
1 
 

Halting SARS-CoV-2 by Targeting High-Contact Individuals 

 

Gianluca Manzo*    Arnout van de Rijt 

GEMASS      European University Institute 

CNRS & Sorbonne University   Utrecht University 

 

ABSTRACT 

Two decades ago network scientists proposed that infectious diseases may 

be effectively halted by targeting interventions at a minority of highly 

connected individuals. Can this strategy be effective in combating a disease 

transmitted through physical proximity such as the contemporary 

coronavirus? The strategy’s effectiveness critically depends on high 

between-person variability in close-range contact. We analyze population 

survey data showing that indeed the frequency of close-range contact across 

individuals is characterized by a small fraction of people reporting very high 

frequencies of close-range contact. We simulate a population with empirical 

contact distributions coming out of lockdown. Simulations show that 

targeting a small fraction of high-degree individuals dramatically improves 

containment. Our results further suggest two concrete procedures for 

identifying high-contact individuals: acquaintance sampling and 

employment-based targeting. 

*Corresponding author: gianluca.manzo@cnrs.fr 

1. Introduction 

The world is currently plagued by the new coronavirus SARS-CoV-2 and the social and economic 

consequences of its containment. Many countries are in the process of gradually lifting a lockdown initially 

imposed to contain spread, reintroducing measures to contain a second wave. Most containment measures 

that are being lifted combine general interventions aimed at broad groups of citizens (children, elderly, 

contact professions) or categories of meeting places (schools, restaurants, airports) (Zhang et al. 2020). The 

economic costs of such measures are tremendous, expressed in percentages of GDP. At the same time, 

easing restrictions on interaction achieved through such measures could spur new waves of infections. 
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 Two decades ago, network scientists proposed that viruses may be effectively halted by targeting 

interventions at a minority of highly connected individuals who are jointly responsible for the majority of 

viral traffic potential (Desző & Barabási 2001; Pastor-Satorras & Vespignani 2002). Compartmental models 

in use in the SARS-CoV-2 crisis context do not incorporate this idea (Manzo 2020). By minimizing the risk 

of spread through “hubs” – through repeated medical testing, quarantining-if-positive, extra protections for 

cashiers and flight attendants, and perhaps eventually vaccination – the current epidemic could theoretically 

be brought to a halt. Such targeted intervention would be economically efficient if achieved with relatively 

limited financial and medical resources. 

 Could this approach be made to work against a virus like SARS-CoV-2 that primarily spreads 

through droplet transmission and direct contact (Mittal 2020)? The theoretical analysis relies on the 

spreading network being scale-free, while empirical networks often deviate from this assumption (Jones & 

Handcock 2003; Clauset et al. 2009; Stumpf & Porter 2012). Nevertheless, degree-targeting may still be an 

effective strategy in the fight against SARS-CoV-2 if close-range contact exhibits high skew, with the 

majority of close-range contacts in society involving a small minority of individuals, as has been found for 

online contact (Barabási & Albert 1999; Adamic & Huberman 2002; Vázquez et al. 2002) and sexual 

contact (Liljeros et al. 2001; Trewick et al. 2013; Little et al. 2014). Available data suggests this is indeed 

the case for close-range contact as well. A study of short-range Bluetooth data showed high interpersonal 

variability among 700 university students, with a long tail (Mones et al. 2018; Sapiezynski et al. 2019). 

Evidence from contact-tracing in early stages of past outbreaks of SARS, Typhoid, Tuberculosis, Ebola, 

HIV, and also SARS-CoV-2 suggests that “super spreaders”, working jobs that requires close-range contact 

with many others, often play an important role in initial dissemination (Glasser et al. 2011; Stein 2011; 

Wong et al. 2015; Sun et al. 2020). The literature notes a general tendency across viral diseases for 20 

percent to generate roughly 80 percent of total infections (James et al. 2007: fig. 1). However, we do not 

know if this is primarily due to variability in contact or other forms of heterogeneity, e.g. in infectiousness 

(Woolhouse et al. 1997; Galvani & May 2005). 

 Here we draw on a large-scale population survey conducted some years ago in France (Béraud 

2015). 2,033 people were interviewed and asked to report on all close-range contacts (< 2 meters) over the 

course of 2 days. From the survey data we derive the degree distribution for close-range contact in France 

(section 2). We then impose this empirical degree distribution on a synthetic social network (section 3.1). 

In this network, we introduce a virus mimicking the main empirical features of SARS-CoV-2, and let it 

spread through the network according to the common SEIR parametrization (section 3.2). We design 

different ways of reaching the best-connected nodes (section 3.3), and calculate how the trajectory of the 

epidemic varies under these interventions (section 4). We find that random acquaintance sampling is an 
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effective method to reach high-contact individuals and can considerably help “flattening” the curve (section 

5). We conclude that, possibly coupled with job-specific targeting, this is a feasible practical method by 

which governments could identify high-degree nodes in contact networks, thus efficiently coping with the 

epidemic on the long-run. 

2. Data analysis 

We draw on data from COMES-F, a survey conducted in 2012 with data on the number of close-range 

contacts for a representative sample of about two thousand French residents (Béraud et al. 2015). The 

leading epidemiological compartmental models of SARS-CoV-2 spread in France currently rely on these 

data (see, for instance, Di Domenico et al. 2020; Roux et al. 2020; Salje et al. 2020a; in a comparative 

perspective, see Patrick et al. 2020). In these models, COMES-F data are routinely employed to build social 

contacts matrices, i.e. average contacts between age groups by places (like school, public transportation, 

home, etc.) (for an example of this methodology more generally, see, for instance, Prem et al 2017). In 

contrast to prior use of the data, we rely on the entire cross-individual heterogeneity of the observed 

distribution of close-range contacts. We implement this distribution in a social network model of disease 

propagation (section 3), so that we can evaluate the effectiveness of interventions targeted at high-

connectivity individuals (section 4). 

