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Abstract

We argue that the rationalizability approach is particularly 
appropriate to analyze games with genuine incomplete informa­
tion. We define two nested iterative solution procedures, which 
do not rely on the specification of a type space à la Harsanyi. 
Weak rationalizability is characterized by common certainty of ra­
tionality at the beginning of the game. Strong rationalizability 
incorporates a notion of forward induction. The solutions may 
take as given some extraneous restrictions on players’ conditional 
beliefs. In dynamic games, strong rationalizability is a refinement 
of weak rationalizability. Existence, regularity properties, equiv­
alence with the set of perfect Bayesian equilibrium outcomes and 
the set of iteratively interim undominated strategies are proved 
under standard assumptions. The approach is illustrated by some 
applications to economic models including reputation, disclosure 
and signaling.
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1 Introduction  and O verview 1

In a n-person game of incomplete information some of the crucial el­
ements governing strategic interaction -  such as individual feasibility 
constraints, how actions are mapped into consequences and individual 
preferences over consequences -  are represented by a vector of param­
eters 0 which is (partially) unknown to some players. For the sake of 
simplicity, let us assume that 6 determines the shape of each player's 
payoff function and that it can be partitioned into sub-vectors Oj, 
whereby each player i — 1. ...,n  knows 9 We call 9 the state of Nature 
and 9, the private information or payoff-type of player i. The form of the 
parametric payoff functions ux{-.9) -  or, more generally, the form of the 
mapping F associating each conceivable state of Nature 9 to the “true '1 
(but unknown) game G(9) -  is assumed to be common knowledge. In this 
paper we take this mapping 6 * G(9) as the fundamental description of 
a strategic situation with incomplete information and we put forward and 
analyze solution concepts associating to any such mapping a set of possi­
ble outcomes. Our approach is related to. but different from Harsanyi’s 
(1967-68) seminal paper on incomplete information games. Harsanyi’s 
Bayesian model is now so entrenched in the literature that only a hand­
ful of “pure'’ game theorists still pay attention to its subtleties. In order 
to motivate and better understand our contribution it is useful to go 
through Harsanyi’s model in some detail.2

'This paper is a revision of Battigalli (1995). Helpful comments from Patrick 
Bolton, Giacomo Bonanno. Tilman Bôrgers. Françoise Forges, Faruk Gul, Marciano 
Siniscalchi. Juuso Valimaki. Joel Watson and seminar participants at the University 
of Valencia. Northwestern University. Caltech. McGill University, SITE (Stanford 
University), Université de Cergy Pontoise. University of North Carolina and European 
University Institute are gratefully aknowledged.

2For thourough discussion of the Bayesian model see Harsanyi (1995), Gul (1996b), 
Dekel and Gul (1997).

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



1.1 H arsanyi’s Bayesian M odel

As Harsanyi noticed, one way to provide a Bayesian analysis of incom­
plete information games is to endow each player with a hierarchy of 
beliefs, that is. (i) a subjective probability measure on the set of conceiv­
able states of Nature, or first-order belief, (ii) a subjective probability 
measure on the set of conceivable first-order beliefs of his opponents, or 
second order beliefs, and so on. In principle, a complete description of ev­
ery relevant attribute of a player should include, not only his payoff-type, 
but also his epistemic type, that is, an infinite hierarchy of beliefs. Fur­
thermore, (infinitely) many hierarchies of beliefs could be attached to a 
given pavoff-type. This hierarchies-of-beliefs approach is mathematically 
feasible and theoretically interesting (see e.g. Mertens and Zamir (1985) 
and the related references mentioned below), but it does not seem to 
provide a tractable framework to analyze incomplete information games.

Harsanyi’s (1967-68) contribution was twofold. On the one hand, he 
put forward a general notion of “type space” which provides an implicit. 
but relatively parsimonious description of infinite hierarchies of beliefs. 
On the other hand, he showed how to analyze incomplete information 
games with the standard tools of game theory. A type space can be de­
fined as follows. For each player i and each payoff-type 6, € ©, (6, is the 
set of i ’s conceivable payoff-types) we add a parameter e, corresponding 
to a purely epistemic component of player i ’s attributes. In general, dif­
ferent values of e, can be attached to a given payoff-tvpe 0,. This way 
we obtain a set 7) C ©, x E, of possible attributes, or Harsanyi-types, of 
player i. A Harsanyi-type encodes the payoff-type and the epistemic type 
of a player. In fact, the beliefs of any given player i about his opponents’ 
payoff-types as well as their own beliefs are determined by a function 
Pi : Tt —* A(T_i), where T_< = 7j. It is assumed that the vector
of functions (p\.....pn) is common knowledge. Therefore every t, € 7)
corresponds to an infinite hierarchy of beliefs: the first order belief p\(t,) 
is simply the marginal of p,(tt) on ©_*; the (k + l)-order belief implicit in 
tt is derived from Pi(U) and knowledge of the n — 1 functions />*(-), j  i, 
mapping the opponents’ Harsanyi-types into fc-order beliefs. When we 
add a type space on top of the map 6 i-> G(0) we obtain a Bayesian

2
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game. A Bayesian equilibrium is a vector of behavioral rules b, : T, —* S,
(i = 1 .....n. S t is the strategy set for player i) such that for each player
i and each Harsanvi-tvpe t, = (6,.e,). strategy s, =  b,(Q,.e,) maximizes 
i's expected payoff given the payoff-type 0,. the subjective belief p,(6,. e,) 
and the (n — l)-tuple of functions fc_,. Note that, for any fixed vector 
of behavioral rules, a vector of Harsanyi-types (fj..... t„) provides an im­
plicit. but complete description of every relevant aspect of the world: the 
state of Nature, each player's subjective beliefs about the state of Nature 
and his opponents' behavior and each player’s subjective beliefs about 
his opponents beliefs.

Within this framework, the players' situation in a game of incom­
plete information is formally similar to the interim stage of a game with 
complete, but imperfect and asymmetric information whereby t, repre­
sents the private information of player i about the realization of an initial 
chance move, such as the cards player i has been dealt in a game of Poker. 
Harsanyi pushed the analog}' even further by assuming that all the sub­
jective beliefs p,(/,) (i = 1 . ....n. f, € TJ) can be derived from a common 
prior P  £ A(FI"=i Tj) so that p,(<*) =  P(-|£;). In this case a Bayesian 
equilibrium simply corresponds to a Nash equilibrium of a companion 
game with imperfect information about a fictitiuos chance move select­
ing the vector of attributes according to probability measure P. This is 
the so called “random vector model” of the Bayesian game. From the 
point of view of equilibrium analysis we can equivalently associate to 
the given Bayesian game a companion game with complete information 
whereby for each player/role i =  1 ..... n there is a population of potential 
players characterized by the different attributes £, e T,. An actual player 
is drawn at random from each population i to play the game. The joint 
distribution of attributes in the n populations is given by the common 
prior P. This is the “prior lottery model” of the Bayesian game.

3
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1.2 Drawbacks of Standard Bayes-N ash Equilibrium  
A nalysis

Harsanyi’s analysis of incomplete information games has offered invalu­
able insights to economic theorists and applied economists, but its success 
should not make us overlook some potential drawbacks of this approach 
and of its standard applications to economic models. These potential 
drawbacks are all related to the following facts: (a) a Bayesian game pro­
vides only an implicit and (in general) non exhaustive -  or non-universal 
-  representation of the conceivable epistemic types; (b) representing a 
Bayesian game with the “random vector model” or the “prior lottery 
model” blurs the fundamental distinction between games with genuine 
incomplete information and games with imperfect, asymmetric informa­
tion: in the former there is no ex ante stage at which the players analyze 
the situation before receiving some piece of information selected at ran­
dom.

(a) N on-transparent assum ptions about beliefs. We men­
tioned that for every Harsanyi-type in a Bayesian game we can derive a 
corresponding infinite hierarchy of beliefs. This derivation makes sense 
if it is assumed that the Bayesian game is common knowledge.3 Mertens 
and Zamir (1985) shows that this informal assumption is without loss of 
generality because (i) the space of n-tuples of (consistent) infinite hier­
archies of beliefs is a well- defined type space in the sense of Harsanyi 
and (ii) every type space is essentially a belief-closed subspace of the 
space of infinite hierarchies of beliefs, which is therefore a universal type 
space.4 This means that the class of all Bayesian models is sufficiently 
rich, but whenever we consider a particular (non-universal) model, or a 
subclass of models, we rule out some epistemic types. This corresponds 
to making assumptions about players’ interactive beliefs, which are often

3If we regard the Bayesian game itself as a subjective model of a given player, then 
we have to assume that this player is certain that everybody shares the same model 
(cf. Harsanyi (1967-68)).

4See also Brandenburger and Dekel (1993) and references therein. Battigalli and 
Siniscalchi (1998) provides analogous results for infinite hierachies of systems of con­
ditional beliefs in dynamic games of incomplete information.
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questionable and -  due to the implicit representation of epistemic types 
-  non-transparent.

For example, “agreement” and “no-trade” results hold for Bayesian 
models satisfying the common prior assumption, but the meaning of 
this assumption as a restriction on players’ hierarchies of beliefs is not 
obvious.5 For the sake of tractability, applied economists often restrict 
their attention to an even smaller class of Bayesian models by assum­
ing that there is a one-to-one correspondence between payoff-types and 
Harsanyi-types. These strong and yet only implicit assumptions about 
players’ hierarchies of beliefs may affect the set of equilibrium outcomes 
in an important way. But we have a hard time reducing these assump­
tions to more primitive and transparent axioms.

(b l)  N o ex  ante stage and plausib ility  o f  assum ptions about 
beliefs. The formal similarity between Bayesian games and games with 
asymmetric information may be misleading. We are quite ready to ac­
cept that in the “random vector model” players assign the same prior 
probabilities to chance moves.6 Similarly, assuming a common probabil­
ity measure over players’ attributes is meaningful and plausible, if not 
compelling, in the “prior lottery model.” For example, it can be jus­
tified by assuming that the statistical distribution of characteristics in 
the population of potential players is commonly known. But in games 
with genuine incomplete information there is no ex ante stage and prior 
probabilities are only a (convenient, but unnecessary) notational device 
to specif}' players’ infinite hierarchies of beliefs. Thus, the common prior 
assumption and the confiation of payoff-types and Harsanyi-types are 
much harder to accept.

(b2) N o  ex  ante stage and learning. The lack of an ex ante 
stage also makes the equilibrium concept more problematic. A Nash equi­
librium of a given “objective” game G may be interpreted as a stationary

°For more on this see Gul (1996b) and Dekel and Gul (1997). Bonanno and Nehring 
(1996) “makes sense” of the common prior assumption in incomplete information 
games, characterizing it as a very strong “agreement” property.

6For a discussion of the common prior assumption in situations with asymmetric, 
but complete information see Morris (1995).
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state of a learning process as the players repeatedly play G. Furthermore, 
it is possible to provide sufficient conditions such that learning eventu­
ally induces a Nash equilibrium outcome.' We cannot provide a similar 
justification for equilibria of Bayesian games. Let 0 be the actual state 
of Nature in a game of incomplete information F and recall that G(8) 
denotes the ‘tru e  objective game” corresponding to f). Let us assume 
that the players interact repeatedly. By the very nature of the problem 
we are considering, we have to assume that the state of Nature 0 is fixed 
once and for all at the beginning of time rather than being drawn at 
random according to some i.i.d. process. By repeatedly playing G(6) the 
players can learn (at most) to play a Nash equilibrium of G(0), not a 
Bayesian equilibrium of (some Bayesian game based on) T.* 8

1.3 R ationalizable O utcom es o f Incom plete Infor­
m ation Games

To summarize what we said so far. in order to analyze an economic model 
with incomplete information F using Harsanyi’s approach we have to 
specify a type space based on F and then look for the Bayesian equilibria 
of the resulting Bayesian game. The specification of the type space is 
hardly related to the fundamentals of the economic problem and yet 
may crucially affect the set of equilibrium outcomes. This raises several 
related theoretical questions. Can we analyze incomplete information 
games without specifying a type space? Can we provide an independent 
justification for the Bayesian equilibrium concept? Which results of the 
Bayesian analysis are independent of the exact specification of the type 
space? Is it possible to provide a relatively simple characterization of the 
set of all Bayesian equilibrium outcomes?

'In general, convergence is not guaranteed and, even if the play converges, the 
limit outcome is a self-confirming (or conjectural) equilibrium, which need not be 
equivalent to a Nash equilibrium. See Fudenberg and Levine (1998) and references 
therein.

8More generally, their pattern of behavior may converge to what Bat.tigalli and 
Guaitoli (1996) call “a conjectural equilibrium at 8."
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The answer to these questions can be found in the literature on 
rationalizability. Let us consider complete information games first, i.e. 
games with only one conceivable state of Nature. The set of rational- 
izable strategies in a static game with complete information is obtained 
by an iterative deletion procedure which (in two-person games) coin­
cides with iterated strict dominance (Pearce (1984)). Rationalizability 
exactly characterizes the strategies consistent with common certainty of 
rationality (Tan and Werlang (1988)) and also the set of subjective cor­
related equilibrium outcomes (Brandenburger and Dekel (1987)). Note 
that, according to the terminology used so far, a subjective correlated 
equilibrium is simply a Bayesian equilibrium of a model with a unique 
state of Nature and hence with payoff-irrelevant Harsanyi-types.

