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Abstract  

This paper is concerned with dynamic and entropy analyses of a hyperchaotic financial system, as 

well as with its hyperchaos suppression and synchronization. The dynamic behaviour of the system 

is analyzed for several parameters and initial conditions making use of bifurcation diagrams, 

Lyapunov exponents and phase portraits. Moreover, entropy from resulting time series is also 

characterized by estimating ordinal pattern distributions. These analyses have been able to 

determine and locate accurately chaotic and periodic attractors in the system, thus enabling 

successful design of its control. In general, financial systems are not always completely 

synchronized; therefore, some robust synchronization technique should be considered. This study 

proposes a novel fuzzy disturbance-observer based integral terminal sliding mode control method 

for the hyperchaotic financial system. The presented control technique guarantees robustness 

against uncertainties, external disturbances and control input saturation. Fuzzy rules are employed 
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to adaptively tune the gains of the proposed control scheme. Also, the fuzzy inference engine 

avoids the chattering problem in the system response. Simulation results illustrate the efficient 

performance of the proposed control technique in presence of dynamic uncertainties, external 

disturbances and control input saturation. 

Keyword: hyperchaotic financial system; dynamic analysis, entropy analysis, fuzzy disturbance-

observer based integral terminal sliding mode control method; dynamic uncertainties; external 

disturbances; control input saturation. 

 

1. Introduction 

The introduction of the Rössler system led to the formation of a new platform in the nonlinear 

system researches, called hyperchaos [1]. The hyperchaotic systems have been widely studied due 

to their interesting properties, such as high efficiency, high security, and high capacity. Nowadays, 

these systems have been used in a variety of fields, including cryptography, imitation of the neural 

system, and image encryption. After the Rössler system, the hyperchaotic Chen system [2], Lu 

system [3], and hyperchaotic Nikolov system [4] have been introduced. The hyperchaos 

phenomena in financial systems may turn into financial crises, such as bogging down the market 

and taking it out control [5, 6]. In addition, this phenomenon could threaten investment safety [7]. 

Over the past few decades, several high-dimensional economical models, such as the Behrens-

Feichtinger model [8], the Cournot-Puu system [9], and other four-dimensional hyperchaotic 

financial systems [10, 11], have been introduced. 

During the past several decades, many control schemes, such as the feedback linearization [12, 

13], backstepping method [14, 15], intelligent control [16, 17], adaptive control [18, 19], and 



sliding mode control (SMC) [20, 21], have been applied to control nonlinear systems. In recent 

years, several studies have also introduced control methods to maintain specific characteristics and 

behaviours in hyperchaotic finance systems. Hołyst and Urbanowicz have proposed a time-delayed 

feedback technique for the control of chaotic behaviour of an economic model [8]. Yao et al. have 

developed a straight-line stabilization technique to achieve chaos control in economic models 

[22].  Vargas et al. have presented an adaptive control technique for a hyperchaotic financial 

system [23]. Jajarmi et al. have proposed an optimal controller with Pontryagin’s maximum 

principle to stabilize the hyperchaos behaviour of a finance system [24]. Also, some other studies 

have suggested sliding mode techniques to control chaos in economical systems [25, 26]. 

Among the stated techniques, SMC has gained significant attention in various applications due to 

its interesting properties, such as guaranteed stability, computational simplicity and robustness 

against uncertainties [27]. Nevertheless, SMC may not give an assurance that the closed-loop 

system converges to the desired trajectory in finite time. Hence, terminal SMC (TSMC) has been 

proposed to guaranty finite-time convergence of the closed-loop system [28, 29]. On the other 

hand, integral SMC (ISMC) and integral TMSC (ITSMC) have been developed to improve 

robustness in the performance of SMC and TSMC [30, 31]. Actually, by adding an integral term 

to conventional SMC and TSMC, the reaching phase of the sliding surface is eliminated, and states 

of the system start moving on the sliding surface right from any initial conditions. Therefore, the 

robustness of the control scheme improves in the entire state space [32, 33]. These capabilities 

explain that ISMC and ITSMC have received much attention and have been proposed for uncertain 

nonlinear systems [31, 34]. 

Most of financial systems in practical applications possess uncertain nonlinear dynamics in 

presence of control input limitation and external disturbances [35]. This chaotic response can 



potentially increase fluctuations in economic systems [24]. On the other hand, input saturation is 

a non-smooth nonlinearity which should be considered in the control design for economic systems. 

To address these problems, further study on the control methods is required to achieve higher 

performance in controlling nonlinear systems. 

In this paper, we implement the four-dimensional financial hyperchaotic system proposed by Yu 

et. al. [11] and its dynamical behaviour is featured through bifurcation diagrams, phase portraits, 

and Lyapunov exponents diagrams. Entropy is also computed by estimating ordinal pattern 

distributions from the resulting time series. When the same parameters are used, these analyses 

show different dynamics as a function of the initial conditions, thus getting coexisting attractors 

of the system and enabling successful design of its control. In fact, this study also introduces a 

novel control scheme for chaos suppression and synchronization of the system combining fuzzy 

logic with fast disturbance observer and ITSMC. The proposed control technique guarantees 

robustness with regard to external disturbances and reduces the chattering for the MIMO uncertain 

nonlinear system in presence of control input saturation, such as extensive simulation results 

exhibit.  

The rest of the paper is organized as follows. Firstly, nonlinear dynamics of the four-dimensional 

financial hyperchaotic system are studied in Section 2. In Section 3, a time series-based entropy 

analysis using ordinal pattern estimations is implemented. In Section 4, the combination of fast 

disturbance observer, ITSMC and fuzzy logic is proposed. Also, based on Lyapunov stability 

theorem, Finite time stability, the convergence of the closed-loop system is proved. In Section 5, 

the hyperchaotic finance system is considered in presence of the external disturbance, dynamic 

uncertainty and limitation control input numerical. Numerical simulations illustrating the 

performance and effectiveness of the proposed controller for chaos suppression and 



synchronization are also shown in this section. Moreover, the presented controller is compared 

with the disturbance-observer-based SMC, which is developed by Chen and Chen [36]. Finally, 

concluding remarks are given in Section 6. 

