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Abstract. Vector autoregressive (VAR) models for stationary and integrated variables are

reviewed. Model specification and parameter estimation are discussed and various uses of

these models for forecasting and economic analysis are considered. For integrated and coin-

tegrated variables it is argued that vector error correction models offer a particularly conve-

nient parameterization both for model specification and for using the models for economic

analysis.
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1 Introduction

Vector autoregressive (VAR) models have a long tradition as tools for multiple time series

analysis (e.g., Quenouille (1957)). Being linear models, they are relatively easy to work

with both in theory and practice. Although the related computations are relatively straight-

forward, they are sufficiently involved to make applied work cumbersome before powerful

computers were in widespread use. VAR models became popular for economic analysis

when Sims (1980) advocated them as alternatives to simultaneous equations models. The

latter models were used extensively since the 1950s. The availability of longer and more fre-

quently observed time series emphasized the need for models which focussed on the dynamic

structure of the variables, however. Sims also criticized the exogeneity assumptions for some

of the variables in simultaneous equations models as ad hoc and often not backed by fully

developed theories. In contrast, in VAR models often all observed variables are treated as

a priori endogenous. Statistical procedures rather than subject matter theory are used for

imposing restrictions.

VAR models are easy to use for forecasting and can also be applied for economic analysis.

Impulse response analysis or forecast error variance decompositions are typically used for

disentangling the relations between the variables in a VAR model. To investigate structural

hypotheses based on economic theory usually requires a priori assumptions which may not

be testable with statistical methods. Therefore structural VAR (SVAR) models were de-

veloped as a framework for incorporating such restrictions. Moreover, the discovery of the

importance of stochastic trends in economic variables and the development of cointegration

analysis by Granger (1981), Engle and Granger (1987), Johansen (1995) and many others has

led to important new developments in analyzing the relations between economic variables.

In particular, it is often desirable to separate the long-run relations from the short-run dy-

namics of the generation process of a set of variables. The long-run or cointegration relations

are often associated with specific economic relations which are of particular interest whereas

the short-run dynamics describe the adjustment to the long-run relations when disturbances

have occurred. Vector error correction or equilibrium correction models (VECMs) offer a

convenient framework for separating long-run and short-run components of the data gener-

ation process (DGP) and they will also be discussed in this chapter. The importance of the
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trending properties of the variables makes a special terminology useful. It will be introduced

next.

1.1 Integrated Variables

A stochastic trend is usually thought of as a component of a stochastic process with proper-

ties similar to those of a discrete random walk. In other words, it is viewed as a nonstationary

stochastic component which does not have a tendency to revert to a fixed mean. An im-

portant characteristic of such components is that they can be removed by differencing a

variable. In this chapter a time series variable yt is called integrated of order d (I(d)) if

stochastic trends can be removed by differencing the variable d times and a stochastic trend

still remains after differencing only d− 1 times. Using the differencing operator ∆ which is

defined such that ∆yt = yt − yt−1, the variable yt is I(d) if ∆dyt is stationary while ∆d−1yt

still has a stochastic trend.

I follow Johansen (1995) in defining this terminology more formally for linear processes.

Suppose ut, t ∈ Z, is a zero mean K-dimensional stochastic process of independently, iden-

tically distributed (iid) random variables with nonsingular covariance matrix E(utu
′
t) = Σu

and let Φi, i = 0, 1, . . . , be an absolutely summable sequence of (K×K) matrices. Then the

K-dimensional vector stochastic process yt =
∑∞

i=0 Φiut−i, t ∈ N, is called a linear process.

It is called integrated of order 0 (I(0)) if
∑∞

i=0 Φi 6= 0 and it is called I(d), d = 1, 2, . . . , if

∆dyt is I(0). To simplify matters, all variables are assumed to be either I(0) or I(1) in the

following if not explicitly stated otherwise.

Notice that a K-dimensional vector of time series variables yt = (y1t, . . . , yKt)
′ is I(d),

in short, yt ∼ I(d), if at least one of its components is I(d). In that case, ∆d−1yt will still

have a stochastic trend while ∆dyt does not. This definition does not exclude the possibility

that some components of yt may be I(0) individually if yt ∼ I(1). Moreover, it is often

convenient to define an I(0) process yt for t ∈ Z rather than t ∈ N in the same way as before

and I will repeatedly make use of this possibility in the following. In fact, I will assume that

I(0) processes are defined for t ∈ Z in a stationary context if not otherwise stated. On the

other hand, if I(d) processes yt with d > 0 are involved, it is often easier to define them for

t ∈ N and this is therefore done here.
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More general definitions of integrated processes can be given. In particular, an I(0)

process does not have to be a linear process and I(d) processes for non-integer d can be

defined (see also Johansen (1995, Chapter 3) for further discussion). For our purposes the

definitions given here are general enough, however.

A set of I(d) variables is called cointegrated if a linear combination exists which is of lower

integration order. Because I mostly consider I(1) and I(0) variables, the leading case will

be a vector yt which is I(1) and for which a vector c exists such that c′yt is I(0). The linear

combination c′yt is then called a cointegration relation. If yt consists of two components only

which are both individually I(1) and cointegrated, then they will be driven by a common

stochastic trend and hence have a particularly strong relation. In the long-run they move

together although they may drift apart in the short-run. The concept extends directly to

more than two variables. If yt contains components which are individually I(0), then there

may be trivial linear combinations which are called cointegration relations according to our

terminology. For example, if the first component y1t is I(0), then c = (1, 0, . . . , 0)′ gives a

trivial cointegration relation c′yt = y1t. Although our terminology is in this case not quite

in the spirit of the original idea of cointegration, it will be convenient in the following.

Notice also that integratedness of the variables refers only to their stochastic properties.

In addition there can be deterministic terms. More precisely, a process yt with nonzero mean

term will be called I(d) if yt − E(yt) is I(d) in the sense defined earlier. In particular, I(0)

variables may still have deterministic trend components. With respect to deterministic terms

I assume that they will usually be at most linear trends of the form E(yt) = µt = µ0 + µ1t.

If µ1 = 0 there is just a constant or intercept term in the process. Occasionally, µt = 0

will in fact be assumed to simplify matters. Extensions to other deterministic terms such as

seasonal dummies are straightforward and are therefore avoided for simplicity.

1.2 Structure of the Chapter

A typical VAR analysis proceeds by specifying and estimating a model and then checking its

adequacy. If model defects are detected at the latter stage, model revisions are made until

a satisfactory model has been found. Then the model may be used for forecasting, causality

or structural analysis. Figure 1 depicts the main steps of a VAR analysis and this chapter
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Figure 1: VAR analysis (figure adapted from Lütkepohl (2006b)).

is organized accordingly. The basic VARs and VECMs will be introduced in Section 2.

Estimation and model specification issues will be treated in Sections 3 and 4, respectively,

and Section 5 is devoted to model checking. Forecasting, Granger-causality analysis and

structural modelling will be considered in Sections 6, 7 and 8, respectively. Conclusions and

extensions are presented in Section 9.

A multiple time series analysis with VAR models can in principle be done with fairly

straightforward computational algorithms. Recently computer intensive methods such as

bootstrap and Bayesian simulation techniques have been developed for some stages of the

analysis, however. They will be pointed out in the following even though the main focus is

on the general concepts underlying a VAR analysis.

There are a number of textbooks and review articles which treat some of the issues in
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more depth than the present exposition. Examples of related books are Banerjee, Dolado,

Galbraith and Hendry (1993), Hamilton (1994), Hendry (1995), Johansen (1995), Hatanaka

(1996), Lütkepohl and Krätzig (2004) and in particular Lütkepohl (2005). The present

chapter draws heavily on the latter book and partly also on Lütkepohl (2006b).

1.3 Terminology and Notation

The following general terminology and notation will be used in this chapter. DGP, VAR,

SVAR, VECM and MA abbreviate data generation process, vector autoregression, structural

vector autoregression, vector error correction model and moving average, respectively. DSGE

model is short for dynamic stochastic general equilibrium model. ML, LS, GLS, RR, LM, LR

and MSE are used for maximum likelihood, least squares, generalized least squares, reduced

rank, Lagrange multiplier, likelihood ratio and mean squared error, respectively. The natural

logarithm is abbreviated as log. The sets of all integers and positive integers are denoted

by Z and N, respectively. The lag operator L is defined such that for a time series variable

yt, Lyt = yt−1, that is, it shifts the time index backward by one period. The differencing

operator ∆ = 1 − L is defined such that ∆yt = yt − yt−1. For a number x, |x| denotes the

absolute value or modulus. As usual, a sum is defined to be zero if the lower bound of the

summation index exceeds the upper bound.

The following notation is used in relation to matrices. The transpose, inverse, trace,

determinant and rank of the matrix A are denoted by A′, A−1, tr(A), det(A) and rk(A),

respectively. For an (n×m) matrix A of full column rank (n > m), an orthogonal complement

is denoted by A⊥. The zero matrix is the orthogonal complement of a nonsingular square

matrix and an identity matrix of suitable dimension is the orthogonal complement of a

zero matrix. The symbol vec denotes the column vectorization operator and vech is the

corresponding operator which stacks the columns of a symmetric matrix from the main

diagonal downwards. ⊗ signifies the Kronecker product and In is an (n×n) identity matrix.

The symbol ‘∼ (µ, Σ)’ abbreviates ‘has a distribution with mean (vector) µ and (co)variance

(matrix) Σ’ and N (µ, Σ) denotes a (multivariate) normal distribution with mean (vector) µ

and (co)variance (matrix) Σ. Convergence in distribution and ‘is asymptotically distributed

as’ is denoted as
d→ and plim abbreviates the probability limit. Independently, identically
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distributed is abbreviated as iid. A stochastic process ut with t ∈ Z or t ∈ N is called

white noise if the ut’s are iid with mean zero, E(ut) = 0, positive definite covariance matrix

Σu = E(utu
′
t) and finite fourth order moments. Notice that the iid assumption is stronger

than elsewhere in the literature. It is actually not necessary for many of the forthcoming

results to hold but is made here for convenience.