This paper puts forward and analyzes some notions of rationaliz­
ability for games with genuine incomplete information, but the proposed 
solutions are also relevant for games with asymmetric information where 
the statistical distribution of attributes in the population of potential 
players is not known. We focus mainly on the analysis of dynamic games 
where players can signal their types and strategic intent. But the basic 
idea is more easily understood if we consider static games first. Consider 
the following procedure: (Basis Step) For every player i, payoff type 6, 
and strategy s, in T, we check whether s, can be justified as a feasible 
best response for 6, to some probabilistic beliefs about the opponents’ 
payoff-types and behavior. If the pair (6,. s,) does not pass this test it is 
“removed.” (Inductive Step) For every i, 6i and s, we check whether s, 
is a feasible best response for 9i to some probabilistic beliefs about the 
opponents assigning probability zero to the (vectors of) pairs (6L,, S-i) re­
moved so far. Note that (epistemic) type spaces are not mentioned. The 
procedure depends only on the “fundamentals” of the economic model. 
Not surprisingly, this solution is equivalent to an iterative “interim” dom­
inance procedure. Furthermore, it turns out that it exactly characterizes 
the set of all possible equilibrium outcomes of the Bayesian games based 
on T. It is also easy to provide an epistemic characterization a la Tan and 
Werlang (1988) of the rationalizable outcomes as those consistent with 
common certainty of rationality (see Battigalli and Siniscalchi (1998) in

i
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the context of dynamic games).

Figure 1

Let us see how the solution procedure works in a textbook exam­
ple. Consider a Cournot duopoly with one-sided incomplete information. 
The inverse demand schedule P{Q) is linear and firms have constant 
marginal cost. The marginal cost firm 1, C\, is common knowledge, but 
C2, the marginal cost of firm 2, is unknown to firm 1. The range of con­
ceivable values of C2 is a closed interval strictly contained in [0, P (0)] and 
containing ci in its interior. Both firms are expected profit maximizers. 
Figure 1 shows the reaction functions for firm 1 (n(<j2)), for the most 
efficient type of firm 2 (ri(6, and for the least efficient type of firm 2 
(r2(£, qi)). In this model, there is no loss of generality in considering only 
best responses to deterministic beliefs.9 The first step of the rationaliz-

9This is true in all static games where, for each player i, (1) the utility function

8
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best responses to deterministic beliefs.9 The first step of the rationaliz- 
ability procedure eliminates, for each type of each firm, all the outputs 
above the monopolistic choice (e.g. ^2(62.0) for type of firm 2), which 
is the best response to the most optimisitc conjecture about the opponent 
(assuming that the opponent might also be irrational). In fact, all the 
eliminated outputs are strictly dominated for type 0, by the monopolistic 
choice of 6,, while the remaining outputs are best responses to some con­
jecture. In the second step of the procedure we eliminate, for each type of 
each firm, all the outputs below the best response to the most pessimistic 
conjecture consistent with rationality of the opponent. For example, for 
firm 1 we eliminate all the outputs below r i( r2(#, 0)). In the third step 
we eliminate, e.g. for firm 1 , all the outputs above r i f a d ,  r i(0)), which 
is the best response to the most optimistic conjecture consistent with 
the opponent being rational and certain that everybody is rational. In 
the limit we obtain a set of rationalizable outcomes represented by the 
rectangle ABC'D in Figure 1.

Let us compare rationalizable outcomes and standard Bayesian 
equilibrium outcomes. The standard Bayesian model specifies the be­
lief of player 1 about O2, say n € A(©2). It is assumed that it is common 
certainty that n indeed represents the belief of player 1 . The Bayesian 
equilibrium strategy for player 1 is given by the intersection between 
the graph of ri(-) and the graph of r2(.E(0; n), ■), where E(0\ 7t) denotes 
the expected value of 02 given n. The set of Bayesian equilibrium out­
comes for all possible it E A (0 2) is the parallelogram A’BC’D in Figure 
1. But if we consider all the possible specifications of a type space a la 
Harsanyi. the set of Bayesian equilibrium outcomes coincides with the 
set of rationalizable outcomes.10

,JThis is true in all static games where, for each player i, (1) the utility function 
Ui(fi,8{,s-i) is continuous and strictly quasi-concave in its second argument, (2j the 
strategy space Si is a closed interval of the real line, and (3) the set of conceivable 
payoff types 0 ,  is compact and connected.

10The proof of Proposition 3.10 shows how to construct a type space such that, in 
the resulting Bayesian game, each rationalizable outcome is a Bayesian equilibrium 
outcome. Here we provide a simpler example. Assume that there are two epistemic 
types for each pavoff-type. Thus Tj =  { t j .tf}  and T2 =  ©a x {e\,e%}. Assume 
Pi(tJ) is degenerate on (9,e \ ), is degenerate on (0,e§), and p2(#2 .e^) assignes

9
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The procedure described above is relevant if we do not want to 
rule out any conceivable epistemic type. However, it may be plausible to 
assume that players’ beliefs satisfy some qualitative restrictions. The it­
erative solution concept can be easily modified to accomodate restrictions 
on first order beliefs (informally) assumed to be commonly known. In the 
general definition of the solution procedure these extraneous restrictions 
on players’ beliefs are parametrically given.

The analysis of incomplete information games is particularly inter­
esting when they have a dynamic structure, because in this case a player 
can make inferences about the types and /or strategic intents of his op­
ponents by observing their behavior in previous stages of the game. As 
in the complete information case, there are several possible definitions of 
the rationalizability solution concept for dynamic games, corresponding 
to different assumptions about how players would update their beliefs if 
they observed unexpected behavior. Here we consider two nested solution 
concepts for (possibly infinite) multi-stage games with incomplete infor­
mation, called weak rationalizability and strong rationalizability. Rig­
orous axiomatizations of these solution concepts involve the definition 
of extensive form epistemic models and are given elsewhere (Ben Po- 
rath (1997), Battigalli and Siniscalchi (1998, 1999a,b)). Intuitively, weak 
rationalizability simply assumes that players choose sequential best re­
sponses to their systems of conditional beliefs, updating via Bayes rule 
whenever possible, and this is common certainty at the beginning of the 
game. On top of this, strong rationalizability also assumes that each 
player keeps believing that his opponents are rational even when they 
behave in an unexpected way, provided that their behavior can be some­
how “rationalized” (a more detailed account is provided in Section 3). 
Thus, unlike weak rationalizability, strong rationalizability incorporates 
a forward induction criterion.

We apply the rationalizability approach to some economic models.

probability one to t\ for all 9-> and j .  (These belief functions are consistent, with a 
“correlated” common prior.) In the Bayesian equilibrium where type fj (tj) chooses 
the lowest (highest) rationalizable output for firm 1, all the points in the vertical 
segments AD and BC are equilibrium outcomes.

10
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In some cases we are able to obtain the same qualitative results as in the 
more standard equilibrium analysis based on the common prior assump­
tion and/or the conflation of payoff-types and Harsanyi-types. In other 
cases, such as the example above, we obtain weaker results. In general, 
rationalizability emphasizes and clarifies some aspects of strategic rea­
soning that are either ignored or made obscure by standard equilibrium 
analysis.

1.4 R elated  Literature

The solution concepts developed in this paper extend notions of rational­
izability for extensive form games with complete information put forward 
and analyzed by Peaxce (1984). Battigalli (1996, 1997) and Ben Porath 
(1997). The idea of using some notion of rationalizability to analyze 
games of incomplete information is a quite natural development of Bern­
heim (1984) and Pearce’s (1984) work on complete information games 
and it appears in some papers in the literature (although several papers 
take for granted the common prior assumption and/or identify payoff- 
types and Harsanyi-types). Battigalli and Guaitoli (1996) analyzes the 
extensive form rationalizable paths of a simple macroeconomic game with 
incomplete information and no comon prior. This paper also puts forward 
a notion of conjectural (or self-confirming) equilibrium at a given state 
of Nature of an incomplete information game. Cho (1994) and Watson 
(1997) use a notion of subform rationalizability to analyze dynamic bar­
gaining with incomplete information. Watson (1993, 1996) obtains rep­
utation and/or cooperation results for perturbed repeated games under 
mild restrictions on players’ beliefs. Battigalli and Watson (1997) qual­
ify and extend Watson’s (1993) analysis of reputation. Perry and Reny 
(1994) and Khaneman, Perry and Reny (1995) consider some specific so­
cial choice problems with incomplete information and propose extensive 
form mechanisms to implement desirable outcomes in iteratively undom­
inated strategies. Rabin (1994) proposes to combine rationalizability 
and extraneous restrictions on players’ beliefs to introduce behavioral 
assumptions in game theoretic analysis. Siniscalchi (1997a) applies the
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approach of the present paper to the analysis of dynamic auctions. A dif­
ferent approach to incomplete information games is proposed in Sakovics 
(1997). He considers Bayesian models with finite hierarchies of beliefs 
and puts forward a novel solution concept, called ‘'mirage equilibrium."

1.5 Structure o f the Paper

The rest of the paper is organized as follows. Section 2 contains the game 
theoretic set up. Weak and strong rationalizability are defined and ana­
lyzed in Section 3 focusing on two-person games with observable actions. 
Existence and regularity properties are proved for a class of “simple,” 
but possibly infinite games. We define a notion of “weak Bayesian per­
fect equilibrium” and we show that weak rationalizability characterizes 
the set of all weak Bayesian perfect equilibrium outcomes. Finally, we 
extend to the present framework some known results relating rationaliz­
ability and iterative dominance. Section 4 shows how the analysis can be 
extended to n-person games with imperfectly observable actions. Section 
5 applies these solution concepts to models of reputation, disclosure and 
costly signaling. The Appendix contains some details about dynamic 
games of incomplete information and most of the proofs.

2 G am e T heoretic Framework

2.1 G am es of Incom plete Inform ation w ith  Observ­
able A ctions

A game of incomplete information with observable actions is a structure

r = (A,(e^eN,(A0,6N,>T(0Au.),e*)
given by the following elements:11

n The following model generalizes Fudenberg and Tirole (1991, pp 331-332) and 
Osborne and Rubinstein (1994, pp 231-232). The Appendix provides further details.
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• A' is a non empty, finite set of players.

•  For each i € A’. 0 , C R m‘ is a non empty set of possible types for 
player i and A, C R n* is a non empty set of possible actions for 
player i (R* is the A-dirnensional Euclidean space).

• Let 0  = r W e ,  and A = n i€/vA- Then

.4* =  {<*>} U f [ J A '
\  t = i

that is, A" is the set of finite and countably infinite sequences of 
action profiles, including the empty sequence <p, and

H*(-) : 0 — 2a'

(2a~ is the power set of A ')  is a non empty-valued correspondence 
assigning to each profile of types 8 the set 7i ’ (9) of feasible his­
tories given 8. For every history h 6 H m(9) one can derive the 
set A(9,h) = lltsA' Ai(8,, h) of feasible action profiles. A history 
h 6 H*(0) is terminal at 8 if A(h,8) = 0 (every infinite feasible 
history is terminal). We let

H(6) =  {h 6 A* :A(8.h) ^  0},

H{8,) = {h € A" : 3 8 e 0_„ A((6>„ 6Lt), h) #  0},

n  =  U  «(*)
eee

respectively denote the set of feasible non terminal histories at 8, 
or for 8,, and the set of a priori feasible non terminal histories.

• Define the set Z  of outcomes as follows:12

Z  = { ( 0 ,h ) : h e H m(9),A(9,h) = 9}.

For all i € N,
u, : Z  --  R

is the payoff function for player i (R denotes the set of real num­
bers).

12The feasibility correspondence is such that, if €  Z.  then
((9„9’_ t) .h)  €  Z  for all 9'_i.).
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Parameter 9, represents player f  s private information about feasi­
bility constraints and payoffs. For brevity, we call 9, the “payoff-tiff* " 
of player i. It is assumed that T is common knowledge. The array 
9 = (#*)i€;v is interpreted as a state of Nature-, it completely specifies the 
unknown parameters of the game and the players’ interactive knowledge 
about them. Player i at (0, h) knows (6,. h) and whatever can be inferred 
from history h given that F (hence is common knowledge. Chance
moves and residual uncertainty about the environment can be modeled 
by having a pseudo-player e £ N  with a constant payoff function. The 
“type'’ 0C of this pseudo-player represents the residual uncertainty about 
the state of Nature which would remain after pooling the private infor­
mation of the real players. Players’ common or heterogeneous beliefs 
about chance moves can be modeled as extraneous restrictions on beliefs 
(see below).

Game T is static if for all 6 € © and a £ A(9, </>), (a) is a terminal 
history at 0. Game F has private values if, for all i £ N, t/,(#,.£L,, •) is 
independent of A player of type 0, is active at history h if A,(9,. h) 
contains at least two elements. T has no simultanoeus moves if for even- 
state of Nature 9 and every history h £ H(9) there is only one active 
player. In this case, I can be represented by an extensive form with 
decision nodes (9 .h ), 0 £ @, h £ H(9) (pairs (0,cf>) are the initial nodes 
of the arboreseence) and information sets for player i of the following 
form:

I(0i,h) =  {(0i,O-i,h) : h eW (0i,#_,)},

where 9, is active at h. Game F has (incomplete but) perfect information 
if it has no simultaneous moves and rH, {9) is independent of f t 13

Note that the basic model T does not specify players ’ beliefs about 
the state of Nature 9. This is what makes T different from the standard 
notion of a Bayesian game. As mentioned in the Introduction, if we want 
to provide a general (albeit implicit) representation of players’ beliefs 
about the state of Nature and of their hierarchies of beliefs, we have to

13In this case, F can also be represented by a game tree (with decision nodes h £ H) 
featuring perfect information and payoff functions vt : 0  x Z —• R, where Z  is the 
set of terminal nodes.

14

©
 T

he
 A

ut
ho

r(s
). 

