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Risk Neutral Forecasting¤
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Abstract

This paper develops statistical and computational tools for

modelling returns forecasts to be used by a risk neutral investor.

Any forecast with the same sign as the conditional mean optimises

the loss function derived from this agents' decision problem, so

the class of optimal predictors is rather broad. We exploit the

fact that optimal forecasting in this context can be seen as an

extension of binary quantile regression in order to provide consis-

tent estimators for optimal predictors. Further properties of these

estimators are explored using simulations and favourable compar-

isons with least squares procedures are made. Unfortunately, our

estimators are di±cult to compute but an optimisation algorithm

tailor-made for this purpose is provided. Our results provide a sta-

tistically valid method for selecting certain types of `investment

rules' according to popular optimality metrics.
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1 Introduction

The desire to predict returns of ¯nancial series is to some extent respon-

sible for the genesis of Economic Science: John Law, Richard Cantillon,

Henry Thornton and David Ricardo developed their interest for economic

systems through their activities as ¯nancial speculators1. For reasons

that are obvious, interest in this topic has not waned2.

The objective of this paper is to study the prediction problem facing

a risk neutral investor and to propose techniques for the estimation of

his optimal predictor. This agent solves a decision problem which (unlike

that of most other agents) has a structure simple enough for a point

forecast of returns to provide su±cient information for its solution. It

therefore provides a natural starting point for studying prediction in

an investment context as noted, for example, by Granger and Pesaran

(1996).

The loss function corresponding to the risk neutral investor's deci-

sion problem has been widely used to assess the `economic value' of vari-

ous types of ¯nancial models. For example, linear (Pesaran and Timmer-

man, 1995) and non-linear (Satchell and Timmerman 1995) time-series

models have been evaluated according to this metric, as have economet-

ric models (Breen et al. 1989), technical trading rules (e.g. Sullivan et

al. 1997), agnostic `money-machines' such as neural nets (LeBaron 1998)

or designs that take advantage of some `market anomaly' (Sullivan et al.

1998).

The `Risk Neutral Forecasting' techniques we propose make it fea-

sible to estimate these models with the same criterion by which they are

evaluated and as Granger (1993) notes, `if we believe that a particular

criterion... should be used to evaluate forecasts then it should also be

used at the estimation stage of the modelling process'. For some types of

models, such as those based on technical trading rules, this is the only

feasible estimation technique. Weiss (1996) discusses estimation of time

1See Tvede (1997).
2See Campbell et al. (1997), for an overview of the state of the art.
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series models according to the relevant loss function, but many of the

statements he makes do not apply without quali¯cation when the loss

function is that of the risk neutral investor.

The paper is organised as follows. In Section 2 we describe and

motivate the risk neutral investment decision and build on this to de¯ne

risk neutral best predictors. In Section 3 we relate the risk neutral best

predictor to the conditional distribution of returns and the conditional

distribution of their sign. Using these results we develop conditions which

may be used for parametric modelling of risk neutral best predictors and

which indicate that this is a generalisation of the problem of binary re-

sponse prediction under asymmetric loss. Iin Section 4 we discuss why

this approach is likely to be useful when there is risk of model misspec-

i¯cation. In Section 5 we derive conditions under which it is feasible to

consistently estimate parametric models for risk neutral best predictors.

We cannot analytically derive any further properties of our estimators

but we investigate some of them using simple simulations. Section 6

discusses why computation of the estimators is di±cult and proposes an

algorithm that facilitates the estimation process. A summary of the main

¯ndings closes the paper.

2 Forecasting and Investments

2.1 The problem of forecasting returns in abstract

Let us begin with an abstract description of ¯nancial returns rt+1 from

the current period t to t+ 1 as a random variable (rt+1 : Z ! R, where

Z is an unobserved sample space) satisfying:

rt+1 = g(xt) + ut (1)

E (utj») = 0; » 2 X

where xt is a vector random variable xt : Z ! X µ R
K ; (X is the sample

space on which realisations » of xt are observed), g : X ! R is a possibly
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non-linear function, ut is the disturbance and E (¤j») is the expectation

conditional on the event xt = ».

The objective of any forecaster of rt+1 observing events in X is

the determination of the functional form of a `best predictor' of rt+1
conditional on xt = »: The best predictor will minimise the expected

value of a forecasters' loss when used as a forecast in a speci¯c decision

problem.

De¯nition 2.1 A best predictor is a mapping p : X ! R that satis-

¯es:

p (») 2 argmin
µ2R1

Z
L(rt+1; µ)dP j»; » 2 X (2)

where P j» is the probability measure conditional on xt = » and

L : R2 ! R is a loss function which gives the loss at t+1 when (at

time t) it is predicted that rt+1 will be µ.

Obviously the form and the size of the set of solutions to (2) will

depend crucially on the choice of the loss function (for examples illus-

trating this dependence, see Christo®ersen and Diebold 1996). When

the context in which forecasts will be used is unknown, the convention is

to allow certain `standard' measures of location such as the conditional

mean or median to be interpreted as forecasts3. On the other hand,

when the decision problem is known, it is always preferable to use loss

functions derived from that decision problem.

In the following subsections we derive a loss function from a stylised

model of a risk neutral agent's investment decision. The purpose of this

is to understand the properties of a predictor which is best in investment

contexts and to study its relation to the `standard' measures of location

which are often used as forecasts.

3
These measures of location are best predictors for appropriately chosen loss

functions. In particular, the examples mentioned are optimal for squared error

L(rt+1; µ) = (rt+1 ¡ µ)2 and absolute error loss functions L(rt+1; µ) = jrt+1 ¡ µj

respectively.
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2.2 Forecasting returns in the context of a simple

investment decision

Consider the simple one period cash-single asset allocation decision:

max
¹2[¡s;l]

E fU(Wt+1)j»g (3)

s:t: Wt+1 = ¹Wt(1 + rt+1) + (1¡ ¹)Wt

where ¹ is the fraction of wealth Wt invested in the asset and is con-

strained to be ¯nite valued to capture borrowing and short-selling con-

straints.

The best predictor for an investor solving this decision problem

can be derived only if there is a (known) function describing how the

investment decision ¹ depends on a prediction µ of returns for rt+1. This

function may be used to determine the loss function L (rt+1; µ). This

loss function can then be plugged into (2) to obtain the best predictor.

It is well known however that in a utility maximisation context, unless

restrictive assumptions are imposed, ¹ is not a function of a scalar quan-

tity such as µ, but of the whole conditional probability measure P j» as

well as the current level of wealth Wt. This implies that point forecasts

of returns do not (in general) provide su±cient information for utility

maximising investment behaviour.

Appropriate assumptions on fU;P j»g can, of course, ensure that

a scalar µ summarises the information necessary for utility maximising

investors to solve (3), in which case point forecasts are su±cient for utility

maximisation. These assumptions typically require investors to know

certain carefully chosen properties of P j» but not its mean4. Assuming

also that this information is available, a function ¹ (µ; ») ! R can be

derived (in some cases even analytically5), which can then be used to

4For example, under standard assumptions that make utility a function of the

conditional mean and variance, for ¹ (µ) to be derivable it would be necessary to

know the conditional variance. Analogously, West et al.(1993) assume sucha utility

function and that the mean is known so as to derive a loss function for predictions of

the variance.
5See Campbell and Viceira (1996).
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derive a loss function and thus a best predictor. Unfortunately, the

necessary information on P j» for the derivation of ¹ is never available

in practice and use of `crude assumptions' may lead to very misleading

results.

Brandt (1998) recently argued that it may therefore be expedient

to depart from the objective of predicting rt+1 to focus instead on direct

prediction of the optimal proportion of invested wealth ¹ conditional

on ». Under appropriate conditions, he shows that this can be achieved

using a non-parametric model for the mapping ¹ : X ! [¡s; l]. This is an

interesting way around the problem of the lack of necessary information

on P j» but it leads to a complete departure from the returns forecasting

framework.

There is one important case in which we are not forced to choose

between crude assumptions on P j» or a departure from the objective of

forecasting returns. This is the case with which we deal with in this

paper and it arises when U is linear, i.e. investors are risk-neutral6.

Risk neutral investment decisions merit special attention for the

following reasons. Firstly, some `very wealthy' investors seem to behave

in this way (at least in making their decisions at the margin) as do certain

institutional investors and individuals investing a very small proportion

of their wealth. Secondly, the binary `investment rules' researchers have

hitherto examined (discussed in the introduction) are often selected to

maximise expected returns (e.g. LeBaron 1998, Moody et al., 1998)7.

This practice is an implicit attempt to estimate solutions of the risk neu-

tral investor's prediction problem and can therefore be better understood

in a formal prediction framework. Lastly, risk neutrality is a widely used

benchmark in ¯nancial economics that serves to develop an understand-

ing of more general problems. The results of Merton (1981) and Skouras

(1998) show that the optimal behaviour of risk neutral agents is useful

information for more general agents.

6In this case, Brandt's approach which relies on estimation of Euler equations is

not applicable, because there is no Euler equation to estimate!
7They are sometimes also selected to maximise Sharpe ratios, but Skouras (1998)

shows that under fairly general conditions these two criteria are identical.
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For these reasons, we feel safe that even under the following as-

sumption, relevant and interesting conclusions can be drawn from our

analysis.

Assumption 2.1 Investors are risk-neutral, i.e. U (Wt) = aWt + b

Under A2.1 the investment decision (3) can be rewritten as:

max
¹2[¡s;l]

¹E (rt+1j») ; » 2 X (4)

In order to precisely characterise the set of solutions to (4), let us ¯rst

introduce the following de¯nition:

De¯nition 2.2 A sign-preserving transform is a mapping ¿ : R1 ! R
1

such that ¿ (y) > 0 , y > 0:

The set of all sign preserving transforms8 will be denoted T. As T

will play an important role in what is to come, we give some examples

of its elements in Figure 1.

Insert Fig. 1 here

It is straightforward to show that a necessary and su±cient condi-

tion for ¹ (¤) to be a solution to (4) is that:

¹(») 2 (l + s) ¢ 1 [¿ (g (»)) > 0]¡ s; ¿ 2 T; » 2 X (5)

where 1 [¤] takes the value 1 if the logical expression in the brackets is

true and 0 otherwise.