2 VAR Processes

In the following the DGP of the K time series variables yt = (y1t, . . . , yKt)
′ is assumed to be

the sum of a deterministic term and a purely stochastic part,

yt = µt + xt. (2.1)

Here µt is the deterministic part and xt is a purely stochastic process with zero mean. As

mentioned earlier, the deterministic term µt will be assumed to be zero (µt = 0), a constant

(µt = µ0) or a linear trend (µt = µ0 + µ1t) for simplicity. The (usually unobservable) purely

stochastic part, xt, includes stochastic trends and cointegration relations. It is assumed to

have mean zero and a VAR or VECM representation. The observable process yt inherits its

deterministic and stochastic properties from µt and xt. In particular, the order of integration

and the cointegration relations are determined by xt. The precise relation between xt and

yt will be seen in the next subsections.

2.1 The Levels VAR Representation

The stochastic part xt is assumed to be generated by a VAR process of order p (VAR(p)) of

the form

xt = A1xt−1 + · · ·+ Apxt−p + ut, (2.2)

where the Ai (i = 1, . . . , p) are (K × K) parameter matrices and the error process ut =

(u1t, . . . , uKt)
′ is a K-dimensional zero mean white noise process with covariance matrix

E(utu
′
t) = Σu. In short, ut ∼ iid(0, Σu). The VAR process (2.2) is stable if

det(IK − A1z − · · · − Apz
p) 6= 0 for |z| ≤ 1, (2.3)
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that is, if all roots of the determinantal polynomial are outside the complex unit circle. In

that case xt is I(0) and it is convenient to assume that the DGP is defined for all t ∈ Z.

The process xt then has time invariant means, variances and covariance structure. Therefore,

without prior notice, I assume t ∈ Z if xt is stable. If, however, the determinantal polynomial

in (2.3) has a root for z = 1 (i.e., a unit root) and all other roots outside the complex unit

circle, then some or all of the variables are integrated and there may be cointegration. In

that case, assuming that the specification in (2.2) holds for t ∈ N is convenient. The initial

values x−p+1, . . . , x0 are then assumed to be fixed values. For simplicity it may in fact be

assumed that they are zero. This will be assumed if xt is I(1) and nothing else is explicitly

specified. Recall that all variables are either I(0) or I(1) by default. Also, recall that yt is

the vector of observed variables, whereas xt is the (typically unobserved) stochastic part.

Using the lag operator, the process (2.2) can be written more compactly as

A(L)xt = ut, (2.4)

where A(L) = IK − A1L − · · · − ApL
p is a matrix polynomial in the lag operator of order

p. If µt = µ0 + µ1t, then pre-multiplying (2.1) by A(L) shows that yt has the VAR(p)

representation A(L)yt = A(L)µt + ut or

yt = ν0 + ν1t + A1yt−1 + · · ·+ Apyt−p + ut, (2.5)

where ν0 = (IK −
∑p

j=1 Aj)µ0 +(
∑p

j=1 jAj)µ1 and ν1 = (IK −
∑p

j=1 Aj)µ1. This model form

is often called the levels form of the VAR process because it is purely in the levels of the yt

variables.

If the process (2.5) is the point of departure with unrestricted parameters νi, i = 0, 1, the

variables may in fact have quadratic trends if yt ∼ I(1). Thus, the additive model setup (2.1)

is restrictive and in particular imposes restrictions on the deterministic parameters in (2.5).

The setup is useful in theoretical derivations, however. Generally it may also be a good

idea to think about the necessary deterministic terms at the beginning of the analysis and

allow for the appropriate polynomial order. Sometimes subtracting the deterministic term

before analyzing the stochastic part is helpful and the latter part is often of main interest in

econometric analysis because it usually describes the behavioral relations.
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2.2 The VECM Representation

If yt ∼ I(1) and the variables are potentially cointegrated, the levels form of the VAR in

(2.5) may not be the most useful representation because it does not contain the cointegration

relations explicitly and these relations are often of particular interest. In that case it may

be advantageous to reparameterize the model (2.2) by subtracting xt−1 on both sides of the

equality sign and rearranging terms so as to obtain

∆xt = Πxt−1 + Γ1∆xt−1 + · · ·+ Γp−1∆xt−p+1 + ut. (2.6)

Here Π = −(IK − A1 − · · · − Ap) and Γj = −(Aj+1 + · · · + Ap) for j = 1, . . . , p − 1. This

representation is known as the vector error correction model (VECM) form of the VAR(p).

Notice that ∆xt does not contain stochastic trends because xt ∼ I(1) by assumption. Thus,

the term Πxt−1 is the only one which includes I(1) variables and, consequently, Πxt−1 must

also be I(0). Hence, it must contain the cointegration relations. The term Πxt−1 is often

referred to as the long-run or long-term part or the error correction or equilibrium correction

term of the model. On the other hand, the short-run movements of the variables are de-

termined by the Γj’s (j = 1, . . . , p − 1) which are sometimes called short-term or short-run

parameters.

If yt ∼ I(1) and the polynomial in (2.3) has a unit root, that is, det(IK − A1z − · · · −
Apz

p) = 0 for z = 1, the matrix Π is singular. Let rk(Π) = r, 0 < r < K. Then it is

known from matrix theory that there exist (K×r) matrices α and β with rk(α) = rk(β) = r

such that Π = αβ′. Premultiplying Πxt−1 = αβ′xt−1 by (α′α)−1α′ shows that β′xt−1 is I(0)

and, hence, there are r linearly independent cointegration relations among the components

of xt. The rank r of Π is called the cointegrating rank of the process. Clearly, the matrices

α and β are not unique. Choosing any nonsingular (r× r) matrix P , another decomposition

Π = α∗β∗′ with α∗ = αP−1 and β∗ = βP ′ is obtained. Sometimes unique or, in econometric

terminology, identified cointegration relations are obtained from subject matter theory.

The cointegration relations are meant to represent the long-run or equilibrium economic

relations. This may be helpful knowledge in specifying restrictions. For example, if there

is just one cointegration relation it suffices to normalize one coefficient to 1 and thereby

identification of the cointegration parameters is achieved. Suppose, for instance, that the

system of interest consists of the variables log income (gdpt), log money stock (mt) and an
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interest rate (rt) and there is one cointegration relation, ect = β1gdpt + β2mt + β3rt. If this

relation represents a money demand function, it makes sense to normalize the coefficient of

mt so that

mt = γ1gdpt + γ2rt + ec∗t ,

where γ1 = −β1/β2, γ2 = −β3/β2 and ec∗t = ect/β2.

As another example consider a four-dimensional system of interest rates, (R1t, r1t, R2t, r2t)
′,

where Rit and rit are a long-term and a short-term interest rate, respectively, of country i,

i = 1, 2. Suppose that all variables are I(1). In this case the expectations hypothesis of

the term-structure suggests that the interest rate spreads, R1t − r1t and R2t − r2t, are I(0)

and uncovered interest rate parity implies that R1t − R2t is I(0). Thus, there may be three

cointegration relations with a cointegration matrix

β′ =




1 −1 0 0

0 0 1 −1

1 0 −1 0


 .

Even if the expected long-run relations do not hold precisely, there may, for instance, be

cointegration relations R1t + β21r1t, R2t + β42r2t and R1t + β33R2t, so that

β′ =




1 β21 0 0

0 0 1 β42

1 0 β33 0




with unknown parameters β21, β42, β33 and normalized parameters β11 = β32 = β13 = 1. The

zero restrictions on the remaining parameters ensure identification. Johansen (1995, Section

5.3) discusses general conditions for the cointegration matrix β to be identified.

If no suitable restrictions are available from elsewhere, a purely statistical normalization

of the form

β′ = [Ir : β′(K−r)] (2.7)

with a ((K− r)× r) matrix β(K−r), is always possible if the variables are arranged appropri-

ately. In other words, we can always choose β such that its upper part is an (r× r) identity

matrix.
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The cointegrating rank r is necessarily between 0 and K. If rk(Π) = K, the process xt

is I(0). Moreover, for r = 0, the term Πxt−1 disappears in (2.6) and, hence, xt has a stable

VAR(p − 1) representation in first differences. Although these limit cases do not represent

cointegrated systems in the usual sense, they are included for convenience. Other cases

where no cointegration in a strict sense is present although the representation (2.6) has a

cointegrating rank strictly between 0 and K arise, for instance, if all variables but one are

I(0) then the cointegrating rank is K−1 although the I(1) variable is not really cointegrated

with the other variables.

Pre-multiplying (2.1) by the matrix operator ∆IK−αβ′L−Γ1∆L−· · ·−Γp−1∆Lp−1 and

rearranging terms shows that yt has the VECM representation

∆yt = ν0 + ν1t + αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut, (2.8)

if µt = µ0 + µ1t. Here ν0 and ν1 can be obtained from µ0 and µ1 by the same expressions

as in (2.5). Thus, ν1 = −Πµ1 = −αβ′µ1 so that the trend term can be absorbed into the

cointegration relations,

∆yt = ν + α[β′, η]


 yt−1

t− 1


 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut, (2.9)

with η = −β′µ1 being an (r × 1) vector and ν = ν0 + ν1.

If µ1 happens to be orthogonal to β, that is, β′µ1 = 0, then

∆yt = ν + αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut, (2.10)

and there is just an intercept in this model although some variables may have deterministic

linear trends. This property is due to the fact that stochastic trends can generate linear

deterministic trends if there is just a constant in the model. If none of the variables has a

linear trend so that µ1 = 0, then ν = ν0 = −Πµ0 = −αβ′µ0 and the constant term can be

absorbed into the cointegration relations,

∆yt = α[β′, η0]


 yt−1

1


 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut, (2.11)

where η0 = −β′µ0. No separate intercept term is needed in the model in this case.
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2.3 Structural Forms

The previously considered model forms hide all contemporaneous relations between the ob-

servable variables in the white noise covariance matrix Σu. All right-hand side variables

are lagged or predetermined. Such model forms are called reduced forms. Sometimes it is

desirable to model also the contemporaneous relations between the variables. This can be

done with structural form models where contemporaneous variables may appear as explana-

tory variables in some equations. For example, a structural form associated with the VAR

representation (2.5) may be of the form

Ayt = ν∗0 + ν∗1t + A∗
1yt−1 + · · ·+ A∗

pyt−p + vt, (2.12)

where ν∗i = Aνi (i = 0, 1) and A∗
j = AAj (j = 1, . . . , p). The structural form error term

vt = Aut is iid white noise with covariance matrix Σv = AΣuA
′. The (K × K) matrix

A is nonsingular and describes the instantaneous relations between the variables. Clearly,

one could multiply (2.5) by any nonsingular matrix to obtain a representation of the form

(2.12). Thus, the parameters of the structural form (2.12) are not identified without further

restrictions. Structural form models will play an important role in analyzing the relations

between the variables with impulse responses. I will return to them in that context. Before

a structural analysis is conducted, a reduced form model as a valid description of the DGP

is usually constructed. I will discuss the relevant stages of a VAR analysis in the following.

