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Abstract

We provide a novel method to estimate in a closed-form solution the option prices of various exotic

options, using techniques based on Laplace-Beltrami operator for estimating di¤usion boundary times.

We estimate exit times and their expectations, the hitting probabilities, boundary local times until

the �rst hitting and other probabilistic quantities and moment generating functions related to local

hitting times. Our �ndings maybe of paramount importance for traders, investors, speculators and

more broadly speaking for �nancial institutions.
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1 Introduction

The payo¤ of a simple European or American-style call or put option while it depends heavily upon

the value of the underlying asset, yet not particularly so on the path taken. In general, options deriva-

tives products are determined by many features and primarily upon the underlying assets, as commonly

reported in the relevant literature. However, a plethora of exotic options including Binary options, Cash-

or-Nothing, Asset-or-Nothing, Barrier, Double Barrier options amongst other, all depend strongly on the

path of the asset as well and on whether price barriers are hit or not. These barriers eventually control

the option valuation. Once either of these barriers is breached, the status of the option is immediately

determined, namely either the option comes into existence in case the barrier - as called - is in- or knock-

in barrier, or ceases to exist if the barrier is out- or knock-out barrier. Other double barrier options of

many types also exist (see [1] ). In this work, we utilize double barrier options as proper proxies for

many categories of exotic derivatives. To the best of our knowledge, we present for the �rst time new

ways of estimating the expectation of the time when various exotic options seize to exist, their hitting

probabilities, the exit times and their expectations, boundary local times until the �rst hitting and other

probabilistic quantities related to the boundary local times. Importantly, we deliver closed-form solutions

The diversity of exotic barrier options is indicative of their applicability in modern derivatives markets.

Many di¤erent combinations of barrier options can be implemented in derivatives markets for equities,

FX, commodities and bonds. We present thereafter the most important types: a double knock-out (DKO)
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or one touch knock-out Barrier option has both lower and upper knock-out barriers. Initially the holder

of the option owns a call or a put. If at any time, either barrier is breached, the option seizes to exist

(knocked-out). In some cases at knock-out, the holder may receive a rebate. For a double knock-in

(DKI), or one touch knock-in barrier, if either barrier is breached, the holder of the barrier option is

knocked-in, hence now owns the call or put. In cases where the option is never knocked-in, the holder

may receive a rebate. An upper barrier knock-out (UKO) double barrier involves the upper barrier which

when breached prior to the lower barrier, the option holder is knocked out, whilst in case the lower is

breached prior to the upper or neither barrier is breached, the holder owns the option. Furthermore, in

case of an upper barrier knock-out double option (UKO2) if the upper barrier is breached prior to the

lower barrier, the option holder gets nothing and instead in case the lower barrier is breached prior to the

upper, the holder receives an option. All in all, if neither barrier is breached, the holder gets nothing. For

a lower barrier knock-out (LKO) if the lower barrier is hit prior to the upper barrier, the holder is knocked

out and when the upper barrier is hit prior to the lower or neither barrier is breached, the holder owns an

option. Additionally, for double lower barrier knock-outs (LKO2) if the lower barrier is breached prior to

the upper one, the option holder gets nothing while when the upper barrier is breached prior to the lower,

the holder receives the option. If neither barrier is breached, the holder is not compensated. An upper

barrier knock-in double barrier (UKI) relates to the case whereby, if the upper barrier is reached prior to

the lower barrier, the option holder receives a call or put, whilst in case neither barrier is hit, the holder

owns an option. A lower barrier knock-in (LKI) performs similarly to the UKI, yet with a switch on the

lower and upper barrier. A double touch knock-out option (DTKO) exists when the holder initially holds

a call or put option. However, if both the upper and lower barriers are breached during the life of the

option, the holder is knocked out. For a double touch knock-in option (DTKI), if both the upper and

lower barriers are breached during the life of the option, the holder is knocked-in to a call or put option.

With all of the aforementioned barrier variations, the speci�cation of rebate is possible. These rebates

(cash or asset amounts) can be speci�ed if one or the other barrier is hit or if neither barrier is reached.

Using these rebate features is a way of including digital / binary payo¤s that depend on barrier levels.

Finally, the type of monitoring conducted upon the barriers is a very important feature as well. Several

possibilities exist, namely each barrier is continuously monitored for the life of the option or the barrier

is partially monitored for speci�c windows during the option life. During these windows, the barriers are

monitored continuously. Alternatively, each barrier is partially monitored for speci�c windows during

the life of the option and the barriers are monitored at discrete dates or in another case the barrier is

discretely monitored at speci�c dates.

Merton ([2]) was the �rst to derive a closed form solution for a down-and-out European call option.