Now suppose the risk neutral investor's forecast for rt+1 is µ: His

loss is the di®erence in utility at time t+1 between the utility of a correct

8
See Manski 1988b, p.737 for a characterisation of a small but important subset

of T
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forecast and that obtained given that the forecast is µ9: From (4) it is

obvious that this loss is:

L(rt+1; µ) = ((l + s) ¢ 1 [rt+1 > 0]¡ s) rt+1 ¡ (6)

((l + s) ¢ 1 [µ > 0]¡ s) rt+1

As is evident from the de¯nition of a best predictor (2), a loss func-

tion can be replaced with any increasing linear transformation without

a®ecting the set of best predictors. Hence the prediction problem of risk

neutral investors is invariant with respect to feasible position size (as

long as positions are ¯nite) and we may multiply and subtract constants

with respect to µ in (6) to obtain an equivalent loss function:

L(rt+1; µ) = ¡rt+1 ¢ 1 [µ > 0] (7)

This expression may be treated as a simpler form of (6) but note

that it may also be interpreted as the loss function derived from an agent

solving (4) who is constrained from borrowing or short-selling (s = 0; l =

1). We de¯ne the risk neutral best predictor as the best predictor of any

agent solving (4), henceforth ignoring all obvious time subscripts.

De¯nition 2.3 A Risk Neutral Best Predictor (RNBP) is a map-

ping p : X ! R that satis¯es:

p (») 2 argmin
µ2R1

¡
Z

r ¢ 1 [µ > 0] dP j»; » 2 X (8)

3 Statistical properties of the Risk Neutral

Best Predictor

In this section we derive some statistical properites of the RNBP which

clarify its relation to other predictors and are particularly useful for para-

metric modelling.

9We may also think of this loss as the price that would be paid ex post to the

investment decision (i.e. at t+1) to have known the true value of rt+1 a priori (at t)

rather than to rely on the available forecast of µ:
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3.1 The relation to the conditional mean.

Simple manipulations of a risk neutral best predictor's de¯nition for-

malise its relation to the conditional mean of returns.

Proposition 1 A function p : X ! R is a risk neutral best predictor if

and only if:

(a) It satis¯es:

p (») 2 argmin
µ2R1

¡1 [µ > 0] ¢ g (») ; » 2 X (9)

Equivalently,

(b) It is a sign-preserving transform of the conditional mean, i.e.

for some ¿ 2 T it satis¯es:

p (») = ¿ (g (»)) ; » 2 X (10)

Proof:

(a) The de¯nition of a risk neutral best predictor (8) is equivalent

to (9).

(b) This follows since (10) is equivalent to (9).¥

Proposition 1 implies g (¤) is a RNBP which is not surprising since

it is well known that risk neutral investors can make optimal decisions

on the basis of conditional means. A little less obvious is the fact that

any sign-preserving transform of g (¤) is also a RNBP. The importance

of this derives form the fact that the space of functions included in T

is large and that it may therefore be that there is a ¿ 2 T such that

¿ (g (¤)) is a simple function even though g (¤) is quite complicated (see

¯gure 1). In this case, the information relevant to a risk neutral investor

(only the sign of returns) will have a simple structure even though the

conditional mean does not.

8



3.2 The relation to the sign of returns.

Rather than thinking of µ as a prediction for r, some researchers prefer to

think of 1 [µ > 0] as a prediction of (an indicator of) the sign of returns

± ´ 1 [r > 0]. This interpretation indicates the need to understand the

relationship between the sign of the best predictor and the distribution

of the sign of returns.

In the ¯rst instance one might think that the sign of the best predic-

tor is the forecast that maximises the probability of correctly forecasting

the sign of returns. However this is not the case: A predictor that does

not maximise the probability of a sign `hit' but which is very good at

getting the sign right when the stakes are high will be preferred by a risk

neutral investor. The following numerical example illustrates this point.

Example 3.1: Suppose rt+1 is a discrete i.i.d. random variable

such that Pr (rt+1 = 0:1) = 0:2; Pr (rt+1 = ¡0:001) = 0:8: The optimal

predictor is a constant k because rt+1 is i.i.d.. Consider now the predic-

tion k < 0. This has an 80% probability of correctly forecasting the sign

of returns but it induces a risk neutral investor to be short and hence

incur expected losses. On the other hand, a prediction k > 0 has only a

20% chance of getting the sign right but results in a long position and

positive expected pro¯ts.

It is therefore clear that the best predictor makes a compromise

between correctly predicting the sign of returns and maximising the rel-

ative magnitude of returns when they are right compared to when they

are wrong. The following proposition formalises this trade-o®.

Proposition 2 De¯ne A : X ! [0; 1] as:

A (») ´ E (jrj j± = 1; »)

E (jrj j± = 1; ») +E (jrj j± = 0; »)
; » 2 X (11)

A necessary and su±cient condition for a mapping p : X ! R to

be a risk neutral best predictor is that it satis¯es:

p (») 2 argmin
µ2R1

¡1 [µ > 0] ¢ (A (»)¡ Pr (± = 0j»)) ; » 2 X (12)
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Proof: See Appendix

Proposition 2 reveals the relationship between the best predictor

and the conditional distribution of the sign of returns (the binary random

variable ±). One should think of A (¤) as a measure of the magnitude of

returns when they are positive (jrj j± = 1) in relation to their magnitude

when they are negative (jrj j± = 0). The proposition implies that if

the distribution of r is skewed towards the right `enough', then the risk

neutral investor should be long even if Pr (± = 0j») > 0:5. The measure

A (¤) quanti¯es what is `enough' in relation to Pr (± = 0j»).
The proposition also indicates that there is a relation between the

conditional distribution of the sign of returns ± and the best predictor.

The precise nature of this relation can easily be derived using our previous

results as we now show.

Proposition 3 Let Q® (») be the ®'th quantile of ±j» so that:

Q® (») ´ min
³2[0;1]

³ : Pr (± � ³j») ¸ ®; » 2 X (13)

Let also QA (») be the A (»)'th quantile of ±j» so that::

QA (») ´ min
³2[0;1]

³ : Pr (± � ³j») ¸ A (») ; » 2 X (14)

The A (»)'th quantile of ±j» determines the sign of any risk neutral

best predictor p (») ; since:

QA (») = 1[p (») > 0]; » 2 X

Proof:

>From the c.d.f. of ± it is easy to verify that

QA (») =

½
1 if A (») > Pr (± = 0)

0 if A (») � Pr (± = 0)

¾
; » 2 X

So by (12) we obtain the desired result¥
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As simple as this proposition may be, its implications are quite

surprising. In particular, we believe that the fact that the risk neutral

best prediction problem turns out to be a problem in determining a

moving (in the sense that it depends on the realisation of x) quantile

of the sign of returns is quite unexpected. This fact can considerably

simplify the problem of best prediction in certain simple cases. Here is

an example of such a case:

Example 3.2: Suppose it can be established thatE (jrj j± = 1; ») =

E (jrj j± = 0; ») for all ». Then A (¤) = 1

2
and hence QA (¤) is the median

of ±jx: Knowledge of the median of the conditional distribution of the

sign of returns is su±cient for a risk neutral investor to make his optimal

decisions.

More generally, when A (¤) = a, risk neutral best predictors can

be found by determining the a'th quantile of the binary response ±, a

problem that has received considerable attention in the literature (e.g.

Manski and Thompson, 1989). It is a striking feature of risk neutral

forecasting that it can be seen as an extension of this problem.

3.3 Moment extremum properties for parametric

modelling

It is often the case that forecasting can be e®ectively formulated as a

parametric estimation problem. In these cases, a model s : X £B ! R

is speci¯ed (B ½ R
K is a parameter space and K is a positive integer)

and it is assumed that the model contains the desired best predictor p (¤),
i.e. for some b 2 B it is the case that s (»; b) = p (») 8 » . The forecasting

problem is then reduced to that of ¯nding the most e®ective way of

using the available data to estimate the parameter b. Sample analogs of

moment extremum conditions known to be satis¯ed by p (¤) may in some

cases be used to estimate b. The following proposition provides two such

conditions satis¯ed by p (¤) which are shown in Section 5 to be usable

for estimation of b.
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Proposition 4 If there is a mapping s : X£B ! R
1 and an (unknown)

parameter c0 2 B such that s (¤; c0) is a Risk Neutral Best Predictor,
then a necessary and su±cient condition for s (¤; b) to be a Risk

Neutral Best Predictor almost everywhere on PX (the measure on

X) is:

(a)

b 2 argmin
c2B

¡
Z

r ¢ 1 [s(x; c) > 0] dP (15)

Equivalently,

(b)

b 2 argmin
c2B

¡
Z

(± ¡A (x)) ¢ 1 [s (x; c) > 0] dP (16)

Proof: See Appendix

Proposition 4 states something that should be intuitively obvious.

Since by de¯nition the best predictor maximises the expected value of

pro¯ts conditional on all » it must also maximise the expected value of

pro¯ts taken over the probability measure on X:Therefore it maximises

unconditional expected pro¯ts, as expressed by conditions (15-16).

In the context of our discussion on the relation of the RNBP to

the sign of returns, note that if A (¤) is a known constant, equation (16)

corresponds exactly to the moment extremum condition typically used in

parametric prediction of a binary response variable under an asymmetric

loss function (see Manski 1988) or equivalently quantile regression.

The relationship (16) will only be useful for deriving b if A (¤) is

known, which in most applications it is not. However, there are strong

indications that it may be feasible to model A (¤) quite accurately. Two
related observations suggest this: Firstly, that the conditional expected

value of absolute returns E (jrj jx) are highly predictable (Taylor 1986,

Schwert 1989, Granger and Ding 1994a,1993, Mills 1996, Fornari and

Mele 1994) at least in univariate contexts. This indicates that accurate
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models for E (jrj j±; x) may be feasible from which A (¤) can be imme-

diately derived. Secondly, it is often approximately the case that jrj is
independent of the sign of returns ± (Granger and Ding 1994b, Henriks-

son and Merton 1981) in which case we are in the scenario of Example

3.2 where we know that A (¤) = 1

2
:

4 Parametric modelling of the risk neutral

best predictor vs. modelling the condi-

tional mean.

Since the conditional mean is itself a risk neutral best predictor, it may

seem that modelling the latter is pointless since the risk neutral investor's

optimal decision can be derived from a model of the conditional mean.

If our models could be perfectly accurate, this conclusion would be valid.

Unfortunately, in most applications they are known to be no more than

working approximations. What matters then is to ¯nd approximations

that are good ecnough for the purpose at hand. Metrics for judging the

quality of approximations for the conditional mean are usually based on

various statistical criteria such as least squares or nonparametric condi-

tions and may not re°ect the decision problem in which the model will be

used. By contrast, in modelling risk neutral best predictors directly we

will take into account the context for which the model is being developed.

The currently dominant approach to modelling conditional means

of returns is OLS parametric estimation. The next section will compare

this approach to one based on parametric modelling of the risk neutral

best predictor using conditions (15-16).

4.1 Parametric models of the conditional mean

Suppose we postulate a parametric model s(¤; c); c 2 B for g (¤). We

cannot know for sure whether for some b 2 B; s(»; b) = g (») ; » 2 X , i.e.

whether the model is correctly speci¯ed, but we hope that this is the case.

