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Abstract

We argue that the rationalizability approach is particularly appropri-
ate to analyze games with genuine incomplete information. We define two
nested iterative solution procedures, which do not rely on the specification
of a type space & la Harsanyi. Weak rationalizability is characterized by
common certainty of rationality at the beginning of the game. Strong ratio-
nalizability incorporates a notion of forward induction. The solutions may
take as given some extraneous restrictions on players’ conditional beliefs. In
dynamic games, strong rationalizability is a refinement of weak rationaliz-
ability. Existence, regularity properties, equivalence with the set of perfect
Bayesian equilibrium outcomes and the set of iteratively interim undomi-
nated strategies are proved under standard assumptions. The approach is
illustrated by some applications to economic models including reputation,
disclosure and signaling.



1. Introduction and Overview!

In a n-person game of incomplete information some of the crucial elements govern-
ing strategic interaction — such as individual feasibility constraints, how actions
are mapped into consequences and individual preferences over consequences — are
represented by a vector of parameters 6 which is (partially) unknown to some play-
ers. For the sake of simplicity, let us assume that 6 determines the shape of each
player’s payoff function and that it can be partitioned into subvectors 64, ...,0,
whereby each player ¢« = 1, ...,n knows ;. We call 6 the state of Nature and 6; the
private information or payoff-type of player i. The form of the parametric payoff
functions w;(-, 0) — or, more generally, the form of the mapping I" associating each
conceivable state of Nature 6 to the “true” (but unknown) game G(6) — is assumed
to be common knowledge. In this paper we take this mapping 6 — G(0) as the
fundamental description of a strategic situation with incomplete information and
we put forward and analyze solution concepts associating to any such mapping a
set of possible outcomes. Our approach is related to, but different from Harsanyi’s
(1967-68) seminal paper on incomplete information games. Harsanyi’s Bayesian
model is now so entrenched in the literature that only a handful of “pure” game
theorists still pay attention to its subtleties. In order to motivate and better
understand our contribution it is useful to go through Harsanyi’s model in some
detail.?

1.1. Harsanyi’s Bayesian Model

As Harsanyi noticed, one way to provide a Bayesian analysis of incomplete in-
formation games is to endow each player with a hierarchy of beliefs, that is, (i)
a subjective probability measure on the set of conceivable states of Nature, or
first-order belief, (ii) a subjective probability measure on the set of conceivable
first-order beliefs of his opponents, or second order beliefs, and so on. In principle,
a complete description of every relevant attribute of a player should include, not

! This paper is a revision of Battigalli (1995). Helpful comments from Patrick Bolton, Gi-
acomo Bonanno, Tilman Borgers, Frangoise Forges, Faruk Gul, Marciano Siniscalchi, Juuso
Viliméki, Joel Watson and seminar participants at the University of Valencia, Northwestern
University, Caltech, McGill University, SITE (Stanford University), Université de Cergy Pon-
toise, University of North Carolina and European University Institute are gratefully aknowl-
edged.

2For thourough discussion of the Bayesian model see Harsanyi (1995), Gul (1996b), Dekel
and Gul (1997).



only his payoff-type, but also his epistemic type, that is, an infinite hierarchy of
beliefs. Furthermore, (infinitely) many hierarchies of beliefs could be attached to
a given payoff-type. This hierarchies-of-beliefs approach is mathematically fea-
sible and theoretically interesting (see e.g. Mertens and Zamir (1985) and the
related references mentioned below), but it does not seem to provide a tractable
framework to analyze incomplete information games.

Harsanyi’s (1967-68) contribution was twofold. On the one hand, he put for-
ward a general notion of “type space” which provides an implicit, but relatively
parsimonious description of infinite hierarchies of beliefs. On the other hand, he
showed how to analyze incomplete information games with the standard tools of
game theory. A type space can be defined as follows. For each player i and each
payoff-type 0; € O, (O; is the set of i’s conceivable payoff-types) we add a pa-
rameter e; corresponding to a purely epistemic component of player i’s attributes.
In general, different values of e; can be attached to a given payoft-type ;. This
way we obtain a set T; C O; x FEj; of possible attributes, or Harsanyi-types, of
player i. A Harsanyi-type encodes the payoff-type and the epistemic type of a
player. In fact, the beliefs of any given player ¢ about his opponents’ payoff-types
as well as their own beliefs are determined by a function p; : T; — A(T_;), where
T_; = [1;4 T;. It is assumed that the vector of functions (pi,...,p,) is common
knowledge. Therefore every t; € T; corresponds to an infinite hierarchy of beliefs:
the first order belief p} (¢;) is simply the marginal of p;(¢;) on ©_;; the (k+1)-order
belief implicit in ¢; is derived from p;(¢;) and knowledge of the n — 1 functions
pf(-), j # i, mapping the opponents’ Harsanyi-types into k-order beliefs. When
we add a type space on top of the map 0 — G(f) we obtain a Bayesian game.
A Bayesian equilibrium is a vector of behavioral rules b; : T; — S; (1 = 1,...,n,
S; is the strategy set for player i) such that for each player ¢ and each Harsanyi-
type t; = (0;,e;), strategy s; = b;(0;, e;) maximizes i’s expected payoff given the
payoff-type 0;, the subjective belief p;(6;,e;) and the (n — 1)-tuple of functions
b_;. Note that, for any fixed vector of behavioral rules, a vector of Harsanyi-types
(t1,...,t,) provides an implicit, but complete description of every relevant aspect
of the world: the state of Nature, each player’s subjective beliefs about the state
of Nature and his opponents’ behavior and each player’s subjective beliefs about
his opponents beliefs.

Within this framework, the players’ situation in a game of incomplete infor-
mation is formally similar to the interim stage of a game with complete, but
imperfect and asymmetric information whereby ¢; represents the private informa-
tion of player i about the realization of an initial chance move, such as the cards



player i has been dealt in a game of Poker. Harsanyi pushed the analogy even
further by assuming that all the subjective beliefs p;(t;) (¢ = 1,...,n, t; € T;)
can be derived from a common prior P € A(TIj_, T;) so that pi(t;) = P(:|t:).
In this case a Bayesian equilibrium simply corresponds to a Nash equilibrium
of a companion game with imperfect information about a fictitiuos chance move
selecting the vector of attributes according to probability measure P. This is
the so called “random vector model” of the Bayesian game. From the point of
view of equilibrium analysis we can equivalently associate to the given Bayesian
game a companion game with complete information whereby for each player/role
1 =1,...,n there is a population of potential players characterized by the different
attributes t; € T;. An actual player is drawn at random from each population i to
play the game. The joint distribution of attributes in the n populations is given
by the common prior P. This is the “prior lottery model” of the Bayesian game.

1.2. Drawbacks of Standard Bayes-Nash Equilibrium Analysis

Harsanyi’s analysis of incomplete information games has offered invaluable in-
sights to economic theorists and applied economists, but its success should not
make us overlook some potential drawbacks of this approach and of its standard
applications to economic models. These potential drawbacks are all related to the
following facts: (a) a Bayesian game provides only an implicit and (in general)
non exhaustive — or non-universal — representation of the conceivable epistemic
types; (b) representing a Bayesian game with the “random vector model” or the
“prior lottery model” blurs the fundamental distinction between games with gen-
wine incomplete information and games with imperfect, asymmetric information:
in the former there is no ex ante stage at which the players analyze the situation
before receiving some piece of information selected at random.

(a) Non-transparent assumptions about beliefs. We mentioned that
for every Harsanyi-type in a Bayesian game we can derive a corresponding in-
finite hierarchy of beliefs. This derivation makes sense if it is assumed that the
Bayesian game is common knowledge.> Mertens and Zamir (1985) shows that this
informal assumption is without loss of generality because (i) the space of n-tuples
of (consistent) infinite hierarchies of beliefs is a well- defined type space in the
sense of Harsanyi and (ii) every type space is essentially a belief-closed subspace

3If we regard the Bayesian game itself as a subjective model of a given player, then we
have to assume that this player is certain that everybody shares the same model (cf. Harsanyi
(1967-68)).



of the space of infinite hierarchies of beliefs, which is therefore a universal type
space.* This means that the class of all Bayesian models is sufficiently rich, but
whenever we consider a particular (non-universal) model, or a subclass of models,
we rule out some epistemic types. This corresponds to making assumptions about
players’ interactive beliefs, which are often questionable and — due to the implicit
representation of epistemic types — non-transparent.

For example, “agreement” and “no-trade” results hold for Bayesian models
satisfying the common prior assumption, but the meaning of this assumption as a
restriction on players’ hierachies of beliefs is not obvious.® For the sake of tractabil-
ity, applied economists often restrict their attention to an even smaller class of
Bayesian models by assuming that there is a one-to-one correspondence between
payoff-types and Harsanyi-types. These strong and yet only implicit assumptions
about players’ hierarchies of beliefs may affect the set of equilibrium outcomes in
an important way. But we have a hard time reducing these assumptions to more
primitive and transparent axioms.

(bl) No ex ante stage and plausibility of assumptions about beliefs.
The formal similarity between Bayesian games and games with asymmetric infor-
mation may be misleading. We are quite ready to accept that in the “random
vector model” players assign the same prior probabilities to chance moves.® Sim-
ilarly, assuming a commom probability measure over players’ attributes is mean-
ingful and plausible, if not compelling, in the “prior lottery model.” For example,
it can be justified by assuming that the statistical distribution of characteritics in
the population of potential players is commonly known. But in games with gen-
wine incomplete information there is no ex ante stage and prior probabilities are
only a (convenient, but unnecessary) notational device to specify players’ infinite
hierarchies of beliefs. Thus, the common prior assumption and the conflation of
payoff-types and Harsanyi-types are much harder to accept.

(b2) No ex ante stage and learning. The lack of an ex ante stage also
makes the equilibrium concept more problematic. A Nash equilibrium of a given
“objective” game G may be interpreted as a stationary state of a learning process

*See also Brandenburger and Dekel (1993) and references therein. Battigalli and Siniscalchi
(1998) provides analogous results for infinite hierachies of systems of conditional beliefs in dy-
namic games of incomplete information.

5For more on this see Gul (1996b) and Dekel and Gul (1997). Bonanno and Nehring (1996)
“makes sense” of the common prior assumption in incomplete information games, characterizing
it as a very strong “agreement” property.

6For a discussion of the common prior assumption in situations with asymmetric, but com-
plete information see Morris (1995).



as the players repeatedly play GG. Furthermore, it is possible to provide sufficient
conditions such that learning eventually induces a Nash equilibrium outcome.”
We cannot provide a similar justification for equilibria of Bayesian games. Let 6
be the actual state of Nature in a game of incomplete information I' and recall
that G(0) denotes the “true objective game” corresponding to 0. Let us assume
that the players interact repeatedly. By the very nature of the problem we are
considering, we have to assume that the state of Nature 6 is fixed once and for all
at the beginning of time rather than being drawn at random according to some
i.i.d. process. By repeatedly playing G(6) the players can learn (at most) to play
a Nash equilibrium of G(#), not a Bayesian equilibrium of (some Bayesian game
based on) I'.%

1.3. Rationalizable Outcomes of Incomplete Information Games

To summarize what we said so far, in order to analyze an economic model with in-
complete information I' using Harsanyi’s approach we have to specify a type space
based on I' and then look for the Bayesian equilibria of the resulting Bayesian
game. The specification of the type space is hardly related to the fundamen-
tals of the economic problem and yet may crucially affect the set of equilibrium
outcomes. This raises several related theoretical questions. Can we analyze in-
complete information games without specifying a type space? Can we provide
an independent justification for the Bayesian equilibrium concept? Which results
of the Bayesian analysis are independent of the exact specification of the type
space? Is it possible to provide a relatively simple characterization of the set of
all Bayesian equilibrium outcomes?

The answer to these questions can be found in the literature on rationalizabil-
ity. Let us consider complete information games first, i.e. games with only one
conceivable state of Nature. The set of rationalizable strategies in a static game
with complete information is obtained by an iterative deletion procedure which
(in two-person games) coincides with iterated strict dominance (Pearce (1984)).
Rationalizability exactly characterizes the strategies consistent with common cer-
tainty of rationality (Tan and Werlang (1988)) and also the set of subjective
correlated equilibrium outcomes (Brandenburger and Dekel (1987)). Note that,

"In general, convergence is not guaranteed and, even if the play converges, the limit out-
come is a self-confirming (or conjectural) equilibrium, which need not be equivalent to a Nash
equilibrium. See Fudenberg and Levine (1998) and references therein.

8More generally, their pattern of behavior may converge to what Battigalli and Guaitoli
(1996) call “a conjectural equilibrium at 6.”



according to the terminology used so far, a subjective correlated equilibrium is
simply a Bayesian equilibrium of a model with a unique state of Nature and hence
with payoff-irrelevant Harsanyi-types.

