Department of Economics

EUI Working Papers

ECO 2007/04

How to Attain Minimax Risk with Applications to
Distribution-Free Nonparametric Estimation and
Testing

Karl H. Schlag






EUROPEAN UNIVERSITY INSTITUTE
DEPARTMENT OF ECONOMICS

How to Attain Minimax Risk with Applications to Distribution-Free
Nonparametric Estimation and Testing

KARL H. SCHLAG

EUI Working Paper ECO 2007/04



This text may be downloaded for personal research purposes only. Any additional
reproduction for other purposes, whether in hard copy or electronically, requires the consent
of the author(s), editor(s). If cited or quoted, reference should be made to the full name of the
author(s), editor(s), the title, the working paper or other series, the year, and the publisher.

The author(s)/editor(s) should inform the Economics Department of the EUI if the paper is to
be published elsewhere, and should also assume responsibility for any consequent
obligation(s).

ISSN 1725-6704

© 2007 Karl H. Schlag

Printed in Italy
European University Institute
Badia Fiesolana
I — 50014 San Domenico di Fiesole (FI)
Italy

http://www.eui.eu/
http://cadmus.eui.eu/



How to Attain Minimax Risk with Applications to
Distribution-Free Nonparametric Estimation and

Testing!

Karl H. Schlag?

March 12, 2007 (first version May 12, 2006)

I'The author would like to thank Dean Foster, Markku Lanne, Fortunato Pesarin, Richard
Spady and David Thesmar for comments and Javier Rivas and Marcello Sartarelli for helping
as research assistants.

2Economics Department, European University Institute, Via della Piazzuola 43, 50133
Florence, Italy, Tel: 0039-055-4685951, email: schlag@eui.eu



Abstract

We show how to a derive exact distribution-free nonparametric results for minimax
risk when underlying random variables have known finite bounds and means are the
only parameters of interest. Transform the data with a randomized mean preserving
transformation into binary data and then apply the solution to minimax risk for the
case where random variables are binary valued. This shows that minimax risk is
attained by a linear strategy and that the set of binary valued distributions contains

a least favorable prior. We apply these results to statistics.

All unbiased symmetric non-randomized estimates for a function of the mean of
a single sample are presented. We find a most powerful unbiased test for the mean
of a single sample. We present tight lower bounds on size, type II error and minimal
accuracy in terms of expected length of confidence intervals for a single mean and for

the difference between two means.

We show how to transform the randomized tests that attain the lower bounds
into non-randomized tests that have at most twice the type I and II errors. Relative
parameter efficiency can be measured in finite samples, in an example on anti-self-
dealing indices relative (parameter) efficiency is 60% as compared to the tight lower
bound.

Our method can be used to generate distribution-free nonparametric estimates
and tests when variance is the only parameter of interest. In particular we present a
uniformly consistent estimator of standard deviation together with an upper bound

on expected quadratic loss. We use our estimate to measure income inequality.
Keywords: exact, distribution-free, nonparametric inference, finite sample theory.

JEL classification: C14, C13, C12, C44.



1 Introduction

In this paper we consider distribution-free nonparametric inference when only a
bounded set containing the support of the underlying distributions is known and
means are the only parameters of interest. We only consider exact results in terms
of explicit formulae for finite samples. Criteria for the selection of an estimator is
minimax risk based on a general loss function, a special case being quadratic loss.
Hypothesis tests are evaluated according to size and power, families of confidence
intervals according to their accuracy and expected length. The common denominator
for these different applications is that we have found a method to solve minimax risk.
Our results for analyzing means enable us to establish upper bounds on risk when

variances are the only parameters of interest.

Methodologically this paper draws on three different building blocks: a random-
ization method to be able to limit attention to binary valued random varaibles, a
rounding trick to transform randomized tests into nonrandomized tests and a combi-
nation method that allows to transform statements in terms of variances into ones in

terms of means.

Novel ways of making distribution-free nonparametric inference due to our results
are illustrated in two data examples. We compare protection of minority shareholders
across different legal systems using the anti-self-dealing indices gathered by Djankov
et al. (2005) and investigate income inequality in the US between 1990 and 2002
using PSID data. In the first case the data is contained in [0,1] by definition of
the indices, in the second case we restrict attention to income that is not top coded
which generates an upper bound too. Exogenous bounds on data are often given.
For instance, pain is often measured on a bounded scale, grades in school belong
to a bounded scale, data gathered in practically any laboratory or field experiment

relating to game theory or economics belong to a known bounded scale.

Assume first that means are the only parameters of interest. The value of this
paper is best illustrated by first listing existing exact distribution-free nonparametric
results. Estimators that minimize maximum expected quadratic loss are available,
both biased and unbiased, for the mean and for the difference between the means of
two independent random variables (Hodges and Lehmann, 1950). Confidence inter-
vals for the mean of a single sample have been constructed (see Romano and Wolf
(2000) and Diouf and Dufour (2006) and papers cited therein). Permutation tests



are available to construct unbiased tests for comparing means. These tests and con-
fidence intervals are exact in terms of securing the specified size or coverage, however
distribution-free properties in terms of power or accuracy are not available for fi-
nite sample sizes. The exception is the confidence interval for a mean constructed
by Bickel et al. (1989) using bounds of Hoeffding (1963) for which power is easily
measured. The danger of taking asymptotic results as a proxy for finite sample per-
formance is demonstrated by Lehmann and Loh (1990, see also Dufour, 2003). For
any given number of observations the actual size of the t test derived for a nominal
level « is equal to 1. Simulations only provide limited insights as the environment is
too rich being nonparametric (as defined by Fraser, 1957), in particular maximal risk
cannot be computed nor can it be approximated by numerical simulations. There are
n™ possible distributions of a single random variable for grid size 1/n.