13



The least squares approach to modelling g (¤) involves the determination

of a parameter bols such that:

bols 2 argmin
c2B

Z
(r ¡ s(x; c))2 dP (17)

If - as hoped - the model is correctly speci¯ed, it can be shown

that s(»; bols) = g (»), » 2 X: When this is not the case, little can be said

about how `good' a model s(¤; bols) will be for g (¤) without a de¯nition of

`good' and some information on the form of fg (¤) ; s (¤; ¤) ; Pg : Similarly,

Proposition 4 establishes that (15-16) may be used only when s(¤; c) is
a correctly speci¯ed model for some sign-preserving transform of the

conditional mean, i.e. 9 ¿ 2 T : s(»; c) = ¿ (g (»)) ; » 2 X. It should be

clear that whilst both modelling approaches require strong conditions on

the accuracy of model speci¯cation, conditions for modelling the RNBP

are much weaker than those required for parametric modelling of the

conditional mean.

Furthermore, if a sign-preserving transform of the true conditional

mean g (¤), is not an element of the parametric model (`the model is

false'), then although a predictor that satis¯es (15-16) is not a best pre-

dictor, it is a `best ex ante predictor' (in the sense of Manski, 1988).

Such a model is the best from the permissible class s : X £ B ! R
1 at

predicting r if the prediction as a function of x must be made before the

realization of x is observed. Whilst such a predictor may be suboptimal

ex post to the observation of x = » for some » 2 X, it is optimal aver-

aging over all » according to their probability measure. This is a very

desirable property for a model to possess even if it is only a second-best

property and implies that the chosen model will maximise the risk neu-

tral investor's utility (from within the permissible class) ex ante to the

observation of ». By contrast, use of (17) in this case leads to a predictor

which is best ex ante according to the irrelevant metric of least squares

and hence the predictor itself has no useful interpretation.
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4.1.1 The interpretation of models under each speci¯cation

possibility.

The implications of the points we have made for our choice of modelling

strategy are best illustrated by considering how their relative merits vary

depending on the relation of the parametric model to the true conditional

mean.

Case 1:

s (»; c) = g (») ; » 2 X for some c 2 B

In this (implausible) case, (15-16) and (17) are both valid conditions for

the derivation of risk neutral best predictors. The only di®erence is that

the size of the solution set to (15-16) may be larger.

Case 2:

9 c 2 B; ¿ 2 T : s (»; c) = ¿ (g (»)) ; » 2 X

s (»; c) 6= g (») 8c 2 B; » 2 X

where X ½ X is a set with non-zero measure

In this case, using (17) will typically lead to an incorrect b. While s (¤; c),
is mis-speci¯ed for the conditional mean, it is correctly speci¯ed as a

model of some sign-preserving transform of it and hence use of (15-16)

will lead to the selection of a parameter b such that s (¤; b) is a risk

neutral best predictor. We illustrate this case with a simple example.

Example 4.1

Suppose the DGP of returns is given by the following non-linear process:

r = x2 (x1 ¡ 0:5)3+u (18)

(x1; x2) 2 X =(R;R++)

E (uj») = 0; » 2 X

but is incorrectly believed to be linear in x and even worse the coe±cient of

x1 and x2 are wrongly ¯xed on the basis of a priori considerations so that

s (x; c)= c0+0:1x1; c02 R1
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(i.e. it is believed that there is no dependence on x2:

The OLS predictor solves:

bols2 arg min
c02R

1

Z ¡
x2 (x1 ¡ 0:5)3 ¡ c0 ¡ 0:1x1

¢2
dP

and there is no reason to expect s
¡¤; bols¢ to satisfy (8), so the model is not

a best predictor.

However, if we apply (15) we obtain:

b =arg min
c02R

1

¡
Z

x2 (x1 ¡ 0:5)3 ¢1 [c0 + 0:1x1 > 0] dP

It can easily be veri¯ed that there exists a ¿ 2 T such that ¡0:05 + 0:1»1 =

¿
¡
»2 (»1 ¡ 0:5)3

¢
for all »1; »2 2 X (as illustrated in ¯gure 2) and hence

b = ¡0:05 is a solution. Thus, s (¤;¡0:05) is a sign-preserving transform

of g (¤) (the conditional mean) and hence by Proposition 2(b) it is a best

predictor for the risk-neutral investor despite the fact that the model used is

completely mis-speci¯ed for the conditional mean.

Clearly, use of (15) should be preferred since it leads to the risk neutral

best predictor whereas the OLS condition (17) does not.¤

Insert Figure 2

Case 3:

9 » 2 X : s (»; c) 6= ¿ (g (»)) 8 c 2 B; ¿ 2 T

This is the most probable scenario (at least in multivariate applications)

and in this case the best predictor is not an element of the parametric

model.

We are therefore called to reassess the interpretation of our metric

for choosing c: Given that the best predictor is not attainable, what is a

`good' predictor? As we have mentioned, the best ex ante predictor given

by (15) is good in a well de¯ned sense: if a risk neutral investor had to

choose amongst the use of a predictor in s (¤; c) ; c 2 B before observing
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the realisation of x; then the best ex ante predictor is the one he would

choose. Instead of a solution to (3) the ex ante predictor solves10:

max
c2B

E fWt+1g
s:t: Wt+1 = ¹Wt(1 + rt+1) + (1¡ ¹)Wt

¹ = ((l + s) ¢ 1 [s (x; c) > 0]¡ s)

The following example shows that even when the DGP is simple

and the model is only slightly mis-speci¯ed, the OLS predictor and the

one derived from models of the RNBP will diverge.

Example 4.2

Suppose the returns' DGP is given by a simple AR(1) process:

rt+1 = 0:001 + 0:1rt+u

u » N(0; ¾)iid

¾ = 0:15

and that the parametric model s (rt; c) = c + 0:1rt; c 2 B `approximately'

contains the conditional mean but not quite. In particular, let:

B = (¡1;¡0:299] _ [0:302;1)

Clearly this is a contrived restriction on the parameter set, but it allows us

to illustrate (in the context of a simple process) how the criterion by which a

parameter is chosen becomes crucial when mis-speci¯cation is even `slight'.

Because of the symmetricity of the least-squares criterion, according

to this criterion c0 = ¡0:3 and c00 = 0:302 are equally good solutions and

therefore bols = ¡0:299 is the best feasible parameter choice. However the

same is not true if bols is evaluated as a solution to (15) because the objective

function involved is asymmetric so c00 is better than bols: These facts are evident

in Figure 3 below:

10
The predictor given by (16) no longer coincides with that of (15) since the correct

speci¯cation assumption of Proposition 4 is violated.
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Insert ¯gure 3

Our analysis suggests that use of c00 = 0:302 should be preferred by the

risk-neutral investor because this choice leads to larger expected pro¯ts.¤

4.2 Non-parametric models of the conditional mean.

We have argued that use of conditions (15-16) to model the RNBP is

preferable over use of parametric conditions on the conditional mean

(such as the least squares condition 17) particularly when it is likely

that our model is mis-speci¯ed. However, non-parametric conditions on

the conditional mean may provide complementary information about the

RNBP e.g. to evaluate the correctness of the model speci¯cation. The

striking feature of non-parametric estimation of conditional means of

returns for the purpose of risk neutral best prediction is that we need

only determine the behaviour of this function around zero (because then

we can determine its sign everywhere). Non-parametric methods may be

more e®ective in providing such local information about the conditional

mean11 than they have been as estimators of the entire mean's functional

form.

5 Estimation of risk neutral best predic-

tors

In this section we derive assumptions under which sample analogues of

conditions (15-16) can be applied to consistently estimate parametric

models of risk neutral best predictors. Our proofs draw on results devel-

oped by Manski (1988) for estimation of best predictors of a binary re-

sponse under asymmetric loss functions. We report the results from some

11
Tsybakov (1987) provides methods which may be used to recursively estimate

the zeros of conditional means in an iid environment. Time series extensions of these

results should be feasible and useful for our purposes.
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simple simulations with which we explore the asymptotic behaviour of

our estimators and compare them to least squares-maximum likelihood

estimators.

5.1 Consistent estimators for the best predictors

In what follows, we make the following assumptions (which are extensions

and adaptations of Manski's (1988) Conditions 6, 7 (p. 96-97), 8' (p.

108), 1a. (p.92) and 9, (p.103)):

Assumption 5.1 The parameter space B µ R
K specifying potential

solutions to the best predictor problem is compact. In the special

case where B is discrete, only the next assumption is necessary.

Assumption 5.2 The empirical probability measure PN , consisting of

the observations fri; xigNi=1 satis¯es uniform laws of large numbers.

A simple case arises when the (ri; xi)'s are independent draws from

P but see e.g. White (1984) for feasible extensions when time

dependence is present.

Assumption 5.3 9 unique b 2 B s.t.:

¡
Z

r ¢ 1 [s (x; b) > 0] dP = min
c2B

¡
Z

r ¢ 1(s(x; c) > 0)dP

Whether this identi¯ability assumption holds will depend on the

interaction of fs(x; c); P;Bg and must be ensured on a case-by-case

basis by appropriate speci¯cation of B given our priors regarding

the behaviour of P . A result we show that is of central importance

for many applications is that if s(x; c) is linear, identi¯ability (to

scale) is ensured under weak regularity conditions (see Appendix

B).

Assumption 5.4 There is a sign-preserving transform ¿ 2 T of s(x; a)

such that ¿ (s(x; ¤)) is equicontinuous on B, i.e. 8® > 0; (»; a; c) 2
(X £B £B);

9 ±® : ja¡ cj < ±® ) j¿ (s(»; a))¡ ¿ (s(»; c))j < ®; » 2 X
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Equicontinuity of a parametric model s(x; ¤) can be directly veri-

¯ed; some examples of such models are provided byManski (Lemma

7, pp. 109-110) and are reproduced in Appendix B. The role of

this assumption is to introduce appropriate smoothness in
R
r ¢

1(s(x; c) > 0)dP without imposing assumptions on P:

Assumption 5.5 Boundary condition12:

lim
®!0

sup
c2B

Z
Xc®

jrj dP = 0; Xc® ´ f» 2 X : ¡® < s(»; c) < ®g

This is an assumption that ensures that the probability » occurs

s.t. s(»; c) is close to zero is small. It serves to ensure continuity ofR
r ¢ 1(s(x; c) > 0)dP: We derive some su±cient conditions for this

and provide them in Appendix A.

It is relevant to note that if s (¤; c) is linear in x (for example because

we restrict our attention to best linear prediction) A5.3-A5.5 become im-

mediately satis¯ed under regularity conditions given in the Appendix,

but identi¯cation can only be to scale, i.e. B must not include c and

c0 such that c = ac0; where a is a positive scalar. However, when s (¤; c) is
non-linear it becomes di±cult to accept that A5.3-A5.5 necessarily hold.

