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Abstract

The Jordan Form of the VAR’s Companion matrix is used for 
proving the equivalence between the statement that there are no 
Jordan blocks o f order two or higher in the Jordan matrix and 
the conditions of Granger’s Representation Theorem for an 1(1) 
series. Furthermore, a Diagonal polynomial matrix containing the 
unit roots associated to the VAR system is derived and related to 
Granger’s Representation Theorem.

'This work is part of my Ph.D thesis under the guidance of Soren Johansen. 
Thanks are due to N. Haldrup, R. Kiefer and C. Osbat for commenting on earlier 
drafts of the paper, N. Hargreaves for correcting the language and N. Haldrup and 
M. Salmon for providing useful material. All remaining errors sire mine.
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1 Introduction

After the seminal work by Engle and Granger (1987) integrated and coin­
tegrated economic time series have been amongst the most popular topics 
in the econometrics literature. This is because in this area of research 
the empirical and theoretical studies on scalar and vector autoregressive 
processes with unit roots and the studies on the economic theory of long- 
run equilibrium relationships have been combined giving as a product 
the cointegration theory, see for instance the textbooks by Banerjee et. al 
(1993), Hendry (1995) and Johansen (1996) for an extensive analysis.

The references that have just been mentioned treat mostly mod­
els of 7(1) processes, that is, processes that can be made stationary by 
differencing. However, it turned out that 7(2) series are likely to appear 
in economics. For example, if inflation appears to be a nonstationary 
series then prices should be 1(2). Johansen (1992) gives a representation 
theorem for 1(2) processes and conditions for an 1(2) vector time series to 
cointegratc. More recently Gregoir and Laroque (1993) have presented 
some further theoretical results on the polynomial error correction model 
(ECM) and polynomial cointegration; see also Granger and Lee (1990). 
Work on structure theory has been also carried out by d’ Autume (1990) 
and Engle and Yoo (1991). From the point of statistical and probability 
theory in 7(2) systems Johansen (1995, 1996, 1997), Kitamura (1995) and 
Paruolo (1996) are coping with the problems of estimation and inference.

The present paper is closely related to the one by d’ Autume who 
has analyzed the general case of integration order higher than one by the 
use of the Jordan matrix associated with the model under investigation. 
He proves that by considering the Jordan Canonical Form of the Com­
panion matrix of the system one can determine the degree of integration 
d as the dimension of the largest Jordan block corresponding to the unit 
roots. For instance, let us assume that there are three Jordan blocks, 
associated with the unit roots, appearing in the Jordan Canonical Form 
of the Companion matrix of the system. We further assume that there 
are two blocks of size one and one block of size two. It yields that d =  2, 
i.e. the degree of integration of the model is two.
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In tliis paper we use the structure of the Jordan Canonical Form of 
a matrix in order to show the equivalence between the result derived by d’ 
Autunie and the condition underlying Granger’s Representation Theorem 
for an integrated of order one series, that is, there are no Jordan blocks of 
order two or higher if and only if |a'±r/?i| ^  0, see also Johansen (1991). 
We claim that the method under consideration is a general method that 
can be applied to high dimensional autoregressive systems with several 
lags and different orders of integration. We prove here the result for 
the case of an 7(1) vector time series. Another objective of the paper is 
to show that the conditions of Granger’s Representation Theorem for an 
7(1) system are equivalent to a precise structure of a Diagonal polynomial 
matrix containing the unit roots associated to the system.

The rest of the paper is organized as follows. In section 2 we in­
troduce the Companion Form representation for a vector autoregressive 
(VAR) model and the Jordan Canonical Form. A Diagonal Form of a 
polynomial matrix is introduced and connected with the Jordan Form. 
Section 3 gives the main theoretical result of the paper for 7(1) variables, 
namely that the results of d ’ Autume (1990) characterizing the degree1 
of integration of the system via the Jordan Form of the companion ma­
trix are equivalent to the conditions derived by Johansen (see Johansen, 
1991 and 1996) of Granger’s representation theorem. Finally, section 4 
concludes.

A word on notation used in the paper. Upper case letters have been 
chosen for representing the random variables. The distinction between 
univariate and multivariate time series will be clear from the context. Of 
wide use is the backshift lag operator L. It is defined on a time series 
X t (scalar or vector) as LX t =  Xt-\ and in general LkX, =  X t-k, for 
k =  0,1,2... Trivially L°Xt =  X t, that is, L° =  1 the identity operator. 
Moreover, the difference operator A, is defined as follows: A X t =  X t — 
Xt-1 and hence A  =  1 — L. TV1 and Cn are the «.-dimensional spaces of 
real and complex numbers, respectively. 7n denotes the n x n identity 
matrix. The orthogonal complement of an n x r matrix /3 is an n x (n — r) 
full column rank matrix (3± such that f l ' =  0 and it holds that the 
n x n matrix (f3;/3±) is of full rank. With A (z) we denote a polynomial

2
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matrix, that is, a matrix whose entries are polynomials a (z) on the set 
C of complex numbers.