We highlight some novel results in this paper. We show that any strategy can be
replaced by a linear strategy that has weakly lower maximal risk where the value of
maximal risk is attained for some binary valued distribution. This makes the value of
maximal risk computable. Moreover, minimax risk can often be solved analytically by
restricting attention to binary valued distributions. We prove existence of minimax
risk strategies under very general conditions. We present all unbiased symmetric
non-randomized estimators of functions of the mean of a single sample and show how
to derive the value of minimax risk. This paper contains the first (most powerful)
unbiased one- and two-sided tests for a single sample. We present the first lower
bounds on power for a given size and the first lower bounds on maximal expected
length of unbiased confidence intervals and show how these bounds can be attained.
Thereby we provide a method to evaluate accuracy of confidence intervals on an
absolute scale obtained by comparing their expected length to the minimal expected
length. We present a family of confidence bounds that maximizes coverage for a
given maximal length. Finally, we present non-randomized tests for a single mean
and for the comparison of two means (both for independent samples and for matched
pairs) that, compared to the minimal lower bounds attained by the randomized tests
mentioned above, have at most twice the type I and type II error. Non-randomized
confidence intervals and bounds are easily derived from these tests.

All these results initiate by showing how randomization can be used to extend
results known for binary valued data to bounded data. The randomization can then be
eliminated when considering estimation under convex loss without increasing maximal
risk. For hypothesis testing non-randomized tests can be derived following an idea of

Gupta and Hande (1992). The randomized tests themselves remain useful benchmarks



to establish bounds. For the first time we are able to specify minimal sample sizes
to guarantee maximal power or to guarantee the minimal accuracy of confidence
intervals. These bounds can then be used to measure relative efficiency of alternative
exact but non-randomized methods.

Randomization occurs as in Schlag (2003) where it was used to solve for minimax
regret. Recently we discovered that this method had been used before by Cucconi
(1968, in Italian, cited by Pesarin, 1984) when extending the sequential probability
ratio test (Wald, 1947) to an exact distribution-free nonparametric sequential test for
the mean of a random variable that has support in [0, 1] . We also have now discovered
that Gupta and Hande (1992) transform payoffs in this way when deriving a selection
procedure that maximizes the minimum probability of correct selection.

The underlying idea is simple. First perform a change of variables by affinely
transforming all outcomes into [0, 1]. Next randomly transform any observation from
[0,1] into {0,1} using the following mean preserving transformation. If outcome y
is observed then replace it with outcome 1 with probability y and replace it with
outcome 0 with probability 1 — y. Independently apply this transformation to each
observation to obtain the so-called binomially transformed sample. From then on act
as if the data generating process produced this binary valued sample. The insight is
that after making this transformation it is as if the underlying distribution were binary
valued with the same means as the original process. The transformation indirectly
reduces the possible data generating processes one can face and hence also reduces
maximal risk. In particular we thus prove that there is always a least favorable prior
among the set of binary valued distributions.

Non-randomized estimates are derived by taking the expected estimate as in
Hodges and Lehmann (1950). Non-randomized tests are created by choosing the
hypothesis that is most likely under the associated randomized test, following ideas
of Gupta and Hande (1992).

In a separate section we show how to derive estimators and tests when variance
is the only parameter of interest. Here we have found no exact distribution-free
nonparametric tests. Uniformly consistent estimators such as the unbiased estimator
of variance and the empirical standard deviation as biased estimator of the standard
deviation come without an exact upper bound on expected quadratic loss.

We present an upper bound on the risk of the unbiased estimator of the variance.
We present an estimator of standard deviation and an upper bound on its expected

quadratic loss. Comparing the latter to lower bounds we find that our estimator
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of standard deviation requires in small samples less than 60% of the observations
than the empirical standard deviation. We show how one can design distribution-free
nonparametric tests of variances.

There is a simple trick to derive results in terms of variance from results in terms
of means. Following Walsh (1962) one can generate an iid sample with half as many
data points that can be interpreted as resulting from a random variable with mean
equal to the underlying variance of the original data. Results in terms of variance can
be derived from results in terms of means. The caveat is that minimax risk properties

are not known to carry over.

The paper is organized as follows. In Section 2 we present the main model that
concerns inference based on a given sample when means are the only parameters
of interest. In Subsection 2.1 we introduce notation and present the main theorem
on the randomization method. In Subsection 2.2 we show how this can be used to
prove existence of minimax risk. Applications to estimation and hypothesis testing
are presented separately in Subsections 2.3 and 2.4. Section 3 considers inference in
terms of variance and shows how to reduce the problem to investigation of means.
Subsections 3.1 and 3.2 deal with estimation and testing. Section 4 contains the

conclusion.

2 Concern for Mean

Consider a decision maker has to make some choice based on an independent sample
of data generated by some random vector that has a known support but an unknown
distribution. The objective of the decision maker is a function of the unknown un-
derlying means.

We first describe the random vector. Given K € N and a collection of compact
sets V., C R with min )Y, < max)), for k =1, .., K consider a K dimensional random
vector Y = (Y,..,Yk) where Y, € )i for & = 1,.., K. Let Py denote the joint
distribution of ¥ and let = (), denote the mean vector.

Assume that ) is known by the decision maker but that Py is unknown except
for the fact that the decision maker knows some set P C AY that contains the
distribution Py where P has to satisfy two properties specified below.

In order to simplify presentation, assume that ) = [0, 1}K. To deal with the more

—?
general case first transform any outcome y, € ) affinely into Zﬁ —% € [0, 1] where
k k
w? := min Y and w} := max Yy, k = 1,.., K. Furthermore, our results do not change
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if one replaces Vi, with [w), wp] for k =1, .., K. Y is called binary valued if Yy, € {0,1}
for all £ which means for the original model that each component can only attain one
of two distinct values.

Central to our analysis will be the use of a randomization method which is a
mean preserving random transformation that transforms outcomes in [0,1] into a
binary valued vector of the same dimension. Specifically, ¢ : [0,1]" — A{0,1}" is
called a mean preserving binary transformation if Pr (t; (y) = 1) =y, for k =1, .., K.
Let 7 be the set of mean preserving binary transformations. The most important
representative is the independent transformation that satisfies [[r_, Pr (5 (y) = 21,) =
Pr(t = z) for all z € {0, 1}K. The correlated transformation emerges when drawing
a value z from an independent uniformly distributed random variable on [0, 1] and
then for each k = 1, .., K transforming ¥, into 1 if and only if y > z.

