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Abstract

The Jordan Form of the VAR's Companion matrix is used for

proving the equivalence between the statement that there are no

Jordan blocks of order two or higher in the Jordan matrix and

the conditions of Granger's Representation Theorem for an I(1)

series. Furthermore, a Diagonal polynomial matrix containing the

unit roots associated to the VAR system is derived and related to

Granger's Representation Theorem.
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1 Introduction

After the seminal work by Engle and Granger (1987) integrated and coin-

tegrated economic time series have been amongst the most popular topics

in the econometrics literature. This is because in this area of research

the empirical and theoretical studies on scalar and vector autoregressive

processes with unit roots and the studies on the economic theory of long-

run equilibrium relationships have been combined giving as a product

the cointegration theory, see for instance the textbooks by Banerjee et al

(1993), Hendry (1995) and Johansen (1996) for an extensive analysis.

The references that have just been mentioned treat mostly mod-

els of I(1) processes, that is, processes that can be made stationary by

di®erencing. However, it turned out that I(2) series are likely to appear

in economics. For example, if in°ation appears to be a nonstationary

series then prices should be I(2). Johansen (1992) gives a representation

theorem for I(2) processes and conditions for an I(2) vector time series to

cointegrate. More recently Gregoir and Laroque (1993) have presented

some further theoretical results on the polynomial error correction model

(ECM) and polynomial cointegration; see also Granger and Lee (1990).

Work on structure theory has been also carried out by d' Autume (1990)

and Engle and Yoo (1991). From the point of statistical and probability

theory in I(2) systems Johansen (1995, 1996, 1997), Kitamura (1995) and

Paruolo (1996) are coping with the problems of estimation and inference.

The present paper is closely related to the one by d' Autume who

has analyzed the general case of integration order higher than one by the

use of the Jordan matrix associated with the model under investigation.

He proves that by considering the Jordan Canonical Form of the Com-

panion matrix of the system one can determine the degree of integration

d as the dimension of the largest Jordan block corresponding to the unit

roots. For instance, let us assume that there are three Jordan blocks,

associated with the unit roots, appearing in the Jordan Canonical Form

of the Companion matrix of the system. We further assume that there

are two blocks of size one and one block of size two. It yields that d = 2,

i.e. the degree of integration of the model is two.
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In this paper we use the structure of the Jordan Canonical Form of

a matrix in order to show the equivalence between the result derived by d'

Autume and the condition underlying Granger's Representation Theorem

for an integrated of order one series, that is, there are no Jordan blocks of

order two or higher if and only if j®0
?
¡¯?j 6= 0, see also Johansen (1991).

We claim that the method under consideration is a general method that

can be applied to high dimensional autoregressive systems with several

lags and di®erent orders of integration. We prove here the result for

the case of an I(1) vector time series. Another objective of the paper is

to show that the conditions of Granger's Representation Theorem for an

I(1) system are equivalent to a precise structure of a Diagonal polynomial

matrix containing the unit roots associated to the system.

The rest of the paper is organized as follows. In section 2 we in-

troduce the Companion Form representation for a vector autoregressive

(VAR) model and the Jordan Canonical Form. A Diagonal Form of a

polynomial matrix is introduced and connected with the Jordan Form.

Section 3 gives the main theoretical result of the paper for I(1) variables,

namely that the results of d' Autume (1990) characterizing the degree

of integration of the system via the Jordan Form of the companion ma-

trix are equivalent to the conditions derived by Johansen (see Johansen,

1991 and 1996) of Granger's representation theorem. Finally, section 4

concludes.

A word on notation used in the paper. Upper case letters have been

chosen for representing the random variables. The distinction between

univariate and multivariate time series will be clear from the context. Of

wide use is the backshift lag operator L. It is de¯ned on a time series

Xt (scalar or vector) as LXt = Xt¡1 and in general LkXt = Xt¡k, for

k = 0; 1; 2::: Trivially L0Xt = Xt, that is, L
0 = 1 the identity operator.

Moreover, the di®erence operator ¢, is de¯ned as follows: ¢Xt = Xt ¡

Xt¡1 and hence ¢ = 1¡ L. Rn and Cn are the n-dimensional spaces of

real and complex numbers, respectively. In denotes the n £ n identity

matrix. The orthogonal complement of an n£r matrix ¯ is an n£(n¡ r)

full column rank matrix ¯? such that ¯0¯? = 0 and it holds that the

n£ n matrix (¯;¯?) is of full rank. With A (z) we denote a polynomial
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matrix, that is, a matrix whose entries are polynomials ® (z) on the set

C of complex numbers.

2 Related Forms to the VAR

This section introduces the vector autoregressive model and its compan-

ion form, whilst it also provides most of the technical tools from matrix

algebra needed for the following section. That is, the Jordan Canonical

Form applied on the companion matrix of the stacked VAR(1) and the

Diagonal Form which will be used in the following section.

2.1 The Companion Form of the VAR

In this subsection we introduce the Companion Form, see Johansen

(1996) for more details.