COMES-F is a large-scale population survey conducted in France during the first half of 2012. An 

initial sample of 24,250 was drawn from the French population excluding overseas territories through 

random-digit dialing of landline and mobile numbers. Using quotas for age, gender, days of the week and 

school holidays, 3,977 people who accepted to participate were sent a diary to complete. 2,033 (51%) 

contact diaries were returned (participants' age and household size were used as sampling weights to 

maintain representativeness). In these diaries, participants were asked to keep track of all short-range 

contacts over the course of 2 full days, and report on sex and age of these contacts, meeting context, and 

contact duration. A short-range contact was defined as talking to someone at less than 2 meters (possibly 

including physical contact). COMES-F made a special effort to collect high-quality data also on social 

contacts of children, defined as respondents aged less than 15 (753 respondents). For them, an adult member 

of the household completed the diary.  

To relieve the reporting burden, respondents were asked to record up to 40 close-range contacts. In 

addition, respondents currently in employment were asked whether they regarded their occupation as 

especially exposed to short-range contacts. This turned out to concern 257 respondents. These respondents 

had to indicate the average number of persons they estimated to meet every day because of their job. Should 

this number be higher than 20, those specific respondents were asked to enumerate, over the course of the 
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2 surveyed days, only non-professional contacts. Detailed multivariate statistical analyses of how the 

number of reported close-range contacts varies as a function of respondents’ socio-demographic features, 

meeting places and time can be found in Béraud et al. (2015). Here we descriptively focus on one specific, 

under-investigated aspect of the observed distribution of close-range contacts: their within- and between-

group heterogeneity. 

The distribution of contacts is shown in figure 1. The 2,033 individuals reported a total of 19,728 

per-day close-range contacts (left panel). The median number of contacts is 8 whereas the average is 

approximately 9.5, with strong right-skewness. Respondents reporting a number of close-range contacts 

greater than twice (n=175) or even three times (n=36) the mean are not rare. This is even more visible when 

considering respondents who declared having an occupation especially exposed to social contacts (n=257) 

(figure 1’s right panel). Overall they reported 14,971 additional job-related contacts. For those contacts the 

median is 30 whereas the average is approximately 58. One still finds 20 and 10 cases respectively at twice 

and three times the mean. The central tendencies of both distributions are consistent with those found in 

other contact surveys (Hoang et al. 2019: 727-728). In both cases, averages are clearly driven by a small 

fraction of individuals reporting (extremely) high numbers of short-range contact.  

Other studies tend to discard outliers as they may heavily impact statistical estimation of central 

tendencies (see Béraud et al. 2015: 5, 9). We explicitly leave in outliers, as they are characteristic of the 

distribution of contact and are a crucial characteristic of empirical networks. It is not unusual for a small 

fraction of people to have jobs with very high frequencies of contact.  The feature of high distributional 

skew is also visible in recent smaller-scale contact surveys conducted in China (Zhang et al. 2019; Zhang 

et al. 2020) and in a recent six-country survey permitting high self-reported values that range into the 4 and 

5 digits. There are three suspicious cases where 999 was recorded. We judged it best to leave these values 

unaltered. The survey documentation does not identify these cases as missing values nor as maximum 

values due to a limit of 3 on the number of digits. While these values greatly impact the average level of 

contact, they do not make or break the skewed nature of the distribution. Accordingly, analyses (available 

upon request) that exclude 999 cases and upwardly adjust per-contact transmission probabilities 

accordingly to achieve the same R0 show intervention effects that are qualitatively unchanged. Vice versa, 

analyses that substitute the 999 cases with higher numbers imputed following the shape of the distributional 

tail and downwardly adjust per-contact transmission probabilities produce similar intervention effects as 

well. To obtain a single measure of daily close contact for each respondent we simply combined the number 

of per-day contacts tracked in the two-day contact diary with the number of supplementary professional 

contacts estimated by respondents. This is the measure we use in section 3.1 to construct a synthetic 

network.  
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Figure 1. Left: Fraction of cases (y-axis) reporting a given number of close-range contacts (averaged over the two 

days) (x-axis) (n=2,033); Right: Fraction of cases (y-axis) reporting a given number of daily job-related contacts (x-

axis) among respondents regarding their occupation as especially exposed to social contacts (n=257) 

 

This high variability in the number of social contacts persists within major demographic categories that 

current interventions instead tend to treat as a whole. Figure 2’s upper panel shows the distribution of per 

day self-reported close-range contacts by respondent’s gender. Past multivariate analyses of these data 

found that women (mainly adult women) tend to have a higher average number of contacts than men (see 
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Béraud et al. 2015: 6 and table 1). Figure 2 shows that, behind this main mean effect, there is a large degree 

of variation within genders. For both men and women numbers of contacts (far) higher than the median 

occur frequently.  

 

Figure 2. Distribution of self-reported per day close-range contacts (x-axis) by sex (top panel; F [1136], M [897]) and 

age groups (bottom panel;<=3 [240], 4-6 [169], 7-10 [196], 11-20 [276], 21-30 [155], 31-40 [109], 41-50 [135], 51-

60 [195], 61-70 [357], >70 [201]) (y-axis). 

Figure 2’s bottom panel shows the distribution of close-range contacts per day by respondent’s age. Age is 

the most recurrent variable used in epidemiological models to represent socially structured social 
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interactions. Age assortativity (and dissortativity at home) is found to be one of the most robust empirical 

regularities in epidemiological social contact surveys, as also found in multivariate analyses of the COMES-

F data (see Béraud et al. 2015: 7-8). This motivates the use of average contacts per (more or less 

disaggregate) age-groups in age-structured compartment models (see, for some recent examples, Di 

Domenico et al. 2020; Roux et al. 2020; Salje et al. 2020: 3-4; in a comparative perspective, see Patrick et 

al. 2020). Now, apart from positive (more or less linear) effects of age on the likelihood of having more 

social contacts (which is indeed found in these data, see Béraud et al. 2015: table 1), figure 2’s bottom panel 

again shows high variability within age-groups. Rather than averaging this variability, we propose to exploit 

it using the existence of high-contact individuals as leverage for effective intervention in viral diffusion 

dynamics.  