We assume that P C A[0,1]" satisfies the following two properties: (i) P is
convex and (ii) there exists a mean preserving binary transformation t such that
Pyyy is contained in the closure of P whenever Py € P. In the following we only
include transformations in 7 if they satisfy (ii). Let P° be the set of all binary valued
distributions contained in P so P* = A {0,1}*NP. Note that P’ = {Piy: Py € P}
for each t € 7.

We typically illustrate our results for P = A [0,1]" in which case (ii) is not a con-
straint as it holds for all mean preserving binary transformations and P> = A {0, 1}K .
In this particular case our approach is nonparametric (P is infinitely dimensional) and
distribution-free (only the support of the random vector is specified).

If P is the set of all distributions in which the underlying actions yield independent
payoffs, so P = (A [0,1])", then (ii) is satisfied by the independent transformation and
Pt = (A0, 1})K. One can also add structure on P, e.g. by specifying w®, .., w(") €
[0,1]" and setting P = {P e A[0,1]% :pe (w, i =1, ..,7’>} where (A) denotes the
convex hull of the set A.

We now specify how the data set is generated.

Given N € N let YV be a random sample of N independent observations of
a realization of Y. Let y''V = (y(l), ..,y(N)) denote a typical realization. Let PV
be the distribution of Y1 induced by P. The decision maker observes 7"V realized
from YV that is related to 4 and Y5V as follows. For K = 1 let g™ = ¢y
for n = 1,..,N. For K > 2 we allow that the decision maker does not observe
all components of y™ in round n. For each n = 1,..,N there is some given set

o, C {1,.., K} where o, specifies the components of y™ that the decision maker



observes. So the decision maker observes <y,(€n)> of the n-th realization of Y
kEon,

given by the n-th component of y"V. One speaks of matched pairs or paired data
if the entire vector y™ is observed in each round n so if o, = {1,.., K} and hence
g™ = y™ for n = 1,..,N. K independent samples are observed if |o,| = 1 for all n

where | A| denotes the cardinality of the finite set A. Let YV be the random sequence

~ ~ \N ~
of observations, so Y1V = (Y”) with Y™ = (V")

n—=

reo, and similarly let 7'V be

defined as a realization of Y1V, Let 37 be the set of possible observations.

Finally, given the observed data 7"V the decision maker has to make some choice
z where z belongs to some set G. Thus the strategy of the decision maker is a mapping
f o, 1]N — AG. f is called non-randomized (or deterministic) if f € G and f is
called randomized if f is not deterministic. f is called symmetric if it satisfies the
following two conditions. (i) f does not depend on how actions are labeled so if f
is invariant to permutations of the indices of the actions. (ii) f does not depend on
how the N independent observations are indexed, so if 0,, = 0, then f is invariant if
the indices n and m are interchanged. Finally, f is called linear if f is linear in g],(cn)
for each n and each k.

The trick of this paper will be to first transform each observation §™ using a

mean preserving transformation and then to apply a rule designed for the case of
binary valued payoffs. f is called binomial if f (}7171\[ ) = f <t (171’N >) for some

transformation t € 7. f° is called a binomial transformation of f if f° (f/l’N ) =

f <t <S~/1’N>) for some t € 7.

2.1 Minimax Risk

Following Wald (1950) the decision maker measures the outcome of making some
choice z given distribution P in terms of a real valued loss function W (z, P). We
assume that loss W only depends on the choice z and the mean vector p of the
underlying random variable Y, so there exists Wy : G x [0,1]* — R such that
W (z,P) = Wy(z,u). Expected loss of choosing strategy f when facing distribu-
tion P is called risk and is denoted by R so R (f, P) = EpWj (f <}71’N) ,u) . The
decision maker is assumed to choose a strategy that attains minimax risk in the sense
that

f* € argminsup R (f, P).
f pep

This is the central result of the paper.



Proposition 1 (ia) R (f°, P) = R(f,P").

(ib) If po € [0,1] then {R (f*, P) : p=po} € {R(f,P): = pg}, in particular
suppep R (f°, P) < suppep R(f, P).

(ic) If f* € argming suppep R (f, P) then f** € argming suppep R (f, P).

(i) If f* € argming suppscps R (f, Pb) then f** € argmin; suppep R (f, P).

(iti) If f* € argming suppep R (f, P) thensuppep R (f*, P) = suppseps R (f*, P?) .

We briefly rephrase the proposition above in words. (ia) Risk from using an strat-
egy when facing a binary valued distribution with mean vector y is equal to the risk
from using the binomially transformed strategy when facing a distribution with mean
vector p. (ib) The binomially transformed strategy attains weakly lower maximal
(and weakly higher minimal) risk than the original strategy among all distributions
that have the same mean. (ic) If a strategy attains minimax risk then so does its bi-
nomial transformation. (ii) To derive minimax risk it is sufficient to solve the simpler
problem of finding a strategy that attains minimax risk when facing binary valued
distributions and then taking its binomial transformation, using any of the mean
preserving binary valued transformations in 7. (iii) Minimax risk is always attained
by some binary valued distribution. In other words, it is hardest to guarantee the
lowest risk when facing binary valued distributions. There is always a binary valued
distribution that is a least favorable distribution. All statements follow easily from

(ia) (see proof below).

Proof. Consider the n-th element of the sample ¥,. Under f°, v, is transformed
into outcome 1 with probability ¥, and transformed into 0 otherwise. As y,, itself was
independently drawn from P we obtain that the ex-ante probability that the n-th
element of the sample is transformed into 1 is equal to fol ydP (y) = pu (P) . Thus, the
risk under f° when facing P is equal to the risk under f when facing a binary valued
distribution with the same mean which proves (ia). The rest of part (i) as well as
part (ii) is a direct consequence of (ia). Part (iii) also follows immediately. Since f*
attains minimax risk,

sup R (f*, P) < sup R (f**, P).
Pep Pep

Using (ia) we obtain

SupR(f*b,P) = sup R(f*,Pb) <sup R(f*,P).
pPepP pbecpb pPeP

Combining these two inequalities proves (iii). m
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As f? is linear when using the independent transformation we obtain from Propo-
sition 1(ib) using standard arguments for symmetry (following quasi-convexity of the
maximum operator): Any strategy can be replaced by a symmetric linear strategy that
attains weakly lower maximal risk where maximal risk is attained for some binary val-
ued distribution. Moreover, when the choice set G is convex then following Hodges and
Lehmann (1950, Theorem 3.2) one can confine attention to non-randomized strate-

gies.