Consider the vector autoregression with k lags, VAR(k), in p di-

mensions:

Xt = ¦1Xt¡1 +¦2Xt¡2 + :::+¦kXt¡k + ²t, for all t = 1; 2; :::; T; (1)

where ¦i, i = 1; 2; :::; k are p£p parameter matrices and the disturbances

²t are assumed to be identically, independetly distributed (i.i.d.) with

expected value E (²t) = 0 and variance V ar (²t) = , where  a p £ p

positive-de¯nite matrix. The X¡k+1; :::;X1; X0 are p£ 1 vectors in Rp of

¯xed initial values and for simplicity we do not consider any deterministic

terms. Then (1) can be written in the companion form representation in

n = pk dimensions:
~Xt = A ~Xt¡1 + ~²t, (2)

where ~Xt =
³
X 0

t;X
0

t¡1; :::; X
0

t¡k+1

´
0

, ~²t = (²0t; 0
0; :::; 00)0 and

A =

0
BBBBBBBB@

¦1 ¦2 ¢ ¢ ¢ ¦k¡1 ¦k

Ip 0 ¢ ¢ ¢ 0 0

0 Ip

0
. . . . . .

Ip 0

1
CCCCCCCCA
;
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which is the companion matrix. The disturbances are still i.i.d. with

E (~²t) = 0 and

V ar (~²t) = § = diagf; 0; :::; 0g:

It can be proved, see Anderson (1971), that the necessary and su±cient

condition for making the system stationary is that

jA (z)j = 0 =) jzj > 1;

where A (z) = In ¡ Az is the characteristic polynomial associated with

equation (2). The condition is equivalent to

j¸In ¡ Aj = 0 =) j¸j < 1;

i.e. all the eigenvalues of the companion matrix lie inside the unit circle

and hence for ¯nding the roots of A (z) it is enough to calculate the

eigenvalues of A. Note though that while each root z0 corresponds to

one eigenvalue ¸0 = 1=z0 the converse does not hold. It is the case that

whenever ¸ = 0 there is no root z corresponding to this zero eigenvalue.

Under this condition it holds that there exists ± > 0 such that for

all z 2 S, with S = fz : jzj < 1 + ±g the matrix A (z)¡1 is well-de¯ned as

a convergent power series within a neighborhood of the origin and thus

the autoregressive system (1) can be easily transformed to the respective

moving-average representation

Xt = C (L) ²t, with C (z) = A (z)¡1 :

We now introduce an important tool from matrix theory, i.e. the Jordan

Canonical Form that we shall use in the subsequent section.

2.2 The Jordan Canonical Form

The idea of using Jordan matrices in the development of the theory of

integrated variables is presented. For more details on the mathematics

see the Appendix at the end of the paper.
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2.2.1 Why are Jordan matrices interesting in the study of in-

tegrated processes?

Let us consider the model (2) with the matrix A given by A = PJP¡1,

where J is the Jordan matrix associated with the Companion matrix A,

see equations (10) and (11) in the Appendix. We have

~Xt = A ~Xt¡1 + ~²t =) ~Xt = PJP¡1 ~Xt¡1 + ~²t =)

=) P¡1 ~Xt = JP¡1 ~Xt¡1 + P¡1~²t;

and by de¯ning the random variable Yt = P¡1 ~Xt, we ¯nally deduce that

Yt = JYt¡1 + ut; ut = P¡1~²t:

In order to illustrate this representation consider the four-dimensional

system with J = diagfJ3 (¸) ; J1 (¸)g. In this case the full system can be

decomposed into two subsystems of the form:

Ã
Z1t

Z2t

!
=

0
BBBB@

¸ 1 0

0 ¸ 1

0 0 ¸

0

0

0

0 0 0 ¸

1
CCCCA
Ã

Z1;t¡1

Z2;t¡1

!
+ ut,

where Z1t = (Y1t; Y2t; Y3t)
0 and Z2t = Y4t. In particular, if ¸ = 1, i.e.

the unit root case, we ¯nd Y1t s I(3), Y2t s I(2), Y3t s I(1) and Y4t
s I(1). Thus, a Jordan block Jd (1) as a matrix of coe±cients for the

AR(1) model generates an I(d) variable. Some further applications of

the Jordan form on cointegration analysis can be found in d' Autume

(1990).

2.2.2 Main Result established by d' Autume

The general approach of d' Autume consists of coping ¯rst with the

theory of a deterministic system in Companion Form and then apply

the derived results to the stochastic framework. After transforming the

VAR(k) to a VAR(1) model A(L) ~Xt = ~²t, see equation (2), d' Autume

proves a proposition stating that the degree of integration is equal to the
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maximum size of the Jordan blocks. As a special case assume that the

time series ~Xt is integrated of order one. According to d' Autume the I(1)

case is equivalent to all Jordan blocks being of size one, or equivalently,

the Companion matrix is diagonalizable with respect to the eigenvalues

equal to unity.

2.3 Jordan and Diagonal Form

From the Jordan Canonical Form J of a matrix one can derive relatively

easily a Diagonal Form for a polynomial matrix (In ¡ Jz). The Diagonal

Form will be used in the next section in order to derive the Moving

Average representation of the VAR in the case of I(1) variables in the

system.

2.3.1 The Diagonal Form of a Polynomial Matrix

For the de¯nitions of the elementary operations, unimodular matrices

and the Diagonal Form of a polynomial matrix the reader is referred to

the Appendix. However, we brie°y note that for a polynomial matrix

B (z) there is a diagonal polynomial matrix ¤ (z) which contains all the

roots of B (z), i.e. the equations jB (z)j = 0 and j¤ (z)j = 0 have exactly

the same roots.

2.3.2 Deriving the Diagonal Form from the Jordan Canonical

Form for a value of ¸

In this subsection we provide a way of ¯nding the Diagonal Form of a

polynomial matrix (In ¡ Jz) if the structure of the Jordan matrix J is

known to contain a single eigenvalue ¸. We consider the single eigenvalue

Jordan matrix because further on we are going to separate the eigenvalues

di®erent than one and focus on the unit roots of the model, that is, later

we will set ¸ = 1 and use the Diagonal Form developed here.

