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This paper provides a complete characterization of equilibria in a game-theoretic
version of Rothschild and Stiglitz’s (1976) model of competitive insurance. I al-
low for stochastic contract offers by insurance firms and show that a unique sym-
metric equilibrium always exists. Exact conditions under which the equilibrium
involves mixed strategies are provided. The mixed equilibrium features (i) cross-
subsidization across risk levels, (ii) dependence of offers on the risk distribution,
and (iii) price dispersion generated by firm randomization over offers.
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1. Introduction

This paper provides a complete characterization of equilibria in a game-theoretic ver-

sion of Rothschild and Stiglitz’s (1976) (henceforth, RS) model of competitive insurance

with private information. I allow for stochastic contract offers by insurance firms and

show that a unique symmetric equilibrium always exists, extending the classical result

of RS to mixed strategies. The unique equilibrium is explicitly presented and its com-

parative static results are discussed. The equilibrium simultaneously features (i) cross-

subsidization across risk levels, (ii) dependence of offers on the risk distribution, and

(iii) price dispersion.

The literature on competitive insurance mostly restricts attention to equilibria with

deterministic contract offers.1 This restriction is problematic, as it rules out important

economic phenomena present in insurance markets.
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First, the focus on deterministic contract offers implies that a static equilibrium can-
not feature cross-subsidization.2 Cross-subsidization means that firms may make prof-
its from low-risk agents so as to subsidize high-risk agents. In a deterministic equilib-
rium, any such set of contracts is vulnerable to cream-skimming deviations by one of
the competing firms, which only attract low-risk agents and leave the high risks to its
competitors. However, the construction of such cream-skimming deviations hinges on
firms knowing exactly which offer they are competing against, which is not true when
firms use mixed strategies. This observation is relevant for policy analysis. The fact
that cross-subsidization might be welfare improving has been used as a justification for
government intervention (see Bisin and Gottardi 2006). In the model considered in this
paper, cross-subsidization may arise in equilibrium without governmental intervention.

Second, the absence of cross-subsidization means that the contract consumed by
each risk type is priced at an actuarily fair rate. Hence equilibrium contracts are inde-
pendent of the relative share of each risk in the market. However, the dependence of
market outcomes on risk distribution is a central theme in the policy arena.3 The equi-
librium characterized in this paper is continuous with respect to the risk distribution. In
particular, when almost all agents share the same risk level, the contracts chosen by con-
sumers on-path are very similar to the full information outcomes with high probability.
Under full information, the competitive model proposed in this paper leads to efficient
outcomes: the consumer obtains full insurance at actuarily fair prices. In other words,
our characterization is in line with the statement that markets with small frictions gen-
erate approximately efficient outcomes. This property is not present in several models
that resolve the existence issue presented in RS (such as Dubey and Geanakoplos 2002
and Guerrieri et al. 2010).

We consider a competitive market where firms offer contract menus to an agent who
is privately informed about his own risk level. I follow Dasgupta and Maskin (1986) in
modeling competition as a simultaneous offers game with a finite number of firms. The
consumer (or agent) has private information about having high or low risk of an acci-
dent. Dasgupta and Maskin (1986, Theorem 5) proved the existence of equilibria for this
game, but provided only a partial characterization and present no results regarding mul-
tiplicity of equilibria. The main contributions of this paper are (i) to establish unique-
ness of symmetric equilibria, (ii) to solve explicitly for this equilibrium, and (iii) to derive
properties and comparative statics of the equilibrium.

In Section 4, I explicitly describe an equilibrium for all prior distributions. Equilib-
rium offers lie on a critical set of separating offers that generate zero expected profits

2This claim refers exclusively to static models of competitive insurance. In seminal papers, Wilson
(1977), Miyazaki (1977), and Riley (1979) obtain equilibria with cross-subsidization while considering equi-
librium notions incorporating anticipatory behavior behavior akin to dynamic models.

3During the implementation of the health care exchanges following the approval of the Affordable Care
Act in the United States, the presence of young adults with lower risk level was considered a necessary
condition for the successful rollout and “stability” of the program (for example, see Levitt et al. 2013). In
regulated markets such as the exchanges, observable conditions such as age and previous diagnostics are
treated as private information since they can affect the coverage choice of consumers while not being used
(or having limited use) explicitly in pricing contracts.
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in the market as a whole, referred to as cross-subsidizing offers. The equilibrium of-
fers coincide with the zero cross-subsidization offers described in RS whenever a pure
strategy equilibrium exists. An equilibrium in pure strategies exists whenever cross-
subsidization cannot lead to Pareto improvements. This occurs whenever the proba-
bility of high risks is sufficiently high4 (Corollary 1).

Equilibria necessarily involve mixed strategies whenever the RS menu of contracts
cannot be sustained as an equilibrium. If the RS separating contracts fail to be an equi-
librium outcome, the equilibrium involves each firm offering cross-subsidizing offers,
with a random amount of cross-subsidization between zero and a Pareto efficient (pos-
itive) level. Offers in the support of equilibrium strategies have the following properties:
(i) high-risk agents always receive a full insurance contract; (ii) low-risk agents always
receive partial insurance, which leaves the high-risk agent indifferent between this con-
tract and his own; (iii) all the menus of contracts in the support of the equilibrium strat-
egy are ordered by attractiveness. The firm that delivers the most attractive menu of
contracts attracts the customer, no matter what his type is. Moreover, firms always earn
zero expected profits.5

The equilibrium distribution over the possible levels of cross-subsidization comes
from a local condition that guarantees that, for any menu offer in the support of the
equilibrium strategy, there is no local profitable deviation. I show that this condition
implies there is no global profitable deviation by a firm.

In Section 5, I show that the equilibrium described is the unique symmetric equi-
librium. Equilibrium offers can be described by the utility vector they generate to both
possible risk types. Describing offers in terms of utility profiles means that the offer
space is essentially two dimensional. The main challenge in the analysis lies in showing
that equilibrium offers necessarily lie in a one-dimensional subset of the feasible utility
space. The crucial step uses properties of the equilibrium utility distribution to show
that expected profits are supermodular in the utility vector offered to the consumer,
i.e., there is a complementarity in making more attractive offers to both risk types. This
property is used to show that equilibrium offers are necessarily ordered in terms of at-
tractiveness, i.e., a more attractive offer provides higher utility to both risk types.

Since firms make zero profits, this ordering of offers implies they generate zero prof-
its even if they are accepted by both risk types with probability 1. Hence, offers can be
indexed by the amount of subsidization that occurs across different risk types. The use
of supermodularity and the zero profits condition to reduce the dimensionality of the
equilibrium support is nonstandard in the literature.

4The competitive equilibrium concept considered in RS is different from the (game-theoretic) equilib-
rium concept considered here. Nevertheless, the RS pair of contracts is an equilibrium outcome of my game
if and only if it is an equilibrium of their model, provided that entering firms are allowed to propose a pair of
contracts. In their main definition of competitive equilibrium (Section I.4), outside firms are only allowed
to offer a single contract, while it is acknowledged that a new pair of contracts might be more profitable
than a deviating pooling contract (Section II.3). As a consequence, the exact condition for existence of a
pure strategy equilibrium is related to separating, and not pooling, offers.

5In fact, each firm earns zero expected profits for any realization of its opponents’ randomization (but in
expectation with respect to the agent’s type).
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Our uniqueness result allows us to discuss comparative static exercises in a mean-
ingful way. I analyze two relevant comparative statics exercises: with respect to the prior
distribution and with respect to the number of firms. With respect to the prior distribu-
tion over types, equilibrium offers have monotone comparative statics. If the probability
of low-risk agents increases, firms make more attractive offers in the sense of first-order
stochastic dominance and both agent types are better off.

The equilibrium features mixing whenever cross-subsidization benefits all con-
sumers in the market but the extent of cross-subsidies is disciplined by the absence of
profitable cream-skimming deviations. On one hand, cream-skimming deviations are
less attractive to high-risk types and hence attract them with smaller probability (risk
selection). On the other hand, cream-skimming deviations introduce more risk in the
consumption profile of low-risk agents (risk inefficiency) and hence deliver any expected
utility level with lower profits for the offering firm. An increase in the share of low-risk
agents in the population reduces the gain from risk selection and increases the losses
from risk inefficiency. As a consequence, more cross-subsidization arises in equilibrium,
which benefits consumers.

As mentioned before, the equilibrium outcome is continuous with respect to the
risk distribution, even around the full information limits. When the probability of low-
risk agents converges to 1, the distribution of offers converges to a mass point at the
actuarially fair full insurance allocation of the low-risk agent. For such distributions, the
small share of high-risk agents in the population implies that the potential gains from
cream-skimming deviations are small as well. Hence a very small amount of contract
uncertainty is enough to deter such deviations. Alternatively, when the probability of
low-risk agent is sufficiently small, the RS pair of contracts is an equilibrium. Hence all
consumers obtain actuarily fair contracts given their risk level, with high-risk consumers
obtaining full coverage and low-risk agents obtaining partial coverage. Obviously, as the
probability of high-risks converges to 1, the consumed contract on-path converges in
probability to the full insurance contract consumed by low-risk consumers.

Equilibrium strategies also feature monotone comparative statics with respect to the
number of firms, N ≥ 2. The support of the equilibrium strategies does not change with
the number of firms, but the distribution does. Surprisingly, the welfare of both types
decreases with the number of firms. Each firm’s offers converge to the worst pair of
offers in the support: the pair of RS separating contracts. The distribution of the best
offer in the market converges, as N → ∞, to the equilibrium offer of a single firm in
a duopoly. This result clarifies the impossibility of construction of mixed equilibrium
when there are infinitely many firms and sheds light on the nonexistence results for the
competitive equilibrium concept considered in RS. All comparative statics results hold
with strict inequalities whenever the equilibrium involves mixed strategies.

Our model provides a rationale for the existence of cross-subsidization and has rel-
evant empirical predictions for markets with adverse selection. First, insurance firms
can be ranked in terms of attractiveness, with more attractive firms offering better con-
tract choices for all risk types. Second, our analysis shows how risk distribution can af-
fect market offers, increasing the presence of cross-subsidization in a welfare increasing
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way. Finally, we show how an increase in the level of competition, which can be inter-
preted as a larger number of firms, can have adverse effects in the presence of adverse
selection.

The paper is organized as follows. The next section discusses the related literature.
Section 3 describes the model. Section 4 constructs a specific symmetric strategy profile
and shows that it is an equilibrium. Section 5 shows that the constructed equilibrium
is the unique symmetric one. Section 6 presents the comparative static results. Finally,
Section 7 concludes.

2. Related literature

Several papers have considered alternative models or equilibrium concepts that deal
with the nonexistence problem in the RS model. Maskin and Tirole (1992) consider
two alternative models: the model of an informed principal and a competitive model in
which many uninformed firms offer mechanisms to the agent. In the informed princi-
pal model, the agent proposes a mechanism to the (uninformed) firm. The equilibrium
set consists of all incentive compatible allocations that Pareto dominate the RS alloca-
tion. The equilibrium outcome in my model is contained in the equilibrium set of the
informed principal model.

Maskin and Tirole (1992) also consider a competitive screening model in which firms
simultaneously offer mechanisms to a privately informed agent. A mechanism is a game
form in which both the chosen firm and the agent choose actions. The equilibrium set
of this model is always large: it contains any allocations that are incentive compatible
and satisfy individual rationality for the agent and firms. Hence the equilibrium set also
contains the unique equilibrium outcome of my model.6

More recently, several models of adverse selection with price taking firms have been
studied. Bisin and Gottardi (2006), Dubey and Geanakoplos (2002), and Dubey et al.
(2005) consider general equilibrium models with adverse selection that always have a
unique equilibrium, which has the same outcome as RS.

Guerrieri et al. (2010) consider a competitive search model in which the chance of an
agent getting a given insurance contract depends on the ratio of insurance firms offer-
ing and agents demanding it. They show that equilibrium always exists, can be tractably
characterized, and reduces to the Rothschild and Stiglitz contracts in this framework.
Hence their model does not present the key empirical predictions discussed in this pa-
per, which hinge on the presence of cross-subsidization. Since their equilibrium pre-
diction is prior-independent, the equilibrium correspondence has a discontinuity at the
perfect information case in which all agents have low risk and efficient provision of in-
surance occurs. In the mixed strategy equilibria described here, the probability of at-
tracting any type of consumer varies continuously with the menu offered by a firm. This
is in sharp contrast to competitive search models: if the contract consumed by low-risk

6The distinguishing feature of their model is the richness of the strategy set. A firm can react to moves by
its opponents by offering a mechanism that contains a subsequent move by it. In equilibrium, a firm can re-
spond to a “cream-skimming” attempt by an opponent by choosing to offer no insurance if the mechanism
allows for such a move by the firm.
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agents is perturbed to feature slightly more coverage, it is expected to be consumed ex-
clusively by high-risk agents (a belief restriction is imposed on off-path contracts).