Corollary 1 Assume that T contains the independent transformation.

(1) For any strategy [ there exists a symmetric linear strategy f* such that
suppep R (f*, P) < suppep R (f, P) where suppep R (f*, P) = suppeps R (f*, P).

(i1) Assume additionally that G is a Fuclidean space and that loss W is convex in

z. Then there exists a non-randomized strategy f* satisfying (1).

In steps, starting with a strategy f one symmetrizes this strategy by permuting
the labels to obtain a symmetric strategy f°. Then one chooses the binomial trans-
formation of f® based on the independent transformation. Finally, if the choice set
is convex, then one obtains f* defined by f* (gl’N) = Ef (g’]l’N) . When K =1 this
means that there exists a function ¢ : {0, 1,.., N} — G such that

1 1 N N
AUAED 8 9) | (CXEERIERAITE IV o0 B
i1=0  iy=0n=1 k=1
where i, = 1 is associated to the event in which the n-th observation y™ was trans-
formed into 1.

Note that the result in Corollary 1(ii) does not imply that the class of non-
randomized strategies is essentially complete as we are not establishing dominance for
all distributions but only comparing maximal risk among those that have the same

mean vector.

Next we expand on a rounding trick found in a result and proof of Gupta and
Hande (1992) for selection procedures to show how one can derive non-randomized
strategies - albeit with higher risk - when there are only two choices. The idea is
to select the more likely choice of the randomized strategy. Given G = {0,1} and a
strategy f let f™ € {0,1} be the non-randomized strategy defined by f™ (gjl’N )1 =1
if and only if f (g""), > 0.5.

Proposition 2 IfG = {0,1} and W > 0 thensuppep R (f™, P) < 2suppep R (f, P) .

Proof. Consider P such that W (1, P) < W (0, P) . Recalling the statement and
proof of Gupta and Hande (1992, Theorem 2.3) we obtain Pr (f™ = 1) = [ 1{5,_f,>03dP >
J (fi = fo)dP = 2Ep (f1) — 1. The rest is straightforward as the previous implies
Pr(f™ =0) <2Ep(fy) and hence

R(f",P) = > Pr(fm"=2z)W(zP)=Pr(f"=0)(W(0,P)—W(1,P))+W(1,P)
z€{0,1}
< 2Ep (fo) (W (0,P) =W (1,P))+ W (1,P) < 2R(f, P).
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2.2 Existence

Proposition 1 can also be used to ensure existence of a minimax risk strategy under
very weak conditions. The proof builds on the standard connection between minimax
risk and an equilibrium of a specific zero-sum game. This allows us to interpret any
minimax risk strategy as a particular Bayes solution and to connect minimax risk to
‘rational” or Bayes decision making.

Under ‘rational’ or Bayes decision making the true distribution P is assumed
to be drawn from a known probability distribution (or prior) @, so @ € AP (von
Neumann and Morgenstern, 1944). The strategy f that minimizes expected risk
R(f,Q) = [, R(f,P)dQ (P) is called a Bayes solution, the value of the minimum
expected risk is called the Bayes risk. Q* is called a least favorable prior if Q* €

arg maxgeap infr R (f,Q).

Proposition 3 Assume that W as a function of i and z is continuous and that G is
a metric space.

(i) There exists a symmetric minimaz risk strategy and a least favorable prior
containing only binary valued distributions in its support.

(i) Any minimaz risk strategy minimizes Bayes risk under any least favorable

prior.

Proof. Following von Neumann Morgenstern (1944, see also Savage, 1954), we
solve minimax risk by considering the following simultaneous move zero-sum game
between the decision maker and nature. The decision maker chooses an strategy
f and nature chooses a distribution Q® € APP over binary valued distributions
P € Pb. The payoff to the decision maker is given by —R (f,Q") while that
of nature by R ( f Qb) . Under the above assumptions there exists a Nash equilib-
rium (or saddle point) ( f*,Qb*) of this game (Glicksberg, 1952) which means that
R (f*,Qb) <R (f*,Qb*) <R (f, Qb*) holds for all f and all Q°. Now we use the
well known minimax theorem of zero-sum games, to conclude that R ( f*, Qb*) =
ming supgeeaps 12 (f, Qb) = ming suppscps R (f, Pb) . Following Proposition 1(ic), the
binomial transformation f** of f* attains minimax risk.

Concerning (ii), note that ( 7, Qb*) is also a saddle point of the game where nature
is allowed to choose any prior Q € AP. Applying the minimax theorem for zero-sum
games we find that R (f*, Qb*) = maxgeap inf; R (f, Q) which means that Q* is a

least favorable prior. m

Combining Corollary 1 and Proposition 3 we obtain:
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Corollary 2 Assume that G is a Euclidean space, W is continuous in j and z and
convex in z. Then there is a symmetric linear non-randomized strateqy that attains

minimaz risk.

2.3 Estimation

We apply the results in Proposition 1 to estimation. Let g be some real valued
function of i to be estimated where W (z, P) = Wi (2,9 (n)) for some non-negative
function W; with W = 0 if and only if 2 = ¢ (u). The natural candidate for W is
quadratic loss in which case W (z, P) = (z — g (1))’

2.3.1 Unbiased Estimation

We first consider unbiased estimation when K = 1. It is easily verified for £ €
{1,.., N} that f; defined by

fi (yl’N)Zﬁ > f[y(”")

k) {ng,omi b=k i=1

is the unique symmetric non-randomized unbiased estimator of p* (for k = 1,2 see
Lehmann, 1983). By Corollary 1 f; attains minimax risk for any convex loss function.
One can easily extend this result to a minimax risk estimate of any polynomial of
the mean p of degree at most N. It is also known that only for such functions of the
mean an unbiased estimator exists (Lehmann, 1983).

Estimates are only of little value per se without knowing about maximal risk. Fol-
lowing Proposition 1, maximal risk is attained among the binary valued distribution.
For the mean we verify numerically by searching among the Bernoulli distributions
that the maximal expected distance between the estimator and the true mean (i.e.
the value of minimax risk when W (z, P) = |z — p|) is below 0.1 if and only if N > 16
and below 0.05 if and only if N > 64.