This should serve as a warning to numerous researchers who routinely op-

timise neural-nets, technical trading rules and other non-linear functions

over continuous parameter sets (e.g. Moody et al., 1998, LeBaron 1998,

Pictet et al. 1992) that their procedures may be inconsistent. We note

that if parameter sets B are discrete, e.g. in studies that optimise tech-

nical trading rules according to a metric equivalent to (15) (e.g. Skouras

1997), consistency requires only A4.2.

The role of the assumptions we have imposed is to guarantee suf-

¯cient continuity of the expressions we are considering for laws of large

numbers to guarantee uniform convergence of
R
r ¢ 1(s(x; c) > 0)dPN .

Our contribution is to show that the structure of the risk neutral best

predictor is such that a result of Manski (1988) is applicable.

12
When we use (16), we assume a similar condition holds, replacing r with ±.
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Proposition 5 Let BN be the sample analogue of (15):

BN ´ argmin
c2B

¡
Z

r ¢ 1 [s (x; c) > 0] dPN (19)

Then under A5.1-5.5, as the sample size N ! 1; the sample ana-

logue converges almost surely to the parameter (15) de¯ning either

an ex ante or an ex post risk neutral best predictor13, i.e.

BN ¡! b ´ argmin
c2B

¡
Z

r ¢ 1 [s (x; c) > 0] dP almost surely

Proof: Theorem 3', Chapter 7 of Manski (1988) applies to BN and

provides the desired result¥

We con¯rm and illustrate the proposition with a simple simulated

example. We will refer to any estimator for b as an estimator for Risk

Neutral Forecasting.

Example 5.1

As in Example 4.2, suppose the DGP of returns is an AR(1) process:

rt+1 = 0:001 + 0:1 ¢ rt+u (20)

u » N(0; 0:15) iid

Let c0 2 B = [¡0:01; 0:01] and s(x; c) = c0 + 0:1x

Note that su±cient conditions (Appendix B) for A5.1-5 apply so consis-

tent estimation is guaranteed by Proposition 5.

We simulate this series (setting r0 = E (r)) and obtain 501 observations

on rt. We then estimate
R
rt+1¢1 [c0 + 0:1rt > 0] dPN for c0 2 [¡0:01; 0:01] ;

N = 500 and plot this function in ¯gure 4.

Insert Figure 4

13
The chosen interpretation depends on whether we believe s (¤; c) is correctly spec-

i¯ed as discussed in Section 4.
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By Proposition 5, the maximum of this plot should converge to the

maximum of
R
rt+11 [c0 + 0:1rt > 0] dP a plot of which has been given in

¯gure 3 . Indeed, the minima are very close. However, after 500 observations

the objective function as a whole remains rather erratic, which we shall see

makes computation of the minimum rather complicated.¤

IWhen the conditions of Proposition 4 are satis¯ed, (16) is equiva-

lent to (15) and we can also use a sample analogue of (16) to determine

the risk neutral best predictor as the following proposition indicates:

Proposition 6 Let BN

A
be the sample analogue of (16), i.e.:

BN

A
´ argmin

c2B

¡
Z

(± ¡A (x))1 [s (x; c) > 0] dPN (21)

If A5.1-5.5 are satis¯ed and there is a function s : X £ B ! R
1

(where B ½ R
K is a parameter space and K is a positive integer)

such that for a parameter c 2 B, s (¤; c) is a Risk Neutral Best Pre-

dictor, as the sample size N increases, BN

A
converges almost surely

to a parameter de¯ning the (ex post) Risk Neutral Best Predictor

a.e. PX, i.e.:

BN

A
¡! b almost surely

where s (»; b) 2 argmin
µ2R1

¡
Z

r ¢ 1 [µ > 0] dP j»; a.e. PX

Proof: Theorem 3', Chapter 7 of Manski (1988) implies:

BN

A
¡! b = argmin

c2B

¡
Z

(± ¡A (x)) ¢ 1 [s (x; c) > 0] dP almost surely

and Proposition 4b implies s (x; b) is a risk neutral best predictor a.e..¥

When the assumptions of this theorem are satis¯ed, the following

loose argument indicates that there may be an e±ciency advantage in

using (21) over (19). Since ± takes the same values as 1 (g (x) > 0) with
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some (hopefully large) probability (depending on the behaviour of u), the

error term u does not a®ect (21) and hence with some probability there

is no noise in the estimation process. Intuitively speaking, since A (¤)
captures some of the relevant structure of g (¤) ; using this information

should improve our estimators.

Of course, even if we believe in these assumptions, we may not

wish to be as bold as Henriksson and Merton (1981) who assume that

A (¤) is known. In this case, it may be possible to estimate A (¤) with
a model AN (¤) satisfying certain desirable convergence properties as N

becomes large. Such a model may be trivial to formulate if, for example,

A (¤) is known to be constant (We have discussed empirical studies which

suggest this may be the case). If AN (¤) converges uniformly to A (¤),
then a variant of the estimator BN

A
may be used to identify the risk

neutral best predictor.

Proposition 7 Let B
N

A
be:

B
N

A
´ argmin

c2B

¡
Z
(± ¡AN (x))1 [s(x; c) > 0] dPN (22)

Then if there is a function s : X £ B ! R
1 (where B ½ R

K is

a parameter space and K is a positive integer) and a parameter

c 2 B such that s (¤; c) is a RNBP (satis¯es (8)) and if A5.1-5.5

are satis¯ed, as the sample size N ! 1; B
N

A
converges to the

parameter de¯ning the risk neutral best predictor:

B
N

A
¡! b almost surely

where s (x; b) 2 argmin
µ2R1

¡
Z

r ¢ 1 [µ > 0] dP j»; » 2 X

Proof: Since Lemma A (in Appendix A) states that:

lim
N!1

sup
c2B

¯̄̄
¯̄̄ R ³

± ¡A (x)N
´
¢ 1 [s(x; c) > 0] dPN¡R ³

± ¡A (x)N
´
¢ 1 [s(x; c) > 0] dP

¯̄̄
¯̄̄ = 0
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it follows using Lemmata 4 and 5 of Manski (1988) that Theorem 1' of

Manski (1988) applies and therefore it must be that:

lim
N!1

sup
c2B

N

A

jc¡ b0j = 0

where b0 2 argmin
c2B

¡
Z
(± ¡A (x))1 [s(x; c) > 0] dP

The assumption that the model is correctly speci¯ed and Proposition

4 complete the proof as they imply that s (x; b) 2 argminµ2R1 ¡
R
r ¢

1 [µ > 0] dP j»; » 2 X¥

Remark 1 If A (¤) is known to be constant, there exist techniques (Zheng

1998) which allow us to judge whether s (¤; c) is a correctly speci¯ed model

for the A (»)'th quantile of ±j»: If this is the case, then it follows that

s (¤; c) must also be a correctly speci¯ed model for the risk neutral best

predictor. These results are applicable since we have shown that in this

circumstance the problem of risk neutral best prediction is equivalent to a

problem of quantile regression. It may be possible to extend these results

to the case where A (¤) is not constant and provide a general test for

correct speci¯cation of risk neutral best predictors.

5.2 Estimator asymptotic distribution

It would be very convenient to have some analytical results concerning

the rates of convergence and asymptotic distribution of our estimators as

this is a necessary condition for judging their asymptotic e±ciency and

conducting hypothesis tests. Unfortunately there are no available results

for estimators of the form we have developed or for the loss incurred from

their use. Some results for estimators that are closely related are:

1) Pakes and Pollard (1989) show that if (r; x) were i:i:d: our estima-

tors would be asymptotically normal. The strict independence assump-

tions they use to derive this result makes it inapplicable in time-series

contexts such as the ones we are interested in.
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2) West (1996) provides an asymptotic normality result for out-

of-sample loss from general loss functions. However, his results are not

applicable here because the loss functions he considers are continuous.

3) The results of Chamberlain (1986) imply that if A (¤) is a known

constant, the estimator BN

A
does not converge at a rate 1p

n
even when it

is consistent.

Rather than embark on the di±cult but worthwhile task of deriv-

ing results which are applicable to the discontinuous loss function, time

dependent case which the risk neutral investor faces, we will provide a

simple simulation to investigate the convergence properties of the esti-

mator and the loss incurred from its use.

5.2.1 Simulation 5.1

Consider the following DGP:

rt+1 = 0:00015 + 0:0330 ¢ rt + u

u » N(0; 0:0108) iid

The parameters of this DGP were determined by using OLS to

estimate an AR(1) model on a series of IBM stock prices which we will

describe in Section 6.

We draw N+1 simulated observations of rt from this DGP (setting

r0 = E (r)) and repeat till we obtain T = 10; 000 such draws of size N+1

from P .

Suppose the parametric model to be estimated is s(x; c) = c0+c1x:

Our discussion of the assumptions introduced in this section indicate that

a linear model for a risk neutral best predictor can only be estimated to

scale. We therefore estimate s(x; c) = c+ x instead:

BN = min
c

¡
Z

rt+1 ¢ 1 [c+ rt > 0] dPN

According to Proposition 5, BN should converge to 0:001

0:1
= 0:01

as N becomes large. We do not know whether BN has an asymptotic

25



distribution, but we hope to ¯nd out by sampling the distribution of BN

for various N .

We are also interested in the asymptotic distribution of:

E
¡
L
¡
rt+1; B

N
¢¢

= ¡
Z

rt+1 ¢ 1
£
BN + rt > 0

¤
dPN

as knowledge of this distribution allows us to assess the asymptotic prof-

itability arising from the use of BN . Given the distribution of BN we can

determine this asymptotic distribution on the basis of analytical results

for the form of the function E (L (rt+1; ¤)) provided in the Appendix.

The ¯gures below plot the histograms of BN and E
¡
L
¡
rt+1; B

N
¢¢

for various values of N .

Insert ¯gure 5a-h

The following table also provides some insight into the behaviour

of the estimator

N §T
BN

i

T
V
¡
BN
i

¢
§T

¡E(L(rt+1;BN

i ))
T

V
¡
E
¡
L
¡
rt+1; B

N
i

¢¢¢
*10¡3 *10¡8

200 0.0001 0.0004 0.1662 0.5081

500 0.0022 0.0002 0.1736 0.4520

1000 0.0034 0.0002 0.1833 0.3723

2000 0.0041 0.0001 0.1954 0.2499

True values 0.0045 0.2340

Table 1. The ¯rst column indicates the size of the sample in which BN is

optimised. The second and third column provide the mean and variances

of the estimator over the 10000 simulations, and the last two colums provide

the mean and variance of the expected pro¯ts these estimators would have

yielded for the risk neutral investor. The last row gives the true B and the

expected pro¯ts from use of this true B:

We draw the following conclusions:
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i. Convergence to the true parameter is con¯rmed.

ii. The asymptotic distribution of BN does not appear to be normal.