Eu
ro

pe
an

 U
ni

ve
rs

ity
 In

st
itu

te
. 

D
ig

iti
se

d 
ve

rs
io

n 
pr

od
uc

ed
 b

y 
th

e 
EU

I L
ib

ra
ry

 in
 2

02
0.

 A
va

ila
bl

e 
O

pe
n 

Ac
ce

ss
 o

n 
C

ad
m

us
, E

ur
op

ea
n 

U
ni

ve
rs

ity
 In

st
itu

te
 R

es
ea

rc
h 

R
ep

os
ito

ry
.



embed each set 0 , in a possibly richer set T, of "Harsanyi-types" and 
specify belief functions pt : Tt —> A(TLj). For more on this set' section 
3.4.

Turning to the topological properties of F. we endow A~ and Z  with 
the standard "discounting” metrics (see the Appendix) and throughout 
the paper we rely on the following assumption:

A ssu m p tion  0. A and © are closed, H m(-) is a continuous com  - 
spondence and, for all i £ N , is a continuous function.

2.2 Strategic Forms

A feasible strategy for type 9, is a function s, : H  —> A , such that s,(h) 6 
Ai(6i,h) for all h £ ((?,).14 The set of feasible strategies for type 6, is
denoted Si(0i) and

Si =  U  Si(0i)
see

denotes the set of a priori feasible strategies. (By definition of H. for all 
h £ H, Ai(6i, h) is nonempty. Therefore Sl(9l) is also nonempty.)

The basic elements of our analysis axe feasible type-strategy pairs: 
(9i, s^  is a feasible pair if £ Si(6i). A generic feasible pair for player i 
is denoted cr, and the set of such feasible pairs for player i is the graph 
of the correspondence £>,(•) : 0 , —> 25,, i.e.

:=  { (9i, sA €  O, x  Si : Si £  S , (9i)}

The sets of profiles of feasible pair for all players and for the opponents 
of a player i are, respectively, E =  an^ F_, =  Ylj&'Ej- Each
profile a — \(9i, Sj)]j6,v induces a terminal history £(<7) £ H{0) and hence 
an outcome C’(ct) =  (0, C{9)) £ Z . Therefore, for each player i, we can 
derive the following strategic form payoff function :

U, = ut o C* : £  -  R.

14We let the domain of s, be H (instead of H{0,)) only for notational simplicity.
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Furthermore, for each a priori feasible history h £ H we can define the 
set of profiles of feasible pairs consistent with h:

£(/i) =  {a £ E : h is a prefix of C(<r)}.

Clearly, £(d>) =  £. We let Et(h) denote the projection of E(h) on E,. 
that is. the set of (#,.*,) such that strategy s, is feasible for type 0, and 
does not prevent history h. It can be easily checked that, for all h € H.

e  (h) =  n
•€N

The information of player i about his opponents at history h is repre­
sented in strategic form by E_j(/j). the projection of £(/t) on E_*.

We endow the sets E, (i e N ) with the standard metrics derived 
from the metric on Z  (see the Appendix).

Lem m a 1 For all h G 'H, E t(h) is closed.

2.3 Conditional Beliefs

Players’ beliefs in dynamic games can be represented as systems of con­
ditional probabilities. Let E be a metric space with Borel sigma-algebra 
S. Fix a nonempty collection of subsets B C £\{0}, to be interpreted as 
"relevant hypotheses.”

D efin ition  1 (cf. Renyi (1956) and Myerson (1986)) A conditional 
probability system (or CPS) on (E, S, B) is a mapping

mH') : <S x B —» [0,1]

satisfying the following axioms:

Axiom  1 For all B  € B, p{B\B) — 1.

Axiom  2 For all B  € B, p(-\B) is a probability measure, on (E ,S ).
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A xiom  3 For all A € A. B .C  6 B. A C B  C C => /i(-41 )/l/(£?|(T”) = 
/4 A|C).

The set of probability measures on (E ,S )  is denoted by A(E): the 
set of conditional probability systems on (E.iS. B) can be regarded as 
a subset of [A(E)]B (the set of mappings from B to A(E)) and it is 
denoted by AB(E). The topology on E and 5  (the smallest sigma-algebra 
containing this topology) are understood and need not be explicit in our 
notation. It is also understood that A(E) is endowed with the topology of 
weak convergence of measures and [A(E)]“ is endowed with the product 
topology.

A relatively simple way to represent the beliefs of a player i in a dy­
namic game with incomplete information is to consider the set AB'(E_,) 
of conditional probability systems on ( E w h e r e  E_j is the set 
of type-strategy profiles for his opponents, S - * is the Borel sigma algebra 
of E_,, and

B, = {B  C E_, : 3h e H . B  = E_,(/))}

is the family of "strategic form information sets'’ for player b 15 By 
Lemma 1 . B, is a collection of closed subsets and thus AB*(E_,) is indeed 
a well-defined space of conditional probability systems.

An clement of AB'(E_j) only describes the first order conditional 
beliefs of player i. Only such beliefs are explicit in the game theoretic

'“Two points arc worth discussing. (1) In a situation of incomplete information, 
when player i forms his beliefs he already knows his private information ft,. Therefore 
it would be more germane to the analysis of incomplete information games to consider 
the set of conditional beliefs for type St. where

Bi(Si) =  { B  c E_, : 3h e HiOi). B — E_<(/))}.

(2) A player also has beliefs about himself and they may be relevant when we discuss 
the epistemic foundations of a solution concept. Once again, we do not explicitly 
consider such beliefs for notational simplicity. This does not alter the analysis in any 
essential way.

Our representation of a player’s beliefs and our game theoretic analysis are consis­
tent with the following epistemic assumption: at a state of the world where player i’s 
type is Si and i ’s plan is s, G S<(0«)> player i would be certain of A at each history 
h G H (Si) and would be certain to follow plan s* at each history h consistent with s,.
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analysis of this paper, but the motivations and epistemic foundations 
of the solution concepts to be proposed below at least implicitly con­
sider higher order beliefs. Battigalli and Siniscalchi (1998) shows how 
to construct infinite hierarchies of conditional beliefs which represent the 
epistemic type of a player, that is. the beliefs that this player would have, 
conditional on each history, about the state of Nature . his opponents' 
strategies and his opponents’ epistemic types. This construction allows 
one to define formal notions of conditional common certainty and strong 
belief which are informally used in this paper to motivate and clarify the 
proposed solution concepts. Formal epistemic characterizations of; solu­
tion concepts in terms of infinite hierarchies of conditional beliefs can be 
found in Battigalli and Siniscalchi (1998, 1999a,b).

2.4 Sequential R ationality

A strategy st is sequentially rational for a player of type 0, with condi­
tional beliefs p l if it maximizes the conditional expected utility of 0, at 
every history h consistent with s,. Note that this a notion of rational­
ity for plans of actions16 rather than strategies (see, for example, Renv 
(1992)). Let

H (9,,sl) =  {h € H{9i) : (#,.*',) € Ei(h)}

and
Si(0i,h) = {«i £ S,{9,) : (9,, Si) £ E,(h)j

respectively denote the set of histories consistent with (9t, s,-) and the set 
of strategies consistent with (6l,h). Given a CPS p' £ A0, (E_,) and a 
history h £ 'H(9i,s i). let

U, (9it Si, p’(-|E_<(/»)) =  [  U(9t, st, o .,)p ' (do., | E_,(/*))

16Formally, a plan of action is a maximal set of strategies consistent with the same 
histories and prescribing the same actions at such histories.
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denote the expected payoff for type 9, from playing s, given h. provided 
that the integral on the right hand side is well-defined.1.

D efinition 2 A strategy s, (i — 1.2,...) is sequentially rational for 
type 9, with respect to beliefs p' G written (9,. $,) € Pi(p ') or
equivalently s, 6 i'i(9 t, p'), if for all h G H(9,, s,) where player i is active 
and all s, G S{(9,, h) the following inequality is well-defined and satisfied:

R em ark  1 It can be shown that under standard, but somewhat restric­
tive assumptions the set of maximizers ri(6l. p l) is non-empty. For ex­
ample, if S t(9i) is compact and Ui(9l.s l,o -i) is upper hemicontinuous in 
Si, bounded and measurable in then rt(9,. pr) =/= 0.

2.5 Extraneous R estrictions on Beliefs

A player’s beliefs may be assumed to satisfy some restrictions that are 
not implied by mutual or common belief in rationality. We call such 
restrictions extraneous, although they may be related to some structural 
properties of the model. We may distinguish between (i) restrictions on 
beliefs about the state of Nature and chance moves and (ii) restrictions on 
beliefs about behavior. Our general theory and the following applications 
consider both (i) and (ii). Some examples of restrictions of the first kind 
are the following:

• Some “objective probabilities” of chance moves might be known or 
satisfy some known restrictions such as positivity or independence 
across nodes.18 * 15

11 Even in well-behaved games (e.g. the Ultimatum Game with a continuum of 
offers), for some choices of p'  and/or s t , the strategic form payoff function Ui is not 
int.egrable.

15Borgers (1991) considers perturbed games with “small trembles" whereby the 
true trembling probabilities are unknown, but it is common belief that the actual 
choice is very likely to coincide with the intended choice. He stresses the differerence 
between correlated and uncorrelated trembles.
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• It may be common belief that all the opponents' payoff-tvpes are 
considered possible a priori by each player. Or it may be common 
belief that the prior probability of a ‘'crazy type" O' committed to 
play a strategy s’ (either because s’ is dominant for O' or because 
Si(O’) = {ft*}) is either positive or bounded below by a given pos­
itive number e*(ft’ ). This kind of restriction is considered in the 
analysis of reputation in section 5.1 (see also Watson (1993. 1996) 
and Battigalli and Watson (1997)).

The following are examples of restrictions of the second kind:

• Specific structural properties of the game such as stationarity (cf. 
Cho (1994)) or monotonicity may be somehow reflected in players’ 
beliefs. Restrictions of this kind are considered in the analysis of 
disclosure and signaling in sections 5.2 and 5.3.

• The fact that an action a, is conditionally weakly dominant at a 
history' h for a type 0t (e.g. bidding your valuation in a second 
price auction) may cause everybody to believe that the probability 
of a conditional on h being reached and 0, being the true type 
of player i must be positive or bounded below by a given number 
d(0,,h,ai) G (0,1]. Similarly, the fact that action a, is conditionally 
weakly dominated for type ft at history h (e.g. bidding above your 
valuation in a first price auction) may cause everybody to believe 
that the probability of this action conditional on (ft, h) is less than 
one or bounded above by a given number p(ft, h, at) G [0.1).

• It may be common belief that each player’s beliefs about the types 
and strategies of different opponents satisfy stochastic indepen­
dence.

• It may be common belief that each player’s conditional beliefs have 
countable support (cf. Watson (1996) and section 5.3).

In general, we assume that, for each state of Nature 6, the condi­
tional probability system of each player i belongs to a given, nonempty
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subset A'. In order to make sense of the solution concepts discussed in 
the next section it is sufficient (but not necessary) to assume the fol­
lowing: for all k=1.2.....  (for every h € 7i. every player i t  A' would
be certain at h that)k the first order beliefs of every player i belong to 
A'. Weaker sufficient epistemic assumptions are discussed in the next 
section.

3 W eak and Strong A -R ationalizability

In this section we define and analyze two nested extensions of the ratio- 
nalizability solution concept to dynamic games of incomplete informa­
tion. which take as given some extraneous restrictions on players’ beliefs 
represented by sets of C’PSs A1 C AB‘(E_,), i € A". Weak rationalizabil­
ity is an extension of a solution concept put forward and analyzed by Ben 
Porath (1997) for games of perfect and complete information.19 Strong 
rationalizability is a generalization of the notion of extensive form ratio- 
nalizabilitv proposed by Pearce (1984) and further analyzed bv Battigalli 
(199C. 1997) (see also Reny (1992)). We focus mainly on two-person 
games (i.e. N  =  {1 . 2}) to avoid discussing the issue of correlated vs in­
dependent beliefs, which would distract the readers’ attention from more 
important points. The analysis is extended to n-person games in Section 
4. The two solution concepts are defined by procedures which iteratively 
eliminate feasible type-strategy pairs and coincide on the class of static 
games. Epistemic assumptions are crucial for the motivation of these 
solution concepts. A formal epistemic analysis is beyond the scope of 
this paper and is provided elsewhere,20 but we will try  to be explicit and 
clear about the epistemic assumptions underlying each solution concept.

19See also Dekel and Fuderiberg (1990). Brandenburger (1992), Borgers (1994) and 
Gul (1996a).

"B en Porath (1997) analyzes weak rationalizability using finite, non universal, ex­
tensive form type spaces. Battigalli and Siniscalchi (1998) analyzes universal and non 
universal type spaces for dynamic games of incomplete information and provides epis- 
temic characterizations of solution concepts. Battigalli and Siniscalchi (1999a,b) use 
an exteasive form, universal (or belief-complete) type space to provide an epistemic 
characterization of strong A-rationalizabilitv with correlated and independent beliefs.
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A given state of the world describes the state of Nature (hence each 
player’s private information) and the players' disposition« to act and to 
believe conditional on each history that is. their strategies and their 
infinite hierarchies of conditional beliefs. Let A =  (A!)ig,y. Each A- 
rationalizability solution concept characterizes the feasible type-strategy 
realized at states where (a) every player i € .V is sequentially rational 
and has first order beliefs in A‘, and (b) the players' higher order condi­
tional beliefs satisfy conditions concerning mutual certainty of (a) and or 
robustness of beliefs about (a).

3.1 W eak A -R ationalizability

Weak A-rationalizability characterizes the set of feasible type-strategy 
pairs realized at states of the world where all the following events are 
true:21

(0) every player i has first order conditional beliefs in A' and is sequen­
tially rational.