 

2. Financial hyperchaotic system  

The four-dimensional financial hyperchaotic system, which is defined by two positive Lyapunov 

exponents, can be defined as follows [11]: 

�̇� = 𝑧 + (𝑦 − 𝑎)𝑥 + 𝑢 

�̇� = 1 − 𝑏𝑦 − 𝑥2 

�̇� = −𝑥 − 𝑐𝑧 

�̇� = −𝑑𝑥𝑦 − 𝑘𝑢 

(1) 

Its basic dynamics can be summarized in the following Lyapunov exponents and bifurcation 

diagrams for 𝑏 in [0.1,0.5], when 𝑎 = 0.9, 𝑐 = 1.5, 𝑑 = 0.2, and 𝑘 = 0.17. Figure 1 shows the 

Lyapunov exponents for initial values (0.1,0.2,0.6, −0.3) and the corresponding bifurcation 

diagram of the state variable x in Figure 2. Figure 3 shows the corresponding bifurcation diagram 

of the state variable x when the initial values are (0,2,0.1,−0.5). As can be seen, although we have 

chosen the same parameter conditions, we can still get different bifurcation diagrams for different 

initial values. Therefore, we can obtain the coexisting attractors displayed in Figure 4. 



  

Figure 1: Lyapunov exponents for 𝑎 = 0.9, 𝑐 = 1.5, 𝑑 = 0.2, 𝑘 = 0.17 and 𝑏 in [0.1,0.5] and 

initial values (0.1,0.2,0.6,−0.3). 

 

Figure 2: Bifurcation diagram for 𝑎 = 0.9, 𝑐 = 1.5, 𝑑 = 0.2, 𝑘 = 0.17 and 𝑏 in [0.1,0.5] and 

initial values (0.1,0.2,0.6,−0.3) 



 

Figure 3: Bifurcation diagram for 𝑎 = 0.9, 𝑐 = 1.5, 𝑑 = 0.2, 𝑘 = 0.17 and 𝑏 in [0.1,0.5] and 

initial values (0,2,0.1,−0.5). 

a)  b)  

c)  d)  

Figure 4: Coexisting attractors for 𝑎 = 0.9, 𝑏 = 0.2, 𝑐 = 1.5, 𝑑 = 0.2, 𝑘 = 0.17. (a) and (b): 

hyperchaos with initial values (0.1,0.2,0.6,−0.3); (c) and (d): periodic orbit with initial values 

(0,2,0.1, −0.5). 



3. Entropy analysis 

Beyond the analysis of bifurcation diagrams and Lyapunov exponents, entropy is often studied for 

a broader understanding of the dynamical characteristics of systems [37]. In fact, entropy of a 

system is characterized by unpredictability of its dynamics, so that more complex systems are less 

predictable [38]. To estimate this information, some theoretical measures, including the well-

known Kolmogorov-Sinai entropy, have been proposed. However, they present some difficulties 

to compute entropy from finite time series [39]. To address this limitation, several empirical 

measures have been developed, such as approximate entropy [39] or sample entropy [40], but their 

theoretical foundation is lost [41]. Contrarily, the theoretical basis as well as its relationship with 

Kolmogorov-Sinai entropy have been clearly established for permutation entropy (PerEn) [42]. 

This index is based on an ordinal pattern analysis and can be applied to any kind of data set. 

Moreover, because PerEn is a conceptually simple, computationally fast, and noise-robust 

measure, it has been used to characterize a wide variety of real-world time series [43]. 

From a mathematical point of view, given a time series of 𝑁 samples in length, i.e., 𝑥(𝑛) =

{𝑥(1), 𝑥(2),… , 𝑥(𝑁)}, the first step to compute PerEn is to form 𝑁 −𝑚 + 1 vectors of size 𝑚 

samples, such that 𝑋𝑚(𝑖) = {𝑥(𝑖), 𝑥(𝑖 + 1), … , 𝑥(𝑖 + 𝑚 − 1)}, for 1 ≤ 𝑖 ≤ 𝑁 −𝑚 + 1. Next, an 

ordinal pattern is associated to each vector 𝑋𝑚(𝑖), which is defined as the permutation 𝜅𝑖 =

{𝑟0, 𝑟1, … , 𝑟𝑚−1} of {0,1, … ,𝑚 − 1} that fulfills 𝑥(𝑖 + 𝑟0) ≤ 𝑥(𝑖 + 𝑟1) ≤ ⋯ ≤ 𝑥(𝑖 + 𝑟𝑚−2) ≤

𝑥(𝑖 + 𝑟𝑚−1). Thus, 𝑚! different ordinal patterns, referred to as 𝜋𝑘, can be obtained from vectors 

𝑋𝑚. The occurrence probability of each pattern 𝜋𝑘 can then be estimated by its relative frequency, 

such that 

𝑝(𝜋𝑘) =
∑ 𝛿(𝜋𝑘, 𝜅𝑖)
𝑁−𝑚+1
𝑖=1

𝑁 −𝑚 + 1
 

(2) 

where 𝛿(𝑢, 𝑣) is the Kronecker delta function modified to work with patterns, i.e. 



𝛿(𝑢, 𝑣) = {
1 if 𝑢(𝑖) = 𝑣(𝑖), for every 𝑖 = 1,2, … ,𝑚; and
0 for otherwise.

 
(3) 

Finally, entropy is estimated by computing Shannon entropy from the probability distribution for 

all the symbols, such that 

PerEn(𝑚) = −
1

ln(𝑚!)
∑𝑝(𝜋𝑘)

𝑚!

𝑘=1

ln (𝑝(𝜋𝑘)) 
(4) 

It should be noted that PerEn is normalized by its highest value, i.e. ln(𝑚!), thus ranging between 

0 and 1 [44]. Whereas a completely predicable time series defined by a single pattern is featured 

by a value of 0, the largest entropy of 1 is obtained when all symbols 𝜋𝑘 exhibit the same 

occurrence probability. Nonetheless, right selection of m plays a key role to obtain robust PerEn 

estimates. To this respect, higher values of 𝑚 allow to consider a greater number of different 

patterns, thus usually providing more reliable entropy estimates. However, the higher the value of 

𝑚, the higher the computational load, and a trade-off between both aspects has been strongly 

suggested [45]. Thus, values of 𝑚 between 3 and 7 have only been previously recommended by 

several authors [42-44]. 

