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ABSTRACT 

The multi-fractal chaotic dynamics of Islamic and Green crypto-currency series are investigated 
for the first time in econophysics literature. Specifically, we decompose and analyse the 
temporal signals of prices, returns, volume and volatility of Islamic and Green cryptos vis-à-vis 
conventional ones in a comparative manner. We introduce a multi-step resolution approach 
based on detrended fluctuation analysis, Generalized Hurst and Lyapunov exponents as well as 
fractionally integrated conditional heteroskedasticity. Moreover, various tests are employed to 
investigate the statistical significance of any (dis)similarities of long memory patterns, multi-
fractality measures and chaotic dynamics observed among Islamic, Green and conventional 
crypto-currency markets. Our findings suggest that while the returns of Islamic and green 
crypto-currencies exhibit anti-persistent dynamics, their price, volatility and volume series 
embed high persistence compared to the conventional crypto-currencies. Further statistical 
testing indicates that the distributions of the chaotic parameter estimates are significantly 
different versus common crypto-currencies, a fact that reveals heterogeneity in multi-fractality 
and long memory patterns. As the Islamic and Green cryptos exhibit a distinct and more 
profound chaotic behaviour compared to conventional ones, their short-term predictability 
could further induce financial agents.   
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1. INTRODUCTION 

There is a vast growing interest in studying crypto-currency market dynamics. Many illustrative 

paradigms exist in the relevant econophysics literature. For instance, long memory was 

examined in [1-5], volatility was modeled in [6-9], hedging possibilities for investors were 

studied in [10], inherent relationships between BitCoin and AltCoin markets were documented 

in [11] whilst price formation was studied in [12, 13]. Furthermore, the information 

transmission between crypto-currency markets was documented in [14] and an analysis of 

high-frequency crypto-currency price series was exposed in [15]. Other works focused on long 

memory in volatility series [16,17], randomness in volatility [17], multi-fractal analysis [18,19], 

chaos and randomness [19], price forecasting via the utilization of Big data and AI techniques 

[20] while only recently through deep learning [21]. All previous studies [1-21] involved 

interesting applications of standard crypto-currency markets. However, vast awareness recently 

has been risen vis-à-vis Islamic [22-27] and green markets [24, 27-32] yet mostly in economics 

and finance literature. To the best of our knowledge, the econophysics literature on Islamic and 

green crypto-currency markets is significantly lacking a proper context. Therefore, to enrich the 

literature on such topic, we introduce a novel stepwise decomposition approach to study long 

memory, fractality and chaos in prices, returns, volume and volatility series of Islamic and green 

crypto-currencies.  

The presence of long memory may indicate the existence of a higher-order temporal 

dependence in the data generation process, hence potential short-term predictability. Thus, all 

aforementioned signals could incorporate valuable information for investors and portfolio 

managers, in order to optimally describe the inherent dynamics of nonlinear systems 

comprising the respective cryptos. It is well established that price/return, volume and volatility 

series always contain information regarding future profits, measures of liquidity as well as 

expected risk (up- and down-side). Investigating the persistence structure of Islamic and green 

based cryptos would help to better assess their predictability especially compared to 

conventional crypto-currency markets. We include an extensive comparative evaluation in this 

study.    

  Our contributions involve the introduction of a novel multi-step methodology in nonlinear 

filtering of first and second moments of temporal signals. We focus on long-range dependence 

and chaos in Islamic and green crypto-currency markets, as the latter continuously show a 

growing interest from digital currency investors. Interestingly, those markets have not yet been 



 3 

investigated in the econophysics literature. We extract invaluable results from the nonlinear 

decomposition of price, return, volume and volatility series, based on our filtering method. 

Moreover, our new results are compared to those obtained from a set of non-Islamic and non-

green a.k.a conventional crypto-currencies, which so far have been the center of attention for 

most digital traders globally.  

In particular, our methodology involves in the first phase a detrended fluctuation analysis 

(DFA) [33] employed to measure the long memory patterns. Then, a fractionally integrated 

generalized autoregressive conditional heteroscedastic (FIGARCH) model [34] is used to 

measure any persistent characteristics embedded in the second moment series. We follow a 

DFA technique as it demonstrates less dependency on non-stationary and noisy data [35] and is 

robust to stochastic trends contaminating the signals under study. Its algorithmic convergence 

is also highly useful in Big data computations [36, 37]. In addition, we employ the generalized 

Hurst exponent [38] in order to quantify persistence at a multi-scale level. This measure allows 

for the investigation of long memory at granular level thus it could prove informative on how it 

varies across diverse groups of crypto-currencies. The FIGARCH model, which is employed at 

the second and third filtering stages, is selected thanks to its flexibility and robustness vis-à-vis 

the distinction of short- and long-memory traits in the underlying signals. Additionally, the 

FIGARCH-based long-range dependence structure can be calculated under different hypotheses 

regarding the distribution of the filtered residuals, allowing for more degrees of freedom in 

estimation. Furthermore, formal statistical testing is applied on the estimated long memory 

parameters to check the presence of differences across Islamic, green and common crypto-

currencies. Finally, the Lyapunov exponent (LE) is used to evaluate chaos in the investigated 

temporal signals, in accordance with the computational methodology by Rosenstein et al [39].  

