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Abstract

Likelihood ratio tests for restrictions on cointegrating vectors are
asymptotically y? distributed. For some values of the parameters this
asymptotic distribution does not give a good approximation to the finite
sample distribution. In this paper we derive the Bartlett correction fac-
tor for the likelihood ratio test and show by some simulation experiments
that it can be a useful tool for making inference.



1 Introduction

In this paper we derive a Bartlett correction for the test on the cointegrating
relations in the vector autoregressive model for the n—dimensional process X,
given by

k-1
AX, =a(f X1+ p'Dy) + Z DAX, i+ @d+e, t=1,...,7 (1)

i=1

where ¢; are i.i.d. N, (0,€), the initial values are fixed and d; (n4 x 1) and D,
(np x 1) are deterministic terms, like constant, linear term etc. The matrices
a and 3 are (n X r) and the matrices I'y,... ,['y_1,are (n x n, ® (n x ng) and
p (np x 1). For the analysis of this paper we assume that X, is /(1). A typical
example of the deterministic terms is to let d; = 1, and D; = t, corresponding
to having a linear trend in the process and trend stationary combinations 3'X;.
The formulation below also allows, with minor modifications, the possibility
that np and ng are zero.

The likelihood ratio test for hypotheses on (3 has been treated in Johansen
and Juselius (1990) and Ahn and Reinsel (1990), and it is known that it is
asymptotically x? distributed, despite the fact that the asymptotic distribution
of the estimator is mixed Gaussian. The finite sample distribution, however, is
not always well approximated by the asymptotic distribution, see for instance
Fachin (1997), Jacobsen and Gredenhoff (1998), and Jacobson, Vredin, and
Warne (1998), Haug (1998), to mention a few of the many studies of the finite
sample properties of the test of restrictions on (5.

We derive here a correction term to the likelihood ratio test statistic for
hypotheses on  with the purpose of improving the approximation to the asymp-
totic x? distribution. The correction is the so-called Bartlett correction, see
Bartlett (1937). For a recent survey of the theory of this type of correction see
Cribaro-Neto and Cordeiro (1996). Briefly the method consists of calculating
the expectation of the likelihood ratio (LR) statistic in the form —2LogLR for
a given parameter point # under the null hypothesis. Usually it is not possible
to do this explicitly and one can instead find an approximation of the form

E[—2log LR] ~ A(1 + @),
where A is equal to the degrees of freedom for the test and B(6), shows how the
remaining parameters under the null hypothesis distorts the mean and hence
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the distribution of the test statistic. The idea is that the quantity

—2LogLR
has a distribution that is closer to the limit distribution, see Lawley (1956) for a
proof of this statement under classical i.i.d. assumptions, that are not satisfied
in the 7(1) model.

The model (1) is characterized by dimension (n), cointegrating rank (),
lag length (%), the number of deterministic terms restricted to the cointegrating
space (np), the number of unrestricted terms (n4) and finally of course the value
of all the parameters and the sample size (7).

The main result presented in Section 4 is that the Bartlett correction is
a function of the parameters through only two functions, and various combina-
tions of the above characteristic numbers. We find for instance for the test that
B =Hy, (Hnxs)) that A=r(n—s),and form=n+s—r+1+2np

B(6) = [gm + na + kn] + ~[(2(n — 1) + m)u(a) + 2(c(a) + cala))]

The coefficients v(a), ¢(a), and ¢4() are given in Theorem 5 below. This
result implies that one can see for which combinations of the parameters the
usual x? approximation breaks down, and more constructively when it is use-
ful. In between there is an area where the Bartlett correction can serve as an
improvement to the usual asymptotic results.

The plan of the paper is first to establish in Section 2, that a number
of hypotheses can be given a general formulation as tests in a reduced rank
regression model. In Section an expansion is given of the estimators of this
reduced rank regression, and then an expansion is given of the log likelihood
ratio test statistic. In Section 4 the main result on the Bartlett corrections are
given and the results specialized to the models discussed in Section 2, and finally
in Section 5 some simulation experiments are conducted which show that the
Bartlett correction is a useful addition to the usual asymptotic analysis. The
very long and tedious proofs are given in an Appendix.

2 The models and the hypotheses

We define in this section three models by restrictions on the cointegrating re-
lations. All models can be analysed by reduced rank regression, see Johansen



(1996) for a detailed analysis of the models. The models allow deterministic
terms of a suitably simple type, that covers many of the usual situations. We
show how the correction term for the test of each of the models can be cal-
culated simply if we have the correction term for a simple hypothesis, and we
show for each of the models how to formulate the test of a simple hypothesis
as a test in a reduced rank regression, such that all the tests can be given the
same uniform formulation.

e M Unrestricted cointegrating space

The model is given by the equation (1) with unrestricted parameters.

e M, Same restriction on all cointegrating relations

The model is defined as a submodel of M by the same restrictions on all
cointegrating relations which can be expressed as

B = Hi,

where H is (n x s) of rank s and known, r < s < n, and ¢ is (s x r) and
unknown. The likelihood ratio test of M; in My, satisfied

—2log LR(M;|Myg) = x*(r(n — s)).

The restrictions on [ can also be expressed as restrictions on (3, p) in the

ﬁ _ H Onxnp
(0)=Coc, 50 )

with ¢(s + np,r). One could also define a model by restricting simulta-

form

neously both 3 and p but the present choice seems more relevant for the
applications.

e M, Some cointegrating relations known

The model is defined by the restrictions

()= (C) ()

where the matrices 37 (n x 7;) of rank 7, and p? (np x r;) are known
and the matrices 1, (r1 X 1), ¥y (n X 19), and p, (np X 79) are unknown
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(r = ry +73), corresponding to prespecified coefficients 3% and p9 in some
of the cointegrating relations. The likelihood ratio test of My in My,
satisfied

—2log LR(M3|Mg) % x*(ri(n +np —r)).

It would also be relevant to formulate here the restriction that only 3 was
partly known. This model, however, can not be estimated by reduced
rank regression and the analysis given below would have to be modified.

In the following sections we derive a correction factor for test of a simple
hypothesis on 3 and p in each of the models Mg, M; and M, and apply these
to derive a correction factor for the test of M; in Mg and My in M using the
following trick:

To test M; in My, say, we take a parameters ° = H 1y and p° corre-
sponding to a parameter point in M;. We define the concentrated likelihood
function L(f, p), and find the likelihood ratio test

maXﬁzH?/),p L(ﬁu p)

L
R(Mi|Mo) max, L(53, p)
maxg_go ,—0 L(B3,p) maxg_go 0 L(3,p)
max, L(83,p) maxg— o L(B, p)
- LR(B - ﬁoa P = pO‘MO)/LR(ﬁ - ﬁoa P = :00|M1)7
such that

—2 log LR(M1|M0)
= —2log LR(B = #°,p = p°|Mo) +2log LR(B = &, p = p°| M,).

Hence we see that the correction for the test we are really interested in, namely
M in M, can be found as the difference of the corrections to two tests of
simple hypotheses on 3 and p in My and Ms. Thus, if we can find a general
result which allows us to derive a correction for a simple hypothesis on 3 and p
in these various models, then we can derive the corrections by subtraction.

2.1 The deterministic terms

The correction will depend on the deterministic terms and in order to get rea-
sonably simple expressions we assume that they satisfy the relation

dipp, = M"dy,h=...,—-1,0,1,... (2)



for some matrix M with the property that
|eig(M)] = 1. (3)
Further we assume that
AD, = K'd,, (4)

for some (ng X np) matrix K. Finally we assume that (D,,d;)L, are linearly
independent. Thus we allow for instance d} = (1,t¢,t?) and D; = 3, in which
case

1 00 1
M=[110| K= -3

1 21 3
and M has eigenvalues equal to 1. If s, so, and s3 are quarterly dummies we
can consider combinations like d, = (1, ¢, s1(t), s2(t), s3(t)). In this case we have
s1(t+1) = s4(t) = 1—51(t) —s2(t) —s3(t), s2(t+1) = s1(¢), and s3(t+1) = s2(t)
such that

10 0 0 0
11 0 0 0
M=|10 -1 -1 -1 |,
00 1 0 0
00 0 1 0

which has eigenvalues +1, +i. Note that intervention dummies are not covered
by this formulation and will give rise to more complicated formulae.

Lemma 1 If X; is I(1) and given by equation (1) and if (2), (3), and (4) hold,
then E(B'X,_1 + p'D;) and E(AX,) are linear functions of d.

Proof. From Granger’s representation theorem, see Johansen (1996), we
find that the process can be represented by

t
X, =C (ei+ @di) + C(L)(er + ap' Dy + ®dy) + A,
i=1

where C(z) = >_°,Ciz", and A depends on initial conditions, 'A = 0, and

C=p. (o TB,) .



It follows that

— [CD + (X, Cilap K'M~ + (M~ — M~ Y)|d, = K'\d,

say. Taking expectations in (1) we find
k-1
Kpdy = aB(8' X1+ p'Dy) + Y TiKAM dy + ®d,
i=1
which shows the result for E(3'X,_; + p'D;). Note that the result that M"

grows at most as a polynomial in h, see Lemma 10, shows that the sums are
convergent, since C; are exponentially decreasing. m

We next show how the simple hypotheses on 3 and p in My, M;j, and
Mo, give rise to regression equations which can be given the same formulation.
This allows us to derive all the results from one general reduced rank regression
equation.

2.2 A simple hypothesis on § and p in M,

The model equation is given by (1) and we consider the hypothesis: 5 = (3, p =
p°, such that

k—1

AX = a(f" Xy +p"De) + Y TidXe i+ ®dy + e,

=1

which is easily estimated by regression of AX; on ¥X, + p”D,, lagged differ-
ences and d;.

It is convenient for the calculations to reparametrize the model defining
new parameters and regressors which involve the true value. In the following
subsections we therefore need a notation for the true value of the parameters, as
well as for the parameters of the model. We also need a notation for the estima-
tor under the null hypothesis and one for the estimator under the alternative.
Thus for instance we let o denote the parameter, a® the true value of the pa-
rameter, for which we calculate the expectations, & the reduced rank estimator
in the model and & the regression estimator under the null hypothesis.