Other closed-form pricing formulae of exotic derivatives i.e., particularly for single-barrier options were

published by Rubinstein and Reiner ( [3] ). Rich ([4]) provided a mathematical framework for pricing

the single-barrier options. A valuation method for double-barrier options based upon the probabilistic

approach was discussed by Kunitomo and Ikeda ([5]). The values of the double barrier options can also

be obtained by solving the Black-Scholes partial di¤erential equation with the corresponding boundary

conditions using the method of separation of variables. Analytical solutions of one-touch double-barrier

binary options, in which a �xed payo¤ is determined by whether it is touching the barrier, are derived by

Hui ([6]). Hui ([7]) extends regular single and double barrier options to time-dependent barrier options

in which the barrier period covers a segment of time either at the beginning (front end) or the end (rear

end) of the option life. This feature makes the time-dependent barrier options more �exible than the

regular barrier options for an investor, having a particular view on an underlying asset in a certain period

of time. The one-time barrier discontinuity in the time-dependent barrier options makes their pricing

formulae di¤erent from the regular barrier option-pricing formulae. Roberts and Shortland ([8]) consider

the problem of pricing derivative securities which involve a barrier clause. They present general techniques

to calculate, or estimate accurately barrier option prices, using methods for estimating di¤usion process

with hitting times. Mario Dell�Era ([9]) discusses the e¢ ciency of the spectral method for computing the
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value of double barrier options. Using this method, one may write the option price as a Fourier series

with suitable coe¢ cients. However, all of the aforementioned methods cannot be generalized vis-a-vis

the valuation of many other exotic derivatives, and more importantly they do not tackle with all the

analytical closed-form speci�cities occuring and remain unsolvable.

We contribute to the literature in signi�cant ways. Speci�cally, to our knowledge this is the �rst study

to estimate a closed-form solution for all the inherent features of a variety of barrier options and other

proxies. Speci�cally, i) the expectation of the time that the option dies out is calculated, ii) the hitting

probabilities i.e., the probabilities that the option hits �rst the upper or the lower barrier are accurately

estimated, iii) certain probabilistic quantities related to the boundary local time until �rst hitting are

introduced, iv) the exit times and their expectations are estimated as well as v) the boundary local times

until the �rst hitting, which are of immense importance to the investors, alongside with the moment

generating functions for all of the above. In this work, we consider as our proxy the double knock-out

barrier with two barriers related to the strike price: an upper and a lower one. The upper barrier de�nes

the level where the trigger price is above the strike price, while the lower barrier establishes a point

at which the trigger price is below the strike. If the underlying does not break out of either barrier

at any time during the option life, the option acts like a plain vanilla option and the holder would

receive a speci�ed payout. However, if one of the barriers has been broken through, the option dies out

(gets knocked-out). Our novel concept is that we assume that the underlying asset follows a geometric

Brownian motion on a 1�dimensional sphere S1 =
�
x = (a cos'; a sin') 2 R2j 0 � ' < 2�

	
(i.e. circle)

with center at the origin and radius a > H2

2� : In this case, the transformation introduces '0; '1 2 [0; 2�)
such that H1 = a'0 and H2 = a'1 i.e., two points on the circle, that denote the upper and lower

barriers. The underlying asset then starts from a point � 2 D = (H1;H2). Via this method, we estimate

the closed-form solution of the price of every barrier option or any exotic one thereby. Moreover, we

calculate the expectation of the time the option dies out. The probabilities that the option hits �rst the

upper or the lower barrier are calculated and we evaluate certain probabilistic quantities related to the

boundary local time of the domain D until �rst hitting. We deliver valuable closed-form mathematical

solutions of paramount importance for traders, investors, speculators and more broadly speaking for

�nancial institutions. The paper is organized as follows: section 2 presents preliminary de�nitions,

propositions and proofs, whilst section 3 describes the valuation method and a theorem related to that.

Section 4 recalls some de�nitions and proofs, and presents new results on exit times, expectations, hitting

probabilities and moments generating fnctions. Section 5 exposes the proofs for estimating boundary local

times. Finally, section 6 concludes with very interesting remarks regarding the extension of the results

on spheres of higher dimensions and future applications of the presented methodology to the valuation

of other exotic derivatives as well as to other mathematical problems in many topical �elds.

2 Preliminaries

2.1 The n�Sphere Sn

De�nition 2.1. Let n 2 N� = f1; 2; 3; :::g: The n�dimensional sphere Sn with center (c1; c2;:::;cn+1) and
radius a > 0 is (de�ned to be) the set of all points x = (x1; x2; :::; xn+1) 2 Rn+1 satisfying (x1 � c1)2+
(x2 � c2)2 + :::+ (xn+1 � cn+1)2 = a2. Thus,

Sn = f(x1; x2; :::; xn+1) 2 Rn+1j(x1 � c1)2 + (x2 � c2)2 + :::+ (xn+1 � cn+1)2 = a2g (2.1)

The points of the n�sphere with center at the origin and radius a for n = 1 may also be discribed in

spherical coordinates in the following way

S1 = fx = (a cos'; a sin') 2 R2j 0 < ' � 2�g (2.2)
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The Laplace-Beltrami operator of a smooth function f on S1 is

�1f =
1

a2
@2f

@'2
(2.3)

(see [10]).

2.2 Brownian Motion on Sn

De�nition 2.2. The Brownian motion on Sn is a di¤usion (Markov) process Xt; t � 0; on Sn whose
transition density is a function P (t; x; y) on (0;+1)� Sn � Sn satisfying

@P

@t
=
1

2
�nP (2.4)

P (t; x; y)! �x(y) as t! 0+ (2.5)

where �n is the Laplace-Beltrami operator on Sn acting on the x-variables and �x(y) is the delta mass

at x, i.e. P (t; x; y) is the heat kernel of Sn. The heat kernel exists, it is unique, positive and smooth in

(t; x; y).