The rest of the paper is organized as follows: Section 2 introduces the nonlinear multi-step 

dynamical filtering approach and Section 3 conducts an exhaustive empirical survey using a 

large pool of datasets under a Big data experiment attempt. Finally, Section 4 concludes.  

 

 

2. NONLINEAR DYNAMICAL STEPWISE FILTERING  

We utilize Detrended Fluctuations Analysis [33] to estimate long memory characteristics in the 

examined signals. Moreover, the Hurst exponent (denoted H) is used under a temporal context. 

We introduce the following approach in the first stage:  
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We define the suite xN of the cumulative series of the signal fluctuations around the mean as   
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Next we divide xN into boxes of equal length n and in each box, we fit the local trend of xN by a 

polynomial P(n,N) which represents the local trend of the box. A polynomial of degree one is 

employed.  For the given n box size, we compute the root-mean-squared detrended fluctuation of 

the signal xN as 
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For each of the available n box size, the last step is repeated to obtain the empirical relationship 

between the overall fluctuation F(n,N) and the box size n  

 , HF n N n      (3) 

Then, H is estimated by running a regression of log(F(n,N)) on log(n). As a result, H = 0.5 

indicates that the dynamics of the original signal follow a random walk. It exhibits anti-persistent 

dynamics when 0  H  0.5 whilst persistent dynamics are captured when 0.5  H  1. Finally, 

when H  1, temporal autocorrelations exist but they cease to be a power-law form [33].  

The generalized Hurst exponent (GHE) [38] measures the multi-scaling properties of each 

crypto-currency time series, whereby long memory is computed at different scales to describe 

its short and long variations. Generally, for a given signal S(t) defined at discrete time intervals 

t=v,2v,…T over a period T (integer multiple of v), the qth-order moments of the distribution of 

the statistical evolution of S(t) is given by [38]  
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where d[v,dmax] is a time interval and dmax is its predetermined upper limit. The GHE given by 

H(q) is defined from the scaling behavior of Kq(d) based on the following empirical relation  
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In case Kq(d) and d satisfy a linear relationship for a given order q in log-log scale, the Hurst 

exponent H(q) can be estimated by applying a linear regression of log(Kq(d)) versus log(d). 
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Under this framework, H(q) describes th long memory dependence or persistence in the original 

signal S(t). Hence, the multi-scaling structure of the signal S(t) is related to different orders q of 

the exponent H(q). In our study, the range of q is fixed within the interval from -10 to 10 (q0). 

The parameters v and dmax are respectively set to 5 and 19.  

The second stage incorporates second-moment modeling. For this, the fractionally 

integrated generalized autoregressive conditional heteroscedastic (FIGARCH) model [34] is 

employed. It embeds memory traits in estimated signal volatility. For a dynamic signal rt the 

plain GARCH(1,1) model, adopted for simplicity herein, is expressed as 

t tr         (6) 

where,  0.5

t t th     (7) and 

2

1 1t t th h           (8) 

where  is the conditional mean, h is the conditional standard deviation and N(0,1). 

Subsequently, the FIGARCH(1,d,1) is given by 
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where d is the fractional integration parameter used to describe long-range memory, with 0  d 

 1,  > 0, ,  < 1, and L as the lag operator. If 0 < d < 1 then intermediate ranges of persistence 

are allowed, while for d = 1 the volatility series exhibit full integrated persistence. When d = 0 

the series decay with a geometric rate. We estimate the FIGARCH model parameters via 

conventional maximum likelihood method under the hypothesis that the error term obeys a t-

skewed distribution in order to take into account asymmetric/leverage effects. The volatility 

series of price and volume are estimated as first log-differences.  