We use the notation

k—1
U=(y,...,Tp), D=1, =) Tu
i=1



Note that
(I = CT)B = (I, = B (TG, ' T)B, =0,
such that for 3 = 3(3'3)~!
(In = CT) = (I, = CT)(BB' + 3, 3)) = (I, — CT) 3"

We therefore decompose the process into stationary and non stationary compo-
nents:

X, = (I, — C°T")3°8Y X, + C°T°X,.
We find, using the true value of the parameters,

BXe 1 =L, — CT%)B" A" X, 1 + B85 (a9T°89)alTX, 1. (5)

We choose new parameters

0

W= F(l,—Cr5 (rxr)
8 = 8% (rx(n—r))
by = p'—'p” (r x np)

such that the old parameters in terms of the new are given by
B =8 (alT781) " alT? + ¢'8Y, p' =8+ ¢'p"”.

The hypothesis 8 = (% p = p° is expressed in the new parameters as
6 =0, 1 = I,. The model equation (1) with the new parameters is

AX; = o) (BY X, 1 + p”Dy) + a8, (a9T°8%) 1a9TOX, | + 65D,)

B 6
+ Zlel IiAX 4 ®d; + €. (6)

Notice that the model is overparametrized since

an, g~ ot

give the same probability measure as (a1, 8) for any n (r x r) of full rank. We
can achieve just identification by choosing ¥ = I,., that is, by absorbing 1 (r x r)
into a(n x r) and adjusting ¢ accordingly. The hypothesis of interest is then
o=0.

In the (reduced rank) regression (6) we use the result that %X, ; +
p”D, and AX; have a mean that is linear in d;, see Lemma 1, and that ®
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enters unrestrictedly, to replace the regressors 3% X,_; 4+ p”D, and the lagged
differences with the stationary regressors

Viee = 8YXio1 — Eo(BYX:-1), (7)
Ziy = (AX{_| — Eo(AX{_),... ,AX| 4 — Eo(AX| 1) (8)

We also want to replace the regressor (a9T°39) 1a9T°X, | by something
simpler without changing the statistical model and hence the test that 6 = 0.
We find by summing equation (1) that

k-1 t
G{/J_(Xt — Xo) = CUIJ_ Fi(thi — sz) + CUIJ_ Z(c‘:@ -+ q)d@)

i=1 i=1
By subtracting Zi.:ll o/ I'; X, on both sides and replacing ¢ by t — 1 we get

k—1 t—
CUIJ_FXt_l = CUIJ_XO —+ CUIJ_ Z Fi(Xt—i—l — Xt—l — X—z) + CUIJ_ (81' —+ q)dl)

1

Jay

=1 7

Because we are correcting for lagged differences in the regression (6) we can
replace (a%T°39)~1'a9T°X;_; and D; by the non stationary regressor given by
the common trends

o1y 0,7,
Ay = (ot etz )
t

where Ay depends on initial conditions.

The model equation (6) in the new variables and with suitably redefined
parameters becomes

AX,=aV,_ 1 +ad Ay +V Ziy +Pd + ¢, (10)
(n) (r) (n—r+np) ((k—1)n) (na)  (n)
where the dimensions are indicated below each variable. The estimators for
the parameters 6, a, ¥, ®, and €2 can be found by reduced rank regression of
AX; on (V/_,, A,_,) corrected for Z;_; and d;. Under the hypothesis 6 = 0 the
parameters can be found by regression of AX; on Z; | and d,.

Later we shall choose A; ; such that it is orthogonal to the deterministic
term d; which simplifies some notation. Note that if D, = 0 then, of course, we
do not extend the process, and A; ; is defined entirely in terms of the random
walks, and initial values. Note also that if d; contains a constant then, when
correcting for d;, the initial values disappear.
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2.3 A simple hypothesis on $ and p in model M;

In model M, the cointegrating vectors [ are restricted as = HY (¢(s x 1))
and equation (1) is

k—1
AXy=a(/H' X,y + p' D) + Y TiAX,; + ®dy + & (11)

i=1

We consider again the simple hypothesis 8 = Hy°, p = p°, corresponding
to a point in M;. We want to show that by introducing the true parameters /3°,
p°, ... as before we can reformulate the equations to have the form (10), such
that a test of a simple hypothesis is a test that 6 = 0.

We decompose the process X; ; using the true value of the parameters
and find

BX, 1=y H(I, — CTB°8" X, 1 + ' H' 8% (a9T°8%) 1a9TOX, ;.

In this case we have that 3° = H® implies that 35 = (H,, H(H'H) '¢9)
and hence

ﬁ/ﬁol - lelﬁol = ¢I¢(i(0(s—r)><(n—s)7 Is—r)~

We introduce the new parameters

0

vy = YH'(L, = CT)B (rxr)
5 = ¢yl (rx(s—1))
by = p —Pip” (r X np)

since then

¢IH/Xt_1 + plDt
= wll (ﬁOIXt—l + ,OOIDt) + 511 (O(S—T)X(n—5)7 Is—r)(aollroﬁi)_laTFOXt—l + 6/2Dt

The hypothesis is formulated as 6 = 0, ¥; = I.. We let V, ; and Z; | be
defined by (7) and (8), and replace in this case the (s — r)—dimensional non
stationary regressor

(0(377') x(n—s)» Is—r) (CYOLTOﬁOL) 71a(j_/F0Xt—1



with s — r linear combinations K; of the common trends extended by D;:

Ky + K% S e, + %,
R G (12
t

for some matrices Ky ((s —r) x 1) depending on initial conditions and K ((s —
r) x (n—r)). Equation (11) then becomes

AXt = aW_l + 056/ At—l + L Zt—l + P dt + Et, (13)
(n) (r) (s—r+np) ((k=1)n) (na)  (n)

where 1] is absorbed in « and the remaining parameters are adjusted accord-
ingly such that also Z; 1, and V; ; have mean zero. The hypothesis of interest
is 6 = 0, which corresponds to p = p°, = 3° = Hy°.

This equation has the same structure as (10) except that the dimension
of A, 1 is changed to s — r + np.

2.4 A simple hypothesis on § and p in model M,

Again we investigate a simple hypothesis on § and p which can be formulated
as ¥y = (39, py = pY. The parameter « is decomposed corresponding to the
cointegrating parameter into a = (a1, @), such that

(B Xy 1+ p'Dy) = a8 X1+ pt' Dy) + aa(9p X 1+ p3Dy).

In this case we absorb w'l into a; and include the regressor B?'Xt_l with
the lagged differences Z;_; instead of with V;_;. We then decompose the second
component 15X, + phD; of the process as

Vo Xy1 + phDy .
= (h(I, — COT) BN BY X, 1 + 0435 (a9T3%) LaTOX, 4 + phD;.

Now

B X1

it~ P = o)

) = @10V X1 + ¢589 X1,

so that

o Xio1 + po Dy = @ (BY Xumr + pY' D) + ¢5(85 Xooy + p'Dy) + 8" A1
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We have defined the parameters

((ﬁlla /2) = wIQ(In - COFO)B (T2 X Tl)a (TQ X T2)
A (ra % (n—1)

5I2 = o - Cbllp(f' - Cblngl (ro X np).

0

The hypothesis of interest in the new parameters is 6 = 0, ¢; = 0, ¢y = I,.,.
The process A; ; is defined by (9) such that the equation becomes

AX; =V g +ad Ay +9 Zp +0d + e, (14)
(n) (r2) (n—r4np)  (m+(k=Dn)  (na) ()
where
Vici = B9Xi (15)
thl - (Xg—lﬁ(lja AX;—I? sy AX;—IC—H)/ (16)

both corrected for their mean, and where again o, ¥, and ® have been redefine
to accommodate the change in regressors. It is seen that equation (14) is of the
form (10), with a changed definition of V;_; and Z,_;, since the assumed sta-
tionary combinations 5(1)'th1 —FEy (B(I)'Xt,l) are moved to the lagged differences.

The hypothesis can be tested as 6 = 0, as the other restrictions are absorbed in
a and V.

Thus in a general formulation that covers all the hypotheses we are inter-
ested in, we need to allow the dimensions of the variables entering the equation
to be different from the those given in (10). But we still need to preserve the
properties that under the null hypothesis the process (V' ;, Z/_ ;)" is a mean
zero stationary autoregressive process, and that V,_; and §' A,_; have the factor
a (or aw) in front. All models (10), (13), and (14) have the property that they
can be solved by reduced rank regression and that under the null hypothesis,
6 = 0, the model is solved by simple regression.

3 A general reduced rank equation and an ex-
pansion of the estimators and the test statis-
tic

In order to cover the different cases considered in Section 2, we discuss the

expansion and Bartlett correction of the likelihood ratio test for the hypothesis
6 = 0 in the equation
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Model n, n, n, 19
Mo r n—r+np (k—1)n o
M, r s—r+np (k—1)n o'
M, o n—r+np m+(k—1n a

Table 1: The choice of dimensions in the general regression model (17) which
corresponds to the hypotheses discussed in Section 1.

AX; =&V, +E85A L+ V2, 1 +Dd, + &, (17)
(n) (nv) (na) (nz) (nd) (n)

where ¢; are i.i.d. N,(0,€2) and the parameters (£, 6, W, ®, 2) vary freely.

This notation covers the different situations considered for suitable choices
of the regressors V;_1, A;_1, and Z;_1, and their dimensions, see Table 1.

In all cases the variables V; | and Z; | are, under the hypothesis 6 =
0, stationary with mean zero and A, ; is a linear function of £ 37'_, (&; +
®0d;), with €° = a or aJ. Note that the stacked (r + (k — 1)n)— dimensional
process Y; = (V//, Z])" is the same for all cases and contains 5’ X; and the lagged

differences corrected for their mean.

The very detailed calculations in this paper continues the work in Johansen
(1999) where the correction was found for the model where sp(¢) is known. The
result derived there provide the main term of the Bartlett correction in the
situation where £ is unknown and we therefore briefly discuss this situation in
the next subsection. We then give an expansion of the reduced rank estimator
around the regression estimator valid under the null hypothesis and finally we
derive an expansion of a simple hypothesis for 6 = 0.