Before issues related to model specification are considered, it is useful to discuss estimation

of fully specified models because estimation of various models is usually necessary at the

specification stage.

3 Estimation of VAR Models

Estimating unrestricted reduced form VAR models is computationally straightforward. I

will discuss estimators for the levels VAR form and VECMs first in Sections 3.1 and 3.2,

respectively. Estimation of models with linear constraints is considered in Section 3.3 and

some comments on Bayesian estimation are provided in Section 3.4.
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3.1 Estimation of Unrestricted VARs

Consider the levels VAR(p) model

yt = A1yt−1 + · · ·+ Apyt−p + ut. (3.1)

Deterministic terms are deleted for simplicity. Including them is straightforward and I will

comment on them later. Given a sample of size T , y1, . . . , yT , and p presample values,

y−p+1, . . . , y0, I define

Y = [y1, . . . , yT ], Y = [Y0, . . . , YT−1], where Yt−1 =




yt−1

...

yt−p


 , (3.2)

A = [A1, . . . , Ap] and U = [u1, . . . , uT ].

Using this notation, the model can be written compactly as

Y = AY + U. (3.3)

Estimating the K equations separately by LS results in the estimator

Â = [Â1, . . . , Âp] = Y Y′(YY′)−1. (3.4)

It was shown by Zellner (1962) that this estimator is identical to GLS estimation, if no

restrictions are imposed on the parameter matrix A. If the process is normally distributed

(Gaussian) or, equivalently, ut ∼ N (0, Σu), this estimator is also identical to the ML estima-

tor (conditional on the initial values). Consequently there is no loss in asymptotic estimation

efficiency.

If the process is stable (I(0)), the LS estimator Â has an asymptotic normal distribution

under general conditions (see, e.g., Lütkepohl (2005, Chapter 3)),

√
Tvec(Â− A)

d→ N (0, ΣÂ). (3.5)

The covariance matrix of the asymptotic distribution is ΣÂ = plim(YY′/T )−1 ⊗ Σu, which

can be estimated consistently by Σ̂Â = (YY′/T )−1 ⊗ Σ̂u, where, for example,

Σ̂u =
1

T

T∑
t=1

ûtû
′
t (3.6)
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can be used as an estimator for Σu. Here ût = yt − ÂYt−1 are the LS residuals. Thus,

vec(Â) ≈ N (vec(A), (YY′)−1 ⊗ Σ̂u) (3.7)

is an intuitive way of writing the result in (3.5). Clearly, the covariance matrix is a stochas-

tic matrix which makes the statement imprecise. It has the advantage, however, that by

pretending that the result is precise and using it in the usual way to set up t-, χ2- and

F -statistics results in asymptotically correct inference.

If yt ∼ I(1) and, hence, the process is not stable and the variables may be cointe-

grated, (3.5) still holds (see Park and Phillips (1988, 1989), Sims, Stock and Watson (1990),

Lütkepohl (2005, Chapter 7)). However, in that case the covariance matrix ΣÂ is singular

because some estimated parameters or linear combinations of parameters converge with a

faster rate than
√

T , as will be seen in the next subsection. In this situation the usual t-, χ2-

and F -tests for inference regarding the VAR parameters may not be valid asymptotically

anymore (Toda and Phillips (1993)). Despite this general result, there are many cases where

asymptotic inference remains valid. Toda and Yamamoto (1995) and Dolado and Lütkepohl

(1996) have shown that, if a null hypothesis is considered which does not restrict elements of

each of the Ai’s (i = 1, . . . , p), then the usual tests have their standard asymptotic properties.

For example, for a bivariate VAR(2) process with coefficient matrices

A1 =


 α11,1 α12,1

α21,1 α22,1


 and A2 =


 α11,2 α12,2

α21,2 α22,2


 ,

standard Wald tests of the following hypotheses have the usual asymptotic χ2-distributions:

H0 : α11,1 = 0, H0 : α11,2 = α21,2 = 0 or even H0 : α11,1 = α21,1 = α12,1 = α22,1 = 0. On

the other hand, the Wald statistic for testing H0 : α12,1 = α12,2 = α21,2 = 0 may not have a

standard asymptotic χ2(3) distribution, even if H0 is true, because the null hypothesis places

restrictions on both coefficient matrices. Generally, for a VAR(p) with p ≥ 2, the t-ratios

have their usual asymptotic standard normal distributions because they are test statistics

for hypotheses regarding individual coefficients. I will discuss a specific, problematic case in

Section 7.2, when causality tests are considered.

Deterministic terms can be included easily in the model (3.3) by augmenting the regressor

vectors Yt−1 accordingly. For example, a one or a one and a t may be included as additional

regressors. The previously stated formulas apply with these modifications. Although the
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convergence rates of some of the parameter estimators may not be
√

T , the result in (3.7)

can still be used for constructing asymptotically valid test statistics in the I(0) case. In

the I(1) case, the situation is complicated by the fact that some deterministic terms may

be absorbed into the cointegration relations (see Section 2.2). However, the asymptotic

properties of the estimators of the VAR parameters remain essentially the same as in the

case without deterministic terms (Sims et al. (1990)). Still, estimating the parameters in

the VECM framework may be advantageous in some respects. Estimation of VECMs is

therefore considered in the following section.

3.2 Estimation of VECMs

Consider a VECM without deterministic terms,

∆yt = αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut. (3.8)

Using the definitions

∆Y = [∆y1, . . . , ∆yT ], Y−1 = [y0, . . . , yT−1], Γ = [Γ1, . . . , Γp−1],

∆X = [∆X0, . . . , ∆XT−1] with ∆Xt−1 =




∆yt−1

...

∆yt−p+1




and

U = [u1, . . . , uT ],

the model can be written in compact matrix form as

∆Y = αβ′Y−1 + Γ∆X + U. (3.9)

In the following, ML and feasible GLS estimation of the parameters of this model will be

considered. A complication arises from the error correction term αβ′Y−1 which involves a

product of parameters and, hence, the usual equationwise LS estimation cannot be used

directly. However, if the product αβ′ were known, LS estimation of the other parameters

were possible. In that case, the LS estimator for Γ is

Γ̂(αβ′) = (∆Y − αβ′Y−1)∆X′(∆X∆X′)−1. (3.10)
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Replacing Γ in (3.9) by this estimator gives

∆Y = αβ′Y−1 + (∆Y − αβ′Y−1)∆X′(∆X∆X′)−1∆X + U∗

which involves just the parameters αβ′. Defining

M = IT −∆X′(∆X∆X′)−1∆X, R0 = ∆Y M and R1 = Y−1M,

gives

R0 = αβ′R1 + U∗. (3.11)

In the following, different methods for estimating α and β from (3.11) will be discussed. The

estimator for Γ is then obtained by substituting the estimators for α and β in (3.10).

3.2.1 ML Estimation for Gaussian Processes

The first estimation method is ML under Gaussian assumptions as proposed by Johansen

(1988), also known as reduced rank (RR) regression (see also Anderson (1951)). The objec-

tive is to choose the estimators for α and β such that

log l = −KT

2
log 2π − T

2
log |Σu| − 1

2
tr

[
(R0 − αβ′R1)

′Σ−1
u (R0 − αβ′R1)

]
(3.12)

is maximized. The solution is

β̃ = [v1, . . . , vr]
′S−1/2

11 and α̃ = S01β̃(β̃′S11β̃)−1, (3.13)

where Sij = RiR
′
j/T , i = 0, 1, and v1, . . . , vK are the orthonormal eigenvectors of the matrix

S
−1/2
11 S10S

−1
00 S01S

−1/2
11 corresponding to the eigenvalues in nonincreasing order.

Normalizing β such that β′ = [Ir : β′(K−r)] as in (2.7) and the ML estimator accordingly, it

can be shown that, under general conditions, Tvec(β̃′(K−r)−β′(K−r)) converges in distribution

to a mixture normal distribution (Johansen (1995) or Lütkepohl (2005, Chapter 7)). In other

words, the estimator of the cointegration parameters converges at the faster rate T rather

than just
√

T as the other parameters. It is therefore sometimes called superconsistent. The

fact that the asymptotic distribution of the cointegration parameter estimators is mixed

normal implies that inference can be performed as with asymptotically normal estimators.

For example, t-ratios have the usual asymptotic interpretation.
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Notice also that the estimator for α is the LS estimator obtained from a multivariate

regression model

R0 = αβ̃′R1 + U∗

with regressor matrix β̃′R1. Its asymptotic properties are standard as are those of the

resulting estimator for Γ,

Γ̃(α̃β̃′) = (∆Y − α̃β̃′Y−1)∆X′(∆X∆X′)−1.

In particular, the estimators converge at the usual rate
√

T to an asymptotic normal distri-

bution under general conditions. Unfortunately, in small samples the ML estimator produces

occasional outlying estimates far away from the true parameter values, as shown, e.g., by

Brüggemann and Lütkepohl (2005). Therefore it may be worth considering the more robust

GLS estimator which is discussed next.

3.2.2 Feasible GLS Estimation

Using the normalization β′ = [Ir : β′(K−r)] given in (2.7), the equation (3.11) can be rewritten

as

R0 − αR
(1)
1 = αβ′(K−r)R

(2)
1 + U∗, (3.14)

where R
(1)
1 and R

(2)
1 denote the first r and last K − r rows of R1, respectively. For a known

α, the GLS estimator of β′(K−r) based on this specification can be shown to be

β̂′(K−r) = (α′Σ−1
u α)−1α′Σ−1

u (R0 − αR
(1)
1 )R

(2)′
1

(
R

(2)
1 R

(2)′
1

)−1

(3.15)

(see Lütkepohl (2005, Chapter 7)). A feasible GLS estimator can be obtained by estimating

the matrix Π from R0 = ΠR1 + U∗ with unrestricted equationwise LS and using Π = [α :

αβ′(K−r)]. Thus, the first r columns of the estimator for Π can be used as an estimator for

α, say α̂. Substituting this estimator and the LS estimator of the white noise covariance

matrix in (3.15) gives the feasible GLS estimator

ˆ̂
β′(K−r) = (α̂′Σ̂−1

u α̂)−1α̂′Σ̂−1
u (R0 − α̂R

(1)
1 )R

(2)′
1

(
R

(2)
1 R

(2)′
1

)−1

. (3.16)

This estimator was proposed by Ahn and Reinsel (1990) and Saikkonen (1992) (see also

Reinsel (1993, Chapter 6)). It has the same asymptotic properties as the ML estimator and
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also the asymptotic properties of the associated estimators of α and Γ are the same as in

the previous section.