We provide ¯rst a proposition which will be used for proving The-

orem 2.
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Proposition 1 For the polynomials f (z) with f (0) = 1 and g (z) de-

¯ned on C we have that the matrix

B (z) =

Ã
f (z) ¡z

0 g (z)

!

is equivalent, under the elementary operations procedure, to

¤ (z) =

Ã
1 0

0 f (z) g (z)

!
:

Proof. The main di±culty here is to apply the elementary operations

in such a way that the applied transformation matrices will be unimodu-

lar. Following S¿ren Johansen's suggestion we apply the following series

of elementary operations. De¯ne ¯rst h (z) = z¡1 [f (z)¡ 1], which we

note that is a polynomial because by the Taylor expansion of f (z) we

have

f (z) =
deg[f ]X
n=0

f (n) (z)
zn

n!

f(0)=1
=) h (z) =

deg[f ]X
n=1

f (n) (z)
zn¡1

n!
:

Here deg [f ] is a positive integer number and denotes the degree of the

polynomial f (z). Then we have:

B (z) =

Ã
f (z) ¡z

0 g (z)

!
s

Ã
1 ¡z

g (z)h (z) g (z)

!
s

s

Ã
1 0

g (z)h (z) f (z) g (z)

!
s diag f1; f (z) g (z)g = ¤ (z) :

This is because the unimodular matrices

L (z) =

Ã
1 0

¡g (z)h (z) 1

!
; R (z) =

Ã
1 z

h (z) f (z)

!

are such that L (z)B (z)R (z) = ¤ (z) :2

We want to show that a polynomial matrix of the form Ik¡Jk (¸) z

is equivalent to a diagonal polynomial matrix ¤k (z).

7



Theorem 2 Consider the k£ k Jordan block matrix Jk (¸) of the single

eigenvalue ¸, see also (10) in the Appendix. The matrix polynomial in z

Bk (z) = Ik ¡ Jk (¸) z ;

is equivalent, under elementary operations, to the k£ k diagonal polyno-

mial matrix in z:

¤k (z) = diag

8><
>: 1; :::; 1| {z }

(k¡1)-times

; (1¡ ¸z)k

9>=
>; ;

where

Uk (z)Bk (z)Vk (z) = ¤k (z) , Bk (z) = U¡1
k

(z) ¤k (z)V
¡1
k

(z) ;

with Uk (z) and Vk (z) unimodular matrices.

Proof. We consider ¯rst the cases k = 1 and k = 2:

For the J1 (¸) block, we have trivially ¤1 (z) = 1¡ ¸z and

B1 (z) = 1¡ J1 (¸) z = 1¡ ¸z = U¡1
1

(z) ¤1 (z)V
¡1

1
(z) ;

i.e. U1 (z) = 1, V1 (z) = 1. For the J2 (¸) block it holds that

B2 (z) = I2 ¡ J2 (¸) z =

Ã
1¡ ¸z ¡z

0 1¡ ¸z

!
= U¡1

2
(z) ¤2 (z)V

¡1

2
(z) ;

and ¤2 (z) = diag
n
1; (1¡ ¸z)2

o
, which can be found via the elementary

operations procedure. The matrices U2 (z) and V2 (z) are

U2 (z) =

Ã
1 0

¸ (1¡ ¸z) 1

!
; V2 (z) =

Ã
1 z

¡¸ 1¡ ¸z

!
;

which are clearly unimodular matrices, since they are polynomial matri-

ces with constant determinant equal to one.

Instead of proceeding with a J3 (¸) block, we consider the polyno-

mial matrix

B
¤
(z) =

Ã
(1¡ ¸z)k¡1 ¡z

0 1¡ ¸z

!
;
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which will be the typical block to appear in Bk (z) for all k ¸ 2. We only

have to apply Proposition 1 for f (z) = (1¡ ¸z)k¡1 and g (z) = 1 ¡ ¸z.

Then we have:

B
¤
(z) =

Ã
(1¡ ¸z)k¡1 ¡z

0 1¡ ¸z

!
s diag

n
1; (1¡ ¸z)k

o
= ¤

¤
(z) :

Hence there are unimodular matrices U
¤
(z) and V

¤
(z) such that

U
¤
(z) =

0
@ 1 0

¡z¡1
h
(1¡ ¸z)k¡1 ¡ 1

i
(1¡ ¸z) 1

1
A ;

V
¤
(z) =

0
@ 1 z

z¡1
h
(1¡ ¸z)k¡1 ¡ 1

i
(1¡ ¸z)k¡1

1
A

and it holds that ¤
¤
(z) = U

¤
(z)B

¤
(z)V

¤
(z).

In a similar fashion one can generalize the result for any positive

integer k.2

After having proved the speci¯c case, i.e. for a single Jordan block,

the general result, for any Jordan matrix, comes naturally.

Theorem 3 Consider the n£ n matrix in Jordan Form J , of a VAR's

Companion matrix A, as in equation (2), with s Jordan blocks Jki (¸i),

for i = 1; :::; s. Then there is a Diagonal Form of the polynomial matrix

(In ¡ Jz) of the form

¤ (z)
n£n

= diag
n
1; :::; (1¡ ¸1z)

k1 ; 1; :::; (1¡ ¸2z)
k2 ; 1; :::; (1¡ ¸sz)

ks
o
:

Especially, for ¸i = 1, it holds that the order d of the autoregressive

process is given by d =max
1·i·s

fki j ¸i = 1g.