3.1 The analysis for fixed ¢ = &°

Note that if £ = %9, where &, is known the model equation is
AX, =V, + 8 Ay + V7, + Pdy + &y,

which implies, for £ = £°(¥¢°%)~1, that

EAX, = Vi + 84+, +%0d, + %,
Yax, = Y07z, +0d, + e,

12



Hence the model for EOIAX given ¢YAX, and the past is

EOIAX,: = WBt + ¢/‘/;5_1 + (SIAt_l + (EOI — W g_l)\Ith_l + (éOI — W (J)_/)(I)dt + gt;
(18)

for
B, = €YAX,, w=€"0eY(€106) ™,
and
E=C"e —wfle, = (7)1 e,
We define the normalized error
U, = (501907150)755019071%
such that for the true value of the parameters
g, = (50/907150)7%(%-

We define the product moment matrices M _for the variables AX;, By, &, U,
and d; at time ¢t but V,_1, A;_1, and Z,_; lagged one period. Thus for instance

/

T AXt AXt MOO MOU M06
Z ‘/tfl ‘/tfl - MvO Mvv Mve
t=1 &t Et MEO Mev MEE

We also use the notation for any three process X, U, and V'
Muv.m - Muv - MumM,;mleU;

and in particular we use a notation for the moment matrices corrected for the
lagged differences Z;_; and d;, since many results look a bit simpler this way

Suv - wv.z,d — Muv - Mude_dlMdU - A]\4uz.d]\4_1 sz.d-

zz.d

These moment matrices are natural when the likelihood function is concentrated
with respect to ¥ and ®. The maximum likelihood estimator of ¢ (for known
¢ = €9 is found by regression in (18)

5<£0) = Mc;ctl.v,z,b,dMaO-Uaz:badEO = Sc;al.v,bsao-vybgo
= 8+ St Sacos2 1 (ETQTIE)

aa.v,b

13



The test for the hypothesis § = 0, (still for known £°) is under the hypothesis,
6 = 0, equal to
LR (6 = 0/|£° known)
|EOISOO.a,v,bEO|/|EOISOO.U,bEO| - |Suu.a,v,b‘/‘suu.v,b|

19
- |In - S&}_U,bsua.v,bs&ll_vybsau.v,b‘ ( )
- |[n - T_1Q|a
say, such that
1
—2log LR(6 = 0|¢, known) L tr{Q} + ﬁtr{Qz}. (20)

We use here the notation = to indicate that we have kept terms of or-
der T ¢. An approximation to the expectation of —2log LR given by (20) was
derived in Johansen (1999) and turns out to give the main contribution to the
expectation derived in this paper.

3.2 The first order conditions for the estimation of &, 9,
and ()

In the rest of the paper we refer to the true value, the one for which we calculate
the expectation, without the superscript since that simplifies the notation. We
express the results below in the notation for the concentrated model, where the
parameters W and ® have been eliminated, that is, we use the moment matrices
S rather than M.

The maximum likelihood estimators based upon (17) will be denoted by
0, &, and Q. The first order conditions for the estimators in model (17) can be
solved for each of the variables as

€ = (Soy + S0a8) (S + 8 Sy + Suad + 8 Suad) ™" (21)
Q = T71(500 - g(svv + 5/Sav + Sva(~S + slsaazs)g) (22)
8= 5, (Su02 HEE'QE) Tt — Su)- (23)

14



Note that the equations cannot be solved simply, since the estimators are
expressed in terms of each other.

Under the null hypothesis 6 = 0, the estimators are

= S0uS,, =&+ S.4S,,
— Tﬁl(SOO - SO’US'L;):LSUO) - Tﬁlses.v-

©> 722}

We next need a result about regression estimators for stationary processes and
the type of deterministic terms we consider.

Lemma 2 Let S, = Z;’io Oiei_; with 0; decreasing exponentially be a stationary
process, and let dy satisfy dyyqn = Mdy, with leig(M)| = 1, and let

rf? — M(;dl Mdsu
then

i Mgaf) = MM Mys € Op(1). (24)

This result follows from Lemma 11. We next expand the estimators é’ .Q
and 8, not around the parameter point (£, €2,0), but around the estimator under
the null (¢, €, 0).

Theorem 3 The estimators E, Q, and & can be expanded around é’, Qand 0
respectively:

E — €= [Seaud — £8'Suad — £8'S,,)S,1 + Op(T2) (25)

(Q—Q)
— T[S 008 + €5 Sy — €8/ SuabE |
AT [Sea0d — £8'Suy — £8'S0ud) S 6 Sucss — Suadl — 8 S10b€ ]+ Op(T~3)
= T 10Q0 + T 20Q, + Op(T3)
(26)

O1E) ! 4 Op(T 1 5m2). (27)



The expansions can conveniently be expressed in terms of a projection

matrix

since

A~

&5 = P(£,0)8.00S 1 + Op(T15m2). (28)

Proof. Proof of (25): From (21) we expand and find with £ — ¢ = S.,5,,1

&€ = (Sou + S0a0) S5 — (Sop + S0a0) S5t (8 Sav + Svad + 8 Saad) Syt + Op(T2)
= & 4 [Soud — &(8' Sy + Spad + 8 Saad)]S5E + Op(T72).

We further have

SOa - é(Sva;S + SIScw + SISaa;S)
(Sea + €50a)8 — E(Spad + 8 Suy + 8 Saad)
Sf-:a.v(~S - gslsaa;s - gslsava

since
SOa - gsva - Sea - (é - S)Sva - Sf-:a - Ssvsq;)lsva - Ssa.va (29)

which proves the result.

Proof of (26): From (22) we find

T = Seo — E(Suw + 8 Saup + Suad + 8 Saad)E'
- SOO - (SO’U + SOa;S) (va + Slscw + Sva(~$ + 5Isaazs)il(svo + 5/Sa0)-

We now expand the last term and keep terms of order 71. Throughout
we use & = Sp,S;;!. Then

(Sow + S0a0)(Sww + 8 Say + Spad + 8 Saad) (S0 + & Sao)
L (Sop+ S0ad)[S;k — S: (8 Sy + Suad + 8 Saad) St
S (8 Say + Suad + 8 S0ad) S 12 (Syo + 8 Sao)
= S0uS5 S0 + €8 Sao + S0bE — (5 Sy + Suad + 8 Saad)é
+50a551;115/‘sa0 — é(glsav + Spad + 5ISaa5)S;ul(~SISOa
— 5408551 (8 Sy + Suab + 8 Suab)€
+E(8' Sy + Spad + 8 SuaB) S8 Sy + Suad + 8 Saad)E.
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The main term combines with Sy to give
T = Soo — SouS;, Suo-

The term of order T° is

Al

£0'Su0+ SoadE — &(8'Sy + Spud + 8 Suad)E

= 8'(Su0 — Sund ) + (Sou — £S0a)0E — £8'SuadE’
A~ ~ Al ~~) ~al
- 56 Sae.v + Ssa.v6€ - 56 Saa6€ s

where we have used (29). The term of order 71 is

[Soad — &(8 Sav 1+ S,,6 + § Saaé)]S_ [6'Sa0 — (8'Suw + Svad + 8 Suad)€ ]
= [Seawd — €8 Sup — 8 S0aB] S8 Sucw — Suadé — 8 Suad€ |

Proof of (27): From (23) we have

§ = Su (Su0 E(EQTE) T — Su)

Since £ — & and Q — Q are both in Op(T1) and SpeS: Se0 € Op(1), we find
that

5= S (Su0 EEQTE) T — Su) + Op(T1502).

The main term can be reduced as follows:

S (SacEEQTE) ! — Sun)

= Sia (Sue + Sunf)2 R 5
= Sia S TE(E Q)T+ 5 1scw<£ -
:S(;}S%Q 15(5(2 15) S80S 1S, 0
= Sia (Sac = SaS' S, )fz G0

:Sc:alsas-vQ 15(59 15) !

This completes the proof of Theorem 3 on the expansion of the estimators.

We conclude this section by stating the theorem on the expansion of the
likelihood ratio test for § = 0, in (17). We find

LR¥T(6=0) =

@ E*
= 5
I
S
|
~
o,
|
o



such that

—2log LR ~Tlog|I, — Q11— Q)]

Ttr{Q~1(Q — Q)} + Ler {(Q1(Q — Q))?}.

Il= 1l

We apply Theorem 3 and find that, see (26),

5

O—Q= T71@Q0 + TﬁZQQl + OP<T72)a
such that

~2log LR 2 tr{Qo} + T ({1} + 51r{Q3)). (30)
Let further

Zvv.z - Var(‘/t|Zt) — Zvv - szZ;zlzzv
’fg = Var(glgt\flgt) = (a7

We can then prove

Theorem 4 An expansion of the log likelihood ratio test for 6 = 0 based upon
(17) is given by
—2log LR = TtT{S;al.b,vSau-b,vS;J.b,vSua-b,v} + %tr{(SuaSa_alSauf}

+2tT{S;alSua.v,b/€§ S'l;;lvaSba.v}
—FT_ltT{/igZ;vl_zl‘ﬁgSuaSJalSabSbaSa_alsau},
+tT{SbaSa_a1 SabSbUS&)l I*ig S&} va}
—tr{SuaSyy Saukie Syt SubSpwSy Ke }
—QtT{SbaS;al Saul{g Sq;}l Svu/ig S;}l va}

Note that the first two terms are the test statistic for 6 = 0 if £ were
known, see (19) and (20), the next term is of the order Op(T~2), and the last
four terms are of the order Op(T~1). The proof of Theorem 4 based upon the
expansions in Theorem 3 is given in the Appendix.

4 The Bartlett correction factor

In this section we give the main result on the Bartlett correction. We first
discuss briefly the idea of conditioning on the common trends and then give
the calculations of some coefficients in the cointegrated VAR that are needed

18



to formulate the main result. Finally we state the main result and specialize
it to the various situations covered by the general formulation as indicated in
Section 2.

We choose to calculate the conditional expectation of the likelihood ratio
test statistic conditioning on the process £’ €;. The argument for that is, that
it is easier to do so since many of the expressions derived involve ratios of
quadratic forms and turn out to be possible to calculate if we first condition
on &' ;. Another argument is that the asymptotic distribution of B is mixed
Gaussian, where the mixing variable is just the limit of Zgzl o' g;, which are
fixed when we condition on &’ ;. The end result is that the conditional mean
does not depend on the conditioning variable such that what we find is also the
unconditional mean.