In the early contributions of Wilson (1977), Miyazaki (1977), and Riley (1979), it was
shown that cross-subsidization can arise without randomization if firms are allowed to
change their contract offers as a response to a deviation by a competitor. The equilib-
rium notions proposed in these papers always exist and also lead to equilibrium out-
comes that are prior-dependent. These equilibrium notions have been found to be
equivalent to equilibria of specific extensive forms with multiple stages by Engers and
Fernandez (1987), Hellwig (1987), Mimra and Wambach (2011, 2016), and Netzer and
Scheuer (2014). While the introduction of dynamics leads to interesting equilibrium
outcomes with cross-subsidies, the objective of this paper is to highlight that the in-
troduction of stochastic offers by itself leads to the same economic insights in a static
framework.

Rosenthal and Weiss (1984) present an analysis of a competitive version of the
Spence model that shares several common feature with ours. They characterize a mixed
equilibrium of the model whenever a pure equilibrium does not exist. They have no
results regarding uniqueness and dependence on the prior distribution. The effect of
the number of firms on the constructed equilibrium is discussed, and is very similar the
one presented here. Chari et al. (2014) characterize a mixed strategy equilibrium in a
linear competitive screening model where firms are privately informed about their asset
qualities.7

3. Model

A single agent faces uncertainty regarding his future income. There are two possible
states {0�1} and his income in state 0 (1) is y0 = 0 (y1 = 1). The agent has private infor-
mation regarding his risk type, which determines the probability of each state. For an
agent of type t ∈ {h� l}, the probability of state 0 is pt . Assume that 0 <pl < ph < 1. This
means that the l-type (low-risk) agent has higher expected income than h-type (high-
risk) agents. The prior probability of type t is denoted μt . Define p ≡ μlpl +μhph. There
are N identical firms i = 1� � � � �N that compete in offering menus of contracts.

I assume that the realization of the state is contractible. A contract is a vector c =
(c0� c1) ∈ R

2+ that specifies, respectively, the consumption level for the agent in case of
low or high realized income. Contracts are exclusive. A menu of contracts is a compact
subset of R2+ that is denoted Mi. The set of all compact subsets of R2+ is defined as

M ⊆ 2R
2+ . A special case of a menu of contracts is a pair of contracts. I show later that

one can focus without loss on pairs of contracts, with each one of them targeted for one
specific type.

Timing is as follows. All firms simultaneously offer menus of contracts Mi ∈ M . Na-
ture draws the agent’s type according to probabilities μl and μh. After observing his own
type t and the complete set of contracts M1� � � � �MN , the agent announces a choice

7They obtain a partial uniqueness result under the assumption that contract offers are ordered in terms
of attractiveness’. In my paper, this property is a central part of my analysis as it allows one to move from a
two-dimensional strategy space to a one-dimensional subset.
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a ∈⋃i(Mi × {i}) ∪ {∅}. A choice a = (c� i) indicates that contract c ∈ Mi is chosen from
firm i, while choice a = ∅ means that the agent chooses to get no contract (and main-
tains his own income).

A final outcome of the game is (M1� � � � �MN� t�a) (everything is evaluated before
the income realization is revealed). Given outcome (M1� � � � �MN� t� (c� i)), the realized
profit by firm j is zero if j 	= i and otherwise is

�(c | t) ≡ (1 −pt)(1 − c1)−ptc0�

The agents have instantaneous utility function u(·), which is strictly concave, in-
creasing, and continuously differentiable. Finally, the utility achieved by the agent is

U(c | t) ≡ (1 −pt)u(c1)+ptu(c0)�

Given outcome (M1� � � � �MN� t�∅), the realized profit by all firms is zero and the
utility achieved by the agent is U(y | t).

A (pure) strategy profile is a menu of contracts for each firm (Mi)i and a choice strat-
egy for the agent, which is a measurable function s : {h� l}× (×iM)→ (R2+ ×{1� � � � �N})∪
∅ such that s(t� (Mi)i) ∈⋃i(Mi × {i})∪ {∅}.

A mixed acceptance rule is a Markov kernel8

s : {h� l} × (×iM) → �
[(
R

2+ × {1� � � � �N})∪∅
]
�

with the restriction s(
⋃

i(Mi × {i}) ∪ {∅} | t� (Mi)i) = 1 (with abuse of notation). When-
ever the acceptance rule has a singleton support, we also use s(t� (Mi)i) to refer to the
chosen contract.

A mixed strategy profile is a probability measure over menus of contracts �i for each
firm i and a mixed acceptance rule s.9 A mixed strategy profile defines a probability dis-
tribution over outcomes in the natural way; expected profits are defined by integrating
realized profits across outcomes according to this probability distribution.

The equilibrium concept is subgame perfect equilibrium.10 This means that (i) each
firm i maximizes expected profits, given the strategies used by its opponents and the ac-
ceptance rule used by the agent, and (ii) the agent only chooses contracts that maximize

8The Markov kernel definition includes the requirement that, for any measurable set A ⊆ R
2+×{1� � � � �N},

the function (t�M1� � � � �MN) 
−→ s(A | t�M1� � � � �MN) is measurable.
9I endow M with the Borel sigma algebra induced by the open balls in the Hausdorff metric. I use only

two properties from this sigma algebra: (i) it contains any single contract and (ii) the function that leads to
the best available utility to any fixed risk type must be measurable.

10In this game, perfect Bayesian equilibrium (PBE) is outcome equivalent to subgame perfection. Con-
sidering a game tree in which the firms act sequentially, each subgame perfect equilibrium has a corre-
sponding PBE with the same strategy profiles and firms’ beliefs (about the earlier firms’ play) given directly
by equilibrium strategies. Notice that the agent, who moves last, has perfect information because he knows
all the offers and his type as well.

In this game, the concept of Nash equilibrium allows the agent to behave “irrationally” to menu offers
off the equilibrium path. This enables many additional “collusive” equilibria. In fact, I can sustain any
individually rational allocation as a Nash equilibrium outcome.
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his (interim) utility, i.e.,

(c� i) ∈ supp
(
s
(
t�
(
Mi

)
i

)) ⇒ c ∈ arg max
c∈⋃iMi∪{y}

U(c | t)

and

∅ ∈ supp
(
s
(
t�
(
Mi

)
i

)) ⇒ U(y | t)≥ max
c∈⋃iMi

U(c | t)�

The optimization problem faced by the agent always has a solution because the set of
available contracts,

⋃
iMi ∪ {y}, is compact.

4. Equilibrium construction

In this section, I construct an equilibrium of the described model. The existence issue
raised in Rothschild and Stiglitz (1976) is overcome by the use of mixed strategies by
insurance firms. This is the first characterization of a mixed strategies equilibrium in
an insurance setting. The novel feature of this equilibrium is the potential presence of
cross-subsidization, which generates a dependence of the equilibrium allocation on the
risk distribution in this market. In Section 5, this equilibrium is shown to be unique. In
the first part of this section, I assume that N = 2. I show, in the end of this section, how
to adjust the equilibrium to the case N > 2.

4.1 Equilibrium offers

In equilibrium, firms “compete away” profit opportunities. However, zero expected
profits are consistent with cross-subsidization from low-risk to high-risk agents: the
presence of losses generated from high-risk individuals, which in turn get subsidized
by profits from low-risk individuals. In what follows, I construct a family of offers, in-
dexed by the amount of cross-subsidization across types, and show that an equilibrium
using these offers always exists.

Low-risk agents have higher expected income and, as a consequence, receive more
attractive offers from firms. The only way to respect incentive constraints is by offering
partial insurance contracts (i.e., with c1 > c0) to low-risk agents. High-risk agents, alter-
natively, receive less attractive contracts that do not conflict with incentive constraints.
As a consequence, they receive full insurance contracts (i.e., c1 = c0). This implies that
the set of contracts that arise in equilibrium lies in a restricted locus, which is described
in the following paragraph.

For a level k ∈ [0�ph − p] of subsidies received by high-risk individuals, the full in-
surance contract received by high-risk agents has consumption c = 1 − ph + k, which
is above their actuarily fair consumption level by k. Also define γ(k) = (γ1(k)�γ0(k)) to
be the partial insurance contracts that can be offered to the low-risk agent together with
subsidy k to the high-risk agent. These contracts leave the high-risk agent indifferent
between partial and full insurance, which provides incentives efficiently, and generate
zero expected profits.
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Formally, I define the (set-valued) function γ : [0�ph −p] → 2R
2+ by

γ(k) ≡ {c ∈R
2++ | U(c | h) = u(1 −ph + k);μl�(c | l)+μh(−k) = 0; c1 ≥ c0

}
�

Lemma 1. For any k ∈ [0�ph − p], γ(k) is a singleton, i.e., there exists a unique c ∈ R
2+

such that c ∈ γ(k).

Proof. Let us define ζ = sup{c1 | ∃c0 such that U(c | h) = u(1 −ph + k)}. The strict con-
cavity of u implies that ζ > 1 (ζ = ∞ is possible). Consider the path ι : I = [0�w] → R

2

that starts at (1 −ph + k)(1�1) and moves along the indifference curve of U(· | h) by in-
creasing c1, i.e., ι1(t) = 1−ph +k+ t (and define w ≡ ζ−k−1+ph). Let total profit gen-
erated by point t in the path, when the high-risk agent consumes (1 −ph + k)(1�1) and
the low-risk agent consumes ι(t), be denoted as π(t). We know that π(0) ≥ 0 because
k≤ ph −p. If ζ < ∞, continuity implies that

π(w) ≤ μl(1 −pl)(1 − ζ) < 0�

If ζ = ∞, it follows that limt→∞π(t) = −∞. Therefore, in both cases continuity of π(t)
implies that there is t0 such that π(t0) = 0. It also follows from concavity of u(·) that
π′(t) < 0 for all t > 0, which means that π(t0) = 0 for at most one point t0. �

From now on, I refer to γ(·) as a single-valued function. Figure 1 illustrates the locus
of {γ(k) | k ∈ [pl�p]}. From now on, I refer to offers

Mk ≡ {(1 −ph + k�1 −ph + k)�γ(k)
}

for k ∈ [0�ph − p] as cross-subsidizing offers. Also define the utilities obtained from
cross-subsidization level k as

Ul(k) ≡ U
(
γ(k) | l)�

Uh(k) ≡ u(1 −ph + k)�

The pair of contracts with zero cross-subsidization coincides with the unique equi-
librium allocation in RS. Given their importance on the analysis of this model, we intro-
duce notation to refer to these contracts.

Definition 1. The Rothschild–Stiglitz (RS) contracts are the pair{
cRS
l � cRS

h

}≡ M0�

We also define uRS
t ≡Ut(0) for t = l�h and uRS ≡ (uRS

l � uRS
h ).

The Pareto efficiency of cross-subsidization plays a crucial role in equilibrium analy-
sis. Cross-subsidization always benefits high-risk agents, since their complete coverage
comes at lower prices. What is more surprising is that low-risk agents can also benefit
from cross-subsidization when the prior probability of high-risk is sufficiently low. The
reason for that it is that subsidizing high-risk is cheap when the probability of such a
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Figure 1. The contract space and the image of the γ(·) function. Notice that the RS partial in-
surance contract, cRS

l , is equal to γ(0) and coincides with the lowest level of cross-subsidization.
The other extreme point in the image of γ(·) is γ(ph − p), which features full insurance at the
correct price for the average population risk.

state is small. In the following lemma, we show that the gains from cross-subsidization
are negative for large subsidization levels and are potentially positive for low subsidiza-
tion levels.

Lemma 2. There exists k ∈ [0�ph − p) such that Ul(·) is strictly increasing for k < k and
strictly decreasing for k> k. More specifically, k is the unique peak of Ul(·) in [0�ph −p].

Proof. The implicit function theorem implies that γ is continuously differentiable and
satisfies

γ′
1 = −

u′(1 −ph + k)+ ph

pl
u′(γ0(k)

)μh

μl

ph

[
(1 −pl)

pl
u′(γ0(k)

)− (1 −ph)

ph
u′(γ1(k)

)] �

γ′
0 = (1 −pl)

pl

⎧⎪⎪⎨⎪⎪⎩
u′(1 −ph + k)+ μh

μl

(1 −ph)

(1 −pl)
u′(γ1(k)

)
ph

[
(1 −pl)

pl
u′(γ0(k)

)− (1 −ph)

ph
u′(γ1(k)

)]
⎫⎪⎪⎬⎪⎪⎭ �



Theoretical Economics 12 (2017) Equilibrium in competitive insurance 1359

which implies that γ′
1(k) < 0 and γ′

0(k) > 0. Simple differentiation gives us

U ′
l (k) =

{([
u′(γ1(k)

)−1 − u′(γ0(k)
)−1]

(1 −pl)u
′(1 −ph + k)

− μh

μl

1
ph

[
(1 −pl)

pl
− (1 −ph)

ph

])
/(

ph

[
(1 −pl)

pl

1
u′(γ1(k)

) − (1 −ph)

ph

1
u′(γ0(k)

)])}�
The numerator in the last expression is strictly positive. The denominator is strictly de-
creasing for k ∈ [0�ph − p] and negative for k = ph − p (in which case, γ1(ph − p) =
γ1(ph −p)= 1 −p). �

Whenever cross-subsidization leads to interim efficiency gains, which happens
when k > 0, quasi-concavity of Ul(·) implies that the low-risk utility increases with the
level of subsidization at any level k ∈ [0�k]. We define this restricted set of subsidization
levels, which have the property that low-risk agents benefit from it, as

R≡ [0�k]�

A comment on the literature is in order. The Pareto efficient cross-subsidization
level k defines the separating allocation that maximizes the utility offered to the low-
risk agent subject to zero profits. It coincides with the allocation described by Miyazaki
(1977), who obtains this allocation as an equilibrium outcome when using a reactive
equilibrium notion. As described in Section 4.2, the equilibrium described here gener-
ates all cross-subsidization levels between zero and the efficient one.