This paper puts forward and analyzes some notions of rationalizability for
games with genuine incomplete information, but the proposed solutions are also
relevant for games with asymmetric information where the statistical distribution
of attributes in the population of potential players is not known. We focus mainly
on the analysis of dynamic games where players can signal their types and strate-
gic intent. But the basic idea is more easily understood if we consider static games
first. Consider the following procedure: (Basis Step) For every player i, payoff
type 6; and strategy s; in I', we check whether s; can be justified as a feasible best
response for 0; to some probabilistic beliefs about the opponents’ payoff-types and
behavior. If the pair (6;,s;) does not pass this test it is “removed.” (Inductive
Step) For every i, 6; and s; we check whether s; is a feasible best response for 6; to
some probabilistic beliefs about the opponents assigning probability zero to the
(vectors of) pairs (0 _;,s ;) removed so far. Note that (epistemic) type spaces are
not mentioned. The procedure depends only on the “fundamentals” of the eco-
nomic model. Not surprisingly, this solution is equivalent to an iterative “interim”
dominance procedure. Furthermore, it turns out that it evactly characterizes the
set of all possible equilibrium outcomes of the Bayesian games based on I'. It is also
easy to provide an epistemic charaterization ¢ la Tan and Werlang (1988) of the
rationalizable outcomes as those consistent with common certainty of rationality
(see Battigalli and Siniscalchi (1998) in the context of dynamic games).
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Figure 1

Let us see how the solution procedure works in a textbook example. Consider
a Cournot duopoly with one-sided incomplete information. The inverse demand
schedule P(Q) is linear and firms have constant marginal cost. The marginal
cost firm 1, ¢;, is common knowledge, but ¢y, the marginal cost of firm 2, is
unknown to firm 1. The range of conceivable values of ¢; is a closed interval strictly
contained in [0, P(0)] and containing ¢; in its interior. Both firms are expected
profit maximizers. Figure 1 shows the reaction functions for firm 1 (r1(gs)), for
the most efficient type of firm 2 (r3(6, 1)), and for the least efficient type of firm
2 (r9(8,q1))- In this model, there is no loss of generality in considering only best
responses to deterministic beliefs.” The first step of the rationalizability procedure

9This is true in all static games where, for each player i, (1) the utility function u; (8, s;, s_;)
is continuous and strictly quasi-concave in its second argument, (2) the strategy space S; is a



eliminates, for each type of each firm, all the outputs above the monopolistic
choice (e.g. r9(02,0) for type 6, of firm 2), which is the best response to the most
optimisitc conjecture about the opponent (assuming that the opponent might also
be irrational). In fact, all the eliminated outputs are strictly dominated for type
0; by the monopolistic choice of ;, while the remaining outputs are best responses
to some conjecture. In the second step of the procedure we eliminate, for each
type of each firm, all the outputs below the best reponse to the most pessimistic
conjecture consistent with rationality of the opponent. For example, for firm 1
we eliminate all the outputs below 7 (r(6,0)). In the third step we eliminate,
e.g. for firm 1, all the outputs above ry(r5(8,71(0)), which is the best response to
the most optimistic conjecture consistent with the opponent being rational and
certain that everybody is rational. In the limit we obtain a set of rationalizable
outcomes represented by the rectangle ABCD in Figure 1.

Let us compare rationalizable outcomes and standard Bayesian equilibrium
outcomes. The standard Bayesian model specifies the belief of player 1 about 65,
say m € A(O,). It is assumed that it is common certainty that 7 indeed represents
the belief of player 1. The Bayesian equilibrium strategy for player 1 is given by
the intersection between the graph of r,(-) and the graph of ry(E(0; ), -), where
E(6; ) denotes the expected value of 0, given 7. The set of Bayesian equilibrium
outcomes for all possible 7 € A(©,) is the parallelogram A’BC’D in Figure 1.
But if we consider all the possible specifications of a type space & la Harsanyi,
the set of Bayesian equilibrium outcomes coincides with the set of rationalizable
outcomes. !’

The procedure described above is relevant if we do not want to rule out any
conceivable epistemic type. However, it may be plausible to assume that players’
beliefs satisfy some qualitative restrictions. The iterative solution concept can be
easily modified to accomodate restrictions on first order beliefs (informally) as-
sumed to be commonly known. In the general definition of the solution procedure

closed interval of the real line, and (3) the set of conceivable payoff types ©; is compact and
connected.

10T he proof of Proposition 3.10 shows how to construct a type space such that, in the resulting
Bayesian game, each rationalizable outcome is a Bayesian equilibrium outcome. Here we provide
a simpler example. Assume that there are two epistemic types for each payoff-type. Thus
Ty = {t},#3} and Tb = O x {e}, e3}. Assume p; (¢1) is degenerate on (6, el), p1(¢?) is degenerate
on (,€3), and pa(f2, €l) assignes probability one to t] for all 65 and j. (These belief functions
are consistent with a “correlated” common prior.) In the Bayesian equilibrium where type ¢}
(t7) chooses the lowest (highest) rationalizable output for firm 1, all the points in the vertical
segments AD and BC are equilibrium outcomes.



these extraneous restrictions on players’ beliefs are parametrically given.

The analysis of incomplete information games is particularly interesting when
they have a dynamic structure, because in this case a player can make inferences
about the types and /or strategic intents of his opponents by observing their
behavior in previous stages of the game. As in the complete information case,
there are several possible definitions of the rationalizability solution concept for
dynamic games, corresponding to different assumptions about how players would
update their beliefs if they observed unexpected behavior. Here we consider two
nested solution concepts for (possibly infinite) multi-stage games with incomplete
information, called weak rationalizability and strong rationalizability. Rigourous
axiomatizations of these solution concepts involve the definition of extensive form
epistemic models and are given elsewhere (Ben Porath (1997), Battigalli and Sinis-
calchi (1998, 1999a,b)). Intuitively, weak rationalizability simply assumes that
players choose sequential best responses to their systems of conditional beliefs,
updating via Bayes rule whenever possible, and this is common certainty at the
beginning of the game. On top of this, strong rationalizability also assumes that
each player keeps believing that his opponents are rational even when they behave
in an unexpected way, provided that their behavior can be somehow “rationalized”
(a more detailed account is provided in Section 3). Thus, unlike weak rationaliz-
ability, strong rationalizability incorporates a forward induction criterion.

We apply the rationalizability approach to some economic models. In some
cases we are able to obtain the same qualitative results as in the more standard
equilibrium analysis based on the common prior assumption and/or the conflation
of payoff-types and Harsanyi-types. In other cases, such as the example above, we
obtain weaker results. In general, rationalizability emphasizes and clarifies some
aspects of strategic reasoning that are either ignored or made obscure by standard
equilibrium analysis.

1.4. Related Literature

The solution concepts developed in this paper extend notions of rationalizability
for extensive form games with complete information put forward and analyzed
by Pearce (1984), Battigalli (1996, 1997) and Ben Porath (1997). The idea of
using some notion of rationalizability to analyze games of incomplete informa-
tion is a quite natural development of Bernheim (1984) and Pearce’s (1984) work
on complete information games and it appears in some papers in the literature
(although several papers take for granted the common prior assumption and/or

10



identify payoff-types and Harsanyi-types). Battigalli and Guaitoli (1996) ana-
lyzes the extensive form rationalizable paths of a simple macroeconomic game
with incomplete information and no comon prior. This paper also puts forward
a notion of conjectural (or self-confirming) equilibrium at a given state of Na-
ture of an incomplete information game. Cho (1994) and Watson (1997) use a
notion of subform rationalizability to analyze dynamic bargaining with incom-
plete information. Watson (1993, 1996) obtains reputation and/or cooperation
results for perturbed repeated games under mild restrictions on players’ beliefs.
Battigalli and Watson (1997) qualify and extend Watson’s (1993) analysis of rep-
utation. Perry and Reny (1994) and Khaneman, Perry and Reny (1995) consider
some specific social choice problems with incomplete information and propose
extensive form mechanisms to implement desirable outcomes in iteratively un-
dominated strategies. Rabin (1994) proposes to combine rationalizability and
extraneous restrictions on players’ beliefs to introduce behavioral assumptions in
game theoretic analysis. Siniscalchi (1997a) applies the approach of the present
paper to the analysis of dynamic auctions. A different approach to incomplete
information games is proposed in Sdkovics (1997). He considers Bayesian models
with finite hierarchies of beliefs and puts forward a novel solution concept, called
“mirage equilibrium.”

1.5. Structure of the Paper

The rest of the paper is organized as follows. Section 2 contains the game theoretic
set up. Weak and strong rationalizability are defined and analyzed in Section 3
focusing on two-person games with observable actions. Existence and regularity
properties are proved for a class of “simple,” but possibly infinite games. We
define a notion of “weak Bayesian perfect equilibrium” and we show that weak
rationalizability characterizes the set of all weak Bayesian perfect equilibrium out-
comes. Finally, we extend to the present framework some known results relating
rationalizability and iterative dominance. Section 4 shows how the analysis can
be extended to m-person games with imperfectly observable actions. Section 5
applies these solution concepts to models of reputation, disclosure and costly sig-
naling. The Appendix contains some details about dynamic games of incomplete
information and most of the proofs.

11



2. Game Theoretic Framework

2.1. Games of Incomplete Information with Observable Actions

A game of incomplete information with observable actions is a structure
I'= (N, (0;)ien, (Ai)ien, H*(+), (ui)ien)
given by the following elements:*!
e N is a non empty, finite set of players.

e For each i € N, ©; C R™ is a non empty set of possible types for player i
and A; C R™ is a non empty set of possible actions for player i (R* is the
k-dimensional Euclidean space).

[ Let @ == HiEN @Z and A == HiEN Ai' Then

A= {g} U (Ljo At> ,

that is, A* is the set of finite and countably infinite sequences of action
profiles, including the empty sequence ¢, and

H(-): © — 24

(24" is the power set of A*) is a non empty-valued correspondence assigning
to each profile of types 6 the set H*(0) of feasible histories given . For
every history h € H*(0) one can derive the set A(0,h) = [[;cny Ai(0:,h) of
feasible action profiles. A history h € H*(0) is terminal at 0 if A(h,0) = ()
(every infinite feasible history is terminal). We let

H(O) = {h e A*: A(0,h) £ 0},

H(0;) ={h € A*:30_; € ©_;, A((0;,0_,),h) % 0},
H=JH(©)
0cO

respectively denote the set of feasible non terminal histories at 6, or for 6;,
and the set of a priori feasible non terminal histories.

' The following model generalizes Fudenberg and Tirole (1991, pp 331-332) and Osborne and
Rubinstein (1994, pp 231-232). The Appendix provides further details.

12



e Define the set Z of outcomes as follows:?
Z = {(0,h) : h € H*(0), A6, h) = B}

For all7 € N,
u; 1 Z— R

is the payoff function for player i (R denotes the set of real numbers).

Parameter 0; represents player ¢’s private information about feasibility con-
straints and payoffs. For brevity, we call 0; the “payoff-type” of player i. It is
assumed that I" is common knowledge. The array 6 = (6;);cn is interpreted as a
state of Nature; it completely specifies the unknown parameters of the game and
the players’ interactive knowledge about them. Player ¢ at (6, h) knows (;, h) and
whatever can be inferred from history h given that I' (hence H*(-)) is common
knowledge. Chance moves and residual uncertainty about the environment can
be modeled by having a pseudo-player ¢ € N with a constant payoff function.
The “type” 0. of this pseudo-player represents the residual uncertainty about the
state of Nature which would remain after pooling the private information of the
real players. Players’ common or heterogeneous beliefs about chance moves can
be modeled as extraneous restrictions on beliefs (see below).

Game I' is static if for all § € © and a € A(6,¢), (a) is a terminal history
at 0. Game I' has private values if, for all i € N, u;(6;,0_;,-) is independent of
0_;. A player of type 0; is active at history h if A;(6;,h) contains at least two
elements. I' has no simultanoeus moves if for every state of Nature 6 and every
history h € H(#) there is only one active player. In this case, I' can be represented
by an extensive form with decision nodes (0,h), 6 € ©, h € H(0) (pairs (6, )
are the initial nodes of the arborescence) and information sets for player i of the
following form:

I(Qz,h) = {(0“0_2,]1) . h € H(Qz,g_z)},

where 0, is active at h. Game I' has (incomplete but) perfect information if it has
no simultaneous moves and H*(6) is independent of §.'3

Note that the basic model I' does not specify players’ beliefs about the state of
Nature 6. This is what makes I" different from the standard notion of a Bayesian

12The feasibility correspondence is such that, if ((6;,0_;),h) € Z, then ((6;,6"_,),h) € Z for
all 0 ,.).

13Tn this case, I' can also be represented by a game tree (with decision nodes h € ‘H) featuring
perfect information and payoff functions v; : © x Z — R, where Z is the set of terminal nodes.