The asymptotic distribution of E
¡
L
¡
rt+1; B

N

i

¢¢
, the expected loss

of this estimator is certainly non-normal.

iii. The estimate §T

B
N

i

T
is smaller than its true value for all N and this

¯nite sample bias does not take into account the nature of the loss

function which (as seen in Example 4.2 and ¯gure 3) makes errors

to the left of b more costly than errors to the right.

5.3 Comparison to least squares estimators of the

conditional mean

As we have discussed, in the (improbable) case that a parametric model

includes a correct speci¯cation for the conditional mean, least squares

conditions can be used to ¯nd the best predictor. Indeed, in this case it

may be preferable to estimate c using least squares methods as they are

consistent under more general conditions than those required for asymp-

totic consistency of BN . Furthermore, these estimators may have desir-

able e±ciency properties (e.g. when normality guarantees they are also

maximum likelihood estimators) which the estimators developed here do

not share. Finally, their computational derivation is far easier and is

supported by standard software.

These considerations motivate the following simple simulation which

is intended to compare our estimator to the OLS estimator in a simple

situation highly favourable to the latter. In particular, we consider the

case where the model s (¤; c) contains a correct speci¯cation for the condi-

tional mean and furthermore where the OLS estimator is also a Maximum

Likelihood estimator.
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5.3.1 Simulation 5.2

Using the same series as in Simulation 5.1, we derive:

¡
bols0 ; bols1

¢
= min

(c0;c1)

Z
(rt+1 ¡ c0 + c1rt)

2 dPN

We plot the histograms of Bols ´ bols
0

bols
1

and E
¡
L
¡
rt+1; B

ols
¢¢

for

various N:

Insert ¯gure 6a-h

We may compare the following table to Table 1..

N §T
Bols

i

T
V
¡
Bols

i

¢
§T

¡E(L(rt+1;Bols

i ))
T

V
¡
E
¡
L
¡
rt+1; B

ols
i

¢¢¢
*10¡3 *10¡8

200 -0.0816 77.7744 0.1636 0.5427

500 -0.0010 0.1252 0.1734 0.4504

1000 0.0102 0.2371 0.1849 0.3452

2000 0.0162 0.7903 0.1984 0.2298

True values 0.0045 0.2340

Table 2. The ¯rst column indicates the size of the sample in which BN is

optimised. The second and third column provide the mean and variances

of the estimator over the 10000 simulations, and the last two colums provide

the mean and variance of the expected pro¯ts these estimators would have

yielded for the risk neutral investor. The last row gives the true B and the

expected pro¯ts from use of this true B:

A comparison of these results to those of simulation 5.1 indicate

the following

i. Convergence of Bols to the true parameter is slower than that of

BN : Furthermore, it converges with a huge variance due to bols
1

often
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taking values very close to zero. This would occur infrequently if

occur when b1 were far from zero, but in ¯nancial applications

coe±cients are typically small.

ii. Whilst this may not be evident in the histogram, the estimator

Bols does converge to an asymptotic distribution. This is a non-

central Cauchy distribution since it is derived from the ratio of

two variables with a known joint normal distribution (see Papoulis

1984, p.136).

iii. In addition to these undesirable properties, Bols performs worse

than BN in terms of loss in small samples. In other words, a risk

neutral investor with a sample N < 1000 should prefer use of BN .

iv. Nevertheless, eventually Bols becomes a preferable estimator in

terms of loss. This occurs because loss functions are bounded and

hence when bols
1

' 0 loss does not explode even though
¯̄
Bols ¡ b

¯̄
does.

We believe Simulations 5.1-5.2 provide surprisingly supportive ev-

idence in favour of our estimator over an OLS-ML estimation approach

when the objective is risk neutral best prediction. They indicate that

even in the unrealistic scenario that is most favourable to OLS estima-

tion, their is no clear evidence that this estimation technique is preferable.

6 An algorithm for computing the proposed

estimator

With the theory of the previous sections in place, it seems that we are

ready to estimate best predictors from ¯nancial data. Unfortunately,

derivation of our estimators is in practice hindered by some serious com-

putational obstacles.

In this section we will explain why the computational di±culties

arise and propose an optimisation algorithm specially designed for the
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particular problem at hand. Our discussion henceforth will be couched in

terms of the ¯rst of the proposed estimators BN ; but is equally applicable

to our other estimators BN

A
and B

N

A
: Since BN

A
can be interpreted as the

estimator of a best predictor of a binary response under asymmetric

absolute loss (possibly varying with x), the techniques developed here

may also be useful for binary quantile regression.

6.1 Origins of computational di±culties

Our estimator has been de¯ned (19) as:

BN ´ argmin
c2B

¡
Z

r ¢ 1 [s(x; c) > 0] dPN

The reason it is di±cult to computationally derive BN is the same reason

for which we have had to make special assumptions in order to ensure

asymptotic consistency, namely the discontinuity of 1 [s(x; c) > 0] : A di-

rect implication of this discontinuity is that the objective function must

necessarily have ¯nite cardinality. This in turn means that the minimum

we are searching for exists but that the objective function will in general

be set-valued and hence it too will be discontinuous.

To understand this, think of the simple case where s (¤; c) is a linear
function, i.e. s (»; c) = »0c, » 2 X. Then the N hyperplanes de¯ned by

c = [° : »0
i
° = 0] ; i = 1; 2; :::; N decompose B into at most Ndim(X) + 1

regions in each of which
R
r ¢ 1 [s(¤; c) > 0] dPN must be constant as a

function of c14.

Considering that the randomness inherent in the sampling process is

carried over to a set-valued discontinuous objective function, it becomes

evident that
R
r ¢ 1 [s(¤; c) > 0] dPN will be a highly rugged object even

when
R
r ¢ 1 [s(¤; c) > 0] dP is itself continuous15. Of course, as N tends

to in¯nity these problems disappear but unfortunately this asymptotic

result is not re°ected in realistic sample sizes. To get a feel for the

14A similar point is made in Manski 1985, p.320.
15Our assumptions A4.3 and A4.5 are su±cient to ensure this by Manski 1988,

Lemma 5., p.104.
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problem, we may revisit Figure 4 which is a plot of the highly irregularR
rt+1 ¢1 [c0 + 0:1rt > 0] dPN as a function of c0 with N = 500: Obviously,

as the dimensionality of the objective function increases, so does the

di±culty of the problem. We illustrate this fact by plotting the graph ofR
rt+1¢1 [c0 + 0:1rt + c2rt¡1 > 0] dPN withN =2049 observations on IBM

daily closing prices16 from 1st January 1990 through to 6th November

1997.

Insert ¯gure 7 here

We have tried traditional optimisation techniques (such as simplex

search, gradient descent and the less traditional genetic algorithm) on

this type of problem but have observed a drastical failure to converge to

a speci¯c value for BN : LeBaron (1998) and Pictet et al. (1996) have

also encountered this problem when trying to optimise similar objective

functions. It is likely that these computational di±culties have been an

important obstacle for researchers who have previously made informal

attempts to estimate models according to the types of loss function con-

sidered here.

6.2 The proposed algorithm

The computational procedure we propose is based on the following idea:

begin by approximating
R
rt+1 ¢ 1 [s(»; c) > 0] dPN with a smooth func-

tion of c. This imposes continuity and eliminates much of the ruggedness

of the landscape making its minimum relatively easy to ¯nd with a pow-

erful global search procedure17. Next, make this approximation closer toR
rt+1 ¢ 1 [s(x; c) > 0] dPN and use the minimum of the previous approx-

imation as a starting point for a local search, repeating till the problem

actually solved is the desired one - but is solved using a starting point

that is (if all goes well) very close to its global minimum. As long as the

problems solved along the way are not `too' di®erent, this is a reasonable

16Obtained from DATASTREAM on the last day in the dataset.
17This ¯rst element of our procedure has independently been used by LeBaron

(1997).
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property to expect from our procedure. We now describe the proposed

algorithm in detail18.

Step 1. Derive an estimator which is a smooth approximation to

the desired estimator19:

BN
0 = argmin

c2B
¡
Z

r ¢
µ
1 + exp

µ
¡s(x; c)

m0

¶¶
¡1

dPN (23)

where m0 is a normalising constant20 set so that a large proportion of the

values of s(x;c)
m0 lie in a region of the domain of (1 + exp (¡y))¡1 where this

function has some curvature. We illustrate the impact of this smoothen-

ing in ¯gure 8 which shows its e®ect on the objective function obtained

from the IBM series (¯gure 7).

Insert ¯gure 8 here

To ¯nd BN
0 ; optimisation methods that work well globally should

be used. In particular, we propose the use of a genetic algorithm to ¯nd

an initial maximum (see Dorsey and Mayer (1995) for evidence on the

suitability of such an algorithm) from which we then initiate a simplex

search. The computed estimate of BN
0 will be denoted BN

0 :

Let i = 1 and proceed to Step 2.

Step 2. Using BN
i¡1 as a starting point, derive BN

i a numerical

approximation to BN
i

18
I would like to thank Domingo Tavella for a discussion that lead me in the direc-

tion of this algorithm.
19This smoothness makes West's (1996) results applicable and hence under general

circumstances the out of sample losses from BN
0 will be asymptotically normal.

20These constants are determined as follows. First we estimate s (x; c) by OLS.

We then derive an estimate for the mean ¹ols and standard deviation ¾ols of

s
¡
x; bols

¢
: Given that x has been demeaned, ' 95% of s

¡
x; bols

¢
is in the range

(¹ols ¡ 2¾ols; ¹ols + 2¾ols) : Given also that ¹ols is usually small, we may assume that

a large proportion of s
¡
x;BN

¢
lie in the region (¡2¾ols; 2¾ols). The range in which

the function (1 + exp (¤)) is curved is (say) [¡10; 10]: We therefore set m0 =
2¾ols
10

to

ensure that a large proportion of observations of
s(xi;BN)

m0 are in the desired region.
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BN
i = argmin

c2B
¡
Z

r ¢
µ
1 + exp

µ
¡s(x; c)

mi

¶¶
¡1

dPN = 0

mi = f
¡
mi¡1

¢
In our applications, we have used21 f (z) = 0:85 ¢ z: .

Step 3. If
R ¯̄̄
¯¡1 + 2 ¢

³
1 + exp

³
¡s(x;c)

mi

´´
¡1
¯̄̄
¯ dPN = 1 (which en-

sures that convergence to ¡ R
r¢1 ¡s(x;BN) > 0

¢
dPN has been achieved)

then end, let i = I and use BN
I as the estimate for BN .

Otherwise, let i = i+ 1 and return to Step 2.

6.3 Some properties of the algorithm

All computational optimisation techniques aim to improve the speed of

optimisation over an exhaustive grid search. A good technique is one

that improves signi¯cantly over this speed without incurring a large cost

in terms of a signi¯cant deterioration in performance.