After several experiments with these values of 𝑚, no significant differences were noticed in PerEn 

evolution as a function of parameter 𝑏. Thus, Figure 5 shows PerEn values computed from the 

time series 𝑥(𝑛) for 𝑚 = 7 and the two initial conditions previously considered, i.e. 

(0.1,0.2,0.6,−0.3) and (0,2,0.1, −0.5). As can be observed, for both cases entropy values agree 

with bifurcation diagrams presented in Figures 2 and 3. Precisely, PerEn exhibits high values when 

the system is in a chaotic state and, on the contrary, low estimates when it is in a stable state. 



 

Figure 5: PerEn evolution as a function of parameter b for initial conditions of (a) 

(0.1,0.2,0.6,−0.3) and (b) (0,2,0.1, −0.5). 

 

4. Controller design 

Consider the following MIMO nonlinear relative-degree-one systems with dynamic uncertainties 

and external disturbance: 

�̇�(𝑡) = 𝑓(𝑥) +  Δ𝑓(𝑥) + (𝑔(𝑥) + Δ𝑔(𝑥))𝑢𝑐 + 𝑑0(𝑡)                                       (5) 

where 𝑥 =  [ 𝑥1 , 𝑥2 , . . . , 𝑥𝑛 ]
𝑇 denotes state vector, 𝑓(𝑥) is nonlinear functions representing 

system dynamics and   𝑔  is a 𝑛 × 𝑛 nonlinear matrix. Moreover, Δ𝑓 and  Δ𝑔 are the nonlinear 

functions indicating the system uncertainties. The vector, 𝑑0 = [ 𝑑0_1 , 𝑑0_2 , . . . , 𝑑0_𝑛 ]
𝑇
and 𝑢𝑐 =

 [ 𝑢c1 , 𝑢c2 , . . . , 𝑢𝑐𝑛 ]
𝑇 denote the external disturbance and  control input, respectively. Considering 

the uncertain terms of the system and the external disturbance ( 𝑑0 ) as a single disturbance term 

𝑑 (𝑡 ),  the dynamic equation of the system can be written as 

�̇�(𝑡) = 𝑓(𝑥) + 𝑔(𝑥)𝑢𝑐 + 𝑑(𝑡)                                       (6-a) 
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𝑑 (𝑡 ) = Δ𝑓(𝑞 ) +  Δ𝑔(𝑞 )𝑢𝑐 + 𝑑0 (𝑡) ) (6-b) 

The lemma 1 and 2 are used in order to propose the disturbance-observer-based ITSMC for the 

uncertain MIMO nonlinear relative-degree-one systems (5). 

Lemma 1. Let continuous positive definite function 𝑉(𝑡), which fulfills the following inequality 

[46]: 

�̇�(𝑡) + 𝜗𝑉(𝑡) + 𝜉𝑉𝜒 ≤ 0,       ∀𝑡 > 𝑡0 (7) 

where  0 < 𝜒 < 1 , and  𝜗 > 𝜉 >0.  As a result, the function 𝑉(𝑡) converges to the equilibrium 

point in the finite time 𝑡𝑠, 

𝑡𝑠 ≤ 𝑡0 +
1

𝜗(1 + 𝜒)
ln
𝜗𝑉1−𝜒(𝑡0) + 𝜉

𝜉
 (8) 

Lemma 2.  By considering triangle inequality: if 0 < 𝑛 < 1 and 𝑎∆ >  0, ∆ = 1, 2, … ,𝑚 , then 

(∑𝑎∆

𝑚

∆=1

)

𝑛

≤∑𝑎∆
𝑛

𝑚

∆=1

 (9) 

4.1. Fast disturbance observer in the presence of control input saturation 

However, in real systems, where the maximum and minimum amount of the control input has 

certain restrictions, control input saturation as a non-smooth nonlinearity may occur in many 

practical systems. Therefore, in this study, the unknown input saturation has been considered. By 

applying the input saturation constraints, the control input 𝑢 which applied to the system is as 

follows 

𝑢𝑐 = {
𝑢𝑚𝑎𝑥                         𝑖𝑓 𝑣 > 𝑢𝑚𝑎𝑥     
𝑣                                                            
𝑢𝑚𝑖𝑛                         𝑖𝑓 𝑣 < 𝑢𝑚𝑖𝑛      

 (10) 



where  𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 are the maximum and minimum bounds of control input saturation and 𝑣 

is the control input which will be obtained in the following with integral terminal sliding mode 

technique. Now, considering �̃�c = 𝑢𝑐 − 𝑣 and replacing Eq. (10) into Eq. (6) yields 

�̇�(𝑡) = 𝑓(𝑥) + 𝑔(𝑥)(𝑣 + �̃�c) + 𝑑                                         

= 𝑓(𝑥) + 𝑔(𝑥)𝑣 + 𝑔(𝑥)�̃�c + 𝑑  

  = 𝑓(𝑥) + 𝑔(𝑥)𝑣 + 𝐷     

(11) 

where 𝐷 = 𝑔(𝑥)�̃�c + 𝑑  is a compound disturbance by applying control input saturation. To design 

a finite time disturbance observer, the following auxiliary variables is defined [47]: 

𝑠𝑑 = 𝑧 − 𝑥 (12) 

in which variable 𝑧 is given by 

𝑧 = −𝑘𝑑𝑠𝑑 − 𝛽𝑠𝑖𝑔𝑛(𝑠𝑑) − 휀𝑠𝑑
𝑝0/𝑞0 − |𝑓(𝑥)|𝑠𝑖𝑔𝑛(𝑠𝑑) + 𝑔(𝑥)𝑣 (13) 

where design parameters 𝑘𝑑  and 휀 are positive and 𝛽 > ‖𝐷‖1 , and symbol  ‖. ‖ denotes 1-norm. 