If cross-subsidization is not optimal (k = 0), the no cross-subsidization contracts
presented in RS are indeed an equilibrium. This follows from the fact that there is no way
that a firm can attract both types of agents and make expected positive profits. However,
when cross-subsidization leads to interim gains (k > 0), then it has to arise in equilib-
rium. When facing contracts M0 with no cross-subsidization, a firm can offer a menu
with optimal subsidization Mk that will generate zero expected profits while leading to
a strictly positive utility gain for both risk types. This means that a slightly less attractive
offer can make positive profits.

The presence of cross-subsidizing contract offers in a pure strategy equilibrium is
ruled out because they are vulnerable to cream-skimming deviations. If firms make pos-
itive profits from low-risk agents and take losses on high-risk agents, one firm can offer
a contract with slightly less coverage that attracts only low-risk agents while leaving the
losses from high-risk agents to its competitors. The construction of such deviations,
however, only applies to pure strategies, as a firm facing a nondegenerate distribution
of competing contracts is not able to design a local deviation that attracts the low-risk
agents with probability 1 while attracting high-risk agents with probability 0. In fact, we
show here that firms randomize continuously between a Pareto efficient level of cross-
subsidization k and the RS contracts, which feature zero cross-subsidization.
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Formally, every firm mixes over menu offers:

MR ≡ {Mk | k ∈R
}
�

The set MR has the property that if all firms offer menus within this set, then all offers
in this set guarantee zero profits to a firm. This occurs because the firm that makes the
offer Mk with the highest level of cross-subsidization attracts the agent, regardless of his
risk type. However, the defining property of cross-subsidizing offers is that they make
zero expected profits if both types consume the same menu. Firms that offer a cross-
subsidizing level below their opponents make zero profits, as they never serve the agent.
It is worth noting that the contract chosen by a high-risk agent in a cross-subsidizing
offer always has complete coverage, only varying in the premium charged. The contract
chosen by a low-risk agent, however, has degree of coverage increasing with the amount
of cross-subsidization.

4.2 Equilibrium distribution

The goal of this section is to describe the equilibrium distribution over cross-subsidi-
zation levels k ∈ R, which is denoted as F , and to show that firms have no profitable
deviations outside of MR.

The strategy set of firms contains all possible contract menus and, hence, is very
large. The first step in our analysis is to describe menu offers by the expected utility
it generates to each risk type. This description is useful for the following reason. For
each type, the utility generated by a menu determines the probability with which it is
chosen. This is the probability that the best alternative offer is less attractive than the
menu considered, which is determined in equilibrium. Also, within the set of menus
that deliver a specific utility profile, firms will only offer the one that minimizes expected
profits. This allows us to focus on a subset of menus that are indexed by utility profiles.
The profit, or loss, that is made from each type in case he joins a firm is determined by a
cost minimization problem that considers the utility vectors as constraints.

Define ϒ as the set of incentive feasible utility profiles.11 For each risk type t ∈ {l�h}
and utility profile u = (ul�uh) ∈ϒ, define the ex post profit function Pt(u) as the solution
to the problem

max
c∈R2+

�(c | t)

subject to generating utility ut to type t,

U(c | t)= ut�

and respecting incentive constraints regarding type t ′ 	= t,

U
(
c | t ′)≤ ut ′ �

11The following notation is important for the proof. Let

ϒ ≡ {(ul�uh) ∈R
2 |U(ch | l) ≤U(cl | l) = ul;U(cl | h) ≤U(ch | h) = uh for some cl� ch ∈ R

2+
}
�
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Also, define as χ(u) = (χl(u)�χh(u)) the unique solution to problems Pl(u) and
Ph(u), respectively.

Contracts that maximize ex post profits are the most profitable ones that deliver a
specific utility profile. In a mixed strategy equilibrium, the utility offered by a contract
determines the probability it is chosen. Hence, there are other menus that attract both
types with the same probability and generate more profits. The following properties of
the optimal ex post profit function are key to our results.

Lemma 3 (Ex post profit characterization). The ex post profit function has the following
properties:

(i) It is continuously differentiable.

(ii) Utility is costly: ∂Pt(u)
∂ut

< 0.

(iii) Separation is costly:

∂Pt(u)

∂ut ′
> 0� if ut > ut ′

and

∂Pt(u)

∂ut ′
= 0� if ut ≤ ut ′ �

(iv) Supermodularity: ∂Pt
∂ut

is continuously differentiable and ∂2Pt(u)
∂ut ∂ut′

≥ 0, and the in-
equality is strict if ut > ut ′ .

The proof is given in the Appendix.
From the point of view of a single firm, the offers made by other firms can be treated

as a stochastic type-contingent outside option to the agent. The distribution of outside
options for a given firm is determined by the equilibrium contract distribution in the
following way. On the support of equilibrium offers, higher subsidization benefits both
types, so the distribution is a monotone transformation of the distribution over cross-
subsidization level k ∈R:

Gl

(
Ul(k)

)≡ F(k)

and

Gh

(
Uh(k)

)≡ F(k)�

Also let Gt(u) = 0 for u <Ut(1 −ph) and Gt(u) = 1 for u >Ut(k).
The distributions Gl and Gh constructed in this section are absolutely continuous.

In Section 5, it is shown that this is necessarily the case in equilibrium. Expected profits
are determined by the probability of attracting each type, which is given by distribu-
tions (Gt)t=l�h, and the ex post profits made from each type, which is determined by the
function (Pt)t=l�h. Now we define this function formally: for any u= (ul�uh) ∈ϒ,

π(u) ≡ μlGl(ul)Pl(u)+μhGh(uh)Ph(u)�
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When contemplating a more attractive offer to a specific type, firms have to consider
the following trade-off. When increasing the utility promised to such agent, he will be
attracted with higher probability, which entails a gain if the firm makes profits out of
such agent. However, to make a more attractive offer the firm has to make less profits
out of this agent, if indeed he ends up accepting the offer. In equilibrium, firms can only
make positive profits from low-risk agents. For any utility pair u = (ul�uh) with ul ≥ uh,
we define the marginal profit from attracting the low-risk agent as

M(u)≡ ∂π(u)

∂ul
= μl

[
gl(ul)Pl(u)+Gl(ul)

∂Pl(u)

∂ul

]
� (1)

where gt(ut)≡ G′
t (ut) is the density of the equilibrium utility distribution.

For cross-subsidizing offers Mk for k ∈ R to arise in equilibrium, it must be optimal
for a firm to offer utility profile

U(k) = (Ul(k)�Uh(k)
)

for any k ∈R.
This means that Gl has to satisfy the equality

M
(
U(k)

)= 0 for all k ∈R� (2)

Hence, local deviations around any offer in the support should not be optimal. This
is a necessary condition to sustain an equilibrium with this support. Using the equality
f (k) = gl(Ul(k))U

′
l (k), we define F as the solution to the differential equation implied

by (2).
The necessary condition for an equilibrium with support MR is for F to satisfy

f (k)

F(k)
=

−∂Pl

(
U(k)

)
∂ul

U ′
l (k)

Pl

(
U(k)

) � (3)

with final condition F(k) = 1.

Lemma 4. The differential equation (3) has a unique solution. Moreover, F is given by

F(k) = exp
[
−
∫ k

k
φ(z)dz

]
�

where

φ(z) =
−∂Pl

(
U(z)

)
∂ul

U ′
l (z)

Pl

(
U(z)

) �

Moreover, F puts no mass at zero if k> 0, i.e.,

F(0) = 0�
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Proof. Integration of (3) implies that

1 = F(k) = F(k)exp
[∫ k

k
φ(z)dz

]
�

Finally notice that Pl(U(k)) = �(γ(k) | l) = μh
μl
k. This means that φ(z) is on the

order of 1
k around 1 −ph.12 Then it follows that

lim
k→(1−ph)+

∫ k

k
φ(z)dz = ∞�

This implies that F(0) = limk→(0)+ F(k) = 0. �

As mentioned, condition (3) implies that any offer Mk is locally optimal for k ∈ R.
However, in equilibrium firms also consider nonlocal deviations. To rule out such devi-
ations, we show that the expected profits are supermodular in the utility pair offered to
the agent. This means that increasing the utility offered to the high-risk agent makes it
more profitable, at the margin, to make a higher utility offer to the low-risk agent.

Lemma 5 (Supermodularity of profits). For any u = (ul�uh) such that ul ≥ uh, we have
that

M(ul�uh) is nondecreasing in uh

and it is strictly increasing if ul > uh and Gl(ul) > 0.

The proof follows directly from the definition of M(·) in (1), and properties (iii) and
(iv) of Lemma 3.

The relevance of the supermodularity conditions is as follows. In equilibrium, the
firm must find it equally optimal to offer levels of subsidization k�k′ ∈ R with k′ > k,
which generate utilities

U(k) = (Ul(k)�Uh(k)
)� (

Ul

(
k′)�Uh

(
k′))= U

(
k′)�

This mean that, in our candidate equilibrium, firms are indifferent between offering
U(k) or strictly increasing the utility offered to both types to U(k′). But then super-
modularity implies that increasing only the utility offered to the low-risk agent leads to
a loss:

π
(
Ul

(
k′)�Uh(k)

)−π
(
Ul(k)�Uh(k)

) =
∫ Ul(k

′)

Ul(k)
M
(
Ul(s)�Uh(k)

)
U ′
l (s)ds

<

∫ Ul(k
′)

Ul(k)
M
(
Ul(s)�Uh(s)

)
ds = 0�

Offers that deliver to a type t ∈ {l�h} utility ut outside of support [Ut(0)�Ut(k̄)] can
easily be ruled out: an offer that generates utility ul < Ul(0) never attracts low-risk types,

12Notice that U ′
l (0) > 0 if k > 0, − ∂Pl(u(0))

∂ul
> 0, and both U ′

l (·) and ∂Pl(u(·))
∂ul

are continuous.
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while making profits from high-risk types is impossible. A potential offer that generates
utility ul > Ul(k̄) is dominated by another offer that generates exactly utility Ul(k̄) to
low-risk types: it still attracts low risks with probability 1 and makes higher profits in the
case of acceptance.

In the Appendix we provide the complete proof that offering cross-subsidizing con-
tracts according to distribution F is indeed an equilibrium. The proof uses the super-
modularity property of the profit function in a similar way to show that all possible de-
viations are unprofitable.

Proposition 1. There exists a symmetric equilibrium such that (i) every firm random-
izes over offers in {Mk | k ∈R}, where k ∈ [0�k] is distributed according to F(·), and (ii) af-
ter observing menu offers (Mk1�Mk2) with ki > kj , the agent chooses according to

s
(
h�
(
Mk1�Mk2

)) = (1 −ph + ki�1 −ph + ki)�

s
(
l�
(
Mk1�Mk2

)) = γ(ki)�

After observing offers that are not of the form (Mk1�Mk2), the agent chooses any arbitrary
selection from his best response set.13

4.3 Pure strategy equilibrium

The equilibrium described in Proposition 1 coincides with the pure strategy equilibrium
characterized in Rothschild and Stiglitz (1976), whenever it exists. The equilibrium in-
volves no mixing if and only if

k= 0�

in which case the set of cross-subsidization levels offered in equilibrium is R = {0} and
firms offer the zero cross-subsidization menu M0, which coincides with the contract
pair {cRS

l � cRS
h }.

