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This paper provides a geometric analysis of the Wald statistic. Testing nonlinear 
hypotheses using the Wald test suffers from the severe practical problem that, 
although equivalent asymptotically, the finite sample behaviour of different Wald 
statistics W(g) for a given null hypothesis depends critically on the non-cannonical
choice of the algebraic expression, g, used to formulate the null; Hq : g(0)=O. We show 
that the problem arises because W(g) is not , in general, a geometric quantity in the 
natural statistical manifold. Hence Wald statistics are , in general, not invariant to 
changes in the coordinate system in which the null hypothesis is expressed. We 
identify a "Geodesic Statistic" that naturally corresponds to the Wald statistic and 
yet is a true geometric quantity. We describe the conditions under which this Geodesic 
statistic coincides with the Wald statistic. We also provide a methodology to 
calculate error bounds on the use of the Wald test that indicate the degree to which it 
diverges from the Geodesic test. The formal mathematical analysis suggests readily 
applicable graphical techniques for determining whether the problems with the use 
of the Wald statistic are likely to be severe. Finally we establish, under certain 
regularity conditions , an inequality between the Wald and Geodesic statistic which 
ensures unambiguous inference from the Wald test even with nonlinear restrictions.
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1: Introduction

Several papers (in particular Gregory and Veall (1985X1986) and LaFontaine 
and White (1986)) have recently noted the existence of a serious difficulty in the 
application of the Wald test to nonlinear restrictions in finite samples. Essentially the 
problem lies in that a given hypothesis may be written in any number of ways which 
are algebraically equivalent under the null but differ nontrivially under any particular 
alternative. Since the Wald statistic is based on a first order Taylor series expansion of 
the function defining the null hypothesis the test statistic is not invariant to the 
particular algebraic form chosen to represent the null . Thus , in general, different 
algebraic expressions of precisely the same null hypothesis lead to different test 
statistics which have different rejection regions at the same asymptotic significance 
level. The corresponding tests therefore have different exact significance levels and 
different powers at the same alternative. Gregory and Veall (1986) conclude their 
Monte Carlo study of a particular nonlinear example by emphasizing "the need for an 
analytical resolution to the problem of Wald test sensitivity".

In this paper we attempt to provide such an analysis through the use of 
differential geometry which has recently found considerable application within 
mathematical statistics (see for instance the references in Barndorff Nielsen, Cox and 
Reid(1986) and Amari et al. (1987)). We have two distinct goals in this paper ; one is 
to provide a clear theoretical understanding of why the Wald statistic behaves as it 
does in the non-linear case and the second is to produce practical solutions to the 
problem. Both of these objectives are most easily achieved using the techniques and 
insight provided by differential geometry.

We start our analysis with a critical look at the assumptions and justification 
of the Wald test particularly in the non-linear context. We show how the Wald 
statistic corresponds to a hybrid geometric quantity, in that it considers a vector in a 
statistical manifold and yet measures its length using a metric which is only 
appropriate to a tangent space. We then follow this theoretical analysis by defining a 
truely geometric test in the correct space which is a direct generalistion of the Wald 
test to our non-linear case. This new geometric test we call The Geodesic test. We can 
therefore reach a theoretical resolution of the problems of the Wald statistic by 
showing how the dependence of the statistic on the form of the restriction function is 
viewed geometrically as a failure of the statistic to transform correctly under a change 
of coordinates of the underlying manifold. The geodesic test is shown to transform 
correctly and we can further show that the two tests coincide under the classical 
assumptions of the General Linear Model with linear restrictions and in this case the 
Wald test is reliable. The two tests are in any case asymptotically equivalent as we 
show below. We continue the geometric approach by using the tools of curvature and 
the related notion of the Christoffel symbols of a metric to compare the two statistics 
in general .

As a first practical result we show how these Christoffel symbols can be used to 
compare different forms of the restriction function and hence how a best selection can
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be made. As an example of these methods we consider the discrimination between the 
two choices of restriction function used by Gregory and Veall (1986).

We continue by studying how the choice of restriction function effects the 
behaviour of the Wald statistic using graphical techniques suggested by the previous 
analysis. Finally we establish, under certain regularity conditions an inequality 
between the Geodesic and Wald statistics that indicates when reliable inference is 
possible using the Wald test. This last practical application of our geometric approach 
completes the paper.

Three papers, in particular, have appeared recently that are related to our 
analysis. Moolgavkar and Venson (1987), have employed a geometrical analysis of 
Wald confidence intervals for a simple hypothesis in nonlinear regression and more 
generally curved exponential families. Their object is to reparametrise the model so 
that it looks as much like " uncurved" Euclidean space as possible. One way to achieve 
this is to use geodesic normal coordinates but as we shall see below, given the 
difficulty of calculating geodesics in practise they are forced to use approximations that 
while they improve on the Wald confidence regions they do not correspond with the 
geodesic regions that follow from the geodesic statistic we introduce below.

Veath (1985) also considers the use of reparametrisation in the exponential 
model , however the restriction of his analysis to the one dimensional case avoids 
much of the difficulty of the multidimensional problem that we consider below.The 
results of both these papers are encompassed by in our more general geometric 
proceedures below.

Phillips and Park (1988) have also considered the issue by means of calculating 
Edgeworth expansions to investigate alternative forms of the Wald statistic with 
nonlinear restrictions. These expansions are able to explain , to a degree ,the observed 
behaviour of the test as the higher order terms account for the deviations from the 
asymptotic distribution and also to provide corrections to the test that indicate 
transformations of the restrictions which accelerate convergence to the asymptotic 
distribution. However the analysis is limited to the 0(T_1) terms in the expansions and 
hence their correction factors are similarly limited unlike the geometric analysis and 
Geodesic test introduced below.

2: The Wald Test

The algebraic development of the Wald statistic may be found in any standard 
text such as Silvey (1975) or Cox and Hinkley(1973) and assumes a model summarised 
in a log likelihood function 1(.,0) together with an estimator 0 for the unknown 
parameter 0e RP, which is distributed at least asymptotically as multivariate normal 
Np(9,I0_1). This happens of course in all regular likelihood problems where we can
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identify Iq with Fisher's information matrix. The null hypothesis is specified as the 
zero level set of a vector valued function g;

Ho=g'1(0)={6e© I g(0)=O} (1)

where 0  denotes the parameter space and g=(gi,.... ,gr) is a vector of real valued
functions , one for each restriction. The Wald statistic , W(g) , is then defined as

W(g)=g(0)T{varg(e)}'1g(0) (2)

in which the estimated variance covariance matrix of g(0) is given by

var g(0 )={Dg(0 )}T Ig 1 (Dg(0)) (3)

where Dg(0) is the evaluation at 0 = 0 of the pxr matrix

dgi(8)NDg(0) =
V 3 9 J

(4)

and Iq is the evaluation of Ig at 0 = 0 .