In the third phase, we adopt the algorithm of Rosenstein et al [39] to estimate the Lyapunov 

exponent (LE). The main advantages of our approach include accuracy, robustness to small and 

noisy data sets, and fast computation [39]. If we consider a time series {x1,x2,…,xN} and assume 

Xi=(xi,xi+J,…,xi+(m-t)J) be the system state at discrete time i, where J is the lag or reconstruction 

delay and m is the embedding dimension, then, the reconstructed trajectory X is X=(X1 X2 … 

XM)T. Subsequently, under this approach we depend on localizing the nearest neighbor of each 

point of the reconstructed trajectory X. For instance, the nearest neighbor Xj to Xi is found by 

finding the smallest distance dj(0) given by [39] 

 0 min
j

j j id  
X

X X         (10) 
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Then, the LE denoted  of the series is given as  

  1td t Ce        (11) 

where d(t) is the average divergence at time t of the underlying time series and C is a constant 

that normalizes the initial separation. Assuming that the jth pair of nearest neighbors diverges 

approximately at a rate given by the LE we get  

    1 i t

j jd i C e
 

     (12) 

where t is the sampling period and dj(i) the distance between the jth pair of nearest neighbors 

after i discrete-time steps. By taking the logarithm on both sides of Eq.12, the following is 

obtained 

   1log logj jd t C i t       (13) 

Indeed, Eq.13 corresponds to a set of approximately parallel lines (for j=1,2,…,M), each with a 

slope approximately proportional to 1. Then, the LE is estimated by using least-squares fit to 

the average line expressed as 

   
1
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t
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     (14) 

where  denotes the average over all values of j. Following the recommendation of Rosenstein 

et al [39], we assume that the reconstruction delay J corresponds to the lag before the first 

decline of the autocorrelation function, and the embedding dimension m is determined based on 

the smallest value that allows convergence. This way fast computation is also enhanced. 

 

 

 

3. EXTENSIVE COMPARATIVE SURVEY 

We explore the nonlinear dynamical properties of eight (8) Islamic and Green crypto-currencies 

including X8X (Islamic), OneGram (Islamic), BitcoinGreen, GreenX, GreenMed, EverGreenCoin, 

GreenCoin, and Greenenergy Token. Each time period we employ varies with the availability of 

the data. For instance, it spans from 29 January 2018 to 23 May 2019 for the X8X, 07 December 

2018 to 13 May 2019 for OneGram, 15 April 2018 to 23 May 2019 for BitcoinGreen, 01 

September 2018 to 23 May 2019 for GreenX, 04 February 2018 to 23 May 2019 for GreenMed, 

18 January 2016 to 23 May 2019 for EverGreenCoin, 02 February 2015 to 23 May 2019 for 

GreenCoin, and 27 November 2018 to 29 April 2019 for Greenenergy Token. For comparative 
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purposes, another empirical investigation is conducted as well. The period includes 29 January 

2018 to 23 May 2019 and the database is composed of seventeen (17) non-Islamic and non-

green crypto-currencies namely, Augur, Bitcoin, Cardano, EOS, Ethereum, Litecoin, Metaverse, 

Monero, NEO, OmiseGo, OX, QTUM, Ripple, Stellar, Tether, Tronix, and Zcash. Overall, the long 

memory is examined in prices, returns, volumes and volatilities of twenty-five (25) crypto-

currencies. We graphically depict the time series in Fig.1 (0X0, Islamic crypto-currency), Fig.2 

(GreenEnergy Token, green crypto-currency) and Fig.3 (Bitcoin, non-Islamic and non-green 

crypto-currency).  
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Fig.1. Plots of 0X0 (Islamic crypto-currency) series 
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Fig.2. Plots of GreenEnergy Token (Green crypto-currency) series 
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Fig.3. Plots of Bitcoin (common crypto-currency) series 
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In Fig. 4 we show the distribution of estimated long memory parameters captured by the HE 

(for prices returns and volume) while FIGARCH-based parameters d for the volatility series by 

groups (Islamic and green versus others), all of which in boxplots. We can observe that the 

Hurst exponent (HE) related to prices and volume time series is largely above 0.5 for the Islamic 

and Green crypto-currencies as well as for non-Islamic and non-green ones. Thus, long memory 

is highly persistent in these two different categories of crypto-currencies. In addition, as 

illustrated the median of the HE is below 0.5 for Islamic and green crypto-currencies and above 

0.5 for the non-Islamic and non-green ones. The returns in Islamic and green crypto-currencies 

exhibit anti-persistent dynamics, whilst for non-Islamic and non-green crypto-currencies 

persistent dynamics emerge in our results. In case of the volatility, the median of the 

distribution of the estimated parameter d in Islamic and green crypto-currencies is close to 

unity, i.e., the conditional second-moment demonstrates fully-integrated persistence. On the 

contrary, non-Islamic and non-green volatility medians are close to zero, which in turn signifies 

decay under a geometric rate.  