Also, 𝑝0 and 𝑞0 are odd positive integers, which 𝑝0 < 𝑞0. The fast disturbance observer �̂� is given 

by   

�̂� = −𝑘𝑑𝑠𝑑 − 𝛽𝑠𝑖𝑔𝑛(𝑠𝑑) − 휀𝑠𝑑
𝑝0/𝑞0 − |𝑓(𝑥)|𝑠𝑖𝑔𝑛(𝑠𝑑) − 𝑓(𝑥) (14) 

Considering Eqs. (12), (13), and (11) the following equation has been achieved 

𝑠�̇� = �̇� − �̇�𝑛 = −𝑘𝑑𝑠𝑑 − 𝛽sign(𝑠𝑑) − 휀𝑠𝑑
𝑝0/𝑞0 − |𝑓(𝑥)|sign(𝑠𝑑) − 𝑓(𝑥) − 𝐷 (15) 

According to Eqs. (11), (14), and (15), we have 

�̃� = �̂� − 𝐷 = −𝑘𝑑𝑠 − 𝛽sign(𝑠) − 휀𝑠
𝑝0
𝑞0 − |𝑓(𝑥)|sign(𝑠) − 𝑓(𝑥) − 𝐷 

= −𝑘𝑠𝑑 − 𝛽𝑠𝑖𝑔𝑛(𝑠𝑑) − 휀𝑠𝑑

𝑝0
𝑞0 − |𝑓(𝑥)|𝑠𝑖𝑔𝑛(𝑠𝑑) − 𝑓(𝑥) − �̇� + 𝑓(𝑥) + 𝑔(𝑥)𝑣 

= −𝑘𝑠𝑑 − 𝛽𝑠𝑖𝑔𝑛(𝑠𝑑) − 휀𝑠𝑑

𝑝0
𝑞0 − |𝑓(𝑥)|𝑠𝑖𝑔𝑛(𝑠𝑑) + 𝑔(𝑥)𝑣 − �̇� = �̇� − �̇� = 𝑠�̇� 

(16) 



Lemma 3 and Theorem 1 have been employed to prove the stability and tracking of the disturbance 

estimation in the finite time. 

Theorem 1. For the MIMO uncertain nonlinear system (6), by applying disturbance estimator 

(12)-(15), the error of disturbance observer is convergent to zero, in the finite time.  

Proof. assume the positive definite Lyapunov function candidate as  

𝑉0 =
1

2
𝑠𝑑
𝑇𝑠𝑑 (17) 

The time derivative of the function 𝑉0 is: 

�̇�0 = 𝑠𝑑
𝑇𝑠�̇� = 𝑠𝑑

𝑇 (−𝑘𝑑𝑠𝑑 − 𝛽𝑠𝑖𝑔𝑛(𝑠𝑑) − 휀𝑠𝑑

𝑝0
𝑞0 − ‖𝑓(𝑥)‖1𝑠𝑖𝑔𝑛(𝑠𝑑) − 𝑓(𝑥) − 𝐷) 

 ≤ −𝑘𝑑𝑠𝑑
𝑇𝑠𝑑 − 𝛽𝑠𝑑

𝑇sign(𝑠𝑑) − 휀𝑠𝑑
𝑇𝑠𝑑

𝑝0
𝑞0 − ‖𝑓(𝑥)‖1  𝑠𝑑

𝑇𝑠𝑔𝑛(𝑠𝑑) − 𝑠𝑑
𝑇𝑓(𝑥) − 𝑠𝑑

𝑇𝐷 

≤ −𝑘𝑑𝑠𝑑
𝑇𝑠𝑑 − 𝛽‖𝑠𝑑

𝑇‖1−휀𝑠𝑑
𝑇𝑠𝑑

𝑝0
𝑞0 − ‖𝑓(𝑥)‖1‖𝑠𝑑

𝑇‖1 − 𝑠𝑑
𝑇𝑓(𝑥) + ‖𝑠𝑑

𝑇‖1‖𝐷‖1 

≤ −𝑘𝑑𝑠𝑑
𝑇𝑠𝑑−휀𝑠𝑑

𝑇𝑠𝑑

𝑝0
𝑞0 ≤ −2𝑘𝑉0 − 2

(𝑝0+𝑞0)/2𝑞0휀𝑉0
(𝑝0+𝑞0)/2𝑞0 

(18) 

The last line of Eq. (18) has been obtained by Lemma 3. 

Lemma 3. 

𝑉0 =
1

2
𝑠𝑑
𝑇𝑠𝑑 =

1

2
(𝑠𝑑1

2 + 𝑠𝑑2
2 +⋯+ 𝑠𝑑𝑛

2) 

𝑉0
(𝑝0+𝑞0)/2𝑞0 = (

1

2
(𝑠𝑑1

2 + 𝑠𝑑2
2 +⋯+ 𝑠𝑑𝑛

2))

(𝑝0+𝑞0)/2𝑞0

 

≤
1

2(𝑝0+𝑞0)/2𝑞0
 (𝑠𝑑1

(𝑝0+𝑞0)/2𝑞0 + 𝑠𝑑2
(𝑝0+𝑞0)/2𝑞0 +⋯+ 𝑠𝑑𝑛

(𝑝0+𝑞0)/2𝑞0) 

(19) 

 

Therefore, the following equation has been achieved 

2(𝑝0+𝑞0)/2𝑞0𝑉0
(𝑝0+𝑞0)/2𝑞0 ≤ 𝑠𝑑1

(𝑝0+𝑞0)/𝑞0 + 𝑠𝑑2
(𝑝0+𝑞0)/𝑞0 +⋯+ 𝑠𝑑𝑛

(𝑝0+𝑞0)/𝑞0 (20) 

 As we know   𝑠𝑑1
(𝑝0+𝑞0)/𝑞0 + 𝑠𝑑2

(𝑝0+𝑞0)/𝑞0 +⋯+ 𝑠𝑑𝑛
(𝑝0+𝑞0)/𝑞0=𝑠𝑑

𝑇𝑠𝑑
𝑝0/𝑞0,  thus 



2(𝑝0+𝑞0)/2𝑞0𝑉0
(𝑝0+𝑞0)/2𝑞0 ≤ 𝑠𝑑

𝑇𝑠𝑑

𝑝0
𝑞0       

𝑦𝑖𝑒𝑙𝑑𝑠
→    −휀𝑠𝑑

𝑇𝑠𝑑
𝑝0/𝑞0 ≤ −휀2(𝑝0+𝑞0)/2𝑞0𝑉0

(𝑝0+𝑞0)/2𝑞0 

(21) 

According to Lemma 1,2 and 3 and Eq. (18) the proposed disturbance estimator satisfies the 

Lyapunov condition and the disturbance approximation error �̃� converge to zero in the finite time. 