Lemma 2 shows that the benefits from cross-subsidization, from the low-risk agent’s
point of view, are quasi-concave. As a consequence zero cross-subsidization is Pareto
optimal if and only if

U ′
l (0) ≤ 0� (4)

The uniqueness result (discussed in Section 5) implies that (4) is a necessary and
sufficient condition for the existence of a pure strategy equilibrium. The exact condition
in terms of the prior distribution is presented in the following corollary.14

13With the restriction that s is still a mixed strategy, as defined in Section 3.
14The conditions for the existence of pure strategy equilibria would be different if each firm is restricted

to offering a single contract. In the menu game discussed here, firms can design more profitable deviations
involving cross-subsidies; hence, the conditions under which a pure equilibrium exists are more demand-
ing. It is worth noting that the characterization result for mixed equilibria used in this model does not
extend to the single-contract game mentioned. The crucial feature of the analysis presented in this paper
is the supermodularity of the mapping between the utility profile offered to different types and expected
profits obtained by each firm. This property does not extend to the model where each firm offers a single
contract. I thank one referee for pointing this out.
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Corollary 1. The equilibrium described involves pure strategies if and only if

u′(cRS
h

)[ 1

u′(cRS
l�1
) − 1

u′(cRS
l�0
)]≤ μh

μl

[
ph

pl
− 1 −ph

1 −pl

]
�

If this is the case, all firms offer the pair of contracts {cRS
l � cRS

h } in equilibrium.

A pure strategy equilibrium fails to exist whenever the share of low-risk agents is
sufficiently high. In this case, the cost of cross-subsidization is very low since there are
few high-risk agents to be subsidized.

4.4 The case N > 2

In the analysis of the duopoly case, I have shown that one can find a distribution over
the set of menu offers MR such that each firm finds it optimal to make any offer in this
set.

This support MR has the following property: the utility obtained by both types, Ul(·)
and Uh(·), is strictly increasing in the cross-subsidization level k for k ∈ R. This means
that if firm i = 1 faced two firms, 2 and 3, that were choosing offers Mk according to
continuous distributions F2 and F3, the relevant random variable for firm 1 would be
k23 = max{k2�k3}, which determines the only relevant threat from the offers of firms 2
and 3. The distribution of this variable is given by F(k) = F1(k)F2(k). This allows us to
adapt the arguments above by equalizing the distribution of the best among N − 1 firms
with the single firm distribution in the duopoly.

Proposition 2. In the game with N firms, the following strategy profile represents
an equilibrium: every firm randomizes over offer set MR with distribution over cross-
subsidization level k ∈R given by Fi(·), where

Fi(k) = F(k)
1

N−1 �

The equilibrium described has the following properties. First, whenever there is ran-
domization, ties occur with zero probability: there is always a firm that offers Mki such
that ki > maxj 	=i kj . The agent gets a contract from this firm, independent of which type
is realized. If the type is h, the agent ends up with contract (1 − ph + ki�1 − ph + ki). If
the agent is of type l, he chooses contract γ(ki). Second, whenever the pure equilibrium
with the RS contracts exists, R= {1 −ph} and the support of strategies reduces to the RS
contracts.

In the next section, I show that this is the unique symmetric equilibrium. Section 6
presents monotone comparative statics results regarding the prior distribution and the
number of firms.

5. Uniqueness

In this section, we show that the equilibrium constructed in Section 4 is the unique sym-
metric equilibrium. We start by showing that equilibrium offers can be fully described
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by the utility they generate to both possible risk types. This means that describing the
equilibrium strategies used by firms reduces to describing the equilibrium distribution
of utility levels generated by equilibrium offers.

Describing offers in terms of utility profiles means that the offer space is essentially
two dimensional. The main challenge in the analysis lies in showing that equilibrium
offers necessarily lie in a one-dimensional subset of the feasible utility space. The cru-
cial step uses properties of the equilibrium utility distribution and the ex post profit
functions to show that expected profits are supermodular in the utility vector offered to
the consumer. There is a complementarity in making more attractive offers to both risk
types. Supermodularity is used to show that equilibrium offers are necessarily ordered
in terms of attractiveness, i.e., a more attractive offer provides higher utility for both risk
types.

Firms in this market make zero expected profits (as shown in Proposition 3). The or-
dering of offers is used to show that equilibrium offers necessarily generate zero profits
even if they are accepted by both risk types with probability 1.15 Hence, offers can be
indexed by the amount of subsidization that occurs across different risk types. The re-
maining analysis follows standard steps in the literature on games with one-dimensional
strategy spaces (see Lizzeri and Persico 2000 and Maskin and Riley 2003).

For an arbitrary mixed strategy φ for insurance firms, we denote as G the distri-
bution of the highest utility for each type t ∈ {l�h} induced by N − 1 offers generated
according to distribution φ. Formally, define the utility obtained from offer M ∈ M by
an agent of type t ∈ {l�h} as

uMt ≡ max
{
U(c | t) | c ∈ M

}
�

as for any u ∈R
2,

G(ul�uh)≡ [φ{M ∈ M | uMt ≤ ut� for t ∈ {l�h}}]N−1
�

In equilibrium, G is relevant because it determines the distribution of outside op-
tions that any given firm faces when trying to attract a consumer. Also, we define as Gt

the marginal of G over ut for t ∈ {l�h}. The equilibrium outcome distribution is denoted
as P∗.

Proposition 3 (Zero profits). In any symmetric equilibrium, the following statements
hold:

(i) Firms make zero expected profits.

(ii) Fix t ∈ {l�h}. If a firm i makes an offer M that generates utility profile u, then
χt(u) ∈ M and this is the only possible offer accepted by type t from firm i: for any
c ∈M \ {χt(u)},

P
∗[(t̃� s(t̃� (M�M̃−i)

))= (t� c� i)
]= 0�

15Or if they are accepted in the market as a whole.
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(iii) Firms make nonnegative profits from low-risk agents and nonpositive profits from
high-risk agents: any equilibrium utility offer u satisfies u ∈ int(ϒ), ul ≥ uh, and

Pl(u) ≥ 0�

Ph(u) ≤ 0�

The proof is provided in the Appendix.
The previous statement contains three main results. First, it shows that firms never

make positive expected profits in equilibrium. This follows from the assumption of
Bertrand competition without differentiation. The main challenge in the proof is to deal
with the multidimensionality of the offer space. Second, it shows that equilibrium offers
can be described in terms of the utility profile they generate. If an offer M generates
utility profile u, then the only contracts from this set that can be consumed in equi-
librium are {χl(u)�χh(u)} ⊆ M. This comes from the fact that a firm’s maximization
problem can be split into choosing the attractiveness of the contract (given by the utility
levels) and the minimization of costs for a fixed level of utility.16 Finally, a consequence
of zero profits is that firms necessarily take (potentially zero) losses on high-risk agents
and make profits on low-risk agents. The reason is that if an offer generates strictly pos-
itive profits from high-risk agents, a firm can always guarantee ex ante expected profits
since low-risk agents are always at least as profitable as high-risk agents.

Given Proposition 3, our uniqueness proof consists of showing that there exists only
one possible equilibrium utility distribution generated by each firm. From part (ii) of
the proposition, describing the distribution over utility profiles provides a description
of equilibrium offers, namely χ(u).17

The following intermediary lemma provides a characterization of the equilibrium
utility distribution G. It shows that this distribution is absolutely continuous except
at one point: the utility level generated by Rothschild–Stiglitz offers. For each t = l�h,
define ut ≡ inf{u | Gt(u) > 0} as the lowest equilibrium utility and, similarly, define ut ≡
sup{u |Gt(u) < 1} as the highest equilibrium utility.

Lemma 6 (Utility distribution). In any symmetric equilibrium, the utility distribution G

satisfies the following conditions:

(i) Lower bound on utility: ut ≥ uRS
t .

(ii) Mass points for low risk: Gl has support [ul�ul] and is absolutely continuous on
[ul�ul] \ {uRS

l }.

(iii) Mass points for high risk: the only possible mass point of Gh is uRS
h .

16One has to consider the possibility of the agent being indifferent between two contracts. However,
this is solved in the proof of Proposition 3 by showing that a firm can always break such indifferences at
infinitesimal cost.

17Obviously any equilibrium offer that generates utility u can include other contracts beyond
{χl(u)�χh(u)}, as long as they are unattractive. This means they satisfy U(c | t) ≤ U(χt(u) | t). Proposi-
tion 3 shows that if such contracts are present, they are irrelevant, meaning they are never chosen on the
equilibrium path.
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See the Appendix for the proof.
From now on, we denote the density of Gt , whenever it exists, as gt .
Proposition 3 shows that offers can be described in terms of the utility generated

by them. Lemma 6 shows that mass points are not possible, except at the utility gen-
erated from Rothschild–Stiglitz offers. This means that if a firm makes a utility offer
u � (uRS

l � uRS
h ) in equilibrium, then its profits are given by

π(u) ≡ μlGl(ul)Pl(u)+μhGh(uh)Ph(u)�

In what follows, we show that the function π(·) is supermodular in (ul�uh). This
means that it satisfies an increasing differences property: the profit gains from making
a more attractive offer to low-risk agents is strictly increasing with the utility offered to
high-risk agents.

For such a utility offer to be optimal, there must be no alternative utility u′ that in-
creases expected profits. Consider utility offer u satisfying ul > uh and ul > uRS

l . The
marginal gain from making a more attractive offer to low-risk agents is given by18

M(u)≡ μl

[
gl(ul)Pl(u)+Gl(ul)

∂Pl(u)

∂ul

]
�

where the first term captures the probability gain, which means that a more attractive
offer has a higher chance of attracting low-risk individuals who generate positive prof-
its. The second term captures the loss in profits that a firm faces so as to make a more
attractive offer to low-risk agents. Using simple properties of the ex post profit function
Pl(·) described in Lemma 3, we show that the profit function satisfies supermodularity:
the marginal profits from attracting low-risk agents is increasing in the utility offered to
the high-risk agents. The following result differs from Lemma 5 in that it deals with an
arbitrary equilibrium distribution.

Lemma 7 (Supermodularity). For any feasible u satisfying ul > max{uRS
l � uh}, the function

M(ul� ·) is nondecreasing in uh. Moreover, if ul ∈ (ul�ul), then it is strictly increasing.

The proof follows directly from the definition of M(·) and properties (iii) and (iv) in
Lemma 3.

Supermodularity implies that there is a complementarity between how attractive an
offer is to low-risk and high-risk agents. This complementarity has an important impli-
cation for equilibrium offers: more attractive offers to low-risk agents have to be more
attractive to high-risk agents also. In other words, equilibrium offers can be ordered in
terms of attractiveness. This is formally stated in the next result.

18Notice that ul > uh implies that

∂Ph(u)
∂ul

= 0�

This is true because the cost minimizing contract to be offered to the high-risk agent, χh(u), is efficient.
This means that χh(u) is equal to the full insurance contract c = (u−1(uh)�u

−1(uh)).
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Lemma 8 (Ordering of offers). In any symmetric equilibrium, if the support of the equi-
librium strategy includes an offer that generates utility profile u = (ul�uh), then

uh = ν(ul)�

where the function ν : [ul�ul] →R is strictly increasing.

Proof. Step 1. We first show that all equilibrium offers generating utility u = (uRS
l � uh)

satisfy uh = uRS
h , i.e.,

G
(
uRS
l � uRS

h

)= Gl

(
uRS
l

)
�

Suppose by way of contradiction that

G
(
uRS
l � uRS

h

)
<Gl

(
uRS
l

)
�

Hence, a given firm i, with positive probability, namely q > 0, makes offers that gen-
erate utility in the set {uRS

l } × (uRS
h �∞). For an arbitrary offer u = (uRS

l � uh) in this set, we
know that

Ph(uh) < 0�

So it is necessarily the case that the firm makes positive profits from low-risk agents,
which means that

Pl(u) > 0�

Since, at offer u, the firm makes positive profits from the low-risk agent, it must attract
the low-risk agent with probability Gl(u

RS
l ).19 But this leads to a contradiction: if firm

j 	= i makes offers in {uRS
l } × (uRS

h �∞), then it attracts the low-risk agent with probability
at most

Gl

(
uRS
l

)N−2
N−1

(
Gl

(
uRS
l

) 1
N−1 − q

)
<Gl

(
uRS
l

)
�

since it cannot attract the low-risk agent if firm i makes an offer in the set {uRS
l } ×

(uRS
h �∞). Hence, offer u cannot be optimal to firm j, a contradiction.

We now consider ul > uRS
l .

Step 2. There is a unique uh ∈ R such that an offer generating utility vector u ≡
(ul�uh) is offered. If an offer generating utility u is made, then optimality of u implies
that

M(u)= 0�

However, since M(ul� ·) is strictly increasing, by Lemma 7, there is a unique uh that sat-
isfies this equality. We call this utility level ν(ul).

Step 3. The function ν(·) is nondecreasing for ul > uRS
l . Suppose that both utility vec-

tors (ul� ν(ul)) and (u′
l� ν(u

′
l)) are offered in equilibrium with u′

l > ul. Optimality implies
that

π
(
u′
l� ν(ul)

)−π
(
ul� ν(ul)

)≤ 0 ≤ π
(
u′
l� ν
(
u′
l

))−π
(
ul� ν

(
u′
l

));
19If not, then offer u′ = u + (ε�0) is strictly better for ε > 0 small since it attracts the low-risk agent with

at least probability Gl(U(cRS�l | l)) while incurring an arbitrarily small extra cost (Ph is continuous).
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however, this implies that∫ u′
l

ul

M
(
s� ν(ul)

)
ds ≤ 0 ≤

∫ u′
l

ul

M
(
s� ν
(
u′
l

))
ds�

which implies that ν(u′
l) ≥ ν(ul).