(W l) every player i is certain of (0) at the beginning of the game (i.e. 
conditional on <p),

(W2) every player i is certain of (W l) at the beginning of the game.

(Wk) every player i is certain of (W(k-l)) at the beginning of the game.

D e fin it io n 3  Let H^O.A) =  i =  1,2. Assume that the subsets 
Wi(k. A), i =  1,2, have been defined, k =  0,1,... . Then for each 
i = 1,2, Wi(k +  1, A) is the set of feasible (0,,Si) such that s, is se­
quentially rational for 6, with respect to some CPS p1 6 A' such that

21 The conditions are indexed by the assumed order of mutual certainty of 
rationality.
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A)[£_j) =  l .22 .4 feasible pair (Ot.s t) 6 U',(A\ A) is called 
weakly (k. A)-rationalizable. .4 feasible pair is weakly A-rationali/able
if it is weakly (k. A)-rationalizable for all k = 1.2....... The set of weakly
\-rationahzable pairs for player i is denoted by ll'^oc. A).

There is a convenient way to reformulate Definition 3. For any 
subset B_, C £_j, let

=  {// € A' : =  1}.

Note that (a) A'A(fJ_j) =  0 whenever £?_, is not measurable, (b) operator 
A^ is monotone23 on the Borel sigma-algebra of E_, and is also monotone 
with respect to A‘, and (c) \V,(k + 1 . A) = p, (A^(ir_j(A-. A))).

H\ (k.  A) x \V,Jk. A) is the set of profiles consistent with assump­
tions (O)-(k-l) above. Note that these assumptions are silent about how 
the players would change their beliefs if they observed a history h which 
they believed impossible at the beginning of the game, even if h is con­
sistent with rationality or mutual certainty of rationality of any order. 
Therefore weak rationalizability satisfies only a very weak form of back­
ward induction (e.g. in two-stage games with perfect information) and 
can not capture any kind of forward induction reasoning. This is what 
makes weak rationalizability different from strong rationalizability.

3.2 Strong A -R ationalizability

According to strong rationalizability each player believes that his oppo­
nent is rational as long as this is consistent with his observed behavior. 
More generally, each player bestows on his opponent the highest degree 
of “strategic sophistication” consistent with his observed behavior (see 
Remark 2 below). This is a form of forward induction reasoning and it 
also induces the backward induction path in games of perfect and com­
plete information (cf. Battigalli (1996, 1997)). To make the epistemic

"It. goes without saying that whenever we write a condition like p , (E\'E-i(h)) >  a  
and E  is not measurable, the condition is not satisfied.

23A set to set operator A is monotone if E  C F  implies A(E) C A(F).
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assumptions underlying strong rationalizability more transparent rec all 
that a state of the world describes the players’ dispositions to believe, 
that is, it describes not only how the players’ actual beliefs evolve along 
the actual path, but also the beliefs the players would have at histories 
off the actual path. We say that player i strongly believes an event E 
if i will or would be certain of E  at each history h consistent with E 
(see Battigalli and Siniscalchi (1999a) and references therein). Strong 
A-rationalizability characterizes the feasible type-strategy pairs realized 
at states of the world where all the following events are true:

(0) every player i has first order conditional beliefs in A! and is sequen­
tially rational,

(51) every player i strongly believes (0),

(52) every player i strongly believes (0) k  (Si),

(Sk) every player i strongly believes (0) k  (S2) k . . .k  (S(k-l)),

D efinition 4 Let E,(0. A) =  E, and $ ‘(0, A) = A i = 1,2. Suppose 
that E i(k, A) and $'(&, A) have been defined for each i = 1,2. Then for 
each i = 1,2,

<*>*(*+ 1 ,A) =

{pf e V(k.  A) : Vh € H, E_i(/i)nE_i(fc, A) #  0 =► p'(E_;(ifc, A)|E_,(/t)) = 1}, 

E,(fc + l.A ) = p!($I(fc,A)).

A feasible pair ((?*, s,) € Efik, A) is called strongly (k, A)-rationalizable.
A feasible pair is strongly A-rationalizable i f  it is strongly (k , A)-rationalizable 
for all k = 1.2,... . The set of strongly A-rationalizable pairs for player 
i is denoted by E,(oc. A).
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Note that H',(1,A) =  p,( A') = 11,(1. A). We show below that under 
regularity conditions, as the terminology suggests, the set of strongly 
(k. A)-rationalizable profiles is contained in the set of weakly (A .A)- 
rationalizable profiles and that the two sets coincide in static games (in 
general, it is sufficient that all the sets U',(A. A) and E ,(k. A) (i 6 A". 
k = 1 . 2,..) are nonempty and measurable).

R em ark 2 The set <P'(n +  l . A)  can be characterized as follows: let 
n( — i ,h.n) denote the highest index k < n such that strongly (A\ A)- 
rationalizable behavior by —i is consistent with h € Tl,2* then

<K(n + l.A ) =  e A' : V/i e 7f,p , (E_1(K (-t,h ,n).A )|E _,(/t)) =  l} = 

f )  ih ' € A' : Vh € n • E_,(/t)nE_,(At. A) /  0 => /**(£_<(*. A)|E_,(/t)) = 1).

3.3 Exam ple: “Beer or Quiche” revisited

In Section 1 we illustrated the rationalizabilitv procedure for static games 
without extraneous restrictions on beliefs. Now we consider a dynamic 
game and we introduce extraneous, qualitative restrictions on beliefs 
about the state of Nature and the opponent's behavior. The game de­
picted in Figure 2 corresponds to the well-known Beer-Quiche example 
used by Clio and Kreps (1987) to illustrate the power of some equilib­
rium refinements in signaling games. Of course, Cho and Kreps analyze 
a standard extensive form game with a common prior. In their example 
the surly  type 9(a) has prior probability 0.9. They show that only the 
equilibrium whereby each type chooses B satisfies their “intuitive crite­
rion.'- Here we replace this common prior assumption with the weaker 
restriction that (it is common belief that) the prior probability assigned 
by player 2 to 0(a) is more than 50%. Furthermore, we also assume 
that (it is common belief that) player 2’s posterior probability of the 
surly  type 9(a) is higher after observing B  (beer) than after observing 24

24That. is, max {k e (0 ......«}: E-i(h)t~)Z-i(k. A ) si 0}.
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Q (quiche). Thus the restricted set of beliefs for player 2 is

A2 =  {p2 : fi2(0(a))> 1 /2 ,/j2(9(a)\Q) < p2«?(a)|B)}

(we use obvious abbreviations for marginal probabilities). There an' no 
restrictions on player l 's  (first order) beliefs.

Restrictions on beliefs:

A2 ={)T: h(0(o))>1/2 & n(0(c)|B)>)i(0(a)|Q)}

Figure 2

It is easy to see that both quiche and beer are (1. A)-rationalizable 
for both types.25 But the second restriction on beliefs implies that if 2 
fights after 1 has beer she also fights after 1 has quiche. This in turn 
implies that, according to any (1, A)-rationalizable belief, a fight after 
beer is less likely than a fight after quiche:

^ '( l i  A) =  {p1 : p*(/ | B)  < p l ( /  | (?)}. 2
2oNot,e that in a two-person game, if £j(l. A) = E,. then Ej(k -(- 1, A) = Ej(fc. A) 

for k odd, j /  j, and Ei(k + 1. A) = Si(fc. A) for k even. Therefore we may consider 
only one player at each step.
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Since the only reason for a surly type to have quiche is to decrease 
the probability of fight, a surly type with (1. A)-rationalizable beliefs 
has beer, his preferred breakfast. On the other hand, it makes sense for 
a w im p with ( 1 . A )-rationalizable beliefs to forgo his preferred break­
fast (quiche) hoping to avoid a fight. At this point we have to dis­
tinguish between weak and strong rationalizabilitv. According to weak 
rationalizability, if player 2 is a priori certain to observe beer (a (2. A)- 
rationalizable prior belief), her beliefs conditional on quiche are un­
restricted. Therefore weak rationalizability has no further behavioral 
implications. On the other hand, strongly (2. A)-rationalizable beliefs 
reflect a forward induction condition: quiche is a (2. A)-rationalizable 
choice for a wim p, but not for a surly type, hence beer is sure evidence 
that player 1 is a wim p. Furthermore, taking into account that for all 
(2, A)-rationalizable beliefs p2(6(o)) > 1/2 and p2(jB|0(a)) = 1 , we must 
have p2(6(a)\B) > p2(0(o)) > 1/2. This implies that the unique strongly 
A-rationalizable strategy for player 2 is "fight after quiche, d on ’t  fight 
after beer.” To summarize:

$ 2(2, A) =  {p e $>2(1, A) : P2(0(^))\A) = l ,p 2(B\0(o)) =  1},

Ea(oc, A) =  £ a(3. A) =  {d if B, f  if Q).

Given this, the only strongly A-rationalizable choice for a w im p is beer.

£i(oc. A) =  £,(4, A) = {(0M , B). (0(a), B)}.

Thus, quiche is not rationalizable for either type and yet the “best 
rationalization” of this message is that it must have been sent by a w im p.

3.4 R esults

3.4.1 G eneral P roperties

It is well-known that even for well-behaved dynamic games with a contin­
uum of actions the strategic form payoff functions need not be continuous 
or measurable and hence the sequential best response correspondences
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p') (i e A") need not be well-behaved. We first provide simple con­
ditions on the “fundamentals” implying that the correspondences r,p. •) 
are nonempty-valued and upper-hemicontinuous. Then vve show that, if 
the latter properties are satisfied and A (extraneous restrictions on be­
liefs) is “regular,” weak and strong A-rationalizability are well-behaved.

D efinition  5 .4 game

r  =  (AT, «*(•). («i)ieAT>

is simple if  © is compact and either (a) A is finite or (b) A is compact 
and for some integer T,
(bl) T has T  stages (that is, every terminal history h has length ((h) =
T),
(b2) for every 9 £ 0  and h 6 'H(9). i f  ((h) < T  — 1 then A(9, h) is finite.

Clearly, finite games and infinitely repeated games with a finite 
stage game are simple. Signaling games with a finite message spaces arc 
simple if A-2 and 0  are compact. Signaling games with a continuum of 
messages are not simple.

Lem m a 2 For every simple game E is compact and, for each player i, 
ri(-,-) is an upper-hemicontinuous, nonempty-valued correspondence.

Even in simple games, the set of (weakly or strongly) A-rationalizable 
profiles may be empty because the extraneous restrictions on beliefs rep­
resented by A may conflict with common certainty of rationality (or 
strong belief in rationality). But we can obtain a simple existence re­
sult and other regularity properties for the case where A only represents 
restrictions on the marginal prior beliefs about the opponent’s type (ex­
istence results with a more general set of restrictions on beliefs can be 
obtained for specific models; see Section 5). For any subset C of a prod­
uct set X  x Y  and for any probability measure p on C  let projxC and 
rnargxp respectively denote the projection of C on X  and the marginal 
of p on X ,  that is,

projx C =  {z € X  : 3y £ Y, (x, y) € C }
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(margx p)(E) =  p({{T,y) € C : x  € £}). £  C A’ (measurable).

A is regular if. for each player i. A1 is nonempty and closet!, and 
there is a set fl C A (0_i) such that

A’ =  V  € AB'(E_,) : m a rg e .y H E -i)  € n}.

The following propositions are jointly proved in the Appendix (see proof 
of Proposition 11):

P roposition  3 Suppose that A and A' are regular. E is compact, r ,(-. - ) 
is nonempty-valued and upper-hemicontmuous and A' C (A')' for every 
player i. Then for every player i and all k = 0 .1 ..... do,
(a) the sets Wj(A*. A) and A^(IT,(A\A)) of weakly (k, A)-rationalizable 
pairs and beliefs are nonempty and compact, p ro jec t’,(A. A) =  0 ,:
(b) weak Ik. A) rationahzability implies weak (k. A')-rationalizability: 
\\',(k. A) C W,(k. A');
(c) Iljloc. A ) x i r 2(oc. A) is the largest measurable subset Tj x F2 C E 
such that

F1 x F2 = Pl (A\ (F 2)) x P2 (A iiFx)) .

P roposition  4 Suppose that A is regular. E is compact and r, (-. - ) is 
nonempty-valued and upper-hemicontmuous for every player i. Then for 
awry player i and all k = .0 .1 .....oc,
(1) the sets E,(A.A) and <i>'(k. A) of strongly (k . A)-rationalizable pair 
and beliefs are nonempty and compact, proj©, E, (1. A ) =  ©,;
(2) strong (k. Aj-rationalizability implies weak (k, A )-rationahzability: 
E,(A\ A) C W d k.A ) (the inclusion holds as an equality if there is only 
one stage).

Proposition 3 (a) (4 (1)) says that there is a weakly (strongly) ratio- 
nalizable strategy for each pavoff-type. (b) says that weak rationalizabil- 
itv is monotone with respect to extraneous restrictions on beliefs. This 
does not hold for strong rationahzability. In fact , if stronger restrictions 
on beliefs make fewer histories consistent with strongly A-rationalizable 
strategies, the A-forward induction criterion applies only to this smaller
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set of histories and the set of (k + l)-rationalizable profiles need not be 
smaller, (c) says the set of weakly rationalizable profiles is the largest 
set with the “best response property.”26 As an immediate' consequence 
of Lemma 2 and Propositions 3 and 4 we obtain the following:

C orollary 5 In every simple game, if A  is regular then (a), (c) of Propo­
sition 3 and (1), (2) of Proposition 4 hold.