Since W(g) depends solely upon quantities evaluated at 0, it is particularly well 
suited for use in situations where the unrestricted estimate 0 is easy to compute but 
the restricted maximum likelihood estimate , 0, under H() is not. This is likely to be
the case when the restriction function g(0) is nonlinear and yet it is precisely in this 
case that the difficulties with the use of the Wald test appear.

The distribution and properties of the Wald Statistic ,which is based on an 
expansion of the restriction function g(0), rest on three fundamental approximations:

(i) . Ignore any non-normality in the finite sample distribution of 0, in other
words work effectively only with the asymptotic distribution ,

VnfO-Ol-NpCO.Be1,,),

where Bg^s the information matrix for a single observation, and 0O is 
the assumed true value of 0.

(ii) . Ignore all terms beyond the linear one in the Taylor expansion of g(0)
about 0O evaluated at 0.

Vn{g(0)-g(0o)) = Vn[Dg(0o)]T( 0 -0 o) + OfVnl (0 -0 o) I2)
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5

in other words work effectively with

Vn{g(0)-g(0)} ~Nr(O,[Dg(eo)]TBe1o[Dg(0o)])

(iii). Finally to gain an operational statistic, ignore the dependence in the 
covariance matrix of (g(0)-g(0o)) on the unknown 0Q and replace 
0O by 0. In other words use

Vn{g(0)-g(0)}~Nr(O,[Dg(0)]TB91[Dg(0)])

Under these conditions W(g) is asymptotically a x f random variable under Hq.

The applicability of the Wald statistic is critically determined by the validity of 
these approximations. In particular (i) covers any regular maximum likelihood 
problem and those where a central limit theorem may be applied. Approximation (ii) 
is exact only if g(0) is affine ,i.e. g(0)=A0 +b, and (iii) is exact only if g(0) is affine and Ig 
is independent of 0. This latter condition we refer to as the constant metric case below. 
Critically for our present concern it is the linearization in (ii) that leads to the lack of 
invariance with respect to reparameterizations.

The previous argument leads to the standard Wald statistic as implemented 
empirically. However for our geometric analysis of the statistic we abstract from the 
final approximation which replaces the unknown 0Q by the observed 0 .While clearly 
necessary for practical impllimentation of the statistic this final step introduces 
unnecessary elements and complexities for our theoretical analysis .The source of the 
problems with the Wald statistic with which we are concerned lies in the first two 
approximations, hence we shall consider below a Wald statistic of the form

W0o = g(0)[Dg(0o)Tl0o1Dg(0o) r 1g(0) (5)

rather than the usual W- which is defined as we have already stated as

W§ = g(0)[Dg(0)TI^lD g(0)r,g(0) (6)

where the covariance matrix of g(0) is evaluated at 0. Both of the statistics (5) and (6) 
imply a fixed metric and having conducted our theoretical argument in terms of 
statistic (5) it can be easily shown that precisely the same implications apply to the 
empirical Wald statistic (6). Our recommendations for a practical solution to the lack 
of invariance of the Wald Statistic apply in particular to the applied statistic (6).
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3: The geometry of the Wald Statistic and the Geodesic Test.

3.1 An overview.

As discussed above the construction of a Wald statistic enables a standard test 
for hypotheses expressed on some parameter space indexing a family of distributions
to be performed. If we parameterise this space, 0 , by (0-j,_®p) then at least locally we
may, without loss of generality, write the null hypothesis as the zero set of the 
restriction function, g, where,

g: © —> Rr

is a smooth enough function. So the null hypothesis is the subset of © given by

Ho={(01/....0p) I g(0!....0p)=O}

For the generality we need in our analysis we take the space of distributions to 
be nonlinear or curved although even when it may be linear , as we shall see below, 
the effect of a nonlinear restriction is to introduce nonlinearity to the structure of the 
space.

The Wald test attempts to measure the probability of deviations from the null 
by constructing contours ,using the mathematical form of the statistic, around the null 
hypothesis . The Wald statistic then takes positive values as the estimated value of the 
parameter lies outside some chosen contour.

6

Fig.l
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7

The problem with the Wald Test is that although many functions can equally be used 
to define the null hypothesis H0 the approximation that is used to estimate the 
probability contours depends on which particular function is used. The reason loosely 
for this is although two different functions gy  g2:0 —»Rr may agree on their zero set, 
i.e.

Kg1r 1(o)}= {(g2r 1(o)},

the sets that correspond to their other levels, {(g1)_1(c)} and ((g2) '( c ) ) (ĉ O), can differ 
arbitarily. Moreover unlike the one dimensional case , considered by Vaeth (1985), this 
problem cannot be resolved by a simple rescaling.

This implies that the reason for the inconsistency in the performance of the 
Wald test stem from this difference in behaviour of the level sets away from the null 
hypothesis which is not taken into account by the Wald statistic .

Geometrically we can see, given approximation (ii) above, that the Wald 
statistic has an interpretation as the squared length of a particular vector valued 
function , (g(0)-0), on the curved manifold describing the family of potential 
distributions. The metric used to calculate the length of this vector is however taken, 
as will be shown below, from the tangent space to the manifold at 0O. The Wald 
statistic for a nonlinear restriction is therefore a hybrid quantity measuring a vector 
corresponding to a point in a nonlinear, non-metric, space (the statistical manifold) 
with a metric taken from a linear tangent space. Notice that the Likelihood Ratio and 
Lagrange Multiplier statistics do not suffer from this inconsistency. The Likelihood 
Ratio statistic being simply a comparision of values taken by the likelihood function 
on the manifold and the Lagrange multiplier measuring the length of a vector in the 
tangent space with a consistent metric.

When the natural coordinate system defined by 0  is employed the lengths of 
tangent vectors are measured using the Fisher information metric, Ig, at each point. 
The following diagram demonstrates the situation in general. The curved manifold 
corresponds to the nonlinear space of distributions indexed by the choice of 0 or 
alternatively the value of g(0) and for each point on this manifold there will be a 
tangent plane on which its associated metric is defined.
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Fig. 2

Notice also that since we are free to choose any coordinate system to describe the 
statistical manifold and since the Wald statistic is itself indexed by the choice of 
restriction function g(0) it is necessary to consider the manifold in terms of a new 
coordinate system that involves g(9) rather than the natural coordinates (0j). This 
change in coordinate system however also induces a change in form of the metric 
used to measure distance in the tangent space which the Wald statistic exploits. 
Choosing a particular algebraic function, g1 ,to express the restriction in effect then 
imposes a choice of (probably non-Euclidean) coordinates on the statistical manifold. 
Choosing a different function, say g2 , therefore induces a change of coordinates, or a 
reparametrisation of the manifold and changes the form of the metric.