Step 4. Consider ν(ul) > uRS
h for ul > uRS

l . Suppose that an offer generating utility
u = (ul�uh) with ul > max{uRS

l � uh} and uh = uRS
h . By definition, we have that

Pt
(
uRS
t

)= 0� for t ∈ {l�h}�
Notice that Ph(u) ≤ 0 since the high risk is receiving the utility generated by his actuarily
fair full insurance policy. Also notice that, since Pl(·�uh) is strictly decreasing, Pl(u) < 0.
Hence, this means that the offering firm makes strictly negative profits: low-risk agents
are attracted by this offer with probability Gl(ul) > 0.

Step 5. The function ν(·) is strictly increasing for ul > U(cRS�l | l). Suppose that
ul�u

′
l ∈ (ul�ul) and that ν(ul)= ν(u′

l) > uRS
l . Then we know, from Step 1, that ν(s) = ν(ul)

for any s ∈ (ul�u
′
l). Hence it follows that

Gh

(
ν(ul)

)≥Gl

(
u′
l

)−Gl(ul) > 0�

But if Gl(ul) > 0, then Lemma 6 implies ul =U(cRS�l | l). This contradicts Step 1. �

This result reduces the set of equilibrium utilities to a one-dimensional subset of
ϒ, since all offers can be indexed by the low-risk agent’s utility level. The zero profits
result in Proposition 3 implies that offers can be indexed as well by the amount of cross-
subsidization across different types.

Corollary 2. In any symmetric equilibrium, all equilibrium offers generate a utility
profile in the set {

U(k) | k ∈R
}
�

Proof. From Proposition 3, we know that firms make zero expected profits. Now if a
firm makes offer u = (ul�ν(ul)) with ul > ul, Lemma 8 implies that

Gh

(
ν(ul)

)= Gl(ul)�

Then profits are given by

π(u) ≡Gl(ul)
[
μlPl(u)+μhPh(u)

]= 0�

Function Pl(·�uh) is strictly decreasing and Pl(z�uh) → −∞ as z → limc→∞ u(c).
So any equilibrium offer utility u = (ul�uh) satisfies (i) uh ∈ [uRS

h �Uh(ph − p)] and

(ii) u = U(k) for k = U−1
h (uh). To check (i), suppose that Uh > u(ph −p). Then we have

a contradiction since

μlPl(u)+μhPh(u) ≤ μhPh(uh�uh)+μlPl(uh�uh) < 0�
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To check (ii), notice that, for any k ∈ (0�ph−p), Ul(k) maximizes the utility obtained
by the low-risk subject to delivering utility Uh(k) to the high-risk agent and generating
zero expected profits. Hence Ul(k) is the unique solution to

μhPh

(
ul�Uh(k)

)+μlPl

(
ul�Uh(k)

)= 0�

Finally, suppose by way of contradiction that ul > Ul(k). Then take equilibrium util-
ity offers u = (Ul(k)�Uh(k)) and u′ = (Ul(k

′)�Uh(k
′)) such that Ul(k) < Ul(k) < Ul(k

′) <
ul. Lemma 8 implies that

Uh(k) < Uh

(
k′)⇒ k′ > k�

But the fact that k′ >k> k implies that

Uh

(
k′)<Uh(k) <Uh(k)�

since uh(·) is concave and k is its peak, a contradiction. �

The importance in the previous lemma is in reducing the set of possible utility
profiles to a one-dimensional set, where offers are indexed by the amount of cross-
subsidization occurring between different risk types. This allows us to use standard tools
from games with one-dimensional strategy spaces to describe the unique possible equi-
librium distribution over this feasible set.

Proposition 4 (Uniqueness). Consider any symmetric equilibrium. Then the set of util-
ity profiles generated by equilibrium offers by any single firm is{

u(k) | k ∈ R
}
�

where variable k ∈ R is distributed according to F∗ = F
1

N−1 , where F is presented in
Lemma 4.

Proof. First we show that supp(G) = {U(k) | k ∈ R}. Suppose that ul = Ul(k) such that

k< k. Then a firm can make utility offer (Ul(
k+k

2 )− ε�Uh(
k+k

2 )) for ε > 0 satisfying

Ul

(
k+ k

2

)
− ε >Ul(k)�

This would attract both risk types with probability 1 and make positive expected profits.
Now suppose that ul =Ul(k) > Ul(0). Then one firm can make utility offer(

Ul(k)+ ε�Uh(k)− ε
)

with ε > 0 sufficiently small so that

Pl

(
Ul(k)+ ε�Uh(k)− ε

)
> 0�

This would attract the high-risk agent with zero probability, attract the low-risk agent
with positive probability, and make positive expected profits.
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Finally, let the distribution over k ∈ R be F∗ and define F = (F∗)N−1 as the dis-
tribution of the highest draw from N − 1 levels of cross-subsidization. Notice that
the distribution of the best competing offer for a low-risk agent a firm faces satisfies
Gl(Ul(k)) = F(k).

Since any offer in {u(k) | k ∈ R} must be optimal, the distribution over cross-
subsidization k ∈R must satisfy

f (k)

u′
l(k)

Pl

(
U(k)

)+ F(k)
∂Pl

(
U(k)

)
∂ul

= 0�

and F(k) = 1. But the unique solution to these conditions is given by Lemma 4. �

6. Comparative statics

Since our uniqueness result is valid for all possible number of firms and prior distribu-
tions over types, an analysis of the the comparative statics with respect to these primi-
tives of the model is possible and informative.

6.1 Prior distribution

One of the main advantages of considering an extensive form version of Rothschild
and Stiglitz’s model is to obtain equilibrium existence for all prior distributions. Here
I consider how equilibrium strategies change with the prior probability of the low-risk
agent. The equilibrium distribution of offers continuously changes with the prior dis-
tribution, converging to the RS contracts for μl sufficiently small and converging to the
full information full insurance offer (1 − pl�1 − pl) as μl converges to 1. More specifi-
cally, this means that both agents benefit from a better pool of agents. This result con-
flicts with those obtained by Bisin and Gottardi (2006), Dubey and Geanakoplos (2002),
and Guerrieri et al. (2010), who consider extensions of the original Rothschild–Stiglitz
model.20 In their papers, equilibria generate the RS pair of contracts as a final outcome
for any prior distribution. I consider a fixed number N of firms and I define F(μl) as the

equilibrium distribution of offers by a single firm. Also, denote as F
(μl) the equilibrium

distribution of the best offers, i.e., the distribution of k = max{k1� � � � �kN }.

Proposition 5. If μ′
l > μl, then F(μ′

l) first-order stochastically dominates F(μl) and F
(μ′

l)

first-order stochastically dominates F
(μl). When μl → 1, F(μl) and F

(μl) converge to a
point mass at pl. Moreover, the function μl 
−→ F(μl) is continuous (weak convergence).

6.2 Number of firms

In this section, we show that an increase in the number of competing firms leads to
a decrease in the level of cross-subsidization in the market, which affects the welfare

20As mentioned in the Introduction, continuity with respect to the distribution is present in the dynamic
extensions considered in Wilson (1977), Miyazaki (1977), Hellwig (1987), Mimra and Wambach (2011), and
Netzer and Scheuer (2014).
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of all consumers negatively.21 This result is reminiscent of that presented in Rosenthal
and Weiss (1984) for the Spence model and is at odds with the classical literature on
oligopoly.22

The contract distribution in our model is determined to be the deterrence of cream-
skimming deviations. For each firm, the relevant market variable is the best alternative
menu offer made by a competitor. Hence, the distribution of the best alternative offer
among N − 1 draws is the equilibrium object pinned down by the absence of profitable
cream-skimming deviations by a single firm and, hence, is independent of N . In other
words, the equilibrium response to a larger number of firms is the use of less attrac-
tive offers by each firm in a way that the distribution of the best competing offer faced
by any single firms remains unchanged. Consumers are more affected by changes in
equilibrium strategies than firms, since they observe N different offers while each firm
competes among N − 1 alternative offers, and as a consequence the use of less attrac-
tive offers by each firm leaves consumers worse off with an increase in the number of
firms. For the reminder of this section, let F(N) denote the equilibrium distribution over
cross-subsidization level k ∈R used by each firm.23

Proposition 6. The distribution F(N) first-order stochastically dominates F(N+1). In
the case k > 0, the dominance is strict. Additionally, F(N) converges weakly to a Dirac
measure at the zero cross-subsidization level as N → ∞.

Proof. Just notice that, using the result in Proposition 2,

F(N) = F(k)
1

N−1 ≤ F(k)
1
N = F(N+1)�

In the case k > 1 − ph, there is continuous mixing over [0�k], so that the inequality
is strict for any k ∈ (0�k).

Finally, if the distribution F is a point mass at zero, the convergence of F(N) is trivial.
In case F is continuous on [0�k], notice that for any k ∈ (0�k),

F(k) ∈ (0�1) ⇒ F(k)
1

N−1 →N→∞ 1� �
21Since the number of firms is assumed to be exogenous in our model, it is the critical parameter related

to the intensity of competition. An interesting extension of this game introduces a stage of simultaneous
costly entry decision by firms followed by competition with a public number of firms. This game has a
unique symmetric equilibrium in mixed strategies where the ex ante expected profits from entry, which
occur if a firms ends up being a monopolist, are equal to the entry cost. In such a game, an increase in
the entry cost leads to a decrease in the (random) number of active firms in terms of first-order stochastic
dominance. However, the overall ex ante welfare effect is ambiguous since the the welfare of consumers is
a nonmonotonic function of the number of firms in the market: it is easy to show that the welfare of each
risk type under monopoly (N = 1) is lower than under competition (N > 1) while Proposition 6 shows that
for N > 2, an increase in the number of firms decreases welfare in the market. I thank a referee for raising
this subtle point.

22A notable exception is Janssen and Moraga-González (2004), who consider a model with search fric-
tions. Their model displays multiple equilibria, but welfare is decreasing in the number of firms when
focusing on equilibria with low intensity of search.

23The positive connection between number of firms and welfare, which is present in the seminal Cournot
model of competition, is driven by the rent extraction motive of firms, which is not present in the current
model as firms always make zero expected profits in equilibrium.
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Since the utility provided by offer Mk is increasing in k, for both types, the first part
of the proposition implies that the utility delivered by a single firm decreases as N in-
creases. However, for a higher number of firms, the agent is sampling a higher number
of offers, so that the overall effect seems unclear. But the distribution of the best offer
among any N − 1 firms is independent of N ; hence, the distribution of the best offer
among N firms is lower (in first-order stochastic dominance) and converges to F(2). Let

F
(N)

be the distribution of maxi=1�����N ki, where each ki is distributed according to F(N).

Proposition 7. The distribution F
(N)

first-order stochastically dominates F
(N+1)

.
Moreover,

F
(N) →w F(2)

as N → ∞.

To get the proof, just notice that F
(N) = F(2)F(N).

The consequence of the propositions above is that when the RS pure equilibrium
fails to exist, the model with a continuum of firms cannot simply be taken as the limit of
a model with N firms, as N → ∞. The problem is that as the number of firms grow, each
firm provides worse offers. However, them offers get worse “slowly” so that the best offer
among N firms converges to a nondegenerate distribution F . In the case of a continuum
of firms, there is no way to obtain a nondegenerate distribution for the best offer among
all firms with independent and identical randomizations across firms.

An important characteristic of the mixed equilibrium constructed is that an outside
firm, facing equilibrium offers in the market, can obtain positive expected profits. Con-
sider the duopoly case. An outside firm (called firm 3) faces two competing offers (from
firms 1 and 2) distributed according to F , so that the most attractive competing offer is
distributed according to F2. If an outside firm considers any cross-subsidizing offer Mk,
it would have zero expected profits by the definition of Mk. But since firms 1 and 2 have
zero expected gains from the local deviation around Mk, when facing competing offers
distributed according to F , firm 3 has a strict gain from a small deviation that attracts
low-risk agents with higher probability. It is surprising that firm 3, facing two competing
offers distributed according to F , can obtain higher expected profits than a firm facing
a single competing offer. In most competitive settings, such as in auctions, a player al-
ways benefits from less aggressive offers from its competitors. In this model, however,
cross-subsidization between contracts means that the relative (as opposed to absolute)
frequency with which an offer attracts both types determines profits.

7. Conclusion

In this paper, I consider a competitive insurance model in which a finite number of firms
simultaneously offer menus of contracts to an agent with private information regard-
ing his risk type. I show that there always exists a unique symmetric equilibrium. This
equilibrium features firms offering the separating contracts analyzed in Rothschild and
Stiglitz (1976) whenever they can be sustained as an equilibrium outcome. When this
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is not the case, which occurs if the prior probability of low-risk agents is too high, firms
randomize over a set of separating pairs of offers. Firms obtain zero expected profits in
equilibrium.