13



game. As mentioned in the Introduction, if we want to provide a general (albeit
implicit) representation of players’ beliefs about the state of Nature and of their
hierachies of beliefs, we have to embed each set ©; in a possibly richer set T; of
“Harsanyi-types” and specify belief functions p; : T; — A(T_;). For more on this
see section 3.4.

Turning to the topological properties of I', we endow A* and Z with the
standard “discounting” metrics (see the Appendix) and throughout the paper we
rely on the following assumption:

Assumption 0. A and © are closed, H*() is a continuous correspondence
and, for all i € N, u; is a continuous function.

2.2. Strategic Forms

A feasible strategy for type 0; is a function s; : H — A; such that s;(h) € A;(0;,h)
for all h € H(0;).** The set of feasible strategies for type 6; is denoted S;(6;) and

S.= U 5.6,
0cO
denotes the set of a priori feasible strategies. (By definition of H, for all h € H,
A;(0;,h) is nonempty. Therefore S;(0;) is also nonempty.)
The basic elements of our analysis are feasible type-strategy pairs: (6;,s;) is
a feasible pair if s; € S;(0;). A generic feasible pair for player ¢ is denoted o;
and the set of such feasible pairs for player ¢ is the graph of the correspondence

Si(+) 1 ©; — 25 e
Zi = {(91,81) € @1 X Sz 18 € 51(91)}

The sets of profiles of feasible pair for all players and for the opponents of a player
i are, respectively, ¥ = [[;en X; and X_; = [];,,; X;. Each profile o = [(6;, 5;)]ien
induces a terminal history (o) € H(f) and hence an outcome (*(0) = (0,{(0)) €
Z. Therefore, for each player ¢, we can derive the following strategic form payoff
function :

UZZU,LOC*Z—>R

Furthermore, for each a priori feasible history h € H we can define the set of
profiles of feasible pairs consistent with h:

Y(h) ={o € ¥: his a prefix of ((o)}.

4We let the domain of s; be H (instead of H(#;)) only for notational simplicity.

14



Clearly, ¥(¢) = 3. We let X;(h) denote the projection of X (h) on ¥;, that is,
the set of (0;, s;) such that strategy s; is feasible for type 6; and does not prevent
history h. It can be easily checked that, for all h € 'H,

S(h) = [T Silh) #0.

i€EN

The information of player i about his opponents at history A is represented in
strategic form by ¥_;(h), the projection of 3(h) on ¥_;.

We endow the sets ¥; (i € N) with the standard metrics derived from the
metric on Z (see the Appendix).

Lemma 2.1. For all h € H, ¥;(h) is closed.

2.3. Conditional Beliefs

Players’ beliefs in dynamic games can be represented as systems of conditional
probabilities. Let X be a metric space with Borel sigma-algebra S. Fix a nonempty
collection of subsets B C S\{0}, to be interpreted as “relevant hypotheses.”

Definition 2.2. (cf. Rényi (1956) and Myerson (1986)) A conditional probability
system (or CPS) on (X, S, B) is a mapping

W) S x B [0,1)

satisfying the following axioms:

Axiom 1. For all B € B, u(B|B) = 1.

Axiom 2. For all B € B, pu(-|B) is a probability measure on (3, S).

Axiom 3. Forall Ac A, B,C € B, AC BCC = u(A|B)u(B|C) = pn(A|C).

The set of probability measures on (3,S) is denoted by A(X); the set of
conditional probability systems on (2, S, B) can be regarded as a subset of [A(X)]?
(the set of mappings from B to A(X)) and it is denoted by A®(X). The topology on
Y and S (the smallest sigma-algebra containing this topology) are understood and
need not be explicit in our notation. It is also understood that A(X) is endowed
with the topology of weak convergence of measures and [A(Z)]B is endowed with
the product topology.
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A relatively simple way to represent the beliefs of a player ¢ in a dynamic
game with incomplete information is to consider the set AP (¥_;) of conditional
probability systems on (3X_;, S_;, B;), where ¥_; is the set of type-strategy profiles
for his opponents, S_; is the Borel sigma algebra of ¥_;, and

is the family of “strategic form information sets” for player 7.!> By Lemma 2.1, B;
is a collection of closed subsets and thus AP (¥ ;) is indeed a well-defined space
of conditional probability systems.

An element of AP (X ;) only describes the first order conditional beliefs of
player 7. Only such beliefs are explicit in the game theoretic analysis of this
paper, but the motivations and epistemic foundations of the solution concepts to
be proposed below at least implicitly consider higher order beliefs. Battigalli and
Siniscalchi (1998) shows how to construct infinite hierarchies of conditional beliefs
which represent the epistemic type of a player, that is, the beliefs that this player
would have, conditional on each history, about the state of Nature , his opponents’
strategies and his opponents’ epistemic types. This construction allows one to
define formal notions of conditional common certainy and strong belief which
are informally used in this paper to motivate and clarify the proposed solution
concepts. Formal epistemic characterizations of solution concepts in terms of
infinite hierachies of conditional beliefs can be found in Battigalli and Siniscalchi
(1998, 1999a,b).

15Two points are worth discussing. (1) In a situation of incomplete information, when player
i forms his beliefs he already knows his private information ;. Therefore it would be more
germane to the analysis of incomplete information games to consider the set AB"(gi)(E,i) of
conditional beliefs for type 6;, where

(2) A player also has beliefs about himself and they may be relevant when we discuss the
epistemic foundations of a solution concept. Once again, we do not explicitly consider such
beliefs for notational simplicity. This does not alter the analysis in any essential way.

Our representation of a player’s beliefs and our game theoretic analysis are consistent with
the following epistemic assumption: at a state of the world where player i’s type is 6; and @’s
plan is s; € S;(6;), player ¢ would be certain of ; at each history h € H(6;) and would be
certain to follow plan s; at each history h consistent with s;.
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2.4. Sequential Rationality

A strategy §; is sequentially rational for a player of type 6, with conditional beliefs
¢ if it maximises the conditional expected utility of 0; at every history h consistent
with 3;. Note that this a notion of rationality for plans of actions'® rather than
strategies (see, for example, Reny (1992)). Let

H(0:,s:) ={h € H(0;) : (0;,s:) € Zi(h)}

and
Si(0i,h) = {s; € S;(6;) : (6:,5;) € Zi(h)}

respectively denote the set of histories consistent with (6;,s;) and the set of
strategies consistent with (6;,h). Given a CPS u' € APi(X_;) and a history
h e H(Qz',Sj), let

Ui (0550 (12 a0) = [ U000 ' (dor 1 | 4l
(0ss 50 C12ah) = [ U si,0-)* (dor—i | Boa())
denote the expected payoff for type 6; from playing s; given h, provided that the
integral on the right hand side is well-defined.!”

Definition 2.3. A strategy $; (i = 1,2,...) is sequentially rational for type 0,
with respect to beliefs i € AP (X_,), written (0;,3;) € p;(i') or equivalently
3; € TZ-(@Z-, ut), if for all h € H(@i, §;) where player i is active and all s; € Si(éi, h)
the following inequality is well-defined and satisfied:

Remark 1. It can be shown that under standard, but somewhat restrictive as-
sumptions the set of maximizers r;(0;, u') is non-empty. For example, if S;(0;) is
compact and Ui(@i, Si,0_;) is upper hemicontinuous in s;, bounded and measur-
able in o_;, then ri(éi, ut) # 0.

16 Formally, a plan of action is a maximal set of strategies consistent with the same histories
and prescribing the same actions at such histories.

"Even in well-behaved games (e.g. the Ultimatum Game with a continuum of offers), for
some choices of pf and/or s;, the strategic form payoff function U; is not integrable.
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2.5. Extraneous Restrictions on Beliefs

A player’s beliefs may be assumed to satisfy some restrictions that are not implied
by mutual or common belief in rationality. We call such restrictions extraneous,
although they may be related to some structural properties of the model. We may
distinguish between (i) restrictions on beliefs about the state of Nature and chance
moves and (ii) restrictions on beliefs about behavior. Our general theory and the
following applications consider both (i) and (ii). Some examples of restrictions of
the first kind are the following:

e Some “objective probabilities” of chance moves might be known or satisfy
some known restrictions such as positivity or independence across nodes.'®

e It may be common belief that all the opponents’ payoff-types are considered
possible a priori by each player. Or it may be common belief that the prior
probability of a “crazy type” 67 committed to play a strategy si (either
because s} is dominant for 67 or because S;(0;) = {0;}) is either positive or
bounded below by a given positive number ¢;(¢7). This kind of restriction
is considered in the analysis of reputation in section 5.1 (see also Watson
(1993, 1996) and Battigalli and Watson (1997)).

The following are examples of restrictions of the second kind:

e Specific structural properties of the game such as stationarity (cf. Cho
(1994)) or monotonicity may be somehow reflected in players’ beliefs. Re-
strictions of this kind are considered in the analysis of disclosure and sig-
naling in sections 5.2 and 5.3.

e The fact that an action a; is conditionally weakly dominant at a history A
for a type 6; (e.g. bidding your valuation in a second price auction) may
cause everybody to believe that the probability of a conditional on A being
reached and 6; being the true type of player i must be positive or bounded
below by a given number 6(0;, h, a;) € (0,1]. Similarly, the fact that action
a; is conditionally weakly dominated for type 6; at history h (e.g. bidding
above your valuation in a first price auction) may cause everybody to believe

18 Borgers (1991) considers perturbed games with “small trembles” whereby the true trembling
probabilities are unknown, but it is common belief that the actual choice is very likely to coincide
with the intended choice. He stresses the differerence between correlated and uncorrelated
trembles.
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that the probability of this action conditional on (6;,h) is less than one or
bounded above by a given number 7(6;, h, a;) € [0, 1).

e It may be common belief that each player’s beliefs about the types and
strategies of different opponents satisfy stochastic independence.

e [t may be common belief that each player’s conditional beliefs have count-
able support (cf. Watson (1996) and section 5.3).

In general, we assume that, for each state of Nature 6, the conditional prob-
ability system of each player 7 belongs to a given, nonempty subset A’. In order
to make sense of the solution concepts discussed in the next section it is sufficient
(but not necessary) to assume the following: for all k=1,2,..., (for every h € H,
every player i € N would be certain at h that)* the first order beliefs of every
player i belong to A!. Weaker sufficient epistemic assumptions are discussed in
the next section.

3. Weak and Strong A-Rationalizability

In this section we define and analyze two nested extensions of the rationalizabil-
ity solution concept to dynamic games of incomplete information, which take as
given some extraneous restrictions on players’ beliefs represented by sets of CPSs
A" C ABi(X ), i € N. Weak rationalizability is an extension of a solution con-
cept put forward and analyzed by Ben Porath (1997) for games of perfect and
complete information.'? Strong rationalizability is a generalization of the notion
of extensive form rationalizability proposed by Pearce (1984) and further analyzed
by Battigalli (1996, 1997) (see also Reny (1992)). We focus mainly on two-person
games (i.e. N = {1,2}) to avoid discussing the issue of correlated vs independent
beliefs, which would distract the readers’ attention from more important points.
The analysis is extended to n-person games in Section 4. The two solution con-
cepts are defined by procedures which iteratively eliminate feasible type-strategy
pairs and coincide on the class of static games. Epistemic assumptions are cru-
cial for the motivation of these solution concepts. A formal epistemic analysis is
beyond the scope of this paper and is provided elsewhere,?’ but we will try to

19See also Dekel and Fudenberg (1990), Brandenburger (1992), Bérgers (1994) and Gul
(19964).

20Ben Porath (1997) analyzes weak rationalizability using finite, non universal, extensive
form type spaces. Battigalli and Siniscalchi (1998) analyzes universal and non universal type

19



be explicit and clear about the epistemic assumptions underlying each solution
concept.

A given state of the world describes the state of Nature (hence each player’s
private information) and the players’ dispositions to act and to believe condi-
tional on each history, that is, their strategies and their infinite hierarchies of
conditional beliefs. Let A = (A%);cn. Each A-rationalizability solution concept
characterizes the feasible type-strategy realized at states where (a) every player
i € N is sequentially rational and has first order beliefs in A%, and (b) the players’
higher order conditional beliefs satisfy conditions concerning mutual certainty of
(a) and/or robustness of beliefs about (a).

3.1. Weak A-Rationalizability

Weak A-rationalizability characterizes the set of feasible type-strategy pairs real-
ized at states of the world where all the following events are true:?!