From this geometric point of view it is then possible to see how the Wald 
statistic does not transform in the correct way under the change of coordinates which 
corresponds to a different choice of restriction function, thus causing the 
inconsistencies in its behaviour. The Wald statistic is essentially a quadratic form on a 
linear space , the tangent space, which is appropriate to measuring the length of 
(linear) vectors in this space.The statistic transforms appropriately for linear 
transformations but inadequately for nonlinear transformations induced by nonlinear 
restrictions. In addition any nonlinear coordinate system on the manifold implies a 
different metric will be appropriate for every point on the manifold while the Wald 
statistic implicitly assumes that there is a single metric for the entire manifold. It is 
only under this constant metric assumption that the Wald statistic provides a well 
defined measure of length . Given this geometric insight we can see that Wald 
statistics computed for different nonlinear restriction functions are not comparable.

There are two main reasons why nonconstant metrics may come about 
in general. The first is that the underlying manifold has non-zero curvature and so 
there simply is no coordinate system which would give a constant metric. The 
variation of the metric may also be induced by the particular choice of coordinate
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system . This distinction corresponds with that made earlier by Bates and Watts (1980) 
between "intrinsic" and "parameter effects" curvature, where intrinsic curvature 
cannot be removed by a reparametrisation of the problem. Notice that even for a 
space with no curvature at all most coordinate systems will not give the constant 
representation of the metric that the Wald statistic requires.The property of a constant 
metric representation leads to what is known as an Affine coordinate system. An 
example of a non-affine coordinate system on a flat space is the use of polar 
coordinates (rcos\|/,rsimy) on the Euclidean plane. Here the standard metric will be 
given by the form.

'r 0"
0 1

which is a nonconstant metric since it depends on the point (r,\|/).

In what follows we derive an alternative approach for calculating confidence 
regions in a space with such a varying metric. The resulting test statistic , the Geodesic 
statistic, has the advantage of behaving properly under changes of coordinates, and 
hence different choices of restriction function. This Geodesic statistic has a geometric 
interpretation as the length of a curve in the statistical manifold itself rather than in 
the tangent space and is invariant under coordinate transformation. We discuss cases 
in which it reduces to the standard Wald statistic and hence when the use of the Wald 
test will be free of its dependence on the form of restriction function.

Figure 3 below demonstrates our strategy. Initially the statistical problem is 
formulated in the {0;} coordinate system, and we change coordinates to a new 
coordinate system, (g,k), where g is the value of the restriction function and the 
remaining coordinates, k, are, without loss of generality, chosen orthogonally to g . 
Working in this particular , (g,k), coordinate system we can clearly see the geometric 
interpretation for the Wald Statistic as the length of some vector in a tangent space. 
Ideally this vector would correspond to the correct projection from the manifold to the 
tangent space of the point 0, the unrestricted parameter estimate. This projection is 
achieved by what is known as the exponential map which preserves the correct length 
of the implied vector. We use this map to show how the Wald statistic does not 
transform properly with respect to changes in coordinates.
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0 coordinate 
system

(g,k) coordinate 
system

Fig . 3

3.2: Formal Analysis

The following lemma shows how the choice of restriction function , g , 
determines a choice of coordinates.

Lemma 3.2.1:

(a) If 0q is any point in 0  such that Dg(0o) has full rank, then in an open
neighbourhood of 0Q there exists a local coordinate system of the form,

(gl(0),.....gr(0),k1(0),....kp.r(0))
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where g(0)=(gj(0),..... gr(0)) represents the r-vector of restrictions and k1/k2/...,kp.r
are real valued smooth functions on Rp. Furthermore if F ( , ) represents the 
Fisher information metric, then at any point on the level set of g to which 0q 
belongs we have that;

_3_ _d_ 
0 g i’ 3kj

Vi,j (7)

where - form a basis for the coordinate system where the vector k(0) is

choosen such that the corresponding tangent vectors satisfies (7), as shown in 
the following diagram.

3

(b) In the case where the null hypothesis is given by just a single restriction we have 
that the above orthogonality condition is true for any point in an open region 
around the level set of g(.) to which 0q belongs and not just on the one level set.

Proof: All proofs are given in the appendix to the paper.

The implication of this lemma lies in that we must consider how the Fisher 
information metric is transformed as the coordinate system in which the statistical 
hypothesis is expressed itself varies with the change of form of g. Let Iq be the Fisher 
information matrix and (0j,....,0p) our original coordinate system on 0  then if we let 
G=(3gj/30j) we have the following result.
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Lemma 3.2.2:

(a)In terms of the (g,k) coordinate system given above the matrix defining the 
Fisher Information metric at a point 0 is given by

( 8 )

where K={3kj/90j} is the (p -  r) x p matrix that induces the change in coordinates
f 3 1

for vectors parallel to the level sets of g, i.e. the vectors j r r l .

(b) In the single restriction case the formula holds in an open region of the g 
level set of 0g

Corollary 3.2.3:

If X is a vector field always orthogonal to the level sets of g, then working in 
our (g,k) coordinate system we see that the squared length of X at all points 0 is 
given by Xt(GtIq_1G)"1X. This reduces to the either of our two forms of the 
Wald test statistic (5) or (6), depending on where G and Iq are evaluated given 
that X equals g(0).

Notice in fact that the Wald test considers the length of the vector (g j,... gr,0 ,..., 0) 
which is orthogonal to the level sets of g and hence lies in the vector field X which is 
defined above. Any vector in X then has its length measured by the formula given in 
the corollary. This corollary shows the difficulty with the use of the Wald test lies in 
that instead of being a measure of a length in the curved manifold it is in fact 
measuring a length in the flat tangent space. It is this confusion between the manifold 
and its tangent space at a point which is causing the statistic to be dependent on the 
choice of coordinate system, and through the coordinate system the statistic ultimately 
depends on the particular algebraic form of the restriction. The difference between the 
two spaces is that while on the manifold the form of the Fisher metric changes from 
point to point, the tangent space is a linear space with a constant metric.
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To understand the relationship between these two geometric structures we 
need to introduce the notion of the exponential map between the tangent space at a 
point 0 and the manifold.

exp:TQ —>M.