2 Related Forms to the VAR

This section introduces the vector autoregressive model and its compan­
ion form, whilst it also provides most of the technical tools from matrix 
algebra needed for the following section. That is, the Jordan Canonical 
Form applied on the companion matrix of the stacked VAR(l) and the 
Diagonal Form which will be used in the following section.

2.1 The Companion Form of the VAR

In this subsection we introduce the Companion Form, see Johansen 
(1996) for more details.

Consider the vector autoregression with k lags, VAR (A;), in p di­
mensions:

Xt — TUXt-! +  n 2AT(_2 +  +  litXt-k  +  £(, for all t =  1,2,..., T, (1)

where Ilj, i =  1,2,..., k are p x p  parameter matrices and the disturbances 
f-t are assumed to be identically, independetly distributed (i.i.d.) with 
expected value E  (et) =  0 and variance Var (et) =  fl, where D a p x p 
positive-definite matrix. The X _ t+ i,..., X lt X 0 are p x l  vectors in 1ZP of 
fixed initial values and for simplicity we do not consider any deterministic 
terms. Then (1) can be written in the companion form representation in 
n =  pk dimensions:

Xt =  AXt- i + e t, (2)
( V , X U . . -fc+i) ’ =  « , 0', O')

(  n i n 2 •• rifc-i n, \
h o 0 0

A = 0 h
o •

h 0 )

3
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which is the companion matrix. The disturbances are still i.i.d. with 
E  (et) =  0 and

Var (et) =  E =  diag{Q, 0,..., 0}.

It can be proved, see Anderson (1971), that the necessary and sufficient 
condition for making the system stationary is that

|A (z)|=0 = H * | > l ,

where A  (z) =  / „  — Az is the characteristic polynomial associated with 
equation (2). The condition is equivalent to

|A/„ — A| =  0 =H A| <  1,

i.e. all the eigenvalues of the companion matrix lie inside the unit circle 
and hence for finding the roots of A (z )  it is enough to calculate the 
eigenvalues of A. Note though that while each root Zo corresponds to 
one eigenvalue Ao =  1/zo the converse does not hold. It is the case that 
whenever A =  0 there is no root z corresponding to this zero eigenvalue.

Under this condition it holds that there exists <5 > 0 such that for 
all z 6 S, with 5  =  {z  : |z| <  1 +  6} the matrix A  (z)_1 is well-defined as 
a convergent power series within a neighborhood of the origin and thus 
the autoregressive system (1) can be easily transformed to the respective 
moving-average representation

X t =  C (L) et, with C (z ) =  A  ( z ) '1.

We now introduce an important tool from matrix theory, i.e. the Jordan 
Canonical Form that we shall use in the subsequent section.

2.2 The Jordan Canonical Form

The idea of using Jordan matrices in the development of the theory of 
integrated variables is presented. For more details on the mathematics 
see the Appendix at the end of the paper.

4
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2.2.1 W hy are Jordan m atrices interesting in the study o f  in­
tegrated processes?

Let us consider the model (2) with the matrix A  given by A =  P J P ~l, 
where .7 is the Jordan matrix associated with the Companion matrix A, 
see equations (10) and (11) in the Appendix. We have

X t =  A X t- i  +  et = >  X t =  P J P - lX t_j +  i t =►
=► P-'Xt = JP-'Xt-i + P_1et,

and by defining the random variable Yt =  P~1X l, we finally deduce that

Yt =  JYt-1 +  Ut, Ut =  P  ’ ff.

In order to illustrate this representation consider the four-dimensional 
system with J =  diag{J$ (A ), J\ (A)}. In this case the full system can be 
decomposed into two subsystems of the form:

where Z 1( =  (Ylt, Y&, Ŷ t)' and Z-n — Y4t. In particular, if A =  1, i.e. 
the unit root case, we find Y\t ~  7(3), Yu ~  1(2), Yst ~  7(1) and Yu 
~  7(1). Thus, a Jordan block J,i (1) as a matrix of coefficients for the 
AR(1) model generates an 1(d) variable. Some further applications of 
the Jordan form on cointegration analysis can be found in d ’ Autume 
(1990).

2.2.2 M ain Result established by d ’ Autum e

The general approach of d’ Autume consists of coping first with the 
theory of a deterministic system in Companion Form and then apply 
the derived results to the stochastic framework. After transforming the 
VAR(A:) to a VAR(l) model A(L)X , =  et, see equation (2), d ’ Autume 
proves a proposition stating that the degree of integration is equal to the

/  A 1 0 0 \
0 A 1 0
0 0 A 0

 ̂ 0 0 0 A )

+  uu
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maximum size of the Jordan blocks. As a special case assume that the 
time series X t is integrated of order one. According to d ’ Autume the / ( l )  
case is equivalent to all Jordan blocks being of size one, or equivalently, 
the Companion matrix is diagonalizable with respect to the eigenvalues 
equal to unity.