(0) every player ¢ has first order conditional beliefs in A’ and is sequentially
rational,

(W1) every player i is certain of (0) at the beginning of the game (i.e. conditional
on ¢),

(W2) every player ¢ is certain of (W1) at the beginning of the game,

(WKk) every player i is certain of (W(k-1)) at the beginning of the game,

Definition 3.1. Let W;(0,A) =3;, i = 1,2. Assume that the subsets W;(k,A),
i = 1,2, have been defined, k = 0,1, ... . Then for eachi = 1,2, W;(k+1,A) is the
set of feasible (0;, s;) such that s; is sequentially rational for 0; with respect to some
CPS it € A’ such that i (W_;(k, A)|X_;) = 1.2 A feasible pair (0;, s;) € W;(k,A)

spaces for dynamic games of incomplete information and provides epistemic characterizations
of solution concepts. Battigalli and Siniscalchi (1999a,b) use an extensive form, universal (or
belief-complete) type space to provide an epistemic characterization of strong A-rationalizability
with correlated and independent beliefs.

21 The conditions are indexed by the assumed order of mutual certainty of rationality.

22Tt goes without saying that whenever we write a condition like u*(E|X_;(h)) > o and E is
not measurable, the condition is not satisfied.
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is called weakly (k,A)-rationalizable. A feasible pair is weakly A-rationalizable
if it is weakly (k,A)-rationalizable for all k& = 1,2,... . The set of weakly A-
rationalizable pairs for player i is denoted by W;(oco, A).

There is a convenient way to reformulate Definition 3.1. For any subset B_; C
AA(Boi) ={p" € A" : ' (B4|E-4) = 1}

Note that (a) A4 (B_;) = () whenever B_; is not measurable, (b) operator Ay is
monotone? on the Borel sigma-algebra of ¥_; and is also monotone with respect
to A% and (¢) Wi(k +1,A) = p; (AN\(W_;(k, A))).

Wi (k, A) x Wy(k,A) is the set of profiles consistent with assumptions (0)-(k-
1) above. Note that these assumptions are silent about how the players would
change their beliefs if they observed a history h which they believed impossible
at the beginning of the game, even if h is consistent with rationality or mutual
certainty of rationality of any order. Therefore weak rationalizability satisfies only
a very weak form of backward induction (e.g. in two-stage games with perfect
information) and can not capture any kind of forward induction reasoning. This
is what makes weak rationalizability different from strong rationalizability.

3.2. Strong A-Rationalizability

According to strong rationalizability each player believes that his opponent is ra-
tional as long as this is consistent with his observed behavior. More generally,
each player bestows on his opponent the highest degree of “strategic sophistica-
tion” consistent with his observed behavior (see Remak 2 below). This is a form
of forward induction reasoning and it also induces the backward induction path in
games of perfect and complete information (cf. Battigalli (1996, 1997)). To make
the epistemic assumptions underlying strong rationalizability more transparent
recall that a state of the world describes the players’ dispositions to believe, that
is, it describes not only how the players’ actual beliefs evolve along the actual
path, but also the beliefs the players would have at histories off the actual path.
We say that player @ strongly believes an event E if ¢ will or would be certain
of E at each history h consistent with E (see Battigalli and Siniscalchi (1999a)
and references therein). Strong A-rationalizability characterizes the feasible type-
strategy pairs realized at states of the world where all the following events are
true:

2 A set to set operator A is monotone if E C F implies A(E) C A(F).
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(0) every player 4 has first order conditional beliefs in A’ and is sequentially
rational,

(S1) every player i strongly believes (0),

(S2) every player i strongly believes (0) & (S1),
(Sk) every player i strongly believes (0) & (S2) &...& (S(k-1)),

Definition 3.2. Let ¥;(0,A) = ¥; and ®*(0,A) = A’, i = 1,2. Suppose that
Yi(k,A) and ®'(k, A) have been defined for each i = 1,2. Then for eachi = 1,2,

P'(k+1,A) =

A feasible pair (6;, s;) € X;(k, A) is called strongly (k, A)-rationalizable. A feasible
pair is strongly A-rationalizable if it is strongly (k, A)-rationalizable for all k =

1,2,... . The set of strongly A-rationalizable pairs for player i is denoted by

Note that W;(1,A) = p,(AY) = %;(1, A). We show below that under regularity
conditions, as the terminology suggests, the set of strongly (k, A)-rationalizable
profiles is contained in the set of weakly (k, A)-rationalizable profiles and that
the two sets coincide in static games (in general, it is sufficient that all the sets
Wi(k,A) and ¥;(k,A) (i € N, k=1,2,..) are nonempty and measurable).

Remark 2. The set ®'(n + 1,A) can be characterized as follows: let k(—i,h,n)
denote the highest index k < n such that strongly (k, A)-rationalizable behavior
by —i is consistent with h € H,?* then

O'(n+1,A) = {i' € A :Vh € H, g/ (Si(k(—i, h,n), A)[S_i(h)) = 1} =

ﬁ{m €A :Vhe H, (W) NB_i(k,A) # 0 = ' (S_;(k,A)|Z_i(h)) = 1}.

k=0

M That is, k(—i,h,n)= max {k € {0,...,n}: ©_;(h) NT_;(k,A) # 0}.
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3.3. Example: “Beer or Quiche” rivisited

In Section 1 we illustrated the rationalizability procedure for static games without
extraneous restrictions on beliefs. Now we consider a dynamic game and we
introduce extraneous, qualitative restrictions on beliefs about the state of Nature
and the opponent’s behavior. The game depicted in Figure 2 corresponds to the
well-known Beer-Quiche example used by Cho and Kreps (1987) to illustrate the
power of some equilibrium refinements in signaling games. Of course, Cho and
Kreps analyze a standard extensive form game with a common prior. In their
example the surly type (o) has prior probability 0.9. They show that only the
equilibrium whereby each type chooses B satisfies their “intuitive criterion.” Here
we replace this common prior assumption with the weaker restriction that (it is
common belief that) the prior probability assigned by player 2 to (o) is more
than 50%. Furthemore, we also assume that (it is common belief that) player 2’s
posterior probability of the surly type 0(c) is higher after observing B (beer)
than after observing ) (quiche). Thus the restricted set of beliefs for player 2 is

A% = {2 2 (0(0)) > 1/2,12(0(0)|Q) < 1*(6(0)|B) }

(we use obvious abbreviations for marginal probabilities). There are no restric-
tions on player 1’s (first order) beliefs.

[Insert Figure 2 about here]

It is easy to see that both quiche and beer are (1, A)-rationalizable for both
types.?’ But the second restriction on beliefs implies that if 2 fights after 1 has
beer she also fights after 1 has quiche. This in turn implies that, according to
any (1, A)-rationalizable belief, a fight after beer is less likely than a fight after
quiche:

UL A) ={p' p'(f| B) < p'(f 1 Q)}

Since the only reason for a surly type to have quiche is to decrease the prob-
ability of fight, a surly type with (1, A)-rationalizable beliefs has beer, his
preferred breakfast. On the other hand, it makes sense for a wimp with (1, A)-
rationalizable beliefs to forgo his preferred breakfast (quiche) hoping to avoid a

Z5Note that in a two-person game, if ¥;(1,A) = %, then 3;(k + 1,A) = X;(k, A) for k odd,
Jj # i, and X;(k + 1,A) = 2;(k,A) for k even. Therefore we may consider only one player at
each step.
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fight. At this point we have to distinguish beteween weak and strong rationaliz-
ability. According to weak rationalizability, if player 2 is a prior: certain to observe
beer (a (2, A)-rationalizable prior belief), her beliefs conditional on quiche are
unrestricted. Therefore weak rationalizability has no further behavioral implica-
tions. On the other hand, strongly (2, A)-rationalizable beliefs reflect a forward
induction condition: quiche is a (2, A)-rationalizable choice for a wimp, but not
for a surly type, hence beer is sure evidence that player 1 is a wimp. Further-
more, taking into account that for all (2, A)-rationalizable beliefs p?(6(c)) > 1/2
and p?(Bl0(c)) = 1, we must have p%(0(c)|B) > p?(0(c)) > 1/2. This implies
that the unique strongly A-rationalizable strategy for player 2 is “fight after
quiche, don’t fight after beer.” To summarize:

P*(2,A) = {p € 9*(1,A) : p*(0(w))|A) = 1,pu*(Bl0(0)) = 1},
Sh(s0,A) = £u(3,A) = {d if B, f i Q}.
Given this, the only strongly A-rationalizable choice for a wimp is beer.
Si(oc, A) = B1(4,A) = {(0(w), B), (0(c), B)}.

Thus, quiche is not rationalizable for either type and yet the “best rationaliza-
tion” of this message is that it must have been sent by a wimp.

3.4. Results
3.4.1. General Properties

It is well-known that even for well-behaved dynamic games with a continuum of ac-
tions the strategic form payoff functions need not be continuous or measurable and
hence the sequential best response correspondences 7;(6;, u*) (i € N) need not be
well-behaved. We first provide simple conditions on the “fundamentals” implying
that the correspondences 7;(-, -) are nonempty-valued and upper-hemicontinuous.
Then we show that, if the latter properties are satisified and A (extraneous re-
strictions on beliefs) is “regular,” weak and strong A-rationalizability are well-

behaved.
Definition 3.3. A game

['= (N, (O)ien, (Ai)ien, H*(-), (ui)ien)
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is simple if © is compact and either (a) A is finite or (b) A is compact and for
some integer T,

(b1) T has T stages (that is, every terminal history h has length {(h) =T),

(b2) for every 6 € © and h € H(0), if {((h) <T — 1 then A(6,h) is finite.

Clearly, finite games and infinitely repeated games with a finite stage game
are simple. Signaling games with a finite message spaces are simple if A; and ©
are compact. Signaling games with a continuum of messages are not simple.

Lemma 3.4. For every simple game ¥ is compact and, for each player i, r;(-, ")
is an upper-hemicontinuous, nonempty-valued correspondence.

Even in simple games, the set of (weakly or strongly) A-rationalizable profiles
may be empty because the extraneous restrictions on beliefs represented by A
may conflict with common certainty of rationality (or strong belief in rationality).
But we can obtain a simple existence result and other regularity properties for
the case where A only represents restrictions on the marginal prior beliefs about
the opponent’s type (existence results with a more general set of restrictions on
beliefs can be obtained for specific models; see Section 5). For any subset C' of
a product set X x Y and for any probability measure g on C' let projxC and
marg i respectively denote the projection of C' on X and the marginal of y on
X, that is,

projxC={x e X :JyeY, (x,y) € C}

(margy i) (E) = p({(z,y) € C : x € E}), E C X (measurable).

A is regular if, for each player 7, A’ is nonempty and closed, and there is a set
IT C A(©_;) such that

A= {p' € AP(2) s margg  p'(-[2) € T}

The following propositions are jointly proved in the Appendix (see proof of Propo-
sition 7.1):

Proposition 3.5. Suppose that A and A" are regular, ¥ is compact, r;(-,-) is
nonempty-valued and upper-hemicontinuous and A" C (A?) for every player i.
Then for every player i and all k = 0,1, ..., 00,

(a) the sets W;(k,A) and Ay (W;(k, A)) of weakly (k, A)-rationalizable pairs and
beliefs are nonempty and compact, proje, W;(k,A) = ©;

(b) weak (k, A) rationalizability implies weak (k, A")-rationalizability: W;(k, A) C
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Wik, A');
(c¢) Wi(oo, A) x Wy(o0, A) is the largest measurable subset Fy x Fy C 3 such that

Py x Fy = py (AIA(FQ)) X Py (AQA(Fl)) -

Proposition 3.6. Suppose that A is regular, ¥ is compact and r;(+, -) is nonempty-
valued and upper-hemicontinuous for every player i. Then for every player i and
all k=0,1,...,00,

(1) the sets ¥;(k, A) and ®*(k, A) of strongly (k, A)-rationalizable pair and beliefs
are nonempty and compact, projo,¥;(k,A) = O;;

(2) strong (k, A)-rationalizability implies weak (k, A)-rationalizability: ¥;(k, A) C
W;(k,A) (the inclusion holds as an equality if there is only one stage).

Proposition 3.5 (a) (3.6 (1)) says that there is a weakly (strongly) rationaliz-
able strategy for each payoff-type. (b) says that weak rationalizability is monotone
with respect to extraneous restrictions on beliefs. This does not hold for strong
rationalizability. In fact, if stronger restrictions on beliefs make fewer histories
consistent with strongly k-rationalizable strategies, the k-forward induction crite-
rion applies only to this smaller set of histories and the set of (k4 1)-rationalizable
profiles need not be smaller. (c) says the the set of weakly rationalizable profiles is
the largest set with the “best reponse property.”?® As an immediate consequence
of Lemma 3.4 and Propositions 3.5 and 3.6 we obtain the following:

Corollary 3.7. In every simple game, if A is regular then (a), (c) of Proposition
3.5 and (1), (2) of Proposition 3.6 hold.