This exponential map is defined in the following way; expfl(v) is the point which lies 
on the geodesic starting at 0 in the direction v which is a geodesic distance I v I from 0.

Fig. 5

Where,

Definition: Path length on the manifold
If y(t):[O,l]->0 is the path starting at 0 j and ending at ©2 then the path length 

is given by,

d,

where H is the metric .

(9)

Definition: A geodesic in the manifold with a metric is a curve y(s) which has the 
shortest path length between two points, where s is the arc length parameter. It can be 
characterised locally in our manifold as being the solution to the set of second degree 
differential equations given by:

7‘ + r|kYiyk = 0 i,j,k =l,...,p (10)

where Tjk are the Christoffel symbols for the Levi-Civita connection ( see for 
instance (Amari 1985)). These symbols are determined from the metric (hjj), and its 

inverse (h1]),by the equations:

_ I hmi,3hmk , _ ^ jk ,
2 30 j 30 k 30

(11)
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Applying these definitions to our problem we have,

D efinition: Geodesic distance between 0 and §
If 7(t):[0,l]—>0 is the geodesic starting at 0 e g '1 (0) and ending at § then the 

geodesic distance (0,0) is given by,

(12)

where Fg is the Fisher information metric and t is a parameter on the geodesic which 
is zero on the null hypothesis and 1 at the observed point in the manifold.

The Wald statistic defined in general as

(g(0) -  g(0))T(G J  I^GerVgfO) -  g(0))

then represents the squared length of (g(0)-g(0)) measured in the tangent space at a 
point 0. Whereas from the geometric point of view we would ideally wish to identify 
a point in the manifold corresponding to exp(g(0)-g(0)). Notice in order to measure 
the length of exp(g(0)-g(0)) we need to consider the sequence of metrics corresponding 
to the sequence of tangent planes which are based on those points on the geodesic line 
to exp(g(0)-g(0)) from 0. The Wald statistic however is defined at the one tangent space 
based at 0 and measures the corresponding length using the fixed metric from that one 
tangent space. The importance of this distinction arises when there is a change in 
coordinates such as that induced by a different choice of restriction function. The 
exponential map remains unaffected by this transformation since it considers the 
change of basis at each tangent space on the manifold. The Wald statistic is only 
determined by the change of basis in the one tangent space based at 0. Moreover the 
Wald statistic measures the length of a different vector and will not be comparable 
with that calculated using the original choice of restriction function.

Following this logic we are naturally led to introduce as an alternative to the 
Wald statistic the Geodesic statistic which follows the standard differential geometric 
construction for measuring the distance betwen two points on a manifold with a 
metric, a geodesic. As discussed above this geodesic statistic has the advantage of being 
coordinate free thus escaping the problem of being dependent on the choice of 
restriction function.

By changing the parametrisation on the geodesic to the value of the function g 
at each point we see that (12) is equivalent to

G = Jo*(eV F*(£ Y(g)-& Y(8)) dg '
(13)
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Where Ay(g) is the tangent field along the geodesic y(g) which we are using to 

measure the distance from the point 0.

We can therefore now formally define the Geodesic Statistic.

Definition: The geodesic statistic. For any point in our manifold , corresponding to 0 
we can measure the geodesic distance (13) to any point on the null hypothesis. The 
minimum such length provides the value of the geodesic statistic.

The finite sample distribution of this statistic is uncertain but is considered in 
more detail in Critchley, Marriott and Salmon (1989b). However asymptotically at least 
we are assured that this statistic will be distributed %r and this forms the basis for the 
proposed Geodesic Test. As we show below this limiting distribution follows since 
asymptotically as 0 converges to the null the distinction between the Wald and 
Geodesic statistics vanishes and indeed the Wald statistic itself becomes immune to 
the problems of reparametrisation in this nonlinear environment. Although as 
shown by Philips and Park the speed of convergence to the limiting distribution may 
be critically determined by the choice of restriction function. These conclusions follow 
from the fundamental property of the geodesic which generates the geodesic statistic 
which is that it starts perpendicular to the null hypothesis before reaching the point 0.

One essential difference between the two statistics in finite samples lies in that 
the Wald statistic ignores the component of the total information held in the k- 
coordinates whereas the geodesic statistic exploits this ancillary information. More 
generally the following lemma establishes the conditions under which Wald and 
geodesic inference will coincide.

Lemma 3.2.4:

In the single restriction case the Wald test statistic will agree with the squared 
geodesic distance if

(i) Fg , the matrix representation of the metric is constant throughout the
manifold,

(ii) the geodesics between any 0 and the null hypothesis are
perpendicular to the level sets of g.

These conditions hold if we are working in Euclidean space and our restriction 
is just a linear function ( as in the general linear model) so that all the level sets are 
parallel lines and all the geodesics are just orthogonal straight lines. Note that because 
the restriction function is linear the metric will stay constant in the (g,k) coordinate 
system. It is the second condition in this lemma that eliminates the dependence of the 
information in the k-coordinates.
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4: An Error bound for the Wald statistic

In general it may be hard to calculate the statistic required for the geodesic test 
since it requires the solution to a set of second order quasi-linear differential equations 
(10), and then integrating along these curves. Both of these operations are , in general, 
difficult analytically although numerical methods are available to provide 
approximate solutions for a given example (Marriott and Salmon (1989)). In the 
general linear model with a constant metric in the natural coordinate system and 
nonlinear restrictions it is however possible to find explicit solutions to the geodesics 
which may then be evaluated numerically . An alternative and completely general 
approach that we follow in this section of the paper is to calculate a bound between the 
Wald and geodesic statistics . In this way we are able to determine whether the Wald 
statistic seriously deviates for a given form of restriction function and in addition we 
obtain a formal basis to compare different forms of restriction function. Thus we wish 
to consider the two statistics given by (13) and

W0o = g(ê)[Dg(eo)TIëoIDg(0o)r1g(ê)

The difference between these two statistics can be measured by

|G~VW|= J o8( ^ F g(A Y(g)A y(g)) dg- T(Dg(e0)TIë'D g(e0))_1g(§) (14)

where the two statistics are essentially of the same form , representing line integrals in 
the manifold expressed in the (g,k) coordinate system, except that the Wald Statistic 
reduces to its simpler form through its use of a constant metric at 0q and its 
independence of any information in the orthogonal direction given by the k 
coordinates. Hence the difference may be rewritten as

-Vw| = J o

By applying the mean value theorem for differentiable functions we see that;
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g(9) ----------------------------------
0 1 IA J  ™ x  — { ^ F g ( A y ( g )  A Y (g ) ) } dg 

0 E g
= g(9)max|A j F ^ ( ^

Hence we can see that the two statistics will be the same if Fg(, )  is constant for all 
values of g and so a choice of restriction function that induces the least possible 
variation in the metric is clearly seen to be preferred.