Of course, if loss is not convex then we do not expect there to be a minimax
risk unbiased estimator that is non-randomized. For instance, no non-randomized
minimax risk unbiased estimator exists under loss Wi = |z — p|® if 0 < s < 1. This
follows from a proof of Hodges and Lehmann (1950, Theorem 3.4) presented for
general estimators but which is also valid for unbiased estimators.

Note that our transformation method can also be applied to sequential estimation

where the number of observations is endogenous. For example, when K = 1, by
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independently transforming each observation and otherwise performing inverse bino-
mial sampling on the transformed data one can obtain a linear symmetric unbiased

estimator of 1/u (see Lehmann, 1983, Example 3.2).

2.3.2 Biased Estimation

Nonparametric minimax risk estimators under quadratic loss have been obtained by
Hodges and Lehmann (1950, Theorems 6.1 and 6.4) for the mean of a single sample
and for the difference between two means of two independent samples with the same
size, provided outcomes are contained in [0, 1]. In their proof, first the binomial case
is solved and then properties of quadratic loss are used.

Following Corollary 1(ii) one can solve for minimax risk when loss is convex by
confining attention to binary valued distributions and then working with the expected
estimate under its binomial transformation. While minimax risk can be solved for
the binary valued case by searching for a saddle point, closed form solutions can be
difficult to obtain.

Corollary 1(ii) can also be used to reduce the value of maximal risk even if minimax
risk is not known. For example, consider K = 2 with paired data and let g (1) =
max { i, /s } . Instead of choosing as estimate the larger of the two average payoffs, i.e.

1

max {N SV i, Ly yén)} , maximal risk is lower if one instead first transforms

the data binomially and then applies this estimator.

2.4 Hypothesis Testing

We apply our results to hypothesis testing. Throughout we assume either that P =
A[0,1]% or P = (A[0,1])" . Consider within the space of distributions P the objective
of testing the null hypothesis Hy : 1 € €0y against the alternative hypothesis Hy : p €
Q; where Q,Q C [0,1]" are given with Q9,Q; # 0 and Q, N Q; = 0. Selecting
hypothesis H; will be identified with ¢, hence G = {0,1}.

We recall some standard concepts and notation. Strategies are referred to as
tests. The power function [ of the test f is then given by 3, (P) = Prp(f =1).
The test f has level a if 3, (P) < a for P € Qo where f is unbiased if additionally
B; (P) > o whenever 11 (P) € . suppcq, 3 (P) is called its size (or type I error) and
SUP peq, (1 — By (P)) its type II error. The test f is equi-tailed with level o for some
given Q. C [0, 1]K if there are two level a//2 tests fi and f, against the alternatives
p e Q2 NQ and p € 21\Q, respectively such that f (yl’N) = fi (yl’N) + f2 (yl’N) )
f is uniformly most powerful (UMP) if for any level o test f and any P such that
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1 (P) € it follows that 8, (P) > 87 (P).

Introducing a new concept, we call a test f parameter most powerful (PMP) with
level o if for any alternative level o test f and for any 1/ € € it follows that
ming.,p)=y By (P) > minp.,py=y 85 (P). Thus, f is a PMP test if it is a mazimin
test (Lehmann and Romano, 2005, ch. 8) for any set of alternatives that only depends

on the mean of the underlying distributions.

Given Proposition 1 it is immediate how to construct distribution-free tests from
tests for binary valued distributions. Remember that f* denotes the binomial trans-
formation of the strategy f and that given P we have defined P’ as the binary valued

distribution that has the same mean vector as P.

Proposition 4 (i) If f is a level o test for P € PP then f° is a level a test for
P € P, the property of f being unbiased or equi-tailed on P° carries over to f° for P.
(ii) If f is a UMP test on P° then f is a PMP test respectively for P € P. This

statement also holds if one restricts attention to either unbiased or to equi-tailed tests.

Proof. We first show that 3, (Pt) = B (P)so {be (P),PeP}C {Bf (P),PeP}
and refer to this as (o). This statement follows directly from the definitions as
B¢ (P") = Prpo (f =1) = Prp(f*=1) = B (P). Concerning part (i) let f be a
level « test for binary valued distributions and consider P such that p(P) € Qg so
B¢ (P") < a. Then (o) implies that 3, (P) < « which implies that f* is a level « test
for all P € P. Now let f be unbiased for all P € P* and let 1 (P) € Q50 5, (P?) > .
Then (o) shows that 3, (P) > « so it follows that f* is unbiased for all P € P. The
statement for equi-tailed tests follows similarly. For proof of part (ii) let f be a uni-
formly most powerful test for binary valued distributions and let i € ;. Let f be a
level a test for all P € P. Then 5 (P) = 8, (P") > B (P*) > minp.,p)—z B7(P)
and hence f is a parameter most powerful test for all P € P. The proof of the

statement restricted to unbiased or to equi-tailed tests follows similarly. m

One may choose to comment on the efficiency of a test in terms of the number
of samples it needs to obtain a given size. To simplify exposition consider K = 1
and restrict attention to deterministic sample sizes. Performance can sometimes be
(marginally) improved by choosing sample size randomly.

Let N (B, 1o, f) be the smallest number of observations needed by the test f to
achieve power of at least 3, for all distributions P that have mean 1, where y, belongs
to the set of alternatives. We adapt the standard definition of relative efficiency (cf.
Lehmann and Romano, 2005, chapter 13.2, p. 534) to the set of alternatives that
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all have the same mean. Holding (5, and p, fixed we call N (5, 1q, f) /N (60, Lo f)

the relative parameter efficiency of f relative to f. We call f* parameter efficient
if there is no alternative test f that has size at most equal to that of f* such that
N (Bys o, [) < N (Bo, 1o, f*) - The test is called parameter efficient unbiased if the
above condition is only checked for tests f that are unbiased. This leads to the

following observation.

Corollary 3 Any PMP test is parameter efficient. This is also true of one limits

attention to unbiased or equi-tailed tests.

Similar statements can be made when K > 2 by increasing the sample sizes of

each variable proportionally.