3.4.2 R ationalizab ility  and  Bayesian E quilibria

A type in the sense of Harsanyi encodes the player’s private information 
about the external state of Nature (the unknown parameters of the game) 
and also his epistemic type, that is, his infinite hierarchy of beliefs about 
the state of Nature and the beliefs of others. Although in the standard 
model of a Bayesian game these hierarchies of beliefs are derived from 
a common prior on the set of states of the world (recall that a state of 
the world comprises a state of Nature and an epistemic state for each 
player), this need not be the case in general. Here we show that if the 
set of epistemic types is not restricted, rationalizability characterizes the 
set of outcomes realized in some Bayesian equilibrium. More precisely, 
we prove an equivalence result relating weak rationalizability and a weak 
refinement of Bayesian equilibrium for dynamic games of incomplete in­
formation. For the sake of notational simplicity we do not consider any 
extraneous restriction on beliefs, i.e. A! =  AB,(E_*) for each i. Therefore 
we suppress any reference to A in the notation.

Let us fix an incomplete information game

r  = (N, (0j)<€N, (Ai),ejv,?r(-),(uj)i€Ar)

We first have to relate F to a Bayesian game. We do this by embedding 
0  in a type space a la Harsanyi.

Definition 6 A Bayesian extension of T is a tuple

Br =  (r , (Ei)ieN, (7))isy, (p,)iSAr)

26The equality can be replaced by (weak) inclusion (cf. Pearce (1984)).
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whereby for each player i £ N. (1) Ex is a metric space. (2) T, c  0 , x E, 
is a measurable set such that proje T, = ©,, and (3) p, : Ti —> A(T_,) h- 
a measurable function.

An element t, =  ( .  e,) is an Harsanyi-type and e, is its purely 
epistemic component which together with the private information 0, de­
termines the epistemic type pfU). Since we are considering dynamic- 
games we have to define an appropriate refinement of the Bayesian equi­
librium concept. The refinement considered here is a generalization of 
Reny's (1992) ‘‘weakly sequentially rational assessments/’

D efin ition  7 A weakly perfect Bayesian equilibrium for a Bayesian 
extension Br =  (T, (Et)teN, {Ti)ieN, (p,)i€Jv) is an array of functions 
(b.g) =  (bi,gi)ieK whereby for each player i £ N .
(1) bx :Ti —+ S, and gx : Tt —* A6, (E_i) are measurable functions.
(2) (weak sequential rationality) for all (8i,ex) £ Tx. bi(6l ,ei) £ r1(8l.gx(6x.e.x)).
(3) (weak consistency) for all U £ Tt and measurable subsets C E_,

9i(U) (B_i|E_<) = Pi(U) ({(0_i.e_,) 6 T_x : (6L*. 6_j(0_j, e_f)) £ B -J ) •

We say that a profile (8,. Sj)i€jv is realizable in {b. g) if. for each i. there 
is some e, £ E, such that Si = b,(8l.ei).

The phrase “weakly perfect” is due to the fact that the equilib­
rium profile (bi,gi)ieN only satisfies weak sequential rationality and con­
sistency properties. The weak consistency condition (3) implies that 
<7;(fi)(-|£_j(/i)) is derived from b-t and px{tx) for each history h with 
positive probability according to the equilibrium. For a defence of the 
rationality condition (2) see e.g. Reny (1992).2‘ The following proposi- 27

27Even if we assumed expected utility maximization at each information set the 
equivalence result in the text would still hold for equilibrium and rationalizable out­
comes. The relation to Reny’s equilibrium concept is as follows: (i) A finite Bayesian 
extension of a finite two-person game with incomplete information can be represented 
as an extensive form game (with possibly heterogeneous and correlated priors on the 
set of initial nodes), (ii) A weakly perfect Bayesian equilibrium of the finite extension 
is realization equivalent to a weakly sequentially rational assessment of the extensive 
form.
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tion says that the sets of weakly perfect Bayesian equilibrium outcomes 
and of weakly rationalizable outcomes coincide.

P roposition  6 28 Suppose that T is a simple game. Then
(1) for every Bayesian extension Bp, every weakly perfect Bayesian equi­
librium {bi,gi)i6at of Bp, and every profile of types (#,,e,),s .v in Br , 
(6i,bi(0,,ei))i£N is weakly rationalizable;
(2) then exists a Bayesian extension Bp and a weakly perfect Bayesian 
equilibrium (b,g) such that, for every profile o G E. a is weakly rational­
izable if and only if o is realizable in (b,g).

3.4.3 R ationalizab ility  and D om inance

The set of weakly and strongly rationalizable pairs can be further char­
acterized for generic finite games in terms of dominance relations. We 
say that a game has no relevant tie if the following holds: for each player 
i and all pairs of outcomes (91h')1(9,h") 6 Z , if there are h G TtiO), 
a', a" G A (9,h ) such that a\ a", z' follows (h, a1) and z" follows (h.a"), 
then Ui(6, h') ^  ut(9, h"). This means that if player i, immediately after 
history h. has deterministic beliefs about the true parameter 9 and the 
continuation of the game, then he cannot be indifferent between any two 
feasible actions.

A strategy Si G Si(9i) is weakly dominated by mixed strategy m, G 
A(Si(9i)) for type 0, on B_, C E_* if

Vcr_i G B_,, Ui(0,,Si,(T-t) < Y^mAs'i)Ul(9t, s[,o^i)
Si

and
3a'_t G B_j, Ul(0i,si,o -,)  < ^ m i(s')f/i(0,,s',cr_j).

s'i
The definition of strict dominance is analogous (all weak inequalities 
are replaced by strict inequalities). For any given rectangular subset 28

28Brandenburger and Dekel (1987) prove a similar proposition for finite, static (or 
normal-form) games with complete information. See Forges (1993) for analogous 
results about objective correlated equilibria in games of incomplete information.
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B  C E let W (B ) (S (B )) denote the set of 6 E such that,
for each i. s, is not weakly (strictly) dominated for 0, on and let 
SW {B ) =  iS(fî) n  W(E). The iterated operator iSWm is defined in 
the usual way: 5W "(B ) =  SW  (S W "-1̂ ) ) ,  where 5W °(B) =  B. 
A subscript p denotes that we only consider weak domination by pure 
strategies. Thus WP(B) is the set of profiles (Q,,Si),çN such that s, 
is not weakly dominated for 6, by another pure strategy on and 
S W P(B) — S (B )  n  Wp(E). Note that S  is a monotone operator. There­
fore, also 5W  and S W P are monotone operators. W (k) and E(A:) denote 
the subsets of weakly and strongly fc-rationalizable profiles, without ex­
traneous restrictions on beliefs. The following proposition extends results 
proved by Pearce (1984) and Ben Porath (1997) to games with incomplete 
information.

P roposition  7 (a) (cf. Pearce (1984)) In every finite and static game, 

E(fc) =  W (k) =  5*(E), k = 1,2,... .

(b) In every finite game with no relevant ties,

E(Jfc) C W (k) c  5W j(E), k = 1,2,... .

(c) (cf. Ben Porath (1997)) In every finite game with no relevant ties, 
perfect information and private values.

E(fc) C W (k) = S W k(Y,), k = 1.2,... .

An exact characterization of strong rationalizability can be ob­
tained using a notion of iterated conditional dominance for each payoff- 
type. The characterization result can be easily adapted from Shimoji 
and Watson (1998). These characterizations of rationalizability through 
iterative dominance procedures can be used to compute the set of ratio- 
nalizable strategies solving a sequence of linear programming problems 
(cf. Shimoji and Watson (1998), Section 4). The computation algo­
rithm can also incorporate extraneous restrictions on conditional beliefs 
(Siniscalchi (1997b)).
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4 G eneralizations

The solution concepts defined in Section 3 for two-person games with 
observable actions can be extended to general n-person games with im­
perfect information about past actions. While the introduction of imper­
fect information is conceptually straightforward, considering more than 
two players forces a modeling choice between correlated and indepen­
dent beliefs and poses the problem of providing a satisfactory definition 
of independence for conditional probability systems and an appropriate 
formalization of the forward induction principle for players with multiple 
opponents. In this section we briefly describe how to deal with these 
problems. A more complete analysis is provided in Battigalli (1995).

Im perfectly  O bserved A ctions. In a game with observed ac­
tions the set of partial histories H  can be regarded as a common collec­
tion of information sets for all the players. In games with imperfectly 
and asymmetrically observed actions each player i has his own collection 
of information sets Hi, whereby a typical element h 6 H, now represents 
a (maximal) set of partial histories that player i cannot distinguish. Of 
course, H , need only contain the information sets where player i is active. 
In order to adapt the analysis of the previous section to this situation 
it is sufficient to redefine E (h) as the set of feasible profiles consistent 
with at least one history contained in h. Perfect recall implies that 
E (h) = Ej(h) x E ~i(h) for each h e H,. The collection B, of “relevant 
hypotheses” for player i is then defined as

B1 =  { B c E _ , : 3 / i e H , .B  = E_)(/J)}

and this determines the space of conditional probability systems AS‘(E_,). 
Given these modifications, the other formal definitions are virtually un­
changed.

n-Person G am es and Independent Beliefs. Extending the 
previous analysis to n-person games is quite straightforward if it is as­
sumed that each player’s beliefs concerning the type and strategy of 
different opponents may exhibit correlation. Therefore we consider here 
only the case of independent beliefs.
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Recall that in games with observable actions the set £(h) of feasible 
profiles consistent with a given history/information set h has a Cartesian 
structure: £(h) =  n.e.v E,(h). The same is true whenever h is an infor­
mation set of a game with observable deviators. For the sake of simplicity, 
we limit our analysis to this class of games.29 For any two players i and 
j  let

B,j =  {B j c £, : 3h e Hi, B j = £,(&)}
be the collection of “strategic form” pieces of information about player 
j  that player i might obtain and let AB,5(£j) be the associated set of 
i 's marginal CPS’s about player j .  A CPS p' G AB’(E_*) is independent 
if there exists a vector of marginal CPS’s (p'j)j^i G IT^i AB,-»(£j) such 
that, for all h G H,, p1(-\Y._l(h)) is the product measure obtained from 
the vector of marginal probability measures (/^(•|£J(/i))) (cf. Renyi 
(1955), p 303).

Assuming that, the players are rational and have independent con­
ditional beliefs and that this is common certainty at the beginning of the 
game, we obtain a notion of weak rationalizability with independent be­
liefs. The formal definition is essentially the same as in Section 2 except 
that now it has to be assumed that, for each player i. the restricted set 
of beliefs A’ contains only independent CPS’s .30

Let us now turn to strong rationalizability. Since we assume that 
players’ conditional beliefs are independent, we also incorporate in the 
definition of strong rationalizability a principle of independent best ra­
tionalization: each player i ascribes to every opponent j  the “highest 
degree of strategic sophistication” consistent with j ’s observed behav­
ior independently of any information about other players.31 The formal, 
inductive definition of strong rationalizability (without extraneous re­
strictions on beliefs beyond independence) can be given as follows. Let 
Pj denote the marginal on Ej of a given independent CPS p '.

29For a more general analysis see Battigalli (1995).
30This notion of rationalizability (actually, only the first two steps in the iterative 

procedure) is used in Battigalli and Watson (1997).
31 Battigalli and Siniscalchi (1997b) provides a rigorous epistemic axiornatization of 

the independent best rationalization principle.
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(0) For all i € N , E? =  S, and

$ ’(0) =  {a*' € As*(S_i) : p1 is independent}.

(k+1) For all i e N , Ef+1 =  pi(&(k)) and 

V (k + 1) = {fi* € *'(*) : VA € H>yj  /  i,Ej(A)nE* ^ 0 =► pj(£*|5^(A)) = 1 }.

5 A pplications

In this section we apply weak and strong rationalizability with extra­
neous restrictions on beliefs to some models with one-sided incomplete 
information. We obtain results about reputation, disclosure and signaling 
previously derived for standard Bayesian (perfect) equilibria of Bayesian 
games whereby payoff-types coincide with Harsanyi-types.

5.1 R eputation32

Consider an infinitely repeated two-person game with discounting and 
one-sided incomplete information about feasible strategies. Player 2 does 
not know the set of feasible strategies of player 1 . The finite or countable 
set of states of Nature © corresponds to the set of conceivable feasibility 
constraints for player 1 . Let the stage game be G =  (^4j, A2: t>i, I’a). The 
set of all (closed loop) strategies for player i in the repeated game is 
Si. The set of feasible strategies for player l ’s type 6 is S\(0). For any 
state of Nature 6 and any infinite history z feasible at 9, the long run 
average payoff function for player i is u;(0, z) =  (1 -<*>,) ^ “ '« .(a^z)),

32The model considered here is borrowed from Evans and Thomas (1997), which in 
turn builds on previous work bv Fudenberg and Levine (1989). These papers derive a 
reputation result for standard equilibria of Bayesian models with one-sided incomplete 
information. See Sorin (1997) for a unified analysis of reputation and learning results 
in repeated games with incomplete information.
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where a '(z) denotes the pair of actions chosen in period t along path z 33 
We are going to show that, under mild assumptions, two steps of weak 
rationalizabilitv imply that a patient and unconstrained player 1 expects 
to obtain a long run average payoff approximately as large as the static 
Staekelberg payoff.

The stage game G satisfies the following assumptions:

• Player 2 has a single-valued best response function B R  : .4i —> ,4-> 
and

min max ^ (tn i.aa) > 0.
77i!€A(Ai) a2Ĝ 2

(The domain of function v2 is extended to A(.4i) x A 2 via expected 
payoff calculations.)