Focusing the analysis on adult respondents in employment, we find a similar pattern for broad 

occupational groups (see figure 3). Among both “normal” respondents (top panel) and those regarding their 

occupation as especially exposed to social contacts (bottom panel), there is a great deal of within-group 

variation across individuals in the number of self-reported close-range contacts. High-contact individuals 

seem especially concentrated among high (e.g. elementary school teacher, teaching assistant) and low 

routine non-manual workers (e.g. bank teller, teller in public administration) and service class (e.g. 

university professor, politician, journalist or doctor). Data (available upon request) on an eleven-category 

variable describing respondents’ occupational sector also suggest that high-contact individuals tend to 

concentrate in the service sector and non-manual routine labor, specifically shops, services to persons, 

education, health, and administration. However, while these data suggest that social contacts within 

occupations are much more dispersed than one could expect under a distribution symmetrically centered 

around the mean, COMES-F does not provide a detailed list of jobs. The appendix shows that in data from 

another survey with less precise measures of close social contacts, more fine-grained distinctions in 

professional categories can indeed account for a substantial portion of person-to-person variability in close-

contact frequency. 
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Figure 3. Top: Distributions of daily close-range contacts among employed respondents (n=436) by occupational 

category (y-axis); Bottom: Distribution of daily job-related contacts among respondents regarding their occupation as 

especially exposed to close-range contact (n=257) by occupation category (y-axis). Occupational categories (n in 

parenthesis, top panel first): F=farmers (nTOP=14, nBOTTOM=2), PB=petty bourgeoisie (craftsmen and shopkeepers) and 

entrepreneurs (nTOP=26, nBOTTOM=18), SC= Service class (managers, high-skilled administrators, intellectual, 

scientific and liberal professions) (nTOP=123, nBOTTOM=91), HNM=High routine non-manual worker (nTOP=47, 

nBOTTOM=41), LNM=Low routine non-manual workers (nTOP=183, nBOTTOM=93), MW=manual workers 

(43,nBOTTOM=12). 
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3. Model 

Using COMES-F survey data we build an agent-based computational model in which the synthetic network 

through which the virus diffuses is calibrated on the French contact data (for other work using empirical 

network data in agent-based diffusion models, see Smith and Burrow 2018; Manzo et al. 2018). Our aim is 

to study the macroscopic consequences of cross-individual variability in close-range contact frequencies 

empirically observed in France and assess whether this variability can be exploited for effective intervention 

in the ongoing epidemic. As such, we simulate a population the size of the COMES-F sample from which 

we eliminate four respondents who reported no close-range contacts. (We find that populations much larger 

than our sample produce qualitatively similar results but naturally take much longer to simulate.) We now 

explain how we connect these 2,029 agents (section 3.1), present the transmission model (3.2), and describe 

the interventions we simulate (3.3). 

 

3.1 Network construction and features 

We connected the agents according to two social network models. The first, which we will refer to as the 

“empirical” model, is the focus of our simulation; the second, which we will refer to as the “random” model, 

constitutes a benchmark against which to compare dynamics and effects of interventions. 

In the empirical network model, agents are first given a degree (number of network ties) precisely 

equal to the number of per day close contacts reported by each respondent in the survey (see figure 1). 

Then, to connect agents to one another, we adapted the configuration model, an algorithm that was proposed 

to generate random networks with arbitrary degree distributions (for a discussion, see Jackson 2008: 83-

85). To avoid duplicate links and self-links while ensuring an exact match between each virtual agent and 

an empirical respondent, we considered source agents in descending order of the to-be-generated degree 

rather than in random order, and then randomly picked available destination agents. Every time a connection 

was made, the degree of the two newly connected agents naturally increased by one. As soon as an agent 

reached the to-be-generated degree, it was excluded from the search algorithm. We found this procedure to 

always converge, achieving the intended empirical degree distribution. 

 Under the random mixing assumption common to epidemiological models, social contacts are 

assumed to happen at random within certain categories (usually age-groups): only the (within-category) 

average number of contacts is of interest. From a network perspective, this amounts to postulating a random 

network where contact probabilities across individuals have little variability and the degree of each node 

can be assumed being well approximated by the average degree (Newman 2002; Barthélemy et al. 2005). 

We therefore also study an Erdős–Rényi random graph with the average degree observed in the survey, as 

a benchmark distribution. This random network is characterized by low variability in contact across agents.  
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Table 1 shows network statistics computed over 100 realizations of the two networks. By 

construction, the empirical network has the precise mean, median and standard deviation of the degree 

distribution observed from the survey. The degree distribution of the empirical network has strong right-

skewness, with the mean well above the median. By contrast, the degree distribution of the random network 

has essentially equal mean and median. The dispersion of the degree also strongly differs between the two 

networks, with the empirical network exhibiting variation in the nodal number of links that is five times 

higher than in the random network. 

Table 1 also shows several other network statistics. We cannot calibrate or verify these network 

features, as the survey data lack data on connections between respondents’ contacts. Nonetheless, the 

empirical network generated by our modified configuration model shares various features with social 

networks studied elsewhere (for a detailed discussion, see Appendix A2). 

 

Network Average 

degree 

Median 

degree 

Stdev 

degree 

Degree 

corr  

Clustering 

coef 

Deg-clust 

corr 

Av path 

length 

Diameter 

Empirical 23.99  
(0.000) 

16  
(0.000) 

48.01  
(0.047)  

-0.15  
(0.001) 

0.14 
(0.003) 

-0.26 
(0.005) 

2.22 
(0.002) 

4.00 
(0.000) 

Random 23.99 
(0.155) 

23.96 
(0.196) 

4.86 
(0.082) 

-0.00 
(0.005) 

0.01 
(0.000) 

-0.00 
(0.023) 

2.74  
(0.003) 

4.00 
(0.000) 

 

Table 1. Topological features of the simulated contact networks. Mean values across 100 network realizations 

(standard deviation in parentheses). Degree corr=Pearson correlation coefficient computed over the degrees of all 

pairs of linked nodes; Clustering coef=clustering coefficient; Deg-clust corr=Pearson correlation coefficient between 

nodes’ degree and their clustering coefficient; Av path length=Average of the shortest path lengths; 

Diameter=Maximum of the shortest path lengths.    