2.2.1 Further Properties of the Heat Kernel P (t; x; y)

Moreover the heat kernel possesses the following properties:

1. Symmetry in x; y; that is P (t; x; y) = P (t; y; x):

2. The semigroup identity: For any s 2 (0; t)

P (t; x; y) =

Z
Sn
P (s; x; z)P (t� s; z; y)d�z (2.6)

where d� is the area measure element of Sn.

3. As t ! 1, P (t; x; y) approaches the uniform density on Sn, i.e. lim
t!1

P (t; x; y) = 1
An

where An is

the area of the Sn with radius a. It is well known that

An =
2�

n+1
2 an

(n�12 )!
for n odd and An =

2n(n2�1)!�
n
2 an

(n�1)! for n even

4. Finally, the symmetry of Sn implies that P (t; x; y) depends only on t and d(x; y), the distance

between x and y. In spherical coordinates it depends on t and the angle ' between x and y. Hence

P (t; x; y) = P (t; ') where P (t; ') satis�es

@P

@t
=
1

2
�nP =

1

2a2

�
(n� 1) cot'@P

@'
+
@2P

@'2

�
(2.7)

and

lim
t!0+

aAn�1P (t; ') sin
n�1 ' = �(') (2.8)

The symbol �(�) denotes the standard Dirac delta function on R.
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2.2.2 Explicit Form of the Heat Kernel of S1

Reminder (Poisson Summation Formula). Let f(x) be a function in the Schwartz space S(R), where
S(R) consists of the set of all in�nitely di¤erentiable functions f on R so that f and all its derivatives
f (l) are rapidly decreasing, in the sense that

sup
x2R

jxjk
���f (l)(x)��� <1 for every k; l � 0:

Then X
n2Z

f(x+ 2�n) =
1

2�

X
n2Z

F (n) exp(inx);

where F (�) is the Fourier transform of f(x), i.e.

F (�) =

Z +1

�1
f(x) exp(�i�x)dx; � 2 R:

For example, if

f(x) = exp(�Ax2 +Bx); A > 0; B 2 C;

then

F (�) =

r
�

A
exp

�
(i� �B)2
4A

�

2.3 The Case of S1

Proposition 2.1. The transition density function of the Brownian motion Xt; t � 0 on S1 with radius
a is the function

p(t; ') =
1

2�a

X
n2Z

exp

�
�n

2t

2a2
+ in'

�
: (2.9)

Equivalently

p(t; ') =
1

�a

X
n2N

�
exp

�
�n

2t

2a2

�
cos(n')

�
� 1

2�a
: (2.10)

and

p(t; ') =
1p
2�t

X
n2Z

exp

�
�a

2

2t
('� 2�n)2

�
: (2.11)

Proof. If

p(t; ') =
1

�a

X
n2N

�
exp

�
�n

2t

2a2

�
cos(n')

�
� 1

2�a
;

then
@p(t; ')

@t
= � 1

2�a3

X
n2N

n2 cos(n') exp

�
�n

2t

2a2

�
(2.12)

and
@2p(t; ')

@'2
= � 1

�a

X
n2N

n2 cos(n') exp

�
�n

2t

2a2

�
: (2.13)

Therefore
@p(t; ')

@t
=

1

2a2
@2p(t; ')

@'2
:

We will now show that

lim
t!0+

ap(t; ') = �('):

If ' 2 (0; 2�); then
lim
t!0+

ap(t; ') = 0: (2.14)
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Next we observe that Z 2�

0

ap(t; ')d' =
1

�

Z 2�

0

X
n2N

�
exp

�
�n

2t

2a2

�
cos(n')

�
d'� 1: (2.15)

For t > 0 let us consider the functions

fn : [0; 2�]! R; n 2 N;

with

fn(') = cos(n') exp

�
�n

2t

2a2

�
:

Notice that fn(') are integrable functions on [0; 2�]. Furthermore

+1X
n=1

fn(')

converges uniformly on [0; 2�] because

jfn(')j � exp
�
�n

2t

2a2

�
and the series

1X
n=1

exp

�
�n

2t

2a2

�
converges. Therefore (2.15) givesZ 2�

0

ap(t; ')d' = �1 + 1

�

X
n2N

exp

�
�n

2t

2a2

�Z 2�

0

cos(n')d';

thus Z 2�

0

ap(t; ')d' = 1; for every t > 0: (2.16)

Therefore from (2.15) and (2.16)

lim
t!0+

ap(t; ') = �(')

and this complete the proof.