2.3 Jordan and Diagonal Form

From the Jordan Canonical Form J of a matrix one can derive relatively 
easily a Diagonal Form for a polynomial matrix ( /„  — Jz). The Diagonal 
Form will be used in the next section in order to derive the Moving 
Average representation of the VAR in the case of 7(1) variables in the 
system.

2.3.1 The Diagonal Form o f  a Polynom ial M atrix

For the definitions of the elementary operations, unimodular matrices 
and the Diagonal Form of a polynomial matrix the reader is referred to 
the Appendix. However, we briefly note that for a polynomial matrix 
B (z) there is a diagonal polynomial matrix A (z) which contains all the 
roots of B (z ), i.e. the equations |B (z)| =  0 and |A (z)| =  0 have exactly 
the same roots.

2.3.2 Deriving the Diagonal Form from  the Jordan Canonical 
Form for a value o f  A

In this subsection we provide a way of finding the Diagonal Form of a 
polynomial matrix (In — Jz) if the structure of the Jordan matrix .7 is 
known to contain a single eigenvalue A. We consider the single eigenvalue 
Jordan matrix because further on we are going to separate the eigenvalues 
different than one and focus on the unit roots of the model, that is, later 
we will set A =  1 and use the Diagonal Form developed here.

We provide first a proposition which will be used for proving The­
orem 2.

C
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Proposition  1 For the polynomials f  (z) with / ( 0 )  =  1 and g(z)  de­
fined on C we have that the matrix

B(z) f U 0  \
o s ( z ) 7

is equivalent, under the elementary operations procedure, to 

A ( 2 ) = ( o  f ( z ) g ( z ) ) -

P roof. The main difficulty here is to apply the elementary operations 
in such a way that the applied transformation matrices will be unimodu- 
lar. Following Sesren Johansen’s suggestion we apply the following series 
of elementary operations. Define first h(z)  =  z_1 [ /  (z) — 1], which we 
note that is a polynomial because by the Taylor expansion of /  (z) we 
have

d«g|/l ~n .... , desl/3 rn-l
/ ( * ) = £  / (") (z)i7W /i(z )=  E  / w W T '

n=0 n' n=l n'

Here deg [/] is a positive integer number and denotes the degree of the 
polynomial f ( z ) .  Then we have:

B(z )  =  (  f { z )  ~ Z ) ~  (  1 ~ Z ) ~
{ l  0 g(z )  )  \ g ( z )h  (z) g (z) )

~  ( } w ' * w  / M 09 w ) ~ ' i“ s < l l / W ! ' W } * A W '

This is because the unimodular matrices

L ( z ) = ( - g ( z ) h ( z )  1 ) ’ R ( Z ) =  ( h ( z )  f ( z )  )

are such that L (z) B (z) R(z)  — A (z) .□

We want to show that a polynomial matrix of the form Ik — Jk (A) z 
is equivalent to a diagonal polynomial matrix A* (z).

7
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Theorem  2 Consider the k x k Jordan block matrix Jk (A) o f the single 
eigenvalue A, see also (10) in the Appendix. The matrix, polynomial in z

Bk (z) =  h  ~ Jk (A) 2 ,

is equivalent, under elementary operations, to the k x k: diagonal polyno­
mial matrix in z:

Afc (2) =  diag , (1 -  Az)fc
k (k-l)-times

where

Uk (2) Bk (z) Vk (z) =  At (2) Bk (z) =  (2) A* (2) V*"1 (* ),

with Uk (2) and Vk (2) unim.odular matrices.

P roof. We consider first the cases k =  1 and k =  2:

For the .J\ (A) block, we have trivially Aj (2) =  1 — A2 and

B, (2) =  1 -  J, (A) 2 =  1 -  A2 =  t / f 1 (2) A, (2) V f 1 (2) ,

i.e. l/i (2) =  1, Vi (2) =  1. For the J2 (A) block it holds that

B-2 (2) =  I2 -  2̂ (A) 2 =  (  1 ~QXz x =  CAT1 (2) A2 (2) V 71 (2) ,

and A2 (2) =  diag {1, (1 — A2)2} , which can be found via the elementary 
operations procedure. The matrices C/2 (2) and V2 (2) are

^2 1 MA ( l - A 2 ) 1 J V2(z) 1 2 ^-A  1 - A z ) '

which are clearly unimodular matrices, since they are polynomial matri­
ces with constant determinant equal to one.

Instead of proceeding with a J3 (A) block, we consider the polyno­
mial matrix

/  (1 — A2)1' - 1 —2
0 1 -  A2

8
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which will be the typical block to appear in Bk (z) for all k > 2. We only 
have to apply Proposition 1 for /  (z) =  (1 — A-zy-1 and g(z )  — 1 — Az. 
Then we have:

B . ( z ) =  f  ^  ^  x _ Ẑ  ^ ~  drag j l ,  (1 — Az)*'| =  A, ( z ) .