•  Player 1 has a pure maximin action, i.e. there is some “punishing” 
action a f  such that

t>2(o f , 5 f? (a f)) =  min max V2(m-i. a2).m\ GA(/4i)

The first assumption is made only for simplicity, the second is more 
substantial. Let

r* = max v\(a\. BR(ai)).ai €v4,
denote player l ’s static Staekelberg payoff and let a] be a Staekelberg ac­
tion, that is, an action attaining the maximum above. The best response 
to this action is a2 = BR(a\). Finally, e, denotes the worst payoff for 
player i in G.

The feasibility correspondence S i(-) satisfies the following assump­
tions:

• There is a “normal' unconstrained type 8° G © such that 5i (6°) =
5,.

33Note that if 0  is finite the incomplete information game is “simple.” Therefore 
the existence of (strongly and/or weakly) A-rationalizable strategies at every state of 
Nature is guaranteed whenever A is “regular” (see Definitions 3.3, 3.5 and Proposi­
tions 3.6, 3.7). However, finiteness of 0  is not needed for the following result.
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• There is a "commitment" type 9“ such that S p# ') = {.sJ} where sj 
is a strategy- "teaching’' player 2 to play a2. Strategy sj plays aj in 
normal phases and instigates punishment phases of incursion length 
when player 2 fails to play a2 in a normal phase (see Evans and 
Thomas (1997)). More precisely sj is determined by an automaton 
with a countable set of states

Q =  {Norm(A-). Punish(fc,j): k = 0.1 . j  = 0.....k}.

where Norm(0) is the initial state: action and transition functions 
are given by the following table:

Action Transition 
. stay in Norm (A-) if a2 = a2.
1 go to Punish(A\ k) otherwise

a f  go to Norm(A' + 1)
1 < j  < k a f  go to Punishf A. j  -  1 )

(Norm(fc) is the normal phase after k defections and Punish(A\ j)  is 
a the punishment phase after k defections and with j  punishments 
periods to come).

State

Norm (A-)

Punish(A\ 0) 
Punish(A% j).

As for extraneous restrictions on players’ beliefs, we only assume 
the following:

• For some e £ (0.1) player 2 assigns at least f prior probability 
to the commitment type 6* and player 1 is certain of this, i.e. 
A =  (AHl(S2), A2(e)) where

A2(e) = {p2 e AB’ (£i) : > e}-

According to the following proposition, two steps of weak A-rationa- 
lizability imply that a patient and unconstrained player 1 should expect 
(a priori) to get a long run average payoff approximately as large as the 
static Stackelberg payoff. Player 1 can actually achieve this lower bound 
if he builds up a reputation of behaving like the commitment type O'.
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P rop osition  8 There is a positive integer M  =  M ( v 2, b2.e) independent 
of b\ such that for any weakly (1 . A)-rationalizable belief ul ,

sup L f(0 ° .s ,.n \- \S 2)) > L h(0°.s\.n \-\S2)) > (1 -  6}’)m + 6 ? r[ .
*\€Si

Note that Evans and Thomas (1997, Section 4) prove an analo­
gous result about the lower bound to player l ’s equilibrium payoffs in 
a Bayesian game where player 1 knows the beliefs of player 2 about his 
type 6 and. in particular, knows the prior probability assigned by player 
2 to the commitment type 6'.

Sketch o f proof.34 To prove Proposition 8 it is sufficient to realize 
that the proof provided by Evans and Thomas does not use the full 
force of the foregoing equilibrium assumptions, but rather relies on the 
following facts: (i) player 2 assigns at least e prior probability to the 
commitment type 0* and plavs a best response to his beliefs, (ii) player 
1 is certain of (i) and also plays a best response to his own beliefs. Of 
course, these assumptions are implied by (2, A)-rationalizability. Thus, 
one can prove that for any strategy combination (s(, S2), any real number 
r) £ (0, 1 ) and any positive integer k, player 2 can trigger a punishment 
and expect with probability at least (1 -  rf) to be punished for less than 
k periods for at most N  = k + times (cf. Lemma 1 in Evans
and Thomas (1997)). Suppose s2 is a best response to player 2’ beliefs. 
Then, for any given payoff function v2 satisfying our assumptions and 
any discount factor 62. we can choose 77 small enough and k large enough 
that S2 fails t0 play a2 at most K  = k + N  times. This implies that the 
path induced by («i,S2) contains at most M  = (1/2)K (K  +  3) periods 
when either a2 is not played or player 2 is punished (clearly M  depends 
on e, v2 and b2). Therefore player l ’s long run payoff is at least as large 
as if he got the worst payoff on the first M  periods and the Stackelberg 
payoff afterward. ■

The result stated in Proposition 8 holds also when 0* is a com­
mitment type always playing the Stackelberg action and the stage game 
G has "conflicting interests” in the sense of Schmidt (1993). A similar

34A complete proof is available upon request.
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reputation result is proved by Battigalli and Watson (1997) for games 
where a patient long run player faces a sequence of short run opponents.

5.2 D isclosure30

Consider a two-person signaling game where the sender, player 1. pro­
vides certifiable information about her own type. The receiver, player 
2. observes the sender's message and then takes an action affecting the 
sender's payoff as well as his own. For concreteness, the sender may be 
thought of as a seller, the receiver as a buyer. The sender's type 9 € 0  
can be thought of as the quality of the product and the receiver's action. 
a € A. as the quantity purchased or the total price paid. With this 
interpretation in mind the following is assumed:

• There is a finite ordered set of sender’s types. 0  = {ft1.....9h } C
[0.1] (9k < 9k+1) and a continuum of receiver’s actions .1_> = 
[0. +oc).

• The set of feasible messages for each type 9 6 0  is

M(9) = {m £ 2e : 9 € m}.

M  Usee A/(0) is the set of possible messages.* * * 36

• The sender's payoff u : 0  x ,42 —> /? is strictly increasing in its 
second argument.

• The receiver’s expected payoff i’(7r, n2) := Y.o n(9)v(9. a2) is such 
that there is a well-defined best reply function DR : A (0) — .4 2 
satisfying the following weak monotonicity property:

7r' ^  7r" A max Supp(n') < min Supply") = >  BR(n') < BR(n")
( 1 )

3“This model of information transmission is borrowed from Grossman and Hart
(1980). See also Okuno-Fujiwara et at. (1990). Bolton and Dewatripont (1997, Chap­
ter 5) and the references therein.

36More generally, it is suffices to assume that M  is rich  in the following sense: 
V(? € 0 ,  3 m  6 M(9), 0 =  minm.
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(standard conditions such as supermodularity of payoff in (fl.a2) 
imply the weak monotonicitv property (1 )).

Fix any Bayesian game obtained from this model by assuming a 
strictly positive common prior on 0 . It can be shown that any Bayesian 
perfect equilibrium must satisfy full disclosure, that is, for all messages m. 
the receiver’s chooses a = BR(min m) and no type 9 sends a message m 
with minm < 9. Full disclosure is also implied by strong rationalizability 
assuming the following restrictions on conditional beliefs:

• The (first order) beliefs of the sender are unrestricted. The re­
stricted set of conditional systems A2 is characterized by a mild 
skepticism condition: the receiver never rules out the lowest type 
consistent with a given message, that is,

A2 =  {p2 : Vm £ M, p2(min m | m ) > 0}.

Let us consider the first few steps in the strong A-rationalizability 
solution procedure. (1) First we eliminate all the receiver’s strategies 
that are not sequential best responses to some p2 £ A2. (2) Then we 
eliminate, for each type 9, all the messages m £ M(9) with m ^  {0} and 
max m = 6. The reason is that mild skepticism and weak monotonicitv 
imply that a rational receiver would respond with a higher action if type 
9 disclosed sending message {6}. (3) Now apply the rationalization prin­
ciple (forward induction): since no message m is inconsistent with steps
(1) and (2) (it could be sent by type 9 = min m), the receiver must be 
certain, conditional on every m, that (i) the sender is rational and (ii) the 
sender is certain that the receiver is rational and has mildly skeptical be­
liefs. Thus, by step (2), the receiver beliefs must satisfy //2(maxm|m) =  0 
unless m is a singleton; any strategy s2 such that s-2(m) =  Bfi(maxm) 
for some non-singleton m  is eliminated. (4) Now eliminate, for each type 
9, all the messages/sets m  containing at least three elements and such 
that 9 is either the highest or second-to-highest element of m, because 
9 would induce a higher response by disclosing (the argument here is
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similar to step (2)). Continuing this way (for exactly 2A' — 1 steps) we 
obtain the following result:3.

P roposition  9 Every strongly A-rationalizable profile (((O'.m1).....
(6K, m I<)), S2) satisfies full disclosure: for all k =  1..... I\ and m G M .
6k =  m inmk and sfim ) = BR(m inm ).

The argument above is similar to an intuitive “unraveling” argu­
ment used to show why a perfect Bayesian equilibrium must satisfy full 
disclosure (see e.g. Chapter 5 of Bolton and Dewatripont (1997)). The 
compellingness of this argument is due to its inductive structure. But 
a rigorous proof of the equilibrium result, one way or the other, has to 
proceed by contradiction and therefore is less transparent .

Note also that more general Bayesian extensions of the given eco­
nomic model (whereby Harsanyi-types and payoff-types do not coincide) 
have perfect Bayesian equilibria which satisfy mild skepticism, but do 
not satisfy full disclosure.37 38 By Proposition 6. this implies that weakly 
A-rationalizable strategies need not satisfy full disclosure. This is not 
surprising since weak rationalizability does not capture forward induc­
tion reasoning and rationalizing the sender message is crucial for the 
proof of Proposition 9.

5.3 C ostly Signaling

Consider a standard game-theoretic version of Spence’s model of job 
market signaling with two types of workers (see e.g. Cho and Kreps

37A rigorous proof is available by request and can also be found in Battigalli (1995).
38Here is a very simple example: There are two Harsany-types for the receiver. t2 

and fj, while Harsany-types coincide with payoff-types for the sender. The "interim" 
beliefs are TA(f2 ) =  1 and P2 (6 k\t2) =  1 / K  =  P2 (0k\t2) for all k (these beliefs 
are consistent with a common prior with strictly positive marginal on 0 .  that is. 
P {8 k, t2) =  l/'A' for all k). The posterior beliefs of type t.'2 satisfy p(min m\m, t'2) =  1 
for all m. The posterior beliefs of type t2 are uniform: y ( 8 k\m ,t2) =  l / # m  iff 8 k £ m. 
Each type 9k chooses message {#* } and, of course, each type t2 chooses a sequential 
best response to p f \ - , t 2 ). This a perfect Bayesian equilibrium where the strategy of 
t2 does not satisfy full disclosure.
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(1987)j. Player 1, a worker of type O' or 0", with 0 < O' < 0". chooses an 
education level e £ [0, +oc) and has payoff function u(0.c. w) = w -  “ p 
with g differentiable, strictly increasing, and strictly convex. Player 2. 
a "representative firm.” observes e. and chooses the wage if £ [0.+x.). 
Player 2's payoff is v(0. e. w) = — (eO — w)2 and thus she "rationally” sets 
the wage equal to the subjectively expected value of cO conditional on <.

The restricted set of beliefs for player 1. A 1, is the set of (prior) 
probability measures p 1 (■ | S2) £ A (S2) with countable support. As for 
player 2, we assume that A2 is the set of monotonic, conditional proba­
bility systems, that is. the set of p2 such that p2{6"je), the conditional 
probability assigned to the high type, is non-decreasing in e. Countabil­
ity of supports is merely a technical assumption to simplify the analysis. 
Monotonicity is similar the “plausibility” property postulated by Kreps 
and Wilson (1982) in their analysis of reputation and entry deterrence.

Player 2’s strategies can be represented by functions 0(e) giving the 
wage per unit of education. Therefore best responses to beliefs in A2 are 
in one to one correspondence with the set of non-decreasing expectation 
functions 0(e) with range [O',0"). Let

fi(l, A) =  (R+)l#' s"l : e" > e' =>• 0(e") > 0(e')}.

0(1. A) is the set of player 2’s (1, A)-rationalizablc strategies represented 
as contingent choices of wage per unit of education. Player l ’s (1,A)- 
rationalizable beliefs are summarized by her expectation of player 2’s 
expectation of 0 conditional on the chosen education level e. Let this 
second-order expectation (which coincides with the expected wage per 
unit of education) be denoted by 0(e). Assuming that player 2 is a 
maximizer (expected loss minimizer). player 1 expects to get wage e0(e), 
with O(-) £ 0(1, A ).39 At a subjectively optimal choice of education for 
type 0. say e~. O(-) must be continuous from the right and the marginal

39Giveu belief po(- | So) about player 2 with countable support {s jD , ..., s g p ) , ...}
and correspondig salaries per unit of education {i>x(-) ,__t9fc(-),...}, let p k =  p k(sk \
S2). Player l ’s expected wage conditional on e is /A,So(e) =  e p k\tk{e) =  e.x9(e). 
Since for each k, tfk(-) is non decreasing with range in [ff. 9"), t?(■) must have the same 
properties.
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rate of substitution M RSlO .c*) =  g m u s t  satisfy the first-order 
condition

M RS(0. e*) > d (e ')+ e ’ ■ . (2)
(It

where is the right-derivative of t?(-) at e' .40

As in the previous subsection, we focus on strong A-rationnhzabilitg. 
In fact, it is well-known that many patterns of behavior are consistent 
with Bayesian perfect equilibrium, and hence, a fortiori, with weak ra- 
tionalizability, if no forward induction criterion is applied.