3.4.2. Rationalizability and Bayesian Equilibria

A type in the sense of Harsanyi encodes the player’s private information about
the external state of Nature (the unknown parameters of the game) and also his
epistemic type, that is, his infinite hierarchy of beliefs about the state of Nature
and the beliefs of others. Although in the standard model of a Bayesian game
these hierachies of beliefs are derived from a common prior on the set of states
of the world (recall that a state of the world comprises a state of Nature and an
epistemic state for each player), this need not be the case in general. Here we show
that if the set of epistemic types is not restricted, rationalizability characterizes
the set of outcomes realized in some Bayesian equilibrium. More precisely, we

20The equality can be replaced by (weak) inclusion (cf. Pearce (1984)).
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prove an equivalence result relating weak rationalizability and a weak refinement
of Bayesian equilibrium for dynamic games of incomplete information. For the
sake of notational simplicity we do not consider any extraneous restriction on
beliefs, i.e. A" = ABi(¥_;) for each i. Therefore we suppress any reference to A
in the notation.

Let us fix an incomplete information game

I'= (N, (0s)ien, (Ai)ien, H (), (wi)ien)

We first have to relate I' to a Bayesian game. We do this by embedding © in a
type space a la Harsanyi.

Definition 3.8. A Bayesian extension of I is a tuple

Br = <F= (Ei)iGNu (Ti)z’em (pi)i€N>

whereby for each player i € N, (1) E; is a metric space, (2) T; C ©; X E; is a
measurable set such that projg T; = ©;, and (3) p; : T; — A(T_;) is a measurable
function.

An element t; = (0;,¢;) is an Harsanyi-type and e; is its purely epistemic
component which together with the private information ; determines the epis-
temic type p;(t;). Since we are considering dynamic games we have to define
an appropriate refinement of the Bayesian equilibrium concept. The refinement
considered here is a generalization of Reny’s (1992) “weakly sequentially rational
assessments.”

Definition 3.9. A weakly perfect Bayesian equilibrium for a Bayesian exten-
sion BF = <P, (Ei)i€N7 (T;')Z'GN, (pz)zeN) 1S an array of functions (b, g) = (biygi)ieN
whereby for each player i € N,

(1) b; : T; — S; and g; : Ty — APi(3_;) are measurable functions,

(2) (weak sequential rationality) for all (0;,¢;) € Ty, b;(0;,€;) € ri(0:,gi(0:,¢€:)),
(3) (weak consistency) for all t; € T; and measurable subsets B_; C %_;

9i(ts) (B—i|%) = pi(ts) ({(0—i,e—5) € T : (0—5,0-4(0—s,€-3)) € B_}).

We say that a profile (0;, s;)icn is realizable in (b, g) if, for each i, there is some
€; € Ez such that S; = bz(GZ, 62‘).
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The phrase “weakly perfect” is due to the fact that the equilibrium profile
(bi, g:)ien only satisfies weak sequential rationality and consistency properties.
The weak consistency condition (3) implies that g;(¢;)(-|2_;(h)) is derived from b_;
and p;(t;) for each history h with positive probability according to the equilibrium.
For a defence of the rationality condition (2) see e.g. Reny (1992).2” The following
proposition says that the sets of weakly perfect Bayesian equilibrium outcomes
and of weakly rationalizable outcomes coincide.

Proposition 3.10. 2® Suppose that I is a simple game. Then

(1) for every Bayesian extension By, every weakly perfect Bayesian equilibrium
(bi, gi)ien of Br, and every profile of types (0;,¢€;)icy in Br, (0;,b;,(0;,€;))ien is
weakly rationalizable;

(2) there exists a Bayesian extension Br and a weakly perfect Bayesian equilibrium
(b, g) such that, for every profile o € ¥, o is weakly rationalizable if and only if o
is realizable in (b, g).

3.4.3. Rationalizability and Dominance

The set of weakly and strongly rationalizable pairs can be further characterized
for generic finite games in terms of dominance relations. We say that a game has
no relevant tie if the following holds: for each player ¢ and all pairs of outcomes
(0,1),(0,h") € Z, if there are h € H(0), a’,a” € A(f,h) such that a # a,
Z' follows (h,a’) and z” follows (h,a”), then u;(0,h') # u;(6,h"). This means
that if player ¢, immediately after history A, has deterministic beliefs about the
true parameter 6 and the continuation of the game, then he cannot be indifferent
between any two feasible actions.

A strategy s; € S;(6;) is weakly dominated by mixed strategy m; € A(S;(6;))

2"Even if we assumed expected utility maximization at each information set the equivalence
result in the text would still hold for equilibrium and rationalizable outcomes. The relation to
Reny’s equilibrium concept is as follows: (i) A finite Bayesian extension of a finite two-person
game with incomplete information can be represented as an extensive form game (with possibly
heterogeneous and correlated priors on the set of initial nodes). (ii) A weakly perfect Bayesian
equilibrium of the finite extension is realization equivalent to a weakly sequentially rational
assessment of the extensive form.

28 Brandenburger and Dekel (1987) prove a similar proposition for finite, static (or normal-
form) games with complete information. See Forges (1993) for analogous results about objective
correlated equilibria in games of incomplete information.
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for type 0; on B_; C ¥_; if
Vo ;€ By, U(0;,s:,0 ;) < ZmZ Ui(0;, 8,0 ;)

and
Ao’ . € B_;, Ui(0;,si,0_) < Zmz Ui (0;, 8, 0_5).

The definition of strict dominance is analogous (all weak inequalities are re-
placed by strict inequalities). For any given rectangular subset B C ¥ let W(B)
(S(B)) denote the set of (6;,s;)icny € X such that, for each 4, s; is not weakly
(strictly) dominated for 6; on B_; and let SW(B) = S(B) N W(X). The iter-

ated operator SW" is defined in the usual way: SW"(B) = SW (SW’“%B)),

where SW?(B) = B. A subscript p denotes that we only consider weak dom-
ination by pure strategies. Thus W,(B) is the set of profiles (6;,s;)ien such
that s; is not weakly dominated for 6; by another pure strategy on B_;, and
SW,(B) = S(B) N W,(X). Note that S is a monotone operator. Therefore, also
SW and SW, are monotone operators. W (k) and X(k) denote the subsets of
weakly and strongly k-rationalizable profiles, without extraneous restrictions on
beliefs. The following proposition extends results proved by Pearce (1984) and
Ben Porath (1997) to games with incomplete information.

Proposition 3.11. (a) (cf. Pearce (1984)) In every finite and static game,
Y(k)=W(k)=8%%), k=1,2,....
(b) In every finite game with no relevant ties,
S(k) C W(k) CSWEE), k=1,2,....

(¢) (cf. Ben Porath (1997)) In every finite game with no relevant ties, perfect
information and private values,

Y(k) C W(k)=SWFX), k=1,2,....

An exact characterization of strong rationalizability can be obtained using a
notion of iterated conditional dominance for each payoff-type. The character-
ization result can be easily adapted from Shimoji and Watson (1998). These
characterizations of rationalizability through iterative dominance procedures can
be used to compute the set of rationalizable strategies solving a sequence of linear
programming problems (cf. Shimoji and Watson (1998), Section 4). The compu-
tation algorithm can also incorporate extraneous restrictions on conditional beliefs
(Siniscalchi (1997b)).
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4. Generalizations

The solution concepts defined in Section 3 for two-person games with observable
actions can be extended to general n-person games with imperfect information
about past actions. While the introduction of imperfect information is conceptu-
ally straightforward, considering more than two players forces a modeling choice
between correlated and independent beliefs and poses the problem of providing
a satisfactory definition of independence for conditional probability systems and
an appropriate formalization of the forward induction principle for players with
multiple opponents. In this section we briefly describe how to deal with these
problems. A more complete analysis is provided in Battigalli (1995).

Imperfectly Observed Actions. In a game with observed actions the set
of partial histories H can be regarded as a common collection of information
sets for all the players. In games with imperfectly and asymmetrically observed
actions each player 7 has his own collection of information sets H;, whereby a
typical element h € H; now represents a (maximal) set of partial histories that
player ¢ cannot distinguish. Of course, H; need only contain the information sets
where player ¢ is active. In order to adapt the analysis of the previous section
to this situation it is sufficient to redefine ¥(h) as the set of feasible profiles
consistent with at least one history contained in h. Perfect recall implies that
Y(h) = X;(h) xX_;(h) for each h € H;. The collection B; of “relevant hypotheses”
for player 7 is then defined as

B@ == {B C E,z‘ :3h € HMB == E,z(h)}

and this determines the space of conditional probability systems A% (X ;). Given
these modifications, the other formal definitions are virtually unchanged.

n-Person Games and Independent Beliefs. Extending the previous anal-
ysis to n-person games is quite straightforward if it is assumed that each player’s
beliefs concerning the type and strategy of different opponents may exhibit cor-
relation. Therefore we consider here only the case of independent beliefs.

Recall that in games with observable actions the set ¥(h) of feasible pro-
files consistent with a given history/information set h has a Cartesian structure:
Y(h) = ITien Xi(h). The same is true whenever h is an information set of a game
with observable deviators. For the sake of simplicity, we limit our analysis to this
class of games.?Y For any two players ¢ and j let

29For a more general analysis see Battigalli (1995).
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be the collection of “strategic form” pieces of information about player j that
player i might obtain and let AP (3;) be the associated set of i’s marginal CPS’s
about player j. A CPS u' € ABi(X_;) is independent if there exists a vector of
marginal CPS’s (u!);.; € [l AP9(3;) such that, for all h € H;, p,(-|2_i(h)) is
the product measure obtained from the vector of marginal probability measures
(uj(-lzj(h)))#i (cf. Rényi (1955), p 303).

Assuming that the players are rational and have independent conditional be-
liefs and that this is common certainty at the beginning of the game, we obtain a
notion of weak rationalizability with independent beliefs. The formal definition is
essentially the same as in Section 2 except that now it has to be assumed that, for
each player 7, the restricted set of beliefs A’ contains only independent CPS’s.?"

Let us now turn to strong rationalizability. Since we assume that players’
conditional beliefs are independent, we also incorporate in the definition of strong
rationalizability a principle of independent best rationalization: each player ¢ as-
cribes to every opponent j the “highest degree of strategic sophistication” con-
sistent with j’s observed behavior independently of any information about other
players.?! The formal, inductive definition of strong rationalizability (without ex-
traneous restrictions on beliefs beyond independence) can be given as follows. Let
(' denote the marginal on ¥; of a given independent CPS /',

(0) For all i € N, ¢ = %; and
'(0) = {u' € AP (S ;) : p* is independent}.
(k+1) For alli € N, S8 = p,(®%(k)) and
O'(k+1)={p' € ®'(k) : Vh € H;,Vj #1,5;(h) N SF # 0 = ph(S5[3;(h)) = 1}

5. Applications

In this section we apply weak and strong rationalizability with extraneous re-
strictions on beliefs to some models with one-sided incomplete information. We
obtain results about reputation, disclosure and signaling previously derived for
standard Bayesian (perfect) equilibria of Bayesian games whereby payoff-types
coincide with Harsanyi-types.

30This notion of rationalizability (actually, only the first two steps in the iterative procedure)
is used in Battigalli and Watson (1997).

31 Battigalli and Siniscalchi (1997b) provides a rigorous epistemic axiomatization of the inde-
pendent best rationalization principle.
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5.1. Reputation®?

Consider an infinitely repeated two-person game with discounting and one-sided
incomplete information about feasible strategies. Player 2 does not know the set
of feasible strategies of player 1. The finite or countable set of states of Nature ©
corresponds to the set of conceivable feasibility constraints for player 1. Let the
stage game be G = (A;, Ag; vy, v9). The set of all (closed loop) strategies for player
i in the repeated game is S;. The set of feasible strategies for player 1’s type 6 is
S1(0). For any state of Nature ¢ and any infinite history z feasible at 6, the long
run average payoff function for player 4 is u;(0,2) = (1 — &) X2, 64 v (al(2)),
where o'(z) denotes the pair of actions chosen in period ¢ along path 2.3 We are
going to show that, under mild assumptions, two steps of weak rationalizability
imply that a patient and unconstrained player 1 expects to obtain a long run
average payoff approximately as large as the static Stackelberg payoff.
The stage game G satifies the following assumptions:

e Player 2 has a single-valued best response function BR : A; — A and

min ma , > 0.
miCA(AL) azedy va(m, a2) 2
(The domain of function vy is extended to A(A;) x Ay via expected payoff
calculations.)

e Player 1 has a pure maximin action, i.e. there is some “punishing” action
al such that
P P .
vo(a; , BR(a;)) = min max vg(my,as).
(o BRG) = | min  max va(m a3
The first assumption is made only for simplicity, the second is more substantial.

Let

v} = max v(ay, BR(ay)).
a1€A1

32The model considered here is borrowed from Evans and Thomas (1997), which in turn
builds on previous work by Fudenberg and Levine (1989). These papers derive a reputation
result for standard equilibria of Bayesian models with one-sided incomplete information. See
Sorin (1997) for a unified analysis of reputation and learning results in repeated games with
incomplete information.