Moreover, as seen in Fig.4, the distributions of estimated long memory parameters are 

different between Islamic and green ones as well as among common crypto-currencies. The 

differences are clear especially considering prices, return, and volatility. In order to formally 

investigate the significance of the output, a Student’s t-test (one sided and two-sided) and an F-

test are applied to the populations of the estimated HE and d parameters. All statistical tests are 

performed at 5% statistical significance level. The results are presented in Table 1 and Table 2 

respectively. According to the Student’s t-test shown in Table 1, when the computed p-value is 

less than 5%, the null hypothesis of equality of means (two-sided) in the HE populations is 

rejected for the return time series while the null for the d parameter is rejected only for the 

volatility. Therefore, the long memory presence in the returns and volatility series is statistically 

different in-between the groups composed of Islamic and green and non-Islamic and non-green 

cryptos. In addition, according to the calculated p-values associated with the one-sided 

Student’s t-test for the HEs in prices, returns and volume in case of Islamic and green crypto-

currencies is larger than that from non-Islamic and non-green ones.  
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Fig.4. Boxplots of estimated long memory parameters in crypto-currencies. The multi-step nonlinear filter 
estimates the HE via the DFA and the d from a FIGARCH-based process. The horizontal red line inside the box 
indicates the median.  

 
Next, as inferred from the p-values from the two-sided F-test shown in Table 2 regarding the 

null of equality of variances, the variability of the estimated HE from price series for the group 

composed of Islamic and green crypto-currencies is different from the one estimated for the 

common crypto-currencies. Similarly, the variability of d estimated by the volatility series of the 

group composed of Islamic and green crypto-currencies is different from the variance of the d in 

prices detected in the group composed of common crypto-currencies. Overall, the calculated p-

values associated with the one-sided F-test show strong evidence that the variability in HE (d) in 

prices (volatility) of Islamic and green crypto-currencies is lower vis-à-vis the one from 

common crypto-currencies.  

 

Table.1: Student t-test applied to DFA-based HE 
Series Hypothesis p-value Hypothesis p-value 

Price HEIslamic&Green = HEOthers 0.1143 HEIslamic&Green > HEOthers 0.9428 
Return HEIslamic&Green = HEOthers 0.0405 HEIslamic&Green > HEOthers 0.9797 
Volume HEIslamic&Green = HEOthers 0.3787 HEIslamic&Green > HEOthers 0.8106 
Volatility dIslamic&Green = dOthers 0.0000 dIslamic&Green > dOthers 0.0000 
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Table.2: F-test applied to DFA-based HE 
Series Hypothesis p-value Hypothesis p-value 

Price HEIslamic&Green = HEOthers 0.0040 HEIslamic&Green > HEOthers 0.0020 
Return HEIslamic&Green = HEOthers 0.5587 HEIslamic&Green > HEOthers 0.2794 
Volume HEIslamic&Green = HEOthers 0.8047 HEIslamic&Green > HEOthers 0.5977 
Volatility dIslamic&Green = dOthers 0.0076 dIslamic&Green > dOthers 0.0038 

 
 

The boxplots of the averages of GHE estimates across all scales (-10  q  10) are presented 

in Fig.5. The plots suggest that the distributions of GHE estimates differ among the groups of 

Islamic, green and common crypto-currencies. This point is also asserted when looking the 

results from the Student and F- tests presented respectively in Tables 3 and 4. Whilst according 

to the calculated p-values, the GHE estimates of all series are different between the two groups, 

yet this will not apply to price series. In addition, the GHE estimates of all series from the first 

group (Islamic & green) are higher compared to those of the second group, apart from for prices 

and returns. Moreover, based on the computed p-values illustrated in Table 4, the variance of 

the GHE estimates of all series is across groups, except for the return series. Additionally, the 

variance of the GHEs in the first group is higher, only aside from returns. Consequently, while 

both groups exhibit multi-fractality, Islamic and green crypto-currencies demonstrate a 

significantly higher degree of inherent fractality than common cryptos.  