2.4 Geometric Brownian Motion on a 1-dimentional Sphere S1

De�nition 2.3. Let Xt , t � 0 be the Brownian motion on S1 of radius a. The geometric Brownian

motion on S1 of radius a with drift is

Zt = Z0 exp

��
r � 1

2
�2
�
t+ �aXt

�
(2.17)

i.e. Zt have stochastic di¤erential dZt = rZtdt+ �aZtdXt:

We have already shown that, the Brownian motion on S1 of radius a, in spherical coordinates is the

solution of the stochastic di¤erntial equation dXt = 1
adBt. Hence dZt = rZtdt + �ZtdBt:Therefore, the

generator L of Zt is given by

Lf(') = r'
@f

@'
+
1

2
�2'2

@2f

@'2
(2.18)
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2.5 Transition Density Function of the Geometric Brownian Motion on S1

Let Xt , t � 0 be the Brownian Motion on S1 of radius a:The transition density function of the Brownian
motion Xt , t � 0 on S1 of radius a is the function (2.9) i.e.

p (t; ') =
1

2�a

X
n2Z

exp

�
�n

2t

2a2
+ in'

�

This means that FXt(') = P [Xt � '] =
R '
0
p (t; ') d'. The geometric Brownian Motion Zt , t � 0

on S1 of radius a is Zt = Z0 exp
��
r � 1

2�
2
�
t+ �aXt

�
:Hence,

FZt(') = P [Zt � '] = P
�
Z0 exp

��
r � 1

2�
2
�
t+ �aXt

�
� '

�
= P

h
Xt � 1

�a ln
�
'
Z0

�
+
�
�
2a �

r
�a

�
t
i
=R 1

�a ln
�

'
Z0

�
+( �

2a�
r
�a )t

�1 p (t; y) dy:

Now di¤erentiating with respect to ', we obtain that the transition density function of the geometric

Brownian Motion, is the function

pzt (t; ') =
1

�a'
p

�
t;
1

�a
ln

�
'

Z0

�
+
� �
2a
� r

�a

�
t

�
i.e.

pzt (t; ') =
1

2�a2�'

X
n2Z

exp

�
�n

2t

2a2
+ in

�
1

�a
ln

�
'

z0

�
+
�2 � 2r
2�a

t

��
(2.19)

3 Value of the derivative security

We limit ourselves to assume that the underlying asset follows a Geometric Brownian motion with drift,

i.e. dYt = rYtdt+ �YtdBt, where Yt is the asset price and Bt , t � 0 is the Brownian motion.

De�ne 	(YT ) = (YT � k)+ = max f(YT � k); 0g be the payo¤ of the derivative security at time T if

the underlying security is at YT (k is the strike price of the option). Assume that there is a double

knock-out Barrier at levels H1;H2 2 R such that H1 < H2: i.e., if one of the barrier is reached in a

double knock-out option, the option is killed. The idea is to consider the geometric Brownian motion on

a 1�dimensional sphere S1 =
�
x = (a cos'; a sin') 2 R2j 0 � ' < 2�

	
(circle) with center at the origin

and radius a > H2

2� :

In this case there exist '0; '1 2 [0; 2�) such that H1 = a'0 and H2 = a'1 and k = a'k. For arbitrary
process S and H1;H2 2 R such that H1 < H2 , we use the following notation according to ([8]):
�YH1

= inf ft : Y (t) � H1g if Y (0) > H1 and

�YH2
= inf ft : Y (t) � H2g if Y (0) < H2

where H1 and H2 are the Barriers.

Let Y (t) be the value of the stock at time t 2 [0; T ] ; where T = minf�yH1
; �yH2

g:From the theory of

arbitrage-free pricing in a complete market (see [12]) , the value of the derivative security can then be

expressed as follows

V (t; x) = V (T;H1;H2; Y (t); t) = E[	(ST )I(�
y
H1
< T )I(�yH2

< T ) (3.1)

where 	(ZT ) = (YT � k)+ = max f(YT � k); 0g is the payo¤ of the derivative security at time T if
the underlying security is at YT :The boundary problem for V (t; x) can be tackled with fast and accurate

pricing of Barrier options under Levy processes to solve it
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8>>><>>>:
@V
@t + LV � rV = 0
V (0; x) = (x0 � k)+

V (t;H1) = V (t;H2) = 0

V (t; x) = 0 for every x 2 (�1;H1] [ [H2;+1)

9>>>=>>>; (3.2)

where L is the generator of Yt .

In case Zt is the Geometric Brownian motion without drift on a 1-dimensional sphere S1 of radius a > H2

2� ,

i.e. dZt = �aZtdXt and we let �1; '2 2 [0; 2�) ; such that '1 < '2 with a'1 = H1 and '2 = H2, then

the problem (3.2) is equivelant to8>>><>>>:
@u
@t + r'

@u
@' +

1
2�

2'2 @
2u
@'2 � ru = 0

u (0; ') = a ('0 � 'k)
+

u (t; '1) = u (t; '2) = 0

u (t; ') = 0 for every ' 2 Dc; where D = ('1; '2) � S1

9>>>=>>>; (3.3)

where a'0 = x0 and a'k = k

Theorem 3.1. Under Black-Scholes framework the arbitrage-price of a knock-out call double barrier
option is given by relation

V (t; x) =

Z ln
�
H2
H1

�
0

2 exp [�r (T � t)]
ln
�
H2

H1

� �
e�H1 � k

�+
I[A(t)<�<B(t): t2[0;T ]] �

X
n2Z

24exp
24 (n��)2 (T � t)

2 ln2
�
H2

H1

�
35 sin

0@ n��

ln
�
H2

H1

�
1A sin

0@n� ln
�
x
H1

�
ln
�
H2

H1

�
1A35 d� (3.4)

where A(t) = lnH1 + (T � t)
�
r � �2

2

�
and B(t) = lnH2 + (T � t)

�
r � �2

2

�
(see [8])

4 Exit Times

We recall some basic de�nitions:

De�nition 4.1. A measurable space f
;Fg is said to be equipped with a �ltration fFtg ; t 2 [0;+1) ; if
for every t � 0 fFtg is a �-algebra of subsets of 
 such that Ft � F and for every t1; t2 2 [0;+1) such
that t1 < t2; we have that Ft1 � Ft2 : (i.e. fFtg is an increasing family of sub �-algebras of F ).