Including deterministic terms in the ML or GLS estimation procedures is straightforward.

All that needs to be done is to include the required terms in the list of regressors in the short-

term dynamics or the cointegration term as appropriate. The asymptotic properties of the

resulting estimators are the usual ones so that standard inference can be used under usual

assumptions.

3.3 Estimation with Linear Restrictions

If restrictions are imposed on the parameters of the levels VAR or VECM representations,

the previously discussed estimation methods may be asymptotically inefficient. However,

efficient GLS methods may be used. They are easy to implement as long as no (overidenti-

fying) restrictions are imposed on the cointegration matrix. Zero restrictions are the most

common constraints for the parameters of these models. I will therefore focus on such re-

strictions in the following. Suppose first that a levels VAR form (3.1) is of interest and there

are zero restrictions for A = [A1, . . . , Ap]. Defining α = vec(A), they can be written in the

form

α = Rγ, (3.17)

where R is a known (K2p×M) matrix of zeros and ones with rank M and γ is the (M × 1)

vector of all unrestricted parameters. Using the rule vec(ABC) = (C ′ ⊗ A)vec(B) for

conformable matrices A, B, C and vectorizing the compact model form (3.3) as

vec(Y ) = (Y′ ⊗ IK)vec(A) + vec(U) = (Y′ ⊗ IK)Rγ + vec(U) (3.18)

shows that the GLS estimator for γ is

γ̂ = [R′(YY′ ⊗ Σ−1
u )R]−1R′(Y ⊗ Σ−1

u )vec(Y ). (3.19)

Here it has been used that the covariance matrix of vec(U) is IT ⊗Σu. The estimator γ̂ has

standard asymptotic properties if yt ∼ I(0), that is, the GLS estimator is consistent and

asymptotically normally distributed,

√
T (γ̂ − γ)

d→N (0, (R′Σ−1

Â
R)−1). (3.20)
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If the white noise covariance matrix is unknown, as is usually the case in practice, it may be

replaced by an estimator based on an unrestricted estimation of the model. The resulting

feasible GLS estimator, say ˆ̂γ, has the same asymptotic properties as the GLS estimator. The

corresponding feasible GLS estimator of α, ˆ̂α = Rˆ̂γ, is also consistent and asymptotically

normal,

√
T (ˆ̂α−α)

d→N (0, R(R′Σ−1

Â
R)−1R′). (3.21)

The feasible GLS estimator may be iterated by reestimating the white noise covariance

matrix from the first round feasible GLS residuals and using that estimator in the next

round. The procedure may be continued until convergence. The resulting estimators for γ

and α will have the same asymptotic distributions as without iteration. For Gaussian white

noise ut, ML estimation may also be used. Its asymptotic properties are also the same as

those of the GLS estimator. Deterministic terms can be included by modifying the regressor

matrix in the foregoing formulas and are, hence, straightforward to deal with.

If yt is I(1), it is useful to impose possible restrictions on the VECM form. In case

there are no restrictions for the cointegration matrix, the cointegration parameters may be

estimated in a first round as in Section 3.2, ignoring the restrictions. Let the estimator be

β̂. In a second stage, the remaining parameters may then be estimated from

∆yt = αβ̂′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut. (3.22)

Conditional on β̂ this is a linear system and a feasible GLS procedure may be used just like

for the levels VAR form. The properties of the estimators are the same as if the cointegration

matrix β were known.

If there are also restrictions for β, one may use nonlinear optimization algorithms to

obtain ML estimators of all parameters simultaneously, provided the β parameters are iden-

tified. It is also possible to use a two-step procedure which estimates the restricted β matrix

first and in a second step conditions on that estimator. Restricted estimation of β is treated,

for instance, by Johansen (1995), Boswijk and Doornik (2002) and Lütkepohl (2005, Chapter

7).
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3.4 Bayesian Estimation of VARs

Because the levels VAR form is linear in the parameters, standard Bayesian methods for

estimating linear regression models can be applied for estimating its parameters. Since

Bayesian methods are treated elsewhere in this volume, I will not discuss these methods

in detail here. It is worth noting, however, that specific priors have been popular in VAR

analysis. For example, in the earlier literature the so-called Minnesota prior was quite

popular (see Doan, Litterman and Sims (1984), Litterman (1986)). It shrinks the VAR

towards a random walk for each of the variables. Recently proposals have been made to

shrink towards some dynamic stochastic general equilibrium (DSGE) model (e.g., Ingram

and Whiteman (1994) and Del Negro and Schorfheide (2004)). A more detailed presentation

of Bayesian methods in VAR analysis is also given by Canova (2007, Chapters 9 - 11).

For VECMs the situation is complicated by the matrix product in the error correction

term. It makes straightforward application of linear Bayesian methods problematic. These

problems and possible solutions are well documented in the literature. Important publi-

cations on the subject are Kleibergen and van Dijk (1994), Bauwens and Lubrano (1996),

Geweke (1996), Kleibergen and Paap (2002), Strachan and Inder (2004). Koop, Strachan,

van Dijk and Villani (2005) provide a survey with many more references.

4 Model Specification

Model specification in the present context involves selection of the VAR order and, in

VECMs, also choosing the cointegrating rank. Because the number of parameters in these

models increases with the square of the number of variables it is also often desirable to

impose zero restrictions on the parameter matrices and thereby eliminate some lagged vari-

ables from some of the equations of the system. Various algorithms exist that can assist in

specifying these so-called subset restrictions. They are treated in detail in Chapter ?? of

this Handbook and are therefore not considered here. Lag order selection and testing for the

cointegrating rank of a VAR process are discussed next.
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4.1 Choosing the Lag Order

The most common procedures for VAR order selection are sequential testing procedures and

application of model selection criteria. These approaches will be discussed in turn.

4.1.1 Sequential Testing

Given a maximum reasonable order, say pmax, for a VAR model, the following sequence of null

hypotheses can be tested to determine the lag order: H0 : Apmax = 0, H0 : Apmax−1 = 0, etc..

The testing procedure stops and the lag order is chosen accordingly when the null hypothesis

is rejected for the first time. Because the parameter estimators have standard asymptotic

properties, the usual Wald or LR χ2 tests for parameter restrictions can be used for this

purpose if the process is stationary. In fact, the discussion in Section 3.1 implies that even if

some of the variables are I(1) these tests will have standard asymptotic properties as long as

the null hypothesis H0 : A1 = 0 is not tested. There is evidence, however, that the tests have

small sample distributions which are quite different from their asymptotic χ2 counterparts,

especially if systems with more than a couple of variables are studied (e.g., Lütkepohl (2005,

Section 4.3.4)). Therefore it may be useful to consider small sample adjustments, possibly

based on bootstrap methods (e.g., Li and Maddala (1996), Berkowitz and Kilian (2000)).

The lag order obtained with such a procedure depends to some extent on the choice of

pmax. If pmax is chosen quite small, an appropriate model may not be in the set of possibilities

and, hence, it cannot be found. If, on the other hand, pmax is chosen excessively large, there

is a high chance to end up with too large an order because in each test there is a chance

of rejecting a true null hypothesis and, hence, for committing a Type I error. Generally,

at an early stage of the analysis, using a moderate value for pmax appears to be a sensible

strategy because any problems caused by an inadequate choice should be detected at the

model checking stage (see Section 5).

The procedure can in fact also be used if the DGP under consideration does not have

a finite order VAR representation although in that case a ‘true’ finite VAR order does not

exist. Ng and Perron (1995) have considered this case and discuss some consequences.
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4.1.2 Model Selection Criteria

The standard model selection criteria which are used in this context choose the VAR order

which minimizes them over a set of possible orders m = 0, . . . , pmax. The general form of a

set of such criteria is

C(m) = log det(Σ̂m) + cT ϕ(m), (4.1)

where Σ̂m = T−1
∑T

t=1 ûtû
′
t is the residual covariance matrix estimator for a model of order m,

ϕ(m) is a function of the order m which penalizes large VAR orders and cT is a sequence which

may depend on the sample size and identifies the specific criterion. The term log det(Σ̃m)

is a nonincreasing function of the order m while ϕ(m) increases with m. The lag order is

chosen which optimally balances these two forces.

Examples of criteria of this type are Akaike’s information criterion (Akaike (1973, 1974)),

AIC(m) = log det(Σ̂m) +
2

T
mK2,

where cT = 2/T , the Hannan-Quinn criterion (Hannan and Quinn (1979), Quinn (1980)),

HQ(m) = log det(Σ̂m) +
2 log log T

T
mK2,

for which cT = 2 log log T/T , and the Schwarz (or Rissanen) criterion (Schwarz (1978),

Rissanen (1978)),

SC(m) = log det(Σ̂m) +
log T

T
mK2,

with cT = log T/T . In each case ϕ(m) = mK2 is the number of VAR parameters in a model

with order m. Denoting by p̂(AIC), p̂(HQ) and p̂(SC) the orders selected by AIC, HQ and

SC, respectively, the following relations hold for samples of fixed size T ≥ 16:

p̂(SC) ≤ p̂(HQ) ≤ p̂(AIC).

Thus, AIC always suggests the largest order, SC chooses the smallest order and HQ is

in between (Lütkepohl (2005, Chapters 4 and 8)). Of course, this does not preclude the

possibility that all three criteria agree in their choice of VAR order. The HQ and SC criteria

are both consistent, that is, the order estimated with these criteria converges in probability or

almost surely to the true VAR order p under quite general conditions, if pmax exceeds the true

order. On the other hand, the AIC criterion tends to overestimate the order asymptotically.