 

Table.3: Student t-test applied to averages of GHE estimates 
Series Hypothesis p-value Hypothesis p-value 

Price LEIslamic&Green = LEOtherrs 0.1290 LEIslamic&Green > LEOthers 0.0645 
Return LEIslamic&Green = LEOthers 0.0000 LEIslamic&Green > LEOthers 0.9999 
Volume LEIslamic&Green = LEOthers 0.0000 LEIslamic&Green > LEOthers 0.0000 
Volatility LEIslamic&Green = LEOthers 0.0122 LEIslamic&Green = LEOthers 0.0061 

 
 
Table.4: F-test applied to averages of GHE estimates 

Series Hypothesis p-value Hypothesis p-value 
Price LEIslamic&Green = LEOtherrs 0.0000 LEIslamic&Green > LEOthers 0.0000 
Return LEIslamic&Green = LEOthers 0.1482 LEIslamic&Green > LEOthers 0.0741 
Volume LEIslamic&Green = LEOthers 0.0000 LEIslamic&Green > LEOthers 0.0000 
Volatility LEIslamic&Green = LEOthers 0.0000 LEIslamic&Green = LEOthers 0.0000 
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Fig.5. Boxplots of estimated Generalized Hurst exponent (GHE) in crypto-currencies. The multi-step nonlinear filter 
estimates the LE based on a hybrid synthetic DFA approach. The horizontal red line inside the box indicates the 
median.  

 
Fig.6 displays the boxplots of Lyapunov exponents (LE). At first sight, the LE estimates of 

Islamic, green versus conventional crypto-currencies, derive from different distributions. 

Specifically, the p-values obtained from Student t-test (Table 5) indicate that the mean of LE in 

prices is different across Islamic, green and conventional crypto-currencies groups. The same 

applies to volatility series. Furthermore, the p-values from the F-test vis-à-vis the equality of 

variances for these chaotic estimates (Table 6) show evidence that the variance of the LEs for 

the first group is significantly different from that of conventional cryptos. If we exclude the 

return series, the variance of the LEs in the first group is fundamentally higher.  

 
 
Table.5: Student t-test applied to LE estimates 

Series Hypothesis p-value Hypothesis p-value 
Price LEIslamic&Green = LEOtherrs 0.0000 LEIslamic&Green > LEOthers 1 
Return LEIslamic&Green = LEOthers 0.7284 LEIslamic&Green > LEOthers 0.3642 
Volume LEIslamic&Green = LEOthers 0.0903 LEIslamic&Green > LEOthers 0.0452 
Volatility LEIslamic&Green = LEOthers 0.0495 LEIslamic&Green = LEOthers 0.0248 
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Table.6: F-test applied to LE estimates 
Series Hypothesis p-value Hypothesis p-value 

Price LEIslamic&Green = LEOtherrs 0.0050 LEIslamic&Green > LEOthers 0.0022 
Return LEIslamic&Green = LEOthers 0.0024 LEIslamic&Green > LEOthers 0.9988 
Volume LEIslamic&Green = LEOthers 0.0042 LEIslamic&Green > LEOthers 0.0021 
Volatility LEIslamic&Green = LEOthers 0.0035 LEIslamic&Green = LEOthers 0.0018 
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Fig.6. Boxplots of estimated Lyapunov exponent (LE) in crypto-currencies. The multi-step nonlinear filter estimates 
the LE based on the Rosenstein approach. The horizontal red line inside the box indicates the median.  

 

 
To sum-up, the exhaustive statistical investigation reveals that returns in Islamic and green 

crypto-currencies exhibit anti-persistent dynamics. Prices, returns and volume series from 

Islamic and green crypto-currencies show a higher level of persistence in comparison to 

common crypto-currencies. Furthermore, the variability of the long memory behaviour in price 

and volatility series is diverse between the two groups we examined. The level of variability in 

persistence for price and volume series in case of Islamic and green crypto-currencies is lower. 

Our findings expose heterogeneity in long memory patterns of Islamic and green vis-à-vis the 

common crypto-currencies. While both groups inherit multi-fractal dynamics, for Islamic and 
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green crypto-currencies is more profound. The outcome of survey statistical testing performed 

on all chaotic parameters is conclusive of the observed heterogeneity among the various groups. 

Hence, the distributions of the parameters are clearly modular and significantly diverse. In that, 

forecastability may be achievable at very short horizons for all cryptos due to chaoticity, but the 

nonlinear predictability of the Islamic and Green group is particularly profound with distinct 

chaotic long-memory traits, hence far more interesting for investors.   

 

4. CONCLUSIONS  

We comparatively investigate long memory, multi-fractality and chaoticity in Islamic and Green 

cryptos versus common ones. We analyse the patters of prices, returns, volume and volatilities 

following a hybrid decomposition approach incorporating detrended fluctuation analysis, 

generalized Hurst and Lyapunov exponents and second-moment FIGARCH processing. The 

resulting estimates are compared and dissimilarities are revealed. The proposed multi-step 

dynamic filtering may further contribute to better understanding of the underlying nonlinear 

structure of Islamic and Green cryptocurrency markets, which very recently have gained a 

growing interest by traders, speculators and financial institutions. 
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