.8 It is a Gauss-

Newton procedure to maximize the likelihood function conditional on yt =

0, ut = 0 for t ≤ 0, but its first iteration has been sometimes interpreted

as a three-stage least squares procedure (Dufour and Pelletier (2004)). The

method is computationally very easy to implement because of its recursive

nature.

We discuss this method in the framework of a standard VARMA (p, q)

representation

yt = A1yt−1 + . . . + Apyt−p + ut + M1ut−1 + . . .Mqut−q.

Usually additional restrictions need to be imposed on the coefficient matrices

to ensure identification of the parameters. For this purpose, we use the
8See also Hannan and Deistler (1988), sections 6.5, 6.7, for an extensive discussion.
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following notation. Let β = vec[A1,. . . , Ap, M1, . . . Mq] denote the vector

of all parameters. The vector of free parameters, γ, can be defined by

introducing restriction matrices R and r such that the vectors are related

by β = Rγ + r.

Given invertibility of the process, there exists an infinite VAR repre-

sentation yt =
∑∞

i=1 Πiyt−i + ut. In the first step of the algorithm, this

representation is approximated by a “long” VAR to get an estimate of the

residuals. More precisely, the following regression equation is used

yt =
nT∑

i

Πiyt−i + ut,

where nT is large and goes to infinity as the sample size grows. Given

an estimate of the residuals, ût, we might obtain starting values for future

iterations by performing a (restricted) regression in

yt = A1yt−1 + . . . + Apyt−p + ut + M1ût−1 + . . .Mqût−q.

Denote the estimated coefficient matrices by Ã1, Ã2, . . . and M̃1, M̃2, . . ..

The first iteration of the conditional maximum likelihood algorithm can be

expressed in a simple regression framework. One forms new residuals, εt,
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and new matrices, ξt, ηt and X̂t, according to

εt = yt −
p∑

j=1

Ãjyt−j −
q∑

j=1

M̃jεt−j ,

ξt = −
q∑

j=1

M̃jξt−j + εt,

ηt = −
q∑

j=1

M̃jηt−j + yt,

X̂t = −
q∑

j=1

M̃jX̂t−j + (Y ′
t ⊗ IK)R,

for t = 1, 2, . . . , T , Yt = [y′t, . . . , y′t−p+1, û
′
t, . . . , û

′
t−q+1] and yt = εt = ξt =

ηt = 0 and X̂t = 0 for t ≤ 0. The final estimate is

γ̂ =

(
T∑

m+1

X̂ ′
t−1Σ̃

−1
t X̂t−1

)−1 (
T∑

m+1

X̂t−1Σ̃−1(εt + ηt − ξt)

)
,

where Σ̃ = T−1
∑

εtε
′
t, m = max{p, q}. This procedure is asymptotically

efficient under certain conditions (see Lütkepohl (2005)).

C.2 Subspace Algorithms

Subspace algorithms rely on the state space representation of a linear sys-

tem. The CCA algorithm is originally due to Larimore (1983). The basic

idea behind subspace algorithms lies in the fact that if we knew the unob-

served state, xt, we could estimate the system matrices, A, K, C, by linear

33



regressions as can be seen from the basic equations

xt+1 = Axt + Kut,

yt = Cxt + ut.

Given the state and the observations, Ĉ and ût are obtained by a regression

of yt on xt and Â and K̂ are obtained by a regression of xt+1 on xt and

ût. Therefore, the problem is to obtain in a first step an estimate of the

n-dimensional state, x̂t. This is analogous to the idea of a long autoregres-

sion in VARMA models that estimates the unobserved residuals in a first

step which is followed by a least squares regression. For this purpose, one

expresses the state as a function of the history of yt and an initial state as

shown below. Solving the state space equations for positive integers j and

p, we get

yt+j = CAjxt +
j−1∑

i=0

CAiKut+j−i−1 + ut+j , (4)

xt = (A−KC)pxt−p +
p−1∑

i=0

(A−KC)iKyt−i−1

= (A−KC)pxt−p +KpY
−
t,p, (5)

where Kp = [K, (A−KC)K, . . . , (A−KC)p−1K] and Y −
t,p = [y′t−1, . . . , y

′
t−p]

′.