Consider now confidence sets where we specifically allow for randomized confidence
sets. Consider a family of hypotheses that are indexed by /. S = {S (g"N) gt € y }

is a family of confidence sets at level o if Prp (u’ €S <}71’N>) >1—aforall PcP
such that p € Qg (/). 1—« is also called the coverage. The set of all such families will

be denoted by F, (P). S is unbiased if Prp (u’ (S (f/l’N)) <l-—aforal PeP

[0,1]

such that p € €y (/). S is called equi-tailed for some given €, € [0, 1]"" if there exist

families S; and Sy such that Prp (,u/ €S (}7“\7)) > 1—a«/2 for all P € P such that
e Q(p)NQ (1) and Prp (,u’ € 5y (YAN)) > 1— /2 for all P € P such that
e Qo (1) \Q (1) where S (?LN> _c (Y/LN) N S, (Y/LN) . With this definition

of equi-tailed-ness we obtain equivalence in the usual sense between a collection of
equi-tailed hypotheses tests and a family of equi-tailed confidence sets. A family of
confidence intervals S at level « is uniformly most accurate if Prp (u’ es (}71’N ))
is minimized among all families at level « for each p € Q (¢/). A family of UMP
tests can be used to construct a uniformly most accurate family by collecting the
parameters that can not be rejected given the observed data. As a new definition we
say that S is parameter most accurate if maxp.,—; Prp (,LL’ es (ffLN )) is minimized
among all families at confidence level « for each i € Q4 (1).

For K = 1 consider more specifically a family S of confidence intervals for
the mean, so S (y"") = [l (y""),u(y"")] for some l,u € [0,1]. Lg(y"") =
(u (yLN ) —1 (yl’N )) is then called the length (or width or accuracy) of the confidence

interval under S given y>V.

Byl (1) = S Rr (7 =) (0 (1) =1 (67)
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is the expected length of the family of confidence intervals S given P. It is well known
that a uniformly most accurate family of confidence intervals for the mean minimizes
the expected length of the confidence interval for each p € P (Pratt, 1961) among all
families of confidence intervals with the specified coverage.

Consider now a family of lower bounds [ for the mean so [ = [ (ylvN ) and S =

[ (y*) ,1] is a family of confidence intervals for the mean. Let

Epls V"M u=0) = 3 Pr(YMV =yt Vp> (YY) (")

yb N>yt )

Then p — Epls (Y'V|u > 1) is a measurement for degree of underestimating . A
uniformly most accurate family of lower bounds minimizes this value of underestima-
tion (Pratt, 1961) among all families of lower confidence bounds with the specified
coverage. Similarly one can state definitions and results for upper bounds.

In the following we show how to transform families of confidence sets for binary
valued distributions into ones for distributions in A [0, 1]K. Then we show for K =1
that a family of uniformly most accurate confidence intervals can be transformed
into a family that maximizes the minimum accuracy for covering the mean among
all families of confidence intervals at level a. Similarly, a family that maximizes the
coverage among all Bernoulli distributions and among all families with some given
maximal length [ can be transformed into a family that has this property for all
distributions in A [0, 1].

Proposition 5 Considert € T. If S € F, (P*) then Sot € F, (P). If S is unbiased
for P° then S ot is unbiased for P. If S is uniformly most accurate for P® then Sot

18 parameter most accurate for P.

Similar results can be stated for upper bounds for the mean and if one limits
attention to specific families such as those that are unbiased or equi-tailed. Analogous
statements can be made relating to confidence intervals and bounds for the difference
between two means.

Proposition 5 can be applied whenever there are UMP tests for binary valued data
within some class of tests. We remind the reader of some settings where these exist.
A UMP test exists for the one-sided test of the mean of a single sample. A UMP
unbiased test exists for the one-sided test for comparing two independent samples as
well as for comparing two dependent samples of equal size. Analogous UMP two-sided

tests exist if one confines attention additionally to equi-tailed tests.
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Sometimes it is easier to apply Proposition 1 directly. Assume for instance that
one is interested in finding a family of confidence intervals of the mean that maximizes
coverage for a given level and a given maximal length. Then Proposition 1 shows that
one can limit attention to Bernoulli distributions. Combining this with the numerical
analysis of Lutsenko and Maloshevskii (2003, Table 1) we conclude for N = 15 that
there is a family of confidence intervals at level 5% with maximal length 0.4 but not

with maximal length equal to 0.38.

2.4.1 Non-Randomized Tests

When interested in making specific recommendations then one is often only inter-
ested in non-randomized tests and confidence intervals. Following Proposition 2 one
can select the more likely recommendation of the randomized test to obtain a non-
randomized test, formally defined as f™ in Section 2.1. The proof of Proposition 2

reveals the following statement.

Corollary 4 If f is a randomized hypothesis test for testing the null p € Qg against
the alternative j € Q0 with size o and type II error v then f™ has size bounded above

by 2a and type II error bounded above by 2+.

Such a non-randomized test can then be used to construct a non-randomized
confidence bound or confidence interval. Notice that the non-randomized test will

not be unbiased and it is not known whether equi-tailed-ness is preserved.

2.4.2 An Example

Consider the ‘anti-self-dealing’ indices in Djankov et al. (2005, Table III) gathered
for 72 countries to measure minority shareholder protection against self-dealing (i.e.
investor expropriation) of a controlling shareholder. In the first two rows of Table 1
we present the average anti-self-dealing indices across different regions characterized
by the origin of their law system together the number of observations. Indices belong

to [0, 1] by construction.

Table 1: Anti-Self-Dealing Indices across Regions

Civil Law
Common Law | French Origin German Origin Scandinavian Origin Overall
N 21 32 14 5 51
Mean 0.67 0.35 0.39 0.39 0.36




17

Djankov et al. (2005) use the t test to compare these indices. We choose
distribution-free nonparametric methods. Assume independence of indices across
countries and assume that the indices gathered for common law are iid draws from
a random variable Y; and similarly that the indices within the countries governed
by civil law represent iid draws from a random variable Y5. We wish to test Hy :
EY, = EY, against H, : EY, > EY5 under these assumptions at level 5%.