When ¢’ ¢, is fixed so is the regressor A; which we denote with a;_;. We
further define

by = (£.Q6,)73€ &,

of dimension ny, = n — n,.

4.1 The conditioning variables

The fixed regressors a; ; and b; are defined in terms of &', Zf;i gi, and &' g, Tt
is convenient to orthogonalize a; | on the deterministic terms d; such that in
the following M,; = 0. Note that if d; contains a constant, then A;_; no longer
depends on the initial values.

When we do not condition on &' &, we have the following relations

T
T3 b € Op(1), (31)
t=1

T L7
(Z atlaffl) Zat,lag_l_k L1, for all k, (32)
=1

t=1
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T
TN biby 5 I, (33)
t=1

T
TN by 50, i=0,1,.. (34)
t=1
T
_ P
TN " by(by  Kbyi)b, = tr{ K}, (35)
t=1

for any n, x n, matrix K. Finally we have

1 1 -1
Mo M, My, = / (dW)F' ( / FF’du> / F(dWY, (36)
0 0 0

where the Brownian motion W (u) is defined by

[T'u]

(€,0€) 28,72 e 5 Wiu),
i=1

of dimension n, = n — n,. The process F' is defined as the limit of A;_;. If for
instance d; = 1 and D; = 0 then

t—1 T t—1

A= ai(z g —T71 Z Zal) + o Dt — 1),

such that in the direction o/, ® (# 0), the process grows linearly and orthogonal
to that it behaves like a random walk. In this case F is of dimension n, = n, =
n —r and

Fi(u) = Wiu)— | Wiu)du, i=1,... ,n4— 1,

Fo,(u) = u-—
If instead D; =t —t and d; = 1, and

s ( o (Tinre =T L Tice) + 2( - 6) )

t—1t

then a non singular linear transformation of A; ;, which leaves the statistic
invariant, removes the coefficient ®, such that in this case the process F' is of
dimension n, =n —r + 1, and given by



Finally of A;_; is given by (12) with D, = t, both corrected for their mean, and
d; = 1, it is possible to prove that

Fy(u) = Wi(u) — f,

o Wi(s)ds,i=1,... ,n—s,

Fn—5—|—1 =UuU— %
When conditioning on the sequence &' e, we assume that relations (31)-
. : T
(36) hold for the sequence we are fixing. That is, we replace > ,_; a;_1a;_,_
by Zle a; 1a, | = My, T1 Zle b, . by I, or 0, etc. in order to simplify
the expressions.

4.2 The autoregressive model

Before we formulate the main result we need some notation for the vector autore-
gressive process given in model (1), which is the basis for all the calculations.
Under the null hypothesis the model is estimated by ordinary least squares
of AX; on V,_1,7;,_1, and d;, and we therefore introduce the stacked process
Y, = (X{8,AX],... ,AX]_,.,) corrected for its mean. It is in all cases of di-
mension n, = n, +n, =+ (k— 1)n and is a stationary autoregressive process
given by the equation

Y, = PY,_1 + Qey,

where
L +8a BTy -+ [Tra BTra I
a ry -- | P | I,
0 0 1, 0 0

We find the representation

Yi=Y P'Qey=> 0,Urvi+0bi,
v=0 v=0

where we have decomposed ¢; into the components U; and b;, and

6, = P'QE(EQ 1) 3,
b, = PYQQE (£,Q6,)73.

N[
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Note that by the definition of ¥

oo

> (0.8, +,9,) = Var(Yy) = £. (37)

v=0
We find
0= 0,=> P'QENTE) 2 = (I, — P) Qe 1¢) 2.
=0 V=0
Since
(Zny, = P)Lr, Orxg—1yn)” = —Qex,
we find, when £ is either « or ag = a(0pysry, Ir,)’, that
(In, = P)(Ln, Onyxn.) = —QE,
such that
0 = —(In,, Onyxn.) ke = —FRe, (38)
where

ki = Var(€'e,|¢ &) = Var((€Q 7€) 1'Q7le,) = (€07 1)

4.3 The main results

We can finally state the main result about the Bartlett correction factor. The
proof is left for the Appendix and we give here some corollaries, which show
explicitly how the correction can be used for the tests mentioned in Section 2.

Theorem 5 The conditional expectation of the log likelihood ratio test for the
hypothesis 6 = 0 in (17) is given by

E[—2log LR(6 = 0)|¢ €]

= nya + 222 [L(n, + 1 + 1) + ng + 1+ 1]

+3[(n = ny +na = 1)o(€) +2(c(§) + cal§))]

where
v(€) = tr{Ve}, Ve = Rekgn™!
c(§) = tr{P(ly, + P)"'Ve} +tr{[P ® (I, — P)V|[In, ® I, — P® P]7"'}

ca(§) = tr{{M & (In, = P)Ve]lln, © In, — M ® P]7}
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It will be seen from the proof that the correction term is the one derived
in the situation where £ were known, see Johansen (1999), apart from a term

Ng(N—n4)

T
Note that the coefficients v, ¢, and ¢; depend on the choice of £. If £ = a,
then

equal to v(&€). The proof of Theorem 5 is given in the Appendix.

v(a) = tr{(a’Q ') "' 855},
with Y55 = Var(3' X, |AXy, ... , AX; gy2). If, however, £ = as then
v(ag) = tr{(ahQ tay)” 1Zﬁ2152 5.t

with Xg,a, 3, = Var(85X|01X:, AXy, ... ,AXy_j40), corresponding to having
moved 3 X;_; from V;_; to Z;_;.

The coeflicient c¢4(§) can be calculated simply in some cases, like d;, =
(1,t), since then tr{M"} = ny = 2 for all h. This means that

ca(§) = tr{{M & (I, = P)Vel[ln, @ In, — M ® P] '}

= Y tr{M® (L, — P)VE][M" ® P}
- itr{mw ® (I, — P)ViP"]}
_ Ztr{w“ r{(L, — P)VeP")

= ndZtr{ ny, — PYVeP"} = ngtr{Ve} = nqv(§).

If d; contains seasonal dummies then ¢r{M"} is a periodic function and a more
complicated expression can be found. In order to understand the parameter
function v(§) that enter the expressions, note that the long-run variance of Y;
conditional on the common trends is given by 66'. Thus the matrix V¢ measures
the "ratio” between the unconditional variance of Y; and the conditional long-
run variance.

We specialize the result to the hypotheses discussed in Section 2.

Corollary 6 The Bartlett correction for the test of a simple hypothesis =
B2, p=p° in model My, is given by
E[=2log LR( = °, p = p°|My)]
é7"(71—7“4—77@)—l—r("T—TMD)[ (n+np+1) +ng + kn]
=D (920 — 27 4+ np — 1)v(a) + 2(c(@) + ca(a))]
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where v (o), c(a), and cq4(a) are given in Theorem 5.

Proof. This follows from Theorem 5 by substituting n, = r, n, = n —
r+np,n, =(k—1)n, £=a,see Table 1. m

Corollary 7 The Bartlett correction factor for the test of My : 3 = H¢, with
H (n x s) is given by

E[—2log LR(M;|My)]/r(n —s)
=1+ AL (n+s—7+1+2np) +ng+ kn
+%[(2n +5s—3r—1+42np)v(a) + 2(c(a) + cs(a))].

Proof. From Corollary 6 we use the result for a simple hypothesis on 3
and p in the unrestricted cointegrating model M. We apply Theorem 5 to a
simple hypothesis on 3 and p in M. The dimensions are given by n, = r, n, =
s—r+mnp,n,=(k—1)n, {=a.

E[-2log LR(B = °, p = p°|My)]
éT‘(S_T_"nD)_‘_W[%(S_‘_nD_‘_l) +na+ k)
+EmR) (5 = 2 = 14 mp)o(a) + 2(e(a) + cala))].

Note that since V;_; and Z; 1 have the same definitions in both cases, the
matrix ¥ and P have not changed, and that £ = a has the same meaning in
both models. Thus the coefficients v(a), c4(a), and c4() are the same as in
Corollary 6. Subtracting the expressions we find the required result. m

Corollary 8 The Bartlett correction factor for the test of My :

()= (C2) ()

where the matriz 39 (n x r1) is of rank r1, and p3 is (1 x r1), is given by

E[—2log LR(M3|My)]/ri(n —r+np)
< 1+ 2[3(n+np+1—r2) +ng+ kn
+T+ﬂ1[(2n —2r+np —1)(v(a) —v(ag)) — riv(ag) + 2(c(a) — c(az))],

where the coefficients c(.), cq(.), and v(.) are defined in Theorem 5.
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Proof. From Corollary 6 we use the result for a simple hypothesis on
( and p in the unrestricted cointegration model M,. We apply Theorem 5 to
find the result for a simple hypothesis on  and p in model Ms. Note that the
dimensions have changed as have the definitions of V;_; and Z;_; and that ¢ =
a. In both cases the stacked vector (V;_1, Z;_1) is the same and hence the matrix
P and the variance matrix > has the same meaning in both expressions. We
apply Theorem 5 and find for n, = r9, n, = n—r+np, n, = ri+(k—1)n, £ = as.

E[—2log LR(3 = °, p = p°| M>)]
é?“g(n—r—l—np)—i—wg(n—ﬁ%—l—l—rm)%—ﬁ+nd+kn]
—i—(";;mj)[@n —ry—1r—14+np)v(az) 4+ 2(c(ag) + cg(az))]

Subtracting we find the result. m

5 Simulation experiments

We report here some simple simulation experiments to illustrate the usefulness
of the correction. We first give the result for the model with only one lag and
one cointegrating relation, since we can get complete information on how the
correction works. Then we present a few results where the DGP has been chosen
so as to match the results obtained for real data, analysed elsewhere.

5.1 The model with 1 cointegrating vector and lag 1

We first consider the model with only one lag, one cointegration relation and
no deterministic terms, that is, the model

AXt = G{ﬁlXt_l + &¢.