Proof. Due to the structure of J , i.e. it is a block-diagonal matrix,

the elementary operations on a Jordan block do not a®ect in any way

the other Jordan blocks. Hence, by applying Theorem 2, we have that

the matrix

In ¡ Jz = diag fIk1 ¡ Jk1 (¸1) z; Ik2 ¡ Jk2 (¸2) z; :::; Iks ¡ Jks (¸s) zg
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is equivalent, under elementary operations, to ¤ (z)
n£n

, where ¤ (z) is as

de¯ned above because after transforming each submatrix [Iki
¡ Jki

(¸) z]

to
h
1; :::; (1¡ ¸sz)

ki

i
, for all i = 1; :::; s, we derive the ¤ (z)

n£n
matrix.

When for some ¸i it holds ¸i = 1 we have the unit root case. It is clear,

following d' Autume's argument, that the order of integration should be

equal to d, where d =max
1·i·s

fki j ¸i = 1g.2

2.4 Background Cointegration Theory

This subsection provides the intermediate results that we shall use for

the proof of Theorem 7 to appear in the next section.

Proposition 4 Consider the n£ r matrices ® and ¯ which are full col-

umn rank r, r < n. The matrix ®0¯ has full rank if and only if ®0
?
¯? has

full rank.

Proof. See exercise 3.7 in Hansen and Johansen (1998).2

We now wish to prove that Granger's Representation Theorem

holds for one lag if and only if it holds for k lags. We state ¯rst, for

completeness, Granger's Representation Theorem (GRT).

Theorem 5 Consider a p-dimensional autoregressive variable Xt with k

lags, with the usual assumptions for the disturbance terms and the initial

values, in the error correction form:

¢Xt = ¦Xt¡1 +
k¡1X

i=1

¡i¢Xt¡i + ²t ;

with characteristic polynomial

A (z) = (1¡ z)I ¡¦z ¡
k¡1X

i=1

¡i (1¡ z) zi

satisfying the assumptions:

jA (z)j = 0 =) jzj > 1 or z = 1; (3)
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and ¦ = ¡A (1) = ®¯ 0 with ®, ¯ full rank p£ r parameter matrices and

¡i, i = 1; 2; :::; k being p£ p parameter matrices. Then

j®0
?
¡¯?j 6= 0 () Xt » I(1);

where ¡ = Ip ¡
Pk¡1

i=1 ¡i. The variable Xt is given as

Xt = ¯? (®0
?
¡¯?)

¡1
®0
?

tX

i=1

²i + Yt;

with Yt a stationary process.

Proof. For a proof see Theorem 4.2 in Johansen (1996).2

Let now the assumptions of GRT hold and consider a VAR(k) model

A(L)Xt = ²t. For convenience let k = 3:

Xt = ¦1Xt¡1 +¦2Xt¡2 +¦3Xt¡3 + ²t ;

which in the ECM form becomes:

¢Xt = ®¯0Xt¡1 + ¡1¢Xt¡1 + ¡2¢Xt¡2 + ²t ;

®¯0 = ¦1 +¦2 +¦3 ¡ Ip;

¡1 = ¡¦2 ¡¦3 and ¡2 = ¡¦3:

Then

j®0
?
¡¯?j 6= 0 () Xt » I(1);

where ¡ = Ip ¡ ¡1 ¡ ¡2. The Companion Form representation is:
0
BB@

Xt

Xt¡1

Xt¡2

1
CCA =

0
BB@

¦1 ¦2 ¦3

Ip 0 0

0 Ip 0

1
CCA

0
BB@

Xt¡1

Xt¡2

Xt¡3

1
CCA+

0
BB@

²t
0

0

1
CCA =)

~Xt = A ~Xt¡1 + ~²t =) ¢ ~Xt = (A¡ I) ~Xt¡1 + ~²t ; (4)

which is the ECM in the companion form. We shall now prove that GRT

holds for a VAR(k) if and only if it holds for a VAR(1). See also exercise

4.7 in Hansen and Johansen (1998).

Proposition 6 The GRT holds for a VAR(k) if and only if it holds for

a VAR(1).
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Proof. For notational convenience we set k = 3. Consider equation

(4). It holds that A¡ I = ~® ~̄0, for the full rank matrices

~® =

0
BB@

® ¡¦2 ¡¦3

0 Ip 0

0 ¡Ip Ip

1
CCA and ~̄ =

0
BB@

¯ Ip Ip
0 ¡Ip 0

0 0 ¡Ip

1
CCA

because

A¡ I =

0
BB@

¦1 ¡ Ip ¦2 ¦3

Ip ¡Ip 0

0 Ip ¡Ip

1
CCA =

=

0
BB@

® ¡¦2 ¡¦3

0 Ip 0

0 ¡Ip Ip

1
CCA

0
BB@

¯ Ip Ip
0 ¡Ip 0

0 0 ¡Ip

1
CCA

0

= ~® ~̄0;

since

¦1 ¡ Ip = ®¯0 ¡ ¦2 ¡ ¦3:

Moreover, we ¯nd that

~®? =

0
BB@

®?

(¦2 +¦3)
0 ®?

¦0

3
®?

1
CCA ; ~̄

? =

0
BB@

¯?
¯?
¯?

1
CCA :

Hence

~®0

?
~̄
? = ®0

?
(Ip +¦2 + 2¦3)¯? = ®0

?
¡¯?;

which yields immediately that
¯
¯
¯~®0

?
~̄
?

¯
¯
¯ = j®0

?
¡¯?j. This shows that the

GRT holds for one lag if and only if it holds for three lags. In a similar

fashion one can prove the result for a general VAR(k) model.2

3 Granger's Representation Theorem

In this section we shall use the material so far developed in order to

unify GRT with the Companion Form and the Jordan Canonical Form.