 

3.2 SEIR model 

We model disease propagation through the network by following the logic of compartmental models, which 

have been previously applied to the COVID-19 outbreak (Brethouwer et al. 2020; Kucharski et al. 2020; 

Qun et al. 2020; Prem et al. 2020). In particular, we adopt a SEIR model (Martcheva 2015) and follow 

recent French studies (and parametrization therein, see Salje et al. 2020a, b) to determine how agents 

unidirectionally move from being (S)usceptible, to (E)xposed, (I)nfected, and eventually (R)ecovered. In 
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particular, agents are supposed to stay within a given state as many iterations as days current empirical 

studies show real-world individuals remain within those states. One iteration thus represents one day. 

Upon infection, agents first enter E where they stay 4 days; during this period, they are not 

infectious (see Salje et al. 2020a: 10). They then move to I where they become infectious, and can 

contaminate other agents over the course of 4 days (see Salje et al. 2020a: 10). Infected agents move to R 

with probability following a normal distribution with average 0.993 (and possible range at the agent-level 

between 0.990 and 0.996) (see again Salje et al. 2020b) provided they spent a number of days in I at least 

equal to a given recovery time. The recovery time follows a Poisson distribution centered on 2 weeks (with 

possible range at the agent-level between 1 and 6 weeks) (for these values, see empirical estimates in World 

Health Organization 2020: 14).  

We combine this basic compartment structure with network topology such that the agents an 

infectious-infected agent can infect are determined by the network of close-range contact (see Barrat et al. 

2008: ch. 9). During each day, an infectious-infected agent can only transmit the disease to its direct 

contacts. The agent-to-agent per-day-per-contact transmission probability is assumed to be normally 

distributed around 0.0300 or 0.0186 (and possible range at the agent-level between 0.0005 and 0.12). This 

parameterization at the dyadic level generates at the aggregate level an average basic reproduction rate R0 

equal to 2.9 and 1.785 respectively. The value 2.9 corresponds to the empirically estimated R0 in France 

before lockdown (see Salje et al. 2020b): we adopt it to assess whether the model may have generated an 

epidemic in the absence of any intervention that is in line with existing counterfactual studies (figure 4). 

The 1.785 value corresponds to the average between pre- and post-lockdown estimates (the latter being 0.7, 

see Salje et al. 2020b). We switch to 1.785 to study the impact of targeted interventions in a scenario after 

partial lifting of the French lockdown on May 11. It represents a reduction in R0 down from the original 

pre-lockdown level of 2.9 reflecting post-lockdown continuation of general policy measures such as social 

distancing, group size restrictions and sanitary improvements. At R0 = 1.785, further person-specific 

interventions are needed to bring down the effective R0 and mitigate a second wave. We study how the 

targeting of these interventions impacts their effectiveness in doing so. 

All the simulations we performed start with five (randomly chosen) initially infectious infected 

agents. Given the size of our model population, this is the lowest number of seeds that prevents excessive 

variability across simulation trials. Proportionally to the size of the French population, this number at 

160000 roughly approximates, for our basic testing scenario (i.e. R0=2.9), estimates of infected cases around 

March 7 (see Salje et al. 2020b: figure 3E); on the other hand, for our intervention scenario (i.e. R0=1.785), 

this number of initial seeds would roughly correspond to targeted interventions commencing a week after 

partial lockdown release, with R0=1.785 having allowed infections to climb back up by a factor of ten from 

current levels at about 4000 new cases per day (see Salje et al. 2020b: figure 3G). In simulations on larger 
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networks, which take much longer to run, in which we implemented the same degree distribution and used 

the same number of seeds (smaller fraction), we find that peaks naturally occur later, while the interventions 

we present next show qualitatively the same relative effects.  

 

Parameter Average 

Value 

Ref 

R0 2.9 (1.785) Salje et al. 2020b 

Dyadic transmission probability 0.0300 

(0.0186) 

𝑅0

𝐴𝑣 𝐷𝑒𝑔𝑟𝑒𝑒 × 𝐼𝐸
 

Exposed time 4 days Salje et al. 2020a 

Infectiousness length (IE) 4 days Salje et al. 2020a 

Recovery time 2 weeks  WHO 2020 

Recovery chance 0.993  Salje et al. 2020b 

 

Table 2. Covid-19 SEIR model parameters 

 

3.3 Interventions 

We consider a scenario in which France progressively exits the strict March-17/May-11-2020 lockdown 

and has a fixed daily (medical / technological / financial / ethical) capacity to immunize a portion of 

susceptible/infected individuals. In the absence of a vaccine, “immunization” describes an effort equivalent 

to the medical act of 100% effective vaccination. This could be any combination of preventive 

interventions, such as medical testing, quarantining-if-positive, protective measures in high-risk professions 

and targeted informational campaigns. Accordingly, we assume that the French government has a daily 

budget b with which it can immunize b agents, preventing future infection of these and / or spread from 

these targeted agents to other agents. On day 1, spread from b agents is permanently prevented, on day 2 

spread from an additional b agents is permanently prevented, and so on. This is implemented as follows: 

Each iteration, representing one day, b S, E or I agents are selected and moved to R. 

 We study four budgets for each intervention: b = 1, 3, 5, and 10. We consider three methods for 

selecting agents for intervention. The first method, “NO-TARGET”, simply randomly samples b agents for 

immunization each day, and is intended as a benchmark against which to contrast the other two methods. 

The second method, “CONTACT-TARGET”, follows the strategy described in Cohen & Havlin (2010), 
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whereby each day b random agents are sampled who each select one random contact (without replacement) 

for immunization. Because of the friendship paradox (Feld 1991), these targets have above-average 

expected degree (Galvani et al. 2005; Christakis & Fowler 2010; Kitsak et al. 2010). This is so because 

high-degree nodes are by definition overrepresented among other nodes’ contacts (Feld 1991). The 

CONTACT-TARGET strategy is implementable in practice as a government could in fact randomly sample 

from the known population and have sampled individuals suggest their contacts. The third method, “HUB-

TARGET”, assumes that agents’ numbers of contacts are perfectly observed. During each iteration, nodes 

are targeted in strictly decreasing order of their network degree, starting with the b largest hubs.  