Remark 1. According to Lemma1 the disturbance estimator which proposed for the MIMO 

nonlinear system converges to zero in finite time. The convergence time of the disturbance 

observer given by  

𝑡𝑠∆ < 𝑡0∆ +
𝑞0

𝑘(𝑝0 + 3𝑞0)
ln (

𝑘𝑠0∆
(𝑞0−𝑝0)/ 𝑞0   𝑡0∆

휀
+ 1)                 ∆= 1,2,3… , 𝑛 (22) 

in which, 𝑡𝑠∆ and 𝑡0∆ are convergence time of each element and initial time, respectively. 

4.2. ITSMC 

By utilizing the output of disturbance observer, the ITSMC is employed to achieve the control 

objective lim
𝑡→∞

  𝑥(𝑡) = 𝑥𝑑(𝑡) in the presence of dynamic uncertainty, external disturbance and 

control input saturation. The vector of tracking error of the system is given by 

 𝑒(𝑡) = [𝑒1(𝑡), 𝑒2(𝑡), … , 𝑒𝑛(𝑡)]
𝑇 =  𝑥(𝑡)  − 𝑥𝑑(𝑡) (23) 

To develop the integral terminal sliding mode tracking controller the following variable will define 

as [48]: 

𝑠𝑐(𝑡)  =  𝑒(𝑡)  +  𝛼 ∫ 𝑒
𝑝/𝑞 (𝜏)𝑑𝜏

𝑡

0
    and    𝑠𝑐(0) = 0 (24) 

where parameters 𝑞 and 𝑝 are odd integers and  𝑞 >  𝑝 >  0. when 𝑠c(𝑡)  =  0, Eq. (24) is 

equivalent to 



𝑒(𝑡) = −𝛼∫ 𝑒
𝑝
𝑞  (𝜏)𝑑𝜏

𝑡

0

  (25) 

First-order differentiation of both side of Eq. (25) yields: 

�̇�(𝑡) = −𝛼𝑒𝑝/𝑞 (26) 

Integrating of Eq (26), yields 

𝛼∫ 𝑑𝜏
𝑇𝑓

𝑇𝑖

 = −∫
1

𝑒𝑝/𝑞
𝑑𝑒

𝑒(𝑇𝑓)

𝑒(𝑇𝑖)

 (27) 

By solving Eq. (27), the convergence time of 𝑠𝑐(𝑡)  is achieved as 

𝑇𝑓 = 𝑇𝑖 +
𝑒(𝑇𝑖)

1−𝑝/𝑞

𝛼1−𝑝/𝑞(1 −
𝑝
𝑞)
 =

𝑒(𝑇𝑖)
1−𝑝/𝑞

𝛼1−𝑝/𝑞(1 −
𝑝
𝑞)

 (28) 

The time derivative of the variable  𝑠𝑐(𝑡) along trajectories of dynamics (11) yields 

𝑠�̇� (𝑡) =  �̇�  +  𝛼𝑒
𝑝
𝑞(𝑡)  =  𝑓(𝑥) +  𝑔(𝑥)𝑣 + 𝐷(𝑥)  − 𝑦�̇�  +  𝛼𝑒

𝑝
𝑞(𝑡) (29) 

By considering the fast disturbance observer, the integral terminal sliding surface can be defined 

as 

𝑠𝑡(𝑡) =  𝑠𝑐(𝑡) + 𝑠𝑑(𝑡)  (30) 

in which 𝑠𝑑(𝑡) is the auxiliary variable related to the disturbance observer which introduced in 

equation (12).  The disturbance-observer-based ITSMC for the MIMO nonlinear uncertain system 

(11) in the presence of unknown non-symmetric input saturation is designed as 

𝑣 = 𝑔−1(𝑥) (�̇�𝑑 − 𝑓(𝑥) − (𝐾 + 𝛿 ‖𝑒
𝑝
𝑞(𝑡)‖ 𝐼) sign(𝑠𝑡) − �̂�) (31) 

where parameters 𝐾, 𝛿, and 𝛼 are positive which  𝛿 > 𝛼 and  𝐾 is  

𝐾 = 𝑑𝑖𝑔([𝑘1 , 𝑘2 , … . , 𝐾𝑛]) (32) 

Theorem 2. The states of the closed-loop system (5) are convergence to the desired value in the 

finite time by using the proposed control law (31).  