33Note that if © is finite the incomplete information game is “simple.” Therefore the existence
of (strongly and/or weakly) A-rationalizable strategies at every state of Nature is guaranteed
whenever A is “regular” (see Definitions 3.3, 3.5 and Propositions 3.6, 3.7). However, finiteness
of O is not needed for the following result.
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denote player 1’s static Stackelberg payoff and let a} be a Stackelberg action, that
is, an action attaining the maximum above. The best response to this action is
ay = BR(a}). Finally, v; denotes the worst payoff for player i in G.

The feasibility correspondence S (-) satisfies the following assumptions:

e There is a “normal” unconstrained type #° € © such that S;(6°) = S;.

e There is a “committment” type 0 such that S;(6%) = {si} where s} is a
strategy “teaching” player 2 to play aj. Strategy s} plays aj in normal
phases and instigates punishment phases of incresing length when player 2
fails to play a} in a normal phase (see Evans and Thomas (1997)). More
precisely s} is determined by an automaton with a countable set of states

@ = {Norm(k), Punish(k,j);k =0,1,..;5 =0, ..., k},

where Norm(0) is the initial state; action and transition functions are given
by the following table:

State Action Transition
stay in Norm(k) if ay = a3,

Norm(k) a1 go to Punish(k, k) otherwise
Punish(k, 0) al go to Norm(k + 1)
Punish(k, j),1<j <k af go to Punish(k, j — 1)

(Norm(k) is the normal phase after k defections and Punish(k, j) is a the
punishment phase after £ defections and with j punishments periods to
come).

As for extraneous restrictions on players’ beliefs, we only assume the following:

e For some € € (0,1) player 2 assigns at least € prior probability to the com-
mitment type 6* and player 1 is certain of this, i.e. A = (AP1(Sy), A%(e))
where

A(e) = {p* € A% ()« p({(07,s1)}Z1) > e}

According to the following proposition, two steps of weak A-rationalizability
imply that a patient and unconstrained player 1 should expect (a priori) to get
a long run average payoff approximately as large as the static Stackelberg payoff.
Player 1 can actually achieve this lower bound if he builds up a reputation of
behaving like the committment type 6*.

33



Proposition 5.1. There is a positive integer M = M (v, 82, €) independent of 6,
such that for any weakly (1, A)-rationalizable belief v,

sup U1(90,81,V1('|SQ)) > Ul(GO,s’{,Vl(-|Sg)) > (1— (5?/‘[)& —|—6i\41}>{.

51€Sl

Note that Evans and Thomas (1997, Section 4) prove an analogous result
about the lower bound to player 1’s equilibrium payoffs in a Bayesian game where
player 1 knows the beliefs of player 2 about his type 6 and, in particular, knows
the prior probability assigned by player 2 to the committment type 6*.

Sketch of proof.** To prove Proposition 5.1 it is sufficient to realize that
the proof provided by Evans and Thomas does not use the full force of the fore-
going equilibrium assumptions, but rather relies on the following facts: (i) player
2 assigns at least € prior probability to the commitment type #* and plays a
best response to his beliefs, (ii) player 1 is certain of (i) and also plays a best
response to his own beliefs. Of course, these assumptions are implied by (2, A)-
rationalizability. Thus, one can prove that for any strategy combination (s7, s2),
any real number n € (0,1) and any positive integer k, player 2 can trigger a
punishment and expect with probability at least (1 — ) to be punished for less
than k periods for at most N = k + ﬁf—n) times (cf. Lemma 1 in Evans and
Thomas (1997)). Suppose sy is a best response to player 2’ beliefs. Then, for
any given payoff function vy satisfying our assumptions and any discount factor
02, we can choose 7 small enough and £ large enough that s, fails to play aj at
most K = k + N times. This implies that the path induced by (s}, s2) contains
at most M = (1/2)K(K + 3) periods when either a} is not played or player 2
is punished (clearly M depends on €, vy and 62). Therefore player 1’s long run
payoff is at least as large as if he got the worst payoff on the first M periods and
the Stackelberg payoff afterward. B

The result stated in Proposition 5.1 holds also when 6* is a committment
type always playing the Stackelberg action and the stage game G has “conflicting
interests” in the sense of Schmidt (1993). A similar reputation result is proved
by Battigalli and Watson (1997) for games where a patient long run player faces
a sequence of short run opponents.

34 A complete proof is available upon request.
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5.2. Disclosure®’

Consider a two-person signaling game where the sender, player 1, provides certifi-
able information about her own type. The receiver, player 2, observes the sender’s
message and then takes an action affecting the sender’s payoff as well as his own.
For concreteness, the sender may be thought of as a seller, the receiver as a buyer.
The sender’s type 6 € © can be thought of as the quality of the product and the
receiver’s action, a € A, as the quantity purchased or the total price paid. With
this interpretation in mind the following is assumed:

e There is a finite ordered set of sender’s types, © = {#',...,0%} C [0,1]
(0% < 0**1) and a continuum of receiver’s actions Ay = [0, +00).

e The set of feasible messages for each type 6 € O is
M) ={m e€2°:0ecm}.
M := Ugeo M(0) is the set of possible messages.?

e The sender’s payoff u : © x Ay — R is strictly increasing in its second
argument.

e The receiver’s expected payoff v(m, as) := >y m(0)v(0, as) is such that there
is a well-defined best reply function BR : A(O) — A, satisfying the follow-
ing weak monotonicity property:

7' # 7" A max Supp(r') < min Supp(r"”) = BR(n') < BR(n") (5.1)

(standard conditions such as supermodularity of payoff in (6, as) imply the
weak monotonicity property (5.1)).

Fix any Bayesian game obtained from this model by assuming a strictly posi-
tive common prior on O. It can be shown that any Bayesian perfect equilibrium
must satisfy full disclosure, that is, for all messages m, the receiver’s chooses
a = BR(minm) and no type 0 sends a message m with minm < . Full disclo-
sure is also implied by strong rationalizability assuming the following restrictions
on conditional beliefs:

35This model of information transmission is borrowed from Grossman and Hart (1980). See
also Okuno-Fujiwara et al. (1990), Bolton and Dewatripont (1997, Chapter 5) and the references
therein.

36More generally, it is suffices to assume that M is rich in the following sense: V6 € ©, 3
m € M(6), 6 = minm.
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e The (first order) beliefs of the sender are unrestricted. The restricted set
of conditional systems A? is characterized by a mild skepticism condition:
the receiver never rules out the lowest type consistent with a given message,
that is,

A? = {p? :¥Ym € M, p*(minm | m) > 0}.

Let us consider the first few steps in the strong A-rationalizability solution
procedure. (1) First we eliminate all the receiver’s strategies that are not sequen-
tial best responses to some p? € A2, (2) Then we eliminate, for each type 6, all
the messages m € M(6) with m # {6} and maxm = 6. The reason is that mild
skepticism and weak monotonicity imply that a rational receiver would respond
with a higher action if type 6 disclosed sending message {6}. (3) Now apply the
rationalization principle (forward induction): since no message m is inconsistent
with steps (1) and (2) (it could be sent by type § = minm), the receiver must be
certain, conditional on every m, that (i) the sender is rational and (ii) the sender
is certain that the receiver is rational and has mildly skeptical beliefs. Thus, by
step (2), the receiver beliefs must satisfy p?(maxm|m) = 0 unless m is a single-
ton; any strategy so such that so(m) = BR(maxm) for some non-singleton m is
eliminated. (4) Now eliminate, for each type 6, all the messages/sets m containing
at least three elements and such that € is either the highest or second-to-highest
element of m, because § would induce a higher response by disclosing (the argu-
ment here is similar to step (2)). Continuing this way (for exactly 2K — 1 steps)
we obtain the following result:?"

Proposition 5.2. Every strongly A-rationalizable profile (', m"), ..., (8%, mX)), s5)
satisfies full disclosure: for all k = 1,...,K and m € M, 0¥ = minm® and
so(m) = BR(minm).

The argument above is similar to an intuitive “unraveling” argument used
to show why a perfect Bayesian equilibrium must satisfy full disclosure (see e.g.
Chapter 5 of Bolton and Dewatripont (1997)). The compellingness of this argu-
ment is due to its inductive structure. But a rigorous proof of the equilibrium
result, one way or the other, has to proceed by contradiction and therefore is less
transparent.

Note also that more general Bayesian extensions of the given economic model
(whereby Harsanyi-types and payoff-types do not coincide) have perfect Bayesian

37 A rigorous proof is available by request and can also be found in Battigalli (1995).
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equilibria which satisfy mild skepticism, but do not satisfy full disclosure.*® By
Proposition 3.10, this implies that weakly A-rationalizable strategies need not
satisfy full disclosure. This is not surprising since weak rationalizability does
not capture forward induction reasoning and rationalizing the sender message is
crucial for the proof of Proposition 5.2.

5.3. Costly Signaling

Consider a standard game-theoretic version of Spence’s model of job market sig-
naling with two types of workers (see e.g. Cho and Kreps (1987)). Player 1, a
worker of type 6’ or 8", with 0 < 0" < 0", chooses an education level e € [0, 4+00)
and has payoff function u(f,e,w) = w — %9 with ¢ differentiable, strictly in-
creasing, and strictly convex. Player 2, a “representative firm,” observes e and
chooses the wage w € [0, +00). Player 2’s payoff is v(0,e,w) = — (el — w)? and
thus she “rationally” sets the wage equal to the subjecitvely expected value of ef
conditional on e.

The restricted set of beliefs for player 1, Al is the set of (prior) probability
measures pl(- | So) € A(Sy) with countable support. As for player 2, we assume
that A? is the set of monotonic conditional probability systems, that is, the set
of % such that p%(#”|e), the conditional probability assigned to the high type,
is non-decreasing in e. Countability of supports is merely a technical assump-
tion to simplify the analysis. Monotonicity is similar the “plausibility” property
postulated by Kreps and Wilson (1982) in their analysis of reputation and entry
deterrence.

Player 2’s strategies can be represented by functions (e) giving the wage per
unit of education. Therefore best reponses to beliefs in A? are in one to one
correspondence with the set of non-decreasing expectation functions J(e) with
range [0',0"]. Let

Q1,A) = {9(-)e R)TIT:e" > ¢ = V(") > V().

38 Here is a very simple example: There are two Harsany-types for the receiver, t5 and ¢}, while
Harsany-types coincide with payoff-types for the sender. The “interim” beliefs are Py (t5|60%) = 1
and Py (0F|th) = 1/K = Py(6%|t}) for all k (these beliefs are consistent with a common prior
with strictly positive marginal on ©, that is, P(6% t4) = 1/K for all k). The posterior beliefs
of type t} satisfy p(minm|m,t,) = 1 for all m. The posterior beliefs of type ¢ are uniform:
w(0%|m,t4) = 1/#m iff ¥ € m. Each type 6 chooses message {6} and, of course, each type
to chooses a sequential best response to u(+|-, t2). This a perfect Bayesian equilibrium where the
strategy of t§ does not satisfy full disclosure.
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Q(1, A) is the set of player 2’s (1, A)-rationalizable strategies represented as con-
tingent choices of wage per unit of education. Player 1’s (1, A)-rationalizable
beliefs are summarized by her expectation of player 2’s expectation of 6 condi-
tional on the chosen education level e. Let this second-order expectation (which
coincides with the expected wage per unit of education) be denoted by J(e). As-
suming that player 2 is a maximizer (expected loss minimizer), player 1 expects
to get wage ed(e), with 9(-) € Q(1,A).*” At a subjectively optimal choice of edu-
cation for type 6, say e*, ¥(-) must be continuous from the right and the marginal
rate of substitution M RS(0,e*) = %ﬂgdi_*l must satisfy the first-order condition

di(e*+)

RS(0,e") > J(e*) + e 7

. (5.2)

where 24 g the right-derivative of 9(-) at e*.%

As in the previous subsection, we focus on strong A-rationalizability. In fact,
it is well-known that many patterns of behavior are consistent with Bayesian
perfect equilibrium, and hence, a fortiori, with weak rationalizability, if no forward

induction criterion is applied.
[Insert Figures 3 and 4 about here]

It turns out that the set of strongly A-rationalizable strategies depends on
how close 6" and 0" are to each other. In particular, it depends on the relation
between the following numbers (see Figures 3 and 4):

e c*(0) = argmax.>qu(f,e,0¢e), 0 =0',0" (complete information choice),
e ¢ (0) = argmax.so u(f, e, fe), 6 + 0,

e 2(0') such that u(0',e(6'),0"e(0")) = u(@',e*(0"),0e*(0")) and €(0") such that
U(0/,,€(0,/)7 0”6(0”)) — u(9/17 e" (0//)’ 0/6" (0//))7

o ¢(0") such that w(6”,&(0"), MRS(e(0")) - &(8")) = u(6”,&(0'), 0"e(9')).