 

4. Results 

Figure 4 shows the number of concurrently infected individuals over time for the two networks when no 

interventions are taken, and R0 is 2.9, the pre-lockdown estimated value early March in France. The 

epidemic peaks 13 days earlier in the empirical network than in the random network, day 30 vs. day 43, 

demonstrating the impact of hubs: Highly connected individuals are more likely connected to the seeds and 

their neighbors. Once infected, they expose others early on, thus catalyzing viral diffusion. In the ER 

network, by contrast, there are no hubs to accelerate spread.  

If we translate the simulated peaks in real-world ICU admissions proportionally to the size of 

French population (see appendix A4 for the details), the model generates, under both network regimes, a 

massive number of cases requiring hospitalization. The order of magnitude of this sub-population, between 

100,000 and 200,000 individuals, is consistent with other studies that have counterfactually estimated 

COVID-19 spread in France without any intervention between early March and Mid-April (see, in 

particular, Roux et al. 2020). Having established that the model produces an epidemic of appropriate 

magnitude, timing and shape, we move on to our post-lockdown scenario to assess the effect of 

interventions under a lower average reproduction rate (1.785) which allows to simulate a second wave of 

about half of the fist wave’s size by mid-June (figure’s 4 H=824 versus table 3’s H=470).    
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Figure 4. Number of infected agents (y-axis) by days (x-axis) (median of 100 replications). Lower and upper bounds 

of the shaded areas correspond to the 5th percentiles and 95th percentiles of the 100 replications. n = 2,029 agents. R0 

= 2.9. Solid line: Network with French long-tailed degree distribution (H = 824 [703; 894]; ICUFRANCE = 180274 

[153801; 195588]; T = 30); dashed line: Erdős–Rényi network with the same average degree as the empirical network 

(H = 688 [578; 742]; ICUFRANCE = 150520 [126454; 162334; T = 43).  

Figure 5 shows the impact of the three intervention methods on viral diffusion in the empirical 

network. Peak reductions and delays are reported in table 3. Spread under intervention regimes is displayed 

as dashed curves in figure 5. Solid curves represent the no-intervention scenario, for contrast. Panel A 
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shows results for the NO-TARGET procedure, whereby each day b randomly selected susceptible, exposed 

or infected agents are immunized. The NO-TARGET procedure’s maximally achievable impact, using the 

most generous budget considered, b = 10, corresponding to 10% of the population being immunized during 

the first 20 days, leaves the peak at 69% (Table 3: 326 / 470) of what it would have been without any 

intervention. Also, the peak is not delayed. 

 Panels B show results for the CONTACT-TARGET procedure, which assumes that no global 

information on connectivity is available. Lacking this information, it attempts to find high-degree nodes by 

drawing a random sample of agents with unknown degree and selecting a random neighbor of each sampled 

agent for immunization. This procedure is much more effective than the NO-TARGET intervention, as the 

figure shows. A budget of b = 3 CONTACT-TARGET immunizations produces an impact comparable to 

a NO-TARGET immunization regime with b = 10 daily immunizations. At b = 10, the CONTACT-

TARGET intervention achieves a reduction down to only 5% of the peak in the no-intervention scenario 

(Table 4: 25 / 470). The peak occurs two days earlier, after 30 days (CONTACT-TARGET) instead of 32 

days (NO-TARGET). 

The CONTACT-TARGET method would be more effective if randomly chosen agents would be 

able to select a random neighbor for immunization among relatively high degrees at a higher chance than 

network structure per se allows. Survey data suggest that targeting of certain professions may also 

effectively identify high-degree agents (see appendix A1). To evaluate the maximally achievable impact of 

any degree-based intervention, panels C of figure 5 show the impact of the HUB-TARGET policy, whereby 

each day the b non-immune agents with highest degree are immunized. Even a single agent per day (b = 1) 

reduces the peak down to only 25% (Table 2: 118 / 470) and delays it by 17 days. This peak reduction 

exceeds what NO-TARGET immunization achieves with ten agents per day (b = 10). Three agents per day 

accelerates the peak again, but this happens as peak height is reduced to only 4%. With five agents (5% of 

the population after 20 days) virus spread is effectively halted. In other words, if one fully protects a small 

vulnerable fraction of the population, one can prevent nearly all infections that would have otherwise 

occurred. 
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Figure 5. Number of infected agents (y-axis) by days (x-axis) (median of 100 replications) under three different 

interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A – NO-TARGET immunization; B – 

CONTACT-TARGET immunization. C – HUB-TARGET immunization. Lower and upper bounds of the shaded areas 

correspond to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: empirical network; dashed 

line: interventions. n = 2,029 agents. R0=1.785. 
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Empirical network                                                                       no intervention: H = 470 [203; 549]; T = 32 

  b = 1 b = 3 b = 5 b = 10 

  peak 

height 

time peak height time peak height time peak height time 

NO-TARGET 447 

[203; 539] 

31 407 

[173; 470] 

34 391 

[72;  475] 

32 326 

[88; 411] 

32 

CONTACT-

TARGET 

362  

[153; 442] 

35 195 

[38; 278] 

41 106  

[45; 164] 

45 25 

[1; 72] 

30 

HUB-TARGET 118 

[25; 182] 

49 20 

[1; 56] 

32 13 

[3; 25] 

18 9 

[4; 16] 

13 

Table 3. Peak height (maximum # concurrently infected agents) and time (in days) under three interventions (rows) 

and four budgets (column) on the empirical network. Shown are median, 5% and 95% percentiles across 100 iterations. 

R0=1.785. 

 

5. Implications for contemporary policy  

According to estimates available on 11 May 2020, when lockdown progressively started to be eased in 

France, only between 2.8% and 7.2% of the French population had acquired immunity against COVID-19 

(Salje et al. 2020b). This would mean that the vast majority of the population is still susceptible. As a 

consequence, in absence of a vaccine, many observers consider the only alternative to be massive testing, 

possibly coupled with digital contact tracing (Sustained Suppression, Nature Biomedical Engineering, 

2020).  