Hence there are uniniodular matrices U, (z ) and Vm (2) such that

U* ^  [(1 -  Az)1*'-1 -  l j (1 -  A2) l ) ’

V *  ^  =  (  z”1 [(1 -  Az)*"1 -  l] (1 -  A z ^ "1 )

and it holds that A, (2) =  U, (2) B, (2) V, (2).

In a similar fashion one can generalize the result for any positive 
integer k.D

After having proved the specific case, i.e. for a single Jordan block, 
the general result, for any Jordan matrix, comes naturally.

Theorem  3 Consider the n x n matrix in Jordan Form J, of a VAR’s 
Companion matrix A. as in equation (2), with s Jordan blocks Jk. (A;), 
for i — 1,..., s. Then there is a Diagonal Form of the polynomial matrix 
( /„  — Jz) of the form

A (2)nxr> = dia9 { l -  (1 -  Aiz)1'1 , 1 , ( 1  -  Aizf2,1,..., (1 -  W ’ }  .

Especially, for  A, =  1, it holds that the order d of the autoregressive 
process is given by d =m ax {A:, | A, =  1}.

P roof. Dui‘ to the structure of .7, i.e. it is a block-diagonal matrix, the 
elementary operations on a Jordan block do not affect in any way the 
other Jordan blocks. Hence, by applying Theorem 2, we have that the 
matrix

In -  Jz =  drag { Ikl -  Jkl (A ,)z. Ih -  Jh  (A2) 2,..., Ikt -  Jkm (As) 2}

9
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is equivalent, under elementary operations, to A (z)nx„, where A (z) is as 
defined above because after transforming each submatrix [A, — A-t (A) 2] 
to j ^ l , (1 — W ' ] ,  for all 7 =  1 , s, we derive the A (z)nxu matrix. 
When for some A, it holds \  =  1 we have the unit root case. It is clear, 
following d ’ Autume’s argument, that the order of integration should be 
equal to d, where d =  max {ki | \  =  ! } .□

2.4 Background Cointegration Theory

This subsection provides the intermediate results that we shall use for 
the proof of Theorem 7 to appear in the next section.

Proposition  4 Consider the n x r matrices o  and (3 which are full col­
umn rank r, r <  n. The matrix a'(3 has full rank if and only ifa'±/3± has 
full rank.

P roof. See exercise 3.7 in Hansen and Johansen (1998).□

We now wish to prove that Granger’s Representation Theorem 
holds for one lag if and only if it holds for k lags. We state first, for 
completeness, Granger’s Representation Theorem (GRT).

Theorem  5 Consider a p-dimensional autoregressive variable X t with k 
lags, with the usual assumptions for the disturbance terms and the initial 
values, in the error correction form:

Jt-l
a X t  — nx,_, + ^ ] r,AXi_j + £(,

i — 1

with characteristic polynomial

k- 1

A  (2) =  (1 -  2) /  -  n 2 -  r i ( !  -  *) ^
t=i

satisfying the assumptions:

|A(2)| =  0 =*■ |21 >  1 07- 2 =  1; (3)
10
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and II =  —A  (1) =  a,3' with a, 0  full rank p x r parameter matrices and 
r t, 1 =  1 , 2 , k being p x p parameter matrices. Then

K I7 3 ± | ?  0 <=► X t ~  7(1),

where T =  Ip — Ylili IV The variable X , is given as

t
Xt = >3± K W 1 q 'x Y , e- +

i=l

with Yt a stationary process.

P roof. For a proof see Theorem 4.2 in Johansen (1996).□

Let now the assumptions of GRT hold and consider a VAR(fc) model 
A(L)Xt =  et. For convenience let k =  3:

X t — IlrXt-i +  n 2X t_2 +  U.3Xt-3 +  e« ,

which in the ECM form becomes:

Then

A  X t =  a ftX t. x + 
a ft =  n ! +  n 2 +  1I3 — i p,

Tj =  — n 2 — II3 and T2 =

K r /J j .1 ±  0 ^  x t

+ r2AA;_2 + €t

- n 3.

m
where T =  Jp — T1 — F2. The Companion Form representation is:

( x t \  /  it  n 2 n 3 w  \ (  et \
\ x t_x =  /„  0 o x t_2 +  o = *
\ A(_2 ) \ 0 Ip 0 / V Xt—3 ) \0/

Xt =  A X t-i +  it =► A Xt =  (A — I) X t- i  +  i t , (4)

which is the ECM in the companion form. We shall now prove that GRT 
holds for a VAR(fc) if and only if it holds for a VAR(l). See also exercise 
4.7 in Hansen and Johansen (1998).

11
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P roposition  6 The GRT holds for a VAR(k) if and only if it holds for 
a VAR(l).