We focus on the theory applied to variables integrated of order one. In
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the ¯rst subsection we prove the condition that there is no Jordan block

of size greater than one, corresponding to unit root, is equivalent to

j®0
?
¡¯?j 6= 0. In the second subsection we derive the Wold representation

from the VAR representation by using both Jordan and Diagonal forms.

3.1 Jordan Blocks and the GRT I(1)-conditions

For the general VAR(k) modelA(L)Xt = ²t, d' Autume (1990) has proved

that after transformation to the Companion Form, see equation (2), it

holds that the system is I(1) if and only if there is not a Jordan block

of size two or higher, corresponding to unit root, in the Jordan matrix J

of A. Our aim is to show that this result is equivalent to the conditions

underlying GRT, see Theorem 4.2 in Johansen (1996).

Theorem 7 Consider the VAR(k) model A(L)Xt = ²t. It holds that

j®0
?
¡¯?j 6= 0, i.e. Xt » I(1), if and only if there is no Jk(1) block,

with k ¸ 2, in the Jordan Form J of the Companion matrix A of Xt:

Yt = JYt¡1 + ut, with Yt = P¡1 ~Xt. The matrices ®?, ¯? and ¡ are

de¯ned as in Theorem 5.

Proof. In the proof we consider only Jordan blocks of order one and

two for convenience. We allow for the intermediate step:

Yt = JYt¡1 + ut, no J2(1)
(ii)
()

¯
¯
¯®̂0 ^̄

¯
¯
¯ 6= 0

(i)
() j®0

?
¡¯?j 6= 0;

where ®̂, ^̄ are such that

J ¡ I = P¡1 (A¡ I)P =
³
P¡1~®

´ ³
P 0 ~̄

´0
= ®̂ ^̄0

and ~®, ~̄ are as in Proposition 6.

Proof of (i): It holds from Proposition 6 that ®0
?
¡¯? = ~®0

?
~̄
?, while

for ®̂? = P 0~®? and ^̄
? = P¡1 ~̄

? we have

®̂0
?
^̄
? = (P 0~®?)

0
P¡1 ~̄

? = ~®0
?
PP¡1 ~̄

? = ~®0
?
~̄
?:
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Hence ®0

?
¡¯? = ~®0

?
~̄
? = ®̂0

?
^̄
?. From Proposition 4 we take

¯
¯
¯®̂0 ^̄

¯
¯
¯ 6= 0 ()

¯
¯
¯®̂0

?
^̄
?

¯
¯
¯ 6= 0

and thus

¯
¯
¯®̂0 ^̄

¯
¯
¯ 6= 0 ()

¯
¯
¯®̂0

?
^̄
?

¯
¯
¯ =

¯
¯
¯~®0

?
~̄
?

¯
¯
¯ = j®0

?
¡¯?j 6= 0:

This proves equivalence relationship (i).

It only remains to show (ii):

¯
¯
¯®̂0 ^̄

¯
¯
¯ 6= 0 () No J2(1) block in J ,

that is only 1£ 1 blocks J1(1) = 1 appear in J .

Proof of (ii): Suppose ¯rst that J has a J2(1) block as an entry.

Without loss of generality we can assume that the J2(1) block is placed

at the north-west corner of the n £ n block-diagonal matrix J . We

can achieve this structure by suitably interchanging the columns of the

transformation matrix P . The matrix J ¡ In is of reduced rank, say

s < n, that depends on the number of J1(¸) and J2(¸) blocks in J for

¸ = 1. Now, due to the facts that:

(a) the unity is at the o®-diagonal position (1,2) of the [J2(1)¡ I2] =

J2(0) submatrix, and

(b) the block-diagonal form of the Jordan matrix J yields that

J ¡ In is also a block-diagonal matrix, and if ei;j is the (i; j)-element of

the matrix J ¡ In we have that ei;1 = 0, for all i and ei;2 = 0, for all i

but for i = 1: e1;2 = 1, we have:

J =

0
BB@

1 1

0 1
0

0 F

1
CCA =) J ¡ In =

0
BB@

0 1

0 0
0

0 G

1
CCA = ®̂ ^̄0;

for some Jordan matrix F and G = F ¡ In¡2 6= 0. We can partition

suitably the n£ s matrices ®̂ and ^̄ as ®̂ = [®̂1; ®̂2] and ^̄ =
h
^̄
1; ^̄2

i
and

take

J ¡ In = ®̂ ^̄0 = ®̂1
^̄0

1
+ ®̂2

^̄0

2

14



where ®̂1 = (1; 0; :::; 0)0 and ^̄
1 = (0; 1; :::; 0)0 are n £ 1 vectors with

®̂0

1
^̄
1 = 0, while ®̂2 and ^̄

2 are n£ (s¡ 1) matrices such thatÃ
02£2 0

0 G

!
= ®̂2

^̄0
2
:

Now multiply from the right by ®̂1 to ¯nd

®̂2
^̄0
2
®̂1 =

Ã
02£2 0

0 G

!
®̂1 = 0 =) (®̂0

2
®̂2) ^̄

0

2
®̂1 = 0 =) ^̄0

2
®̂1 = 0

() ®̂0

1
^̄
2 = 0:

This is because the n£ (s¡ 1) matrix ^̄
2 has

³
^̄
2

´
1;j

= 0, for all j. As a

consequence we have the rank reduction of ®̂0 ^̄:

®̂0 ^̄ = (®̂1; ®̂2)
0

³
^̄
1; ^̄2

´
=

Ã
®̂0

1

®̂0

2

!³
^̄
1; ^̄2

´
=

=

Ã
®̂0

1
^̄
1 ®̂0

1
^̄
2

®̂0

2
^̄
1 ®̂0

2
^̄
2

!
=

Ã
0 0

®̂0

2
^̄
1 ®̂0

2
^̄
2

!
=)

¯̄̄
®̂0 ^̄

¯̄̄
= 0:

Hence we have proved that if there is a J2(1) block in J it implies¯̄̄
®̂0 ^̄

¯̄̄
= 0, or equivalently if

¯̄̄
®̂0 ^̄

¯̄̄
6= 0 it follows that there is no J2(1)

block in J . We shall now show the converse, namely that if there are no

J2(1) blocks, it implies
¯̄̄
®̂0 ^̄

¯̄̄
6= 0.

In the case that there are only single unit roots in the system, that

is, there are only J1(1) Jordan blocks in J , we can think of J ¡ In as

J ¡ In =

Ã
0 0

0 D

!
= ®̂ ^̄0;

where D is a s£ s full-rank matrix with jDj 6= 0. A possible choice of ®̂

and ^̄ is ®̂ = (0;D0)0, ^̄ = (0; Ir)
0. Thus we have

®̂0 ^̄ = (0;D0)

Ã
0

Ir

!
= D0 =)

¯̄̄
®̂0 ^̄

¯̄̄
= jDj 6= 0:

This allows us to claim that:

There is no J2(1) in J ()
¯̄̄
®̂0 ^̄

¯̄̄
6= 0;
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which proves equivalence relationship (ii). We have shown that the I(1)-

condition of GRT is equivalent to \no Jordan block J2(1) in J". The

proof of Theorem 7 is complete.2

One should note at this point that a similar Theorem can be proved

for an I(2) variable. That is, for a process Xt » I(2) it should hold that

there is no J3(1) block in J for the VAR(1) in Companion Form if and

only if the complicated I(2)-conditions of GRT are satis¯ed.

3.2 The Moving-Average Representation

We shall now combine the concepts we have already seen, i.e. the Jordan

Form and the Diagonal Form of a polynomial matrix, in order to ¯nd

the moving-average representation of a system and complete the proof

of GRT. We point out that GRT as stated by Engle and Granger (1987)

starts from the moving-average and arrives to a cointegrated VAR via a

reduced rank assumption on the moving-average representation.

The n£ n block-diagonal matrix J can be partitioned suitably1 as

J =

Ã
J (1) 0

0 Ĵ

!
;

where we denote the r £ r matrix

J (1) = diagfJ2(1); :::; J2(1); J1(1); :::; J1(1)g

and the (n¡ r)£(n¡ r) matrix Ĵ is the Jordan matrix formed by the rest

of the eigenvalues smaller than one in absolute value, due to the usual

assumption on the root of the characteristic polynomial. We consider

again integrated variables of order one or two, hence the form of J (1).

The polynomial matrix (In ¡ Jz) can be written as the product of

two matrices where one contains all the unit roots of the system while the

other has the stationary roots with modulus greater than one. Hence,

1
This formulation has been adopted from d' Autume (1990).
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consider the matrix (In ¡ Jz) as

In ¡ Jz =

Ã
Ir ¡ J (1) z 0

0 In¡r ¡ Ĵz

!
=

=

Ã
Ir ¡ J (1) z 0

0 In¡r

!Ã
Ir 0

0 In¡r ¡ Ĵz

!
= B (z)C (z) ;

say. We have that jB (1)j = 0 and jC (1)j 6= 0, as a result of the partition

discussed above. By Theorem 2 it yields

B (z) = R(z)¤(z)Q(z), with j¤ (1)j = 0,

where R (z) and Q (z) are unimodular matrices. This, by the way, is the

Smith McMillan Form of B (z), see the Appendix for more details and

Theorem 2 for a proof in this particular case.

It follows that

In ¡ Jz = B (z)C (z) = R(z)¤(z) [Q(z)C(z)] ; (5)

where Q(z)C(z) is invertible for jzj · 1 + ±, for some ± > 0, since

jQ(1)C (1)j 6= 0. Now, recall equation (2):

~Xt = A ~Xt¡1 + ~²t () ~A (L) ~Xt = ~²t; ~A (z) = In ¡Az:

By using

J = P¡1AP () A = PJP¡1

we can derive the following expression for ~A (z):

~A (z) = In ¡ PJP¡1z = P (In ¡ Jz)P¡1 ()

() ~A (z) = [PR(z)] ¤(z)
h
Q(z)C(z)P¡1

i
= ©(z) ¤(z)ª (z) ; (6)

where © (z) is a unimodular matrix and ª (z) is an invertible matrix for

jzj · 1 + ±, since jª(z)j 6= 0 for jzj · 1 + ±. Note here that the last

expression (6) for ~A (z) is not a Smith-McMillan Form. This is because

the polynomial matrices © (z) and ª (z) are not both unimodular as they

should be in a Smith-McMillan Form. It may happen that the polynomial

matrix

ª (z) = Q(z)C(z)P¡1

17



is unimodular but in general it will not be and its determinant jª(z)j

will not be a constant for every z 2 C.