Contemporary French post-lockdown policy is indeed based on this strategy, and policy in several 

other European countries is similar. French government and health authorities ask persons with symptoms 

to call their city doctor, who should prescribe a free-of-charge test. Should the person be positive, the patient 

is asked to describe all her/his close contacts during the last seven days; each is also asked to be reached by 

phone, interviewed, and, if established that contact with the focal individual took place, this contact-case 

too is tested and quarantined if positive (Info Coronavirus COVID-19, 2020). The government early May 

2020 claimed to be able to perform up to 10,000 tests per day (which amounts to 0.015% of the French 

population). This advertised capacity is widely questioned (France Info 2020). Even if this capacity were 

available, it still remains below the agreed effective fraction of the population to be daily tested, i.e. at least 

2% (Humanity tested, Nature Biomedical Engineering, 2020). Moreover, as acknowledged by experts 
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advising the French government (Conseil Scientifique Covid-19, 2020: 29), this strategy requires unrealistic 

levels of human resources, in particular in case of citizen resistance to and suspicion of contact tracing, as 

is the case in France (Casilli et al. 2020). Last but not least, the proposed strategy focuses on self-reported 

symptoms, which exclude asymptomatic cases. Asymptomatic cases are thought to be a non-negligible 

fraction of COVID-19 infected persons, especially among children (Heneghan et al. 2020).               

Our results suggest a third way in addition to contemporary resource-intensive testing and contact 

tracing strategies and future mass vaccination. This alternative strategy is based on four pillars: First, 

interventions should concern both susceptible and infected persons; Second, in both cases, given current 

practical limitations, search over randomly selected portions of the population can fruitfully replace 

exhaustive search; Third, sampling should be performed in such a way that high-contact persons are more 

likely selected for intervention; Fourth, high-contact persons should be “treated” with priority. The rationale 

behind the third and fourth pillar is that high-contact individuals, if susceptible, are simultaneously at higher 

risk of being contaminated because of their high social exposure, and, when they are infected, also transmit 

the virus to a larger fraction of the population. 

Our model results suggest this strategy can be effective. When a virus spreads through a network 

that includes individuals with dramatically more close-range contacts than the average (as observed in 

France), the CONTACT-TARGET method (which attempts to find high-degree nodes by drawing a random 

sample of agents with unknown degree and selecting one random neighbor of each sampled agent for 

immunization) can reduce the concurrent number of infected agents by a factor of 1.3, 2.4, 4.4 or 18.8 

depending on whether one samples 1, 3, 5 or 10 agents per iteration (our budget “b”). If simulated peak 

heights are transformed into ICU admissions proportionally to French population (see appendix, table A4, 

and computational details therein), this would amount to reducing ICU admissions from 102826 without 

intervention to 79197, 42661, 23191 or 5469 respectively (5000 ICU beds being normal French national 

capacity). If b-values are also expressed proportionally to the French population, our CONTACT-TARGET 

method leads to the largest ICU-admission reduction by targeting approximately 320000 individuals per 

day. In contrast, for the same budget, the NO-TARGET method (which searches agents for immunization 

at random within the population) can generate at best a peak reduction of a factor of 1.4.  Thus, keeping 

budget constant, systematic targeting of high-contact individuals is much more effective than random 

search of average-contact persons.  

The sampling burden could be further reduced if one efficiently exploits the empirical observation 

that high-contact individuals tend to be concentrated within certain occupations (see appendix A1). 

Following this logic, the sampling person may be asked preferentially to report her/his social contacts 
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within a given list of highly socially exposed professions. Under this condition, our CONTACT-TARGET 

method would get closer to the HUB-TARGET one. With the latter method a sample of approximately 

95000 or 160000 individuals per day would suffice to reduce the peak, and corresponding ICU admissions, 

under the level of normal French hospital capacity (i.e. 5000 ICU admissions).  

Our simulations are silent about the specific content of the actions to be performed on each finally 

selected individual. We only provide a method to maximize the efficiency of that selection. However, we 

do believe that, in the absence of a vaccine, and given the relative scarcity of tests, the skeleton of a 

sustainable recipe could be as follows: a) if the selected high-contact person is symptomatic, directly 

quarantine; b) if the selected high-contact person is not symptomatic, test with probability equal to the daily 

number of available tests divided by the number of daily sampled people. In both cases, the selected high-

contact person should receive a targeted informational message explaining why, given her/his social 

exposure, it is more crucial for her/him than for the “average” person to adopt basic protective gestures 

during all his social and professional interactions. The feasibility of this strategy thus comes from the fact 

that it relies more on actions, i.e. targeted messages, that can be performed at distance and does not require 

mobilizing huge human resources across a country. This is in line with recent calls for approaching COVID-

19 in terms of massive, but targeted, preventive interventions based on pedagogic actions rather than on 

actions constraining individuals’ freedom, which have proven not to be effective in the long-run for other 

aggressive infectious diseases (Marcus 2020). 

6. Discussion 

As countries exit the Covid-19 lockdown many have limited capacity to prevent flare-ups of the 

coronavirus. With medical, technological, and financial resources to prevent infection of only a fraction of 

its population, which individuals should countries target for testing and tracking? Together, our results 

suggest that targeting individuals characterized by high frequencies of short-range contacts dramatically 

improves the effectiveness of interventions. An additional known advantage of targeting hubs with medical 

testing specifically is that they serve as an early-warning device that can detect impending or unfolding 

outbreaks (Christakis & Fowler 2010; Kitsak et al. 2010). 

This conclusion is reached by moving away from the standard compartmental models that rely on 

random mixing assumptions toward a network-based modeling framework that can accommodate person-

to-person differences in infection risks stemming from differential connectedness. The framework allows 

us to model rather than average out the high variability of close-contact frequencies across individuals 

observed in contact survey data. Simulation results show that consideration of realistic close-contact 
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distributions with high skew strongly impacts the expected impact of targeted versus general interventions, 

in favor of the former.  

 A key limitation of our approach is that we have not considered the duration of close-range contact. 