These results hold for both I(0) and I(1) processes (Paulsen (1984)).
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4.2 Choosing the Cointegrating Rank of a VECM

A great number of proposals have been made for determining the cointegrating rank of a VAR

process. Many of them are reviewed and compared in Hubrich, Lütkepohl and Saikkonen

(2001). Generally, there is a good case for using the Johansen (1995) likelihood ratio (LR)

approach based on Gaussian assumptions and its modifications because all other approaches

were found to have shortcomings in some situations. Even if the actual DGP is not Gaussian,

the resulting pseudo LR tests may have better properties than many competitors. These

tests are also attractive from a computational point of view because, for a given cointegrating

rank r, ML estimates and, hence, the likelihood maximum are easy to compute (see Section

3.2). Of course, if there are specific reasons, for example, due to special data properties, it

may be worth using alternative tests.

Denoting the matrix αβ′ in the error correction term by Π, the following sequence of

hypotheses may be considered for selecting the cointegrating rank:

H0(r0) : rk(Π) = r0 versus H1(r0) : rk(Π) > r0, r0 = 0, . . . , K − 1. (4.2)

The cointegrating rank specified in the first null hypothesis which cannot be rejected is then

chosen as estimate for the true cointegrating rank r. If H0(0), the first null hypothesis in

this sequence, cannot be rejected, a VAR process in first differences is considered. If all the

null hypotheses can be rejected including H0(K − 1), the process is treated as I(0) and a

levels VAR model is specified.

The LR statistics corresponding to the null hypotheses in (4.2) have nonstandard asymp-

totic distributions. They depend on the difference K − r0 and on the deterministic terms

included in the DGP but not on the short-term dynamics. Critical values for various possible

sets of deterministic components such as constants and linear trends have been computed by

simulation methods and are available in the literature (e.g., Johansen (1995, Chapter 15)).

The power of the tests can be improved by specifying the deterministic terms as tightly

as possible. For example, if there is no deterministic linear trend term, it is desirable to

perform the cointegration rank tests without such terms. On the other hand, leaving them

out if they are part of the DGP can lead to major distortions in the tests. Johansen (1995)

also provided the asymptotic theory for testing hypotheses regarding the deterministic terms

which can be helpful in this respect.
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Test versions have also been developed for the case where a structural break occurs in

the deterministic term either in the form of a level shift or a break in the trend slop or

both. In this case the critical values of the LR tests depend also on the timing of the break.

This feature is inconvenient if the break point is not known a priori and also has to be

estimated. In that case a test variant proposed by Saikkonen and Lütkepohl (2000a, b) may

be preferable. They suggest to estimate the deterministic term first by a GLS procedure and

adjust the series before an LR type test is applied to the adjusted process. The advantage is

that the asymptotic null distribution of the test statistic does not depend on the break point

if just a level shift is considered. This fact makes it possible to develop procedures which

work when the break date is not known (e.g., Lütkepohl, Saikkonen and Trenkler (2004),

Saikkonen, Lütkepohl and Trenkler (2006)).

Although the short-term dynamics do not matter for the asymptotic theory, they have

a substantial impact in small and moderate samples. Therefore the choice of the lag order

p is quite important. Choosing p rather large to be on the save side as far as missing out

on important short-term dynamics is concerned, may lead to a drastic loss in power of the

cointegrating rank tests. On the other hand, choosing the lag order too small may lead to

dramatic size distortions even for well-behaved DGPs. In a small sample simulation study,

Lütkepohl and Saikkonen (1999) found that using the AIC criterion for order selection may

be a good compromise.

There are many other interesting suggestions for modifying and improving the Johansen

approach to cointegration testing. For example, to improve the performance of the Johansen

cointegration tests in small samples, Johansen (2002) presents a Barlett correction. Also,

there are a number of proposals based on different ideas. As mentioned previously, much of

the earlier literature is reviewed in Hubrich et al. (2001). Generally, at present it appears

that the Johansen approach should be the default and only if there are particular reasons

other proposals are worth contemplating.

Clearly, the Johansen approach has its drawbacks. In particular, in large dimensional

systems and if long lag orders are necessary to capture the short-term dynamics, it may not

find all the cointegration relations (see Gonzalo and Pitarakis (1999)). In other words, its

power may not suffice to reject some small cointegration rank if the true rank is a bit larger.

Therefore it may be useful to apply cointegration tests to all possible subsystems as well and
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check whether the results are consistent with those for the full model.

5 Model Checking

A wide range of procedures is available for checking the adequacy of VARs and VECMs.

They should be applied before a model is used for a specific purpose to ensure that it

represents the DGP adequately. A number of procedures considers the estimated residuals

and checks whether they are in line with the white noise assumption. Another set of tests

checks the stability of the model over time. In the following I will first consider residual

based tests for autocorrelation, nonnormality and conditional heteroskedasticity. Then I

will discuss tests for structural stability. In addition to these more formal procedures there

are also many informal procedures based, e.g., on plots of residuals and autocorrelations.

For some of these procedures see Lütkepohl (2004).

5.1 Tests for Residual Autocorrelation

5.1.1 Portmanteau Test

The portmanteau test for residual autocorrelation checks the null hypothesis that all residual

autocovariances are zero, that is, H0 : E(utu
′
t−i) = 0 (i = 1, 2, . . . ). It is tested against the

alternative that at least one autocovariance and, hence, one autocorrelation is nonzero. The

test statistic is based on the residual autocovariances and has the form

Qh = T

h∑
j=1

tr(Ĉ ′
jĈ

−1
0 ĈjĈ

−1
0 ), (5.1)

where Ĉj = T−1
∑T

t=j+1 ûtû
′
t−j and the ût’s are the estimated residuals. For an unrestricted

stationary VAR(p) process the null distribution of Qh can be approximated by a χ2(K2(h−p))

distribution if T and h approach infinity such that h/T → 0. If there are parameter restric-

tions, the degrees of freedom of the approximate χ2 distribution are obtained as the difference

between the number of (non-instantaneous) autocovariances included in the statistic (K2h)

and the number of estimated VAR parameters (e.g., Ahn (1988), Hosking (1980, 1981a,

1981b), Li and McLeod (1981) or Lütkepohl (2005, Section 4.4)). This approximation is

unsatisfactory for integrated and cointegrated processes, as pointed out by Brüggemann,
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Lütkepohl and Saikkonen (2006). For such processes the degrees of freedom also depend

on the cointegrating rank. Thus, portmanteau tests are not recommendable for levels VAR

processes with unknown cointegrating rank. For VECMs with appropriately specified cointe-

grating rank r and no restrictions on α and Γ1, . . . , Γp−1, the proper approximate distribution

is χ2(K2h−K2(p− 1)−Kr).

All these approximations of the test distributions may be poor in small samples. To

improve the match between actual and approximating distribution, Hosking (1980) proposed

to use the modified statistic

Q∗
h = T 2

h∑
j=1

1

T − j
tr(Ĉ ′

jĈ
−1
0 ĈjĈ

−1
0 )

instead of the original version (5.1).

The choice of h is also important for the small sample properties of the test. This quantity

should be considerably larger than p to get a good approximation to the null distribution.

Unfortunately, choosing h too large may reduce the power of the test. Often a number of

different values of h are considered in practice. The portmanteau test should be applied

primarily to test for autocorrelation of high order. The LM test considered in the next

section is more suitable to check for low order residual autocorrelation.

5.1.2 LM Test

The LM test, also known as Breusch-Godfrey test for residual autocorrelation of order h

may be viewed as a test for zero coefficient matrices in the model

ut = B1ut−1 + · · ·+ Bhut−h + et.

The quantity et denotes a white noise error term. Thus, a test of

H0 : B1 = · · · = Bh = 0 versus H1 : Bi 6= 0 for at least one i ∈ {1, . . . , h}

is called for. The relevant LM statistic can be computed easily by considering the auxiliary

model

ût = A1yt−1 + · · ·+ Apyt−p + B1ût−1 + · · ·+ Bhût−h + e∗t , (5.2)

for the levels VAR form or

ût = αβ̂′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + B1ût−1 + · · ·+ Bhût−h + e∗t , (5.3)
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for the VECM form. Here the ût’s are again the estimated residuals from the original model,

β̂ is the RR estimator of the cointegration matrix and e∗t is an auxiliary error term. The

ût’s with t ≤ 0 should be replaced by zero. If the model contains deterministic terms they

should also be added to the auxiliary model.

Denoting the residuals from the estimated auxiliary model by ê∗t (t = 1, . . . , T ) and

defining Σ̂e = 1
T

∑T
t=1 ê∗t ê

∗
t
′, the LM statistic may be computed as

QLM = T
(
K − tr(Σ̂−1

u Σ̂e)
)

.

It has an asymptotic χ2(hK2)-distribution under the null hypothesis for both I(0) and I(1)

systems (Brüggemann et al. (2006)). Thus, the LM test can also be applied to levels VAR

processes with unknown cointegrating rank.

Edgerton and Shukur (1999) have performed a large Monte Carlo study for stationary

processes and found that this statistic also may have a small sample distribution which

differs considerably from its asymptotic χ2-distribution. They propose an F version with

better small sample properties.

5.2 Tests for Nonnormality

Although normality is not a necessary condition for the validity of many of the statistical

procedures related to VAR models, deviations from the normality assumption may indicate

that model improvements are possible. Therefore nonnormality tests are common in applied

work. Multivariate versions can be applied to the full residual vector of the VAR model and

univariate versions can be used for the errors of the individual equations.

Multivariate tests for nonnormality may be constructed to check whether the third and

fourth moments of the residuals are conformable with those of a normal distribution. This

approach extends ideas of Lomnicki (1961) and Jarque and Bera (1987) for univariate models.

In the multivariate case, the residual vector of a VAR or VECM is first transformed to make

the individual components independent. Then the moments are compared with those of

normal distributions. For given residuals ût (t = 1, . . . , T ) of an estimated VAR process or

VECM, the residual covariance matrix Σ̂u is determined and a matrix P such that PP ′ = Σ̂u

is computed. The tests for nonnormality can then be based on the skewness and kurtosis of

the standardized residuals ûs
t = P−1ût.
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The nonnormality tests depend to some extent on the transformation matrix P which is

used to standardize the residuals. Doornik and Hansen (1994) proposed to use the square

root matrix of Σ̂u whereas Lütkepohl (2005, Chapter 4) considered a Choleski decomposition

of the residual covariance matrix. Although the literature on testing for nonnormality is

extensive and many other tests are available, the ones mentioned here are probably the most

popular tests in the context of VAR analysis. Nonnormality is also a likely problem if the

residuals are conditionally heteroskedastic. Special tests for this feature are discussed next.