One objection to the use of an algorithm such as the one proposed

is that it could be that BN
i varies drastically as a function of mi. If so,

even if one ¯nds the global minimum of the ¯rst approximation, it may

be that in the process of minimising better and better approximations

to the desired problem, the algorithm gets stuck in a local minimum.

Whether or not this happens will of course be an empirical issue and will

depend on the interaction of the size of N; the form of P and s (x; c) as

well as the e±ciency of the computational procedures used.

With respect to this we note that exhaustive grid-searches noth-

withstanding, we know of no alternative which would work on such a

rugged landscape22. In trials we have run and which we will demonstrate

21
A more sophisticated approach could let mi be a function of

³
BN

i¡1; B
N

i¡2; :::; B
N

0

´

designed to accelerate and improve convergence
22Except perhaps the method of Pictet et al. (1996) the properties of which are

still insu±ciently understood.
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below, the procedure has worked well for various N; as it is converges

and does so much faster than grid searches.

Furthermore, as the following proposition shows, if b is a continuous

function of m then this problem can be ruled out when N is `large'.

Of course, as N becomes large the original objective function becomes

increasingly smooth and therefore some of the computational di±culty

disappears. However, it would be disconcerting if our algorithm did not

work even when N was large.

Proposition 8 Let:

b(c;m) ´ argmin
c2B

¡
Z

r ¢
µ
1 + exp

µ
¡s(x; c)

m

¶¶
¡1

dP

bi ´ argmin
c2B

¡
Z

r ¢
µ
1 + exp

µ
¡s(x; c)

mi

¶¶
¡1

dP

m ´ max
i

mi¡1 ¡mi

If (1) b (c;m) is a quasi-concave function, (2) BN

i
! bi almost

surely23 as N ! 1, (3) The optimisation algorithms satisfy: (i)

The optimum in Step 1 can be found (i.e. BN

0 = BN

0
) and (ii) for

every subsequent step, optimisation works in an "-neighbourhood of

the solution (i.e. for a starting point Bs and some positive constant

", jBs ¡Bij � " ) BN

i = BN

i
), then 9 m > 0 :

BN

I ! b as N ! 1

Proof: See Appendix.

The most crucial assumption we make here is that b (c;m) is a

quasi-concave function. This is an unsatisfactory assumption because it

does not relate to properties of P or s (x; c). Unfortunately, we do not

23Conditions for (2) are weaker than the ones we have imposed for consistent esti-

mation and are given by Manski 1988, Theorem 2', p.101)
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know of conditions on (P; s (¤; ¤)) which would guarantee this and it is

di±cult to check whether even in simple cases this is the case24.

We conclude that the usefulness of the procedure we propose can

only be evaluated in the context of a speci¯c application. However, we

believe the method is intuitively sensible and we have found it to be

very e®ective on real data. The following simulation is an example of its

e®ectiveness.

6.4 Empirical results from a simple model

Using the parametric model

s (x; c) = c0 + c1x1 + c2x2

we employ our algorithm to compute an estimate of the risk neutral best

predictor.

Since the model can only be identi¯ed to scale, set c1 = 0:1 and

compute:

BN ´ arg min
(c0;c2)2B

¡
Z

rt+1 ¢ 1 [c0 + 0:1rt + c2rt¡1 > 0] dPN

B = [¡10; 10]£ [¡1; 1]

We now describe the step-by-step results of the estimation proce-

dure.

Step 1: The parameters estimated by the Genetic Algorithm are

BN
0 = arg min

(c0;c2)2B
¡
Z

r ¢
µ
1 + exp

µ
¡c0 + 0:1rt + c2rt¡1

m0

¶¶
¡1

dPN

(24)
BN

0 = (0:0043;¡0:5658)

24We have been able to con¯rm that this is the case for the AR(1) model used in

previous examples by plotting b (c;m). Hopefully, quasi-concavity generalises to other

cases.
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The value of the objective function at this point is:Z
r ¢

µ
1 + exp

µ
¡0:0043 + 0:1rt ¡ 0:5658rt¡1

m0

¶¶
¡1

dPN = 8:4352¤ 10¡4

The daily pro¯ts that would have been obtained (in sample) by a risk

neutral investor using this estimated model are:Z
rt+1 ¢ 1 [0:0043 + 0:1rt ¡ 0:5658rt¡1 > 0] dPN = 8:6936 ¤ 10¡4

Step 2:The estimated parameter after all25 recursions was:

BN

I
= (0:0036;¡0:4765)

The daily pro¯ts that would have been obtained (in sample) by a risk

neutral investor using this estimated model would be:Z
rt+1 ¢ 1 [0:0036 + 0:1rt ¡ 0:4765rt¡1 > 0] dPN = 9:4025 ¤ 10¡4 (25)

Grid Search Comparison

By comparison, the grid search over 81£301 = 24381 points spaced

evenly in areas of size (0:0005; 0:01) used to plot ¯gures 7 and 8 produced

the following results:

For the objective function in step 1 (i.e. the approximation to the

risk neutral investor's loss function)

BN

0 (grid) = (0:0042;¡0:55)

The value of the objective function at this point is (compare to (24)):Z
r ¢

µ
1 + exp

µ
¡0:0042 + 0:1rt ¡ 0:55rt¡1

m0

¶¶
¡1

dPN = 8:4325 ¤ 10¡4

(26)

2539% of the recursions of this step resulted in improvements in the objective

function.
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For the loss function of the risk neutral investor:

BN (grid) = (0:0035;¡0:45)

The daily pro¯ts that would have been obtained (in sample) by a risk

neutral investor using the parameters estimated by grid search would are

(compare to (25)):Z
rt+1 ¢ 1 [0:0036 + 0:1rt ¡ 0:4765rt¡1 > 0] dPN = 9:2226 ¤ 10¡4 (27)

The ¯gure below plots the sequence fBN

i
g and the value for BN

obtained by grid search.

Insert Figure 9

We can draw the following conclusions from our results:

i. The proposed computational procedure for estimation of Step 1 is

very accurate (more accurate than that obtained from a grid search

with a ¯ne grid).

ii. The recursions of Step 2 lead to signi¯cant improvements over the

point estimated in Step 1 and the overall results of our computa-

tional procedure our better than that from the grid search.

iii. The procedure was approximately 10 times faster than the grid

search.

iv. The parameters derived are not too di®erent (scaled appropriately)

to those estimated by OLS as described in Simulation 5.1.

It therefore seems that the results of Proposition 8 seem to apply

and that the algorithm is very e®ective. Its e®ectiveness in comparison

to the grid search will increase as the number of estimated parameters

increases.
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7 Conclusion

The purpose of this paper has been to develop techniques by which risk

neutral investors can conduct Risk Neutral Forecasting - that is, estima-

tion of their optimal point forecasts for ¯nancial returns. Risk Neutral

Forecasting is a natural framework in which to ¯t estimation of optimal

`investment rules' such as technical trading rules or market timing rules.

It provides the estimation counterpart to the literature which has evalu-

ated the out of sample performance of returns models according to their

`economic value' as quanti¯ed by criteria equivalent to the risk neutral

investor's loss function. When a model has economic value for a risk

neutral investor, it also has value for other types of investors (Merton

1981, Skouras 1997).

The objective of Risk Neutral Forecasting is to use data to paramet-

rically estimate the Risk Neutral Best Predictor. It is obviously easier

to formulate a correctly speci¯ed model for some function that has the

same sign as the conditional mean than for the conditional mean itself.

Since any function that has the same sign as the conditional mean is a

Risk Neutral Best Predictor, it follows that Risk Neutral Forecasting is

`easier' than conditional mean forecasting in the sense that it requires

less stringent assumptions on the correctness of model speci¯cation.

Most of our analytical results are derived by exploiting the obser-

vation that Risk Neutral Forecasting can be seen as a generalisation of

quantile regression of the sign of returns. This fact allows us to use some

existing results to propose estimators for Risk Neutral Best Predictors

that are asymptotically consistent. However, there are no available re-

sults on which we can build to derive further properties of our estimator

so we explore these using some simulations.We ¯nd that our main esti-

mator compares favourably with OLS procedures even when OLS is a

maximum likelihood estimator.

There exists some empirical evidence indicating that it may be real-

istic to assume returns processes have some special features which make

Risk Neutral Forecasting a standard exercise in quantile regression of a

binary response. In this case, one of our estimators may be particularly
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e±cient and we may use existing results to test whether a parametric

model is a correct speci¯cation for a Risk Neutral Best Predictor - or

equivalently whether it contains an optimal investment rule.

One complication in implementing Risk Neutral Forecasting is the

computational di±culty of the problem involved. We propose an optimi-

sation algorithm that goes some way in overcoming this di±culty. The

algorithm is justi¯ed using both simulations and theoretical results and

should also be useful in quantile regression applications (which are known

to be computationally demanding, see e.g. Koenker et al., 1985).

There are a number of easy and interesting extensions, such as

changing the risk neutral decision problem to include transaction costs

and a second ¯nancial asset. There are also some di±cult but very inter-

esting questions that remain unanswered which relate to the properties

of our estimators. In particular, a procedure for Risk Neutral Forecasting

would be greatly improved by the derivation of an asymptotic distribu-

tion for the out of sample performance of estimated models since this

could be used for model selection and validation. There is hope for the

determination of such a distribution if the results of West (1996) can be

extended to the case of discontinuous objective functions.

All these directions are important but the main priority for future

research is empirical. The results developed permit estimation of a Risk

Neutral Forecasting model that can combine the structure of econometric

models for returns with the pro¯tability of the most successful investment

rules. Such a hybrid model should provide improved understanding of

those features of returns processes that are the most important determi-

nants of investment behaviour.
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8 Appendices

Appendix A: Proofs of lemmata and lengthy propositions Proof

of Proposition 2

Since

g (x) = E (rjx) =
Z

0

¡1

rdP jx+

Z
1

0

rdP jx
= Pr(± = 0jx)E (rj± = 0; x) + Pr(± = 1jx)E (rj± = 1; x)

= ¡Pr(± = 0jx)E (jrj j± = 0; x) + Pr(± = 1j»)E (jrj j± = 1; x)

= ¡Pr(± = 0jx) [E (jrj j± = 0; x) + Pr(± = 1j»)E (jrj j± = 1; x)]

+E (jrj j± = 1; x)

Let:

z(x) ´ 1

E (jrj j± = 0; x) +E (jrj j± = 1; x)

Then g (x) ¢ z(x) = A (x)¡ Pr(± = 0jx)
Since z(x) > 0; g (x) ¢ z(x) is a sign-preserving transform of g (x)

so by Proposition 1b:

p (») 2 argmin
µ2R1

¡ (A (»)¡ Pr(± = 0j»)) ¢ 1 [µ > 0] ; » 2 X¥

Proof of Proposition 4

(a)

)
Suppose s (¤; b) is a RNBP almost everywhere on PX. Then:

s (»; b) 2 argmin
µ2R1

¡
Z

r ¢ 1 [µ > 0] dP j»; a.e. PX

so it must be that:

¡
Z

r ¢1 [s (»; b) > 0] dP j» � ¡
Z

r ¢1 [s (x; c) > 0] dP j»; 8c 2 B a.e. PX
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Summing over all inequalities for each » 2 X :

¡
Z

r ¢ 1 [s (x; b) > 0] dP � ¡
Z

r ¢ 1 [s (x; c) > 0] dP; 8c 2 B;

So (15) is indeed a necessary condition.