A negative relationship may exist between the number of close-range contacts and the per-contact 

transmission probability if the per-contact duration decreases in the number of contacts. In this case our 

results could overstate the importance of high-contact individuals and the effectiveness of the targeted 

intervention strategies we have proposed. Too little is still known about Covid-19 transmission through 

droplet “clouds” (see Bourouiba 2020; Mittal 2020) to say anything definite in this direction. Nonetheless, 

limited evidence on super-spreading events involving large crowds interacting in close range (for an 

overview, see Kay 2020) suggest that the risk posed by large numbers of interactions with many people is 

not necessarily mitigated by the brevity of such contacts. 

How could public policy effectively target high-contact individuals? We propose two concrete 

methods. First, one could test and track workers in professions characterized by high frequencies of contact. 

Survey data show that some professions involve ten times as much close-range contact than others, with 

elementary school teachers and cashiers topping the list. The occupational categories used in the survey 

follow a common international standard used by the US Bureau of Labor Statistics. Legislation could 

straight-forwardly be set on its basis. A second method is entirely agnostic of who the high-degree 

individuals are and targets random acquaintances of random individuals, who statistically have high 

expected degree. In our simulations this second method shows to be effective yet at the same time is 

conservative in assuming no knowledge of degree or use thereof. If individuals nominated contacts they 

knew to have many other contacts, the difference targeted intervention could make would be even greater. 
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Appendix 

A1. Segregation of network degree by profession 

One potential method for finding individuals with high contact frequencies is to target professions 

characterized by high contact. The professional categories in the COMES-F data (Figure 3 in main text) are 

too coarse to evaluate the effectiveness of such a method. We therefore exploit a recent survey that has a 

somewhat less thorough measurement of close-range contact (Belot et al. 2020) but fine-grained 

professional categories. The Belot et al. (2020) survey was conducted in the third week of April, 2020 in 

the midst of the Covid-19 epidemic in six countries: China, South Korea, Japan, Italy, the UK and four 

states in the US: California, Florida, New York, and Texas. The sample consists of roughly 1,000 

individuals from each country for a total of 6,082 respondents. Data was collected using market research 

companies Lucid and dataSpring, using gender and income quota. With regard to close-range contact, 

instead of being asked to keep a two-day-long diary, respondents were asked: “On a typical working day 

(before the outbreak of Covid-19), with how many people would you have close social contact (at less than 

1 metre distance) and how long would you interact with them? (indicate approximate numbers - leave blank 

if the answer is zero)”. Respondents’ professions were classified in terms of the O-Net classification used 

by the US Bureau of Labor Statistics. 

 

Figure A1. Fraction of cases (y-axis) reporting a given number of close-range contacts (x-axis) in the Belot 

et al. (2020) data (n=4,103). Left: Linear scale. Right: Logarithmic scale. 
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Profession Mean # contacts Median # contacts N 

Elementary School Teacher 120 50 17 

Cashier 76 40 20 

Order Clerks 70 34 34 

Teacher Assistants 67 40 18 

Retail Salespersons 62 17 29 

Administrative Services Managers 59 16 47 

Childcare Workers 49 30 19 

Bill and Account Collectors 45 19 21 

Sales Managers 45 17 20 

Computer and Information Systems Managers 34 14 33 

Financial Analysts 34 19 25 

Customer Service Reps 31 18 49 

Audio and Video Equipment Technicians 31 19 27 

Construction Managers 30 10 33 

Construction Laborers 28 12 24 

Architectural Drafters 25 11 16 

File Clerks 24 12 38 

Civil Engineers 23 16 53 

Data Entry Keyers 22 16 17 

Credit Checkers 22 14 16 

Ophthalmic Laboratory Technicians 21 14 18 

Computer Network Support Specialists 19 12 28 

Financial Managers, Branch or Department 17 7 25 

Financial Examiners 17 6 20 

Computer Programmers 15 9 16 

Table A1. Close contact by profession in Belot et al. data (2020)  

The distribution of close contact frequency in the Belot et al. (2020) data is displayed in Figure A1. The 

distribution is severely right-skewed, as we also observed for the French survey data. This provides 

confidence that the existence of hubs is not a measurement artifact but a robust feature of contact networks: 

Using different methods for measuring contact the same distributional characteristic is obtained. 
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Table A1 shows the mean and median number of close-range contacts by profession, in descending order 

of mean contact frequency, combining short- and long-duration contacts, excluding zero answers and 

professions with 15 or fewer cases. Table A1 has face validity, topped by professions that clearly involve 

close contact with many individuals -- elementary school teachers, cashiers -- and at the very bottom 

individuals who mostly work from home -- computer programmers. Some professions have an order of 

magnitude greater mean close-range contact than others. The spread is substantial especially when 

considering the ambiguity in the possible interpretation of the phrase “social contact” used in the 

questionnaire, translated into different languages, and the difficult task of estimating such numbers 

without use of a contact diary, which will produce noise that suppresses measured occupational 

differences. These results suggest that targeting select professions may be an effective strategy for finding 

hubs in contact networks. 

A2. Topology of the empirical network 

Table 1 in the main text shows a number of topological features of the empirical network that we generated 

to match the empirical distribution of close contacts. Here we discuss the topological features of the 

empirical network in greater detail and compare them with those observed for social networks measured 

elsewhere. The first is degree assortativity. Social networks tend to be characterized by positive degree 

assortativity, i.e. nodes with similar degree are more likely to be connected (see Newman 2003a). However, 

in presence of broad degree distributions, the network can turn to be disassortative. This results from the 

fact that, while high-degree nodes still tend to be connected to one another, thus pushing assortativity up, 

low-degree nodes are preferentially attached to high-degree nodes, thus pushing assortativity down. 

Depending on the specific distributions of high- and low-degree nodes these two effects will be more or 

less balanced (see Johnson et al. 2010). In our case, the simulated empirical network is slightly 

disassortative, which suggests that the highly connected individuals are not only connected amongst 

themselves but they also widely connect to individuals with less close-range contacts. The corresponding 

random network has assortativity close to zero. Degree disassortativity renders targeting of high-degree 

nodes more effective: “(...) those vertices are strewn far apart across the network, so that attacking them 

attacks all parts of the network at once” (Newman 2003a: 10). 