5.3 ARCH Tests

A test for multivariate autoregressive conditional heteroskedasticity (ARCH) can be based

on similar ideas as the LM test for residual autocorrelation. A multivariate ARCH model of

order q for the residual vector ut has the form

vech(Σt|t−1) = β0 + B1vech(ut−1u
′
t−1) + · · ·+ Bqvech(ut−qu

′
t−q),

where vech is the column stacking operator for symmetric matrices which stacks the columns

from the main diagonal downwards and Σt|t−1 is the conditional covariance matrix of ut given

ut−1, ut−2, . . . . Moreover, β0 is a 1
2
K(K + 1)-dimensional parameter vector and the Bj’s are

(1
2
K(K + 1) × 1

2
K(K + 1)) coefficient matrices for (j = 1, . . . , q). For this model one may

want to test the pair of hypotheses

H0 : B1 = · · · = Bq = 0 versus H1 : Bi 6= 0 for at least one i ∈ {1, . . . , q}.

If H0 is true, there is no ARCH in the residuals. The relevant LM statistic can be obtained

by using the auxiliary model

vech(ûtû
′
t) = β0 + B1vech(ût−1û

′
t−1) + · · ·+ Bqvech(ût−qû

′
t−q) + errort (5.4)

and computing

LMARCH(q) =
1

2
TK(K + 1)

(
1− 2

K(K + 1)
tr(Ω̂Ω̂−1

0 )

)
,

where Ω̂ is the residual covariance matrix of the 1
2
K(K + 1)-dimensional regression model

(5.4) with q > 0 and Ω̂0 is the corresponding matrix for the case q = 0. The statistic is

similar to the one described by Doornik and Hendry (1997, Sec. 10.9.2.4) and may be used

with critical values from a χ2(qK2(K +1)2/4)-distribution. Alternatively, an F version may

be considered which may be advantageous in small samples.
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5.4 Stability Analysis

A wide range of procedures for checking the stability or time invariance of a given model

exists (e.g., Doornik and Hendry (1997), Lütkepohl (2004, 2005, Chapter 17)). They may be

used to detect potential structural breaks during the sample period. For example, possible

breaks in monetary models for the U.S. have been discussed extensively in the literature (e.g.,

Bernanke and Mihov (1998), Christiano, Eichenbaum and Evans (1999), Cogley and Sargent

(2001), Lubik and Schorfheide (2004), Primiceri (2005), Sims and Zha (2006), Lanne and

Lütkepohl (2006)). Therefore it is important to have statistical instruments for investigating

possible changes in the structure of VARs and VECMs. Here I will just discuss Chow tests

which are standard tools for stability analysis for time series models.

Different types of Chow tests exist. They check the null hypothesis of time invariant

parameters throughout the sample period against the possibility of a change in the parameter

values in some period TB, say. In one type of test the model under consideration is estimated

from the full sample of T observations and from the first T1 and the last T2 observations,

where T1 < TB and T2 ≤ T − TB. The test is based on the LR principle under Gaussian

assumptions. In other words, the likelihood maximum from the constant parameter model

is compared to the one with different parameter values before and after period TB, leaving

out the observations between T1 and T − T2 + 1. Denoting the conditional log-density of

the t-th observation vector by lt, i.e., lt = log f(yt|yt−1, . . . , y1), a version of the Chow test

statistic can be written as

λChow = 2

[
sup

(
T1∑
t=1

lt

)
+ sup

(
T∑

t=T−T2+1

lt

)
− sup

(
T1∑
t=1

lt +
T∑

t=T−T2+1

lt

)]
. (5.5)

If the model is time invariant, the statistic has an asymptotic χ2-distribution. The degrees of

freedom are given by the number of restrictions imposed by assuming a constant coefficient

model for the full sample period, that is, it is the difference between the sum of the number of

free coefficients estimated in the first and last subperiods and the number of free coefficients

in the full sample model.

For a K-dimensional VECM, ∆yt = αβ′yt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ut, with

cointegrating rank r, counting all parameters in the model apart from those in Σu gives

2Kr + (p− 1)K2. The degrees of freedom for the test based on λChow are, however, 2Kr −
r2 + (p− 1)K2, where r2 is subtracted because normalizing β′ = [Ir : β′(K−r)] shows that r2
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of its parameters are fixed throughout the sample (see Hansen (2003)).

From the point of view of asymptotic theory there is no need to leave out any observations

between the two subsamples. So T1 = TB−1 and T2 = T−TB is a possible choice. In practice,

if the parameter change has not occurred instantaneously at the beginning of period TB, but

is spread out over a few periods or its exact timing is unknown, leaving out some observations

may improve the small sample power of the test.

Various generalizations of these tests are possible. For example, one could test for more

than one break or one could check constancy of a subset of parameters keeping the remaining

ones fixed. Moreover, there may be deterministic terms in the cointegration relations or the

number of cointegration relations may change in different subperiods. These generalizations

are also treated by Hansen (2003). A Chow forecast test version for multivariate time series

models was proposed by Doornik and Hendry (1997). It tests the null hypothesis that

the forecasts from a model fitted to the first TB observations are in line with the actually

observed data. Doornik and Hendry (1997) also proposed F versions of the tests to alleviate

small sample distortions. Candelon and Lütkepohl (2001) pointed out that especially for

multivariate time series models the asymptotic χ2-distribution may be a poor guide for

small sample inference. Even adjustments based on F approximations can lead to distorted

test sizes. Therefore they proposed to use bootstrap versions of the Chow tests in order to

improve their small sample properties.

Chow tests are sometimes performed repeatedly for a range of potential break points TB.

If the test decision is based on the maximum of the test statistics, the test is effectively

based on the test statistic supTB∈T λChow, where T ⊂ {1, . . . , T} is the set of periods for

which the test statistic is determined. The asymptotic distribution of the sup test statistic

is not χ2 but of a different type (see Andrews (1993), Andrews and Ploberger (1994) and

Hansen (1997)).

Various versions of these tests may be useful for checking parameter constancy. If the

short-term dynamics are expected to be stable and a test of parameter change in the long-run

part only is desired, one may first concentrate out the short-term parameters based on the

full sample. Then one may focus on recursive estimation of α and β. Hansen and Johansen

(1999) derive tests which may be used to test stability of the cointegration space separately.

Once an adequate model for the reduced form has been found, this can be used as the
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basis for forecasting and structural analysis. These issues will be considered next.

6 Forecasting

Although VARs and VECMs are both well suited for forecasting, I focus on the levels VAR

form in the following for convenience. The discussion is equally valid for VECMs which have

been converted to VAR form. The somewhat unrealistic situation of a known DGP will be

considered first to separate model inherent uncertainty from issues related to uncertainty

due to model specification and parameter estimation.

6.1 Known Processes

Because the future values of deterministic terms are known with certainty by their very

nature, I will first focus on the stochastic part. Let xt be generated by a VAR(p) process

as in (2.2), where ut is an iid white noise process. Under these assumptions the conditional

expectation given xt, t ≤ T ,

xT+h|T = E(xT+h|xT , xT−1, . . . ) = A1xT+h−1|T + · · ·+ ApxT+h−p|T , (6.1)

is the optimal (minimum MSE) h-steps ahead forecast in period T . Here xT+j|T = xT+j for

j ≤ 0. The forecasts can easily be computed recursively for h = 1, 2, . . . . The associated

forecast error is

xT+h − xT+h|T = uT+h + Φ1uT+h−1 + · · ·+ Φh−1uT+1, (6.2)

where the Φi weighting matrices may be obtained recursively as

Φi =
i∑

j=1

Φi−jAj, i = 1, 2, . . . , (6.3)

with Φ0 = IK and Aj = 0 for j > p (e.g., Lütkepohl (2005, Chapter 2)). For h = 1, ut is

seen to be the forecast error in period t− 1. The forecast errors have mean zero and, hence,

the forecasts are unbiased. The forecast error covariance or MSE matrix is

Σx(h) = E[(xT+h − xT+h|T )(xT+h − xT+h|T )′] =
h−1∑
j=0

ΦjΣuΦ
′
j. (6.4)
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If the ut’s are just uncorrelated and not independent, the forecasts obtained recursively as

in (6.1) are still best linear forecasts but do not necessarily minimize the MSE in a larger

class which includes nonlinear forecasts as well.

These results are valid for both I(0) and I(1) processes. Yet there are important differ-

ences in the forecasts for these alternative types of variables. For I(0) processes the forecast

MSEs are bounded as the horizon h goes to infinity whereas for I(1) processes the forecast

uncertainty and, hence, the MSE increases without bounds for increasing forecast horizon.

Deterministic components can be added easily if yt = µt + xt with nonzero µt. In this

case the h-step forecast of yt at origin T is yT+h|T = µT+h + xT+h|T . Obviously, the forecast

errors are identical to those of the xt process. In other words,

yT+h − yT+h|T ∼ (0, Σx(h)).

If the process yt is Gaussian, that is, ut ∼ iid N (0, Σu), the forecast errors are also

multivariate normal and forecast intervals can be set up in the usual way. If yt is non-

Gaussian or if the distribution is unknown, other methods for setting up forecast intervals

are called for. Findley (1986), Masarotto (1990), Grigoletto (1998), Kabaila (1993), Kim

(1999) and Pascual, Romo and Ruiz (2004) considered bootstrap methods for forecasting

nonnormal processes. For nonnormally distributed variables, forecast intervals may not

represent the best way to report the forecast uncertainty, however. A survey of related

issues is given by Tay and Wallis (2002).

6.2 Estimated Processes

If unknown parameters are replaced by estimators in the previous formulas, this has impli-

cations for the forecast precision. Signifying forecasts based on estimated parameters with

a hat, the forecast error becomes

yT+h − ŷT+h|T = (yT+h − yT+h|T ) + (yT+h|T − ŷT+h|T )

=
h−1∑
j=0

ΦjuT+h−j + (yT+h|T − ŷT+h|T ). (6.5)

The first term on the right-hand side involves residuals ut with t > T only and the second

term involves just yT , yT−1, . . . , if only variables up to time T have been used for estimation.
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Consequently, the two terms are independent and

Σŷ(h) = E[(yT+h − ŷT+h|T )(yT+h − ŷT+h|T )′] = Σx(h) + o(1) (6.6)

is obtained, where o(1) denotes a term which approaches zero as the sample size tends to

infinity. The latter result follows because the difference yT+h|T − ŷT+h|T is small in probabil-

ity under standard assumptions. Thus, asymptotically the forecast uncertainty implied by

estimation uncertainty may be ignored. In finite samples the precision of the forecasts will

depend on the precision of the estimators, however. Hence, precise forecasts require pre-

cise estimators. For the stationary case, possible correction factors for MSEs and forecast

intervals are given, e.g., in Yamamoto (1980), Baillie (1981) and Lütkepohl (2005, Chapter

3).