Figure 3

40More generally, it is the right-limsup of the incremental ratio of t)( ) at e~.
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e(0") e(0’)

Figure 4

It turns out that the set of strongly A-rationalizable strategies de­
pends on how close O' and 9" are to each other. In particular, it depends 
on the relation between the following numbers (see Figures 3 and 4):

• e*(9) = arg maxe>o u(9, e. Be). 9 = 9', 9" (complete information 
choice),

• e (9) =  argmax£>ou(#.e.(?e). 9 ^  9,

• e(O') such that u(9',e(9'), 9"e(9')) = u(9', e*(9'), 9'e"(0')) and e(9") 
such that u(9",e(9"),9"e(9")) = u{9",e(9"),9 'e(9")),

• e{9") such that u{9", e(9"), MRS{e(9"))-e(9")) =  u{9", e(9'),9"e(9')).

If 9' and 9" are not too close to each other, then e(9') < e"(9"). 
Note that strict monotonicity and strict convexity of the disutility of 
education and the single crossing property imply

e*(9') < e (O') < e(9') < e(9"),
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e’(O') < e(9") < ê<0") < e’(ff') < e(9").

P roposition  10 The set of A-rationalizable choices of education for 
each type is as follows: I f (a) e (9") > ë(O') or(b)c (6") < ê(9‘) < t ’(9"). 
then each type 0 G {O’. 0"\ chooses the same level of education as in tht 
complete information model, that is. e"(9). If (c) c(B') > r*[9"). then 
each choice e € \c:(9").c-.(9')\ is rationalizable for both types and c’(9r) is 
also rationalizable for type 9'.

Proof. Any education level can be justified as a best reply to some 
belief. Thus E ,(1,A ) = E ,. This implies that T.o(k + 1,A) = Eo(A\ A), 
for k odd: and E,(A- + 1 , A) = E,(A. A) for k even. Let f>(A. A) denote 
player 2’s (k , A)-rationalizable choices of wage per unit of education. In 
general (k. A)-rationalizable beliefs for player 1 can be summarized by 
some function 9(-) G Q(k, A) giving the expected wage per unit of educa­
tion and having the same properties of player 2’s (k — 1 , A)-rationalizable 
expectation functions. Let Si(k. A . 9,) denote the set of strongly (k .A )- 
rationalizable strategies for type 9, of player i. Then

5,(2, A,#') =  [e*(0'),e(6>')], S ,(2. A .9") =  [e (9").e\9")\.

To see this, first note that for any conjecture t?(-) € 0(1, A) about player 
2, the first order condition (2) for type 9' is necessarily violated for ev­
ery e* < e*(9') because strict convexity of the disutility of education, 
monotonicity of d(-) and 9(e) > 9' imply

M RS(9',e .*) < M R S(9 ',e’(9')) =  9' < tf(e*) +  e* •
dc

No education e > e(6') can be justified for 9' because, since 9(e) < 9" for 
all e, type 9' would get a higher expected utility by choosing e*(9'). Every 
e* G [e*(f?'),e (0')] is a best response to the (1, A)-rationalizable constant 
conjecture 9(e) = M R S(9 ',e*) G \9'.9"). Ev'ery e* G (e (9'),e(9')\ is a 
best reply to the (1 , A)-rationalizable conjecture

•S/ s f 9' i f  e < e*
i f  e > « -  ■ <3>
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S](2. A.#") is obtained in a similar way. Using forward induction and 
monotonicity, the (2. A)-rationalizable beliefs of the firm are (monotonic 
and) such that

f 0 i f  e < e (8"). e < e(8' 
1  1 i f  e> c '(6 "). e > e(8')

Thus one obtains

f2(3, A) = 8(-) 6 12(1, A) : 8(e) =
8' i f  e< e '(8 " ), e < e(8') )
8" i f  e >  e(8"), e > e(O') J '

At this point the analysis must proceed on a case by case basis. Here we 
consider only case (a). The other cases are analyzed in the Appendix.

C ase (a): e (8") > e(8'). In this case e*(8), 8 = 8'. 8", is the unique- 
best reply for type 8 to every right-continuous conjecture 8(-) € 12(3. A). 
Non-right-continuous conjectures in f2(3, A) either have no best reply at 
all or have e*(8) as the unique best reply. Thus the unique strongly 
(4. A)-rationalizable action for tvpe 8 is e‘(8), 8 = 8', 8". The strongly 
A-rationalizable strategies for player 2 are represented by functions in 
the set

Q(oc.A) = 12(5. A) tf(-) € f2(3. A) : 8(e) = 8' i f  e < e*(8') 1 
8" i f  e>e*(0") j '

6 C onclusions

We argued that Harsanyi’s analysis of games with incomplete informa­
tion is in principle very flexible, but for reasons of tractability most of 
its applications to economic models rely on questionable and non trans­
parent assumptions about players' interactive beliefs, such as the com­
mon prior assumption and/or the conflation between pavoff-types and 
Harsanvi-types. .4 priori, it is often not clear whether these assump­
tions are crucial. But in order to remove them and yet apply Harsanyi’s
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analysis one would have to deal with mind-boggling Bayesian games fea­
turing a universal type space, i.e. including all the conceivable infinite 
hierarchies of beliefs. Furthermore, unlike the Nash equilibrium concept, 
if there is genuine incomplete information we cannot justify the Bayesian 
equilibrium concept as a limit outcome of learning in repeated strategic 
interaction.

In this paper we provide a different, but related methodology. The 
primitives of our analysis are the sets of conceivable payoff-types, the 
(parametric) payoff functions and the feasibility correspondences charac ­
terizing a dynamic game with incomplete information. We may also take 
as given some extraneous restrictions on players' (first order) beliefs, but 
there is no need to specify a type space. In the first part of the paper we 
provide inductive definitions of a weak and a strong version of the ra tio  
nalizability solution concept. Weak and strong rationalizabilitv coincide 
in static games. In dynamic games strong rationalizabilitv incorporates 
a forward induction principle, weak rationalizabilitv does not. These so­
lution concepts can be given a rigorous epistemie axiomatization. which 
is only briefly summarized in this paper. Existence and regularity results 
arc provided for “simple,” but possibly infinite games. Equivalence' with 
iterated dominance procedures is proved for finite games. It turns out 
that, as it should be expected, w'eak rationalizabilitv characterizes the 
set of all the Bayesian (perfect) equilibrium outcomes obtained by arbi­
trarily adding a type space a la Harsanvi to the given model. While the 
solution concepts have been defined for games with genuine incomplete 
information, they can be meaningfully applied to models of asymmetric 
information featuring an ex ante stage. In particular, the proposed solu­
tions make sense for games representable with the “prior lottery model,” 
provided that the statistical distribution of characteristics in the popula­
tion of potential players is unknown. In the second part of the paper we 
apply weak and strong rationalizabilitv to some economic models with 
one-sided incomplete information deriving results about reputation, dis­
closure and costly signaling.

The proposed methodology has several advantages with respect to 
the traditional one. First, the inductive solution can be computed with­
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out specifying an epistemic type space. Second, assumptions about in­
teractive beliefs are typically weaker, more intuitive and transparent. 
Third, we can test the robustness of the results of the received Bayesian 
theory with respect to the specification of the type space. Fourth, the 
applications show that looking at rationalizable outcomes may clarify 
some aspects of strategic thinking that are overlooked or even obscured 
by standard equilibrium analysis.

7 A pp en d ix

7.1 Incom plete Inform ation Games: Feasibility Cor­
respondence and Topological Structure

The sets of feasible actions for a given state of Nature 9 and (feasible) 
history h are derived from the feasibility correspondence Ft’(-) : © —* 2A‘ 
as follows:

A(0,h) = {a e A : (h ,a) e n ‘(9)},

.A,($i,h) — {a; G A, : 3a_j G-A_j,3<Li € 6 A((9,,9-i),h)}.

The feasibility correspondence satisfies the following properties (recall 
that A “ is the set of finite or countably infinite sequences of action pro­
files):

(1) for every h € A * and 9 e 0 . if h € H ’(9), every initial subsequence
(prefix) of h belongs to ‘Hm(9), in particular, <t> € 'H‘(6) for all
9 e G,

(2) for every infinite sequence h* € .4^ and every 9 G 0 , if for every
finite initial subsequence h of /i", h G H ’(9), then h* G 'W{9),

(3) for every 9 = (9,)iGn G 0 , h G A ”

A(9,h) = U .M 9 i,h),
i SAT

A(9, h) = 0 if and only if for all i G N, A,(9i, h) = 0.
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We endow A * and the set of outcomes Z  c  0  x A" with the following 
metrics dA- and dZ'- Recall that 0 , and A t are subsets of R '"' and 
R n‘ respectively (i G N ). Let d*. be the Euclidean metric in R* and 
m = n — H,€.v n\- Denote by ((h) the length of a history
(((h) =  oc if h is an infinite history) and let a ‘(h) be the action profile 
at position t in history h (t < ((h)). If ((h) < ((h1), then

e(h) e(h')
dA.(h .h l) = Y . ( 1/ 2y dn(^t(h ),a t(h '))+  Y .  ( l / 2)‘

«=1 t=C(h)+ l

(the second summation is zero if ((h) =  ((h')),

dz ((0, h), (O', h')) =  dm(0,0') + dA. (h, h').

dA• is the natural metric for games with discounting. It can be checked 
that (A*,dA-) and (Z ,d z)  are complete, separable, metric spaces.

The sets of strategies and strategy-type pairs are endowed with 
the “discounted” sup-metrics dsit d ^  and dZj (i 6 JV, I  ^  J  C N, 
S j  =  riiej Si):

d s i^ s 'i )  =  £ d / 2 ) ‘ [ SUP dni(si(h),s'i(h ))\ ,

d^((9i,Si), (0',s ') )  =  dm,(&,#') + dSi(si,s'i), 

d-Zj(oj,a'j) = Y ,dX i to ,  <*,')•
t€J

7.2 Proofs

P ro o f of Lem m a 1. Let St(h) be the set of strategies consistent with 
history h. Clearly Si(h) is closed. Since

Z i(h) = {(0i lsi) : s i e S i(0 )n S i(h)},

we only have to show that Sj(0j) is upper-hemicontinuous in Suppose 
that (0 i,S i) —> (0i,Si) and sf 6 £,(#*) for all k. Then for all h' e H, 
Si(h') —> Si(h') and sf (h) e At(0f, h') for all k. Since is continuous,
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each Ai(-.h') (h1 € Ti) is also continuous. Therefore for all h' £ H. 
s,(h') € Ai(9„h') and s, £ S,(0,). ■

P roof o f  Lem m a 2. In a simple game 0  and A  are compact and 
either A  is finite (case (a)) or Ti is finite (case (b)). If .4 is finite. 5  is a 
totally bounded, complete metric space. Therefore S is compact. If Ti is 
finite. S is topologically equivalent to a compact subset of a Euclidean 
space. In both cases E C © x S  is compact. By Lemma 1 each E (li) is 
closed, hence compact.

We consider the rest of the proof for case (b) (A compact, fi­
nite horizon, finite sets of feasible actions through the second to last 
stage). The proof for case (a) is similar. Since E*(/i) is the graph of 
the correspondence S ,(',h), this correspondence is nonempty-compact- 
valued and upper-hemicontinuous. Now we show that it is also lower- 
hcmicontinuous. Fix h G Ti and suppose that 0* —* 0, and s, £ S,(6,.h).
Bv Assumption 0, each Ai(-.h'). (h1 £ Ti) is continuous, hence lower- 
hemicontinuous. Therefore we can find a sequence of actions 
such that akh, —» Si(h') and akih, £ A,(6k.h'). Let sk(h') = akh, for all 
h' £ Ti. By construction sk £ Si(0,) and (sk)^=] converges pointwise to 
.s,. Since Ti is finite sk —- s,. If h' h is a prefix of h. then by assump­
tion all .4j(0f. /)') and Aj(0,.h') are finite. Thus, by continuity of A,(-. h'), 
A,(9k,h') = Ail$,.h') and sk(h') = s,(/i') for k large. This implies that 
sk £ Si(0k,h). Therefore S,(-,/i) is lower-hemicontinuous.

The outcome function : E —<• Z  is continuous: suppose that 
(0f .s f) j6,v converges to (0;, s t)tex,  then for k large sk and s induce the 
same action profile through the second-to-last stage and in the last stage 
the action profile induced by sk converges to the action profile induced by 
s. Therefore the strategic payoff functions Ui =  are also continuous 
and (bv compactness of E) bounded.

Since S,(-. h) is nonempty-compact-valued and continuous and Ui is 
continuous and bounded, the conditional expected payoff l Tt (0t, si; p '(-|E_,(/*)) 
is always well-defined and continuous in (0!..si,p!) and the correspon-
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donee
ri(e,.fj',h) =  arg max V, ($t. s„ 

a,es,(e,.h) '

is nonempty-valued (for h 6 /H{61)) and upper-homieontinuous in (0,.p').
By a standard dynamic programming argument it can be shown that 
r,(#;,p ') is nonempty. We show that r,(-.-) is upper-hemicontinuous. 
Suppose that (0f,//••*, s*) —* (6,.p'.Sj) and. for all k. sf c 
Since the game is simple, for A' large sf and s, prescribe the same ac­
tion through the second-to-last stage, which implies that =-

Si). This and upper-hemicontinuity of each correspondence r, (•. •. h)
(h €  H )  imply that, for each history h €  H ( 0 , . S j ) ,  s, €  /•;(<?,, p ' . / i  )• 

Therefore s, e rt(8,, pi'). ■

The following result summarizes Propositions 3.5 and 3.C.