39Given belief py(- | S2) about player 2 with countable support {s3(-), ..., s5(-), ...} and cor-

respondig salaries per unit of education {9'(-),...,9%(), ...}, let u* = uk(sh | Su). Player 1’s
expected wage conditional on e is 32, pFsk(e) = e 32, uF9*(e) = ed(e). Since for each k, ¥*(-)
is non decreasing with range in [¢/,6"], 5() must have the same properties.

40More generally, it is the right-limsup of the incremental ratio of 5() at e*.
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If ¢ and 0" are not too close to each other, then (') < e*(6”). Note that
strict monotonicity and strict convexity of the disutility of education and the
single crossing property imply

e*(O) < e (0) <20) <20,
e(0) < e (0") < é(0") < e*(0") < e(0").

Proposition 5.3. The set of A-rationalizable choices of education for each type
is as follows: If (a) e (8") > &(0") or (b) e (0") < &(¢') < e*(0"), then each type
6 € {0',0"} chooses the same level of education as in the complete information
model, that is, e*(0). If (c) e(6') > e*(0"), then each choice e € [¢(0"),e(0")] is
rationalizable for both types and e*(0') is also rationalizable for type ¢'.

Proof. Any education level can be justified as a best reply to some belief. Thus
¥1(1,A) = X;. This implies that Xo(k +1,A) = 2s(k, A), for k odd, and X, (k +
1,A) = X(k,A) for k even. Let Q(k,A) denote player 2’s (k, A)-rationalizable
choices of wage per unit of education. In general (k, A)-rationalizable beliefs for
player 1 can be summarized by some function J(-) € Q(k, A) giving the expected
wage per unit of education and having the same properties of player 2’s (k—1, A)-
rationalizable expectation functions. Let S;(k,A,0;) denote the set of strongly
(k, A)-rationalizable strategies for type 0; of player i. Then

S1(2,A,0) = [e*(0),e(0")], S1(2,A,0") = [e (8"),e(8")].

To see this, first note that for any conjecture 9(-) € Q(1, A) about player 2, the
first order condition (5.2) for type ¢’ is necessarily violated for every e* < e*(¢')
because strict convexity of the disutility of education, monotonicity of ¥(-) and

~

J(e) > 0" imply

di(e*+)
de

MRS(0',e*) < MRS(0',e*(0)) = 0" < 0(e*) + e* -

No education e > &(@') can be justified for @' because, since J(e) < 0" for all
e, type 6 would get a higher expected utility by choosing e*(¢'). Every e* €
[e*(0'),e (§')] is a best response to the (1,A)-rationalizable constant conjecture
J(e) = MRS(0',e*) € [0,0"]. Every e* € [e (¢'),e(#)] is a best reply to the
(1, A)-rationalizable conjecture

() :{ o if e<e (5.3)

0" if e>e*
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S1(2,A,0") is obtained in a similar way. Using forward induction and monotonic-
ity, the (2, A)-rationalizable beliefs of the firm are (monotonic and) such that

pp oy [0 if e<e(0), e<e®)
Iu(@ |€)—{ 1 Zf €2€~(9//)’ 6>é(9/)

Thus one obtains

8 = o0 £00.8 00 = { g [ L35G 1380 |

At this point the analysis must proceed on a case by case basis. Here we consider
only case (a). The other cases are analyzed in the Appendix.

Case (a): e (0") > &(#'). In this case e*(), § = ¢,60", is the unique best
reply for type 6 to every right-continuous conjecture 9J(-) € ©(3,A). Non-right-
continuous conjectures in (3, A) either have no best reply at all or have e*() as
the unique best reply. Thus the unique strongly (4, A)-rationalizable action for
type 0 is €*(0), 6 = ', §". The strongly A-rationalizable strategies for player 2
are represented by functions in the set

e, 8) = 065.8) = {9 € 26.8) 00 = { o o <500 L.

6. Conclusions

We argued that Harsanyi’s analysis of games with incomplete information is in
principle very flexible, but for reasons of tractability most of its applications to
economic models rely on questionable and non transparent assumptions about
players’ interactive beliefs, such as the common prior assumption and/or the con-
flation between payoff-types and Harsanyi-types. A priori, it is often not clear
whether these assumptions are crucial. But in order to remove them and yet
apply Harsanyi’s analysis one would have to deal with mind-boggling Bayesian
games featuring a universal type space, i.e. including all the conceivable infinite
hierarchies of beliefs. Furthermore, unlike the Nash equilibrium concept, if there
is genwine incomplete information we cannot justify the Bayesian equilibrium
concept as a limit outcome of learning in repeated strategic interaction.
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In this paper we provide a different, but related methodology. The primitives
of our analysis are the sets of conceivable payoff-types, the (parametric) payoff
functions and the feasibility correspondences characterizing a dynamic game with
incomplete information. We may also take as given some extraneous restrictions
on players’ (first order) beliefs, but there is no need to specify a type space. In
the first part of the paper we provide inductive definitions of a weak and a strong
version of the rationalizability solution concept. Weak and strong rationalizability
coincide in static games. In dynamic games strong rationalizability incorporates a
forward induction principle, weak rationalizability does not. These solution con-
cepts can be given a rigorous epistemic axiomatization, which is only briefly sum-
marized in this paper. Existence and regularity results are provided for “simple,”
but possibly infinite games. Equivalence with iterated dominance procedures is
proved for finite games. It turns out that, as it should be expected, weak rational-
izability characterizes the set of all the Bayesian (perfect) equilibrium outcomes
obtained by arbitrarily adding a type space a la Harsanyi to the given model.
While the solution concepts have been defined for games with genuine incomplete
information, they can be meaningfully applied to models of asymmetric infor-
mation featuring an ex ante stage. In particular, the proposed solutions make
sense for games representable with the “prior lottery model,” provided that the
statistical distribution of characteristics in the population of potential players is
unknown. In the second part of the paper we apply weak and strong rationaliz-
ability to some economic models with one-sided incomplete information deriving
results about reputation, disclosure and costly signaling.

The proposed methodology has several advantages with respect to the tradi-
tional one. First, the inductive solution can be computed without specifying an
epistemic type space. Second, assumptions about interactive beliefs are typically
weaker, more intuitive and transparent. Third, we can test the robustness of the
results of the received Bayesian theory with respect to the specification of the type
space. Fourth, the applications show that looking at rationalizable outcomes may
clarify some aspects of strategic thinking that are overlooked or even obscured by
standard equilibrium analysis.
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7. Appendix

7.1. Incomplete Information Games: Feasibility Correspondence and
Topological Structure

The sets of feasible actions for a given state of Nature 6 and (feasible) history h
are derived from the feasibility correspondence H*(:) : © — 24" as follows:

AO,h) = {ac A: (ha) € H*(0)),

Az(gz,h) = {(12' € Az : Ela_z- € A_Z', 39_1 € @_2’, (ai,a_i) € A((GUG_Z),]})}

The feasibility correspondence satisfies the following properties (recall that A* is
the set of finite or countably infinite sequences of action profiles):

(1) for every h € A* and 6 € O, if h € H*(0), every initial subsequence (prefix)
of h belongs to H*(0), in particular, ¢ € H*(#) for all 6 € ©,

(2) for every infinite sequence h* € A> and every 6 € O, if for every finite initial
subsequence h of h*, h € H*(#), then h* € H*(0),

(3) for every 0 = (0;)ien € O, h € A*
A(0,n) = ] Ai(6;,h),
i€N

A(0,h) = 0 if and only if for all : € N, A;(6;,h) = 0.

We endow A* and the set of outomes Z C © x A* with the following metrics
d s« and dz: Recall that ©; and A; are subsets of R™ and R™ respectively (i € N).
Let dj, be the Euclidean metric in R* and m = Y,c y mi, n = Y ;en i Denote by
£(h) the length of a history (£(h) = oo if h is an infinite history) and let of(h) be
the action profile at position ¢ in history h (t < £(h)). If £(h) < £(h'), then

£(h) L(r)
da-(h, 1) = S (1/2)dy (0! (h), o' () + 3 (1/2)f
t=1 t=L(h)+1

(the second summation is zero if £(h) = £(Rh)),

dz((0,R), (0", 1)) = dp(0,0) + da- (h, ).
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d s~ is the natural metric for games with discounting. It can be checked that
(A*,ds+) and (Z,dz) are complete, separable, metric spaces.

The sets of strategies and strategy-type pairs are endowed with the “dis-
counted” sup-metrics dg,, dy, and dy, (i € N, 0 # J C N, X; = [Lics 2i):

(0 s) = 3712 (p dm<sz~<h>,sz<h>>),

t=0 hil(h)=t

dzi((e’U Si) (9;, z)) = dmz(elvez) + ds‘(siv 8;)7
dz_] O-J7 O-J Zdz 0-27 ’L

iceJ

7.2. Proofs

Proof of Lemma 2.1. Let S;(h) be the set of strategies consistent with history
h. Clearly S;(h) is closed. Since

Yi(h) ={(0:,8:) : s; € Si(0) N S;(h)},

we only have to show that S;(6;) is upper-hemicontinuous in 6;. Suppose that
(6%, 1) (0;,5:) and s¥ € S;(6%) for all k. Then for all ' € H, s¥(h') — s;(W)
and sF(h) € A; (6%, ') for all k. Since H*(-) is continuous, each A;(-,h') (k' € H)
is also continuous. Therefore for all A’ € H, s;(h') € A;(0;,1') and s; € S;(0;). W

Proof of Lemma 3.4. In a simple game © and A are compact and either A
is finite (case (a)) or H is finite (case (b)). If A is finite, S is a totally bounded,
complete metric space. Therefore S is compact. If H is finite, S is topologically
equivalent to a compact subset of a Euclidean space. In both cases ¥ C © x S is
compact. By Lemma 2.1 each ¥(h) is closed, hence compact.

We consider the rest of the proof for case (b) (A compact, finite horizon,
finite sets of feasible actions through the second to last stage). The proof for
case (a) is similar. Since ¥;(h) is the graph of the correspondence S;(-, k), this
correspondence is nonempty-compact-valued and upper-hemicontinuous. Now we
show that it is also lower-hemicontinuous. Fix h € H and suppose that Gf — 0;
and s; € S;(6;, h). By Assumption 0, each A;(-, '), (k' € H) is continuous, hence
lower-hemicontinuous. Therefore we can find a sequence of actions (aj;, )72, such
that af,, — s;(#') and af, € A (07, 1'). Let s¥(W) = af, for all B’ € H.
By construction s¥ € S;(0;) and (sF)$2, converges pointwise to s;. Since H is
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finite s¥ — s;. If B’ # h is a prefix of h, then by assumption all 4;(6%, ') an
A;(0;, 1) are finite. Thus, by continuity of A( R, Ai(05 W) = A6 h) an

s¥(W') = s;(W') for k large. This implies that s* € S;(6%, h). Therefore S;(-, )
lower hemicontinuous.

The outcome function ¢* : ¥ — Z is continuous: suppose that (65, s%);cn
converges to (0;, s;)icn, then for k large s* and s induce the same action profile
through the second-to-last stage and in the last stage the action profile induced
by s* converges to the action profile induced by s. Therefore the strategic payoff
functions U; = u,; o (* are also continuous and (by compactness of ¥) bounded.

Since S;(-, h) is nonempty-compact-valued and continuous and Uj is continuous
and bounded, the conditional expected payoff U; (6;, s;, u'(-|Z 4 (h)) is always well-
defined and continuous in (6;, s;, u*) and the correspondence

ri(0, ', h) =arg max U, (65, 50, 1 (15 i(h))

is nonempty-valued (for h € H(6;)) and upper-hemicontinuous in (6;,u*). By

a standard dynamic programming argument it can be shown that r;(0;, ') is
nonempty. We show that r;(-, -) is upper-hemicontinuous. Suppose that (6%, u*, f) —
(05, 14, s;) and, for all k, s* € r;(9%, u**). Since the game is simple, for & large s¥
and s; prescribe the same action through the second-to-last stage, which implies
that (0%, s¥) = H(6;, s;). This and upper-hemicontinuity of each correspondence
ri(-,-,h) (h € H) imply that, for each history h € H(0;,s;), s; € ri(0;,p',h).
Therefore s; € r;(0;, 1"). B

The following result summarizes Propositions 3.5 and 3.6.