The equilibrium features monotone comparative statics with respect to the prior
over types and the number of firms. As the probability of low-risk agents increases,
firms offer more attractive menus. The equilibrium is continuous with respect to the
prior. As a consequence, equilibrium outcomes converge to the perfect information al-
location when the prior converges to both extremes. Regarding the number of firms, the
distribution of the best offer in the market and agent’s welfare decrease as it grows. The
distribution of the best offer converges to the mixed strategy of a single firm in duopoly.

Due to the implicit nature of the equilibrium construction, I am not able to obtain
clear comparative statics results with respect to preferences. Numerical exercises sug-
gest that higher constant risk aversion leads to more aggressive offers by the firms and
reduces the set of priors for which a pure equilibrium exists.

An interesting issue is the extension of this equilibrium for an arbitrary number of
types, since the equilibrium existence problem presented by Rothschild and Stiglitz be-
comes more severe as the number of types increases. For the limiting case of a con-
tinuum of types, a competitive equilibrium never exists (see Riley 1979, 2001). In the
two types model considered here, every optimal pair of contracts has to satisfy one lo-
cal optimality condition, which is used to characterize the equilibrium distribution. If
there are n potential types, there are n− 1 such local conditions. All of these conditions
have to be simultaneously satisfied at any n-tuple offered in equilibrium. In the case
of two types, the region of offers is given by γ and corresponds to the pairs of separat-
ing contracts that generate expected zero profits, and is a one-dimensional object. In
the case of n risk types, it is an n − 1-dimensional object, namely tuples, that provide
full insurance to the lowest type, leave any given type indifferent between his allocation
and the next higher type, and generate zero expected profits. The extra n− 2 local opti-
mality conditions characterize the one-dimensional region in which the randomization
occurs. The local condition connected to the highest type characterizes the equilibrium
distribution. Given the complexity and relevance of the binary type analysis, this paper
restricts attention to this case.

The analysis presented here sheds new light on the classical results on competitive
insurance such as nonexistence of equilibrium, uniqueness, and the welfare impact of
private information. However, there are issues with the interpretation of equilibrium in
the insurance market when it involves mixed strategies. The outcome described here
requires uncertainty with respect to the competing offers each firm faces. In actual in-
surance markets, this uncertainty can be generated by unobserved firm heterogeneity
or from a combination of price dispersion and limited search by consumers

Appendix

A.1 Auxiliary lemmas

In this section, we present auxiliary notation that is used extensively in the proofs and a
characterization of the feasible set of utility profiles that can be generated by incentive
compatible contracts.
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Denote si(t� (Mi)i) ∈ �R2+ as the the probability of acceptance of firm i’s contracts,
i.e., for any measurable set A⊆ R

2+, it is defined as

si
(
A | t� (Mi)i

)= s
(
A× {i} | t� (Mi)i

)
�

Expected profit for firm i from offer Mi is

πi(Mi) =

≡πi�h(Mi)︷ ︸︸ ︷
μh

∫ [∫
�(c | h)si(dc | h�Mi�M−i)

]
d
(×jφ(M−i)

)
+μl

∫ [∫
�(c | l)si(dc | l�Mi�M−i)

]
d
(×jφ(M−i)

)
︸ ︷︷ ︸

≡πi�l(Mi)

�

Also denote the ex ante expected probability of acceptance of an offer from firm i if the
consumer is of type t = l�h as si�t(M) and denote the ex ante average profit made from
a type t = l�h agent conditional on a contract from firm i being accepted as πE

i�t(M).
Define

uMt ≡ sup
c∈M

U(c | t)�

Consequences of equilibrium conditions are the following. The acceptance rule al-
ways has to satisfy

c ∈ supp
(
si
(
t� (Mi)i

)) ⇒ c ∈ arg max
c∈⋃iMi∪{Y }

U(c | t)�

which implies that

c ∈ supp
(
si
(
t� (Mi)i

)) ⇒ �(c | t) ≤ Pt
(
uMl � uMh

)
and

G−
t

(
uMt

)≤ si�t(M)≤ Gt
(
uMt

)
�

where G−
t (u) ≡ limk↗uG(k) is the left limit of distribution Gt .

Firms maximize profits, i.e.,

πi(Mi)≥ πi

(
M′

i

)
for all Mi ∈ supp(φ) and M′

i ∈ M.
The set of feasible utility profiles ϒ has the following properties, which follow from

standard convexity arguments:

(i) ϒ is convex

(ii) (u(c)�u(c)) ∈ϒ, for all c ∈R++

(iii) u ∈ϒ ⇒ u+ (ε�ε) ∈ int(ϒ) for ε > 0 sufficiently small.
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The following lemma is also important in the proof and eliminates the possibility of
equilibrium offers that are in the frontier of the set ϒ.

Lemma 9. For any u ∈ ϒ such that Ph(u) ≤ 0 and Pl(u) ≥ 0, then u + (ε�−ε) ∈ int(ϒ) for
ε > 0 sufficiently small.

Proof. First, suppose that uh > ul. In this case the set24

co
{

u�
(
u(0)�u(0)

)
� (uh�uh)

}
is contained in ϒ since the three generating elements are in ϒ. Finally notice that u +
(ε�−ε) is in the interior of this set for ε > 0 sufficiently small.

Second, if uh = ul, then u is clearly in the interior of ϒ.
Third, now consider uh < ul. Condition Ph(u) ≤ 0 implies that uh > u(1 −ph) = uRS

h .
Define

C(u) ≡ {(cl� ch) | U(ch | l)≤U(cl | l) = ul;U(cl | h)≤U(ch | h) = uh
}
�

If there exists (cl� ch) ∈ C(u) such that cl ∈R
2++, then u + (0� ε) ∈ϒ since(

ch� cl +
(

ph

ph −pl
ε�−(1 −ph)

ph −pl
ε

))
∈ C

(
u + (0� ε)

)
�

In this case, we know that u ∈ int(ϒ) since

u ∈ int
{
co
{

u + (0� ε)�
(
u(0)�u(0)

)
�u + (ε�ε)

}}
�

But if (cl� ch) ∈ C(u) implies that cl = (0�k) for some k > 0, then it is necessarily the case
that

(1 −ph)u(k) = uh ≥ uRS
h �

But then k = u−1( uh
1−ph

) ≥ kRS ≡ u−1(
uRS
h

1−ph
). But allocation (0�kRS) generates utility uRS

h

to the high-risk agent while introducing the maximal amount of risk, which implies that
it generates utility strictly above uRS

l to the low-risk agent. Since (0�kRS) generates utility
above U(cRS

l | l) = uRS
l and has higher risk than cRS

l , it follows that

�
((

0�kRS) | l)≤�
(
cRS
l | l)= 0�

Hence the allocation (0�k) necessarily generates negative losses as it pays more than
(0�kRS). �

And last, the following lemma shows that weak incentive constraints can be turned
into strict inequalities with arbitrarily small cost.

24For any set A ⊆ R
2, we use the notation co(A) to denote the convex hull of set A.
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Lemma 10 (Costless strict incentives). Consider u ∈ int(ϒ). For any ε > 0, there exists a
pair of contracts (cεl � c

ε
h) such that

U
(
cεl | l)= ul > U

(
cεh | l)�

U
(
cεh | h)= uh >U

(
cεl | h)�∥∥�(cεt | t)− Pt(u)

∥∥≤ ε for t = l�h�

Proof. Fix ε > 0. Since u is in the interior of ϒ and Pt(·) is convex (and hence continu-
ous on the interior of its finite domain) for γ > 0 sufficiently small,∥∥Ph(ul − δ�uh)− Ph(ul�uh)

∥∥< ε�∥∥Pl(ul�uh − δ)− Pl(ul�uh)
∥∥< ε�

Then the pair (χl(ul�uh − δ)�χh(ul − δ�uh)) satisfies all the inequalities above. �

A.2 Proof of Lemma 3

First notice that if u satisfies ul ≤ uh, the optimal allocation is χl(u) = (z� z), where
u(z) = ul.

If u satisfies ul > uh, then both constraints bind in the optimal allocation and, hence,

χl(u) =
(
u−1

(
(1 −pl)uh − ul(1 −ph)

ph −pl

)
�u−1

(
phul −pluh
ph −pl

))
�

Hence, χl(·) is continuous, continuous differentiable if ul 	= uh, and satisfies
χl�1(u) ≥ χl�0(u) with strict inequality if ul > uh. Function Pl(·) is equal to

Pl(u) = 1 −pl −
[
plχl�0(u)+ (1 −pl)χl�1(u)

]
and, hence, it is continuous and continuously differentiable in ϒ+ ≡ {u ∈ ϒ | ul > uh}
and ϒ− ≡ {u ∈ ϒ | ul < uh}.

Direct differentiation leads to

dPl(u)
d(ul�uh)

=
[− 1

u′(u−1(ul)
)

0

]
if u ∈ϒ−

and

dPl(u)
d(ul�uh)

=

⎡⎢⎢⎢⎣
− 1
ph −pl

[
(1 −pl)ph

u′(χl�1(u)
) − pl(1 −ph)

u′(χl�0(u)
)]

pl(1 −pl)

ph −pl

[
1

u′(χl�1(u)
) − 1

u′(χl�0(u)
)]
⎤⎥⎥⎥⎦ if u ∈ϒ+�

Notice that dPl
du (u) is continuous at any point u with ul = uh and, hence, Pl is contin-

uously differentiable.
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Since u′(·) is continuously differentiable, Pl is twice continuously differentiable in
ϒ+ and ϒ−.

For any u ∈ ϒ+:

∂2Pl

∂uh ∂ul
= −pl(1 −pl)

(ph −pl)
2

[
(1 −ph)u

′′(χl�0)

u′(χl�0(u)
)2 + phu

′′(χl�1(u)
)

u′(χl�1(u)
)2
]
> 0�

and for any u ∈ ϒ−, the function ∂Pl
∂uh

is identically zero and, hence, is continuously dif-
ferentiable.

A.3 Proof of Proposition 1

Since, in equilibrium, the distribution G of utility vectors generated by offers is contin-
uous, any offer M is dominated by offer χ(u), where u = (uMl � uMh ). Offer χ(u) attracts
the agent with the same probability as M and makes weakly more profits, conditional
on attracting the agent. Henceforth, we focus on deviations of this form.

Case A: ul = Ul(k) and uh = Uh(k
′) for some k�k′ ∈ R. Suppose that k′ > k, which

implies that

uh =Uh

(
k′)>Uh(k)�

Hence, it follows from Lemma 5 that for any ũ ∈ (Ul(k)�Ul(k
′)),

M(ũ�uh) > 0�

and, hence, offer χ(Ul(k
′)�Uh(k

′)) strictly dominates the original offer. An analogous
proof follows if k′ <k.

Case B: ul < Ul(0). Any offer that generates utility below Ul(0) attracts a low-risk
agent with zero probability. But there are no profit opportunities on high-risk agents
since their equilibrium utility is above uRS

h .
Case C: ul > Ul(0) and uh < Uh(0). By construction, the utility pair (Ul(0)�Uh(0))

satisfies Pl(Ul(0)�Uh(0)) = 0. Since Pl is decreasing in ul and increasing in uh, it fol-
lows that Pl(u) < 0. Since there are no profit opportunities from high-risk agents, a firm
cannot make positive profits by offering u.

Case D: ul > Ul(k). Any such offer is dominated by an offer with ul = Ul(k), which
offers strictly lower utility to the low-risk agent while still attracting the agent with prob-
ability 1.

Case E: uh > Uh(k) and ul = Ul(k) for some k ∈ R. If u ∈ int(ϒ), then Lemma 5 im-
plies that

M(u) > 0

and, hence, offer u is strictly dominated by offer u + (ε�0) for ε > 0 small. If u + (ε�0) is
not feasible, Lemma 9 implies that Pl(u) < 0. Hence, offer u cannot be profitable.
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A.4 Proof of Proposition 3

I have separated the result into different three different lemmas.

Lemma 11. (Zero profits). In any symmetric equilibrium, firms make zero expected
profits.

Proof. Suppose, by way of contradiction, that firm i makes expected profits π0 > 0 and
define

ut ≡ inf
{
u ∈R | Gt(u) > 0

}
�

The proof is divided into four subcases.
Case 1. Suppose that Gl(ul) = 0. There exists a sequence of on-path contracts Mn

such that ul�n ≡ uMn
l ↘ ul and Gl(ul) <

1
n . Let uh�n ≡ uMn

h and un ≡ (ul�n�uh�n).
Expected profits from low-risk agents, πi�l(Mn), are at most μl

n (1 − pl). It then fol-
lows that

π0 ≤ μl

n
(1 −pl)+πi�h(Mn) ⇒ πi�h(Mn) ≥ π0 − μl

n
(1 −pl)�

and profits from high-risk agents are positive and bounded away from zero for n large.
This means that (1−pl)u(1) ≤ uh�n < u(1−ph)−k for some k > 0 and n large. Potentially
passing to a subsequence, uh�n converges to ũh ∈ [(1 −pl)u(1)�u(1 −ph)).