In this situation we have Z; = 0, and

[e.9]

f'X, = Z(l + Ba) Be s,

i=0
such that

__ B9g 2
= 1—(14—6/@)2’ a

Var(f'X;) =% = (a'Q ta) L.
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If we want to test a simple hypothesis on 3 we find the coefficients
fa2+ )
o/Q 1aB QB
Ba(l+ [a)
a'Q 1aB QB

via) = V, =%"1k2 =
P = 1+pfa,cla)=-2
With this notation we find from Corollary 7
Corollary 9 In the model AX, 1 = a3 X, 1 + &, with one cointegrating rela-
tion, the Bartlett correction factor for the hypothesis = 3°, is
E[-2log LR(f = 3°|Mo)]/(n — 1)
=1+ (30 +1) — o ((2n — 3)(2+ fla) + 4(1 + Fa)].
In order to simplify the simulations we transform the problem linearly, by
defining v, = 5(F'Q5) "3,
vy = — (7 = B(F') ) (VQHa — ' B(F'QB)Fa) 2,

and finally vectors vs, ... ,v, such that

1 i=j
"Ov: = )
R {0 -y

The new variables Xt = v’ X, satisfy the equations

AXy = (B98) 28 a(B8) 71 X + 61 = nX11 + 6u

~ 1 1 ~ -
AXy = — (/Q 7 — a/B(FQB) 1 F)? (B'98)% X + 62 = EX1 1 + O
AX’L't = 5it7i = 3, ,n.

where 6, = v'e; are i.i.d. N,(0, I,), and

n=(F08)"2Fa(F00): 1

£ =~ (@ a — o/B(F20) " 'a)? (F'05)3
Thus only two parameters enter the DGP and it is possible for a given n to
tabulate the effect of the Bartlett correction as a function of just two variables &

and 7, see Tables 2-4. In this formulation (3 is a unit vector and o/ = (1, &, 0,0, 0).
We find the coeflicients

2
U(O{) = _7;](2(_1;_‘:‘5_712))7
cla) = —Q%ng.
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&\n -01 -02 -04 -06 -0.8 -1.0
00 13 37 4r 50 52 50
: 16.5 12.2 8.6 7.3 6.8 6.2
0] 38 42 48 49 49 50
: 13.5 11.0 8.7 7.6 7.0 6.5
09 B34 49 49 52 51 5l
. 10.8 9.9 8.6 7.7 7.0 6.4
04 61 56 54 53 52 52
: 8.2 8.3 8.0 7.6 7.1 6.5
06 58 55 58 54 55 54
: 7.3 7.6 7.6 7.3 7.0 6.7
08 56 55 58 55 54 55
. 6.9 7.2 7.4 7.3 6.9 6.7
10 586 55 59 57 56 54

=
-\]
o
ko
¢
o
\]
o
o
o
o
o

Table 2: Simulation of 7' = 50 observations from an AR(1) process in 2 dimen-
sions with » = 1 cointegrating relations. The number of simulations is 10.000.
The table gives the corrected p-value over the uncorrected p-value for a nominal
5% test. The simulation standard error is 0.2%

We then find some results in Table 2 (7" = 50, n = 2), Table 3 (T' = 50, n = 5)
and Table 4 (T' = 100, n = 5). It is seen that for n = 2 a nominal 5% test can
have an actual size up to 16 % and that in many cases (roughly n + £ < —0.2)
the Bartlett correction factor gives a useful correction.

Note that for £ = 0, both coefficients have a factor n=!, such that for small
7, the correction factor tends to infinity. The DGP where both ¢ and 7 are zero
corresponds to no cointegration, and the test on 3 does not have a meaning in
such a situation. The model with n = 0, and £ # 0, corresponds to a DGP
generating an I(2) process, and the derivation of the correction factor is not
valid in this case.

For n = 5, it appears from Table 3, that the situation is worse and the
actual size can be vary large indeed. The region where the Bartlett correction is
useful is approximately given by n+¢& < —0.4. Obviously the situation improves
if T" is 100, see Table 4.

Usually the test for § is proceeded by a test for the rank, and if n and
¢ are sufficiently small the hypothesis of 1 cointegrating relation will not be
accepted, thus for small values of ¢ and 1 the Bartlett correction is not needed.
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&\n 01 02 -04 -06 -08

0.0 0.02 1.79 6.84 6.67 6.20
: 78.56 64.64 40.34  25.08 17.60

0.1 1.68 3.69 7.02 6.87 6.15
: 67.93 59.18 38.51 24.58 17.52

0.2 9.47 7.43 7.48 6.71 6.12
: 44.93 46.79 34.10 23.03 17.15

04 8.30 7.80 7.00 6.21 6.02
: 19.98 24.09 23.55 19.21 15.48

-0.6 6.68 6.55 6.06 5.97 5.72
: 13.40 15.87 17.13 15.91 13.80

0.8 6.11 6.01 5.82 5.78 5.59
. 11.50 13.16 13.94 13.76 12.80

Table 3: Simulation of 7" = 50 observations from an AR(1) process in 5 dimen-
sions with » = 1 cointegrating relations. The number of simulations is 10.000.
The table gives the corrected p-value over the uncorrected p-value for a nominal
5% test. The simulation standard error is 0.2%

&\n -01 -02 -04 -0.6 -08

0 1.54 5.96 5.84 5.56 5.50
62.91 39.42 18.45 12.18 9.67

0.1 6.79 6.37 5.84 5.30 5.17
: 44.60 33.02 17.41 12.00 .66

0.2 7.72 6.65 5.65 5.38 5.10
: 21.53 22.10 15.59 11.57 9.67

04 5.82 5.74 5.24 5.23 5.18

10.25 11.39 11.21 9.94 9.19

-0.6 5.41 5.43 5.32 5.11 5.10
: 33 9.01 9.26 8.91 8.36
-0.8 5.28 8.24 5.09 5.21 5.04
. 54 5.35 8.45 7.97 7.67

Table 4: Simulation of 7" = 100 observations from an AR(1) process in 5 dimen-
sions with » = 1 cointegrating relations. The number of simulations is 10.000.
The table gives the corrected p-value over the uncorrected p-value for a nominal
5% test. The simulation standard error is 0.2%
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5.2 Some real life examples

As a perhaps more interesting case consider the data set discussed in Johansen
(1996) of a four variable system consisting of m, (log real M2), y; (log real
income), i’(bond rate), and finally i¢ (deposit rate) observed quarterly from
1974:1 to 1987:3. We take as DGP the parameters determined by the estima-
tion, and simulate a time series with 53 observations which was the number of
observations in the example. We first give the result for a simple test on 3.

The Bartlett factor in this case is given by Corollary 7, since we have a
hypothesis only on 3, which we formulate as

f=Ho=p",
with ¢ (1,1). We find withn =4, r=1,s=1,np =1, ng = 0, k = 2, such the
degrees of freedom is are r(n — s) = 3, and

E[-2log LR(3 = °|M,)]/3 =1 + % + %[71}(@) + 2¢(a)].

We find for a test of nominal size 5% a simulated p-value of 10.3% (10000
observations) and a corrected p-value of 3.1%.

Another test of the form § = H¢ is given by the matrix H :

1 0
-1 0
H:
0 1
0 -1

corresponding to the test that m,; and y; enter with the same coefficient with
opposite sign and that the same holds for % and #¢.

We find again from Corollary 7 withn =4, r=1,s =2, k=2, np = 1,
ng = 0, that the Bartlett factor is

E[—2log LR(M|M,)]/2 =1 + % + %[8?}((1) + 2¢(a)].

We find that a nominal 5% test has an actual size of 9.9% whereas the
size for the corrected test is 3.1%.

As another example consider the Australian data consisting of consumer
price indices (in logarithms) for Australia pf* and US p}* and the exchange
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rate exch; together with the five year treasure bond rate for both countries 7
and ;. The data is observed quarterly from 1972:1 to 1991:1, which gives
an effective number of observation of 75. We fitted a model with two lags
and unrestricted constant, and found two cointegrating relations. We first test
a simple hypothesis on the two cointegrating relations. In this case we have
n=95r=2s=2, k=2, np =0, ng =1, such that the degrees of freedom
are r(n — s) = 6. Since d; = 1, we find that

ca(a) = ngv(a) = v(a).

The Bartlett factor can be found from Corollary 7 and is given by

E[—2log LR(M;|M,)]/6 = 1 + 1—; + %[71}(04) + 2¢(a)].

We found that a nominal 5% test in reality corresponds to a test size of 21%.
The correction of the test gives a size of 6.3%. The result is based upon 10.000
simulations.

Next consider the test for price homogeneity given by the restriction
R=(1,1,0,0,0),

and H = R,. In this example s = 4, such that the degrees of freedom are
r(n — s) = 2. We find the Bartlett correction from Corollary 7 as given by

E[~2log LR(M;|Mg)]/2 = 1+ 115 + 25[90(a) + 2¢(a)]

By performing 10.000 simulations we see that a nominal 5% test correspond to
a test of size 10.5%, and that the Bartlett correction gives the size as 3.37%.

6 Conclusion

In this paper we have derived an approximation of the log likelihood ratio
statistic for various hypotheses on the cointegrating coefficients in a VAR model.
Despite the rather tedious calculations it turns out that the final result depends
on the obvious quantities like, dimension, lag length, cointegrating rank, number
of restricted deterministic terms, and number of unrestricted terms, as well as
on the hypothesis, that we want to test. The effect of the parameters is focussed
in two or sometimes three functions, which can be easily calculated once the
parameters of the model has been estimated.
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The usefulness of the results is demonstrated by some simulation experi-
ments. Table 2 and 3 give the results for all models with one lag, one cointe-
grating vector and no deterministic terms in case n = 2, and 7' = 50, and Table
4 for n =5 and T = 100.
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8 Appendix

8.1 Some technical results

Lemma 10 Under the assumptions (2) and (3) the powers M" grow at most
as a polynomial in h.

Proof. The Jordan form of the matrix M contains blocks of, for instance,

the form
A0 O
JsAN)=|1 X 0 |,
0 1 X
where |A\| = 1. This has the property that
A 0 0
JIN) = A1 M0

h(h —1)A"2 mAME N

This is bounded by a polynomial of degree 2 in h. In a similar way one can
prove that M" is bounded by a polynomial of degree at most equal to the order
(minus one) of the largest Jordan block in M. m

Lemma 11 Let S, = Z;’io Oiei_; with 0; decreasing exponentially. Let
v(h) = Cov(S, Syin) = Ze Q0.