P roposition  11 Suppose that A  and A ' are regular. E is compact. r,(-, ■) 
is nonempty-valued and upper-hemicontinuous and A ' C (A1)' for every 
player i. Then for every player i and all k = 0 .1 ..... oc.
(a) the setsW i(k .A ) andT,i(k. A) of weakly and strongly (k. A)-rat ionalizabh 
profiles are nonempty and compact with proja IT,(A'. A) =proje ,E,(A:. A) = 
0 j. the sets A,A(B’i(A. A)) and <fr'(k.A) are nonempty and compact as 
well;
(b) E<(fc. A) c  IT,(Ay A),
(c) W,(k. A) C Wt(k. A');
(d) H'i(oc, A) x Wy(oc. A) is the. largest measurable subset F, x F2 c  E 
such that

Fi x F-2 = p, (A^(F2)) x p2 (A^(Fi)) .

P roof. First note that compactness of E and regularity of A imply that 
each set A1 is compact as well. Then observe that for every measurable 
subset 0 7̂  F_; C  E_; such that proje =  0_, the following holds:

0 {p‘ € ABl(E_t) : Vh € W ,F_,nE_,(/0 #  0 =s /ii(£_ i|E_j(ft)) =  l}nA ' C

W  £ As’(E_i) : p‘(F_i|E_,) =  1} n A’ =  AA(F_j);
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nonemptiness follows from measurability and the fact that, since proje 
0_, and A is regular, we are taking the intersection of nonempty sets 
characterized by logically independent properties. The inclusion holds 
because E_i(<p) =  E_, and £1* fl E_i(<z>) ^  0. The last equality is true 
by definition. Finally note that (a) , (b) and (c) are true by definition 
for k = 0. Assume that (a), (b) and (cl hold for all k — 0. ...,n.

(a, n+1) By the inductive hypothesis, the argument above implies 
the sets of weakly and strongly (n, A)-rationalizable beliefs A^(lF_,(n. A )) 
and

n
$*(n.A) =  :

k=0
V/! € H, E_,-(/i) fl E_,(A\ A) ^  0 => p'(E_i(A-, A)|E_,(/t)) =  1} 

are nonempty and compact.

Since ri(-, •) is a nonempty-valued, upper-hemicontinuous and 0 , is 
closed, each set p*(/T) = U«,ee,{^} x ^(0 ,,p ') is nonempty and closed 
and correspondence pj(-) is upper-hemicontinuous. Therefore the sets of 
weakly and strongly (n + 1, A)-rationalizable pairs

p, (Ak(H -,(n .A )))

and
E,(n + l,A ) =  p , ( $ V A ) )

are nonempty and compact. Furthermore, nonemptiness of i\(-, •) implies 
that their projections on 0 , coincide with 0 ,. This proves that (a) holds 
for all nonnegative integers k. Clearly, compactness and the projection 
property hold also for k = oo. Since the sequences of weakly and strongly 
(A:, A)-rationalizable sets are nested, nonemptiness of

U’(oc, A) =  H  Wi(k, A)
k >  0

and
E i(oc,A )=  D ^ ( fc.A)

*>o
follows from the finite intersection property of compact sets.
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(b. n+1) By the inductive hypothesis X_,(n. A) C U’_,-(?i.A) and 
both sets are measurable and nonempty. Therefore

A*A(E_i(fc. A)) c A k(H -<(*•*))

and

V (k .  A )  C { p ' e A ' :

V/i e H, £_,(/i) D E_i(n. A) ^  0 =+ p '(E_y(n. A)|£_,(/i)) = 1}

cA k(E-,(LA )).

Thus we obtain
£ i(n +  l,A ) =  pi(* '(n .A )) C

P, (Aji (E_i(n, A))) C p, (AX(BT,(n. A))) = lf,(n  +  1. A).

Clearly the inclusion holds in the limit as k —♦ oc.

(c, n+1) By the inductive hypothesis and part (a) WT,(n,A) C 
lT_i(n. A') and both sets are measurable. By monotonicity of operator 
p, o.V(-) we obtain

W,(n +  1. A) =  p, ( A A ) ) )  c  

p, (A^(BT,(n. A '))) C p, (A^(UC,(n. A'))) =  lT,(n +  1. A').

(d) (The following argument is a simple generalization of the proof 
of Proposition 3.1 in Bernheim (1984).) We first show that 11’!(oc. A) x 
W2(oc. A) contains every “fixed set” F\ x F2. By definition F\ x F2 C 
Wi(0,A) x W2(0. A). Suppose that F\ x F2 C W7i(F A ) x W2(fc, A). 
By part (a) each set Wi(k, A) is measurable. Thus, monotonicity of the 
operator p, o A^(-) on the Borel sigma algebra of XL; (i =  1,2) implies

F, x F2 =  Pl (AX(F2)) x p2 (A i(F ) )  c  

Pi (A^(W2(fc,A))) x p 2 (A^(M71(fc,A))) =  W x(k + l.A ) x W2(fc +  1,A).
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Therefore

Pi (A i( ir2(oc,A))) xpa(Ai(H*,(3C.A))) C H i(oc.A ) x H'aCx.A).

Now suppose that a, G H'j(oc, A). Then there exists a sequence of CPSs 
(p!>)£_0 such that for all k, p lk G A', p1,*(M,_,(A\ A)|E_t) = 1 and a, G 

p ,(p 'k). Since AB,(E _ j is compact, we may assume w.l.o.g. that p,k — 
p'. Since A! is closed, p* G A'. Furthermore, it must be the case that 
p!(M -i{k- A)|E_*) =  1 for all k (otherwise, p’ * could not converge to p ‘) 
and thus (by continuity of the measure p'(-|E_,)) p'(lT_,(oc. A)|E_i) = 
1. Since Pi is upper-hemicontinuous, a, G p,(p!). This shows that

ir,(oc, A) x i r 2(oc. A) C p, (A^(U2(oc. A))) x p2 (A ^ lF ^o c . A))) .

R em ark  3 The the proof of part (b) uses only the fact that the sets 
of weakly and strongly (k. A )-rationalizable profiles are measurable and 
nonempty. The proof of part (c) relies only on measurability of the sets 
of weakly (k. A )-rationalizable profiles.

P ro o f of P roposition  6. Recall that we are assuming no extrane­
ous restrictions on beliefs. The set of weakly A-rationalizable strategies 
for player i is denoted Wi(k) and the set of CPSs assigning prior proba­
bility one to some subset B_, C E,. is denoted A‘(B_j).

(1) We show that every profile realizable in a weakly perfect Bayesian 
equilibrium (b,g) of any Bayesian extension Br =  (r, (Ej)ie\ ,  (7()l€/v, (Pi)iS/v) 
is weakly rat ionalizable. Let Ef be the set of realizable pairs given b, that 
is.

£? =  {(0„s,) : 3e,.Si = 6,(0*.e{)}.

Bv definition.

E? C E , = IT,(0), g,(Tt) C Ab‘(E_;) =  A*(H'-,(0)), i = 1,2.

Suppose that for each i. Ef C W Jk) and gi(T{) C A'(lF_,(7c)). Since 
(b,g) satisfies weak sequential rationality, the inductive hypothesis yields

£? C p,(g,(Tt)) C Pi(A'(H'_j(fc))) = w,(k + 1) ,  i =  1, 2 .
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The inclusion above and weak consistency of (ft. g) yield

gi(7 i ) c  A’fS'L.Oc A \ \ v - , ( k  + i))

as desired (note that and W’_j(fc + 1) are both measurable).

(2) We construct a Bayesian extension Bp and a weakly perfect 
Bayesian equilibrium (ft,p) such that W,(oo) =  E*1. Since T is simple. 
Proposition 11 (d) yields

Wq(oc) x W2(oc) =  p, (AI(IT2(oc))) x p, (Aa(H i(oc))) .

Therefore, for each (ft,s,) € IPftoc) there is a corresponding belief 
9i{0i,st) € A'(W_j(oo)) such that s, € r,(ft, gi(0t, s*)). Since r, is an 
upper-hemicontinuous correspondence, we may assume without loss of 
generality that function p* is measurable. Bp is constructed as follows: 
for every i,

• Ei = 5,, T, =  Hq(oo),

• for all ti 6 Ti, B_j C T_, (measurable) p,(t,)(B_i) =  p,(<j)(B_i|E_j).

By Proposition 11 (a), Ti is nonempty compact and proje(T, = 
i =  1.2. Thus Bp is a well-defined Bayesian extension of T. Let 
bt(0,,Si) =  Si for all ( f t ,S i )  € T,, i = 1,2. b, is obviously measurable. 
Weak sequential rationality and weak consistency are satisfied by con­
struction. Therefore Br is indeed a Bayesian extension of T and (ft, g) is 
the desired weakly perfect Bayesian equilibrium. ■

P ro o f of P roposition  7. By Proposition 11 (b) we only have to 
consider the relationship between weak rationalizability and dominance. 
Take an arbitrary finite game. If (9,,Si) e pftp*), then s, is a best reply 
to the (prior) belief p!(-|E_i) for type ft. This implies that s, cannot be 
strictly dominated for type ft. Thus for every rectangular subset B e  E

Pl(\\B2)) x p2(A2(B1)) c  5(B).
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(a) If the game is static, then it is also true that

S (B )  C p,(A’(B2)) x P2(A2(B,))

(the proof can be easily adapted from Pearce (1984. Lemma 3)) and a 
standard inductive argument proves (a).

(b) If we assume that the game has no relevant ties, then H'( 1) C 
WP(E) (the proof can be adapted from Battigalli (1997. Lemma 3). Thus 
W (l) C 5(E ) n  WP(E) =  5W P(E). Suppose that

H'(n) C 5W ;(E).

Then
W(n  +  1) =  pi (A1 (W2(n))) x p2(A2(lC,(n))) C 

5(5Wp(E)) n Wp(E) = 5Wp+1(E).

This proves statement (b).

(c) In every perfect information game with private values, WP(E) = 
W(E) (Battigalli (1997, Lemma 4) shows this result for games with per­
fect and complete information, the proof can be easily adapted to cover 
the present more general case). Thus, if the game has no relevant tie, 
part (b) implies W (k) C 5W*(E) for all k 4' Suppose that

W (n) = 5W "(E)

and let (0\,S\,02, s2) £ 5W n+1(E). By the induction hypothesis and the 
definition of operator 5W , (#i, Si, #2, s2) G 5(E2)nH-’(E) C E£. Thus for 
each i, there are u', u" G A(E2) such that v'{W -t(n)) — 1, v" is strictly 
positive and s, is a best response to v' and v" for type 6l (Pearce (1984, 
Lemmata 3 and 4)). Construct G [A(E)]Bl as follows: for all h G H- 
B-i c  E_t(fr),

-  w iw y

41 Ben Porath (1997, Lemma 2.1) independently proved that, in generic games with 
perfect (and complete) information, IT(1) C W (£).
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where v = v ', if i/(E j(h)) > 0, and u = v" otherwise. It can bo 
checked that p' is indeed a CPS (p' 6 AB,(E_,)). p'(H _,(n)|E_,) = 1 
and (6,, 6 p,(p'). Thus (<?,,s,) £ U’,(n). ■

P ro o f of P ro p o sitio n  10 (b), (c).

Case (b): e (9") < e(9') < e*(9"). In this case S](4.A .#') = 
{e*(9')} U [e (9"), e(9')\ . In fact, any education choice e < c (9") reveals 
Player 1 as type 9' and can be optimal only if e = e*(#')• The latter 
is justified by any conjecture like (3) with e* > e(9'). Every choice 
e* € [e {9"),è(9')\ is justified by the (3, A)-rationalizable conjecture (3). 
5i(4, A, 9") =  {e*(0")} as in case (a). Thus the only (5, A)-rationalizable 
strategy for player 2 and (6, A)-rationalizable conjecture for both types 
of player 1 are given by the function

t?(e) 9' i f  e < e(9')
9" i f  e > ë{9') '

The best reply to i?(-) for type 9 is e*(9), 9 =  9', 9".

Case (c): e(9') > e*(9"). In this case S\{4, A,0') =  {e*(^')} U 
\e (9"),ë{9')\ as in case (b), but Si(4,A,0") =  [ê(9")),ë(9')}. In fact, 
by choosing e > è(9') player 1 is revealed as type 9". Thus any choice 
e* > ë(9') is dominated by e 6 (ë(9'), e*). Similarly, any e* < e(9') 
must be justified by a conjecture $(•) such that u(9", e*, 9(e*)e*) > 
u(9",ë(9'),9"ë(9')), i.e. the point (e*, ô(e*)e*) must lie on or above the 
9”— indifference curve through (ë(9'),9"ë(9')) (see Figure 4). Choices 
e* 6 \è(9"), e*(9")) are justified by (3, A)-rationalizable conjectures

[ 9' i f  e < e{9")
£ ( e ) = i  M R S(9",e*) i f  e 6 [ê(6>"), e*(6»")] .

( 9" i f  e > e*(9")

Choices e* € [e*(#"), ê(9')} are justified by (3, A)-rationalizable conjec­
tures (3). Choices e* < ê(9") cannot be justified by (3, A)-rationalizable 
conjectures: By way of contradiction, let d(-) be a (3, A)-rationalizable 
conjecture justifying e* < ê{9"). Since (e*,^(e*)) must lie above the 9"- 
indifference curve through (ë(9r), 9"ê(9')), 9(e*) > M RS(9", é(9")) (see
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Figure 4). MRS{0",e) is strictly increasing in e, thus MRS(e" .0") < 
MRS(ê(0"),9"). These inequalities jointly violate the first order condi­
tion (2j.

Therefore player 2’s A-rationalizable strategies and player l ’s ratio- 
nalizable conjectures are the functions â(-) 6 fl(3, A) such that i?(e) = O' 
if e < ê(0"), and 0(e) = 0" if e > ë(O'). which implies the thesis. ■
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