Proposition 7.1. Suppose that A and A" are regular, ¥ is compact, r;(-,-) is
nonempty-valued and upper-hemicontinuous and A" C (A?) for every player i.
Then for every player i and all k = 0,1, ..., 00,

(a) the sets W;(k,A) and ¥;(k,A) of weakly and strongly (k,A)-rationalizable
profiles are nonempty and compact with projo,W;(k,A) =proje,¥;(k,A) = O,
the sets A’y (W;(k,A)) and ®*(k, A) are nonempty and compact as well;

(b) Si(k, A) C Wik, A),

(c) Wi(k, &) € Wi(k, A);

(d) Wi(oo, A) x Wy(oo, A) is the largest measurable subset Iy x F» C X such that

Fy x Fy = py (AA(F2)) x py (AR(FY)) -
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Proof. First note that compactness of ¥ and regularity of A imply that each set
A is compact as well. Then observe that for every measurable subset ) # E_; C
¥._; such that projg . F_; = ©_; the following holds:

O#{p € AP (2 ) :Vhe H,E ;N i(h) # 0= p' (B2 4(h)) =1} NAT C

{1 € AB(S)  p'(Bi[E ) = 1} N A = AL (E);

nonemptiness follows from measurability and the fact that, since projg_ E_; =
O_; and A is regular, we are taking the intersection of nonempty sets characterized
by logically independent properties. The inclusion holds because ¥_;(¢) = ¥_;
and E_; N X_;(¢) # 0. The last equality is true by definition. Finally note that
(a) , (b) and (c) are true by definition for £ = 0. Assume that (a), (b) and (c)
hold for all £ =0, ...,n.

(a, n+1) By the inductive hypothesis, the argument above implies the sets of
weakly and strongly (n, A)-rationalizable beliefs A% (W_;(n,A)) and

®'(n,A) = ﬁ{,u’ €A :
Vh € H,X_i(h)NX_i(k,A) # 0= p'(S_i(k,A)|S_i(h)) = 1}

are nonempty and compact.

Since 7;(-, -) is a nonempty-valued, upper-hemicontinuous and ©); is closed, each
set p; (") = Up,eo,{0: } x7:(0;, 1*) is nonempty and closed and correspondence p;(-)
is upper-hemicontinuous. Therefore the sets of weakly and strongly (n + 1, A)-
rationalizable pairs

pi (Ma(W_i(n, A)))
and
Si(n+1,4) = p, (¥'(n, A))

are nonempty and compact. Furthermore, nonemptiness of r;(-,) implies that
their projections on O; coincide with ©;. This proves that (a) holds for all non-
negative integers k. Clearly, compactness and the projection property hold also
for k = oco. Since the sequences of weakly and strongly (k, A)-rationalizable sets
are nested, nonemptiness of

Wi(oo,A) = ﬂ Wik, A)

k>0
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and
Yi(00,A) = ﬂ %i(k,A)

k>0

follows from the finite intersection property of compact sets.
(b, n+1) By the inductive hypothesis ¥ _;(n,A) C W_;(n,A) and both sets
are measurable and nonempty. Therefore

R (E_i(k, A)) € AR (W_i(k, A))
and
Oi(k,A) C {ii € AT Vh € H,S_;(h)NS_i(n, A) £ 0 = 1i'(S_i(n, A)|S_i(h)) = 1}
C AL(S i (k,A)).

Thus we obtain ‘

pi (AA(Z5(n,A))) C i (AL (W i(n, A))) = Wiln +1,A),

Clearly the inclusion holds in the limit as & — oc.
(¢, n+1) By the inductive hypothesis and part (a) W_;(n,A) C W_;(n, A’)
and both sets are measurable. By monotonicity of operator p; o A’(-) we obtain

Wiln +1,A) = p;, (Ax(Wi(n, A))) C

pi (AW, A1) © p, (Al (Wi, ) = Wil + 1,4,

(d) (The following argument is a simple generalization of the proof of Proposi-
tion 3.1 in Bernheim (1984).) We first show that W (oo, A) x Wa(0o0, A) contains
every “fixed set” I x Fy. By definition F} x Fy C W7(0,A) x W5(0, A). Suppose
that Fy x Fy C Wy (k, A) x Wy(k,A). By part (a) each set W;(k, A) is measurable.
Thus, monotonicity of the operator p; o A%\ (-) on the Borel sigma algebra of ¥_;
(¢ = 1,2) implies

Fy x Fy =py (AlA(Fz)> X P2 (AQA(F1)> C

p1 (AA(Wa(k, A))) x py (AR (Wa(k, A))) = Wik +1,A) x Wa(k +1,A).

Clearly the inclusion holds in the limit as £ — co. Now we show that W; (oo, A) x
Wa(oo,A) is a “fixed set.” By part (a) W;(k,A) is measurable for all k =
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0,1,...,00. Thus monotonicity of p; o A4(-) and W _;(c0,A) C W_;(k,A) (k =
0,1,...) yield

pio Ay (W_i(00,4)) € [ pyo A (Woi(k, A)) = () Wilk + 1, A) = Wi(o0, A).

k>0 k>0

Therefore
p1 (AL (Wa(00,A))) x py (AR (Wi(00,A))) C Wi(o0, A) x Wa(o0, A).

Now suppose that o; € W;(oo, A). Then there exists a sequence of CPSs (u**)2°,
such that for all k, po* € AY p®*(W_;(k,A)|X_;) = 1 and o; € p;(u"*). Since
APBi(¥_;) is compact, we may assume w.l.o.g. that u*¥ — p'. Since A’ is closed,
p' € A'. Furthermore, it must be the case that p'(W_;(k,A)|X_;) = 1 for all k
(otherwise, u* could not converge to u’) and thus (by continuity of the measure
p (12 5)) p(W_i(oco, A)|X ;) = 1. Since p; is upper-hemicontinuous, o; € p,; ().
This shows that

Wa(00, A) x W00, A) € py (AX(Wa(00, A))) % py (AR (Wi(00, A)))
|

Remark 3. The the proof of part (b) uses only the fact that the sets of weakly
and strongly (k,A)-rationalizable profiles are measurable and nonempty. The
proof of part (c) relies only on measurability of the sets of weakly (k, A)-rationalizable
profiles.

Proof of Proposition 3.10. Recall that we are assuming no extraneous
restrictions on beliefs. The set of weakly k-rationalizable strategies for player i is
denoted W;(k) and the set of CPSs assigning prior probability one to some subset
B_; C %, is denoted AY(B_;).

(1) We show that every profile realizable in a weakly perfect Bayesian equilib-
rium (b, g) of any Bayesian extension By = (I', (E;)ien, (T3)ien, (Pi)ien) is weakly
rationalizable. Let ¢ be the set of realizable pairs given b, that is,

Zb = {(91, 81') : Elei, S; = bz(ez, 62)}

By definition,
Y0 C %= Wi(0), gi(T;) € AP (S_;) = A(W_i(0)), i = 1,2.
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Suppose that for each i, X6 C W;(k) and g;(T;) C A(W_;(k)). Since (b, g) satisfies
weak sequential rationality, the inductive hypothesis yields

5t C pilgi(Th)) C pi( N (Wi(k))) = Wik +1),i=1,2.
The inclusion above and weak consistency of (b, g) yield
g9:/(Ti) C A'(Z2,) € A'(W_i(k + 1))

as desired (note that X%, and W_;(k + 1) are both measurable).

(2) We construct a Bayesian extension Br and a weakly perfect Bayesian
equilibrium (b, g) such that W;(occ) = X¢. Since I' is simple, Proposition 7.1 (d)
yields

Wi(00) x Wa(oo) = py (A (Wa(00))) x pz (A*(Wa(o0)) ).

Therefore, for each (0;,s;) € W;(oo) there is a corresponding belief g;(6;,s;) €
A(W_;(00)) such that s; € r;(0;,g:(0;,5;)). Since r; is an upper-hemicontinuous
correspondence, we may assume without loss of generality that function g; is
measurable. Br is constructed as follows: for every 7,

L E’L - S’i: 7—11 - I/I/Z(OO)’
e for all t; € ﬂ, B,IL‘ C T,z' (measurable) pz(tz)(sz) = gz(tz)(szyzfz)

By Proposition 7.1 (a), T; is nonempty compact and proje,T; = ©;, i = 1,2.
Thus Br is a well-defined Bayesian extension of I'. Let b;(6;,s;) = s; for all
(0;,8;) € T;, i = 1,2. b; is obviously measurable. Weak sequential rationality and
weak consistency are satisfied by construction. Therefore Br is indeed a Bayesian
extension of I and (b, g) is the desired weakly perfect Bayesian equilibrium. B

Proof of Proposition 3.11. By Proposition 7.1 (b) we only have to consider
the relationship between weak rationalizability and dominance. Take an arbitrary
finite game. If (0;, s;) € p, (%), then s; is a best reply to the (prior) belief p(-|X ;)
for type ;. This implies that s; cannot be strictly dominated for type 6;. Thus
for every rectangular subset B C X

p1(AN(B2)) x py(A*(B1)) C S(B).
(a) If the game is static, then it is also true that

S(B) C pr(AN(B2)) x py(A*(B1))
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(the proof can be easily adapted from Pearce (1984, Lemma 3)) and a standard
inductive argument proves (a).

(b) If we assume that the game has no relevant ties, then W(1) C W,(X) (the
proof can be adapted from Battigalli (1997, Lemma 3). Thus W(1) C S(X) N
Wy(E) = SW,(X). Suppose that

W(n) C SWI(S).

Then
W(n+1) = py (A (Wa(n))) x po(A*(Wi(n))) C

S(SWI(E)) N W,(E) = SWH(5).

This proves statement (b).

(c) In every perfect information game with private values, W,(X) = W(X)
(Battigalli (1997, Lemma 4) shows this result for games with perfect and complete
information, the proof can be easily adapted to cover the present more general
case). Thus, if the game has no relevant tie, part (b) implies W(k) € SW*(X)
for all £.*' Suppose that

W(n) =SW"(X)

and let (01, 51,02, s2) € SW" (). By the induction hypothesis and the definition
of operator SW, (01, 51,02, s2) € S(X5) N W(X) C X. Thus for each i, there are
V',V e A(X;) such that v/(W_;(n)) = 1, V" is strictly positive and s; is a best
response to v/ and v for type 0; (Pearce (1984, Lemmata 3 and 4)). Construct
e [A(D)]P as follows: for all h € H, B_; C S_;(h),

v(B_;)

p(Boi2_i(h)) = v(Si(h)’

where v =/, if V/(3;(h)) > 0, and v = " otherwise. It can be checked that '
is indeed a CPS (ut € ABi(X,)), p{(W_i(n)|X_;) = 1 and (6;,s;) € p;(11*). Thus

Proof of Proposition 5.3 (b), (c).

Case (b): ¢ (0") < (@) < e*(0"). In this case S(4,A,0) = {e*(¢')} U
[e (0"),e(#)] . In fact, any education choice e < e (") reveals Player 1 as type ¢’
and can be optimal only if e = e*(#'). The latter is justified by any conjecture like

41Ben Porath (1997, Lemma 2.1) independently proved that, in generic games with perfect
(and complete) information, W (1) C W(X).
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(5.3) with e* > €(#'"). Every choice e* € [e (0"),e(¢')] is justified by the (3, A)-
rationalizable conjecture (5.3). S1(4,A,0") = {e*(6")} as in case (a). Thus the
only (5, A)-rationalizable strategy for player 2 and (6, A)-rationalizable conjecture
for both types of player 1 are given by the function

— [0 if e<e®)
’9(6)_{ 0" if e>e()

The best reply to J(-) for type 6 is e*(6), 6 = ¢',6".

Case (c): e(f') > e*(0"). In this case S1(4,A,60") = {e*(0) }U[e (8"),e(0")] as
in case (b), but S1(4,A,0") = [é(68")),e(¢')]. In fact, by choosing e > &(#') player
1 is revealed as type 0”. Thus any choice e* > (') is dominated by e € (&('),
e*). Similarly, any e* < &(#') must be justified by a conjecture 9(-) such that
w(@”,e*, 9(e*)er) > u(8",e(0),0"e(#')), ie. the point (e*,9(e*)e*) must lie on or
above the 0" — indifference curve through (e(6'),6"e(#")) (see Figure 4). Choices
e* € [e(0"),e* (")) are justified by (3, A)-rationalizable conjectures

o if  e<eé(d)
O(e) =4 MRS e*) if ecle(0),e (0")] .

6" if e > e*(6")
Choices e* € [e*(0"),e(0')] are justified by (3, A)-rationalizable conjectures (5.3).
Choices e* < é(f") cannot be justified by (3, A)-rationalizable conjectures: By way
of contradiction, let ¥(-) be a (3, A)-rationalizable conjecture justifying e* < é(8").
Since (e*,9(e*)) must lie above the §”-indifference curve through (£(6'),0"e(9")),
0(e*) > MRS(0",6(0")) (see Figure 4). MRS(0",e) is strictly increasing in e,
thus MRS (e*,0") < MRS(e(6"),0"). These inequalities jointly violate the first
order condition (5.2).

Therefore player 2’s A-rationalizable strategies and player 1’s rationalizable

conjectures are the functions 9(-) € Q(3,A) such that 9(e) = ¢ if e < é(6"), and
J(e) = 0" if e > &(¢'), which implies the thesis. B
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