De�nition 4.2. Let us consider a measurable space f
;Fg equipped with a �ltration fFtg. A random

variable T is a stopping time with respect to the �ltration fFtg , if for every t � 0 f! 2 
 j T (!) � tg 2
Ft:

Let Zt be the Geometric Brownian motion on S1 andD � S1 a domain. Then T = inf ft � 0 j Zt =2 D g
is a stopping time with respect to Ft = � fZs j 0 � s � tg ; called the exit time on @D:(For more details
see [13]).

4.1 Expectations of Exit Times on S1

Proposition 4.1. Let '1; '2 2 (0; 2�] ; such that '1 < '2, both �xed. We consider the set D in S1, such

that D = ('1; '2) : If Zt is the Geometric Brownian motion with drift on S
1 of radius a starting at the
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point ' 2 D, then the expectation of T is given by

E' [T ] =
2

�2 � 2r �

�
'

�2�2r
�2

2 � '
�2�2r
�2

1

�
ln'�

�
'

�2�2r
�2

2 � '
�2�2r
�2

�
ln'1 �

�
'

�2�2r
�2 � '

�2�2r
�2

1

�
ln'2�

'
�2�2r
�2

2 � '
�2�2r
�2

1

�
(4.1)

Proof. Reminder. If u (x) = Ex [T ] , then u (x) satis�es

Lu(') = �1

uj@D = 0

(see [14])

Hence from (2.18) the di¤erential equation takes the form

r'
@u

@'
+
�2'2

2

@2u

@'2
= �1 (4.2)

with boundary condition

u ('1) = u ('2) = 0 (4.3)

From (4.2) and (4.3) we imply that

u (') =
2

�2 � 2r �

�
'

�2�2r
�2

2 � '
�2�2r
�2

1

�
ln'�

�
'

�2�2r
�2

2 � '
�2�2r
�2

�
ln'1 �

�
'

�2�2r
�2 � '

�2�2r
�2

1

�
ln'2�

'
�2�2r
�2

2 � '
�2�2r
�2

1

�
i.e.

E' [T ] =
2

�2 � 2r �

�
'

�2�2r
�2

2 � '
�2�2r
�2

1

�
ln'�

�
'

�2�2r
�2

2 � '
�2�2r
�2

�
ln'1 �

�
'

�2�2r
�2 � '

�2�2r
�2

1

�
ln'2�

'
�2�2r
�2

2 � '
�2�2r
�2

1

�

Based on the proof above, if Yt is the asset price and we have a double knock-out barrier at level

H1 = a'1 and H2 = a'2 then if its price starts at the point x 2 (H1;H2) the expectation of T =

inf ft � 0 j the option is killed g is

Ex [T ] =
2

�2 � 2r �

�
H

�2�2r
�2

2 �H
�2�2r
�2

1

�
lnx�

�
H

�2�2r
�2

2 � x
�2�2r
�2

�
lnH1 �

�
x
�2�2r
�2 �H

�2�2r
�2

1

�
lnH2�

H
�2�2r
�2

2 �H
�2�2r
�2

1

�
(4.4)

4.2 Expectation of f (Zt)

Proposition 4.2. Let '1; '2 2 (0; 2�] ; such that '1 < '2, both �xed. We consider the set D in S1, such

that D = ('1; '2) : If Zt is the Geometric Brownian motion with drift on S
1 of radius a starting at the

point ' 2 D, and f be a function on @D , then the expectation of f (Zt) is given by

E' [f (Zt)] =

f ('2)

�
'

�2�2r
�2 � '

�2�2r
�2

1

�
+ f ('1)

�
'

�2�2r
�2

2 � '
�2�2r
�2

�
�
'

�2�2r
�2

2 � '
�2�2r
�2

1

� (4.5)
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Proof. It is known that the function u (') = E' [Zt] satis�es the di¤erential equation

Lu(') = 0

with boundary condition

uj@D = f

(see [13])

Hence from (2.18) the di¤erential equation takes the form

r'
@u

@'
+
�2'2

2

@2u

@'2
= 0 (4.6)

with boundary condition

u ('1) = f ('1) and u ('2) = f ('2) (4.7)

From (4.6) and (4.7) we imply that

u (') =

f ('2)

�
'

�2�2r
�2 � '

�2�2r
�2

1

�
+ f ('1)

�
'

�2�2r
�2

2 � '
�2�2r
�2

�
�
'

�2�2r
�2

2 � '
�2�2r
�2

1

�

E' [f (Zt)] =

f ('2)

�
'

�2�2r
�2 � '