The matrix ¤(z) has the structure2 (by applying Theorem 3 for

¸ = 1):

¤(z) = diag
n
1; :::; 1; (1¡ z) ; :::; (1¡ z) ; (1¡ z)2 ; :::; (1¡ z)2

o
:

Consequently if there are n ¡ r (single) unit roots, i.e. if there are no

J2 (1) blocks, then

¤(z) = ¤1(z) = diagfIr; (1¡ z) In¡rg: (7)

Hence the system is I(1) and the respective theory can be applied3, see

Hylleberg and Mizon (1989) and for I(2) systems Engle and Yoo (1991)

and Haldrup and Salmon (1998).

Now we shall prove that the conditions underlying GRT are equiv-

alent to the structure of ¤(z) in the Diagonal Form of equation (7). We

make the usual assumption (3) on the roots of the characteristic equation.

Theorem 8 The A (z) is an n£n polynomial matrix, with r = rankA (1),

and

A (z) = ©(z)¤(z)ª(z); (8)

where ©(z) and ª(z) are invertible polynomial matrices, that is j©(1)j 6=

0 and jª(1)j 6= 0, and the matrix ¤ (z) contains all the unit roots of

A (z). If ¦ = ®¯0, where ®; ¯ are n £ r full rank matrices for some

0 · r < n and if ®0
?
¡¯? has full rank, then the structure of the diagonal

matrix ¤ (z) is as in (7).For r = n, i.e. when the A(1) is of full rank,

no condition such j®0
?
¡¯?j 6= 0 is required and ¤ (z) = In.

The converse of the result also holds, that is, for A (z) as in (8) if

¤ (z) has the form of (7) then ®0
?
¡¯? is of full rank.

2Since we have considered I(d) variables with d · 2, there are no Jordan blocks of

order higher than two and hence the underlying structure.
3One has to pay attention to the fact, however, that the references mentioned use

the Smith-McMillan Form.
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The matrices ©(z), ª(z) have as elements ¯nite order polynomials

and since they are invertible their inverses are given as an in¯nite order

power series convergent in a circle which contains the unit circle because

of assumption (3).

Proof. In the VAR(k) system the condition j®0

?
¡¯?j 6= 0 will be

equivalent to
¯
¯
¯~®0

?
~̄
?

¯
¯
¯ 6= 0, in the stacked VAR(1) Companion Form, or

¯
¯
¯®̂0 ^̄

¯
¯
¯ 6= 0, i.e. there is no J2(1) block in J . Hence from Theorem 3 and

the discussion preceding equation (7) we can conclude that

¤ (z) = diagfIr; (1¡ z) In¡rg:

To prove the converse we just have to assume that ¤ (z) is as in

equation (7) and then refer to (6) and the discussion following it. In this

case we can derive analytically the moving average representation from

the autoregressive representation. We have from equation (6):

~A (L) ~Xt = ~²t
(6)
=) ©(L) ¤(L)ª (L) ~Xt = ~²t ;

with ¤(z) = diagfIr; (1¡ z) In¡rg, which gives

¤(L)ª (L) ~Xt =
h
©¡1 (L)

i
~²t =)

¢ª(L) ~Xt = diagf¢Ir; In¡rg
h
©¡1 (L)

i
~²t =)

ª(L)¢ ~Xt = diagf¢Ir; In¡rg
h
©¡1 (L)

i
~²t ()

¢ ~Xt =
h
ª¡1 (L)

i
diagf¢Ir; In¡rg

h
©¡1 (L)

i
~²t; (9)

where we have used the diagonal structure of ¤(z) and the fact that

ª (z) is an invertible matrix for jzj · 1 + ±. Thus we have derived the

Wold representation of ¢ ~Xt. The right hand side is a stationary process

because we know that the elements of the matrices ª¡1 (z) and ©¡1 (z)

are given as convergent power series. Consequently equation (9) implies

that ~Xt is an I(1) process. It follows that the system is I(1) and hence

from the GRT we deduce that if ¦ = ®¯0 thenj®0
?
¡¯?j 6= 0.2

As a simple illustration of the results of this section we consider the

following example.
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Example: Consider the model

¢Xt = ®¯0Xt¡1 + ²t, with ®0 =
µ
1

4
;
1

2

¶
, ¯0 = (1;¡1)

where ²t are i.i.d. N(0; I2). We have

A (z) = (1¡ z) I2 ¡ ®¯0z =) A (z) =

Ã
1¡ 5

4
z 1

4
z

¡1

2
z 1¡ 1

2
z

!

with characteristic equation jA (z)j = 0 () z = 4

3
or z = 1, so the

assumption on the roots being z = 1 or outside the unit circle is satis¯ed.

It also holds that

®0
?
= (2;¡1) and ¯0

?
= (1; 1) =) j ®0

?
¯?j 6= 0 () Xt » I(1):

Thence, we can ¯nd that

©¡1 (z)A (z)ª¡1 (z) = diagf1; (1¡ z)g = ¤ (z) ()

A (z) = © (z) ¤ (z)ª (z) ;

with

© (z) =

Ã
1 0

¡3z + 5 1

!
=) ©¡1 (z) =

Ã
1 0

3z ¡ 5 1

!

and

ª (z) =

Ã
1¡ 5

4
z 1

4
z

¡5 + 15

4
z 1¡ 3

4
z

!
=) ª¡1 (z) =

Ã
1 z

3z¡4

5 ¡4+5z

3z¡4

!
:

Note that ª¡1 (z) is not a unimodular matrix but has a representation

as a power series convergent for jzj < 4

3
, due to the assumption on the

roots of jA (z)j = 0.