(
Suppose s (¤; b) is not a RNBP almost everywhere on PX. Then for

some X with non-zero measure:

s (»; b) =2 argmin
µ2R1

¡
Z

r ¢ 1 [µ > 0] dP j»; » 2 X

Since by assumption s (x; c0) is a RNBP:

¡
Z

r ¢ 1 [s (x; b) > 0] dP j» > ¡
Z

r ¢ 1 [s (x; c0) > 0] dP j»; » 2 X

¡
Z

r ¢ 1 [s (x; b) > 0] dP j» ¸ ¡
Z

r ¢ 1 [s (x; c0) > 0] dP j»; » =2 X

Summing over all inequalities for each » 2 X :

¡
Z

r ¢ 1 [s (x; b) > 0] dP > ¡
Z

r ¢ 1 [s (x; c0) > 0] dP

But this contradicts (15), so it is also a su±cient condition.

(b) Using Proposition 2 s (¤; b) is a RNBP i®

s (¤; b) 2 argmin
µ2R1

¡1 [µ > 0] ¢ (A (»)¡ Pr (± = 0j»)) ; » 2 X

Using this fact and applying the same logic as in (a) we get the desired

result.¥

Proposition 7, Lemma A

Lemma A: Let

h(x; c) ´ v(x)1 [s(x; c) > 0]

hN(x; c) ´ vN(x)1 [s(x; c) > 0]

v(x) ´ ± ¡A (x)

vN(x) ´ ± ¡AN (x)
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Under the assumptions imposed, the sample expected loss function using

the uniformly convergent model AN (x) for A (x) converges uniformly to

the true loss function:

lim
N!1

sup
c2B

¯̄̄
¯Z hN(x; c)dP

N ¡
Z

h(x; c)dP

¯̄̄
¯ = 0

Proof of Lemma A

This proof extends Theorem 3', Chapter 7, Manski 1988 to the case

where v is replaced with a uniformly consistent estimate for it.

Its proof utilises the following Lemma:

Lemma B:

If AN (x) ! A(x) uniformly, then

max
c2B

¯̄̄
¯Z hN(x; c)dP

N ¡
Z

h(x; c)dP

¯̄̄
¯ ! 0 a.s.

Proof of Lemma B:

Since hN(x; c) is a linear function of AN(x) uniform convergence of

the latter implies uniform convergence of the former.

This means:

8 " > 0;9 N0 : jhN(x; c)¡ h(x; c)j < "; x 2 X; N > N0

Hence:
1

N

NX
i=1

jhN(xi; c)¡ h(xi; c)j < 1

N

NX
i=1

" = "

But since 1

N

P
N

i=1
jhN (xi; c)¡ h(xi; c)j ¸

¯̄̄
1

N

P
N

i=1
hN (xi; c)¡ h(xi; c)

¯̄̄
this

implies: ¯̄̄̄
¯ 1N

NX
i=1

hN(xi; c)¡ h(xi; c)

¯̄̄̄
¯ < "

Letting N0 ! 1, " can be arbitrarily close to zero so it follows that:¯̄̄
¯Z hN(x; c)dP

N ¡
Z

h(x; c)dPN

¯̄̄
¯ ! 0 a.s. (28)
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An appropriate LLN ensures that:¯̄̄̄Z
h(x; c)dPN ¡

Z
h(x; c)dP

¯̄̄̄
! 0 a.s. (29)

So combining (28) and (29):¯̄̄
¯Z hN(x; c)dP

N ¡
Z

h(x; c)dPN

¯̄̄
¯+

¯̄̄
¯Z h(x; c)dPN ¡

Z
h(x; c)dP

¯̄̄
¯ ! 0 a.s.

(30)

Now notice that since ja¡ bj+ jb¡ cj ¸ ja¡ cj,¯̄̄
¯Z hN(x; c)dP

N ¡
Z

h(x; c)dPN

¯̄̄
¯+

¯̄̄
¯Z h(x; c)dPN ¡

Z
h(x; c)dP

¯̄̄
¯

¸
¯̄̄
¯Z hN(x; c)dP

N ¡
Z

h(x; c)dP

¯̄̄
¯

Using this fact and (30), we obtain:

¯̄̄̄Z
hN(x; c)dP

N ¡
Z

h(x; c)dP

¯̄̄̄
! 0 a.s.

and the proof to Lemma B is complete since this holds for all c 2 B¥

To prove Lemma A, we follow the logic of Manski (1988), Lemmata

5 and 6, pp 104-108:

¯̄̄
¯Z hN (x; a)¡ hN (x; c)dP

N

¯̄̄
¯ (31)

=

¯̄̄
¯Z vN (x)[1(s(x; a) < 0)¡ 1(s(x; c) < 0)]dPN

¯̄̄
¯

�
Z ¯̄

vN (x)[1(s(x; a) < 0)¡ 1(s(x; c) < 0)]
¯̄
dPN

=

Z
X(a;c)

¯̄
vN(x)

¯̄
dPN

where X(a; c) ´ f» 2 X : s(»; a) � 0 � s(»; c) or s(»; a) ¸ 0 ¸ s(»; c)g
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For c 2 B; ® > 0; by the equicontinuity assumption (A5.4) which

for notational simplicity (but without loss of generality) we assume holds

for the identity function ¿ : ¿ (x) = x; it follows that 9±® : ja¡ cj < ±® )½
s(»; c) > ® ) s(»; a) > 0

s(»; c) < ¡® ) s(»; a) < 0

¾
8a 2 B; » 2 X

Hence

ja¡ cj < ±® ) X(a; c) ½ Xc® ´ f» 2 X : ¡® < s(»; c) < ®g

And using (31) previously established:

ja¡ cj < ±® )
¯̄̄
¯Z hN (x; a)¡ hN (x; c)dP

N

¯̄̄
¯ � Z

Xc®

¯̄
vN (x)

¯̄
dPN

By identical reasoning, this condition holds if we replace hN (x; ¤) with
h (x; ¤) and PN with P: Hence,

ja¡ cj < ±® ) (32)¯̄̄
¯Z h(x; a)¡ h(x; c)dP

¯̄̄
¯+

¯̄̄
¯Z hN(x; a)¡ hN(x; c)dP

N

¯̄̄
¯

�
Z
Xc®

jv(x)j dP +

Z
Xc®

¯̄
vN(x)

¯̄
dPN

Now notice that:¯̄̄
¯Z hN(x; a)dP

N ¡
Z

h(x; a)dP

¯̄̄
¯ (33)

=

¯̄̄̄ R
(hN(x; a)¡ hN (x; c)) dP

N ¡ R
(h(x; a)¡ h(x; c)) dP+

+
R
hN (x; c)dP

N ¡ R
h(x; c)dP

¯̄̄̄
�

¯̄̄
¯Z hN(x; a)¡ hN(x; c)dP

N

¯̄̄
¯+

¯̄̄
¯Z h(x; a)¡ h(x; c)dP

¯̄̄
¯+

+

¯̄̄
¯Z hN (x; c)dP

N ¡
Z

h(x; c)dP

¯̄̄
¯

Hence combining (32) and (33):
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ja¡ cj < ±® )¯̄̄
¯Z hN(x; a)dP

N ¡
Z

h(x; a)dP

¯̄̄
¯

�
Z
Xca

jv(x)j dP +

Z
Xca

¯̄
vN (x)

¯̄
dPN +

¯̄̄
¯Z hN(x; c)dP

N ¡
Z

h(x; c)dP

¯̄̄
¯

Now the assumption of compactness of B (A5.1) implies directly that 9
B® ½ B s.t. card(B®) < 1 and c 2 B® satis¯es ja¡ cj < ±® 8a 2 B:

Hence 8 a 2 B;

¯̄̄
¯Z hN (x; a) dPN ¡

Z
h (x; a) dP

¯̄̄
¯ (34)

� max
c2B®

Z
Xc®

jv(x)j dP +max
c2B®

Z
Xc®

¯̄
vN(x)

¯̄
dPN +

+max
c2B®

¯̄̄
¯Z hN(x; c)dP

N ¡
Z

h(x; c)dP

¯̄̄
¯

Now notice that by assumption AN(x) ! A(x) uniformly so vN (x) !
v(x) uniformly. Hence there is a N0 s.t. for all N > N0;

¯̄
vN (x)¡ v(x)

¯̄ �
²

Since also
¯̄
vN(x)¡ v(x)

¯̄ ¸ ¯̄
vN(x)

¯̄¡ jv(x)j, it follows that:¯̄
vN(x)

¯̄¡ jv(x)j � ²

Hence for all c; a 2 BZ
Xca

¯̄
vN(x)

¯̄¡ jv(x)j dPN � ²

Which implies that for all c; a 2 BZ
Xc®

¯̄
vN(x)

¯̄
dPN !

Z
Xc®

jv(x)j dPN a.s.

The strong law of large numbers implies (given A4.2) that:
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Z
Xc®

jv(x)j dPN !
Z
Xc®

jv(x)j dP a.s.

Hence for all c; a 2 BZ
Xc®

¯̄
vN(x)

¯̄
dPN !

Z
Xc®

jv(x)j dP a.s.

Which implies

max
c2B®

Z
Xc®

¯̄
vN(x)

¯̄
dPN ! max

c2B®

Z
Xc®

jv(x)j dP a.s.

Using Lemma B to ensure maxc2B®

¯̄R
hN(x; c)dP

N ¡ R
h(x; c)dP

¯̄ ! 0

and (34), it follows that 8®; ´ > 0, 9 N®´ < 1 s.t.