P roof. For notational convenience we set k — 3. Consider equation (4). 
It holds that A

a =

because

- I - -= 5/3', for the full rank matrices

Q ■-n 2 -n 3 \ J p

0 h o and 3 = 1 0 — Ip 0

0 - i P i p ) \ 0 0 - I p

A -  I  =
n, - i p n2 n3 \

i P -ip 0 =
0 ip —ip /

q -n 2 -n 3 \ ( 0 ip Ip
0 Ip 0 o --ip 0-?•io

ip /  V 0 0 -Ip
=  ctff,

since
ir -  /„ = a& -  n2 -  n3.

Moreover, we find that

a ± = (  (n2 +  n 3)'a_L V  h  =  (  P± )  •
V n'3Qj. /  \ 0 ± J

Hence
a'J± = a'± (IP + n2 + 2n3)(3± = o'±rfi±,

which yields immediately that |d'x /3x| =  \a'1 Tf3x\. This shows that the 
GRT holds for one lag if and only if it holds for three lags. In a similar 
fashion one can prove the result for a general VAR(fc) model.□

3 Granger’s Representation Theorem

In this section we shall use the material so far developed in order to 
unify GRT with the Companion Form and the Jordan Canonical Form.

12
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We focus on the theory applied to variables integrated of order one. In 
the first subsection we prove the condition that there is no Jordan block 
of size greater than one, corresponding to unit root, is equivalent to 
K r /J jJ  /  0. In the second subsection we derive the Wold representation 
from the VAR representation by using both Jordan and Diagonal forms.

3.1 Jordan Blocks and the GRT I(l)-conditions

For the general VAR(fc) model A(L)Xt =  e(, d ’ Autume (1990) has proved 
that after transformation to the Companion Form, see equation (2), it 
holds that the system is 7(1) if and only if there is not a Jordan block 
of size two or higher, corresponding to unit root, in the Jordan matrix J 
of A. Our aim is to show that this result is equivalent to the conditions 
underlying GRT, see Theorem 4.2 in Johansen (1996).

Theorem  7 Consider the VAR(k) model A(L)Xt =  et. It holds that 
Iq±F/3j_| /  0, i.e. X t ~  7(1), if and only if there is no ./*.(1 ) block, 
with k > 2, in the Jordan Form J of the Companion matrix A of X t: 
Yt =  -JYt-i +  ut, with Yt =  P~xX t. The matrices a i ,  /3± and T are 
defined as in Theorem. 5.

P roof. In the proof we consider only Jordan blocks of order one and 
two for convenience. We allow for the intermediate step:

Proof of (i): It holds from Proposition 6 that n'x P/fi =  a'±0±, while

Yt =  j y (_! +  ut, no .72(1) la'pl +  0

where d, 13 are such that

and d, [3 are as in Proposition 6 .

for a 2 =  P'o±  and 3± =  P  1 ft± we have

a 'J x  =  (P 'q± ) 'P - 1/5x =  a'±P P ~l/3x =  a 'J ± .

13
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Hence o'±Tft± =  a'±ft± =  a'± ft±. From Proposition 4 we take 

|q'/4| ^  0 <̂ => |o'x /8j.| ±  0

and thus

|q'4| ^ 0 <=> |q'j_/3_l| = = |o'j_r/?x| /  o.

This proves equivalence relationship (i).

It only remains to show (ii):

o' ft\ /  0 <==> No J2( l)  block in J,

that is only l x l  blocks J\(l) =  1 appear in J.

Proof of (ii): Suppose first, that .7 has a .72(1 ) block as an entry. 
Without loss of generality we can assume that the J2 (1) block is placed 
at the north-west corner of the n x n block-diagonal matrix J. We 
can achieve this structure by suitably interchanging the columns of the 
transformation matrix P. The matrix J — 7„ is of reduced rank, say 
s < 1 1 , that depends on the number of Ji(A) and ./2(A) blocks in .7 for 
A =  1. Now, due to the facts that:

(a) the unity is at the off-diagonal position (1,2) of the [-7-2(1) — 72] =  
•72(0) submatrix, and

(b) the block-diagonal form of the Jordan matrix .7 yields that 
J  — 7„ is also a block-diagonal matrix, and if is the (?, j)-element. of 
the matrix .7 — 7„ we have that e,,i =  0, for all i and eti2 =  0, for all p. ■ .I '
but for i =  1 : =  1 , we have:

•7 -  In = =  Of?,

for some Jordan matrix F  and G =  F  — 7n_2 /  0. We can partition 
suitably the n x s matrices d and ft as d =  [dj; 0 -2] and ft =  j/Ji, /J2J and 
take

•7 — /„ = oft1 = Ot\(?x + Qi/%

14
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where =  (1 , 0, ...,0)' and A  =  (0, 1,..., t))* are n x 1 vectors with 
a\0i =  0, while 62 and 02 are n. x (s — 1 ) matrices such that

{  0-2x2 0
V 0 G =  «2 A -

Now multiply from the right by d] to find

020-2011 (  ° ^  G )  A  =  0 ==> (Q2« 2) >%Oi = 0 = >  =  0

a\02 =  0.