Consider the randomized PMP unbiased test derived by applying the exact ran-
domized Fisher-Tocher test (Fisher, 1935, Tocher, 1950) after binomially transforming
the sample. We find that the null hypothesis is rejected with probability 0.76. For
the associated deterministic test we need to evaluate the above test at level 2.5% and
find that the null hypothesis is rejected with probability 0.65 which is strictly greater
than 0.5 and hence we obtain a significant difference at 5% between civil law and
common law. When considering only those among civil law with French origin we
find that the null is rejected with probability 0.62 at 2.5% and hence also a significant
difference at 5% between those with French origin and common law. The difference
between those with German origin and common law is not even significant at level
10%. One could alternatively construct a deterministic test using Hoeffding (1963,
Corollary, eq. 2.7). This test only finds the difference between common law and civil
law to be marginally significant at 10%.

The value of our deterministic test as compared to other deterministic nonpara-
metric tests is that we can evaluate the quality of inference in terms of its type II
error. Such an evaluation is important as strictly speaking one has to first choose the
test before gathering data. We search for the minimal difference d between EFY; and
EY5 necessary to ensure type II error of 20% when comparing civil law and common
law. For our randomized test we find d =~ 0.32, for our deterministic test d ~ 0.41
and for the test based on the Hoeffding bounds one easily derives d ~ 0.55.

Alternatively one can compare these tests according to their relative parameter
efficiency. We do this by increasing the number of observations proportionally until
matching the type II error of 20% achieved by the randomized PMP unbiased test
for the alternative hypothesis H; : EY; — EY; > d (with d ~ 0.32) given N; = 21
and Ny = 51. For our deterministic test we need Ny = 36 and N, = 87 while the test
based on the Hoeffding bounds requires N; = 63 and Ny = 152, the corresponding
values of relative parameter efficiency are 59% and 34% respectively.

For the design of future investigations one may wonder how many observations
are necessary to ensure type II error of 0.15 given size 0.05 with an unbiased test of
Hy : EY; = EY; against Hy : FY; — EY; > 0.25. Evaluating again the power of the
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Fisher-Tocher test we find that Ny, Ny < 56 does not suffice while our randomized
PMP unbiased test has this property when N; = Ny = 57.

Next investigate lower confidence bounds for the mean of the common law index.
First we follow Bickel et al. (1989, see also Bickel, 1992) who use an alternative bound
of Hoeffding (1963, eq. 2.1) to derive a 95% deterministic lower confidence bound.

For the common law index the value is equal to 0.405 as the solution to

1w \067 o 21
((1—0.67) (W) ) =005

Next we derive our deterministic lower bound. For a given p, the data is first ran-
domly binomially transformed and then the uniformly most powerful test indexed by
o of Ho (1) = 1 < py against Hy (w) : u > p, for Bernoulli distributions is evaluated
(see Rohtagi, 1976, Example 2, p. 415). We search for the value of p, such that
the null is rejected with probability 0.5. This is then the lower confidence bound, in
this case p, = 0.455. Finally we consider the parameter most accurate randomized
lower bound derived from the above family of uniformly most powerful tests. This
randomized lower confidence bound is unbiased as the underlying test for binary val-
ues is unbiased. We plot the density of the randomized lower bound in Figure 1. Its
expected value is equal to 0.49. It lies above the Hoeffding lower bound 0.405 with
probability 0.82, above our deterministic lower bound 0.455 with probability 0.66 and
above the average index 0.67 with probability 0.03.
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Figure 1: Density plot of randomized lower confidence bound.

One could similarly consider confidence intervals for the index of common law.
Using Blyth and Hutchinson (1960, Table 1) we verify that the maximal expected
length of any family of unbiased confidence intervals is at least 0.41 given that we
have 21 independent observations of an unknown mean. Alternatively one could
consider equi-tailed two-sided tests.

Finally we investigate whether there is sufficient evidence to be able to establish
that the French and German indices are similar. We do this by deriving the type II
error of the test that the average indices among French and German origin are the
same against the alternative that the German index is drawn from a higher mean.
The finding is that a type IT error of 20% is only ensured if the true difference is at
least 0.39. Thus we conclude that there are not sufficiently many observations to infer
any meaningful statement about an underlying process from the similarity between

the empirical means of the French and German indices.

3 Concern for Variance

One may similarly be interested in variances or functions of the variances of underlying

random variables. The setting is as in Section 2 except that now we are interested in
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loss functions that only depend on the variance vector o2. We show how to generate
estimates and tests for which an upper bound on risk can be derived.

The insight for how to use some of our previous results is a “combination method”
founded in Walsh (1962, ch. 7, p. 119). To keep notation simple consider K = 1 and

N even.

Proposition 6 If YV are N are iid observations of a random variable Y that has
range [0,1] and if  is a permutation of {1,.., N} then ZW ... ZWN/2) are iid random
variables with range [0,1/2] with pp (ZV) = 0% (YD) where ZU) = 1 (Y =2i=1) — Y(“(zj)))Z
fork=1,..,N/2.

3.1 Estimation

Using Proposition 6 one can design estimates of functions of the variance and measure
their maximal risk. For completeness we first briefly show how to measure maximal
risk underlying unbiased estimation of variance. A symmetric non-randomized un-
biased estimate of the mean underlying {Z (j)} will be a symmetric non-randomized
estimate of the variance underlying {Y(i)} . Given uniqueness this estimate must be

equal to the classic symmetric unbiased estimate S? of the variance, mathematically
we find

1 Ay > R 1 & i
- - (YD _yy = - y® _ — Yyl = g2
RERP P I PP LS 9P
i=1 j=1 =1 j=1
The value of the transformation in Proposition 6 is that we can derive an upper bound
on risk, here we do this analytically for expected quadratic loss. We know that the
maximal quadratic loss, when taking the empirical average as estimator of the mean
of random variable X € [0,1] based on M independent observations, is equal to
1/ (4M). Thus an upper bound on the expected quadratic loss of the estimate S? of
o2 is equal to (1/2)* %1/ (4(N/2)) =1/ (8N).