N > N®´ )
sup
a2B

¯̄̄
¯Z hN(x; a)dP

N ¡
Z

h(x; a)dP

¯̄̄
¯ � 2[max

c2B®

Z
Xca

jv(x)j dP + ´

� 2[ sup
c2B®

Z
Xca

jv(x)j dP + ´

Now the boundary assumption (A5.5) implies that as (®; ´) ! 0

the required result is obtained thus completing the proof to Lemma A.¥

Proof of Proposition 8

Assumption (2) implies that 9N1; N2 : 8"1; "2¯̄
BN
i ¡ bi

¯̄
6 "1 for N > N1¯̄

BN
i+1 ¡ bi

¯̄
6 "2 for N > N2

Hence for N > max(N1; N2)¯̄
BN
i ¡ bi

¯̄
+
¯̄
BN
i+1 ¡ bi+1

¯̄
6 "1 + "2 (35)

Since also,
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¯̄
BN

i
¡ bi

¯̄
+
¯̄
BN

i+1 ¡ bi+1
¯̄
=

¯̄
BN

i
¡ bi

¯̄
+
¯̄
bi+1 ¡BN

i+1

¯̄
(36)

and ¯̄
BN

i
¡ bi

¯̄
+
¯̄
bi+1 ¡BN

i+1

¯̄ ¸ ¯̄
BN

i
¡ bi + bi+1 ¡BN

i+1

¯̄
(37)

Letting "3 = bi+1 ¡ bi; it follows from (35), (36) and (37) that:

"1 + "2 ¸
¯̄
BN

i
¡ bi

¯̄
+
¯̄
BN

i+1 ¡ bi+1
¯̄ ¸ ¯̄

BN

i
¡BN

i+1 + "3
¯̄

Since: ¯̄
BN

i
¡BN

i+1 + "3
¯̄ ¸ ¯̄

BN

i
¡BN

i+1

¯̄¡ j"3j
It follows that:

"1 + "2 + j"3j ¸
¯̄
BN

i
¡BN

i+1

¯̄
Let " = "1 + "2 + j"3j :

By assumption (1) and the theorem of the maximum it follows that

b(m) is continuous. Hence, 8":

9 N0; m > 0 : 8N > N0; i;
¯̄
BN

i
¡BN

i+1

¯̄
< " (38)

Using this fact and assumptions 3(i),(ii) we ¯nd that:

9 m > 0 : 8N > N0;
BN

i = BN

i

Since BN

I
= BN ! b; for this m; as N ! 1;

BN

I ! b¥

Appendix B: Su±cient conditions for required assumptions Suf-

¯cient conditions for equicontinuity (A5.3)

By Manski 1988, Lemma 7, pp. 109-110:

For some ¿ 2 T, at least one of (a), (b) or (c) hold:

a) X £ B is a compact metric space and ¿ (s (¤; ¤)) is continuous
on it.
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b) ¿ (s(¤; ¤)) is bounded on X £ C and s(»; ¤) is convex on C for

all » 2 X; where B ½ C ½ R
K and C is an open convex set.

c) ¿ (s(¤; c)) = w(¤)0c; (»; c) 2 (X;B) ; w : X ! R
K :

Su±cient conditions for Identi¯ability (A5.4):

We give such conditions on the basis of the following Proposition

which is a simple extension of a result in Manski (1985).

Proposition 9: Su±cient conditions for A5.4 are:

1. For some ¿ 2 T; ¿ (s(»; c)) = w(»)0c; (»; c) 2 (X;B) ; w : X !
R
K ; and

2. The support of Px is not contained in any proper linear subspace

of RK; and

3. bk 6= 0 for some k and 8x¡k ´ (x1; x2; :::; xk¡1; xk+1; :::xK) the

distribution of xkjxk¡1 has everywhere positive Lebesgue density.

Proof: The conditions we have assumed imply by Lemma 2, Manski

1985, p. 317 that 8c 6= b;Z
Xc

dPx > 0

Xc ´ ©
» 2 R

K : sign [w(»)0c] 6= sign [w(»)0b]
ª

Let

X 0

c
´ ©

x 2 R
K : 1 [w(»)0c > 0] 6= 1 [w(»)0b > 0]

ª
Clearly, X 0

c
= Xc: Therefore 8c 6= b:Z

r ¢ 1 [x0c > 0] dP 6=
Z

r ¢ 1 [x0b > 0] dP

and hence the minimum of the r.h.s. must be unique ensuring identi¯ability.¥

Su±cient conditions for the boundary condition (A5.5)

According to Lemma 8, Manski 1988, pp. 110-111, the following

three conditions must hold

1.For some ¿ 2 T, ¿ (s(¤; c)) = w(¤)0c; (»; c) 2 (X;B) ; w : X !
Z ½ R

K
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2. 8 (c; !) 2 B£V; where V is the range space of jrj, the probability
measure Pw(»)0cj! is absolutely continuous w.r.t. the Lebesgue measure

¹ and also 8 ´ 2 R
1; 9 ¸ < 1 s.t. Á¹(´; Pw(»)0cj!) < ¸;

3.
R jrj dPx exists

Appendix C: The distribution of predictor pro¯ts in a special

case. In this Appendix we derive general expressions for the distribu-

tion of a risk neutral investor's pro¯ts (the negative of the loss function

we have used throughout the text) when a random variable that is jointly

normal with returns is used as a prediction26. (These results are used in

simulations 5.1 and 5.2).

Let �
y0

1

y0

2

¸
» N

µ�
¹1

¹2

¸
;

�
¾2
1 ¾2

12

¾2
12 ¾2

2

¸¶
Suppose y0

2 is a forecast for y0

1

Let x be the returns obtained from the use of this forecast. Then,

x = y0

1 ¢ 1 (y0

2 > 0)

Let

y1 ´ y0

1 ¡ ¹1

¾1
; y2 ´ y0

2 ¡ ¹2

¾2
; ½ =

¾12

(¾1¾2)
1

2

Then �
y1
y2

¸
» N

µ�
0

0

¸
;

�
1 ½2

½2 1

¸¶
And

x = ¹1 ¢ 1
µ
y2 > ¡¹2

¾2

¶
+ ¾1y1 ¢ 1

µ
y2 > ¡¹2

¾2

¶
So

xjy1;y2 =
(

¹1 + ¾1y1 if y2 > ¡¹2
¾2

0 otherwise

)
and therefore the p.d.f. fx of x is:

26Acar (1998) has derived the expression for the mean of a closely related

distribution.
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fx (x) =8<: fy1jy2>¡¹2

¾2

³
x¡¹1
¾1

´
¤ Pr

³
y2 > ¡¹2

¾2

´
for x 6= 0

fy1jy2>¡¹2

¾2

³
x¡¹1
¾1

´
¤ Pr

³
y2 > ¡¹2

¾2

´
+
³
1¡ Pr

³
y2 > ¡¹2

¾2

´´
for x = 0

9=;
Which may be written as

fx (x) =Z 1

¡
¹2

¾2

fy1;y2

µ
x¡ ¹1

¾1

¶
dy2¤Pr

µ
y2 > ¡¹2

¾2

¶
+1 (w = 0)

µ
1¡ Pr

µ
y2 > ¡¹2

¾2

¶¶
(39)

Letting © be the cdf of the standard normal, this implies:

E (x) = ¹1 Pr

µ
y2 > ¡¹2

¾2

¶
+ ¾1E

µ
y11

µ
y2 > ¡¹2

¾2

¶¶
= ¹1

µ
1¡ ©

µ
¡¹2

¾2

¶¶
+ ¾1

Z 1

¡1

Z 1

¡
¹2

¾2

y1f (y1;y2) dy2dy1

Johnson and Kotz (1972) report results (p. 113) that imply:

Z 1

¡1

Z 1

¡
¹2

¾2

y1f (y1;y2) dy2dy1 =
½p
2¼

exp

Ã
¡0:5

µ
¹2

¾2

¶2
!

Hence the Expectation of x is:

E (x) = ¹1

µ
1¡ ©

µ
¡¹2

¾2

¶¶
+ ¾1

½p
2¼

exp

Ã
¡
µ
¹2

¾2

¶2
!

(40)

The Variance of the strategy can also be calculated if it is desired,

by using the fact that V ar (x) = E (x2)¡E (x)2 ; (40) and an expression

for E (x2) provided by Johnson and Kotz (p.113).

Example
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Suppose that:

y0

1
= rt+1 = b0 + b1rt + ut

ut » N (0; ¾u)

y0

2 = c0 + c1rt

Then it follows that:�
y0

1

y0

2

¸
» N

Ã"
b0

1¡b1

c0 + c1
b0

1¡b1

#
;

"
¾
2
u

1¡b2
1

c1b1
¾
2
u

1¡b2
1

c1b1
¾
2
u

1¡b
2

1

c21
¾
2
u

1¡b
2

1

#!

Substituting this back into (??,40), we can obtain exact values for the

p.d.f., mean and even the variance of pro¯ts obtained from using an

AR(1) forecast for an AR(1) series.

For the mean this becomes:

E (x) =

b0
1¡ b1

q +
¾ub1p

2¼ (1¡ b21)
exp

Ã
¡
µ

c0
jc1j +

b0
1¡ b1

¶2
b21 ¡ 1

¾2
u

!

where q
³
b0; b1; ¾u;

c0

c1

´
=

1¡ ©

Ã
¡
µ

c0
jc1j +

b0
1¡ b1

¶ p
1¡ b21
¾u

!

Notice that the ¯rst order condition w.r.t. c0

c1
may be used to con¯rm

that optimally, c0

c1
= b0

b1
:

For the parameters in Simulation 5.1

b0 = 0:0015

b1 = 0:0330

¾u = 0:0108

c0 = b0

c1 = b1

We ¯nd that: E (x) = 0:0234
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9 Figures

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0.5 1
x

Figure 1: The mappings displayed are sign preserving transforms.
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Figure 2: This ¯gure illustrates that the parametric model is a

sign-preserving transform of the DGP in Example 4.1. The curved surface is

the DGP and the linear hyperplane is the model for it.
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Figure 3: This plots the asymmetric pro¯t function as described in

Example 4.2
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Figure 4: This ¯gure depicts returns obtained for various choices of c0
in the sample of Example 5.1.
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Figure 5. The left column is a histogram of the parameters estimated by the

Risk Neutral Forecasting estimator and the right column is a histogram of

the expected pro¯ts from these estimated parameters. Each row corresponds

to a sample size equal to N .
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Figure 6. The left column is a histogram of the parameters estimated by

OLS and the right column is a histogram of the expected pro¯ts from these

estimated parameters. Each row corresponds to a sample size equal to N .
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Figure 7. This ¯gure plots pro¯ts obtained when a linear predictor with

parameters (c0; c2) is used to forecast returns.
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Figure 8. This ¯gure plots an approximation to the pro¯ts obtained

when a linear predictor with parameters (c0; c2) is used to forecast

returns. The approximation is designed to make pro¯ts a smooth

function of these parameters.
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Figure 9: The circles display parameters computed at each recursion of

Step 2 of the computational algorithm. The * is the starting point

computed by the genetic algorith and the X is the grid-search

parameter. Notice that the ¯nal parameter of the computational

algorithm is a more accurate estimate of the optimum than that

attainable with the grid search used.
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