�2�2r
�2

1

�
+ f ('1)

�
'

�2�2r
�2

2 � '
�2�2r
�2

�
�
'

�2�2r
�2

2 � '
�2�2r
�2

1

�

4.3 Hitting Probabilities

Proposition 4.3. Let '1; '2 2 (0; 2�] ; such that '1 < '2, both �xed. We consider the sets D1; D2 in

S1, such that D1 = ('1; 2�] and D2 = (0; '2) : Let Zt is the Geometric Brownian motion with drift on

S1 of radius a starting at the point ' 2 D1 \D2. If

T1 = inf ft � 0 j Zt =2 D1g (4.8)

T2 = inf ft � 0 j Zt =2 D2g (4.9)

and

T = inf ft � 0 j Zt =2 D1 \D2g (4.10)

then the probabilities Pr' fT = T1g and Pr' fT = T2g are given by

'

Pr fT = T1g =
'

�2�2r
�2

2 � '
�2�2r
�2

'
�2�2r
�2

2 � '
�2�2r
�2

1

(4.11)

and
'

Pr fT = T2g =
'

�2�2r
�2 � '

�2�2r
�2

1

'
�2�2r
�2

2 � '
�2�2r
�2

1

(4.12)
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Proof. From (4.5) for f (x) = x we have E' [f (Zt)] =
'2

0@'�2�2r
�2 �'

�2�2r
�2

1

1A+'1
0@'�2�2r

�2
2 �'

�2�2r
�2

1A
 
'
�2�2r
�2

2 �'
�2�2r
�2

1

! :

However,

E' [f (Zt)] = '1
'

Pr fT = T1g+ '2
'

Pr fT = T2g

and
'

Pr fT = T1g+
'

Pr fT = T2g = 1

Therefore,

'

Pr fT = T1g =
'

�2�2r
�2

2 � '
�2�2r
�2

'
�2�2r
�2

2 � '
�2�2r
�2

1

and
'

Pr fT = T2g =
'

�2�2r
�2 � '

�2�2r
�2

1

'
�2�2r
�2

2 � '
�2�2r
�2

1

Based on the proof above, in case Yt is the asset price and we have a double knock-out Barrier at levels

H1 = a'1 and H2 = a'2 then if its price starts at the point x 2 (H1;H2) the probability the option is
killed because it reaches the barrier level H1 is given as

x

Pr fT = T1g =
H

�2�2r
�2

2 � x
�2�2r
�2

H
�2�2r
�2

2 �H
�2�2r
�2

1

(4.13)

and the proability the option is killed because it reaches the barrier level H2 is

x

Pr fT = T2g =
x
�2�2r
�2 �H

�2�2r
�2

1

H
�2�2r
�2

2 �H
�2�2r
�2

1

(4.14)

4.4 Moment Generating functions

Proposition 4.4. Let '0; '1 2 (0; 2�] ; such that '0 < '1 both �xed. We consider the set D on S1 such

that D = ('0; '1) : If Zt is the geometric Brownian motion on S
1 of radius a starting at the point ' 2 D,

then the expectation of exp (��T ) is given by

E' [exp (��T )]

=

0@'� (2r��2)+
p
(2r��2)2+8��2

2�2

2 � '�
(2r��2)+

p
(2r��2)2+8��2

2�2

1

1A'� (2r��2)�p(2r��2)2+8��22�2

'
� (

2r��2)�
p
(2r��2)2+8��2

2�2

1 '
� (

2r��2)+
p
(2r��2)2+8��2

2�2

2 � '�
(2r��2)+

p
(2r��2)2+8��2

2�2

1 '
� (

2r��2)�
p
(2r��2)2+8��2

2�2

2

+

+

0@'� (2r��2)�
p
(2r��2)2+8��2

2�2

1 � '�
(2r��2)�

p
(2r��2)2+8��2

2�2

2

1A'� (2r��2)+p(2r��2)2+8��22�2

'
� (

2r��2)�
p
(2r��2)2+8��2

2�2

1 '
� (

2r��2)+
p
(2r��2)2+8��2

2�2

2 � '�
(2r��2)+

p
(2r��2)2+8��2

2�2

1 '
� (

2r��2)�
p
(2r��2)2+8��2

2�2

2

if � > �
�
2r � �2

�2
8�2

(4.15)
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E' [exp (��T )] =
�

'

'1'2

��2�2r
2�2 (ln'2 � ln')'

�2�2r
2�2

2 � (ln'� ln'1)'
�2�2r
2�2

1

ln'2 � ln'1
; if � =

�2 � 2r
2�2

(4.16)

E' [exp (��T )] =

�
'

'1'2

��2�2r
2�2

'
�2�2r
2�2

2 sin

�q
� (2r � �2)2 � 8��2 ln

�
'2
'

��
sin

�q
� (2r � �2)2 � 8��2 ln

�
'2
'1

�� +

+

'
�2�2r
2�2

1 sin

�q
� (2r � �2)2 � 8��2 ln

�
'
'1

��
sin

�q
� (2r � �2)2 � 8��2 ln

�
'2
'1

�� (4.17)

if � < �
�
2r � �2

�2
8�2

(4.18)