Proof.  Choose the positive-definite Lyapunov candidate functional as follow  

𝑉0 =
1

2
𝑠𝑡
𝑇𝑠𝑡 (33) 

Taking the time derivative of the Lyapunov function candidate and using Eqs. (31) and (11) yields  

�̇�0 = 𝑠𝑡
𝑇�̇�𝑡 = 𝑠𝑡

𝑇  (𝑓(𝑥) +  𝑔(𝑥)𝑢 − 𝑥�̇�  +  𝛼𝑒
𝑝
𝑞(𝑡) + �̇�𝑡) 

= 𝑠𝑡
𝑇  (𝑓(𝑥) + (�̇�𝑑 − 𝑓(𝑥) − (𝐾 + 𝛿 ‖𝑒

𝑝
𝑞(𝑡)‖ 𝐼) sign(𝑠𝑡) − �̂�)  − 𝑥�̇�  +  𝛼𝑒

𝑝
𝑞(𝑡) + �̇�𝑑) 

= 𝑠𝑡
𝑇  (− (𝐾 + 𝛿 ‖𝑒

𝑝
𝑞(𝑡)‖ 𝐼) sign(𝑠𝑡) + 𝐷 − �̂�   +  𝛼𝑒

𝑝
𝑞(𝑡) + �̇�𝑑) 

= 𝑠𝑡
𝑇  (− (𝐾 + 𝛿 ‖𝑒

𝑝
𝑞(𝑡)‖ 𝐼) sign(𝑠𝑡) + �̃�   +  𝛼𝑒

𝑝
𝑞(𝑡) + �̇�𝑑) 

(34) 

Considering Eq (12) �̃�  = −�̇�𝑑 yields 

𝑠𝑡
𝑇�̇�𝑡 = −𝑠𝑡

𝑇 (𝐾 + 𝛿 ‖𝑒
𝑝
𝑞(𝑡)‖ 𝐼) sign(𝑠𝑡)   +  𝑠𝑡

𝑇𝛼𝑒
𝑝
𝑞(𝑡) (35) 

where parameters 𝐾, 𝛿 and 𝛼 are positive, and 𝛿 > 𝛼 , hence 

𝑠𝑡
𝑇�̇�𝑡 ≤ −(𝐾)‖𝑠𝑡‖   (36) 

In conclusion, the designed control scheme satisfies the Lyapunov condition.  Accordingly, it can 

be established that all state of the closed-loop system converges to the desired value in the finite 

time.  

4.3 Fuzzy inference logic for disturbance-observer-based ITSM 

To avoid the chattering phenomenon caused by the discontinuous function 𝑠𝑔𝑛 (. ) and to increase 

the speed of converging to the desired value, the following fuzzy controller have been proposed. 

The fuzzy inference engine adaptively tunes the gains of the controller. This way, the fuzzy logic 

map the input variables 𝑠𝑡, �̇�𝑡, 𝑠𝑑 , and �̇�𝑑 to the output variables 𝐹𝑠𝑡, 𝐹𝑠𝑑 𝐾 and 𝑘𝑑. Where the matrix 



 𝐾 and 𝑘𝑑 are design parameter of controller and 𝐹𝑠𝑡 , 𝐹𝑠𝑑 are substitutions of the 𝑠𝑖𝑔𝑛( 𝑠𝑡) and 

𝑠𝑖𝑔𝑛( 𝑠𝑑).  The fuzzy rules are chosen somehow satisfy the stability of the proposed control 

technique. According to stability conditions of the disturbance-observer-based ITSMC which 

described in Eq.(36), negativeness or positiveness of 𝐹𝑠𝑡 , 𝐹𝑠𝑑 is taken from 𝑠𝑖𝑔𝑛 (𝑠𝑡)  and 

𝑠𝑖𝑔𝑛 (𝑠𝑑).  

In the present study, the Mamdani fuzzy controller has been applied. Max operator is used for the 

aggregation of the rules. Moreover, Min operator has been selected for the conjunction operator 

and the t-norm from the compositional. Figures 6 and 7 display the gaussian membership function 

of input and output linguistic variables. 

 

Figure 6: Membership functions of input linguistic variables 𝑠𝑡, �̇�𝑡, 𝑠𝑑, 𝑎𝑛𝑑 �̇�𝑑. 

 

  
(a) (b) 

Figure 7: Membership functions of (a) output linguistic variables 

𝐹𝑠𝑡  and 𝐹𝑠𝑑  (b)  output linguistic variables 𝐾 and 𝑘𝑑. 



The membership functions for variables  𝐹𝑠𝑡, 𝐹𝑠𝑑�̇�𝒕 , 𝒔𝒕, 𝒔𝒅 and �̇�𝒅 have been considered as five 

fuzzy partitions in which the following symbols have been used: NB (Negative Big), N (Negative), 

Z (Zero), P (Positive), and PB (Positive Big) and the fuzzy set is normalized in the interval (-1,1). 

Also, for positive variables , 𝐾 and 𝑘𝑑 the membership functions have been introduced as VS (very 

small), S (small) and M (medium); B (big) and VB (very big) and the fuzzy set is normalized in 

the interval (0,1). Tables 1 and 2 introduce the fuzzy rules base which have been implemented in 

the present study. 

Table 1:  Fuzzy rule base for 𝐹𝑠𝑡 and 𝐹𝑠𝑑 . 

 �̇�𝒕 or �̇�𝒅 

 

 

𝒔𝒕 or 𝒔𝒅 

𝐹𝑠𝑡  𝐨𝐫 𝐹𝑠𝑑 NB N Z P PB 

NB NB NB N NB NB 

N NB N N N NB 

Z N N Z P P 

P PB P P P PB 

PB PB PB P PB PB 

 

Table 2:  Fuzzy rule base for  𝐾 or 𝑘𝑑. 

 

 

 

 

 

𝐹𝑠𝑡 , 𝐹𝑠𝑑 , 𝐾 and 𝑘𝑑 are the outputs of the fuzzy logic controller, which are determined by the 

mapping of input linguistic variables �̇�𝒕 , 𝒔𝒕, 𝒔𝒅 and �̇�𝒅. The procedure of disturbance-observer-

based ITSMC with fuzzy gain tuning is illustrated in Fig. 8. The fuzzy gain tuning and fast 

 �̇�𝒕 or �̇�𝒅 

 

 

𝒔𝒕 or 𝒔𝒅 

𝐾 or 𝑘𝑑 NB N Z P PB 

NB VB VB B VB VB 

N B B M B B 

Z M M M M M 

P B B M B B 

PB VB VB B VB PB 



disturbance observe have been combined with ITSMC to improve the performance of the control 

scheme in the presence of dynamic uncertainty, external disturbance and input saturation. The rest 

of this paper, we will apply the proposed control scheme to the hyperchaotic finance system. 

 

Figure 8: Scheme of fuzzy disturbance-observer-based ITSMC for MHS. 