To make any further comparison we need to consider how the metric Fg varies 
with g and the rest of this section is devoted to providing an explicit bound on the 
difference between the two statistics based on the difference between the square of the 
geodesic length and the Wald statistic since the Wald statistic in fact represents a 
squared distance measure. For clarity we restrict our attention to the two dimensional 
case where 0  is a surface and the null hypothesis a curve although the analysis may 
easily be extended to higher dimensional manifolds, in particular if there is only one 
restriction function this is particularly easy. Working in the (g,k) coordinate system 
the Fisher metric is given by the matrix

'fit o •
.0 f22_

where by lemma 3.2.1(b) fi2=f2l= F(3/3g,3/3k) =0 by definition of the (g,k) coordinate 
system. The geodesic, y(g), is a curve parametrised by the value of the function g and 
therefore in these coordinates may be written (g,cp(g)), hence we have that

= (fit + (<P')2f22)- (17)

Considering this expression in more detail it is clear that we need to 
understand both how the geodesic behaves with g and also how the form of the metric 
itself varies with g. We now take each of these questions in turn.

For a general analysis, without an explicit form for the geodesic, we are forced 
to consider its dependence on g using the projection of the geodesic on R2 Euclidean 
space . This projection is defined by the (g,k) coordinate system as shown in the 
diagram below . Notice that although the geodesic itself will have zero curvature in 
the manifold its image will have nonzero curvature and we can use this fact to 
establish a bound on the behaviour of the geodesic . In addition the coordinates of the 
geodesic and its image coincide although the relevant metric in each case will differ. 
We start by considering the curvature of the image of the geodesic using the angle co 
as shown in the diagram.
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We estimate the angle co in the standard manner ; parameterising the 
image of the geodesic now by (a(s),P(s)), where s measures arc length in the manifold, 
the curvature is given by,

q.p-cxP

(a2 + p2)̂
( 18)

Since y(s) = (a(s),P(s)) is a geodesic of the surface it will satisfy by definition the 
differential equations (10) given earlier as

Y1 + r jkY*Yk = 0 i,j,k =1,2

where rj^ are , as above, the Christoffel symbols for the Levi-Civita connection of the 
Fisher metric, with respect to the (g,k) coordinate system.We show how to calculate 
these symbols for a specific example later in the paper, but for the moment it is 
sufficient to know that they are determined entirely by the Fisher information metric 
It should be noted that the Christoffel symbols are not themselves geometric objects 
and depend on the choice of coordinate system.

In order to calculate co we write Y(s) as (rcosco, rsinco) and hence we find the 
differential equations (10) defining the geodesic to be,

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



19

à = r2(coso),sinco)

P = r (cos co, sin co)

r/i nV
r 21 r 22

p2 A21

p2 
A 12
r 2
* 22.

f  COSO)

lesino)

(  COSO)

Issino)

(19)

Hence the curvature of the image of the geodesic given by (18) is found to be

k = ((d, p), (-sin 0), cosci))) = —cosco- t̂ + sinco-S-
r r

which with the explicit values of a  and p given in (19) substituted gives k as a function 
of the angle co and the Christoffel symbols , ( <,> denotes the normal Euclidean 
product).

We are now in a position to consider how the geodesic varies with the choice 
of g, and this can be achieved even without an explicit form for the geodesic by 
considering bounds on the curvature of its image. A number of different bounds may 
be constructed and we present one simple and intuitive choice, others may in fact be 
tighter. The bound we propose exploits the maximum curvature of the image of the 
geodesic, however all such bounds are essentially determined by the values of the 
Christoffel symbols and so we show how these may usefully be regarded as criteria on 
which to base judgement about the particular choice of g function and its associated 
Wald test.

If we let and A,2 denote the maximum (in modulus) of the eigenvalues of 
the matrices

T 1:
r> r**11 112

r 22;

i=l,2 ( 21)

taken over the relevant region of 0  space. Then equations (19) and (20) give the 
maximum curvature Kmax, as

I I S ( a ,) 2+(X2)2)1/2. (22)

We can now use Kmax to get an upper bound on to and hence bound the behaviour of 
the geodesic. Figure 7 shows the situation , the angle to which the tangent to the 
geodesic makes with the g-axis will be less than the angle made by any curve whose 
curvature is everywhere greater than that of the image of the geodesic. In particular 
the circle of radius l/(Kmax), whose curvature is everywhere Kmax.
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k
image of the 

geodesic

g

Fig 7.

Some simple geometry then tells us that

co < coj = arcsin (g.•Kmax'-;>■ (23)

and so coj provides an upper bound for the variation of the geodesic with g. Notice 
that if Kmax was zero then the image of the geodesic would be a straight line in g-k 
space. From equation (22) it can be seen that this will come about if the Christoffel 
symbols are all zero.

We now turn to consider how the whole expression (17) varies with g, 
including the metric using this bound on co that we have just established.

Since (l,<p')=(rcosco,rsinco) we can see that cp'= tanco and so using (17)

F (^ Y (t)-^ f(t)) =fll + f22tan2co (24)'

Now as we are working in the g-k coordinate system;

and JL  _ 3 , is the (0,1) basis vector in the k direction 
9k 2
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Hence,

^ Fg(4 Y(t)’4 Y(t))= I F( V3i(31 + tanco-a2) .0 i + tanm.32))

= -jF( (Vj 3j + tana).Vj]02 + 3i(tanco)92 ),(3i + tanco.82))

= jF (  (V^a^aj)+  ^F(tanco.V3ia2, 3 i ) + ^■F(al(tanco)a2 , 3 i ) 

+ jtancoF( (Vg^i.32 )+  ^tanwFftanco.Vj^, 32 )

+ ^tanQ)F(a](tanco)a2,a2)

= i F((v3|a1>a1)+ ^ ( v ^ a o + ^ F c  (v3ia,,a2)
(tanm)2 F (v 3ia2, a2 ) + J2afflA(tanco)F( a2>a2}

and so;

2^ Fg(4 Y(t)’4 Y(t))=Fl11 + tanco.r,22 + tan co. r,2, + ta n V r ^  + j^ ( ta n 2co).f22

= f/j + (tanco+tan2co)r122+ tanco.r2] + tanco.sec2co. d(0 , 
dg [22 (25)

Considering the calculation of dco/dg . If we let the unit tangent to the image 
of the geodesic in Euclidean space be T = (cosco,sinco) then if we let s now be the arc 
length parameter in Euclidean space, we have that the curvature of the geodesic is 
given by

k  =  I (dT/ds) I

= I (dT/dg) I. I (dg/ds) I 

= I (-sinco,cosG))dw/dg) I. I dg/ds I 

= I (dco/dg) I. I (dg/ds) I 

where I. I represents the Euclidean norm.