A number of extensions of these results are worth mentioning. For example, constructing

separate models for different forecast horizons may be considered if estimation uncertainty is

an issue (e.g., Bhansali (2002)). Moreover, Lewis and Reinsel (1985) and Lütkepohl (1985)

considered the case of a stationary infinite order VAR DGP which is approximated by a

finite order VAR, thereby extending earlier univariate results by Bhansali (1978). Moreover,

Reinsel and Lewis (1987), Basu and Sen Roy (1987), Engle and Yoo (1987), Sampson (1991),

Reinsel and Ahn (1992) and Clements and Hendry (1998, 2001) presented results for pro-

cesses with unit roots. Stock (1996) and Kemp (1999) assumed that the forecast horizon h

and the sample size T both go to infinity simultaneously. Clements and Hendry (1998, 2001)

also considered various other sources of possible forecast errors.

7 Causality Analysis

7.1 Intuition and Theory

VAR models also open up the possibility for analyzing the relation between the variables

involved. Analyzing the causal relations is of particular interest. Granger (1969) presented a

definition of causality in the time series context which has become quite popular in applied

work. He called a variable y1t causal for a variable y2t if the information in y1t is helpful

for improving the forecasts of y2t. Because this is a special concept of causality, it is often

35



referred to as Granger-causality. In a bivariate VAR(p) setting,


 y1t

y2t


 =

p∑
i=1


 α11,i α12,i

α21,i α22,i





 y1,t−i

y2,t−i


 + ut, (7.1)

it turns out that y1t is not Granger-causal for a variable y2t if and only if

α21,i = 0, i = 1, 2, . . . , p, (7.2)

that is, if it does not appear in the y2t equation of the model. Although this result holds

for stationary and integrated processes alike, for I(1) variables it may still be desirable to

investigate Granger-causal relations within a VECM. This case is discussed by Mosconi and

Giannini (1992). An interesting implication of cointegration between two I(1) variables is

that there must be Granger-causality in at least one direction (from y1t to y2t or from y2t

to y1t or both). For other characterizations of Granger-causality see also Gourieroux and

Monfort (1997).

Because economic systems of interest usually consist of more than two variables, it is

desirable to extend the concept of Granger-causality to higher dimensional processes. Such

extensions have been discussed by Lütkepohl (1993) and Dufour and Renault (1998). In one

approach the vector of all variables is partitioned into two subvectors so that yt = (y′1t, y
′
2t)

′

and Granger-causality from y1t to y2t is considered in this context. It turns out that in the

VAR(p) framework Granger-noncausality is still characterized by zero restrictions on the

parameter matrices similar to the bivariate case (Lütkepohl (2005, Section 2.3.1)).

This type of generalization is not satisfactory if a causal relation between two variables

within a higher dimensional system is of interest. In that case more complex restrictions

may have to be considered (Dufour and Renault (1998), Lütkepohl (2005, Section 2.3.1)).

Causality has been discussed extensively in the econometrics literature and is an area of

ongoing research. It is obviously also of interest in other than VAR models. In fact, causality

is of interest not only in the context of time series models but also in describing economic

relations more generally (e.g., Granger (1982), Angrist, Imbens and Rubin (1996), Heckman

(2000), Pearl (2000), Hoover (2001)).
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7.2 Testing for Granger-Causality

Because Granger-noncausality is characterized by zero restrictions on the levels VAR repre-

sentation of the DGP, standard Wald χ2- or F -tests can be applied for causality analysis.

Unfortunately, these tests may have nonstandard asymptotic properties if yt ∼ I(1) (Toda

and Phillips (1993)). There is a simple modification that fixes the problem in this case,

however. Recall from Section 3.2 that standard inference is possible whenever the elements

in at least one of the complete coefficient matrices Ai are not restricted at all under the null

hypothesis. Thus, adding an extra redundant lag in estimating the parameters of the pro-

cess ensures standard asymptotics for the Wald tests if elements from all matrices A1, . . . , Ap

are involved in the restrictions as, for instance, in the noncausality restrictions in (7.2) (see

Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996)). Clearly, a VAR(p+1) is an

appropriate model if the same is true for a VAR(p). The test may then be performed on the

A1, . . . , Ap only. As a consequence of results due to Park and Phillips (1989) and Sims et al.

(1990) the procedure remains valid if deterministic terms are included in the VAR model.

Although this device leads to a known limiting distribution of the test statistic, it is not a

fully efficient procedure because of the redundant lag.

Extensions to testing for Granger-causality in infinite order VAR processes were con-

sidered by Lütkepohl and Poskitt (1996b) and Saikkonen and Lütkepohl (1996). Moreover,

tests for other types of causality restrictions were considered by Lütkepohl and Burda (1997)

and Dufour, Pelletier and Renault (2006).

8 Structural VARs and Impulse Response Analysis

Traditional econometric simultaneous equations models are sometimes used to predict the

responses of the endogenous variables to changes in exogenous variables or to derive optimal

policy responses to changes in the economic conditions. In VAR models there are typically

no exogenous variables. In these models the effects of shocks are usually studied and used

to link the VAR models to economic models. For example, they may be used to investigate

the effects of monetary policy shocks, that is, of unexpected changes in the variables which

were not anticipated by the economic agents. The relevant tool is known as impulse response

analysis and will be considered in the following.
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For a meaningful analysis it is important to isolate the actual shocks of interest. This

requires the imposition of some structure on the reduced forms which we have discussed

predominantly so far. The relevant structural VARs and VECMs will be discussed in Sec-

tions 8.1 and 8.2, respectively. Estimation of structural parameters and impulse responses

will be discussed in Section 8.3. Based on structural innovations, forecast error variance

decompositions are often computed and used to study the structure of economic systems.

They are briefly presented in Section 8.4.

8.1 Levels VARs

Impulse response analysis is a standard tool for investigating the relations between the

variables in a VAR model. If the VAR(p) process yt is I(0), it has a Wold moving average

(MA) representation of the form

yt =
∞∑

j=0

Φjut−j, (8.1)

where deterministic terms are ignored to simplify the exposition. In this representation,

Φ0 = IK and the Φj’s (j = 1, 2, . . . ) are (K×K) coefficient matrices which can be computed

using the formulas in (6.3). The marginal response of yn,t+j to a unit change in ymt, holding

constant all past values of yt, are given by the (n,m)th elements of the matrices Φj, viewed

as a function of j. More precisely, the elements of Φj represent responses to ut innovations,

that is, to forecast errors. Therefore these quantities are sometimes called forecast error

impulse responses (Lütkepohl (2005, Section 2.3.2)). Since Φj → 0 as j →∞ for stationary

processes, the effect of an impulse vanishes over time. In other words, it is transitory.

Forecast error impulse responses may not reflect the actual reactions of a given system

properly because, if the components of ut are contemporaneously correlated and, hence,

Σu is not diagonal, the shocks are not likely to occur in isolation in practice. Therefore

orthogonalized shocks are often considered in impulse response analysis. Any nonsingular

matrix P with the property that PP ′ = Σu can be used to define orthogonalized shocks

as εt = P−1ut. Clearly, these shocks have the property that εt ∼ (0, IK) and they are

contemporaneously uncorrelated. The responses to such shocks are given by the coefficients
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of the MA representation

yt =
∞∑

j=1

ΦjPP−1ut−j =
∞∑

j=1

Ψjεt−j. (8.2)

The problem here is that the matrix P is not unique and, hence, many different impulse

responses Ψj = ΦjP exist. To identify those impulses which are interesting from an economic

point of view is the objective of structural VAR (SVAR) analysis. It uses subject matter

theory to impose restrictions on P which result in unique impulse responses.

Historically, a popular choice of P has been a lower triangular matrix obtained by a

Choleski decomposition of Σu. The recent SVAR literature has considered many other pos-

sibilities as well. A number of them can be placed within the so-called AB-model of Giannini

(1992) and Amisano and Giannini (1997) which may be represented as

Ayt = A∗
1yt−1 + · · ·+ A∗

pyt−p + Bεt, (8.3)

where εt ∼ (0, IK), as before. In this setup instantaneous relations between the components

of yt may be modelled via A as in (2.12) and relations between the residuals may be taken

into account via B (see also Breitung, Brüggemann and Lütkepohl (2004) and Lütkepohl

(2005, Chapter 9)). The error term in (8.3) is related to the reduced form error term by

ut = A−1Bεt,

and, hence, P = A−1B in (8.2).

Different types of identifying restrictions for the matrices A and B have been considered.

Examples can be found, for instance, in Sims (1986), Bernanke (1986), Blanchard and Quah

(1989), Gaĺı (1999) and Pagan (1995).

8.2 Structural VECMs

Forecast error impulse responses can also be computed for I(1) processes (Lütkepohl and

Reimers (1992), Lütkepohl (2005, Chapter 6)). The shocks may have permanent effects,

however. Although the AB-model may also be used for I(1) systems to specify identifying

restrictions for impulse responses for levels VAR processes, it is often of interest to distinguish

between shocks with permanent and transitory effects. This can be done more easily in the

VECM framework. To simplify matters I focus on a B-model setup. That is, I assume that
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ut = Bεt. Hence, Σu = BB′. Due to the symmetry of the covariance matrix, Σu = BB′

represents only 1
2
K(K + 1) independent equations. For a unique specification of the K2

elements of B, at least 1
2
K(K − 1) further restrictions are needed and, as will be seen now,

the cointegration structure may help in setting them up.