The clustering coefficient of the empirical network is 0.12, which is in line with values observed 

for many social networks (see Newman 2003b: table 3.1; Jackson 2008: 3.2.2). It is about 7 times higher 

than the corresponding value for our benchmark random network. Analysis of the entire distribution of 

nodal clustering coefficients (available upon request) suggests systematic variation across nodes with 

different degrees. In particular, low-degree nodes tend to have higher clustering than high-degree nodes. 

On the overall simulated empirical network, this produces a negative correlation of -0.26 between nodal 
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degree and clustering coefficient (meaning that the higher the degree of a node the lower the fraction of 

connections among its own neighbors). This means that, in addition to a broad degree distribution, our 

simulated empirical network contains hubs that span across the network rather than clustering together. 

This is a feature shared with some previously studied networks with high-degree nodes (Barabási 2014: 

232-237). It is also a topological feature that makes hub-centered interventions especially effective: 

attacking the hubs means interrupting (or slowing down) communication among the modules (ibid: 236). 

By contrast, the correlation between nodal degree and clustering in the random network we study tends 

toward zero. 

Finally, the network we generated based on the empirically observed broad degree distribution of 

close-range contacts in France exhibits the typical high reachability of small-world topologies: its average 

path length and diameter are comparable to that of an Erdős–Rényi network with the same size and degree, 

and is consistent with what is usually observed in pure scale-free models (see Albert and Barabasi 2002:74). 

Highly connected individuals are effective in bringing many parts of the network close. 

Thus, overall, the network that we consider as the possible relational infrastructure of the virus 

spread in France is anchored to the French long-tailed distribution of close-range contacts and, at the same 

time, exhibits reasonable topological features in terms of degree assortative, community structure, and 

reachability. 

 

A3. Results for the random network 

Figure 5 and table 3 show large differences in the effectiveness of interventions that do and do not target 

high-contact individuals for immunization. Here we explore how instrumental the skewness in the empirical 

distribution of close-range contact is for the effectiveness of hub targeting. We do so by recalculating the 

figure 5 and table 3 results for the random network, respectively figure A2 and table A2.  
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Figure A2. Number of infected agents (y-axis) by days (x-axis) (median values across 100 replications) under three 

different interventions (rows) targeting 1, 3, 5, or 10 agents per day (columns). A – NO-TARGET immunization; B – 

CONTACT-TARGET immunization. C – HUB-TARGET immunization. Lower and upper bounds of the shaded areas 

correspond to the 5th percentiles and 95th percentiles of the 100 replications. Solid line: random network; dashed line: 

interventions. n = 2029 agents. R0=1.785.  

A comparison of panels A between figures A2 and 5 shows that NO-TARGET interventions are less 

effective in empirical networks with high degree skew than in random networks with low degree variance. 

This suggests that models that do not account for empirical network structure may overestimate the 

expected impact of interventions. Comparing panels B and C across figures we find that HUB-TARGET 
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and CONTACT-TARGET interventions are much more effective in the empirical network than in random 

networks, where the to-be-immunized agents have lower network degree. 

 

Random network                                                                no intervention: H = 265 [207; 310]; T = 60 

  b = 1 b = 3 b = 5 b = 10 

  peak 

height 

time peak 

height 

time peak 

height 

time peak 

height 

time 

NO-TARGET 239 

[135; 

307] 

57 196 

[111; 243] 

62 153 

[53; 206] 

57 78  

[17; 128] 

55 

CONTACT-

TARGET 

234 

[121; 

307] 

56 183  

[66; 235] 

60 146  

[40; 188] 

60 81 

[17; 119] 

54 

HUB-TARGET 213 

[111 ; 

275] 

63 148 

[80; 197] 

63 98 

[27; 149] 

58 34 

[7; 79] 

38 

Table A2. Peak height (maximum # concurrently infected agents) and time (in days) under three 

interventions (rows) and four budgets (column) on the random network. Shown are median, 5% and 95% 

percentiles across 100 iterations. R0=1.785. 

 

A4. ICU admissions at the national scale 

  

Simulated peak within the artificial population can be transformed into real-world ICU admissions 

according to the following transformation rule: ((HABM×PHOSP×PICU)/NABM)×NFRANCE, where HABM is the 

peak of infected agents within a given simulated scenario, Phosp is the empirical probability for an infected 

person to be hospitalized, PICU is the empirical probability for an infected-hospitalized person to enter 

ICU, and NABM and NFR respectively are the sizes of our artificial population and of French metropolitan 

population (at the 1st of january 2020 according to the national bureau of statistics’s official counting). 

Phosp and PICU are based on estimates produced by Salje et al. (2020b) who found, for France, that 3.6% 

(95% CrI: 2.1-5.6) of infected individuals are likely to  require hospitalization, and, once hospitalized, 

19% (95% CrI: 18.7%-19.4%) of those individuals are likely to enter ICU. Our translation is based on 

central values. 
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 Empirical network                                                        no intervention: H = 102826 [44412; 120110]; T = 32 

  b = 1 b = 3 b = 5 b = 10 

  peak 

height 

time peak 

height 

time peak 

height 

time peak 

height 

time 

NO-TARGET  97794 

[44412; 

117922] 

31 89043 

[37849; 

102826] 

34 85542 

[15752;  

103920] 

32 71322 

[19253; 

89918] 

32 

CONTACT-

TARGET 

79197  

[33473;  

96700] 

35  42661 

[8314; 

60820] 

41 23191  

[9845; 

35880] 

45 5469 

[219; 

15752] 

30 

HUB-TARGET 25815 

[ 5470; 

39818] 

49 4376 

[291; 56] 

32  2844 

[656; 5469] 

18 1969 

[857; 

3500] 

13 

Table A4. ICU admissions at the national scale corresponding to Peak height (maximum # concurrently 

infected agents) generated by the model (see table 3) under three interventions (rows) and four budgets 

(column) on the empirical network. Shown are median, 5% and 95% percentiles across 100 iterations. 

R0=1.785. 

 