Let d; satisfy dyyn = Mdy, with |eig(M)| = 1, then

oo

tr{E(MaMg M)y — > tr{M"}tr{y(h)}. (39)

h=—00

Proof.

tr{E( SdedlMdS)}

tr{EZst 1 Z” o ict—id, ddld €5 39;}
Zz ,Jst t?“{@ Qel }t?"{dl ddldt*H—J}

Ez ,J zt 1 tr{dl _H_J}tr{QQ;el}
— D t?“{Mh}tr{v( )}
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We next give an expansion of a projection matrix which will be used
in the detailed calculations below. Recall from Theorem 3 that P(¢ Q) =
E(EQ18) 10 and we define P(€, Q) = €, (€, Q€,) 1€, = Q0 '—Q1P(¢, ).
Note that we only expand as a function of f but keep €.

Lemma 12

P(EQY) = P(£Q)+ P(EQ(E-E)EQ 1) g0
HOEEQT NE-PEQ)
FP(EQ)E - E)EQTETE Y PED
—QEQ ) E - YPEDE - ED T e
—OEE0 ) E- /0 ) - O >
—P@JQg—fK€QJQA€Q HE—9Eatergat
+O0p(T2)

Proof. Let u = () 25, such that & = %u and define v = Q_%(é — &),

such that (€ — &) = Q2v. Then
P(E,Q) = €076 70 = Qhu(u'u) W = QAR
say, and

A —

PED) =01 QPE D) =0 — O buu) WO = QiR .

Then we find using 4 = u(v/u) !, such that uu' = Py
0L p(E, )0
= (u+0)[(u+v)(u+to)] " (utov)
= (u+v)uu+uv+vu+ 0] Hu+v)
= (u+v)[(vu)t = (vu) (v +v'u + v'v) (uu) Tt

+(u'u) (' + v'u) (W) TH ' + v'u) (') T (u + v) + O([v]?)
= DPy+ Ly + Ly + O(Jv]?).
The first order term is given by
Ly = w' +od —a(u'v+v'u)a = a' (1, — ) + (I, — au)od
= w'Py + Pyt
The quadratic term is
Ly = —u(u'v+v'u)(u'u) v —v(w'u)t(vv + v'u)d’ + v(u'u) 1
—wv'vi + u(u'v 4+ v'u) (v'u) TH v + v'u)u
= Po(u'v) WPy — wv' Pyvt — Pyvi'vi' — w'uv' B,

When substituting « and v we find the result. m
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8.2 Proof of Theorem 4

We start with (30)

—2log LR = tr{Qo} + T (tr{Q,} + %tT{Qg})a

and evaluate each term starting with the easy ones.

8.2.1 Calculation of tr{Q;}
We find from Theorem 3, that

tr{Q1} = T r{Q [Se008 — £8'Suy — €8 SaB] Sy (6 Sucs — Spabdé — & Saabé ]}

Because tr{Q;} is multiplied by T~ we need only retain the main term in each
of the matrices. Thus we can replace P(£,Q) by P = P(£,9), § by S;! Sauke, é’Sl
by PS-uSusk, Seny by Seay and finally T-1S,, = T My . 4 by S, = Var(ViZ,).
We find

tr{Q1} = tr{S,[ke SuaSt Suc(Iy — P) — SuaSitSee PO
X[(I, — P)SeaSyy Saukie — PSeaSy, Sav}
tr{3,L ke SuaSar Sac (I, — P)SeaSye Saukie }
+tr {3, SvaSug Sacf¥ T PScaS,q Sav}
= tr{"& Z;vl.z’i& SuaSc:al SabSbaSc:al Sau
+tr{E5 . SvaSea SauSuaSag Sav }s

VV.2 a

=

(40)

where we have used the properties of projections

PQYI,—P) = 0, PPQ'P=PQ7!
(I, = PYQ (I, = P) = Q' (I, - P)=¢,(6,Q¢,)7¢)
SaEQ_IPSEa - SauSua; SaEQ_1<In - P)SECL - abSba-

8.2.2 Calculation of tr{Q3} = Tfltr{(Qfl[Sea_v5§/+§5/5a5_v —éSIS’aaSé/])Q}

The factor T~ allows us to replace each matrix with its limit. We replace 55/
by PS..S,} and S.,., by S.., and find

9

Qo 2 Q7YS.uS7180 P + PSSt Suc(l, — P')].
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Hence
str{Q3} St {[Sue 1 5e0] S0 [Sac QP Sca) St
2t {[SacQ 1 PSea]S0g [Sae (I — P)Sza) Spd (41)

L {(SuaSzt San)?} + t7{ SuuSuaSt SavShaSl

I+ e

using

Sasgilssa - Sas:QilPSs:a + Sasgil(ln - P)Ssa - SauSua + SabSbaa (42)
where

U, = (£Q71) 260 e, by = (€, )72 &,

8.2.3 The main term tr{Qo}

This term is of the order of T ’%, and hence we have to keep more terms in the
expansions.

From (28) we find that £8' is of the order of S;a% and that
&5 = PS.unSy + T8, + 0p(T 'S0 ),
for some &, € OP(S;@%), and hence

A~ 1 =~ -~ At
55 Sas.v — PSsa.vSaalsae.v + T 15615616.’!}'

We first want to show that we can replace 55' by PSEG,US;C} introducing
errors of at most the order oP(T’l) in the expression for ()g. We find from

A ~al ~nl At A~) ~ Al
QQ0(6§ ) - Saa.v(5€ + 56 Saa.'u - 56 Saa6€
that

Q[Q0<é(~5/) - QO(pSEa-vS;al)]
~ Al ~~ A~ ~ ~ ~ Al
T 1[Seau01€ + 61 Sues — £6150aS52 Sae P — PSeq0S;t Saabil ]

A

= T Y(I, — P)Scandié + &8, Sun(I, — P).

1

This term, however, does not give a contribution since

tr{Q Y (I, — P)Seandrf } = tr{€ O Y (I, — P)Seandr},
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but EIQ_I(In — P) = 0. In the following we therefore replace Sé’l by SitSueo P,
and we find

A

QQO Ssa.vsé/ + églsas.v - gglsaazsgl

. . . . 43
Sea.vsa_alsaa.vpl + PSEa.USa_a15’CL€.’U - PSea.vSa_aISaa.vPI- ( )

=1l

Hence

tr{Qo} = {7 (I = P)SeauSi Sacwl + PSeoSit Suci]}
— tr{Sae.vgilpssa.vS;al )

where we use the property

A

PQ7(1, - P)=0.

We next expand around &, but keep (). We find from Lemma ??, using P(¢, Q) =
£.(€.96,)71¢,

tr{Qo} = tr{ S Suco QY IEE QT TEQTIS)

F 2015, Sae b L (€1.96,) €L (€~ OEQT1E) TENT S0}
{800 Saenb L (€126 ) 1L (E — E)(E'QTE) HE — €)/EL(€19€,) € S}

U7 {87 Sue s QUHE(E QT THE — £)EL(E196)TEL(E ~ OEQTE) TN S}
—24r{S4 el HEEQTIE) THE — YQTIEEQTIE) HE — €)EL(EL0EL) L Sea)}
=A+ A+ As+ Ay + As.

In order to simplify these expressions we need the identities

-1 IO—1 ¢\ 4
SGE.UQ_lf — T(Sau.v,sab_'u) ( Suu.v Sub.v ) ( (gQ 5)2 )

Sub.v Sbb.v 0 (44)
— TSau.v,bSQZ}.v,b (5/9_15) % )

(NI

Sae.vgl = Sab.v(én/ngL) ) (45)

(et Eay:

o Tﬁl I / Suu.'u Sub.'u - I 1 o TﬁlS (46)
N 0 Sub.'u Sbb.'u 0 B et
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(£,.06,)3 (€,.06,) 1 (€106, )2 y
0 I Suu.v Sub.v 0 1 (47)
=T =T :
(( I ) ( Sub.v Sbb.v > ( I )) Sbb.v
We then take the terms one by one

The term A; We apply first (44) and then (46) and find

Ay = thT{S;alsau.b,vSJJ.b,u(f/Q_lf)%(f/Q_lf)_l(SIQ_IS)%S&}.b,vSM-b,v}
= Ttr{S, . SuubwS, s, Suabw -

uu.bv

Now we want to modify this as follows

Ttr{S;  SanbwSos o Suabw

uw.bv

- Tt/r{s_l Sau.b,'us_1 Sua.b,'u} + Ttr{(Sa_al - Sa_allbm)sau.b,vs_l Sua.b,v}~

aa.byv uu.b,v uu.b,v

Now

-1 —1 —1
Saa.b,v — Paa.b — Scw.bS Sva.b - Saa - SabSbb Sba - Sav.bSUU.bSva.b;

vv.b

such that

Sa_a1 o S_l = Sa_al - (Saa - Sabslgjlsba - Sav.bs_l Sva.b)_l

aa.byv vv.b

= _S;al (SabS&)lea + Sav.bsqzjl_bsva.b)sgal + OP(SaialT72);
and hence we find for A;

Al Tt?“{sgal Sau.b,v‘sf_1 Sua.b,'u}

uu.b,v

TtT{S;allwaau.b,uS_l Sua.b,'u}

uu.byv

_Ttr{sﬂl_(}(SabS(;)lea + Scw.bSil Sva.b)Sa_alsau.b,vsil Sua.b,v}

vu.b uu.bv

Ttr{Sil Sau.b,vsil Sua.b,v} (48)

aa.b,v uu.bv

_tT{S;al(SabSba + Sav.bzil Sva.b)S;alSau.b,vS_l Sua.b,v}

VU2 uu.bv

— Tt’r{s_l Sau.b,vs_l Sua.b,'u} - Tﬁltr{sausuasgalsabsbas@l

aa.b,v uu.byv

T {27! 8008 S0 Sua St San b

1

[[=

V.2
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The term A, To simplify the term Ay we use (45) and then (46) and (47) to
find

Ay = QtT{S@lsae.vfi(fngL)flfl(g—f)(flﬁflg)flglﬂflssa.v}
= 2Ttr{ S5 Sunn (€106, )2 (€106 )TN (€, Q€ )
X SpuSy (€2 HEQTE) S, s}
= 2Ttr{S, Sab.vSyy - SboSin e Suavp}-

This term is of the order of T’%, and since

T Shp =T Sy — T " SpuSyy S = T Sy + Op(T 1),
we find that we can replace T 'Sy, by T 1Sy, and get

A2 é 2TtT{S&1Sab,vS&lsva;}/f§ Sua.v,b} (49)

8.2.4 The term Aj;

We find since the term is of the order of 7! that we can replace each matrix
with its limit to simplify the expression

As

17{S g Sac. b L (€1961) 1L (E = E)(EQT1E)
X (€= €)€.(£196,) ¢ Sean}

tT{Sa_al SabSva;]l KJ? S&}I vaSba.v}

t7{S ;e SabSbuSpy K7 Sy SubSha }

= 1=

where we have used

T Spae = T~ Spe + Op(T72).