4 Conclusion

The analysis of the paper has been focused on the mathematical proper-

ties of the nonstationary vector autoregressive models. We have used the
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Companion Form of the VAR, the Jordan Canonical Form of a matrix

and introduced a Diagonal Form for a polynomial matrix. The latter can

be found easier once the Jordan form is known. An alternative proof for

Granger's Representation Theorem has been given, based on the struc-

ture of the Jordan matrix of the Companion matrix. The condition

underlying Granger's Representation Theorem for a series integrated of

order one is shown to be equivalent to the preclusion of any Jordan blocks

of order two or higher. We have shown how the moving average represen-

tation can be derived from the VAR representation using the Diagonal

Form. Finally the strong connection of the GRT and the structure of the

Diagonal Form containing all the unit roots of the system is proved.

5 Appendix

In this appendix we gather the most important mathematical results

already established in the literature.

5.1 The Jordan Canonical Form

For an extensive treatment on the Jordan canonical form see, for example,

Gantmacher (1959, vol. I).

De¯nition 1 Let ¸ be a complex number and let i be a positive integer.

The i£ i triangular matrix

Ji (¸) =

0
BBBBBBBB@

¸ 1 0

¸ 1
. . . . . .

¸ 1

0 ¸

1
CCCCCCCCA

(10)

is called a Jordan block of order i. For i = 1, then J1 (¸) = ¸.
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Theorem 9 Let A 2 Cn£n, i.e. in the set of n £ n complex matrices,

and suppose that the distinct eigenvalues of A are f¸1; ¸2; :::; ¸mg, m · n.

Then there exists a nonsingular matrix P 2 Cn£n such that

J = P¡1AP = diagfQ1; Q2; :::; Qmg; (11)

where each Qi is a block-diagonal matrix with Jordan blocks of the same

eigenvalue ¸i: The matrix A is said to have the Jordan Canonical Form

J , with A = PJP¡1.

Proof. See Gantmacher (1959, vol. I).

5.2 The Diagonal Form of a Polynomial Matrix

We start by providing the necessary background material. The interested

reader is referred to Gohberg et al (1982).

De¯nition 2 The elementary row and column operations (E.O.) on a

polynomial matrix A (z) are:

(I) multiply any row (column) by a nonzero number.

(II) interchange any two rows (columns)

(III) add to any row (column) any other row (column) multiplied

by an arbitrary polynomial b (z).

Performing elementary row (column) operations is equivalent to

premultiplying (postmultiplying) A (z) by appropriate matrices which are

called elementary matrices.

Speci¯cally, for dimension of A (z) equal to n = 3, we have:

E1 =

0
BB@

1 0 0

0 c 0

0 0 1

1
CCA and E2 =

0
BB@

0 1 0

1 0 0

0 0 1

1
CCA ;
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corresponding to elementary operations of type I and type II, respec-

tively;

E3 =

0
BB@

1 b1 (z) 0

0 1 0

0 0 1

1
CCA or E4 =

0
BB@

1 0 0

b2 (z) 1 0

0 0 1

1
CCA ;

corresponding to elementary operations of type III.

De¯nition 3 A polynomial matrix U (z) is called unimodular if its de-

terminant is a nonzero constant.

Note that elementary matrices are unimodular and their inverses

are also elementary matrices.

De¯nition 4 The Diagonal Form of a polynomial matrix B (z) is a di-

agonal polynomial matrix ¤ (z) such that

B (z) = U (z) ¤ (z)V (z) ;

where U (z) and V (z) are unimodular matrices.

Theorem 10 The Diagonal Form can be derived via the elementary op-

erations.

Proof. See Gohberg et al (1982).2

5.3 The Smith-McMillan Form of a Polynomial Ma-

trix

A form more general than the Diagonal Form is the Smith-McMillan

Form. We give two de¯nitions ¯rst.

De¯nition 5 A monic polynomial is a polynomial whose highest-degree

term has coe±cient 1.
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De¯nition 6 The (normal) rank of a polynomial matrix C(z) is the

highest rank of C(z); 8 z:

Theorem 11 A polynomial matrix C(z), can be written in the Smith-

McMillan decomposition as

C(z) = V ¡1(z)M(z)U¡1(z)

and where V (z) ; U (z) are unimodular matrices and M(z) is the Smith

canonical form of C(z), i.e.

M(z) =

Ã
diagfs1(z); :::; sr(z)g 0

0 0

!

Here r is the (normal) rank of C(z) and the fsi(z)g are unique

monic polynomials obeying the division property that si(z) is divisible by

si¡1(z), for all i = 2; :::; r, Moreover, by de¯ning ¢i(z) as the greatest

common divisor of all i£ i minors of C(z), we have

si(z) = ¢i(z)=¢i¡1(z) ; ¢0(z) = 1:2

Proof. See Kailath (1980).2

Remark 1 We are mainly interested in polynomial matrices which will

be assumed of full (normal) rank.

The polynomials s(z) are the invariant polynomials of C(z); the

invariance refers to elementary equivalence transformations.

The Smith form of a polynomial matrix can be found either by per-

forming elementary operations or by ¯nding its invariant polynomials.

Remark 2 Note that since U (z) and V (z) are unimodular matrices all

the roots of the equation jC(z)j = 0 are to be found in M(z):
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Remark 3 We are interested in unit roots and will factor from M(z)

all the unit roots as M (z) = ¤ (z)N (z), where ¤ (z) contains all the

unit roots of the system and N (L) is such that jN (1)j 6= 0 and contains

the rest roots of the system. The Smith-McMillan decomposition that we

shall use is the following:

C(z) = V ¡1(z)¤ (z)N (z)U¡1(z):

Note that now N (z)U¡1(z) is, in general, not a unimodular matrix any

more.
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