The first equation states that the best predictor of yt+j is a function of the

state only. The state summarizes in this sense all available information in

the past up to time t. The second equation states that the state can be

recovered as a combination of an initial state and past observations. Define
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Y +
t,f = [y′t, . . . , y′t+f−1]

′ for some integer f > 0 and formulate equation (4) for

all observations contained in Y +
t,f simultaneously. Combine these equations

with (5) in order to obtain

Y +
t,f = OfKpY

−
t,p +Of (A−BC)pxt−p + EfE+

t,f ,

where Of = [C ′, A′C ′, . . . , (Af−1)′C ′]′, E+
t,f = [u′t, . . . , u′t+f−1]

′ and Ef is a

function of the system matrices. The above equation is central for most

subspace algorithms. Note that if the maximum eigenvalue of (A− BC) is

less than one in absolute value, we have (A − BC)p ≈ 0 for large p. This

condition is satisfied for stationary and invertible processes. This reasoning

motivates an approximation of the above equation given by

Y +
t,f = βY −

t,p + N+
t,f , (6)

where β = OfKp and N+
t,f is defined by the equation. Most popular subspace

algorithms use this equation to obtain an estimate of β that is decomposed

into Of and Kp. The identification problem is solved implicitly during this

step.

To be precise, the employed algorithm consists of the following steps for

given integers n, p, f :

1. Perform OLS on (6) using the avaible data to get an estimate β̂f,p.

2. Compute

Γ̂+
f =

1
Tf,p

T−f+1∑

t=p+1

Y +
t,f (Y +

t,f )′ , Γ̂−p =
1

Tf,p

T−f+1∑

t=p+1

Y −
t,p(Y

−
t,p)

′,
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where Tf,p = T − f − p + 1.

3. Given the dimension of the state, n, perform a singular value decom-

position

(Γ̂+
f )−1/2β̂f,p(Γ̂−p )1/2 = ÛΣ̂V̂ ′.

Since β̂f,p is of reduced rank one considers only the first n singular

values of Σ̂ and the corresponding vectors in Û and V̂ . That is, one

uses an approximation, (Γ̂+
f )−1/2β̂f,p(Γ̂−p )1/2 = ÛnΣ̂nV̂ ′

n + R̂n. The

reduced rank matrices are obtained as

Ôf K̂p = [(Ŵ+
f )−1ÛnΣ̂1/2

n ][Σ̂1/2
n V̂ ′

n(Ŵ−
p )−1].

4. Estimate the state as x̂t = K̂pY
−
t,p and estimate the system matrices

using linear regressions as described above.

Although the algorithm looks quite complicated at first sight, it is actually

very simple and is regarded to lead to numerically stable and accurate esti-

mates. There are certain parameters which have to be determined, namely

the dimension of the state and the integers f and p. For the asymptotic

consequences of various choices see Bauer (2005).
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Table 1: Benchmark calibrations and resulting
time series properties of the RBC model.

Common CKM KP
Parameters Benchmark Benchmark
α 0.33
β 0.981/4

σ 1
δ 1− (1− 0.6)1/4

ψ 2.5
γ 1.011/4 − 1
µ 0.00516
L̄ 1
τ̄l 0.243
τx 0.3
ρ 0.94 0.993
στ 0.008 0.0066
σx 0.00568 0.011738
Selected time series properties
eig(A1) 0.9573, 0.9400 0.9573, 0.9930
eig(M1) −0.9557, 0 −0.9505, 0
eig(K) −1.7779± 0.51i −2.0298± 0.35i
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KP-Specification

Figure 1: Mean impulse response (- -), true impulse response (–) and 95% intervals of
hours worked to one standard deviation shock to technology for the VAR and the CCA
subspace algorithm.
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CKM-Specification

Figure 2: Mean impulse response (- -), true impulse response (–) and 95% intervals of
hours worked to one standard deviation shock to technology for the VAR and the CCA
subspace algorithm.
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