This is because the n x (,s — 1 ) matrix 02 has (jh'j — 0, for all j .  As 

a consequence we have the rank reduction of a'0:

a '0 =  ( A i A ) '  (frl,02) =  f  j  (A ,  02)

( o',A a'.A \ =  /  0 0 \
V 0201 o!202 J \ &201 0*202 j

Hence we have proved that if there is a J2(l)  block in J it implies 
\o'0\ =  0, or equivalently if |d'/j| ^  0 it follows that there is no -72( 1 ) 
block in J. We shall now show the converse, namely that if there are no 
J-2 ( l)  blocks, it implies |c>'/31 /  0.

In the case that there are only single unit roots in the system, that 
is, there are only A ( l )  Jordan blocks in J, we can think of J — In as

J - I «  =
0 0

0 D aft,

where D  is a s x s full-rank matrix with \D\ ^  0. A possible choice of 6 

and 0  is d =  (0; D1)', 0  =  (0; Ir)'. Thus we have

o '0  =  (0; D') ^ ® )  = i y \o'0\ =  |£>| ±  0.

15
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This allows us to claim that: >

There is no J2( l)  in J <=> |d'/j| ^

which proves equivalence relationship (ii). We have shown that the 7(1)- 
condition of GRT is equivalent to “no Jordan block J2( l)  in J” . The 
proof of Theorem 7 is complete.□

One should note at this point that a similar Theorem can be proved 
for an 1(2) variable. That is, for a process X t ~  1(2) it should hold that 
there is no Js(l) block in J for the VAR(l) in Companion Form if and 
only if the complicated /(2)-conditions of GRT are satisfied.

3.2 The Moving-Average Representation

We shall now combine the concepts we have already seen, i.e. the Jordan 
Form and the Diagonal Form of a polynomial matrix, in order to find 
the moving-average representation of a system and complete the proof 
of GRT. We point out that GRT as stated by Engle and Granger (1987) 
starts from the moving-average and arrives to a cointegrated VAR via a 
reduced rank assumption on the moving-average representation.

The n x  n block-diagonal matrix J can be partitioned suitably1 as

of the eigenvalues smaller than one in absolute value, due to the usual 
assumption on the root of the characteristic polynomial. We consider 
again integrated variables of order one or two, hence the form of J (1).

'This formulation has been adopted from d’ Autume (1990).

where we denote the r x r matrix

J  (1) =  diag{J2( 1),.... J2(l) , M l ) , .... .7,(1)}

and the (n — r ) x ( n  — r) matrix J is the Jordan matrix formed by the rest

16
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The polynomial matrix (In — Jz ) can be written as the product of 
two matrices where one contains all the unit roots of the system while the 
other has the stationary roots with modulus greater than one. Hence, 
consider the matrix ( /„  — Jz) as

I n - J t
(  Ir - J ( l ) z  0 \ =
y 0 /n_r -  Jz J

(  Ir ~J{\) z  0 \ ( l r 0
V o / „ - r ;  y  0 / n_r -  J Z

B ( z ) C ( z ) ,

say. We have that \B (1)| =  0 and |C (1 )[ /  0, as a result of the partition 
discussed above. By Theorem 2 it yields

B (z) =  R(z)A(z)Q(z),  with |A(1)| =  0,

where R (z) and Q (z) are unimodular matrices. This, by the way, is the 
Smith McMillan Form of B (z), see the Appendix for more details and 
Theorem 2 for a proof in this particular case.

It follows that

In — Jz — B ( z ) C (z) =  R(z)A(z)  [Q (z)C (z)l, (5)

where Q(z)C(z)  is invertible for |z| <  1 +  6, for some S >  0, since 
|Q(1)C(1)| 7̂  0. Now, recall equation (2):

=  A X t_! +  et <=> A (L) X t =  et, A  (z) =  In -  Az.

By using
J =  P~lA P  <=> A =  PJP ~l 

we can derive the following expression for A  (z):

A  (z) =  In -  PJP~XZ = P ( I n -  Jz) P ' 1 <=>

^  A  (z) =  [PR(z)\ A(z) [Q(z)C(z) P - 1] =  <1- (z) A(z)® (z ) , (6)

where $  (z) is a unimodular matrix and $  (z) is an invertible matrix for 
|z| <  1 +  (5, since (z)| ^  0 for |z| < 1 +  <5. Note here that the last

17
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expression (6) for A (z ) is not a Smith-McMillan Form. This is because 
the polynomial matrices (z) and T (z) are not both unimodular as they 
should be in a Smith-McMillan Form. It may happen that the polynomial 
matrix

*  (z) =  Q(z)C(z)P~'

is unimodular but in general it will not be and its determinant [T (z)| 
will not be a constant for every z € C.

The matrix A(z) has the structure2 (by applying Theorem 3 for 
A = l ) :

A(z) =  diag { l , 1 , (1 -  z ) , ( 1  -  z ) , (1 -  z )2 , ( 1  -  z)2} .