Further since s parameterises by arclength, we have by definition that

So
Idy/ds I = 1 

1 = I dy/dgI. I dg/dsI
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hence
dco/dg = Kjdy/dg I

and since dy/dg = (l,tanco)

dco/dg = k . I sec(co) I

Given that in the range we are interested sec is an increasing function we have finally 
that

dco/dg < Kmax.sec(co) (26)

Taking this result together with (23), that

co < arcsin(g(6).Kmax)

and substituting into (25) we have the estimate;

(8Km,J2dFQ
I dg I

< 17, + 8Kmax

V1- s2kì
.2
max l - g 2Kmax

r !2| +
gKn

V i _ g 2|c
2
max

1
Ml

"*■ lsKmax-(l g Kmax)|’|̂ 22|

(27)

If we denote the right hand side of this expression by ErrfTjj ,g , Kmax)then from the 

mean value theorem we can see that Fg(.) changes by less than g(0).Err(rjj ,g , Kmax) as 
we move from the null to the estimated value of 9.

Hence,

¥ à b ( g ) , d b ( g ) )  - Fg ( é Y(0)4 Y (0))|-g(è)-Err

Fg (d iY(0)4 Y (0 ))_ g (è )-E r r - | F8(é Y(g)4 Y(g)) |^g(é )-E rr+ F g ( ^ Y ( 0 ) 4 Y ( 0 ) )

and so

( Fg ^ Y (0 )4 y (0 ))-g (9 ) .E ir )^ < |F g(Ay(g),dLy(g)) |^(g(0).Err +Fg(£ y (0 )  ^y(O )))g'dg * w»dg dg ' ^ ’dg J
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Thus integrating over the geodesic curve, we see that;

g(0).( Fg(A Y(0) Ay(0))-gCShErr)^ < G<g(0).(g(e).EiT +Fg(A Y(0),.iY(0))^

therefore;
|G2 -w | < E rr (r£ ,g ,K max). (28)

which is our final inequality bounding the deviation between our two statistics. 
Notice that the asymptotic distribution of the geodesic statistic follows directly from 
this inequality since on the null the right hand side tends asymptotically to zero as 
g(0) goes to zero , ensuring that the squared geodesic length is distributed as xt ■

Despite its apparent complexity the right hand side of this inequality may easily 
be shown to be zero when the Christoffel symbols are zero and monotonically 
increasing in the eigenvalues of the matrices T1 i=l,2 given in (21). Notice that from 
(22) if the eigenvalues of these matrices are zero Kmax itself will be zero . Hence , as 
suggested above the Christoffel symbols may be used as powerful indicators of the 
degree of nonlinearity and hence the lack of invariance in the Wald statistic. It should 
also be remembered that the tightness of the bound given above is entirely 
determined by our use of the circle of maximum curvature to limit the curvature of 
the geodesic and as such is a very crude example of the bound between G2 and W. In 
any example better bounds might easily be found, using particular aspects of the 
problem. The common thread to all such estimates however will be the use of the 
Christoffel symbols as a measure of nonaffineness of a coordinate system. The 
calculation of these symbols alone will often be enough to indicate the validity of 
treating nonlinear systems as if they are linear and Euclidean.

In a practical example, as in the one below, this analysis also indicates how, 
given several alternative forms for the restriction function the 'best' one may be 
chosen. Essentially to minimise the effects of a changing metric we should select the 
restriction function with the smallest Christoffel symbols.

5: The Gregory and Veall Example.

We illustrate the discussion of the previous section with a geometrical analysis 
of the problem considered by Gregory and Veall (1985) . As a first step we set up the 
(g,k) coordinate system as in lemma 3.2.1, and then using the error bounds arguments 
tVe explain the large differences between the performance of the Wald statistic with 
the two restriction functions considered by Gregory and Veall.This analysis , using the 
Christoffel symbols, also shows quite clearly why one of the choices of formulation for 
the null hypothesis is to be preferred.

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



24

The example is a linear regression model given by

ft = Po + P lx lt + P2x2t + e i (29)

where (et) is i.i.d. N(0,cr ). The two formulations of the null hypothesis to be 
considered are given by;

(A)

(B)

Ho:gA(Pi,P2) = P l-^ -  = 0 
H2

Ho:gB(Pl.P2) = P lp 2 -l = 0

(30)

(31)

and we assume the Fisher metric to be;

'X 0 
0 X

where X is assumed to be independent of (Ppl^)-

To apply the previous theory we need to construct the (g,k) coordinate system 
for both forms of restriction function and then calculate the Fisher metric and the 
Christoffel symbols for each case.

Following the proof of lemma 3.2.1 , we construct the integral curves to the 
vector field given by grad(g), this vector field is given by

To find the integral curves of these vector fields we have to solve a set of first 
order differential equations (this is usually much easier than the second order 
differential equations you would have to solve to find the geodesics) and in our case 
we may do it explicitly.

Case (A).

We want to find a curve y(t) = (X(t),Y(t)) such that

(32)

So for case (A) we have 

and in case(B)

grad(gA) = (1 A)(l,(l/P2)2)/ 

grad(gB) = (1 A)(P2»Pi)-

gradfgA) = (dX/dt,dY/dt)
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given that grad(gA) = (1 A)(l,(l/P2)2)

In other words we need to solve the set of differential equations given by; 

dX/dt = 1 A ,

and dY/dt = (lA).(l/Y)2

Solving we find
7<t) = (1 A)(t+A,3V(t+B3))

where A and B are arbitrary constants. Since 7(0) lies on the null hypothesis we see 
that A and B are related by A.B = X2.

So to write a point (Pi,P2) in the (g,k) coordinate system we need to know the 

value of gA(Pi,P2)=(Prl/P2) and which of the integral curves (Pi,P2) lies on. In other 
words we must find A such that

PH lA Xt+A )
and P2=(lA )(3V(t+a2/A)3).