Also, for each n, the firm cannot deviate by offering (uh�n+ε�uh�n+ε) for ε > 0 small,
which would generate profits

μhGh(uh�n)Ph(uh�n�uh�n)+μlGl(un�h)Pl(uh�n�uh�n)�

Using the fact that profits from offer Mn are at most

μl

n
(1 −pl)+μhsi�h(Mn)Ph(ul�n�uh�n)�

the firm is making positive profits on high-risk agents,

0 <πi�h(Mn) ≤ Ph(ul�n�uh�n) ≤ Ph(uh�n�uh�n)�

and the acceptance probability satisfies

si�h(Mn) ≤Gh(uh�n)�

we conclude that ∥∥Ph(uh�n�uh�n)− Ph(uh�n�ul�n)
∥∥→n→∞ 0�

Since limn uh�n = ũh, this implies that limn ul�n = ul ≥ ũh. High-risk agents must be re-
ceiving their utility level with almost no risk; otherwise a firm can profit from a deviation
that offers more insurance.

Now we show that Pl(ul� ũh) = 0.
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First, Pl(ul� ũh) ≥ 0. If Pl(ul� ũh) < 0, then by continuity Pl(ul�n�uh�n) < 0 for n large.
But then one firm can profit by offering χ(uh�n + ε�uh�n + ε) for ε > 0 small. This offer
makes weakly more profits from the high-risk agents and guarantees nonnegative profits
from low-risk agents.

Second, notice that Pl(ul� ũh) ≤ 0. Suppose that Pl(ul� ũh) > 0.
Also, since

μhGh(uh�n)(1 −ph)≥ πi�h(Mn) ≥ π0 − μl

n
(1 −pl)�

we know thatGh(uh�n) ≥ π0−μl
n (1−pl)

(1−ph)μh
→ π0

(1−ph)μh
as n → ∞. This implies that Gh(ũh) > 0.

Case 1.A. Suppose Gh has a mass point at ũh. Then there exists offer M and a firm
i, delivering u = (ul� ũh) with ul ≥ ul ≥ ũh and whose acceptance probability satisfies
(ties have to broken in a way that some firm gets the consumer with probability smaller
than 1)

si�h(M) <Gh(ũh)�

Notice that Ph(u) > 0 since ul ≥ ũh and ũh < u(1 −ph).
Also notice that for ε > 0 small,{

(ũh + ε� ũh + ε)� (ul + ε� ũh + ε)
}⊆ int(ϒ)�

Hence, following Lemma 10, a firm can find offers that generate profits arbitrarily close
to

μhGh(ũh)Ph(ũh� ũh)+μlGl(ũh)Pl(ũh� ũh)

and

μhGh(ũh)Ph(u)+μlGl(ul)Pl(u)�

The first profit level leads to a strict improvement if Pl(u) < 0, while the second one leads
to a strict improvement if Pl(u) ≥ 0. Hence, u is not optimal for firm i, a contradiction.

Case 1.B. Distribution Gh is continuous at ũh. This implies ũh > uh, since Gh(ũh) > 0.
There exists an equilibrium offer M generating utility u = (uh�ul) with ul ≥ ul and uh <

ũh, which implies

(ul + ε� ũh) ∈ int
[
co
{

u� (ul�ul)� (uh�uh)
}]⊆ int(ϒ)�

And this implies that Pl(ul� ũh)= 0. By way of contradiction, suppose that Pl(ul� ũh) > 0.
Then, from Lemma 10, we can find ε > 0 sufficiently small such that the following profit
can be achieved (using the fact that ul ≥ uh):

μhGh(ũh)Ph(ul + ε� ũh)+μlGl(ul + ε)Pl(ul + ε� ũh)

= μhGh(ũh)Ph(ul� ũh)+μlGl(ul + ε)Pl(ul + ε� ũh)�

By continuity of Pl for ε small enough, we have that

μlGl(ul + ε)Pl(ũh�ul + ε) > 0�
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But μhGh(ũh)Ph(ul� ũh) weakly higher than the limit of πi(Mn) as n → ∞. This means
that offer Mn is strictly dominated, a contradiction. Hence Pl(ul� ũh) = 0.

Given that Pl(ul� ũh) = 0, then there exists a firm and equilibrium offer M such that
(i) offer M generates utility u = (uh�ul) with ul ≥ ul and uh < uh, and (ii) si�l(M) > 0.

But notice that πi�l(M) ≤ Pl(u) < 0 since Pl is strictly increasing in uh whenever
uh < ul. This means that the offer M cannot be optimal as it is dominated by offer
χ(uh + ε�uh + ε) for ε > 0 small. This offer yields the same (positive) profits from high-
risk agents as M and guarantees nonnegative profits from low-risk agents.

Case 2. Suppose that Gl(ul) > 0.
Case 2.A. Suppose that there exists an equilibrium offer M generating utility u =

(ul�uh)= (ul� ũh) and Gh(ũh) > 0.
Suppose that Pl(u)�Ph(u) ≥ 0, with this inequality holding strictly for type t. Then

consider a firm i such that, when offering M, it has an offer accepted by a type t agent
with probability strictly below Gt(ut ). Then u + (ε�ε) ∈ int(ϒ) and, using Lemma 10,
this firm can obtain profit

μlGl(ul + ε)Pl

(
u + (ε�ε)

)+μhGh(ũh + ε)Ph

(
u + (ε�ε)

)
→ε→0 μlGl(ul)Pl(u)+μhGh(ũh)Ph(u)�

And the second term is strictly higher than the profits at M since the firm has weakly
lower profits for each type and attracts both types with weakly higher probabilities
(strictly for type t).

Suppose that Ph(u)�Pl(u) ≤ 0. This is impossible because offer M would generate
nonpositive profits.

Suppose that Ph(u) > 0 and Pl(u) > 0. Then consider a firm that has offer M ac-
cepted by the high-risk agent with probability strictly lower than Gh(ũh)

N−1. This firm
can profitably deviate by offering χ(ũh+ε� ũh+ε) (it strictly increases profits from high-
risk agents and guarantees nonnegative profits from low-risk agents).

Suppose that Pl(u) > 0 and Ph(u) < 0. Consider a firm i that, when offering M, is
accepted by a low-risk agent with probability smaller than Gl(ul). From Lemma 9, for
ε > 0 small enough, we have that u + (ε�−ε) ∈ int(ϒ). This means that the firm can
guarantee profits

μlGl(ul + ε)Pl

(
u + (ε�−ε)

)+μhGh(ũh − ε)Ph

(
u + (ε�−ε)

)
→ε→0 μlGl(ul)Pl(u)+μh

[
lim
u↗uh

Gh(u)
]
Ph(u)�

which is strictly higher than profits at M since it makes less profits, conditional on ac-
ceptance by both types, and it attracts the low-risk agent with strictly higher probability
while attracting the high-risk agent with weakly lower probability.

Case 2.B. Suppose that there are at least two utility levels u1
h < u2

h such that there are
infinitely many offers M(ι) that generate utility u = (ul� ι) with ι ∈ (u1

h�u
2
h) and ι is not

a mass point of Gh.
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Consider an arbitrary such utility level ι ∈ (u1
h�u

2
h). The utility profile (ul� ι) ∈ int(ϒ)

since

(ul� ι) ∈ int
[
co
{(
ul�u

1
h

)
�
(
ul�u

2
h

)
�
(
u(0)�u(0)

)
� (ul + ε�ul + ε)

}]
�

which is contained in int(ϒ) for ε > 0 sufficiently small.
This means that offer M(ι) has to make zero profits on the low-risk agents, i.e.,

Pl(ul� ι) = 0. Suppose that Pl(ul� ι) > 0 and Ph(ul� ι) ≥ 0. Consider a firm that, when
offering M(ι), has an offer accepted by the low-risk agent with probability strictly below
Gl(ul). Then (ul� ι) + (ε�ε) ∈ int(ϒ) for ε > 0 small enough and, from Lemma 10, this
firm can obtain profit

μlGl(ul + ε)Pl

(
(ul� ι)+ (ε�ε)

)+μhGh(ι+ ε)Ph

(
(ul� ι)+ (ε�ε)

)
→ε→0 μlGl(ul)Pl(ul� ι)+μhGh(ι)Ph

(
(ul� ι)

)
�

which is strictly higher than obtained with offer M(ι). This follows from the fact that
both types are attracted with higher probability strictly for the low-risk consumer, and
the firm makes weakly higher profits conditional on acceptance by each agent. The
cases (i) Pl(ul� ι) > 0 and Ph(ul� ι) < 0, and (ii) Pl(ul� ι) < 0 and Ph(ul� ι) ≥ 0 lead to
profitable deviations that exploit the interiority of utility profile (ul� ι). The case where
Pl(ul� ι) < 0 and Ph(ul� ι) < 0 leads to a contradiction since any firm offering such a
menu would have nonpositive profits. �

Lemma 12. In a symmetric equilibrium, if a firm i makes an offer M that generates utility
profile u, then χt(u) ∈ M and this is the only possible offer accepted by type t from firm i:
for any c 	= χt(u),

P
∗[(t̃� s(t̃� (M�M̃−i)

))= (t� c� i)
]= 0�

Proof. First remember that, for each t, problem Pt(u) has a unique solution. This im-
plies that

U(c | t)= ut�

U
(
c | t ′)≤ ut ′

implies

�(c | t) ≤ Pt(u)

with this inequality holding strictly if c 	= χt(u). This implies that for any offer Mi deliv-
ering utility profile u and any (Mj)j 	=i,

c ∈ supp
(
si
(
t� (Mk)k

)) ⇒ �(c | t) ≤ Pt(u)�

with strict inequality if c 	= χ(u). Hence, we have that

πi�t(Mi)≤ Pt(u)�
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with this expression holding as a strict inequality if

P
∗{(t̃� s(t̃� (M�M̃−i)

)) 	= (t�χt(u)� i
)}

> 0� (5)

Once again, we proceed by dividing the statement into cases.
Case 1. Assume that u ∈ ϒ satisfies Pl(u)�Ph(u) ≥ 0 and consider an equilibrium

offer M that generates this utility profile, i.e., uMt = ut for t = l�h. For ε > 0 sufficiently
small, u + (ε�ε) ∈ int(ϒ). Then Lemma 10 implies that any firm can obtain profits

μlGl(ul + ε)Pl

(
u + (ε�ε)

)+μhGh(uh + ε)Ph

(
u + (ε�ε)

)
→ε→0 μlGl(ul)Pl(u)+μhGh(uh)Ph(u)�

If (5) holds, then si�t(M) > 0 and πi�t(Mi) < Pt(u). Then expected profits with offer M
are given by (we are not indexing everything by M for brevity)

μlsi�lπi�l +μhsi�hπi�h < μlsi�lPl(u)+μhsi�hPh(u)

≤ μlGl(ul)Pl(u)+μhGh(uh)Ph(u)�

Hence, for ε > 0 sufficiently small, this firm has a profitable deviation.
Case 2. Assume that u ∈ ϒ satisfies Pl(u) ≥ 0 and Ph(u) ≤ 0, and consider an equilib-

rium offer M that generates this utility profile, i.e., uMt = ut for t = l�h. Lemma 9 implies
that, for ε > 0 sufficiently small, u + (ε�−ε) ∈ int(ϒ). Then Lemma 10 implies that any
firm can obtain profits

μlGl(ul + ε)Pl

(
u + (ε�−ε)

)+μhGh(uh − ε)Ph

(
u + (ε�−ε)

)
→ε→0 μlGl(ul)Pl(u)+μhG

−
h (uh)Ph(u)�

If (5) holds, then si�t(M) > 0 and πi�t(Mi) < Pt(u). Then expected profits with offer
M are given by (we are not indexing everything by M for brevity)

μlsi�lπi�l +μhsi�hπi�h < μlsi�lPl(u)+μhsi�hPh(u)

≤ μlGl(ul)Pl(u)+μhG
−
h (uh)Ph(u)�

Hence, for ε > 0 sufficiently small, this firm has a profitable deviation.
Case 3. Assume that u ∈ ϒ satisfies Pl(u) ≤ 0 and Ph(u) ≤ 0, and consider an equilib-

rium offer M that generates this utility profile, i.e., uMt = ut for t = l�h. If (5) holds, then
si�t(M) > 0 and πi�t(Mi) < Pt(u). Then expected profits with offer M are given by (we
are not indexing everything by M for brevity)

μlsi�lπi�l +μhsi�hπi�h < μlsi�lPl(u)+μhsi�hPh(u) ≤ 0�

since Pt(u) ≤ 0 for t = l�h. Hence firm i would make strictly negative profits by offering
M, a contradiction.