Consequently if there are n — r (single) unit roots, i.e. if there are no 
J2 (1 ) blocks, then

A(z) =  A j(z) =  diag{Ir, (1 -  z) 7„_r}. (7)

Hence the system is 7(1) and the respective theory can be applied3, see 
Hylleberg and Mizon (1989) and for 7(2) systems Engle and Yoo (1991) 
and Haldrup and Salmon (1998).

Now we shall prove that the conditions underlying GRT are equiv­
alent to the structure of A(z) in the Diagonal Form of equation (7). We 
make the usual assumption (3) on the roots of the characteristic equation.

Theorem  8 The A  (z) is an n x n polynomial matrix, with r =  rankA (1 ), 
and

A (z ) =  <F(z)A(z)*(z), (8)

where <F(z) and T(z) are invertible polynomial matrices, that is $  ( 1 )| /  
0 and l'F(l)! 7̂  0, and the matrix A (z) contains all the unit roots of 
A  (z). If  II =  o/3', where o , ft are n x r full rank matrices for some 
0 <  r <  n and if o'± T/_3j_ has full rank, then the structure of the diagonal

2Since we have considered 1(d) variables with d <  2, there are no Jordan blocks of 
order higher than two and hence the underlying structure.

3One has to pay attention to the fact, however, that the references mentioned use 
the Smith-McMillan Form.
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matrix A (2) is as in (7).Forr =  n, i.e. when the A (l) is of full rank, 
no condition such |a'±17?jj ^  0 is required and A (2) =  In.

The converse of the result also holds, that is, for A (2) as in (8) if 
A (2) has the form, of (7) then q'±TI3± is of full rank.

The matrices $ (2), 4»(2) have as elements finite order polynomials 
and since they are invertible their inverses are given as an infinite order 
power series convergent in a circle which contains the unit circle because 
of assumption (3).

P roof. In the VAR(A:) system the condition |a'± r/?jJ /  0 will be 
equivalent to |d̂ Aj_| 0, in the stacked VAR(l) Companion Form, or

j  o'A | 0, i.e. there is no J2(l)  block in J . Hence from Theorem 3 and
the discussion preceding equation (7) we can conclude that

A (2) =  diag{Ir, (1 -  2) / n_r}.

To prove the converse we just have to assume that A (2) is as in 
equation (7) and then refer to (6) and the discussion following it. In this 
case we can derive analytically the moving average representation from 
the autoregressive representation. We have from equation (6):

A  (L ) X t =  (L ) A(L)<K (L) X t =  et ,

with A(2) =  diag{Ir, (1 — 2) which gives

A(L)<f (L)Xt =  [3>-1 (A)] et = >
A * ( L ) X t =  diag{AIr, 7„_r} [4>_1 (L)] et = >
^ ( L ) A X t =  diag{AIr, 7„_r } [4>_1 (L)j et

A X t =  [S' - 1 (L)] diag{AIr, 7n_r} [$-> (I )]  et, (9)

where we have used the diagonal structure of A(2) and the fact that 
'F (2) is an invertible matrix for |z| < 1 + 6 .  Thus we have derived the 
Wold representation of A X t. The right hand side is a stationary process 
because we know that the elements of the matrices 4' -1  (2) and 4>-1 (2)
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are given as convergent power series. Consequently equation (9) implies 
that X t is an 7(1) process. It follows that the system is 7(1) and hence 
from the GRT we deduce that if II =  o/7  thenja'± r/ij_ | ^  0.0

As a simple illustration of the residts of this section we consider the 
following example.

Example: Consider the model

with characteristic equation | A  (z)| =  0 <==> z =  | or z =  1, so the 
assumption on the roots being z =  1 or outside the unit circle is satisfied. 
It also holds that

Note that 'I' 1 (z) is not a unimodular matrix but has a representation 
as a power series convergent for \z\ < i  due to the assumption on the 
roots of | A  (z)| =  0.

A X t =  o f fX t-\ +  with a' = , ^  =  ( 1 , - 1 )

where et are i.i.d. N(0, 72). We have

o'± =  (2, -1 )  and =  (1 , 1 ) = »  | a'±f1± \ ±  0 ^  X t ~  7(1). 

Thence, we can find that

<K"> (z) A  (z) (z) =  diag{ 1, (1 -  z )} =  A (z) 4=>

A(z)  =  $  (z) A (z) ( z ) ,

with

and

=t> (z) =
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4 Conclusion

The analysis of the paper has been focused on the mathematical proper­
ties of the nonstationarv vector autoregressive models. We have used the 
Companion Form of the VAR, the Jordan Canonical Form of a matrix 
and introduced a Diagonal Form for a polynomial matrix. The latter can 
be found easier once the Jordan form is known. An alternative proof for 
Granger’s Representation Theorem has been given, based on the struc­
ture of the Jordan matrix of the Companion matrix. The condition 
underlying Granger’s Representation Theorem for a series integrated of 
order one is shown to be equivalent to the preclusion of any Jordan blocks 
of order two or higher. We have shown how the moving average represen­
tation can be derived from the VAR representation using the Diagonal 
Form. Finally the strong connection of the GRT and the structure of the 
Diagonal Form containing all the unit roots of the system is proved.