Proof. Reminder: Assume that � > ��1
2 ; where �1 is the �rst Dirichlet eigenvalue of D � S1: If

u (x) = E [exp (��T )] then u (x) satis�es
Lu (') = �u (') with boundary conditions uj@D = 1; (see [13])
The �rst dirichlet eigenvalue of D � S1 is � = �2

a2('2�'1)2
: Hence if � > � �2

a2('2�'1)2
, then

E' [exp (��T )] satis�es the di¤erential equation

r'
@u

@'
+
�2'2

2

@2u

@'2
= �u (') (4.19)

with boundary condition

u ('1) = u ('2) = 1 (4.20)

This is a Cauchy-Euler equation. The solution is

E' [exp (��T )]

=

0@'� (2r��2)+
p
(2r��2)2+8��2

2�2

2 � '�
(2r��2)+

p
(2r��2)2+8��2

2�2

1

1A'� (2r��2)�p(2r��2)2+8��22�2

'
� (

2r��2)�
p
(2r��2)2+8��2

2�2

1 '
� (

2r��2)+
p
(2r��2)2+8��2

2�2

2 � '�
(2r��2)+

p
(2r��2)2+8��2

2�2

1 '
� (

2r��2)�
p
(2r��2)2+8��2

2�2

2

+

+

0@'� (2r��2)�
p
(2r��2)2+8��2

2�2

1 � '�
(2r��2)�

p
(2r��2)2+8��2

2�2

2

1A'� (2r��2)+p(2r��2)2+8��22�2

'
� (

2r��2)�
p
(2r��2)2+8��2

2�2

1 '
� (

2r��2)+
p
(2r��2)2+8��2

2�2

2 � '�
(2r��2)+

p
(2r��2)2+8��2

2�2

1 '
� (

2r��2)�
p
(2r��2)2+8��2

2�2

2

;

if � > �
�
2r � �2

�2
8�2

E' [exp (��T )] =
�

'

'1'2

��2�2r
2�2 (ln'2 � ln')'

�2�2r
2�2

2 � (ln'� ln'1)'
�2�2r
2�2

1

ln'2 � ln'1
; if � =

�2 � 2r
2�2

(4.21)
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E' [exp (��T )] =

�
'

'1'2

��2�2r
2�2

'
�2�2r
2�2

2 sin

�q
� (2r � �2)2 � 8��2 ln

�
'2
'

��
sin

�q
� (2r � �2)2 � 8��2 ln

�
'2
'1

�� +

+

'
�2�2r
2�2

1 sin

�q
� (2r � �2)2 � 8��2 ln

�
'
'1

��
sin

�q
� (2r � �2)2 � 8��2 ln

�
'2
'1

�� (4.22)

if � < �
�
2r � �2

�2
8�2

(4.23)

i.e. if Yt is the asset price and we have a double knock-out Barrier at levels H1 = a'1 and H2 = a'2,

then if its price starts at the point x 2 (H1;H2)

Ex [exp (��T )] = 0@H� (
2r��2)+

p
(2r��2)2+8��2

2�2

2 �H� (
2r��2)+

p
(2r��2)2+8��2

2�2

1

1Ax� (2r��2)�p(2r��2)2+8��22�2

H
� (

2r��2)�
p
(2r��2)2+8��2

2�2

1 H
� (

2r��2)+
p
(2r��2)2+8��2

2�2

2 �H� (
2r��2)+

p
(2r��2)2+8��2

2�2

1 H
� (

2r��2)�
p
(2r��2)2+8��2

2�2

2

+

+

0@H� (
2r��2)�

p
(2r��2)2+8��2

2�2

1 �H� (
2r��2)�

p
(2r��2)2+8��2

2�2

2

1AH� (
2r��2)+

p
(2r��2)2+8��2

2�2

H
� (

2r��2)�
p
(2r��2)2+8��2

2�2

1 H
� (

2r��2)+
p
(2r��2)2+8��2

2�2

2 �H� (
2r��2)+

p
(2r��2)2+8��2

2�2

1 H
� (

2r��2)�
p
(2r��2)2+8��2

2�2

2

;

if � > �
�
2r � �2

�2
8�2

(4.24)

Ex [exp (��T )] =
�

x

H1H2

��2�2r
2�2 (lnH2 � lnx)H

�2�2r
2�2

2 � (lnx� lnH1)H
�2�2r
2�2

1

lnH2 � lnH1
; if � =

�2 � 2r
2�2

(4.25)

Ex [exp (��T )] =

�
x

H1H2

��2�2r
2�2

H
�2�2r
2�2

2 sin

�q
� (2r � �2)2 � 8��2 ln

�
H2

x

��
sin

�q
� (2r � �2)2 � 8��2 ln

�
H2

H1

�� +

+

H
�2�2r
2�2

1 sin

�q
� (2r � �2)2 � 8��2 ln

�
x
H1

��
sin

�q
� (2r � �2)2 � 8��2 ln

�
H2

H1

�� (4.26)

if � < �
�
2r � �2

�2
8�2

(4.27)

5 Local Time estimation

De�nition 5.1. Let '0; '1 2 (0; 2�] ; such that '0 < '1 both �xed. We consider the set D in S1 such that

D = ('0; '1) :The Re�ected Geometric Brownian Motion in D is the di¤usion Wt whose generator

is L in D with Neuman boundary condition at @D:

Roughly speaking Wt behaves like Zt inside D but when it reaches the boundary it is re�ected back

in D:
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De�nition 5.2. Let a �xed open set D � S1 with C3�boundary @D: If Yt is the Re�ected Geometric
Brownian Motion in D , and D� the domain

D� = fx 2 D j d (x; @D) < �g

we de�ne the boundary local time Lt of Wt as

Lt = lim
�!0

1

2�

Z t

0

1D�
(Ws) ds

It can be shown that the limit exists in L2 sense.