Case 4. Assume that u ∈ ϒ satisfies Pl(u) ≤ 0 and Ph(u) ≥ 0, and consider an equi-
librium offer M that generates this utility profile, i.e., uMt = ut for t = l�h. Utility profile
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(uh + ε�uh + ε) ∈ int(ϒ) for ε > 0 sufficiently small. Then Lemma 10 implies that any
firm can obtain profits

μlGl(uh + ε)Pl(uh + ε�uh + ε)+μhGh(uh + ε)Ph(uh + ε�uh + ε)

→ε→0 μlGl(uh)Pl(uh�uh)+μhGh(uh)Ph(uh�uh)�

Now notice that

Ph(uh + ε�uh + ε)≥ Ph(u) ≥ 0�

Pl(uh�uh)≥ Ph(uh�uh)≥ 0�

If (5) holds, then si�t(M) > 0 and πi�t(Mi) < Pt(u). Then expected profits with offer
M are given by (we are not indexing everything by M for brevity)

μlsi�lπi�l +μhsi�hπi�h < μlsi�lPl(u)+μhsi�hPh(u)

≤ μhsi�hPh(u)

≤ μhG
−
h (uh)

N−1Ph(uh�uh)

≤ μlGl(ul)
N−1Pl(uh�uh)+μhG

−
h (uh)

N−1Ph(uh�uh)�

Hence, for ε > 0 sufficiently small, this firm has a profitable deviation. �

Lemma 13. In any symmetric equilibrium, firms make nonnegative profits from low-risk
agents and nonpositive profits from high-risk agents: any equilibrium utility offer u sat-
isfies u ∈ int(ϒ), ul ≥ uh, and

�
(
χl(u)

)≥ 0�

�
(
χh(u)

)≤ 0�

Proof. Any equilibrium offer M generating utility profile u = (ul�uh) ≡ (uMl � uMh ) sat-
isfies

ut ≥ uRS
t �

This means that the consumer always receives offers that are more attractive then the
Rothschild–Stiglitz offers. Suppose this is not the case, which implies that G−

t (u
RS
t ) > 0

for at least one type t = l�h.
Since (uRS

l � uRS
h ) ∈ int(ϒ), if ut < uRS

t for a type t = l�h, then firms can make profits
by offering utility (uRS

l � uRS
h )− (ε�ε). This offer guarantees positive profits on both types

and attracts one of them with positive probability for ε > 0 sufficiently small.
Since utility uRS

h is the generated by an actuarily fair contract with full insurance
for the high-risk agents, it follows that Ph(u) ≤ 0 for any utility profile u generated in
equilibrium. Also, if there is an equilibrium offer that generates utility u such that
Ph(u) < 0, then at least one firm making such an offer makes strictly negative profits,
a contradiction.
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Finally, any equilibrium offer generating utility u = (ul�uh) such that uh > ul is
strictly dominated by offer χ(ul + ε�ul + ε) for ε > 0 sufficiently small. This de-
viating offer attracts high-risk consumers with strictly lower probability and makes
strictly higher profits from them, while at the same time attracting low-risk agents with
higher probability and loses an arbitrarily small amount of profits. To prove interior-
ity, consider any equilibrium utility offer u ∈ ϒ satisfying ul > uh. From Lemma 9, it
follows that u + (ε�−ε) ∈ int(ϒ) for ε > 0 sufficiently small, which implies that then
u ∈ co{(ul�ul)� (uh�uh)�u + (ε�−ε)} ⊆ int(ϒ). �

Proposition 3 follows directly from Lemmas 11, 12, and 13 presented above.

A.5 Proof of Lemma 6

First consider part (i). If ut < uRS
t for some t = l�h, then firms can make profits by offering

utility (uRS
l � uRS

h )−(ε�ε). This offer guarantees positive profits on both types and attracts
one of them with positive probability for ε > 0 sufficiently small.

Now we consider part (ii) and divide the proof into steps for clarity.
Step ii.1: For any n ∈ N, πn ≡ inf{Pl(u) | u ∈ supp(G) and ul ≥ ul + 1

n } > 0. Fix n ∈ N

and assume, by way of contradiction, that there exists a sequence of equilibrium offers
{un} such that

Pl

(
un
)→ 0�

This implies that expected profits from high-risk agents also converges to zero. From
Lemma 10, firms can always break indifferences so as to attract high-risk agents with
probability G−

h (u
n
h); hence, profit from high-risk agents is

Ph

(
un
)
G−

h

(
unh
)→ 0�

Suppose that Ph(un) → 0. In this case, we have that un → (uRS
l � uRS

h ) since
max{Pl(u)�−Ph(u)} has (uRS

l � uRS
h ) as the only zero within the compact set {u ∈ ϒ |

Ph(u) ≤ 0�Pl(u) ≥ 0}. But this is a contradiction with unl ≥ uh + 1
n > uRS

h .
Now suppose that lim infPh(un) > 0 and G−

h (u
n
h)→ 0. This implies that unh → uh and

Gh(uh) = 0. Consider a converging subsequence of {unl } and let its limit be ũl. We know
that Pl(ũl� uh) = 0 and ũl ≥ ul + 1

n (which means that Gl(ũl) ≥Gl(ul + 1
n) > 0). Then, for

ε > 0 small, firms can make offer (ũl − ε�uh) and make profit

μlG
−
l (ũl − ε)Pl(ũl − ε�uh) > 0�

which is positive for ε > 0 sufficiently small, since Pl(·) is decreasing in ul.
Step ii.2: For any n ∈N, Gl is Lipschitz continuous on [ul + 1

n�ul], with constant Ln ≡
M

πn(N−1)Gl(ul+ 1
n )

. Consider any ul�u
′
l ∈ [ul + 1

n �ul] such that u′
l − ε ≤ ul ≤ u′

l. Consider an

equilibrium utility offer u = (ul�uh). If a firm deviates by offering utility u′ = (u′
l� uh), its

profits must not increase:

μlGl(ul)Pl(u)+μhGh(uh)Ph(u) ≥ μlGl

(
u′
l

)
Pl

(
u′)+μhGh(uh)Ph

(
u′)�
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The fact that low-risk agents receive higher utility, i.e., u′
l ≥ ul ≥ uh, implies that Ph(u′) =

Ph(u). The inequality becomes

[
Gl

(
u′
l

)−Gl(ul)
]≤Gl

(
u′
l

)[Pl(u)− Pl

(
u′)]

Pl(u)
≤ ε

M

πn �

using Lemmas 9 and 10 as well as the fact that Gl(u
′
l) ≤ 1.

Step ii.3. Now, for any n ∈ N, the restriction of distribution Gl to [ul + 1
n �ul] is ab-

solutely continuous, with density gnl . Hence, for any bounded nonnegative measurable
function f , we have that ∫ ∞

ul+ 1
n

f dGl =
∫ ∞

ul+ 1
n

f (z)gnl (z)dz�

Let gl be the pointwise limit25 of {gnl } on (ul�∞) and consider any bounded nonnegative
measurable function f .

Define

f n(u) ≡ 1[ul�ul+ 1
n )
(u)f (ul)+ 1[ul+ 1

n �∞)(u)f (u)�

It follows from the monotone convergence theorem that

lim
n→∞

∫
f n dGl =

∫
f dGl�

But notice that ∫
f n dGl = Gl

(
ul +

1
n

)
f (ul)+

∫ ∞

ul+ 1
n

f dGl

= Gl

(
ul +

1
n

)
f (ul)+

∫ ∞

ul+ 1
n

f (z)gnl (z)dz�

Taking limits on both sides, and using the dominated convergence theorem once again
on the second term yields∫

f dGl =Gl(ul)f (ul)+
∫ ∞

ul

f (z)gl(z)dz�

Step ii.4: Suppose that there exists a utility level ul in the support of Gl such that, for
some ε > 0, Gl(ul) = Gl(ul − ε) > 0. Consider an offer that generates utility u = (ul�uh)

with ul > uh. This offer is necessarily dominated. From Lemmas 9 and 10, a firm can
obtain, by making utility offers close to u − (0�−δ), profits arbitrarily close to

μlGl(ul − δ)Pl(ul − δ�uh)+μhG
−
h (uh)Ph(uh�ul − δ)�

which are strictly higher than equilibrium profits for δ < min{ε2 � ul−uh
2 }, since they attract

the low-risk agent with the same probability as offer u and make strictly more profits

25Since gn+1
l (z) = gnl (z) for any z ≥ ul + 1

n , this pointwise limit is given by the function gl(u) = gn(u)l (u),

where n(u) ≡ inf{n′ | ul + 1
n′ < u}.
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from them. Alternatively, any equilibrium utility offer (ul�ul) would be dominated by
offer (ul − ε

2 �ul − ε
2 ).

Part (iii). Suppose that Gh has a mass point on some utility level uh > uRS
h . There

exists a firm i and equilibrium offer M that deliver utility u = (ul�uh) that is attracted
by the high-risk agent with probability strictly higher than G−

h (uh). From Lemmas 9 and
10, for ε > 0 sufficiently small, any firm can obtain profits

μlGl(ul + ε)Pl

(
u + (ε�−ε)

)+μhGh(uh − ε)Ph

(
u + (ε�−ε)

)
�

which converge, as ε → 0, to

μlGl(ul)Pl(u)+μhG
−
h (uh)Ph(u)�

This profit is strictly higher than the equilibrium profit since it attracts high-risk agents
with strictly lower probability and Ph(u) < 0 since ul > uRS

l .

A.6 Proof of Proposition 5

Since I consider variation in μl explicitly, I acknowledge dependence of each variable on
μl as a superscript in the notation, as in k

μl .
First notice that, for each k ∈ R, γμl(k) is the solution γ = (γ1�γ0) (with γ1 ≥ γ0) to

the system

A1(γ�μl�k)≡
[
(1 −μl)(−k)+μl�(γ | l)
U(γ | h)− u(1 −ph + k)

]
= 0�

Then, since ∂A1
∂γ has full rank and A1(·) is continuously differentiable, it follows that

γμl(k) is continuously differentiable in (μl�k). It is simple to show that
∂γ

μl
1 (k)

∂μl
> 0 and

∂γμl (k)
∂μl

< 0. From Lemma 2, I know that, if k
μl

> 0, k
μl is defined implicitly as the solution

to the equation

A2(k�μl) ≡ u′(1 −ph + k)(1 −pl)

[
1

u′(γμl
1 (k)

) − 1
u′(γμl

0 (k)
)]

− μh

μl

1
ph

[
1 −pl

pl
− 1 −ph

ph

]
= 0�

But we already showed that γμl(k) is continuously differentiable in (μl�k) and,
therefore, so is A2. Since ∂A2(k�μl)

∂k < 0, k
μl is also continuously differentiable. Moreover,

it follows from ∂A2(k�μl)
∂μl

> 0 that ∂k
μl

∂μl
> 0. Finally, for any μl(0�1) and k ∈ [0�ph − pμ̃l ],

A2(k�μl) > 0 for μl sufficiently high. Hence, since pμl →μl→1 pl, k
μl → ph − pl as μl

converges to 1.
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Also, notice that, after substitution,

φμl(k) ≡
(

phpl

ph −pl

{
u′(1 −ph + k)(1 −pl)

[
1

u′(γμl
1 (k)

) − 1
u′(γμl

0 (k)
)]

− μh

μl

1
ph

[
1 −pl

pl
− 1 −ph

ph

]})/(
�
(
γμl(k) | l))� (6)

For any (μl�k) ∈ (0�1)× [0�ph −p], �(γμl(k) | l) satisfies

(1 −μl)(−k)+μl�
(
γμl(k) | l)= 0�

This implies that ∂�(γμl (k)|l)
∂μl

< 0 and that, for any k ∈ [0�kμl ],
∂φμl

∂μl
> 0�

Also, since the numerator in (6) is increasing in μl and the denominator converges
to zero as μl → 1, we know that for all k ∈ [0�ph −pl],

φμl(k) → ∞�

Now consider μ′
l > μl. In the case k

μl = 0, the result is trivial; otherwise we have

from the differential equation (3) satisfied by [F(μl)]N−1 that for any k ∈ [0�kμl
),

[
F(μl)(k)

F(μ′
l)(k)

]N−1
= exp

[∫ k
μ′
l

k
φμ′

l (z)dz −
∫ k

μl

k
φμl(z)dz

]

= exp
[∫ k

μ′
l

k
μl

φμ′
l (z)dz +

∫ k
μl

k

[
φμ′

l (z)−φμl(z)
]
dz

]
> 1�

Monotone convergence, together with monotonicity of k
μl and φμl(·), implies that

for any k ∈ [0�ph −pl),

μl 
−→
∫ k

μl

k
φμl(z)dz is continuous

and ∫ k
μl

k
φμl(z)dz → ∞� as μl → 1�

Hence, it follows that, for any k ∈ [0�ph − pl), Fμl(k) is continuous in μl and
Fμl(k) → 0 as μl → 1.

The results for F
μl follow from F

μl = (Fμl)N .
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