8.2.5 The term A,

Again we can replace each matrix with its limit to simplify the expression

Ay = _tT{Sa_alSae.uQ_Alf(gQ_lg)_1(é - é;)lfL(nggL)_l
x& (€ =EEQTE)TEQ S0} (51)
= —tr{S; Suuke Sy SupSewSoy e Sua }
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8.2.6 The term Aj

Using the same relations as before we find

As =

—2tr{ S, Sue s Y HE(EQTE) THE — €)QE(EQ 1)

X (& — €)€(€.9€,) 7€ Sean} (52)

—th{Sgal Saulig S&} Svulig S&)l vaSba}

Inserting (40), (41), (48) - (52) into the expression for the likelihood ratio

test (30) we find

—2log LR =

Ttr{Sa_al.b,vSawb,v‘s;q}.b,vsua-b,v} + %tr{(suasa_al SaU)2}
+2Ttr{S;} Sua.vpke St SUbSI;)l Sbaw}

+T 7 tr{ ke, ke SuaSay SabShaSay Sau ts

17 {SbaS s SabSevSy Kz Syt Sub }

—tr{SuaSoe Saukic Spy Sob St Sy Ke }

—QtT{Sba S;al Saulig Sq;}l Svu/ig S;}l va}

Note that two terms from Aj;, as given in (48), cancel a term in the ex-
pression for Q; (40) and Q3 (41).

This completes the proof of the representation of the likelihood ratio test

statistic given in Theorem 4.

8.3 Proof of Theorem 5

We use the result of (53) in the form

E[-2log LRI€ €] = K1 + T (K + K3 + K4 + K5 + K¢ + Kr),

and evaluate each in turn. Below we shall indicate by F¢ [...] the expectation

formation, and leave out the conditioning variables &' &;. Notice that when we
condition on &' &, the processes a;_; and b, are fixed. This also holds in the case
of (14) where we condition on o4, €; rather than o/ &;.

8.3.1 The main terms K;+T 'K,

We have

1
Ki+T 'Ky =TE, [tr{Sau.v,bS;imbSua.v,bS_l b+ 5T—ltr{(SMSWS*;;)2}].

aa.v,b
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This is the correction term given in (Johansen 1999, Theorem 3.3) based
upon the regression equation

EIAXt =w B, +(¢, (gl —w )U) (V1 Z{y) + 6 A + EICI) di + &,
(nw) (n—ny) (no+nz) (na) (na) (nv)

for the test that 6 = 0, when £ is known.

NyNg . 1

[=(ny +na + 1) + (ng + n, +n)]
T "2

Na

o [(na = 1)u(€) +2(e(€) + cal€))]-

where the coeflicients v(&), ¢(€), c4(€) are given in Theorem 5.

K, + TV Ky = nyn, +

The rest of the proof of Theorem 5 deals with the problem of evaluating
K3 + K4 -+ K5 + K@ + K7 g v(ﬁ)na(n - TLU).

We first consider the terms K, K5, Kg, and K. Since they are of the order
of 1, such that we can replace each matrix by its limit.

8.3.2 The term K, = F; [tr{KkeX,) ke SuaSan SabShaSag Sau }]

VV.Z2

We replace SuuSilSup = MyazaM. ;Map.o.a by MyuaM 2 M,y and find

aa.z,d
Ky = B [tr{reSyl ke MuaM o Moy My M M, ).

Since My, is Gaussian N, «p, (0, I,,, ® M,,) given o/, €y, we have

Ky 2 tr{reS, ) ke ir{ My M, My} (54)

VV.Z2

8.3.3 The term K; =TF; [tT{SbaSglsabSva;}/@g S 1S}

a,

We replace Sp,S,. Sap by Mpo Mt M,y,. We next consider k¢S,,!S,,. We use the
identity,

([nv ’ On'u XMz )Mil Mybd

yy.d
-1

Mvv.d Mvz.d va.d
- In 7On n
( ’ o Z) ( sz.d Mzz.d ) ( Mzb.d >
- M_l M'ub.z,d = qu;lsvb-

vv.z,d

40



Thus

ﬁgS;}va = /ﬁ%/gMil Myb.d-

yy.d
Hence we replace k¢S,,' Sy by T RS 1My, since
Myb.d = Myb — Myde_dlMdb = Myb —+ Op(l)
We have to find
Ky = T_lEgJ_ [tr{MbaMa_alMabeyZ_lkg /%é Z_lMyb}]
= T Ee, [tr{My M May 32 4 5 5 0e(Ui_s 105 + s 11)5)
Xz_ll%g /%’5 Z_l(ngs_j_l + ¢jb3_j_1)bg}].

We get a non zero mean if the number of stochastic factors is even. We
find for two stochastic factors that for £ = s and ¢ = j, we get

T B, [tr{MpaMzg Map D", 15 50U 105 R e X710,;Us 5 10 }]
2 Tl { My My My Y, 55 bl Jr{0/5 Re Rt 27105}

= 1 { My M Mo {3, 05 R Rt B0,

= tT{MbaMc;LlMab}t’l“{(Z?io 019;)2711’%5 /%é 271},

since

T
T! Z bibiyji 4 I,,
=1

if 1 = j and 0 otherwise, see (33) and (34). With no stochastic terms we find

T r{ Mya Mg May >~ bib_ 5 e g 57 jbaj 1B}

s,t,2,7
For t = s and ¢ = j we find

T { Mo My May 32, by ;5 R Re X 1pibei 1l
&t { My My Moy 35 b r (2, 078 e R S} (56)
2 17 { My M M r{ (3320 ) SR e D71}

Thus we find from (55) and (56)

Ks = tr{ My My Moy Y {re X1 ke ¥, (57)
using
> @+ 0.07) = .
=0
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8.3.4 The term Kg = —TE¢ [tr{SuaS,q Saukic Spy SuvSowSpy ke }]
We replace Sy = Muy.a by My, and S;1Sy, = (In,, OannZ)M;dMyb,d by
TY(I,, On,xn, )X~ My, and find
Ko = —T 'Be [tr{ My M My,fe S My My, S i }
= —T_IEEJ_ [tT{Ma_al s,tmrij at_lUt’/%'g Z_l(ers_j_l + ’ijbs_j_l)b;
Xb (U}, 3 105 + b 1055 Re Uray, 1 ).

For four stochastic terms we get

T B [tr{M,' > aUlRe S 0,Us i abibly, 1005 ke Uray, 3],

S7t7r7m717-]

We find for s —j — 1 =t,m —i—1 = r, the sums My, and M,, which
normalized by T~! and M_! tend to zero.

Only for t =r, s =m, and 7 = j, we get something non zero

—T B, [tr{Mz' >, ;s ; at—1UR X7 0;Us i 1bibs— iUy 105 R Uray 4]
= —tr{ M S, arad, Y {E SO S b 0D Re }
2 —nanptr{fe B (3020 0:6;) 5 Re }

For two stochastic factors we find

T B, [tr{My" Y ar (UlR S be i bbb, s 5 R Ul },
s,t,m,ri,9
and we take again t =r, s =m, ¢ = j and find

=T Hr{ My > a1y } D7 tr{Re X1 30 Do 1 bbb YN e }
—nanptr{fe X7 (30500 ¥ ) N Re 1

9
9

which together with the previous result gives

K 2 —ngnptr{ ke Z;vl_z/fg}. (58)
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8.3.5 The term K; = —2TE; [tr{Sp.S,, Sauke Spy Svuke Syy Sup}]

We find as before

K7 = =217 Ee, tr{MyMg' 3=, i at-1Uife 571 (0;Us—j1 + b j1)U;
Xf%é Z_1<9iUm_i_1 + ¢1bm—z—1)b;n}]

For four stochastic terms we get

2T Ee [tr{My My, Y ar Ui N7 0;U, 1 Ul S 0:Um i1l }.

t757m71’7.7

We notice that to get a contribution we need s, ¢, and m to be tied together
which always gives something of the form ), a, 1b, , which normalized by
T My, M} goes to zero. For two stochastic terms we find with ¢ = s,

_2T71E€¢ [tT{MbaMc;ul Zt,j,i,m atflUtl’%ls E7l¢jbt*j*1Ut/”%ls Zilwibmfiflb;n}]
g —2T_1E§J_ [tT{MbaMa_al Zt,j,i,m at,lbgfjflzb;Z_l/%g UtUtlfié Z_I@Dibm,i,lblm}]

= B [tr{ My M, >, ;> ar1b, ; VN Re ke B0, (T30, i 1b,)

which tends to zero since 7! > bm—iibl, — 0. Thus K7 does not give a
contribution.

Finally we consider the term K3 which apparently is of higher order of
magnitude, such that we have to take into account more terms when expanding.

8.3.6 The term K3 = QTEgJ_ [tr{Sba,vSaj}Sau,b,v/igSq;}va}]
We first consider
Saa — Maa.z,d — Maa.d - Maz.sz;_lsza.d = Maa - MazMz;_lszaa

since M,q; = 0. We replace it by M,, and next expand using M,; = 0

-1 —1
Sau.v,b - Mau.y,b,d - Mau - Mabeb.deu.d - May.b,dM Myu.b,d7

yy.b,d
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Sba.v - Mba.y,d - Mba - Mby dM M

yy.d
We insert
KJ&S;}SUI, Myy dM
and find
TSba.vSa_aISau.v,bHSS S'ub
g TMba.y,dMilMau y,b d/%gMyy dMyb d
g (Mba o Mby dMyy dM )Maal

X (Myy — Moy Myt Myy.a — Moy, dMyy bdMyu.b,d)
X/%é(z — (X - TﬁlMyy_d)) Myb.d

Myu Mg My 75 My, g

T MR MM MRS My

— T My Mg Moy My gFc X~ Myb

D My M, My S My, LM,

b My M M, f (S — T+ 1Myy)z M,

such that K3 is split into 5 terms:
K3 = K31 + K3z + K33 + K34 + Kss.