Solving implies that (Pi,P2) corresponds to (Pj-1/P2/3Pi -P23) in the (g,k) 
coordinates.Thus using the formula of lemma 3.2. 2 gives us that the metric in the 
(g,k) coordinate system is:

r 1 x .11 'X  O' ' 1 - 3 ' 1 + V o * 0
v -

/ P 2
-3  3pl 0 X J k  &

=  x /P2
0 9 + 9P2

We can see immediately that the large deviation from a constant metric for 
small values of P2. This distortion shows up well in the Monte Carlo analysis reported 
by Gregory and Veal.

Case (B):

Now we need to solve the diferential equations given by

and
dX/dt = YA, 
dY/dt = X A
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Solving gives X(t)=Aet/,̂ '+Be"t^ ,̂ and Y(t)=Ael^ -B e '* ^  Using the initial condition 
that at t=0 we are on the null hypothesis,we get B = -y/(A2 — 1) - So in this case the (g,k)-
coordinates of (P 1, 2̂) are given by (Pip2-l,P]2-p22).

The metric is given by:

FgB —
P2
2pi

Pi
-2p2.

X

0

- 3 '

3pl = *(P? +  P 2)
T
0

O'
4

(34)

Next we need to calculate the Christoffel symbols in the two different 
coordinate systems. Using the formula which tells use the symbols once we know the 
metric given above as;

1 fhi,dfhkpi _ 1 f ni/
A j k - T 1 v

dfjh df jk 
apj apk aph

i,),k,h=l,2

Where (f1)) is the inverse of the metric (fjj) . 

Case (A)
In this case we get the matrices;

(  2 \
0 --------1 —r ! = (1 + P2)P2

---------~4----- 0
, (1 + P2)P2 >

r 2

r 2
9(1+p^pi

(i + p2) ,

(35)

We can see that for small values of P2 the eigenvalues will blow up thus 
giving the indication of a large potential deviation between the Wald and Geodesic 
statistics .

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



27

Case(B)
The Christoffel symbols are now given by

r 1 1 'Pi P2 )
(P1 + P 2) vP2 ^ P lJ

r 2 1 f - { p 2 P i) (36)
(P1 +  P2) IPI P2J

Again the eigenvalues will blow up as pi and P2 get small, but not as fast as in 
case (A) . Once again this provides a clear explanation for the numerical results of 
Gregory and Veall.

6 Graphical analysis and tools

These observations on the effect of the different restriction functions may also 
be displayed graphically as shown in figures 8, 9 and 10 below. In figures 9 and 10 the 
level sets of the restriction functions for HA and Hg are shown. In figure 8 we show 
the level sets for the "geodesic restriction function", by which we mean that algebraic 
formulation of the restriction that is equivalent under the null to those in cases A and 
B but whose level sets away from the null can be seen to be parallel in the sense that 
all points on a given level set are equidistant from the null throughout the parameter 
space. This "optimal" form of the restriction function for which the Wald and 
Geodesic statistics would coincide is in fact impossible to derive in closed form , in this 
case, but a general procedure for evaluating this function for the case of quadratic 
restrictions has been given in Critchley (1989). The converse of this argument for the 
optimality of the "geodesic restriction function " can be seen in the graphs for the 
other two forms of restriction function. In figure 9 the bunching of the level sets as P2 
becomes small provides visible support for our theoretical predictions about the 
performance of the Wald statistic in this case. In figure 10 we see that non parallel 
behaviour of the level sets is found as either Pj or P2 become large, as in fact is clear 
from (34) where the metric is found to be proportional to (P2 + P2) .

Another observation at this point lies in this question of the optimal choice of 
restriction function. The form Hc :p2-  — = 0 is also equivalent under the null to HA

Pi
and Hg and its level sets will be the reflection of the level sets of HA around the line 
Pj = P2 and hence will be bunched together as p j gets small. The obvious question

arises as to whether a better restriction function can be formed by taking an optimal 
linear combination of HA and Hg . While this operation may indeed reduce the 
bunching of the level sets in various parts of the parameter space the critical issue 
turns on where the observed parameter estimate lies and whether the metric is 
constant between this point and the null. While this may be quickly assessed

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



28

graphically the Christoffel symbols for this new restriction function 
provide this information analytically.

will clearly always

Fig. 8
The "Geodesic" restriction function
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The level sets of

Ha ; Pi ~ ~  = o 
P2

The level sets of
«B' PiP2-1 = 0
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These graphical arguments can be rationalised formally and provide a general 
method of crudely examining whether the metric is changing in the relavant part of 
the parameter space. Notice that it will only be appropriate to use this simple approach 
if the metric in the natural coordinates is constant as in the linear regression case with 
nonlinear restriction functions. Consider how the variation of the form of the metric 
in the (g,k) coordinate system can be understood in the (pjP2) coordinate system in a 
geometric fashion. Lemma 3.2.2 tells us that in the (g,k) coordinate system the metric 
is of the form

Both of the terms in this matrix have readily observable geometric significance and for 
a constant metric we require both to be constant. First, by definition we have that 
fn= I grad g I and hence a constant value for f^ will imply that the level sets of the g 
function will be evenly distributed over the (Pi,p2) space. For example compare the 
graph of the geodesic restriction function with thoses of either of the other two 
restriction functions above.

To understand the behaviour of f22 we need to look at the k-constant lines 
where f22 can be seen as a measure of how far they are apart from one another. This 
can be seen from the formula

Since (0,1) is the tangent vector to the g-constant lines with the parameterisation given 
by the value of k at each point. So we can use (37) to tell us the speed at which the 
value of k changes as we move along the g-constant lines. The length of the segment 
of g-constant line between kj and k2 is given by

'fu  0 -
0 f22

(37)

1 kk’V &

Thus the smaller f22 the closer the k=kj line is to the k=k2 line and the faster k changes 
as can be seen from the following diagram.
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So f22 essentially provides a measure of the curvature of the level sets of g with a 
small value indictating a high curvature and this is indictated when the graphs for 
the two restriction functions are compared with their metrics (33) and (34).

Using this analysis we can see how a simple inspection of the level sets of the 
restriction function conveys information on how the metric changes through the 
parameter space and hence on the reliability of the Wald test. Obviously the ideal map 
for a restriction function that supports the use of the Wald statistic is a simple linear 
grid! More usefully, given the value of the estimated parameter, this sort of graphical 
analysis can indicate relevant regions of the parameter space in which particular 
restriction functions will imply regular behaviour. An example of this can be seen for 
the restriction function of 11,\ where good behaviour of the Wald test can be expected 
for small pj and large P2 ar|d this is confirmed by our Christoffel symbol analysis.