5 Appendix

In this appendix we gather the most important mathematical results 
already established in the literature.

5.1 The Jordan Canonical Form

For an extensive treatment on the Jordan canonical form see, for example, 
Gantmacher (1959, vol. I).

Definition 1 Let A be a complex number and let i be a positive integer. 
The i x i triangular matrix

( X  1 0 \
A 1

Ji( A) = ( 10)

A 1
V 0 A
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is called a Jordan block of order i. For i — 1, then J\ (A) =  A.

Theorem  9 Let A  € Cnxn, i.e. in the set of n x n complex matrices, 
and suppose that the distinct eigenvalues of A are {Aj, A2, A m}. m < n. 
Then there exists a nonsingular matrix P  6 Cnxn such that

J =  P - 'A P  =  diag{Q i,Q 2, (11)

where each Qi is a block-diagonal matrix with Jordan blocks of the same 
eigenvalue A*. The matrix A is said to have the Jordan Canonical Form 
J, with A  =  PJP~X.

P roof. See Gantmacher (1959, vol. I).

5.2 The Diagonal Form of a Polynomial Matrix

We start by providing the necessary background material. The interested 
reader is referred to Gohberg et al (1982).

D efinition 2 The elementary roxv and column operations (E.O.) on a 
polynomial matrix A  (2) are:

(I) multiply any row (column) by a nonzero number.

(II) interchange any two rows (columns)

(III) add to any row (column) any other roxv (column) multiplied 
by an arbitrary polynomial b (2).

Performing elementary row (column) operations is equivalent to 
premultiplying (postmultiplying) A  (z ) by appropriate matrices which are 
called elementary matrices.

Specifically, for dimension of A  (2) equal to n =  3, we have:
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corresponding to elementary operations of type I and type II, respec­
tively;

1 bi (z) (  1 0 0

0 1 0 1 or £4 =  I b2 (2) 1 0

0 0 1 ) V 0 0 1

corresponding to elementary operations of type III.

Definition 3 A polynomial matrix U (z) is called unimodular if its de­
terminant. is a nonzero constant.

Note that elementary matrices are unimodular and their inverses 
are also elementary matrices.

Definition 4 The Diagonal Form of a polynomial matrix B  (z ) is a di­
agonal polynomial matrix A (2) such that.

B ( z )  =  U ( z ) A ( z ) V ( z ) ,

where U (2) and V  (2) are unimodular matrices.

Theorem  10  The Diagonal Form can be derived via the elementary op­
erations.

P roof. See Gohberg et. al (1982).□

5.3 The Smith-McMillan Form of a Polynomial Ma­
trix

A form more general than the Diagonal Form is the Smith-McMillan 
Form. We give two definitions first.

Definition 5 A monic polynomial is a polynomial whose highest-degree 
term has coefficient. 1.
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D efinition 6 The (normal) rank of a polynomial matrix C(z) is the 
highest rank of C(z),  V z.

Theorem  11 A polynomial matrix C(z) ,  can be written in the Smit.h- 
McMillan decomposition as

C{z)  =  V -\ z )M (z)U ~ \ z)

and where V  (z) ,U  (z ) are unimodular matrices and M(z)  is the Smith 
canonical form of C(z) ,  i.e.

=  ^ diag{si(z),  ...,sr(z )} 0 j

Here r is the (normal) rank of C(z)  and the {,s,(z)} are unique 
monic polynomials obeying the division property that. s,;(z) is divisible by 
Si_i(z), for all i =  2 , Moreover, by defining A ,(z) as the greatest 
common divisor of all i x i minors of C(z) ,  we have

Si(z) =  A i(z ) /A i_i(z) , A 0(z) =  l.n

P roof. See Kailath (1980).□

Rem ark 1 We are mainly interested in polynomial matrices which, will 
be assumed of full (normal) rank.

The polynomials s(z) are the invariant, polynomials of C(z) ;  the 
invariance refers to elementary equivalence transformations.

The Smith form of a polynomial matrix can be found either by per­
forming elementary operations or by finding its invariant, polynomials.

Rem ark 2 Note that since U (z ) and V  (z) are unimodular matrices all 
the roots of the equation. IC'(z)! =  0 are to be found in M(z).
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Rem ark 3 We are interested in unit wots and unit factor from M(z)  
all the unit wots as M  (z) =  A (z )N(z ) ,  where A (2) contains all the 
unit wots of the system and N  (L) is such that |7V (1 )| /  0 and contains 
the rest wots of the system. The Smith-McMillan decomposition that we 
shall use is the following:

C(z) =  V ~ \ z ) A { z ) N ( z ) U ~ 1{z).

Note that now N (z )U~l(z) is, in general, not a unimodidar matrix any 
more.
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