Granger’s representation theorem (see Johansen (1995, Theorem 4.2)) states that yt has

the representation

yt = Ξ
t∑

i=1

ui +
∞∑

j=0

Ξ∗jut−j + y∗0, t = 1, 2, . . . , (8.4)

where the term y∗0 contains the initial values. The term
∑∞

j=0 Ξ∗jut−j is an I(0) component,

while zt =
∑t

i=1 ui = zt−1 + ut, t = 1, 2, . . . , is a K-dimensional random walk and is thus

I(1). Hence, Ξ
∑t

i=1 ui represents a stochastic trend component. The matrix Ξ can be shown

to be of the form

Ξ = β⊥

[
α′⊥

(
IK −

p−1∑
i=1

Γi

)
β⊥

]−1

α′⊥.

For a VECM with cointegrating rank r it has rank K − r. Thus, the representation in (8.4)

decomposes yt in K − r common trends and a stationary cyclical part.

Substituting Bεi for ui in (8.4) shows that the long-run effects of the structural innovations

are given by ΞB. As this matrix also has rank K− r, it can have at most r zero columns. In

other words, at most r of the structural innovations can have transitory effects only and at

least K − r of them must have permanent effects at least on some of the variables. Thereby

cointegration analysis can help in suggesting how many transitory shocks there can be at

most. In this framework, linear restrictions for ΞB and B are typically specified to identify

the structural shocks (see, e.g., King, Plosser, Stock and Watson (1991), Gonzalo and Ng

(2001)). The transitory shocks may be identified, for example, by placing zero restrictions

on B directly and thereby specifying that certain shocks have no instantaneous impact on

some of the variables. For further examples see Breitung et al. (2004) and more discussion of

partitioning the shocks in permanent and transitory ones is given in Gonzalo and Ng (2001),

Fisher and Huh (1999) and others.

Identifying the impulse responses within a given model is but one problem related to a

proper interpretation. Other problems are due to omitted variables, filtering and adjusting

series prior to using them for a VAR analysis. Moreover, aggregated or transformed data
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can lead to major changes in the dynamic structure of the variables and hence, the impulse

responses. These issues should be taken into account in an impulse response analysis.

8.3 Estimating Impulse Responses

Forecast error impulse responses can be estimated straightforwardly by substituting esti-

mated reduced form parameters in the formulas for computing them. Estimation of the

structural impulse responses is also straightforward if estimates of the structural parame-

ters A and B are available. To estimate these parameters, ML or quasi ML methods under

normality assumptions are often used. If no restrictions are imposed on the VAR model or

VECM (apart from the rank restriction for the error correction term) the parameters can be

concentrated out of the likelihood function by replacing them by their LS or RR estimators.

The concentrated log-likelihood function in terms of A and B then becomes

l(A, B) = constant +
T

2
log det(A)2 − T

2
log det(B)2 − T

2
tr(A′B′−1B−1AΣ̂u), (8.5)

where Σ̂u = T−1(Y −ÂY)(Y −ÂY)′ is the usual estimator of Σu (cf. Breitung et al. (2004)).

Numerical methods can be used to optimize this function with respect to the free parameters

in A and B. Under standard assumptions the resulting estimators have the usual asymptotic

properties of ML estimators (see, e.g., Lütkepohl (2005, Chapter 9) for details).

Denoting the vector of all structural form parameters by α and its estimator by α̂, a

vector of impulse response coefficients ψ is a (nonlinear) function of α, ψ = ψ(α), which can

be estimated as ψ̂ = ψ(α̂). If α̂ is asymptotically normal, the same will hold for ψ̂ = ψ(α̂)

by appealing to the delta method. More precisely, if

√
T (α̂−α)

d→ N (0, Σα̂)

then

√
T (ψ̂ − ψ)

d→ N (0, Σψ̂), (8.6)

where

Σψ̂ =
∂ψ

∂α′Σα̂
∂ψ′

∂α
,

provided the matrix of partial derivatives ∂ψ/∂α′ is such that none of the variances is zero

and, in particular, ∂ψ/∂α′ 6= 0. However, inference problems may arise if ∂ψ/∂α′ does
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not have full row rank. In that case, Σψ̂ and, hence, the asymptotic distribution of ψ̂

will be singular. This may in fact occur at specific points in the parameter space in the

present situation because the function ψ(α) consists of sums of products of elements of α.

Moreover, Σα̂ will in general be singular if yt is I(1) which in turn may imply singularity

of Σψ̂ even if ∂ψ/∂α′ has full row rank. As a further complication, both problems may be

present simultaneously. For further discussion see also Benkwitz, Lütkepohl and Neumann

(2000). Thus, standard asymptotic confidence intervals around impulse responses based on

the asymptotic normal distribution in (8.6) may be misleading.

Generally, even in parts of the parameter space where standard asymptotic theory works,

it may not provide good approximations to the small sample distributions of impulse re-

sponses. Therefore, bootstrap methods are often used in applied work to construct confidence

intervals for these quantities (e.g., Kilian (1998b), Benkwitz, Lütkepohl and Wolters (2001)).

They are computer intensive but have the advantage that complicated analytical expressions

of the asymptotic variances are not needed and they may improve inference procedures. On

the other hand, it is important to note that they are also justified by asymptotic theory. In

general the bootstrap does not overcome the problems due to a singularity in the asymptotic

distribution. Thus, in these cases bootstrap confidence intervals may also be unreliable and

may have a coverage which does not correspond to the nominal level (see Benkwitz et al.

(2000) for further details). A solution to these problems may be possible by using subset

VAR techniques to single out all zero coefficients and estimate only the remaining nonzero

parameters.

Several authors have compared the relative merits of confidence intervals for impulse

responses obtained by asymptotic theory on the one hand and bootstrap methods on the

other hand using Monte Carlo simulation methods (e.g., Fachin and Bravetti (1996), Kilian

(1998a, b), Kilian and Chang (2000)). The results are rather mixed and depend to some

extent on the Monte Carlo design. Generally, in some cases simple asymptotic intervals

outperformed standard bootstrap intervals in terms of coverage, i.e., their actual coverage

probabilities were closer to the nominal ones chosen by the user. Bootstrap or simulation

methods may improve substantially, however, once adjustments are made as, e.g., proposed

by Kilian (1998b). Also a Bayesian Monte Carlo integration method proposed by Sims and

Zha (1999) performed well in one of the simulation comparisons.
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Generally, inference related to impulse responses has been discussed extensively in the

recent literature. For example, Sims and Zha (1999) questioned the practice of reporting

confidence intervals around individual impulse response coefficients and proposed likelihood-

characterizing error bands as alternatives. Moreover, Koop (1992) considered confidence

bands for impulse responses constructed with Bayesian methods. Generally, Bayesian meth-

ods are popular in structural VAR analysis. For example, Del Negro and Schorfheide (2004)

used Baysesian methods in a structural analysis which combines DSGE models with VARs

and, in particular, derived the structure from a simple DSGE model. Christiano, Eichen-

baum and Evans (2005) estimated the parameters of a DSGE model by minimizing the

distance of impulse responses from a DSGE model and a VAR. Other ideas for identifying

impulse responses have been advanced by Uhlig (2005) who proposed to use inequality con-

straints and also used Bayesian methods, Lanne and Lütkepohl (2005, 2006) suggested to

utilize information from the residual distribution and Lee, Pesaran and Pierse (1992) and

Pesaran and Shin (1996) considered persistence profiles which measure the persistence of

certain shocks without imposing structural identification restrictions.

8.4 Forecast Error Variance Decompositions

Using the structural innovations to express the h-step forecast error from (6.2) gives

yT+h − yT+h|T = Ψ0εT+h + Ψ1εT+h−1 + · · · + Ψh−1εT+1.

From this expression the forecast error variance of the kth component can be shown to be

σ2
k(h) =

h−1∑
j=0

(ψ2
k1,j + · · ·+ ψ2

kK,j) =
K∑

j=1

(ψ2
kj,0 + · · ·+ ψ2

kj,h−1),

where ψnm,j denotes the (n, m)th element of Ψj. The term (ψ2
kj,0 + · · · + ψ2

kj,h−1) may be

interpreted as the contribution of the jth innovation to the h-step forecast error variance

of variable k. The relative contributions obtained as the ratios (ψ2
kj,0 + · · ·+ ψ2

kj,h−1)/σ
2
k(h)

are often reported for various variables and forecast horizons. Estimation of these quan-

tities can easily be done by replacing unknown parameters by their estimators. Standard

asymptotic and bootstrap evaluations of their sampling uncertainty is problematic, however,

because some of these quantities may assume the boundary values of zero and one. Clearly,
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interpretation of these quantities is informative only if they are based on meaningful and

economically relevant structural innovations.

9 Conclusions and Extensions

In this chapter the specification and estimation of finite order VAR models have been re-

viewed. Furthermore the possible uses of these models for forecasting, causality and impulse

response analysis have been discussed. Special attention has been paid to integrated and coin-

tegrated variables for which vector error correction models have been considered throughout.

Using these models in practice requires extensive computations because asymptotic inference

is often not very precise in small samples and improved methods based on bootstraps, say,

are often used. There are some software packages which contain programs for many of the

procedures discussed in this chapter. Examples of specialized software are PcGive (Doornik

and Hendry (1997)), EViews (EViews (2000)) and JMulTi (Krätzig (2004)).

There are different possible directions for generalizing the methods and results discussed

in this chapter. For example, one may consider infinite order VAR processes and study the

consequences of fitting finite order approximations to time series generated by such DGPs.

For an exposition of this topic with further references see Lütkepohl (2005, Chapter 15).

For a more parsimonious parameterization the class of vector autoregressive moving average

processes may be worth considering. In these models the residuals of the VAR part are

allowed to have a MA structure rather than being white noise. For the stationary case these

models have been considered, for instance, by Hannan and Deistler (1988), Lütkepohl (2005,

Part IV) and Lütkepohl and Poskitt (1996a). Extensions to cointegrated systems have

been discussed by Lütkepohl and Claessen (1997), Bartel and Lütkepohl (1998), Poskitt

(2003) and Lütkepohl (2005, Chapter 14). A recent survey with many more references

was given by Lütkepohl (2006a). Furthermore, nonlinear components may be included in

VAR models (e.g., Balke and Fomby (1997), Granger (2001), Escribano and Mira (2002),

Saikkonen (2005)) or specific modelling of strong seasonal fluctuations may be desirable

(e.g., Ghysels and Osborn (2001)). Also VAR models may be amended by ARCH residuals

(e.g., Lütkepohl (2005, Chapter 16)) and higher order integration may be accounted for (e.g.,

Boswijk (2000), Johansen (1997, 2006)).
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