31

7 A Useful Inequality

So far in this paper we have provided a detailed discussion of how the Wald 
statistic behaves with different choices of restriction function and while the proposals 
we have made may be used to assess the sensitivity of the Wald statistic in the 
nonlinear case it can be seen from our analysis that there is fundamentally little that 
can be done to rescue the test in this situation. The introduction of the notion of a 
Geodesic statistic is one possible resolution and this is considered further in Critchley , 
Marriott and Salmon, (1989b). Another is to use the likelihood ratio test but this 
involves the calculation of the restricted maximum likelihood estimates which may 
in some cases prove troublesome. In general the Geodesic statistic may be difficult to 
compute, see Marriott and Salmon, (1989) but as we now show it is possible to 
establish an important inequality between the Wald and Geodesic statistics which will 
ensure reliable inference under certain conditions from the Wald test.

To derive the inequality we need to establish some technical conditions, in 
particular we must first clarifiy what we mean by a function "increasing" in some 
direction on a manifold.

Let h(pi,P2) be a real valued function on our manifold. To talk about h 
increasing we really mean increasing along some regular path. In particular we require 
that we are in fact increasing along k constant lines i.e., the gradiant lines.

Definition: A real function h is gradient increasing if it is increasing along all the k 
constant lines which cut the null hypothesis.
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We can now produce a very useful inequality between the standard Wald
statistic, W A evaluated at the unrestricted maximum likelihood estimate and the

e
geodesic statistic.

Lemma 7.1:

If f ji  is gradiently increasing towards the null, then G2 < W A.
e

This lemma tells us that if the level sets of the restriction function are more 
dense closer to null then the standard Wald test gives us confidence regions inside 
those of the Geodesic test. Hence a non rejection inference with the Wald test would 
also imply non rejection under the geodesic test and this may re-establish some utility 
for the use of the standard Wald statistic in this situation. Notice that the condition 
underlying the inequality is quite weak and easily checked analytically and also from 
the graphical inspection of the restriction function . In addition this inequality applies 
for all sample sizes but as will be clear from our previous arguments becomes an 
equality asymptotically.

8: Conclusions

This paper has provided a geometric analysis of the Wald statistic and 
has shown why it is possible to obtain any value from the statistic by a suitable 
transformationn of the algebraic form used to express the nonlinear restriction being 
tested. We have shown that the essential problem with the Wald statistic is that it is 
not a true geometric quantity in that it is not invariant to a change in coordinates. 
Although there is little that can be done to retrieve the utility of the Wald test in the 
nonlinear environment and we have provided a number of tools , both analytic and 
graphical, that may be used to assess whether this problem with the Wald test is likely 
to be severe in any particular example.

Moreover the geometric approach that we have adopted suggests the use 
of a new test in the nonlinear context based on the Geodesic Statistic that tranforms 
properly when the nonlinear restriction is re-expressed since it is a true geometric 
quantity.

A bound has been established between the between the Wald and 
Geodesic Statistics that establishes the importance of the Christoffel symbols as 
indicators of the degree of nonlinearity in an inference problem and hence indicate 
the severity of the problem with the use of the Wald Statistic. Graphical methods are 
introduced to support this analysis that are particularly appropriate to the linear 
regression case.
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Finally we have established a powerful inequality between the Wald and 
Geodesic statistics that enables unambiguous inference to be achieved with the Wald 
test even in a nonlinear environment.
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Appendix:
Proofs of the various theorems and lemmas not given in the main text follow.

Lemma 3.2.1 : Proof
(a) A coordinate system such as (g,k) may be defined arbitrarily (see Thorpe(1979)), the 
only issue of concern is the smoothness of the functions which we assume.

(b) Since Dg(qg) has full rank we can use the implicit function theorem, locally around 
0O , g_1(0), the null hypothesis, is an p-1 dimensional submanifold as are all g_1(c) for 
ce (-e,e).

Since the null hypothesis is a submanifold we can put coordinates on 
it;parametrise by the coordinates (k](0),....kp_I(0)).
Since g:0-»R (0—>g(0)) is assumed to be a real valued smooth function on © we are 
assured that the gradient function, grad(g) exists.

The operation grad takes the function g to a vector field which has the property 
that each vector is perpendicular to the level set of g through which it passes as 
shown in the diagram below.

/ k constant lines

/
/
/

level sets of g

In Euclidean space grad g is given by the formula

and in a space with a metric given by (hjj) it is given by
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grad(g) =
C/Uj (7 0  j

where (h'l) is the inverse of the metric matrix.

Then because g is a C1 function we see that grad(g) is a continuous vector field. 
Which means by the theorem on the existence of solutions to ordinary differential 
equations there exists (Yi(s)} the set of integral paths to our vector field,see ( Arnol'd 
(1983))

By flowing along these integral paths we may construct a diffeomorphism 
between g_1(0) and g_1(c). So we define on g_1(c) the coordinate system (kf,.... ,kp_ ]) by

pushing forward the original coordinate system (k j.....,kp_j) along the Ys. Hence we
3

have local coordinates everywhere defined by (g(0),kj(0),....kp_1(0)) and since —  is 

parallel to grad(g) which is tangent to Yj(s), we have that

fiM"°——-  = 0 Vi

Lemma 3.2.2 : Proof
(a)The change of basis going from the (g,k) to 0 coordinate systems can easily be 

seen to be (G,K)T For vectors orthogonal to the level sets Yj(s) are the integral curves

for then 
. dgi

g(Yi(s))= (0....0,s,0....0)

with the non zero element in the i'th position.Then differentiating with respect to s 
we find

H^Yj *
,0, 1,0, . . . ,0)

Hence G takes —  to (0...0,1,0....0) and so G is a change of basis matrix. For vectors
dgi

parallel to the level sets K is the change of basis.
(b) The proof follows exactly the same from as in (a).

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



36

Lemma 3.2.4 : Proof

By Lemma 3.2.2 , if the geodesics are orthogonal to the level sets we have 
F(y(s),y(s)) is equal to the Wald Statistic at that point and since F is constant we see the 
geodesic distance

ĵ ŷFgdg = .̂ Fg = constant = VWald

Lemma 7.1:
If fn is gradiently increasing towards the null then G2 < W A.

0

Proof. Consider the length of the path v(g(0)) from 0 to the null hypothesis which is 
orthogonal to the level sets of g.

At each point of v the length of its tangent vector is clearly given by f^j. Hence the total 
length l(v) of the path is

n (g ) dg

Now by definition
W§ = g2(0)fn(e)

Therefore if fn is  increasing towards the null we have that 

W& > (l(v))2-

However, by definition the distance G is the shortest path length from the estimate to 
the the null hypothesis. Therefore we have

W§ > (l(v))2 > G2-
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