This gives a number of contributions, which we investigate one by one.

The term K3; Let ;4 = b, — MbdMJdldt, then setting t = s —r — 1, we get

Kgl = 2E§L [tT{Mba Mulﬁg bd}]
= 2B [tr{Mpa M Y ai \URET OUs i1+ Pibs i 1)V, 4]
t,8,%

= 2E§L tT{Mba Zat 1U//f ZileiUtbQ-le.d}]

= QtT{MbaM(;a Z at,lbt+i+1_d}tr{f£22710i}.
t,

In order to evaluate this we note that d; ;.1 = M**d, such that
bitittd = biyivr — MMy divivr = berivr — MpaMyg M d,.
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Hence

/
E at—lbt+i+1.d
t

/ 2 : l 1i+1 -1
== E at_le_H_l — CLt_ldtM i+ Mdd Mdb

t t

= My +Op(T?),
since we have M,; = 0. Thus we find the result
K1 = —2tr{RX " e Jr { My M Moy}, (59)

since 0 =Y .0, 0; = —Fe.

1=

The term Kj,

K32 == —QCZﬂlilE’gL [tT{MbyzilMyaMc;LlMaU’%lfzilMyb}]
= _2T71E§L [tT{Zts rmj i,k bt(UtI Jj— 16/ + b;_j_1¢9)2*1
X(0:Us—i—1 4+ ;bs—i1)al,_y Mg ar 1 ULRS T (OpUnm—k—1 + Ypbm—k—1)b), }].

We try first four stochastic factors

K321 = _ZT_IEEJ_[tT{Zt,s,r,m,jZkbtUtI Jj— 19’ _10 US i—la/sfl
XMa_alar—lU;- 10k m—k— lbl }]

Since the factor in front is 7! we need only terms of order 1 from this expectation.
The only term where we shall get a summation of b with itself, which is of the
order of T', is when t = m and k = j. Then we must have r = s —i — 1, and we
get

K3
= 2T 'Ee [tr{>_ bU_; 0/S '0:Usal M, ar (UL, 0;U, ; 1b)}]

t,r,j,0
= 2T ‘tr{I, Hr{S0RS > 60,0} tr{Su}
= 2 mptr{S RS 0,67},
j=0

= 2ngmptr{S ey XY 60,07} (60)
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Next try two stochastic factors. There are three potential contributions
(K390, K323, K324) since the factor U, is always present

K322 = —QT_IESJ_[tT{
Z DU, 1035 by i 10y Mg ar (UL RS b g 10, }]

t7s7r7m7j717k

= —QT_IESJ_ [t?”{
Z brsj 1 UGS b i yal, (M, ar UlReE b g 10}, }]

S7m7j717k

= —2T7'E; [tr{
D brppabl S0 Mt ay ULRS b g 1B, )]

s,m,j,i,k

= 2T ' r{ Y begnar (Mlag 1V S 0RS  bn g 1l

s,m,j,i.k

= =27 Mr{ My M, Moyt S 07,5 (- b k1b),)} € (1),
m,k

see (4.3).

Kss = —T 'Ee [tr{
> b WS T b aal M ar (UL kU, 1), )]

t,s,rym,j,i.k

= _TilEfj_[tT{
Z btb;ﬁ—j—1¢;Zil¢ibs—i—la{s—1M@larflU;’%/gzilgkUrb;ijH}]
t,s,r,7,1,k
= —T7Mr{ ) bl ST e i a Myt ar ab g Jr{RES 0}
t,s,r,j,0,k

= =T {3 b 0) DT My M M Hr{Re5T0} € o(1),
t,j

see (4.3).
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K324 = —QT_IEgl[tT{

S b WS Ui al My ar UL RS b b, )]

t7s7r7m7j717k

= 2T r{ > b ST RS T bkl M {aly My}

t7r7m7j7i)k

= =27 {) b T RS T b b ML, )

t,7,0
= =27 natr{> _bib,_; ST ORS T by b

1,5,

We make the approximation (35)
T b0 S 0 by — tr{gf S ORS )b, = 0
t

and find

K394 2 —2nanbtr{2’10i%'§§]’1 Zjio '(ﬁf(ﬁ;},
= 2ngnptr{ S ReRe X Dot

which together with (60) gives the contribution

Ksp = 2ngnptr{Ke Y., Ke }-

The terms Ks;

K33 = —2T_1E£J_ [tT{MbaMa_alMabeu.dIZ}éZ_lMyb}]
= —th{MbaMa_alMabT_l Zt,r,k bt_db2+k+1}tT{RéZ_19k}.

Next we evaluate
T brabipp =T biblygyy — MyaMy T " diblyy iy — 0.
t t t
Thus we find
Ks3=0.
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The term K34

K3y
= 2T B [{tr{ My, My My, ¥~ My, 7t X My, }]
= =27~ 1E’EL[tr{]Wba]Waal Z a (U] 10+ bi_; ¢)5™!

t7s7r77:7j7k

X (0;Us—j—1 4 ¥ ;bs—j 1) Uiie X (OxUr k-1 + ¥br——1)b.}]
For four stochastic factors we find

K3y
= 2T 'Ee [tr{My M, Y aU] (05 70,Us 2 UReS 0kU, 1B }]
t,s,r,4,5,k
since s —j — 1 # s we must tie all indices to s and that will involve the
summation of a and b, which when normalized by M;,M_! is bounded, and
hence the contribution is o(1), because of the factor 7.
For two stochastic terms we find two potential contributions which are

small due to (4.3)

K342
= 2T 'Ee [tr{My M, Y aU] (05 by Ui S by g 1B}
t,s,r,i,5,k
= —2T71E§J_[t7“{MbaMa7al Z as+¢+1U49;Z*1¢jbs,J~ 1 'K '52] 1¢kbr k— 1bl}]
s,1,4,7,k
2B [tr{Mpa M, > "D " agriaby ; DS 07 (T by g b )]
i,5,k s r
which goes to zero since 77> b.__1b,. — 0.
K343
= 2T B [tr{Mpa My > a5 b Ui ST 05U, 1B )]
t,s,r,i,5,k
= 2T B [tr{MpaMy" > aby ; S b Ui ST 04U, g )]
t,s,1,5,k
= =2ur{ MMy > Y aby  WSTYHTTY bl g) Hr{RES T 0k}
ikt s

which again tends to zero. Thus the term becomes
Ky = 2T B [{tr{ Myo M Moy S My, 7eS 1My, }] = 0,
and hence does not give a contribution.

Finally we need
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The term Kj;
K5 = 2B [tr{ My, M, My 5 X1 (5 = T My, )X My, }]
= —2T7'E [tr{MwM,' > a UFS

t757,r7l7j7m7n7k:

X [9m<UT—m—1Ufrl'fnfl - 6nmInv)0;L + ¢m(b7“—m—1bfrfnfl o 6nmjnb)¢;
+9mUrfmflb;«—n—1¢;z + wmbrfmflU;—n—lezz]E_l(QkUlfk—l + ¢kbl—k—l)b;}]

There is one term with four stochastic factors

K351 = —21—'_1E’§l [tT{MbaMc;l
X waURS 0 (Ur o Ul g = 6pm )0, 504U 11}

t7s7r7l7j7m7n7k

Ift=1—-k—1#r—m—1=r—n—1 then the expectation is zero. If
t=r—m—-1#r—-n—1=1—k—1(=t+m —n) we get

K3511 = —TﬁlEgL [tT{MbaM;al
X Z atflUt/"%lsz_lgmUtUt/+m—n9;zz_lekUt+mfnb:t+m—n+k+1}]

t7l7j7m7n7k

= =T 'tr{ My M, My, }tr{0'S 0} tr{F;5 "0} € o(1)

ft=r—n—-1#4#r—m-1=I1—k—1(=t—m+n) we find

Kisia = —T 'Ee [tr{MyM,;
X Y aaUlE ST 0nUrmsn U0, 57 06Ut mgnb i1 )]

t,j,m,n.k
which is again € o(1) by the same arguments.
With two stochastic factors we find the terms K350, K353, and K3sy
K352 = _2T71E§L [t?“{MbaM(;al
X Ytk @1 UREE T 0 (b aly g = S )10y 570, U 1 )]

K353 = —21—'_1E’§L [tT{MbaMc;l
X > @ URES 0 Un by 05 b1 b},

t,r,l,mmn,k

49



K354 = —2T_1E§J_ [tT{MbaMc;l
X > a URES b Uy, 10,5 b 1.
t,r,l,mmn,k

For K350 welet t =1 —k — 1 and get

Ksso = —2T ‘tr{ My, M, ' My}
{72 Y (bremaabl g — Spm L), 5710},

This is o(1) since the term with n = m is zero, and when n # m the sum is
op(T). For K353 welet t =r—m —1 and get

K3zs3 = —2tr{ My, M,

X Zm,n,k Zt atflb;:+m—n¢;zzil¢k<Til Zz bl*kflb;)}tr{’%lgzilem} = 0(1)

For K354 welet t = r —n — 1 and find
Kasq = —2E¢ [tr{ M, M,
XYY by (U ST RO ST OUTTY b b))
!

mn,k 1

= 2T Yr{ My M}
XY @b S Re0,S (T bk},
l

mn,k 1
which tends to zero.

Thus we find that K35 does not give a contribution, and hence the contri-
bution from Kj is found from (61) and (59)

K; 2 2(ngny — tr{MbaMc;lMab})tr(/QZ_l Ke}. (62)

vvU.Z2

This completes the calculations and it remains to compare (62) with (54), (57)
and (58)

Ki 2 tr{keSst re vr{ My M My}
Ks = tr{Mp M, My tr{x?s,},
KG g —’I’La’l’thT{/ﬁlg Z;vl.z’%f}

which is seen to give

K3+ Ky + Ks + Kg + Kr = ngnptr(reS,,} ke ).

vU.Z2
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