 

5. Simulation results 

In the following section, the simulation results of the proposed fuzzy disturbance-observer-based 

ITSMC which is performed on the hyperchaotic finance system have been presented. The state 

equations of the system with external disturbance and the control input is  

�̇� = 𝑧 + (𝑦 − 𝑎)𝑥 + 𝑢 + 𝑑x + 𝑢cx 
�̇� = 1 − 𝑏𝑦 − 𝑥2 + 𝑑𝑦 + 𝑢𝑐𝑦 

�̇� = −𝑥 − 𝑐𝑧 + 𝑑𝑧  + 𝑢𝑐𝑧 
�̇� = −𝑑𝑥𝑦 − 𝑘𝑢 + 𝑑𝑢  + 𝑢𝑐𝑢 

(37) 

According to the proposed control technique, the control input with input saturation and estimated 

disturbance are as follow  



𝑢𝑐 = {
𝑢𝑚𝑎𝑥                         𝑖𝑓 𝑣 > 𝑢𝑚𝑎𝑥     
𝑣                                                            
𝑢𝑚𝑖𝑛                         𝑖𝑓 𝑣 < 𝑢𝑚𝑖𝑛      

 (38-a) 

𝑣 = 𝑔−1(𝑋) (�̇�𝑑 − 𝑓(𝑋) − (𝐾 + 𝛿 ‖𝑒
𝑞
𝑝(𝑡)‖ 𝐼)  𝐹𝑠𝑡 − �̂�𝑋) (38-b) 

�̂� = −𝑘𝑠𝑑 − 𝛽𝑠𝑖𝑔𝑛(𝑠𝑑) − 휀𝑠𝑑
𝑝0/𝑞0 − |𝑓(𝑋)|  𝐹𝑠𝑑 − 𝑓(𝑋) (38-c) 

Where vectors 𝑢𝑐 = [𝑢𝑐𝑥, 𝑢𝑐𝑦 , 𝑢𝑐𝑧 , 𝑢𝑐𝑤], 𝑋 = [𝑥, 𝑦, 𝑧, 𝑢] and 𝐷 = [𝐷𝑥, 𝐷𝑦 , 𝐷𝑧 , 𝐷𝑢] are the limited 

control input, the state of the system and external disturbance, respectively.  

5.1 Comparison of the proposed control scheme with SMC 

To investigate the advantages of the developed control scheme, the proposed controller is 

compared with the SMC based on the disturbance observer which developed by Chen and Chen 

[36]. The initial conditions are considered as [0.1, 0.2, 0.6, −0.3]. Also, the control signals are 

turned on at 𝑇𝑠𝑡𝑎𝑟𝑡 = 1.  The designed parameters for the control scheme are considered as 

𝑝0 = 𝑝 = [3,3,3,3], 𝑞 = [13,13,13,13,13], 𝑞0 = [9,9,9,9], 𝛿 = [5,5,5,5]  

𝛽 = [100,100,100,100], 휀 = [10,10,10,10] 
(39) 

 



 

Figure 9: Time history of the hyperchaotic financial systems with the fuzzy disturbance-

observer-based ITSMC and disturbance-observer-based sliding mode control. The control 

signals are turned on at 𝑇𝑠𝑡𝑎𝑟𝑡 = 1.   

 

 

Figure 10: The control input of the hyperchaotic financial systems with the fuzzy disturbance-

observer-based ITSMC and disturbance-observer-based sliding mode control (𝑇𝑠𝑡𝑎𝑟𝑡 = 1). 

 



Figures 9 and 10 illustrate the time history of the system and control input by using both the control 

method. It is concluded from Figure 9 that the proposed fuzzy disturbance-observer based ITSMC 

presents an accurate and very faster response over the disturbance-observer based SMC method. 

Also, the system with fuzzy disturbance-observer based ITSMC has the smooth and chattering-

free sliding surfaces, due to the proposed fuzzy inference engine. Therefore, the suggested control 

scheme has fine performance in comparison with the conventional SMC [36].  

As is shown in Figure 10 large input control is needed for both control schemes.  In the practical 

systems, an appropriate control input saturation should be considered to avoid large input. To 

address this problem, we consider the feasible input saturation as follow  

𝑢𝑐𝑚𝑎𝑥 = [5,5,5,5]        𝑢𝑐𝑚𝑖𝑛 = [−5,−5, −5,−5]                        (40) 

moreover, we consider the system in the presence of external disturbances as follow  

𝑑x = 𝑑y = 𝑑z = 𝑑w = . 1sin(10𝑡) + . 1cos(5𝑡) (41) 

Figures 11 and 12 show the time history of states and control input by applying fuzzy 

disturbance-observer-based ITSMC in the presence of input saturation and external disturbance. 

Also, Figure 13 displays estimated disturbance by disturbance observer.  

The results of the suggested control technique and SMC are summarized in Tables 3, 4, and 5. 

Table 3 lists the values of the rise time (𝑇𝑟) and settling time (𝑇𝑠) for states of the system. Also, 

Table 4 presents the values of the regulation errors of the system.  From these results, it can be 

concluded that the closed-loop convergence times of the system with SMC is more than the 

proposed controller. Table 5 compares the control input value for the SMC and the proposed 

controller. According to this table, the control input norms of the proposed method with input 

saturation are less than SMC, which is because of input saturation and free chattering response 

due to the fuzzy logic inference engine. This yields less energy consumption for the control of 



the finance system. Since the value of the control input is important for the financial purpose, 

control input saturation plays an inevitable role for these systems. 

 

Figure 11: Time history of the hyperchaotic financial systems with the fuzzy disturbance-observer-based 

ITSMC in the presence of input saturation and external disturbance (𝑇𝑠𝑡𝑎𝑟𝑡 = 1). 

 

  

Figure 12: The control input of the hyperchaotic financial systems with the fuzzy disturbance-

observer-based ITSMC in the presence of input saturation and external disturbance (𝑇𝑠𝑡𝑎𝑟𝑡 =

1). 
 



 

Figure 13:  The disturbances estimated with fuzzy disturbance-observer (𝑇𝑠𝑡𝑎𝑟𝑡 = 1). 