Consider now estimation of standard deviation oy for which it is known that
there is no unbiased estimate. Typically one estimates oy using either the empirical
standard deviation or the square root of the unbiased estimate of the variance S. In the
following we construct a uniformly consistent estimator that performs better in small
samples (numerical simulations carried out for NV < 1600). Transform the data as in
Proposition 6. Then transform the [0,1/2] data into {0,1/2} data using a random

mean preserving transformation. Next choose an estimate g of ,/fiy that is based on
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N/2 independent observations of a random variable X € {0,1/2}. Let n denote the
number of times 1/2 occurs. We choose as estimate the root of a particular convex

combination of the sample average n/N and the median 1/4, namely by setting

) . 1 n,o 1 1
p— _— E— *_
gin N+35)N N=+35 4

forn =0,.., N/2. Maximal risk is easily derived as we know that it is attained among

the Bernoulli distributions. For instance, maximal risk is approximately 1/4 (N + 1)
for 34 < N < 120. More specifically we find that N > 100 is necessary to obtain
maximal risk below (0.05)7.

For comparison lower bounds of the two alternative estimators mentioned above
are established by searching numerically among the Bernoulli distributions. We find
N > 181 to be necessary for either of them to achieve risk below (0.05)* with no
upper bound on N available. More generally, for N < 500 these two other estimates
would require at least 70% more observations to generate the same maximal risk as

our estimate.

We use the above estimate of standard deviation to measure income inequality in
the US between 1990 and 2002 using the Panel Study of Income Dynamics (PSID) at
the family level. While alternative measures of dispersion such as the Gini coefficient
and the coefficient of variation exist, we do not know of upper bounds on their risk. We
explain the findings summarized in Table 2. Attention is restricted to race indicated
as white, age of head between 20 and 59, work hours per year ranging 520 to 5096
and average hourly earnings greater than half the minimum wage with all of these
criteria satisfied for at least two consecutive years. Earnings are at household level
measured in 1992 dollars. Top coded earnings are not included which means that we
estimate standard deviation conditional on earnings belonging to [0,10°] (only one
observation in the data set was top coded as it was above 10%). S and ¢ indicate the

empirical standard deviation and our estimate.

Table 2: Estimating Income Inequality

1990 1991 1992 1993 1994 1995 1996 1998 2000 2002
N 2252 278 2306 1554 1910 2299 1683 1518 1570 1582
mean | 34288 33888 36526 40940 37621 37734 38991 39193 42988 40405
S 32786 29455 33492 45158 38634 41137 43543 42093 56747 46653
o 32868 29460 33526 45589 38986 41449 43644 42395 57205 46934
Vrisk | 10780 9695 10651 12961 11705 10672 12470 13122 12907 12845
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3.2 Hypothesis Testing

One can also use Proposition 6 to design hypothesis tests and confidence intervals.
Proceed as follows to ensure symmetry. For each variable choose a permutation
equally likely among all permutations and transform all observations in of this vari-
able as in Proposition 6. Double all observations to obtain data with range [0, 1].
Independently binomially transform each observation to obtain binary valued data.
Then evaluate a uniformly most powerful test for the means. An upper bound on
the size and type II error of the resulting randomized test is easily derived. Either
one can then apply this randomized test or one can proceed by transforming it into
a non-randomized test as shown in Corollary 4. Notice that we do not expect the

randomized test to be parameter most powerful.

4 Conclusion

In this paper we expand on a specific randomization method from Schlag (2003) that
can also be found in Cucconi (1968) and in Gupta and Hande (1992) and show how
it can be used to select estimators, hypothesis tests and confidence intervals. To
apply this method, one needs to know a bounded set that contains all payoffs and
one should only be interested in the underlying means. It can be very natural to
know such exogenous bounds on the possible payoffs as outcomes are often measured
on a bounded scale. Following Bahadur and Savage (1956), minimax risk estimators
and most powerful tests typically do not exist if no assumptions are made. Moreover,
as our approach is nonparametric and distribution-free, constraints on the data have

to be based on knowledge, not on beliefs.

We included various different ways to randomly transform the data as we expect
those that create correlation between samples to perform better in applications as
they tend to reduce the variance in the transformed sample. In specific applications
we have also found other transformations that do not treat independent observations
independently to be useful (see results surrounding the correlated binomial average

rule in Eozenou et al., 2006).

The outcome under any of our transformations is randomized. When concerned
with estimation and loss is convex then non-randomized estimators are also derived.
However the tests and confidence intervals contained in this paper that generate the
lower bounds are truly randomized. If one is not willing to follow such a randomized

recommendation we provide non-randomized tests that then can be used to generate
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non-randomized confidence intervals and bounds.

We find that minimax risk allows to select “simple” strategies in the sense that
they are linear and symmetric. The suggested randomized and non-randomized tests
are very simple to evaluate using Monte Carlo simulations as they are based on the
most basic UMP tests of statistics.

The novel concepts of parameter most powerful, parameter efficiency and parame-
ter most accurate are introduced. They are motivated by reducing statements to the
parameters of interest which in this paper are the underlying means. If distributions
are conceptually collected into equivalent classes consisting of all those that have the
same mean vector these concepts are equivalent to UMP, efficiency and uniformly
most accurate. We see no need to differentiate distributions other than by their mean
vectors when means are the only parameters of interest. Of course any of the minimax
risk strategies mentioned in this paper need not be unique, future research should fo-
cus on alternative methods for dealing with interior payoffs without loosing minimax
risk properties. The key of this paper as a starting point is that for the first time -
except for the previous results on estimates of a mean and of difference between two
means and for the recently discovered work on selection procedures by Gupta and

Hand (1992) - we now know a least favorable prior.

The randomization method has started to spread in the literature on minimax
regret (Eozenou et al., 2006, Schlag, 2006b, Stoye, 2006). The rounding trick of
Gupta and Hande (1992) uncovered when working on this paper will similarly enter
as shown by Schlag (2007). As mentioned in an earlier version of this paper (Schlag,
2006a) the randomization method reduces maximal Hannan regret in non-stationary
decision problems (Hannan, 1957, cf. Auer et al., 2002).

The results of this paper can also be applied when the k-th moment is the only
parameter of interest for some fixed k. First take each observation to the power k£ and
then investigate the means of the transformed data.

In this paper we have also shown how to investigate variances by building on a
combination method found in Walsh (1962). It is an open question how close these

results are to minimax risk.
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