5.1 Boundary Local Time Until First Hitting

Proposition 5.1. Let '1; '2 2 (0; 2�] ; such that '1 < '2 both �xed. We consider the set D in S1 such

that D = ('1; '2) : Let Wt be the The Re�ected Geometric Brownian Motion on D starting at the point

' 2 D: If
T = inf ft � 0 j Zt = '1g

and Lt is the boundary local time of Wt, then

E' [exp (�Lt)] =

�
�2 � 2r

�
'
� 2r
�2

2 � ��2
�
'

�2�2r
�2

2 � '
�2�2r
�2

�
(�2 � 2r)'�

2r
�2

2 � ��2
�
'

�2�2r
�2

2 � '
�2�2r
�2

1

� ; if � <

�
�2 � 2r

�
'
� 2r
�2

2

�2
�
'

�2�2r
�2

2 � '
�2�2r
�2

1

� (5.1)

and

E' [exp (�Lt)] = +1; if � �
�
�2 � 2r

�
'
� 2r
�2

2

�2
�
'

�2�2r
�2

2 � '
�2�2r
�2

1

� (5.2)

Proof. It is known that the function Z (') = E' [exp (�Lt)] satis�es the di¤erential equation

Lz = 0 (5.3)

with boundary conditions

z ('1) = 1 (5.4)

and

� dz
d'
('2) + �z ('2) = 0 (5.5)

as long as the function z is positive (see [15])

Thus

z (') =

�
�2 � 2r

�
'
� 2r
�2

2 � ��2
�
'

�2�2r
�2

2 � '
�2�2r
�2

�
(�2 � 2r)'�

2r
�2

2 � ��2
�
'

�2�2r
�2

2 � '
�2�2r
�2

1

� (5.6)

However z (') > 0 for every ' 2 ('1; '2)if and only if � <
(�2�2r)'

� 2r
�2

2

�2

 
'
�2�2r
�2

2 �'
�2�2r
�2

1

! . Therefore

E' [exp (�Lt)] =

�
�2 � 2r

�
'
� 2r
�2

2 � ��2
�
'

�2�2r
�2

2 � '
�2�2r
�2

�
(�2 � 2r)'�

2r
�2

2 � ��2
�
'

�2�2r
�2

2 � '
�2�2r
�2

1

� ; if � <

�
�2 � 2r

�
'
� 2r
�2

2

�2
�
'

�2�2r
�2

2 � '
�2�2r
�2

1

�
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and

E' [exp (�Lt)] = +1; if � �
�
�2 � 2r

�
'
� 2r
�2

2

�2
�
'

�2�2r
�2

2 � '
�2�2r
�2

1

�

As a consequence of the proof, if we set ~� = a�; Yt the asset price and we consider the double knock-out

barrier at levels H1 = a'1 and H2 = a'2 then if its price starts at the point x 2 (H1;H2), then the
expectation is given as

Ex
h
exp

�
~�Lt

�i
=

�
�2 � 2r

�
H
� 2r
�2

2 � ~��2
�
H

�2�2r
�2

2 � x
�2�2r
�2

�
(�2 � 2r)H� 2r

�2

2 � ~��2
�
H

�2�2r
�2

2 �H
�2�2r
�2

1

� ; if ~� <

�
�2 � 2r

�
H
� 2r
�2

2

�2
�
H

�2�2r
�2

2 �H
�2�2r
�2

1

�
and

Ex
h
exp

�
~�Lt

�i
= +1; if ~� �

�
�2 � 2r

�
H
� 2r
�2

2

�2
�
H

�2�2r
�2

2 �H
�2�2r
�2

1

�
where Lt is the boundary local time of the option price .

6 Conclusion

Our novel methodology is not restricted to underlying processes which are geometric Brownian motions

on S1. Any other form of underlying process can be used, provided that there exists a transformation

between the process and standard Brownian motion on S1. Moreover, we can easily extend all the

above results on spheres of higher dimensions. Our approach can be applied to the valuation of other

exotic derivatives as well as to other mathematical problems. For example, Brownian motions on S2

can be utilized for other types of derivatives�pricing in �nancial literature, epidemiological models and

enviromental pollution models among other. Also for n = 3, S3 some results appear in relativity theory

([16]). We contributed in a plethora of ways. In particular, we presented new ways of estimating the

expectation of the time the options seize to exist, their hitting probabilities, the exit times and their

expectations, boundary local times until the �rst hitting and other probabilistic quantities related to the

boundary local times. We deliver closed-form solutions which maybe of immense importance to traders,

investors, speculators and more broadly to �nancial institutions.
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