 

Table 3: Quantitative comparison of the settling time (𝑇𝑠) and the rise time (𝑇𝑟)  

 𝑻𝒓(𝒙) 𝑻𝒔(𝒙) 𝑻𝒓(𝒚) 𝑻𝒔(𝒚) 𝑻𝒓(𝒛) 𝑻𝒔(𝒛) 𝑻𝒓(𝒘) 𝑻𝒔(𝒘) 

Proposed method 0.2113 1.0353 0.0224 1.0382 0.9405 1.0204 0.1625 1.0417 

Proposed method 

in the presence of input 

saturation and external 

disturbance 

0.1949 1.0408 0.0389 1.2502 0.9356 1.0318 0.7754 1.0525 

SMC (Chen and Chen 

(2013)) 
0.3430 1.2199 0.7675 2.2135 2.0090 2.3008 0.3597 1.2831 

 

Table 4: Quantitative comparison of the regulation errors.  

 ‖𝒆𝒙‖𝟐 ‖𝒆𝒙‖∞ ‖𝒆𝒚‖𝟐
 ‖𝒆𝒚‖∞

 ‖𝒆𝒛‖𝟐 ‖𝒆𝒛‖∞ ‖𝒆𝒘‖𝟐 ‖𝒆𝒘‖∞ 

Proposed method 0.4332 0.0589 7.5410 1.0588 0.5874 0.0806 1.8699 0.2656 

Proposed method 

in the presence of input 

saturation and external 

disturbance 

0.3736 0.0588 30.6730 1.0548 0.5097 0.0726 3.5944 0.2681 

SMC (Chen and Chen 

(2013)) 
1.2506 0.0589 31.2722 1.0588 15.7564 0.1988 6.2587 0.2656 

 



Table 5: Quantitative comparison of the control input 

 ‖𝒖𝒙‖𝟐 ‖𝒖𝒙‖∞ ‖𝒖𝒚‖𝟐
 ‖𝒖𝒚‖∞

 ‖𝒖𝒛‖𝟐 ‖𝒖𝒛‖∞ ‖𝒖𝒘‖𝟐 ‖𝒖𝒘‖∞ 

Proposed method 39.2421 5.6184 802.6640 104.8196 54.7737 7.9059 191.4764 28.5568 

Proposed method 

in the presence of 

input saturation and 

external disturbance 

52.8253 5.0000 318.0940 5.0000 59.0629 5.0000 115.3672 5.0000 

SMC (Chen and 

Chen (2013)) 
270.4521 5.0770 431.4070 99.4440 

302.310

3 
14.6431 370.0206 27.6923 

 

5.2 synchronization of chaotic systems with uncertainties and input saturation 

In this state, the efficient fuzzy disturbance-observer-based TSMC scheme is employed to achieve 

the synchronization of the system. The slave system is taken from Eq. (37), while the master system 

takes the form: 

�̇� = 𝑧𝑚 + (𝑦𝑚 − 𝑎)𝑥𝑚 + 𝑢𝑚 

�̇� = 1 − 𝑏𝑦𝑚 − 𝑥𝑚
2  

�̇� = −𝑥𝑚 − 𝑐𝑧𝑚 

�̇� = −𝑑𝑥𝑚𝑦𝑚 − 𝑘𝑢𝑚 

(42) 

The parameters of the master system are considered equal to the slave system. Also, the initial 

conditions for the master system are [0, 2, 0.1, -0.5]. We consider the case where we have poor 

knowledge of the slave system parameters. This way, we set parameters to 50% of their actual 

values, i.e 

�̂� = 0.5 × 𝑎, �̂� = 0.5 × 𝑏, �̂� = 0.5 × 𝑐, �̂� = 0.5 × 𝑑, �̂� = 0.5 × 𝑘  (43) 

Where the prameters �̂�, �̂�, �̂�, �̂� 𝑎𝑛𝑑 �̂�  are incorrect parameters and have been used for control 

scheme instead of 𝑎, 𝑏, 𝑐, 𝑑 and 𝑘. Actually, we feed the controller with these incorrect information 

to investigate the performance of the proposed controller in presence of uncertainity. The time-

history of synchronization and control input are illustrated in Figures 14 and 15, respectively. 

Based on these figures, the proposed control scheme swiftly moves the slave system response to 

the master system response.  



  

 

Figure 14: Synchronization results for the hyperchaotic financial systems with the fuzzy disturbance-

observer-based ITSMC which the control signals are turned on at 𝑇𝑠𝑡𝑎𝑟𝑡 = 100.  The slave and master 

system are color coded orange and blue, respectively. 

  
 

Figure 15: The control input for Synchronization of the hyperchaotic financial systems with the fuzzy 

disturbance-observer-based ITSMC which the control signals are turned on at 𝑇𝑠𝑡𝑎𝑟𝑡 = 100. 
 



Simulation results show that the proposed fuzzy disturbance-observer-based ITSMC successfully 

moves the system to the desired value in presence of external disturbances and control input 

saturation, even when knowledge of the system parameters is incorrect. Thereupon, the proposed 

control technique could be applied to a wide range of nonlinear systems to ensure that they are 

always operating in the desired mode. 

 

Conclusion 

This paper has presented a four-dimensional hyperchaotic finance system with specific features. 

Its dynamic behaviour has been thoroughly featured through bifurcation diagrams, phase portraits, 

Lyapunov exponents diagrams, and entropy-based analyses. A novel robust fuzzy disturbance-

observer based integral terminal sliding mode control algorithm has also been designed to control 

and synchronize the system. The output of this fast disturbance-observer has been used to develop 

integral terminal sliding mode control in presence of uncertainties, external disturbances and 

control input saturation. Additionally, the designed controller has been adapted by implementing 

the fuzzy rules. Based on the presented simulation results, it can be concluded that the proposed 

control scheme is appropriate to control the financial hyperchaotic system. As a future suggestion, 

the proposed control scheme could be developed for higher relative degree systems. Moreover, 

this study could also be extended for non-integer order financial systems. 
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